PageRenderTime 47ms CodeModel.GetById 12ms RepoModel.GetById 0ms app.codeStats 0ms

/drivers/video/matrox/matroxfb_misc.c

https://github.com/mstsirkin/linux
C | 815 lines | 641 code | 64 blank | 110 comment | 133 complexity | f2bde08bc174cf9a4b338545777c79f2 MD5 | raw file
  1. /*
  2. *
  3. * Hardware accelerated Matrox Millennium I, II, Mystique, G100, G200 and G400
  4. *
  5. * (c) 1998-2002 Petr Vandrovec <vandrove@vc.cvut.cz>
  6. *
  7. * Portions Copyright (c) 2001 Matrox Graphics Inc.
  8. *
  9. * Version: 1.65 2002/08/14
  10. *
  11. * MTRR stuff: 1998 Tom Rini <trini@kernel.crashing.org>
  12. *
  13. * Contributors: "menion?" <menion@mindless.com>
  14. * Betatesting, fixes, ideas
  15. *
  16. * "Kurt Garloff" <garloff@suse.de>
  17. * Betatesting, fixes, ideas, videomodes, videomodes timmings
  18. *
  19. * "Tom Rini" <trini@kernel.crashing.org>
  20. * MTRR stuff, PPC cleanups, betatesting, fixes, ideas
  21. *
  22. * "Bibek Sahu" <scorpio@dodds.net>
  23. * Access device through readb|w|l and write b|w|l
  24. * Extensive debugging stuff
  25. *
  26. * "Daniel Haun" <haund@usa.net>
  27. * Testing, hardware cursor fixes
  28. *
  29. * "Scott Wood" <sawst46+@pitt.edu>
  30. * Fixes
  31. *
  32. * "Gerd Knorr" <kraxel@goldbach.isdn.cs.tu-berlin.de>
  33. * Betatesting
  34. *
  35. * "Kelly French" <targon@hazmat.com>
  36. * "Fernando Herrera" <fherrera@eurielec.etsit.upm.es>
  37. * Betatesting, bug reporting
  38. *
  39. * "Pablo Bianucci" <pbian@pccp.com.ar>
  40. * Fixes, ideas, betatesting
  41. *
  42. * "Inaky Perez Gonzalez" <inaky@peloncho.fis.ucm.es>
  43. * Fixes, enhandcements, ideas, betatesting
  44. *
  45. * "Ryuichi Oikawa" <roikawa@rr.iiij4u.or.jp>
  46. * PPC betatesting, PPC support, backward compatibility
  47. *
  48. * "Paul Womar" <Paul@pwomar.demon.co.uk>
  49. * "Owen Waller" <O.Waller@ee.qub.ac.uk>
  50. * PPC betatesting
  51. *
  52. * "Thomas Pornin" <pornin@bolet.ens.fr>
  53. * Alpha betatesting
  54. *
  55. * "Pieter van Leuven" <pvl@iae.nl>
  56. * "Ulf Jaenicke-Roessler" <ujr@physik.phy.tu-dresden.de>
  57. * G100 testing
  58. *
  59. * "H. Peter Arvin" <hpa@transmeta.com>
  60. * Ideas
  61. *
  62. * "Cort Dougan" <cort@cs.nmt.edu>
  63. * CHRP fixes and PReP cleanup
  64. *
  65. * "Mark Vojkovich" <mvojkovi@ucsd.edu>
  66. * G400 support
  67. *
  68. * "David C. Hansen" <haveblue@us.ibm.com>
  69. * Fixes
  70. *
  71. * "Ian Romanick" <idr@us.ibm.com>
  72. * Find PInS data in BIOS on PowerPC systems.
  73. *
  74. * (following author is not in any relation with this code, but his code
  75. * is included in this driver)
  76. *
  77. * Based on framebuffer driver for VBE 2.0 compliant graphic boards
  78. * (c) 1998 Gerd Knorr <kraxel@cs.tu-berlin.de>
  79. *
  80. * (following author is not in any relation with this code, but his ideas
  81. * were used when writing this driver)
  82. *
  83. * FreeVBE/AF (Matrox), "Shawn Hargreaves" <shawn@talula.demon.co.uk>
  84. *
  85. */
  86. #include "matroxfb_misc.h"
  87. #include <linux/interrupt.h>
  88. #include <linux/matroxfb.h>
  89. void matroxfb_DAC_out(const struct matrox_fb_info *minfo, int reg, int val)
  90. {
  91. DBG_REG(__func__)
  92. mga_outb(M_RAMDAC_BASE+M_X_INDEX, reg);
  93. mga_outb(M_RAMDAC_BASE+M_X_DATAREG, val);
  94. }
  95. int matroxfb_DAC_in(const struct matrox_fb_info *minfo, int reg)
  96. {
  97. DBG_REG(__func__)
  98. mga_outb(M_RAMDAC_BASE+M_X_INDEX, reg);
  99. return mga_inb(M_RAMDAC_BASE+M_X_DATAREG);
  100. }
  101. void matroxfb_var2my(struct fb_var_screeninfo* var, struct my_timming* mt) {
  102. unsigned int pixclock = var->pixclock;
  103. DBG(__func__)
  104. if (!pixclock) pixclock = 10000; /* 10ns = 100MHz */
  105. mt->pixclock = 1000000000 / pixclock;
  106. if (mt->pixclock < 1) mt->pixclock = 1;
  107. mt->mnp = -1;
  108. mt->dblscan = var->vmode & FB_VMODE_DOUBLE;
  109. mt->interlaced = var->vmode & FB_VMODE_INTERLACED;
  110. mt->HDisplay = var->xres;
  111. mt->HSyncStart = mt->HDisplay + var->right_margin;
  112. mt->HSyncEnd = mt->HSyncStart + var->hsync_len;
  113. mt->HTotal = mt->HSyncEnd + var->left_margin;
  114. mt->VDisplay = var->yres;
  115. mt->VSyncStart = mt->VDisplay + var->lower_margin;
  116. mt->VSyncEnd = mt->VSyncStart + var->vsync_len;
  117. mt->VTotal = mt->VSyncEnd + var->upper_margin;
  118. mt->sync = var->sync;
  119. }
  120. int matroxfb_PLL_calcclock(const struct matrox_pll_features* pll, unsigned int freq, unsigned int fmax,
  121. unsigned int* in, unsigned int* feed, unsigned int* post) {
  122. unsigned int bestdiff = ~0;
  123. unsigned int bestvco = 0;
  124. unsigned int fxtal = pll->ref_freq;
  125. unsigned int fwant;
  126. unsigned int p;
  127. DBG(__func__)
  128. fwant = freq;
  129. #ifdef DEBUG
  130. printk(KERN_ERR "post_shift_max: %d\n", pll->post_shift_max);
  131. printk(KERN_ERR "ref_freq: %d\n", pll->ref_freq);
  132. printk(KERN_ERR "freq: %d\n", freq);
  133. printk(KERN_ERR "vco_freq_min: %d\n", pll->vco_freq_min);
  134. printk(KERN_ERR "in_div_min: %d\n", pll->in_div_min);
  135. printk(KERN_ERR "in_div_max: %d\n", pll->in_div_max);
  136. printk(KERN_ERR "feed_div_min: %d\n", pll->feed_div_min);
  137. printk(KERN_ERR "feed_div_max: %d\n", pll->feed_div_max);
  138. printk(KERN_ERR "fmax: %d\n", fmax);
  139. #endif
  140. for (p = 1; p <= pll->post_shift_max; p++) {
  141. if (fwant * 2 > fmax)
  142. break;
  143. fwant *= 2;
  144. }
  145. if (fwant < pll->vco_freq_min) fwant = pll->vco_freq_min;
  146. if (fwant > fmax) fwant = fmax;
  147. for (; p-- > 0; fwant >>= 1, bestdiff >>= 1) {
  148. unsigned int m;
  149. if (fwant < pll->vco_freq_min) break;
  150. for (m = pll->in_div_min; m <= pll->in_div_max; m++) {
  151. unsigned int diff, fvco;
  152. unsigned int n;
  153. n = (fwant * (m + 1) + (fxtal >> 1)) / fxtal - 1;
  154. if (n > pll->feed_div_max)
  155. break;
  156. if (n < pll->feed_div_min)
  157. n = pll->feed_div_min;
  158. fvco = (fxtal * (n + 1)) / (m + 1);
  159. if (fvco < fwant)
  160. diff = fwant - fvco;
  161. else
  162. diff = fvco - fwant;
  163. if (diff < bestdiff) {
  164. bestdiff = diff;
  165. *post = p;
  166. *in = m;
  167. *feed = n;
  168. bestvco = fvco;
  169. }
  170. }
  171. }
  172. dprintk(KERN_ERR "clk: %02X %02X %02X %d %d %d\n", *in, *feed, *post, fxtal, bestvco, fwant);
  173. return bestvco;
  174. }
  175. int matroxfb_vgaHWinit(struct matrox_fb_info *minfo, struct my_timming *m)
  176. {
  177. unsigned int hd, hs, he, hbe, ht;
  178. unsigned int vd, vs, ve, vt, lc;
  179. unsigned int wd;
  180. unsigned int divider;
  181. int i;
  182. struct matrox_hw_state * const hw = &minfo->hw;
  183. DBG(__func__)
  184. hw->SEQ[0] = 0x00;
  185. hw->SEQ[1] = 0x01; /* or 0x09 */
  186. hw->SEQ[2] = 0x0F; /* bitplanes */
  187. hw->SEQ[3] = 0x00;
  188. hw->SEQ[4] = 0x0E;
  189. /* CRTC 0..7, 9, 16..19, 21, 22 are reprogrammed by Matrox Millennium code... Hope that by MGA1064 too */
  190. if (m->dblscan) {
  191. m->VTotal <<= 1;
  192. m->VDisplay <<= 1;
  193. m->VSyncStart <<= 1;
  194. m->VSyncEnd <<= 1;
  195. }
  196. if (m->interlaced) {
  197. m->VTotal >>= 1;
  198. m->VDisplay >>= 1;
  199. m->VSyncStart >>= 1;
  200. m->VSyncEnd >>= 1;
  201. }
  202. /* GCTL is ignored when not using 0xA0000 aperture */
  203. hw->GCTL[0] = 0x00;
  204. hw->GCTL[1] = 0x00;
  205. hw->GCTL[2] = 0x00;
  206. hw->GCTL[3] = 0x00;
  207. hw->GCTL[4] = 0x00;
  208. hw->GCTL[5] = 0x40;
  209. hw->GCTL[6] = 0x05;
  210. hw->GCTL[7] = 0x0F;
  211. hw->GCTL[8] = 0xFF;
  212. /* Whole ATTR is ignored in PowerGraphics mode */
  213. for (i = 0; i < 16; i++)
  214. hw->ATTR[i] = i;
  215. hw->ATTR[16] = 0x41;
  216. hw->ATTR[17] = 0xFF;
  217. hw->ATTR[18] = 0x0F;
  218. hw->ATTR[19] = 0x00;
  219. hw->ATTR[20] = 0x00;
  220. hd = m->HDisplay >> 3;
  221. hs = m->HSyncStart >> 3;
  222. he = m->HSyncEnd >> 3;
  223. ht = m->HTotal >> 3;
  224. /* standard timmings are in 8pixels, but for interleaved we cannot */
  225. /* do it for 4bpp (because of (4bpp >> 1(interleaved))/4 == 0) */
  226. /* using 16 or more pixels per unit can save us */
  227. divider = minfo->curr.final_bppShift;
  228. while (divider & 3) {
  229. hd >>= 1;
  230. hs >>= 1;
  231. he >>= 1;
  232. ht >>= 1;
  233. divider <<= 1;
  234. }
  235. divider = divider / 4;
  236. /* divider can be from 1 to 8 */
  237. while (divider > 8) {
  238. hd <<= 1;
  239. hs <<= 1;
  240. he <<= 1;
  241. ht <<= 1;
  242. divider >>= 1;
  243. }
  244. hd = hd - 1;
  245. hs = hs - 1;
  246. he = he - 1;
  247. ht = ht - 1;
  248. vd = m->VDisplay - 1;
  249. vs = m->VSyncStart - 1;
  250. ve = m->VSyncEnd - 1;
  251. vt = m->VTotal - 2;
  252. lc = vd;
  253. /* G200 cannot work with (ht & 7) == 6 */
  254. if (((ht & 0x07) == 0x06) || ((ht & 0x0F) == 0x04))
  255. ht++;
  256. hbe = ht;
  257. wd = minfo->fbcon.var.xres_virtual * minfo->curr.final_bppShift / 64;
  258. hw->CRTCEXT[0] = 0;
  259. hw->CRTCEXT[5] = 0;
  260. if (m->interlaced) {
  261. hw->CRTCEXT[0] = 0x80;
  262. hw->CRTCEXT[5] = (hs + he - ht) >> 1;
  263. if (!m->dblscan)
  264. wd <<= 1;
  265. vt &= ~1;
  266. }
  267. hw->CRTCEXT[0] |= (wd & 0x300) >> 4;
  268. hw->CRTCEXT[1] = (((ht - 4) & 0x100) >> 8) |
  269. ((hd & 0x100) >> 7) | /* blanking */
  270. ((hs & 0x100) >> 6) | /* sync start */
  271. (hbe & 0x040); /* end hor. blanking */
  272. /* FIXME: Enable vidrst only on G400, and only if TV-out is used */
  273. if (minfo->outputs[1].src == MATROXFB_SRC_CRTC1)
  274. hw->CRTCEXT[1] |= 0x88; /* enable horizontal and vertical vidrst */
  275. hw->CRTCEXT[2] = ((vt & 0xC00) >> 10) |
  276. ((vd & 0x400) >> 8) | /* disp end */
  277. ((vd & 0xC00) >> 7) | /* vblanking start */
  278. ((vs & 0xC00) >> 5) |
  279. ((lc & 0x400) >> 3);
  280. hw->CRTCEXT[3] = (divider - 1) | 0x80;
  281. hw->CRTCEXT[4] = 0;
  282. hw->CRTC[0] = ht-4;
  283. hw->CRTC[1] = hd;
  284. hw->CRTC[2] = hd;
  285. hw->CRTC[3] = (hbe & 0x1F) | 0x80;
  286. hw->CRTC[4] = hs;
  287. hw->CRTC[5] = ((hbe & 0x20) << 2) | (he & 0x1F);
  288. hw->CRTC[6] = vt & 0xFF;
  289. hw->CRTC[7] = ((vt & 0x100) >> 8) |
  290. ((vd & 0x100) >> 7) |
  291. ((vs & 0x100) >> 6) |
  292. ((vd & 0x100) >> 5) |
  293. ((lc & 0x100) >> 4) |
  294. ((vt & 0x200) >> 4) |
  295. ((vd & 0x200) >> 3) |
  296. ((vs & 0x200) >> 2);
  297. hw->CRTC[8] = 0x00;
  298. hw->CRTC[9] = ((vd & 0x200) >> 4) |
  299. ((lc & 0x200) >> 3);
  300. if (m->dblscan && !m->interlaced)
  301. hw->CRTC[9] |= 0x80;
  302. for (i = 10; i < 16; i++)
  303. hw->CRTC[i] = 0x00;
  304. hw->CRTC[16] = vs /* & 0xFF */;
  305. hw->CRTC[17] = (ve & 0x0F) | 0x20;
  306. hw->CRTC[18] = vd /* & 0xFF */;
  307. hw->CRTC[19] = wd /* & 0xFF */;
  308. hw->CRTC[20] = 0x00;
  309. hw->CRTC[21] = vd /* & 0xFF */;
  310. hw->CRTC[22] = (vt + 1) /* & 0xFF */;
  311. hw->CRTC[23] = 0xC3;
  312. hw->CRTC[24] = lc;
  313. return 0;
  314. };
  315. void matroxfb_vgaHWrestore(struct matrox_fb_info *minfo)
  316. {
  317. int i;
  318. struct matrox_hw_state * const hw = &minfo->hw;
  319. CRITFLAGS
  320. DBG(__func__)
  321. dprintk(KERN_INFO "MiscOutReg: %02X\n", hw->MiscOutReg);
  322. dprintk(KERN_INFO "SEQ regs: ");
  323. for (i = 0; i < 5; i++)
  324. dprintk("%02X:", hw->SEQ[i]);
  325. dprintk("\n");
  326. dprintk(KERN_INFO "GDC regs: ");
  327. for (i = 0; i < 9; i++)
  328. dprintk("%02X:", hw->GCTL[i]);
  329. dprintk("\n");
  330. dprintk(KERN_INFO "CRTC regs: ");
  331. for (i = 0; i < 25; i++)
  332. dprintk("%02X:", hw->CRTC[i]);
  333. dprintk("\n");
  334. dprintk(KERN_INFO "ATTR regs: ");
  335. for (i = 0; i < 21; i++)
  336. dprintk("%02X:", hw->ATTR[i]);
  337. dprintk("\n");
  338. CRITBEGIN
  339. mga_inb(M_ATTR_RESET);
  340. mga_outb(M_ATTR_INDEX, 0);
  341. mga_outb(M_MISC_REG, hw->MiscOutReg);
  342. for (i = 1; i < 5; i++)
  343. mga_setr(M_SEQ_INDEX, i, hw->SEQ[i]);
  344. mga_setr(M_CRTC_INDEX, 17, hw->CRTC[17] & 0x7F);
  345. for (i = 0; i < 25; i++)
  346. mga_setr(M_CRTC_INDEX, i, hw->CRTC[i]);
  347. for (i = 0; i < 9; i++)
  348. mga_setr(M_GRAPHICS_INDEX, i, hw->GCTL[i]);
  349. for (i = 0; i < 21; i++) {
  350. mga_inb(M_ATTR_RESET);
  351. mga_outb(M_ATTR_INDEX, i);
  352. mga_outb(M_ATTR_INDEX, hw->ATTR[i]);
  353. }
  354. mga_outb(M_PALETTE_MASK, 0xFF);
  355. mga_outb(M_DAC_REG, 0x00);
  356. for (i = 0; i < 768; i++)
  357. mga_outb(M_DAC_VAL, hw->DACpal[i]);
  358. mga_inb(M_ATTR_RESET);
  359. mga_outb(M_ATTR_INDEX, 0x20);
  360. CRITEND
  361. }
  362. static void get_pins(unsigned char __iomem* pins, struct matrox_bios* bd) {
  363. unsigned int b0 = readb(pins);
  364. if (b0 == 0x2E && readb(pins+1) == 0x41) {
  365. unsigned int pins_len = readb(pins+2);
  366. unsigned int i;
  367. unsigned char cksum;
  368. unsigned char* dst = bd->pins;
  369. if (pins_len < 3 || pins_len > 128) {
  370. return;
  371. }
  372. *dst++ = 0x2E;
  373. *dst++ = 0x41;
  374. *dst++ = pins_len;
  375. cksum = 0x2E + 0x41 + pins_len;
  376. for (i = 3; i < pins_len; i++) {
  377. cksum += *dst++ = readb(pins+i);
  378. }
  379. if (cksum) {
  380. return;
  381. }
  382. bd->pins_len = pins_len;
  383. } else if (b0 == 0x40 && readb(pins+1) == 0x00) {
  384. unsigned int i;
  385. unsigned char* dst = bd->pins;
  386. *dst++ = 0x40;
  387. *dst++ = 0;
  388. for (i = 2; i < 0x40; i++) {
  389. *dst++ = readb(pins+i);
  390. }
  391. bd->pins_len = 0x40;
  392. }
  393. }
  394. static void get_bios_version(unsigned char __iomem * vbios, struct matrox_bios* bd) {
  395. unsigned int pcir_offset;
  396. pcir_offset = readb(vbios + 24) | (readb(vbios + 25) << 8);
  397. if (pcir_offset >= 26 && pcir_offset < 0xFFE0 &&
  398. readb(vbios + pcir_offset ) == 'P' &&
  399. readb(vbios + pcir_offset + 1) == 'C' &&
  400. readb(vbios + pcir_offset + 2) == 'I' &&
  401. readb(vbios + pcir_offset + 3) == 'R') {
  402. unsigned char h;
  403. h = readb(vbios + pcir_offset + 0x12);
  404. bd->version.vMaj = (h >> 4) & 0xF;
  405. bd->version.vMin = h & 0xF;
  406. bd->version.vRev = readb(vbios + pcir_offset + 0x13);
  407. } else {
  408. unsigned char h;
  409. h = readb(vbios + 5);
  410. bd->version.vMaj = (h >> 4) & 0xF;
  411. bd->version.vMin = h & 0xF;
  412. bd->version.vRev = 0;
  413. }
  414. }
  415. static void get_bios_output(unsigned char __iomem* vbios, struct matrox_bios* bd) {
  416. unsigned char b;
  417. b = readb(vbios + 0x7FF1);
  418. if (b == 0xFF) {
  419. b = 0;
  420. }
  421. bd->output.state = b;
  422. }
  423. static void get_bios_tvout(unsigned char __iomem* vbios, struct matrox_bios* bd) {
  424. unsigned int i;
  425. /* Check for 'IBM .*(V....TVO' string - it means TVO BIOS */
  426. bd->output.tvout = 0;
  427. if (readb(vbios + 0x1D) != 'I' ||
  428. readb(vbios + 0x1E) != 'B' ||
  429. readb(vbios + 0x1F) != 'M' ||
  430. readb(vbios + 0x20) != ' ') {
  431. return;
  432. }
  433. for (i = 0x2D; i < 0x2D + 128; i++) {
  434. unsigned char b = readb(vbios + i);
  435. if (b == '(' && readb(vbios + i + 1) == 'V') {
  436. if (readb(vbios + i + 6) == 'T' &&
  437. readb(vbios + i + 7) == 'V' &&
  438. readb(vbios + i + 8) == 'O') {
  439. bd->output.tvout = 1;
  440. }
  441. return;
  442. }
  443. if (b == 0)
  444. break;
  445. }
  446. }
  447. static void parse_bios(unsigned char __iomem* vbios, struct matrox_bios* bd) {
  448. unsigned int pins_offset;
  449. if (readb(vbios) != 0x55 || readb(vbios + 1) != 0xAA) {
  450. return;
  451. }
  452. bd->bios_valid = 1;
  453. get_bios_version(vbios, bd);
  454. get_bios_output(vbios, bd);
  455. get_bios_tvout(vbios, bd);
  456. #if defined(__powerpc__)
  457. /* On PowerPC cards, the PInS offset isn't stored at the end of the
  458. * BIOS image. Instead, you must search the entire BIOS image for
  459. * the magic PInS signature.
  460. *
  461. * This actually applies to all OpenFirmware base cards. Since these
  462. * cards could be put in a MIPS or SPARC system, should the condition
  463. * be something different?
  464. */
  465. for ( pins_offset = 0 ; pins_offset <= 0xFF80 ; pins_offset++ ) {
  466. unsigned char header[3];
  467. header[0] = readb(vbios + pins_offset);
  468. header[1] = readb(vbios + pins_offset + 1);
  469. header[2] = readb(vbios + pins_offset + 2);
  470. if ( (header[0] == 0x2E) && (header[1] == 0x41)
  471. && ((header[2] == 0x40) || (header[2] == 0x80)) ) {
  472. printk(KERN_INFO "PInS data found at offset %u\n",
  473. pins_offset);
  474. get_pins(vbios + pins_offset, bd);
  475. break;
  476. }
  477. }
  478. #else
  479. pins_offset = readb(vbios + 0x7FFC) | (readb(vbios + 0x7FFD) << 8);
  480. if (pins_offset <= 0xFF80) {
  481. get_pins(vbios + pins_offset, bd);
  482. }
  483. #endif
  484. }
  485. static int parse_pins1(struct matrox_fb_info *minfo,
  486. const struct matrox_bios *bd)
  487. {
  488. unsigned int maxdac;
  489. switch (bd->pins[22]) {
  490. case 0: maxdac = 175000; break;
  491. case 1: maxdac = 220000; break;
  492. default: maxdac = 240000; break;
  493. }
  494. if (get_unaligned_le16(bd->pins + 24)) {
  495. maxdac = get_unaligned_le16(bd->pins + 24) * 10;
  496. }
  497. minfo->limits.pixel.vcomax = maxdac;
  498. minfo->values.pll.system = get_unaligned_le16(bd->pins + 28) ?
  499. get_unaligned_le16(bd->pins + 28) * 10 : 50000;
  500. /* ignore 4MB, 8MB, module clocks */
  501. minfo->features.pll.ref_freq = 14318;
  502. minfo->values.reg.mctlwtst = 0x00030101;
  503. return 0;
  504. }
  505. static void default_pins1(struct matrox_fb_info *minfo)
  506. {
  507. /* Millennium */
  508. minfo->limits.pixel.vcomax = 220000;
  509. minfo->values.pll.system = 50000;
  510. minfo->features.pll.ref_freq = 14318;
  511. minfo->values.reg.mctlwtst = 0x00030101;
  512. }
  513. static int parse_pins2(struct matrox_fb_info *minfo,
  514. const struct matrox_bios *bd)
  515. {
  516. minfo->limits.pixel.vcomax =
  517. minfo->limits.system.vcomax = (bd->pins[41] == 0xFF) ? 230000 : ((bd->pins[41] + 100) * 1000);
  518. minfo->values.reg.mctlwtst = ((bd->pins[51] & 0x01) ? 0x00000001 : 0) |
  519. ((bd->pins[51] & 0x02) ? 0x00000100 : 0) |
  520. ((bd->pins[51] & 0x04) ? 0x00010000 : 0) |
  521. ((bd->pins[51] & 0x08) ? 0x00020000 : 0);
  522. minfo->values.pll.system = (bd->pins[43] == 0xFF) ? 50000 : ((bd->pins[43] + 100) * 1000);
  523. minfo->features.pll.ref_freq = 14318;
  524. return 0;
  525. }
  526. static void default_pins2(struct matrox_fb_info *minfo)
  527. {
  528. /* Millennium II, Mystique */
  529. minfo->limits.pixel.vcomax =
  530. minfo->limits.system.vcomax = 230000;
  531. minfo->values.reg.mctlwtst = 0x00030101;
  532. minfo->values.pll.system = 50000;
  533. minfo->features.pll.ref_freq = 14318;
  534. }
  535. static int parse_pins3(struct matrox_fb_info *minfo,
  536. const struct matrox_bios *bd)
  537. {
  538. minfo->limits.pixel.vcomax =
  539. minfo->limits.system.vcomax = (bd->pins[36] == 0xFF) ? 230000 : ((bd->pins[36] + 100) * 1000);
  540. minfo->values.reg.mctlwtst = get_unaligned_le32(bd->pins + 48) == 0xFFFFFFFF ?
  541. 0x01250A21 : get_unaligned_le32(bd->pins + 48);
  542. /* memory config */
  543. minfo->values.reg.memrdbk = ((bd->pins[57] << 21) & 0x1E000000) |
  544. ((bd->pins[57] << 22) & 0x00C00000) |
  545. ((bd->pins[56] << 1) & 0x000001E0) |
  546. ( bd->pins[56] & 0x0000000F);
  547. minfo->values.reg.opt = (bd->pins[54] & 7) << 10;
  548. minfo->values.reg.opt2 = bd->pins[58] << 12;
  549. minfo->features.pll.ref_freq = (bd->pins[52] & 0x20) ? 14318 : 27000;
  550. return 0;
  551. }
  552. static void default_pins3(struct matrox_fb_info *minfo)
  553. {
  554. /* G100, G200 */
  555. minfo->limits.pixel.vcomax =
  556. minfo->limits.system.vcomax = 230000;
  557. minfo->values.reg.mctlwtst = 0x01250A21;
  558. minfo->values.reg.memrdbk = 0x00000000;
  559. minfo->values.reg.opt = 0x00000C00;
  560. minfo->values.reg.opt2 = 0x00000000;
  561. minfo->features.pll.ref_freq = 27000;
  562. }
  563. static int parse_pins4(struct matrox_fb_info *minfo,
  564. const struct matrox_bios *bd)
  565. {
  566. minfo->limits.pixel.vcomax = (bd->pins[ 39] == 0xFF) ? 230000 : bd->pins[ 39] * 4000;
  567. minfo->limits.system.vcomax = (bd->pins[ 38] == 0xFF) ? minfo->limits.pixel.vcomax : bd->pins[ 38] * 4000;
  568. minfo->values.reg.mctlwtst = get_unaligned_le32(bd->pins + 71);
  569. minfo->values.reg.memrdbk = ((bd->pins[87] << 21) & 0x1E000000) |
  570. ((bd->pins[87] << 22) & 0x00C00000) |
  571. ((bd->pins[86] << 1) & 0x000001E0) |
  572. ( bd->pins[86] & 0x0000000F);
  573. minfo->values.reg.opt = ((bd->pins[53] << 15) & 0x00400000) |
  574. ((bd->pins[53] << 22) & 0x10000000) |
  575. ((bd->pins[53] << 7) & 0x00001C00);
  576. minfo->values.reg.opt3 = get_unaligned_le32(bd->pins + 67);
  577. minfo->values.pll.system = (bd->pins[ 65] == 0xFF) ? 200000 : bd->pins[ 65] * 4000;
  578. minfo->features.pll.ref_freq = (bd->pins[ 92] & 0x01) ? 14318 : 27000;
  579. return 0;
  580. }
  581. static void default_pins4(struct matrox_fb_info *minfo)
  582. {
  583. /* G400 */
  584. minfo->limits.pixel.vcomax =
  585. minfo->limits.system.vcomax = 252000;
  586. minfo->values.reg.mctlwtst = 0x04A450A1;
  587. minfo->values.reg.memrdbk = 0x000000E7;
  588. minfo->values.reg.opt = 0x10000400;
  589. minfo->values.reg.opt3 = 0x0190A419;
  590. minfo->values.pll.system = 200000;
  591. minfo->features.pll.ref_freq = 27000;
  592. }
  593. static int parse_pins5(struct matrox_fb_info *minfo,
  594. const struct matrox_bios *bd)
  595. {
  596. unsigned int mult;
  597. mult = bd->pins[4]?8000:6000;
  598. minfo->limits.pixel.vcomax = (bd->pins[ 38] == 0xFF) ? 600000 : bd->pins[ 38] * mult;
  599. minfo->limits.system.vcomax = (bd->pins[ 36] == 0xFF) ? minfo->limits.pixel.vcomax : bd->pins[ 36] * mult;
  600. minfo->limits.video.vcomax = (bd->pins[ 37] == 0xFF) ? minfo->limits.system.vcomax : bd->pins[ 37] * mult;
  601. minfo->limits.pixel.vcomin = (bd->pins[123] == 0xFF) ? 256000 : bd->pins[123] * mult;
  602. minfo->limits.system.vcomin = (bd->pins[121] == 0xFF) ? minfo->limits.pixel.vcomin : bd->pins[121] * mult;
  603. minfo->limits.video.vcomin = (bd->pins[122] == 0xFF) ? minfo->limits.system.vcomin : bd->pins[122] * mult;
  604. minfo->values.pll.system =
  605. minfo->values.pll.video = (bd->pins[ 92] == 0xFF) ? 284000 : bd->pins[ 92] * 4000;
  606. minfo->values.reg.opt = get_unaligned_le32(bd->pins + 48);
  607. minfo->values.reg.opt2 = get_unaligned_le32(bd->pins + 52);
  608. minfo->values.reg.opt3 = get_unaligned_le32(bd->pins + 94);
  609. minfo->values.reg.mctlwtst = get_unaligned_le32(bd->pins + 98);
  610. minfo->values.reg.memmisc = get_unaligned_le32(bd->pins + 102);
  611. minfo->values.reg.memrdbk = get_unaligned_le32(bd->pins + 106);
  612. minfo->features.pll.ref_freq = (bd->pins[110] & 0x01) ? 14318 : 27000;
  613. minfo->values.memory.ddr = (bd->pins[114] & 0x60) == 0x20;
  614. minfo->values.memory.dll = (bd->pins[115] & 0x02) != 0;
  615. minfo->values.memory.emrswen = (bd->pins[115] & 0x01) != 0;
  616. minfo->values.reg.maccess = minfo->values.memory.emrswen ? 0x00004000 : 0x00000000;
  617. if (bd->pins[115] & 4) {
  618. minfo->values.reg.mctlwtst_core = minfo->values.reg.mctlwtst;
  619. } else {
  620. u_int32_t wtst_xlat[] = { 0, 1, 5, 6, 7, 5, 2, 3 };
  621. minfo->values.reg.mctlwtst_core = (minfo->values.reg.mctlwtst & ~7) |
  622. wtst_xlat[minfo->values.reg.mctlwtst & 7];
  623. }
  624. minfo->max_pixel_clock_panellink = bd->pins[47] * 4000;
  625. return 0;
  626. }
  627. static void default_pins5(struct matrox_fb_info *minfo)
  628. {
  629. /* Mine 16MB G450 with SDRAM DDR */
  630. minfo->limits.pixel.vcomax =
  631. minfo->limits.system.vcomax =
  632. minfo->limits.video.vcomax = 600000;
  633. minfo->limits.pixel.vcomin =
  634. minfo->limits.system.vcomin =
  635. minfo->limits.video.vcomin = 256000;
  636. minfo->values.pll.system =
  637. minfo->values.pll.video = 284000;
  638. minfo->values.reg.opt = 0x404A1160;
  639. minfo->values.reg.opt2 = 0x0000AC00;
  640. minfo->values.reg.opt3 = 0x0090A409;
  641. minfo->values.reg.mctlwtst_core =
  642. minfo->values.reg.mctlwtst = 0x0C81462B;
  643. minfo->values.reg.memmisc = 0x80000004;
  644. minfo->values.reg.memrdbk = 0x01001103;
  645. minfo->features.pll.ref_freq = 27000;
  646. minfo->values.memory.ddr = 1;
  647. minfo->values.memory.dll = 1;
  648. minfo->values.memory.emrswen = 1;
  649. minfo->values.reg.maccess = 0x00004000;
  650. }
  651. static int matroxfb_set_limits(struct matrox_fb_info *minfo,
  652. const struct matrox_bios *bd)
  653. {
  654. unsigned int pins_version;
  655. static const unsigned int pinslen[] = { 64, 64, 64, 128, 128 };
  656. switch (minfo->chip) {
  657. case MGA_2064: default_pins1(minfo); break;
  658. case MGA_2164:
  659. case MGA_1064:
  660. case MGA_1164: default_pins2(minfo); break;
  661. case MGA_G100:
  662. case MGA_G200: default_pins3(minfo); break;
  663. case MGA_G400: default_pins4(minfo); break;
  664. case MGA_G450:
  665. case MGA_G550: default_pins5(minfo); break;
  666. }
  667. if (!bd->bios_valid) {
  668. printk(KERN_INFO "matroxfb: Your Matrox device does not have BIOS\n");
  669. return -1;
  670. }
  671. if (bd->pins_len < 64) {
  672. printk(KERN_INFO "matroxfb: BIOS on your Matrox device does not contain powerup info\n");
  673. return -1;
  674. }
  675. if (bd->pins[0] == 0x2E && bd->pins[1] == 0x41) {
  676. pins_version = bd->pins[5];
  677. if (pins_version < 2 || pins_version > 5) {
  678. printk(KERN_INFO "matroxfb: Unknown version (%u) of powerup info\n", pins_version);
  679. return -1;
  680. }
  681. } else {
  682. pins_version = 1;
  683. }
  684. if (bd->pins_len != pinslen[pins_version - 1]) {
  685. printk(KERN_INFO "matroxfb: Invalid powerup info\n");
  686. return -1;
  687. }
  688. switch (pins_version) {
  689. case 1:
  690. return parse_pins1(minfo, bd);
  691. case 2:
  692. return parse_pins2(minfo, bd);
  693. case 3:
  694. return parse_pins3(minfo, bd);
  695. case 4:
  696. return parse_pins4(minfo, bd);
  697. case 5:
  698. return parse_pins5(minfo, bd);
  699. default:
  700. printk(KERN_DEBUG "matroxfb: Powerup info version %u is not yet supported\n", pins_version);
  701. return -1;
  702. }
  703. }
  704. void matroxfb_read_pins(struct matrox_fb_info *minfo)
  705. {
  706. u32 opt;
  707. u32 biosbase;
  708. u32 fbbase;
  709. struct pci_dev *pdev = minfo->pcidev;
  710. memset(&minfo->bios, 0, sizeof(minfo->bios));
  711. pci_read_config_dword(pdev, PCI_OPTION_REG, &opt);
  712. pci_write_config_dword(pdev, PCI_OPTION_REG, opt | PCI_OPTION_ENABLE_ROM);
  713. pci_read_config_dword(pdev, PCI_ROM_ADDRESS, &biosbase);
  714. pci_read_config_dword(pdev, minfo->devflags.fbResource, &fbbase);
  715. pci_write_config_dword(pdev, PCI_ROM_ADDRESS, (fbbase & PCI_ROM_ADDRESS_MASK) | PCI_ROM_ADDRESS_ENABLE);
  716. parse_bios(vaddr_va(minfo->video.vbase), &minfo->bios);
  717. pci_write_config_dword(pdev, PCI_ROM_ADDRESS, biosbase);
  718. pci_write_config_dword(pdev, PCI_OPTION_REG, opt);
  719. #ifdef CONFIG_X86
  720. if (!minfo->bios.bios_valid) {
  721. unsigned char __iomem* b;
  722. b = ioremap(0x000C0000, 65536);
  723. if (!b) {
  724. printk(KERN_INFO "matroxfb: Unable to map legacy BIOS\n");
  725. } else {
  726. unsigned int ven = readb(b+0x64+0) | (readb(b+0x64+1) << 8);
  727. unsigned int dev = readb(b+0x64+2) | (readb(b+0x64+3) << 8);
  728. if (ven != pdev->vendor || dev != pdev->device) {
  729. printk(KERN_INFO "matroxfb: Legacy BIOS is for %04X:%04X, while this device is %04X:%04X\n",
  730. ven, dev, pdev->vendor, pdev->device);
  731. } else {
  732. parse_bios(b, &minfo->bios);
  733. }
  734. iounmap(b);
  735. }
  736. }
  737. #endif
  738. matroxfb_set_limits(minfo, &minfo->bios);
  739. printk(KERN_INFO "PInS memtype = %u\n",
  740. (minfo->values.reg.opt & 0x1C00) >> 10);
  741. }
  742. EXPORT_SYMBOL(matroxfb_DAC_in);
  743. EXPORT_SYMBOL(matroxfb_DAC_out);
  744. EXPORT_SYMBOL(matroxfb_var2my);
  745. EXPORT_SYMBOL(matroxfb_PLL_calcclock);
  746. EXPORT_SYMBOL(matroxfb_vgaHWinit); /* DAC1064, Ti3026 */
  747. EXPORT_SYMBOL(matroxfb_vgaHWrestore); /* DAC1064, Ti3026 */
  748. EXPORT_SYMBOL(matroxfb_read_pins);
  749. MODULE_AUTHOR("(c) 1999-2002 Petr Vandrovec <vandrove@vc.cvut.cz>");
  750. MODULE_DESCRIPTION("Miscellaneous support for Matrox video cards");
  751. MODULE_LICENSE("GPL");