PageRenderTime 31ms CodeModel.GetById 1ms RepoModel.GetById 0ms app.codeStats 0ms

/fs/afs/write.c

https://github.com/mstsirkin/linux
C | 764 lines | 563 code | 106 blank | 95 comment | 114 complexity | 2486322211891b5add8c6062ebc67c37 MD5 | raw file
  1. /* handling of writes to regular files and writing back to the server
  2. *
  3. * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
  4. * Written by David Howells (dhowells@redhat.com)
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License
  8. * as published by the Free Software Foundation; either version
  9. * 2 of the License, or (at your option) any later version.
  10. */
  11. #include <linux/backing-dev.h>
  12. #include <linux/slab.h>
  13. #include <linux/fs.h>
  14. #include <linux/pagemap.h>
  15. #include <linux/writeback.h>
  16. #include <linux/pagevec.h>
  17. #include "internal.h"
  18. static int afs_write_back_from_locked_page(struct afs_writeback *wb,
  19. struct page *page);
  20. /*
  21. * mark a page as having been made dirty and thus needing writeback
  22. */
  23. int afs_set_page_dirty(struct page *page)
  24. {
  25. _enter("");
  26. return __set_page_dirty_nobuffers(page);
  27. }
  28. /*
  29. * unlink a writeback record because its usage has reached zero
  30. * - must be called with the wb->vnode->writeback_lock held
  31. */
  32. static void afs_unlink_writeback(struct afs_writeback *wb)
  33. {
  34. struct afs_writeback *front;
  35. struct afs_vnode *vnode = wb->vnode;
  36. list_del_init(&wb->link);
  37. if (!list_empty(&vnode->writebacks)) {
  38. /* if an fsync rises to the front of the queue then wake it
  39. * up */
  40. front = list_entry(vnode->writebacks.next,
  41. struct afs_writeback, link);
  42. if (front->state == AFS_WBACK_SYNCING) {
  43. _debug("wake up sync");
  44. front->state = AFS_WBACK_COMPLETE;
  45. wake_up(&front->waitq);
  46. }
  47. }
  48. }
  49. /*
  50. * free a writeback record
  51. */
  52. static void afs_free_writeback(struct afs_writeback *wb)
  53. {
  54. _enter("");
  55. key_put(wb->key);
  56. kfree(wb);
  57. }
  58. /*
  59. * dispose of a reference to a writeback record
  60. */
  61. void afs_put_writeback(struct afs_writeback *wb)
  62. {
  63. struct afs_vnode *vnode = wb->vnode;
  64. _enter("{%d}", wb->usage);
  65. spin_lock(&vnode->writeback_lock);
  66. if (--wb->usage == 0)
  67. afs_unlink_writeback(wb);
  68. else
  69. wb = NULL;
  70. spin_unlock(&vnode->writeback_lock);
  71. if (wb)
  72. afs_free_writeback(wb);
  73. }
  74. /*
  75. * partly or wholly fill a page that's under preparation for writing
  76. */
  77. static int afs_fill_page(struct afs_vnode *vnode, struct key *key,
  78. loff_t pos, struct page *page)
  79. {
  80. loff_t i_size;
  81. int ret;
  82. int len;
  83. _enter(",,%llu", (unsigned long long)pos);
  84. i_size = i_size_read(&vnode->vfs_inode);
  85. if (pos + PAGE_CACHE_SIZE > i_size)
  86. len = i_size - pos;
  87. else
  88. len = PAGE_CACHE_SIZE;
  89. ret = afs_vnode_fetch_data(vnode, key, pos, len, page);
  90. if (ret < 0) {
  91. if (ret == -ENOENT) {
  92. _debug("got NOENT from server"
  93. " - marking file deleted and stale");
  94. set_bit(AFS_VNODE_DELETED, &vnode->flags);
  95. ret = -ESTALE;
  96. }
  97. }
  98. _leave(" = %d", ret);
  99. return ret;
  100. }
  101. /*
  102. * prepare to perform part of a write to a page
  103. */
  104. int afs_write_begin(struct file *file, struct address_space *mapping,
  105. loff_t pos, unsigned len, unsigned flags,
  106. struct page **pagep, void **fsdata)
  107. {
  108. struct afs_writeback *candidate, *wb;
  109. struct afs_vnode *vnode = AFS_FS_I(file->f_dentry->d_inode);
  110. struct page *page;
  111. struct key *key = file->private_data;
  112. unsigned from = pos & (PAGE_CACHE_SIZE - 1);
  113. unsigned to = from + len;
  114. pgoff_t index = pos >> PAGE_CACHE_SHIFT;
  115. int ret;
  116. _enter("{%x:%u},{%lx},%u,%u",
  117. vnode->fid.vid, vnode->fid.vnode, index, from, to);
  118. candidate = kzalloc(sizeof(*candidate), GFP_KERNEL);
  119. if (!candidate)
  120. return -ENOMEM;
  121. candidate->vnode = vnode;
  122. candidate->first = candidate->last = index;
  123. candidate->offset_first = from;
  124. candidate->to_last = to;
  125. INIT_LIST_HEAD(&candidate->link);
  126. candidate->usage = 1;
  127. candidate->state = AFS_WBACK_PENDING;
  128. init_waitqueue_head(&candidate->waitq);
  129. page = grab_cache_page_write_begin(mapping, index, flags);
  130. if (!page) {
  131. kfree(candidate);
  132. return -ENOMEM;
  133. }
  134. *pagep = page;
  135. /* page won't leak in error case: it eventually gets cleaned off LRU */
  136. if (!PageUptodate(page) && len != PAGE_CACHE_SIZE) {
  137. ret = afs_fill_page(vnode, key, index << PAGE_CACHE_SHIFT, page);
  138. if (ret < 0) {
  139. kfree(candidate);
  140. _leave(" = %d [prep]", ret);
  141. return ret;
  142. }
  143. SetPageUptodate(page);
  144. }
  145. try_again:
  146. spin_lock(&vnode->writeback_lock);
  147. /* see if this page is already pending a writeback under a suitable key
  148. * - if so we can just join onto that one */
  149. wb = (struct afs_writeback *) page_private(page);
  150. if (wb) {
  151. if (wb->key == key && wb->state == AFS_WBACK_PENDING)
  152. goto subsume_in_current_wb;
  153. goto flush_conflicting_wb;
  154. }
  155. if (index > 0) {
  156. /* see if we can find an already pending writeback that we can
  157. * append this page to */
  158. list_for_each_entry(wb, &vnode->writebacks, link) {
  159. if (wb->last == index - 1 && wb->key == key &&
  160. wb->state == AFS_WBACK_PENDING)
  161. goto append_to_previous_wb;
  162. }
  163. }
  164. list_add_tail(&candidate->link, &vnode->writebacks);
  165. candidate->key = key_get(key);
  166. spin_unlock(&vnode->writeback_lock);
  167. SetPagePrivate(page);
  168. set_page_private(page, (unsigned long) candidate);
  169. _leave(" = 0 [new]");
  170. return 0;
  171. subsume_in_current_wb:
  172. _debug("subsume");
  173. ASSERTRANGE(wb->first, <=, index, <=, wb->last);
  174. if (index == wb->first && from < wb->offset_first)
  175. wb->offset_first = from;
  176. if (index == wb->last && to > wb->to_last)
  177. wb->to_last = to;
  178. spin_unlock(&vnode->writeback_lock);
  179. kfree(candidate);
  180. _leave(" = 0 [sub]");
  181. return 0;
  182. append_to_previous_wb:
  183. _debug("append into %lx-%lx", wb->first, wb->last);
  184. wb->usage++;
  185. wb->last++;
  186. wb->to_last = to;
  187. spin_unlock(&vnode->writeback_lock);
  188. SetPagePrivate(page);
  189. set_page_private(page, (unsigned long) wb);
  190. kfree(candidate);
  191. _leave(" = 0 [app]");
  192. return 0;
  193. /* the page is currently bound to another context, so if it's dirty we
  194. * need to flush it before we can use the new context */
  195. flush_conflicting_wb:
  196. _debug("flush conflict");
  197. if (wb->state == AFS_WBACK_PENDING)
  198. wb->state = AFS_WBACK_CONFLICTING;
  199. spin_unlock(&vnode->writeback_lock);
  200. if (PageDirty(page)) {
  201. ret = afs_write_back_from_locked_page(wb, page);
  202. if (ret < 0) {
  203. afs_put_writeback(candidate);
  204. _leave(" = %d", ret);
  205. return ret;
  206. }
  207. }
  208. /* the page holds a ref on the writeback record */
  209. afs_put_writeback(wb);
  210. set_page_private(page, 0);
  211. ClearPagePrivate(page);
  212. goto try_again;
  213. }
  214. /*
  215. * finalise part of a write to a page
  216. */
  217. int afs_write_end(struct file *file, struct address_space *mapping,
  218. loff_t pos, unsigned len, unsigned copied,
  219. struct page *page, void *fsdata)
  220. {
  221. struct afs_vnode *vnode = AFS_FS_I(file->f_dentry->d_inode);
  222. loff_t i_size, maybe_i_size;
  223. _enter("{%x:%u},{%lx}",
  224. vnode->fid.vid, vnode->fid.vnode, page->index);
  225. maybe_i_size = pos + copied;
  226. i_size = i_size_read(&vnode->vfs_inode);
  227. if (maybe_i_size > i_size) {
  228. spin_lock(&vnode->writeback_lock);
  229. i_size = i_size_read(&vnode->vfs_inode);
  230. if (maybe_i_size > i_size)
  231. i_size_write(&vnode->vfs_inode, maybe_i_size);
  232. spin_unlock(&vnode->writeback_lock);
  233. }
  234. set_page_dirty(page);
  235. if (PageDirty(page))
  236. _debug("dirtied");
  237. unlock_page(page);
  238. page_cache_release(page);
  239. return copied;
  240. }
  241. /*
  242. * kill all the pages in the given range
  243. */
  244. static void afs_kill_pages(struct afs_vnode *vnode, bool error,
  245. pgoff_t first, pgoff_t last)
  246. {
  247. struct pagevec pv;
  248. unsigned count, loop;
  249. _enter("{%x:%u},%lx-%lx",
  250. vnode->fid.vid, vnode->fid.vnode, first, last);
  251. pagevec_init(&pv, 0);
  252. do {
  253. _debug("kill %lx-%lx", first, last);
  254. count = last - first + 1;
  255. if (count > PAGEVEC_SIZE)
  256. count = PAGEVEC_SIZE;
  257. pv.nr = find_get_pages_contig(vnode->vfs_inode.i_mapping,
  258. first, count, pv.pages);
  259. ASSERTCMP(pv.nr, ==, count);
  260. for (loop = 0; loop < count; loop++) {
  261. ClearPageUptodate(pv.pages[loop]);
  262. if (error)
  263. SetPageError(pv.pages[loop]);
  264. end_page_writeback(pv.pages[loop]);
  265. }
  266. __pagevec_release(&pv);
  267. } while (first < last);
  268. _leave("");
  269. }
  270. /*
  271. * synchronously write back the locked page and any subsequent non-locked dirty
  272. * pages also covered by the same writeback record
  273. */
  274. static int afs_write_back_from_locked_page(struct afs_writeback *wb,
  275. struct page *primary_page)
  276. {
  277. struct page *pages[8], *page;
  278. unsigned long count;
  279. unsigned n, offset, to;
  280. pgoff_t start, first, last;
  281. int loop, ret;
  282. _enter(",%lx", primary_page->index);
  283. count = 1;
  284. if (!clear_page_dirty_for_io(primary_page))
  285. BUG();
  286. if (test_set_page_writeback(primary_page))
  287. BUG();
  288. /* find all consecutive lockable dirty pages, stopping when we find a
  289. * page that is not immediately lockable, is not dirty or is missing,
  290. * or we reach the end of the range */
  291. start = primary_page->index;
  292. if (start >= wb->last)
  293. goto no_more;
  294. start++;
  295. do {
  296. _debug("more %lx [%lx]", start, count);
  297. n = wb->last - start + 1;
  298. if (n > ARRAY_SIZE(pages))
  299. n = ARRAY_SIZE(pages);
  300. n = find_get_pages_contig(wb->vnode->vfs_inode.i_mapping,
  301. start, n, pages);
  302. _debug("fgpc %u", n);
  303. if (n == 0)
  304. goto no_more;
  305. if (pages[0]->index != start) {
  306. do {
  307. put_page(pages[--n]);
  308. } while (n > 0);
  309. goto no_more;
  310. }
  311. for (loop = 0; loop < n; loop++) {
  312. page = pages[loop];
  313. if (page->index > wb->last)
  314. break;
  315. if (!trylock_page(page))
  316. break;
  317. if (!PageDirty(page) ||
  318. page_private(page) != (unsigned long) wb) {
  319. unlock_page(page);
  320. break;
  321. }
  322. if (!clear_page_dirty_for_io(page))
  323. BUG();
  324. if (test_set_page_writeback(page))
  325. BUG();
  326. unlock_page(page);
  327. put_page(page);
  328. }
  329. count += loop;
  330. if (loop < n) {
  331. for (; loop < n; loop++)
  332. put_page(pages[loop]);
  333. goto no_more;
  334. }
  335. start += loop;
  336. } while (start <= wb->last && count < 65536);
  337. no_more:
  338. /* we now have a contiguous set of dirty pages, each with writeback set
  339. * and the dirty mark cleared; the first page is locked and must remain
  340. * so, all the rest are unlocked */
  341. first = primary_page->index;
  342. last = first + count - 1;
  343. offset = (first == wb->first) ? wb->offset_first : 0;
  344. to = (last == wb->last) ? wb->to_last : PAGE_SIZE;
  345. _debug("write back %lx[%u..] to %lx[..%u]", first, offset, last, to);
  346. ret = afs_vnode_store_data(wb, first, last, offset, to);
  347. if (ret < 0) {
  348. switch (ret) {
  349. case -EDQUOT:
  350. case -ENOSPC:
  351. set_bit(AS_ENOSPC,
  352. &wb->vnode->vfs_inode.i_mapping->flags);
  353. break;
  354. case -EROFS:
  355. case -EIO:
  356. case -EREMOTEIO:
  357. case -EFBIG:
  358. case -ENOENT:
  359. case -ENOMEDIUM:
  360. case -ENXIO:
  361. afs_kill_pages(wb->vnode, true, first, last);
  362. set_bit(AS_EIO, &wb->vnode->vfs_inode.i_mapping->flags);
  363. break;
  364. case -EACCES:
  365. case -EPERM:
  366. case -ENOKEY:
  367. case -EKEYEXPIRED:
  368. case -EKEYREJECTED:
  369. case -EKEYREVOKED:
  370. afs_kill_pages(wb->vnode, false, first, last);
  371. break;
  372. default:
  373. break;
  374. }
  375. } else {
  376. ret = count;
  377. }
  378. _leave(" = %d", ret);
  379. return ret;
  380. }
  381. /*
  382. * write a page back to the server
  383. * - the caller locked the page for us
  384. */
  385. int afs_writepage(struct page *page, struct writeback_control *wbc)
  386. {
  387. struct afs_writeback *wb;
  388. int ret;
  389. _enter("{%lx},", page->index);
  390. wb = (struct afs_writeback *) page_private(page);
  391. ASSERT(wb != NULL);
  392. ret = afs_write_back_from_locked_page(wb, page);
  393. unlock_page(page);
  394. if (ret < 0) {
  395. _leave(" = %d", ret);
  396. return 0;
  397. }
  398. wbc->nr_to_write -= ret;
  399. _leave(" = 0");
  400. return 0;
  401. }
  402. /*
  403. * write a region of pages back to the server
  404. */
  405. static int afs_writepages_region(struct address_space *mapping,
  406. struct writeback_control *wbc,
  407. pgoff_t index, pgoff_t end, pgoff_t *_next)
  408. {
  409. struct afs_writeback *wb;
  410. struct page *page;
  411. int ret, n;
  412. _enter(",,%lx,%lx,", index, end);
  413. do {
  414. n = find_get_pages_tag(mapping, &index, PAGECACHE_TAG_DIRTY,
  415. 1, &page);
  416. if (!n)
  417. break;
  418. _debug("wback %lx", page->index);
  419. if (page->index > end) {
  420. *_next = index;
  421. page_cache_release(page);
  422. _leave(" = 0 [%lx]", *_next);
  423. return 0;
  424. }
  425. /* at this point we hold neither mapping->tree_lock nor lock on
  426. * the page itself: the page may be truncated or invalidated
  427. * (changing page->mapping to NULL), or even swizzled back from
  428. * swapper_space to tmpfs file mapping
  429. */
  430. lock_page(page);
  431. if (page->mapping != mapping) {
  432. unlock_page(page);
  433. page_cache_release(page);
  434. continue;
  435. }
  436. if (wbc->sync_mode != WB_SYNC_NONE)
  437. wait_on_page_writeback(page);
  438. if (PageWriteback(page) || !PageDirty(page)) {
  439. unlock_page(page);
  440. continue;
  441. }
  442. wb = (struct afs_writeback *) page_private(page);
  443. ASSERT(wb != NULL);
  444. spin_lock(&wb->vnode->writeback_lock);
  445. wb->state = AFS_WBACK_WRITING;
  446. spin_unlock(&wb->vnode->writeback_lock);
  447. ret = afs_write_back_from_locked_page(wb, page);
  448. unlock_page(page);
  449. page_cache_release(page);
  450. if (ret < 0) {
  451. _leave(" = %d", ret);
  452. return ret;
  453. }
  454. wbc->nr_to_write -= ret;
  455. cond_resched();
  456. } while (index < end && wbc->nr_to_write > 0);
  457. *_next = index;
  458. _leave(" = 0 [%lx]", *_next);
  459. return 0;
  460. }
  461. /*
  462. * write some of the pending data back to the server
  463. */
  464. int afs_writepages(struct address_space *mapping,
  465. struct writeback_control *wbc)
  466. {
  467. pgoff_t start, end, next;
  468. int ret;
  469. _enter("");
  470. if (wbc->range_cyclic) {
  471. start = mapping->writeback_index;
  472. end = -1;
  473. ret = afs_writepages_region(mapping, wbc, start, end, &next);
  474. if (start > 0 && wbc->nr_to_write > 0 && ret == 0)
  475. ret = afs_writepages_region(mapping, wbc, 0, start,
  476. &next);
  477. mapping->writeback_index = next;
  478. } else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
  479. end = (pgoff_t)(LLONG_MAX >> PAGE_CACHE_SHIFT);
  480. ret = afs_writepages_region(mapping, wbc, 0, end, &next);
  481. if (wbc->nr_to_write > 0)
  482. mapping->writeback_index = next;
  483. } else {
  484. start = wbc->range_start >> PAGE_CACHE_SHIFT;
  485. end = wbc->range_end >> PAGE_CACHE_SHIFT;
  486. ret = afs_writepages_region(mapping, wbc, start, end, &next);
  487. }
  488. _leave(" = %d", ret);
  489. return ret;
  490. }
  491. /*
  492. * completion of write to server
  493. */
  494. void afs_pages_written_back(struct afs_vnode *vnode, struct afs_call *call)
  495. {
  496. struct afs_writeback *wb = call->wb;
  497. struct pagevec pv;
  498. unsigned count, loop;
  499. pgoff_t first = call->first, last = call->last;
  500. bool free_wb;
  501. _enter("{%x:%u},{%lx-%lx}",
  502. vnode->fid.vid, vnode->fid.vnode, first, last);
  503. ASSERT(wb != NULL);
  504. pagevec_init(&pv, 0);
  505. do {
  506. _debug("done %lx-%lx", first, last);
  507. count = last - first + 1;
  508. if (count > PAGEVEC_SIZE)
  509. count = PAGEVEC_SIZE;
  510. pv.nr = find_get_pages_contig(call->mapping, first, count,
  511. pv.pages);
  512. ASSERTCMP(pv.nr, ==, count);
  513. spin_lock(&vnode->writeback_lock);
  514. for (loop = 0; loop < count; loop++) {
  515. struct page *page = pv.pages[loop];
  516. end_page_writeback(page);
  517. if (page_private(page) == (unsigned long) wb) {
  518. set_page_private(page, 0);
  519. ClearPagePrivate(page);
  520. wb->usage--;
  521. }
  522. }
  523. free_wb = false;
  524. if (wb->usage == 0) {
  525. afs_unlink_writeback(wb);
  526. free_wb = true;
  527. }
  528. spin_unlock(&vnode->writeback_lock);
  529. first += count;
  530. if (free_wb) {
  531. afs_free_writeback(wb);
  532. wb = NULL;
  533. }
  534. __pagevec_release(&pv);
  535. } while (first <= last);
  536. _leave("");
  537. }
  538. /*
  539. * write to an AFS file
  540. */
  541. ssize_t afs_file_write(struct kiocb *iocb, const struct iovec *iov,
  542. unsigned long nr_segs, loff_t pos)
  543. {
  544. struct dentry *dentry = iocb->ki_filp->f_path.dentry;
  545. struct afs_vnode *vnode = AFS_FS_I(dentry->d_inode);
  546. ssize_t result;
  547. size_t count = iov_length(iov, nr_segs);
  548. _enter("{%x.%u},{%zu},%lu,",
  549. vnode->fid.vid, vnode->fid.vnode, count, nr_segs);
  550. if (IS_SWAPFILE(&vnode->vfs_inode)) {
  551. printk(KERN_INFO
  552. "AFS: Attempt to write to active swap file!\n");
  553. return -EBUSY;
  554. }
  555. if (!count)
  556. return 0;
  557. result = generic_file_aio_write(iocb, iov, nr_segs, pos);
  558. if (IS_ERR_VALUE(result)) {
  559. _leave(" = %zd", result);
  560. return result;
  561. }
  562. _leave(" = %zd", result);
  563. return result;
  564. }
  565. /*
  566. * flush the vnode to the fileserver
  567. */
  568. int afs_writeback_all(struct afs_vnode *vnode)
  569. {
  570. struct address_space *mapping = vnode->vfs_inode.i_mapping;
  571. struct writeback_control wbc = {
  572. .sync_mode = WB_SYNC_ALL,
  573. .nr_to_write = LONG_MAX,
  574. .range_cyclic = 1,
  575. };
  576. int ret;
  577. _enter("");
  578. ret = mapping->a_ops->writepages(mapping, &wbc);
  579. __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
  580. _leave(" = %d", ret);
  581. return ret;
  582. }
  583. /*
  584. * flush any dirty pages for this process, and check for write errors.
  585. * - the return status from this call provides a reliable indication of
  586. * whether any write errors occurred for this process.
  587. */
  588. int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
  589. {
  590. struct dentry *dentry = file->f_path.dentry;
  591. struct inode *inode = file->f_mapping->host;
  592. struct afs_writeback *wb, *xwb;
  593. struct afs_vnode *vnode = AFS_FS_I(dentry->d_inode);
  594. int ret;
  595. _enter("{%x:%u},{n=%s},%d",
  596. vnode->fid.vid, vnode->fid.vnode, dentry->d_name.name,
  597. datasync);
  598. ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
  599. if (ret)
  600. return ret;
  601. mutex_lock(&inode->i_mutex);
  602. /* use a writeback record as a marker in the queue - when this reaches
  603. * the front of the queue, all the outstanding writes are either
  604. * completed or rejected */
  605. wb = kzalloc(sizeof(*wb), GFP_KERNEL);
  606. if (!wb) {
  607. ret = -ENOMEM;
  608. goto out;
  609. }
  610. wb->vnode = vnode;
  611. wb->first = 0;
  612. wb->last = -1;
  613. wb->offset_first = 0;
  614. wb->to_last = PAGE_SIZE;
  615. wb->usage = 1;
  616. wb->state = AFS_WBACK_SYNCING;
  617. init_waitqueue_head(&wb->waitq);
  618. spin_lock(&vnode->writeback_lock);
  619. list_for_each_entry(xwb, &vnode->writebacks, link) {
  620. if (xwb->state == AFS_WBACK_PENDING)
  621. xwb->state = AFS_WBACK_CONFLICTING;
  622. }
  623. list_add_tail(&wb->link, &vnode->writebacks);
  624. spin_unlock(&vnode->writeback_lock);
  625. /* push all the outstanding writebacks to the server */
  626. ret = afs_writeback_all(vnode);
  627. if (ret < 0) {
  628. afs_put_writeback(wb);
  629. _leave(" = %d [wb]", ret);
  630. goto out;
  631. }
  632. /* wait for the preceding writes to actually complete */
  633. ret = wait_event_interruptible(wb->waitq,
  634. wb->state == AFS_WBACK_COMPLETE ||
  635. vnode->writebacks.next == &wb->link);
  636. afs_put_writeback(wb);
  637. _leave(" = %d", ret);
  638. out:
  639. mutex_unlock(&inode->i_mutex);
  640. return ret;
  641. }
  642. /*
  643. * notification that a previously read-only page is about to become writable
  644. * - if it returns an error, the caller will deliver a bus error signal
  645. */
  646. int afs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
  647. {
  648. struct afs_vnode *vnode = AFS_FS_I(vma->vm_file->f_mapping->host);
  649. _enter("{{%x:%u}},{%lx}",
  650. vnode->fid.vid, vnode->fid.vnode, page->index);
  651. /* wait for the page to be written to the cache before we allow it to
  652. * be modified */
  653. #ifdef CONFIG_AFS_FSCACHE
  654. fscache_wait_on_page_write(vnode->cache, page);
  655. #endif
  656. _leave(" = 0");
  657. return 0;
  658. }