PageRenderTime 24ms CodeModel.GetById 9ms RepoModel.GetById 0ms app.codeStats 0ms

/fs/btrfs/delayed-inode.c

https://github.com/mstsirkin/linux
C | 1773 lines | 1367 code | 280 blank | 126 comment | 181 complexity | f63093e1fabc5ac0de9f5c81043d043e MD5 | raw file
  1. /*
  2. * Copyright (C) 2011 Fujitsu. All rights reserved.
  3. * Written by Miao Xie <miaox@cn.fujitsu.com>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public
  7. * License v2 as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public
  15. * License along with this program; if not, write to the
  16. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17. * Boston, MA 021110-1307, USA.
  18. */
  19. #include <linux/slab.h>
  20. #include "delayed-inode.h"
  21. #include "disk-io.h"
  22. #include "transaction.h"
  23. #define BTRFS_DELAYED_WRITEBACK 400
  24. #define BTRFS_DELAYED_BACKGROUND 100
  25. static struct kmem_cache *delayed_node_cache;
  26. int __init btrfs_delayed_inode_init(void)
  27. {
  28. delayed_node_cache = kmem_cache_create("delayed_node",
  29. sizeof(struct btrfs_delayed_node),
  30. 0,
  31. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  32. NULL);
  33. if (!delayed_node_cache)
  34. return -ENOMEM;
  35. return 0;
  36. }
  37. void btrfs_delayed_inode_exit(void)
  38. {
  39. if (delayed_node_cache)
  40. kmem_cache_destroy(delayed_node_cache);
  41. }
  42. static inline void btrfs_init_delayed_node(
  43. struct btrfs_delayed_node *delayed_node,
  44. struct btrfs_root *root, u64 inode_id)
  45. {
  46. delayed_node->root = root;
  47. delayed_node->inode_id = inode_id;
  48. atomic_set(&delayed_node->refs, 0);
  49. delayed_node->count = 0;
  50. delayed_node->in_list = 0;
  51. delayed_node->inode_dirty = 0;
  52. delayed_node->ins_root = RB_ROOT;
  53. delayed_node->del_root = RB_ROOT;
  54. mutex_init(&delayed_node->mutex);
  55. delayed_node->index_cnt = 0;
  56. INIT_LIST_HEAD(&delayed_node->n_list);
  57. INIT_LIST_HEAD(&delayed_node->p_list);
  58. delayed_node->bytes_reserved = 0;
  59. }
  60. static inline int btrfs_is_continuous_delayed_item(
  61. struct btrfs_delayed_item *item1,
  62. struct btrfs_delayed_item *item2)
  63. {
  64. if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  65. item1->key.objectid == item2->key.objectid &&
  66. item1->key.type == item2->key.type &&
  67. item1->key.offset + 1 == item2->key.offset)
  68. return 1;
  69. return 0;
  70. }
  71. static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
  72. struct btrfs_root *root)
  73. {
  74. return root->fs_info->delayed_root;
  75. }
  76. static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
  77. {
  78. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  79. struct btrfs_root *root = btrfs_inode->root;
  80. u64 ino = btrfs_ino(inode);
  81. struct btrfs_delayed_node *node;
  82. node = ACCESS_ONCE(btrfs_inode->delayed_node);
  83. if (node) {
  84. atomic_inc(&node->refs);
  85. return node;
  86. }
  87. spin_lock(&root->inode_lock);
  88. node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  89. if (node) {
  90. if (btrfs_inode->delayed_node) {
  91. atomic_inc(&node->refs); /* can be accessed */
  92. BUG_ON(btrfs_inode->delayed_node != node);
  93. spin_unlock(&root->inode_lock);
  94. return node;
  95. }
  96. btrfs_inode->delayed_node = node;
  97. atomic_inc(&node->refs); /* can be accessed */
  98. atomic_inc(&node->refs); /* cached in the inode */
  99. spin_unlock(&root->inode_lock);
  100. return node;
  101. }
  102. spin_unlock(&root->inode_lock);
  103. return NULL;
  104. }
  105. static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
  106. struct inode *inode)
  107. {
  108. struct btrfs_delayed_node *node;
  109. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  110. struct btrfs_root *root = btrfs_inode->root;
  111. u64 ino = btrfs_ino(inode);
  112. int ret;
  113. again:
  114. node = btrfs_get_delayed_node(inode);
  115. if (node)
  116. return node;
  117. node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
  118. if (!node)
  119. return ERR_PTR(-ENOMEM);
  120. btrfs_init_delayed_node(node, root, ino);
  121. atomic_inc(&node->refs); /* cached in the btrfs inode */
  122. atomic_inc(&node->refs); /* can be accessed */
  123. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  124. if (ret) {
  125. kmem_cache_free(delayed_node_cache, node);
  126. return ERR_PTR(ret);
  127. }
  128. spin_lock(&root->inode_lock);
  129. ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
  130. if (ret == -EEXIST) {
  131. kmem_cache_free(delayed_node_cache, node);
  132. spin_unlock(&root->inode_lock);
  133. radix_tree_preload_end();
  134. goto again;
  135. }
  136. btrfs_inode->delayed_node = node;
  137. spin_unlock(&root->inode_lock);
  138. radix_tree_preload_end();
  139. return node;
  140. }
  141. /*
  142. * Call it when holding delayed_node->mutex
  143. *
  144. * If mod = 1, add this node into the prepared list.
  145. */
  146. static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
  147. struct btrfs_delayed_node *node,
  148. int mod)
  149. {
  150. spin_lock(&root->lock);
  151. if (node->in_list) {
  152. if (!list_empty(&node->p_list))
  153. list_move_tail(&node->p_list, &root->prepare_list);
  154. else if (mod)
  155. list_add_tail(&node->p_list, &root->prepare_list);
  156. } else {
  157. list_add_tail(&node->n_list, &root->node_list);
  158. list_add_tail(&node->p_list, &root->prepare_list);
  159. atomic_inc(&node->refs); /* inserted into list */
  160. root->nodes++;
  161. node->in_list = 1;
  162. }
  163. spin_unlock(&root->lock);
  164. }
  165. /* Call it when holding delayed_node->mutex */
  166. static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
  167. struct btrfs_delayed_node *node)
  168. {
  169. spin_lock(&root->lock);
  170. if (node->in_list) {
  171. root->nodes--;
  172. atomic_dec(&node->refs); /* not in the list */
  173. list_del_init(&node->n_list);
  174. if (!list_empty(&node->p_list))
  175. list_del_init(&node->p_list);
  176. node->in_list = 0;
  177. }
  178. spin_unlock(&root->lock);
  179. }
  180. struct btrfs_delayed_node *btrfs_first_delayed_node(
  181. struct btrfs_delayed_root *delayed_root)
  182. {
  183. struct list_head *p;
  184. struct btrfs_delayed_node *node = NULL;
  185. spin_lock(&delayed_root->lock);
  186. if (list_empty(&delayed_root->node_list))
  187. goto out;
  188. p = delayed_root->node_list.next;
  189. node = list_entry(p, struct btrfs_delayed_node, n_list);
  190. atomic_inc(&node->refs);
  191. out:
  192. spin_unlock(&delayed_root->lock);
  193. return node;
  194. }
  195. struct btrfs_delayed_node *btrfs_next_delayed_node(
  196. struct btrfs_delayed_node *node)
  197. {
  198. struct btrfs_delayed_root *delayed_root;
  199. struct list_head *p;
  200. struct btrfs_delayed_node *next = NULL;
  201. delayed_root = node->root->fs_info->delayed_root;
  202. spin_lock(&delayed_root->lock);
  203. if (!node->in_list) { /* not in the list */
  204. if (list_empty(&delayed_root->node_list))
  205. goto out;
  206. p = delayed_root->node_list.next;
  207. } else if (list_is_last(&node->n_list, &delayed_root->node_list))
  208. goto out;
  209. else
  210. p = node->n_list.next;
  211. next = list_entry(p, struct btrfs_delayed_node, n_list);
  212. atomic_inc(&next->refs);
  213. out:
  214. spin_unlock(&delayed_root->lock);
  215. return next;
  216. }
  217. static void __btrfs_release_delayed_node(
  218. struct btrfs_delayed_node *delayed_node,
  219. int mod)
  220. {
  221. struct btrfs_delayed_root *delayed_root;
  222. if (!delayed_node)
  223. return;
  224. delayed_root = delayed_node->root->fs_info->delayed_root;
  225. mutex_lock(&delayed_node->mutex);
  226. if (delayed_node->count)
  227. btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
  228. else
  229. btrfs_dequeue_delayed_node(delayed_root, delayed_node);
  230. mutex_unlock(&delayed_node->mutex);
  231. if (atomic_dec_and_test(&delayed_node->refs)) {
  232. struct btrfs_root *root = delayed_node->root;
  233. spin_lock(&root->inode_lock);
  234. if (atomic_read(&delayed_node->refs) == 0) {
  235. radix_tree_delete(&root->delayed_nodes_tree,
  236. delayed_node->inode_id);
  237. kmem_cache_free(delayed_node_cache, delayed_node);
  238. }
  239. spin_unlock(&root->inode_lock);
  240. }
  241. }
  242. static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
  243. {
  244. __btrfs_release_delayed_node(node, 0);
  245. }
  246. struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
  247. struct btrfs_delayed_root *delayed_root)
  248. {
  249. struct list_head *p;
  250. struct btrfs_delayed_node *node = NULL;
  251. spin_lock(&delayed_root->lock);
  252. if (list_empty(&delayed_root->prepare_list))
  253. goto out;
  254. p = delayed_root->prepare_list.next;
  255. list_del_init(p);
  256. node = list_entry(p, struct btrfs_delayed_node, p_list);
  257. atomic_inc(&node->refs);
  258. out:
  259. spin_unlock(&delayed_root->lock);
  260. return node;
  261. }
  262. static inline void btrfs_release_prepared_delayed_node(
  263. struct btrfs_delayed_node *node)
  264. {
  265. __btrfs_release_delayed_node(node, 1);
  266. }
  267. struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
  268. {
  269. struct btrfs_delayed_item *item;
  270. item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
  271. if (item) {
  272. item->data_len = data_len;
  273. item->ins_or_del = 0;
  274. item->bytes_reserved = 0;
  275. item->delayed_node = NULL;
  276. atomic_set(&item->refs, 1);
  277. }
  278. return item;
  279. }
  280. /*
  281. * __btrfs_lookup_delayed_item - look up the delayed item by key
  282. * @delayed_node: pointer to the delayed node
  283. * @key: the key to look up
  284. * @prev: used to store the prev item if the right item isn't found
  285. * @next: used to store the next item if the right item isn't found
  286. *
  287. * Note: if we don't find the right item, we will return the prev item and
  288. * the next item.
  289. */
  290. static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
  291. struct rb_root *root,
  292. struct btrfs_key *key,
  293. struct btrfs_delayed_item **prev,
  294. struct btrfs_delayed_item **next)
  295. {
  296. struct rb_node *node, *prev_node = NULL;
  297. struct btrfs_delayed_item *delayed_item = NULL;
  298. int ret = 0;
  299. node = root->rb_node;
  300. while (node) {
  301. delayed_item = rb_entry(node, struct btrfs_delayed_item,
  302. rb_node);
  303. prev_node = node;
  304. ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
  305. if (ret < 0)
  306. node = node->rb_right;
  307. else if (ret > 0)
  308. node = node->rb_left;
  309. else
  310. return delayed_item;
  311. }
  312. if (prev) {
  313. if (!prev_node)
  314. *prev = NULL;
  315. else if (ret < 0)
  316. *prev = delayed_item;
  317. else if ((node = rb_prev(prev_node)) != NULL) {
  318. *prev = rb_entry(node, struct btrfs_delayed_item,
  319. rb_node);
  320. } else
  321. *prev = NULL;
  322. }
  323. if (next) {
  324. if (!prev_node)
  325. *next = NULL;
  326. else if (ret > 0)
  327. *next = delayed_item;
  328. else if ((node = rb_next(prev_node)) != NULL) {
  329. *next = rb_entry(node, struct btrfs_delayed_item,
  330. rb_node);
  331. } else
  332. *next = NULL;
  333. }
  334. return NULL;
  335. }
  336. struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
  337. struct btrfs_delayed_node *delayed_node,
  338. struct btrfs_key *key)
  339. {
  340. struct btrfs_delayed_item *item;
  341. item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
  342. NULL, NULL);
  343. return item;
  344. }
  345. struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
  346. struct btrfs_delayed_node *delayed_node,
  347. struct btrfs_key *key)
  348. {
  349. struct btrfs_delayed_item *item;
  350. item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
  351. NULL, NULL);
  352. return item;
  353. }
  354. struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
  355. struct btrfs_delayed_node *delayed_node,
  356. struct btrfs_key *key)
  357. {
  358. struct btrfs_delayed_item *item, *next;
  359. item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
  360. NULL, &next);
  361. if (!item)
  362. item = next;
  363. return item;
  364. }
  365. struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
  366. struct btrfs_delayed_node *delayed_node,
  367. struct btrfs_key *key)
  368. {
  369. struct btrfs_delayed_item *item, *next;
  370. item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
  371. NULL, &next);
  372. if (!item)
  373. item = next;
  374. return item;
  375. }
  376. static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
  377. struct btrfs_delayed_item *ins,
  378. int action)
  379. {
  380. struct rb_node **p, *node;
  381. struct rb_node *parent_node = NULL;
  382. struct rb_root *root;
  383. struct btrfs_delayed_item *item;
  384. int cmp;
  385. if (action == BTRFS_DELAYED_INSERTION_ITEM)
  386. root = &delayed_node->ins_root;
  387. else if (action == BTRFS_DELAYED_DELETION_ITEM)
  388. root = &delayed_node->del_root;
  389. else
  390. BUG();
  391. p = &root->rb_node;
  392. node = &ins->rb_node;
  393. while (*p) {
  394. parent_node = *p;
  395. item = rb_entry(parent_node, struct btrfs_delayed_item,
  396. rb_node);
  397. cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
  398. if (cmp < 0)
  399. p = &(*p)->rb_right;
  400. else if (cmp > 0)
  401. p = &(*p)->rb_left;
  402. else
  403. return -EEXIST;
  404. }
  405. rb_link_node(node, parent_node, p);
  406. rb_insert_color(node, root);
  407. ins->delayed_node = delayed_node;
  408. ins->ins_or_del = action;
  409. if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
  410. action == BTRFS_DELAYED_INSERTION_ITEM &&
  411. ins->key.offset >= delayed_node->index_cnt)
  412. delayed_node->index_cnt = ins->key.offset + 1;
  413. delayed_node->count++;
  414. atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
  415. return 0;
  416. }
  417. static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
  418. struct btrfs_delayed_item *item)
  419. {
  420. return __btrfs_add_delayed_item(node, item,
  421. BTRFS_DELAYED_INSERTION_ITEM);
  422. }
  423. static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
  424. struct btrfs_delayed_item *item)
  425. {
  426. return __btrfs_add_delayed_item(node, item,
  427. BTRFS_DELAYED_DELETION_ITEM);
  428. }
  429. static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
  430. {
  431. struct rb_root *root;
  432. struct btrfs_delayed_root *delayed_root;
  433. delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
  434. BUG_ON(!delayed_root);
  435. BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
  436. delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
  437. if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
  438. root = &delayed_item->delayed_node->ins_root;
  439. else
  440. root = &delayed_item->delayed_node->del_root;
  441. rb_erase(&delayed_item->rb_node, root);
  442. delayed_item->delayed_node->count--;
  443. atomic_dec(&delayed_root->items);
  444. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND &&
  445. waitqueue_active(&delayed_root->wait))
  446. wake_up(&delayed_root->wait);
  447. }
  448. static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
  449. {
  450. if (item) {
  451. __btrfs_remove_delayed_item(item);
  452. if (atomic_dec_and_test(&item->refs))
  453. kfree(item);
  454. }
  455. }
  456. struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
  457. struct btrfs_delayed_node *delayed_node)
  458. {
  459. struct rb_node *p;
  460. struct btrfs_delayed_item *item = NULL;
  461. p = rb_first(&delayed_node->ins_root);
  462. if (p)
  463. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  464. return item;
  465. }
  466. struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
  467. struct btrfs_delayed_node *delayed_node)
  468. {
  469. struct rb_node *p;
  470. struct btrfs_delayed_item *item = NULL;
  471. p = rb_first(&delayed_node->del_root);
  472. if (p)
  473. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  474. return item;
  475. }
  476. struct btrfs_delayed_item *__btrfs_next_delayed_item(
  477. struct btrfs_delayed_item *item)
  478. {
  479. struct rb_node *p;
  480. struct btrfs_delayed_item *next = NULL;
  481. p = rb_next(&item->rb_node);
  482. if (p)
  483. next = rb_entry(p, struct btrfs_delayed_item, rb_node);
  484. return next;
  485. }
  486. static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
  487. u64 root_id)
  488. {
  489. struct btrfs_key root_key;
  490. if (root->objectid == root_id)
  491. return root;
  492. root_key.objectid = root_id;
  493. root_key.type = BTRFS_ROOT_ITEM_KEY;
  494. root_key.offset = (u64)-1;
  495. return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
  496. }
  497. static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
  498. struct btrfs_root *root,
  499. struct btrfs_delayed_item *item)
  500. {
  501. struct btrfs_block_rsv *src_rsv;
  502. struct btrfs_block_rsv *dst_rsv;
  503. u64 num_bytes;
  504. int ret;
  505. if (!trans->bytes_reserved)
  506. return 0;
  507. src_rsv = trans->block_rsv;
  508. dst_rsv = &root->fs_info->global_block_rsv;
  509. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  510. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  511. if (!ret)
  512. item->bytes_reserved = num_bytes;
  513. return ret;
  514. }
  515. static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
  516. struct btrfs_delayed_item *item)
  517. {
  518. struct btrfs_block_rsv *rsv;
  519. if (!item->bytes_reserved)
  520. return;
  521. rsv = &root->fs_info->global_block_rsv;
  522. btrfs_block_rsv_release(root, rsv,
  523. item->bytes_reserved);
  524. }
  525. static int btrfs_delayed_inode_reserve_metadata(
  526. struct btrfs_trans_handle *trans,
  527. struct btrfs_root *root,
  528. struct btrfs_delayed_node *node)
  529. {
  530. struct btrfs_block_rsv *src_rsv;
  531. struct btrfs_block_rsv *dst_rsv;
  532. u64 num_bytes;
  533. int ret;
  534. if (!trans->bytes_reserved)
  535. return 0;
  536. src_rsv = trans->block_rsv;
  537. dst_rsv = &root->fs_info->global_block_rsv;
  538. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  539. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  540. if (!ret)
  541. node->bytes_reserved = num_bytes;
  542. return ret;
  543. }
  544. static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
  545. struct btrfs_delayed_node *node)
  546. {
  547. struct btrfs_block_rsv *rsv;
  548. if (!node->bytes_reserved)
  549. return;
  550. rsv = &root->fs_info->global_block_rsv;
  551. btrfs_block_rsv_release(root, rsv,
  552. node->bytes_reserved);
  553. node->bytes_reserved = 0;
  554. }
  555. /*
  556. * This helper will insert some continuous items into the same leaf according
  557. * to the free space of the leaf.
  558. */
  559. static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
  560. struct btrfs_root *root,
  561. struct btrfs_path *path,
  562. struct btrfs_delayed_item *item)
  563. {
  564. struct btrfs_delayed_item *curr, *next;
  565. int free_space;
  566. int total_data_size = 0, total_size = 0;
  567. struct extent_buffer *leaf;
  568. char *data_ptr;
  569. struct btrfs_key *keys;
  570. u32 *data_size;
  571. struct list_head head;
  572. int slot;
  573. int nitems;
  574. int i;
  575. int ret = 0;
  576. BUG_ON(!path->nodes[0]);
  577. leaf = path->nodes[0];
  578. free_space = btrfs_leaf_free_space(root, leaf);
  579. INIT_LIST_HEAD(&head);
  580. next = item;
  581. nitems = 0;
  582. /*
  583. * count the number of the continuous items that we can insert in batch
  584. */
  585. while (total_size + next->data_len + sizeof(struct btrfs_item) <=
  586. free_space) {
  587. total_data_size += next->data_len;
  588. total_size += next->data_len + sizeof(struct btrfs_item);
  589. list_add_tail(&next->tree_list, &head);
  590. nitems++;
  591. curr = next;
  592. next = __btrfs_next_delayed_item(curr);
  593. if (!next)
  594. break;
  595. if (!btrfs_is_continuous_delayed_item(curr, next))
  596. break;
  597. }
  598. if (!nitems) {
  599. ret = 0;
  600. goto out;
  601. }
  602. /*
  603. * we need allocate some memory space, but it might cause the task
  604. * to sleep, so we set all locked nodes in the path to blocking locks
  605. * first.
  606. */
  607. btrfs_set_path_blocking(path);
  608. keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
  609. if (!keys) {
  610. ret = -ENOMEM;
  611. goto out;
  612. }
  613. data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
  614. if (!data_size) {
  615. ret = -ENOMEM;
  616. goto error;
  617. }
  618. /* get keys of all the delayed items */
  619. i = 0;
  620. list_for_each_entry(next, &head, tree_list) {
  621. keys[i] = next->key;
  622. data_size[i] = next->data_len;
  623. i++;
  624. }
  625. /* reset all the locked nodes in the patch to spinning locks. */
  626. btrfs_clear_path_blocking(path, NULL, 0);
  627. /* insert the keys of the items */
  628. ret = setup_items_for_insert(trans, root, path, keys, data_size,
  629. total_data_size, total_size, nitems);
  630. if (ret)
  631. goto error;
  632. /* insert the dir index items */
  633. slot = path->slots[0];
  634. list_for_each_entry_safe(curr, next, &head, tree_list) {
  635. data_ptr = btrfs_item_ptr(leaf, slot, char);
  636. write_extent_buffer(leaf, &curr->data,
  637. (unsigned long)data_ptr,
  638. curr->data_len);
  639. slot++;
  640. btrfs_delayed_item_release_metadata(root, curr);
  641. list_del(&curr->tree_list);
  642. btrfs_release_delayed_item(curr);
  643. }
  644. error:
  645. kfree(data_size);
  646. kfree(keys);
  647. out:
  648. return ret;
  649. }
  650. /*
  651. * This helper can just do simple insertion that needn't extend item for new
  652. * data, such as directory name index insertion, inode insertion.
  653. */
  654. static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
  655. struct btrfs_root *root,
  656. struct btrfs_path *path,
  657. struct btrfs_delayed_item *delayed_item)
  658. {
  659. struct extent_buffer *leaf;
  660. struct btrfs_item *item;
  661. char *ptr;
  662. int ret;
  663. ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
  664. delayed_item->data_len);
  665. if (ret < 0 && ret != -EEXIST)
  666. return ret;
  667. leaf = path->nodes[0];
  668. item = btrfs_item_nr(leaf, path->slots[0]);
  669. ptr = btrfs_item_ptr(leaf, path->slots[0], char);
  670. write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
  671. delayed_item->data_len);
  672. btrfs_mark_buffer_dirty(leaf);
  673. btrfs_delayed_item_release_metadata(root, delayed_item);
  674. return 0;
  675. }
  676. /*
  677. * we insert an item first, then if there are some continuous items, we try
  678. * to insert those items into the same leaf.
  679. */
  680. static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
  681. struct btrfs_path *path,
  682. struct btrfs_root *root,
  683. struct btrfs_delayed_node *node)
  684. {
  685. struct btrfs_delayed_item *curr, *prev;
  686. int ret = 0;
  687. do_again:
  688. mutex_lock(&node->mutex);
  689. curr = __btrfs_first_delayed_insertion_item(node);
  690. if (!curr)
  691. goto insert_end;
  692. ret = btrfs_insert_delayed_item(trans, root, path, curr);
  693. if (ret < 0) {
  694. btrfs_release_path(path);
  695. goto insert_end;
  696. }
  697. prev = curr;
  698. curr = __btrfs_next_delayed_item(prev);
  699. if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
  700. /* insert the continuous items into the same leaf */
  701. path->slots[0]++;
  702. btrfs_batch_insert_items(trans, root, path, curr);
  703. }
  704. btrfs_release_delayed_item(prev);
  705. btrfs_mark_buffer_dirty(path->nodes[0]);
  706. btrfs_release_path(path);
  707. mutex_unlock(&node->mutex);
  708. goto do_again;
  709. insert_end:
  710. mutex_unlock(&node->mutex);
  711. return ret;
  712. }
  713. static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
  714. struct btrfs_root *root,
  715. struct btrfs_path *path,
  716. struct btrfs_delayed_item *item)
  717. {
  718. struct btrfs_delayed_item *curr, *next;
  719. struct extent_buffer *leaf;
  720. struct btrfs_key key;
  721. struct list_head head;
  722. int nitems, i, last_item;
  723. int ret = 0;
  724. BUG_ON(!path->nodes[0]);
  725. leaf = path->nodes[0];
  726. i = path->slots[0];
  727. last_item = btrfs_header_nritems(leaf) - 1;
  728. if (i > last_item)
  729. return -ENOENT; /* FIXME: Is errno suitable? */
  730. next = item;
  731. INIT_LIST_HEAD(&head);
  732. btrfs_item_key_to_cpu(leaf, &key, i);
  733. nitems = 0;
  734. /*
  735. * count the number of the dir index items that we can delete in batch
  736. */
  737. while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
  738. list_add_tail(&next->tree_list, &head);
  739. nitems++;
  740. curr = next;
  741. next = __btrfs_next_delayed_item(curr);
  742. if (!next)
  743. break;
  744. if (!btrfs_is_continuous_delayed_item(curr, next))
  745. break;
  746. i++;
  747. if (i > last_item)
  748. break;
  749. btrfs_item_key_to_cpu(leaf, &key, i);
  750. }
  751. if (!nitems)
  752. return 0;
  753. ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
  754. if (ret)
  755. goto out;
  756. list_for_each_entry_safe(curr, next, &head, tree_list) {
  757. btrfs_delayed_item_release_metadata(root, curr);
  758. list_del(&curr->tree_list);
  759. btrfs_release_delayed_item(curr);
  760. }
  761. out:
  762. return ret;
  763. }
  764. static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
  765. struct btrfs_path *path,
  766. struct btrfs_root *root,
  767. struct btrfs_delayed_node *node)
  768. {
  769. struct btrfs_delayed_item *curr, *prev;
  770. int ret = 0;
  771. do_again:
  772. mutex_lock(&node->mutex);
  773. curr = __btrfs_first_delayed_deletion_item(node);
  774. if (!curr)
  775. goto delete_fail;
  776. ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
  777. if (ret < 0)
  778. goto delete_fail;
  779. else if (ret > 0) {
  780. /*
  781. * can't find the item which the node points to, so this node
  782. * is invalid, just drop it.
  783. */
  784. prev = curr;
  785. curr = __btrfs_next_delayed_item(prev);
  786. btrfs_release_delayed_item(prev);
  787. ret = 0;
  788. btrfs_release_path(path);
  789. if (curr)
  790. goto do_again;
  791. else
  792. goto delete_fail;
  793. }
  794. btrfs_batch_delete_items(trans, root, path, curr);
  795. btrfs_release_path(path);
  796. mutex_unlock(&node->mutex);
  797. goto do_again;
  798. delete_fail:
  799. btrfs_release_path(path);
  800. mutex_unlock(&node->mutex);
  801. return ret;
  802. }
  803. static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
  804. {
  805. struct btrfs_delayed_root *delayed_root;
  806. if (delayed_node && delayed_node->inode_dirty) {
  807. BUG_ON(!delayed_node->root);
  808. delayed_node->inode_dirty = 0;
  809. delayed_node->count--;
  810. delayed_root = delayed_node->root->fs_info->delayed_root;
  811. atomic_dec(&delayed_root->items);
  812. if (atomic_read(&delayed_root->items) <
  813. BTRFS_DELAYED_BACKGROUND &&
  814. waitqueue_active(&delayed_root->wait))
  815. wake_up(&delayed_root->wait);
  816. }
  817. }
  818. static int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  819. struct btrfs_root *root,
  820. struct btrfs_path *path,
  821. struct btrfs_delayed_node *node)
  822. {
  823. struct btrfs_key key;
  824. struct btrfs_inode_item *inode_item;
  825. struct extent_buffer *leaf;
  826. int ret;
  827. mutex_lock(&node->mutex);
  828. if (!node->inode_dirty) {
  829. mutex_unlock(&node->mutex);
  830. return 0;
  831. }
  832. key.objectid = node->inode_id;
  833. btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
  834. key.offset = 0;
  835. ret = btrfs_lookup_inode(trans, root, path, &key, 1);
  836. if (ret > 0) {
  837. btrfs_release_path(path);
  838. mutex_unlock(&node->mutex);
  839. return -ENOENT;
  840. } else if (ret < 0) {
  841. mutex_unlock(&node->mutex);
  842. return ret;
  843. }
  844. btrfs_unlock_up_safe(path, 1);
  845. leaf = path->nodes[0];
  846. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  847. struct btrfs_inode_item);
  848. write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
  849. sizeof(struct btrfs_inode_item));
  850. btrfs_mark_buffer_dirty(leaf);
  851. btrfs_release_path(path);
  852. btrfs_delayed_inode_release_metadata(root, node);
  853. btrfs_release_delayed_inode(node);
  854. mutex_unlock(&node->mutex);
  855. return 0;
  856. }
  857. /* Called when committing the transaction. */
  858. int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  859. struct btrfs_root *root)
  860. {
  861. struct btrfs_delayed_root *delayed_root;
  862. struct btrfs_delayed_node *curr_node, *prev_node;
  863. struct btrfs_path *path;
  864. struct btrfs_block_rsv *block_rsv;
  865. int ret = 0;
  866. path = btrfs_alloc_path();
  867. if (!path)
  868. return -ENOMEM;
  869. path->leave_spinning = 1;
  870. block_rsv = trans->block_rsv;
  871. trans->block_rsv = &root->fs_info->global_block_rsv;
  872. delayed_root = btrfs_get_delayed_root(root);
  873. curr_node = btrfs_first_delayed_node(delayed_root);
  874. while (curr_node) {
  875. root = curr_node->root;
  876. ret = btrfs_insert_delayed_items(trans, path, root,
  877. curr_node);
  878. if (!ret)
  879. ret = btrfs_delete_delayed_items(trans, path, root,
  880. curr_node);
  881. if (!ret)
  882. ret = btrfs_update_delayed_inode(trans, root, path,
  883. curr_node);
  884. if (ret) {
  885. btrfs_release_delayed_node(curr_node);
  886. break;
  887. }
  888. prev_node = curr_node;
  889. curr_node = btrfs_next_delayed_node(curr_node);
  890. btrfs_release_delayed_node(prev_node);
  891. }
  892. btrfs_free_path(path);
  893. trans->block_rsv = block_rsv;
  894. return ret;
  895. }
  896. static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  897. struct btrfs_delayed_node *node)
  898. {
  899. struct btrfs_path *path;
  900. struct btrfs_block_rsv *block_rsv;
  901. int ret;
  902. path = btrfs_alloc_path();
  903. if (!path)
  904. return -ENOMEM;
  905. path->leave_spinning = 1;
  906. block_rsv = trans->block_rsv;
  907. trans->block_rsv = &node->root->fs_info->global_block_rsv;
  908. ret = btrfs_insert_delayed_items(trans, path, node->root, node);
  909. if (!ret)
  910. ret = btrfs_delete_delayed_items(trans, path, node->root, node);
  911. if (!ret)
  912. ret = btrfs_update_delayed_inode(trans, node->root, path, node);
  913. btrfs_free_path(path);
  914. trans->block_rsv = block_rsv;
  915. return ret;
  916. }
  917. int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  918. struct inode *inode)
  919. {
  920. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  921. int ret;
  922. if (!delayed_node)
  923. return 0;
  924. mutex_lock(&delayed_node->mutex);
  925. if (!delayed_node->count) {
  926. mutex_unlock(&delayed_node->mutex);
  927. btrfs_release_delayed_node(delayed_node);
  928. return 0;
  929. }
  930. mutex_unlock(&delayed_node->mutex);
  931. ret = __btrfs_commit_inode_delayed_items(trans, delayed_node);
  932. btrfs_release_delayed_node(delayed_node);
  933. return ret;
  934. }
  935. void btrfs_remove_delayed_node(struct inode *inode)
  936. {
  937. struct btrfs_delayed_node *delayed_node;
  938. delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
  939. if (!delayed_node)
  940. return;
  941. BTRFS_I(inode)->delayed_node = NULL;
  942. btrfs_release_delayed_node(delayed_node);
  943. }
  944. struct btrfs_async_delayed_node {
  945. struct btrfs_root *root;
  946. struct btrfs_delayed_node *delayed_node;
  947. struct btrfs_work work;
  948. };
  949. static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
  950. {
  951. struct btrfs_async_delayed_node *async_node;
  952. struct btrfs_trans_handle *trans;
  953. struct btrfs_path *path;
  954. struct btrfs_delayed_node *delayed_node = NULL;
  955. struct btrfs_root *root;
  956. struct btrfs_block_rsv *block_rsv;
  957. unsigned long nr = 0;
  958. int need_requeue = 0;
  959. int ret;
  960. async_node = container_of(work, struct btrfs_async_delayed_node, work);
  961. path = btrfs_alloc_path();
  962. if (!path)
  963. goto out;
  964. path->leave_spinning = 1;
  965. delayed_node = async_node->delayed_node;
  966. root = delayed_node->root;
  967. trans = btrfs_join_transaction(root);
  968. if (IS_ERR(trans))
  969. goto free_path;
  970. block_rsv = trans->block_rsv;
  971. trans->block_rsv = &root->fs_info->global_block_rsv;
  972. ret = btrfs_insert_delayed_items(trans, path, root, delayed_node);
  973. if (!ret)
  974. ret = btrfs_delete_delayed_items(trans, path, root,
  975. delayed_node);
  976. if (!ret)
  977. btrfs_update_delayed_inode(trans, root, path, delayed_node);
  978. /*
  979. * Maybe new delayed items have been inserted, so we need requeue
  980. * the work. Besides that, we must dequeue the empty delayed nodes
  981. * to avoid the race between delayed items balance and the worker.
  982. * The race like this:
  983. * Task1 Worker thread
  984. * count == 0, needn't requeue
  985. * also needn't insert the
  986. * delayed node into prepare
  987. * list again.
  988. * add lots of delayed items
  989. * queue the delayed node
  990. * already in the list,
  991. * and not in the prepare
  992. * list, it means the delayed
  993. * node is being dealt with
  994. * by the worker.
  995. * do delayed items balance
  996. * the delayed node is being
  997. * dealt with by the worker
  998. * now, just wait.
  999. * the worker goto idle.
  1000. * Task1 will sleep until the transaction is commited.
  1001. */
  1002. mutex_lock(&delayed_node->mutex);
  1003. if (delayed_node->count)
  1004. need_requeue = 1;
  1005. else
  1006. btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
  1007. delayed_node);
  1008. mutex_unlock(&delayed_node->mutex);
  1009. nr = trans->blocks_used;
  1010. trans->block_rsv = block_rsv;
  1011. btrfs_end_transaction_dmeta(trans, root);
  1012. __btrfs_btree_balance_dirty(root, nr);
  1013. free_path:
  1014. btrfs_free_path(path);
  1015. out:
  1016. if (need_requeue)
  1017. btrfs_requeue_work(&async_node->work);
  1018. else {
  1019. btrfs_release_prepared_delayed_node(delayed_node);
  1020. kfree(async_node);
  1021. }
  1022. }
  1023. static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
  1024. struct btrfs_root *root, int all)
  1025. {
  1026. struct btrfs_async_delayed_node *async_node;
  1027. struct btrfs_delayed_node *curr;
  1028. int count = 0;
  1029. again:
  1030. curr = btrfs_first_prepared_delayed_node(delayed_root);
  1031. if (!curr)
  1032. return 0;
  1033. async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
  1034. if (!async_node) {
  1035. btrfs_release_prepared_delayed_node(curr);
  1036. return -ENOMEM;
  1037. }
  1038. async_node->root = root;
  1039. async_node->delayed_node = curr;
  1040. async_node->work.func = btrfs_async_run_delayed_node_done;
  1041. async_node->work.flags = 0;
  1042. btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
  1043. count++;
  1044. if (all || count < 4)
  1045. goto again;
  1046. return 0;
  1047. }
  1048. void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
  1049. {
  1050. struct btrfs_delayed_root *delayed_root;
  1051. delayed_root = btrfs_get_delayed_root(root);
  1052. WARN_ON(btrfs_first_delayed_node(delayed_root));
  1053. }
  1054. void btrfs_balance_delayed_items(struct btrfs_root *root)
  1055. {
  1056. struct btrfs_delayed_root *delayed_root;
  1057. delayed_root = btrfs_get_delayed_root(root);
  1058. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1059. return;
  1060. if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
  1061. int ret;
  1062. ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
  1063. if (ret)
  1064. return;
  1065. wait_event_interruptible_timeout(
  1066. delayed_root->wait,
  1067. (atomic_read(&delayed_root->items) <
  1068. BTRFS_DELAYED_BACKGROUND),
  1069. HZ);
  1070. return;
  1071. }
  1072. btrfs_wq_run_delayed_node(delayed_root, root, 0);
  1073. }
  1074. int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
  1075. struct btrfs_root *root, const char *name,
  1076. int name_len, struct inode *dir,
  1077. struct btrfs_disk_key *disk_key, u8 type,
  1078. u64 index)
  1079. {
  1080. struct btrfs_delayed_node *delayed_node;
  1081. struct btrfs_delayed_item *delayed_item;
  1082. struct btrfs_dir_item *dir_item;
  1083. int ret;
  1084. delayed_node = btrfs_get_or_create_delayed_node(dir);
  1085. if (IS_ERR(delayed_node))
  1086. return PTR_ERR(delayed_node);
  1087. delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
  1088. if (!delayed_item) {
  1089. ret = -ENOMEM;
  1090. goto release_node;
  1091. }
  1092. ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
  1093. /*
  1094. * we have reserved enough space when we start a new transaction,
  1095. * so reserving metadata failure is impossible
  1096. */
  1097. BUG_ON(ret);
  1098. delayed_item->key.objectid = btrfs_ino(dir);
  1099. btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
  1100. delayed_item->key.offset = index;
  1101. dir_item = (struct btrfs_dir_item *)delayed_item->data;
  1102. dir_item->location = *disk_key;
  1103. dir_item->transid = cpu_to_le64(trans->transid);
  1104. dir_item->data_len = 0;
  1105. dir_item->name_len = cpu_to_le16(name_len);
  1106. dir_item->type = type;
  1107. memcpy((char *)(dir_item + 1), name, name_len);
  1108. mutex_lock(&delayed_node->mutex);
  1109. ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
  1110. if (unlikely(ret)) {
  1111. printk(KERN_ERR "err add delayed dir index item(name: %s) into "
  1112. "the insertion tree of the delayed node"
  1113. "(root id: %llu, inode id: %llu, errno: %d)\n",
  1114. name,
  1115. (unsigned long long)delayed_node->root->objectid,
  1116. (unsigned long long)delayed_node->inode_id,
  1117. ret);
  1118. BUG();
  1119. }
  1120. mutex_unlock(&delayed_node->mutex);
  1121. release_node:
  1122. btrfs_release_delayed_node(delayed_node);
  1123. return ret;
  1124. }
  1125. static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
  1126. struct btrfs_delayed_node *node,
  1127. struct btrfs_key *key)
  1128. {
  1129. struct btrfs_delayed_item *item;
  1130. mutex_lock(&node->mutex);
  1131. item = __btrfs_lookup_delayed_insertion_item(node, key);
  1132. if (!item) {
  1133. mutex_unlock(&node->mutex);
  1134. return 1;
  1135. }
  1136. btrfs_delayed_item_release_metadata(root, item);
  1137. btrfs_release_delayed_item(item);
  1138. mutex_unlock(&node->mutex);
  1139. return 0;
  1140. }
  1141. int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
  1142. struct btrfs_root *root, struct inode *dir,
  1143. u64 index)
  1144. {
  1145. struct btrfs_delayed_node *node;
  1146. struct btrfs_delayed_item *item;
  1147. struct btrfs_key item_key;
  1148. int ret;
  1149. node = btrfs_get_or_create_delayed_node(dir);
  1150. if (IS_ERR(node))
  1151. return PTR_ERR(node);
  1152. item_key.objectid = btrfs_ino(dir);
  1153. btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
  1154. item_key.offset = index;
  1155. ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
  1156. if (!ret)
  1157. goto end;
  1158. item = btrfs_alloc_delayed_item(0);
  1159. if (!item) {
  1160. ret = -ENOMEM;
  1161. goto end;
  1162. }
  1163. item->key = item_key;
  1164. ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
  1165. /*
  1166. * we have reserved enough space when we start a new transaction,
  1167. * so reserving metadata failure is impossible.
  1168. */
  1169. BUG_ON(ret);
  1170. mutex_lock(&node->mutex);
  1171. ret = __btrfs_add_delayed_deletion_item(node, item);
  1172. if (unlikely(ret)) {
  1173. printk(KERN_ERR "err add delayed dir index item(index: %llu) "
  1174. "into the deletion tree of the delayed node"
  1175. "(root id: %llu, inode id: %llu, errno: %d)\n",
  1176. (unsigned long long)index,
  1177. (unsigned long long)node->root->objectid,
  1178. (unsigned long long)node->inode_id,
  1179. ret);
  1180. BUG();
  1181. }
  1182. mutex_unlock(&node->mutex);
  1183. end:
  1184. btrfs_release_delayed_node(node);
  1185. return ret;
  1186. }
  1187. int btrfs_inode_delayed_dir_index_count(struct inode *inode)
  1188. {
  1189. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1190. if (!delayed_node)
  1191. return -ENOENT;
  1192. /*
  1193. * Since we have held i_mutex of this directory, it is impossible that
  1194. * a new directory index is added into the delayed node and index_cnt
  1195. * is updated now. So we needn't lock the delayed node.
  1196. */
  1197. if (!delayed_node->index_cnt) {
  1198. btrfs_release_delayed_node(delayed_node);
  1199. return -EINVAL;
  1200. }
  1201. BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
  1202. btrfs_release_delayed_node(delayed_node);
  1203. return 0;
  1204. }
  1205. void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
  1206. struct list_head *del_list)
  1207. {
  1208. struct btrfs_delayed_node *delayed_node;
  1209. struct btrfs_delayed_item *item;
  1210. delayed_node = btrfs_get_delayed_node(inode);
  1211. if (!delayed_node)
  1212. return;
  1213. mutex_lock(&delayed_node->mutex);
  1214. item = __btrfs_first_delayed_insertion_item(delayed_node);
  1215. while (item) {
  1216. atomic_inc(&item->refs);
  1217. list_add_tail(&item->readdir_list, ins_list);
  1218. item = __btrfs_next_delayed_item(item);
  1219. }
  1220. item = __btrfs_first_delayed_deletion_item(delayed_node);
  1221. while (item) {
  1222. atomic_inc(&item->refs);
  1223. list_add_tail(&item->readdir_list, del_list);
  1224. item = __btrfs_next_delayed_item(item);
  1225. }
  1226. mutex_unlock(&delayed_node->mutex);
  1227. /*
  1228. * This delayed node is still cached in the btrfs inode, so refs
  1229. * must be > 1 now, and we needn't check it is going to be freed
  1230. * or not.
  1231. *
  1232. * Besides that, this function is used to read dir, we do not
  1233. * insert/delete delayed items in this period. So we also needn't
  1234. * requeue or dequeue this delayed node.
  1235. */
  1236. atomic_dec(&delayed_node->refs);
  1237. }
  1238. void btrfs_put_delayed_items(struct list_head *ins_list,
  1239. struct list_head *del_list)
  1240. {
  1241. struct btrfs_delayed_item *curr, *next;
  1242. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1243. list_del(&curr->readdir_list);
  1244. if (atomic_dec_and_test(&curr->refs))
  1245. kfree(curr);
  1246. }
  1247. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1248. list_del(&curr->readdir_list);
  1249. if (atomic_dec_and_test(&curr->refs))
  1250. kfree(curr);
  1251. }
  1252. }
  1253. int btrfs_should_delete_dir_index(struct list_head *del_list,
  1254. u64 index)
  1255. {
  1256. struct btrfs_delayed_item *curr, *next;
  1257. int ret;
  1258. if (list_empty(del_list))
  1259. return 0;
  1260. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1261. if (curr->key.offset > index)
  1262. break;
  1263. list_del(&curr->readdir_list);
  1264. ret = (curr->key.offset == index);
  1265. if (atomic_dec_and_test(&curr->refs))
  1266. kfree(curr);
  1267. if (ret)
  1268. return 1;
  1269. else
  1270. continue;
  1271. }
  1272. return 0;
  1273. }
  1274. /*
  1275. * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
  1276. *
  1277. */
  1278. int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
  1279. filldir_t filldir,
  1280. struct list_head *ins_list)
  1281. {
  1282. struct btrfs_dir_item *di;
  1283. struct btrfs_delayed_item *curr, *next;
  1284. struct btrfs_key location;
  1285. char *name;
  1286. int name_len;
  1287. int over = 0;
  1288. unsigned char d_type;
  1289. if (list_empty(ins_list))
  1290. return 0;
  1291. /*
  1292. * Changing the data of the delayed item is impossible. So
  1293. * we needn't lock them. And we have held i_mutex of the
  1294. * directory, nobody can delete any directory indexes now.
  1295. */
  1296. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1297. list_del(&curr->readdir_list);
  1298. if (curr->key.offset < filp->f_pos) {
  1299. if (atomic_dec_and_test(&curr->refs))
  1300. kfree(curr);
  1301. continue;
  1302. }
  1303. filp->f_pos = curr->key.offset;
  1304. di = (struct btrfs_dir_item *)curr->data;
  1305. name = (char *)(di + 1);
  1306. name_len = le16_to_cpu(di->name_len);
  1307. d_type = btrfs_filetype_table[di->type];
  1308. btrfs_disk_key_to_cpu(&location, &di->location);
  1309. over = filldir(dirent, name, name_len, curr->key.offset,
  1310. location.objectid, d_type);
  1311. if (atomic_dec_and_test(&curr->refs))
  1312. kfree(curr);
  1313. if (over)
  1314. return 1;
  1315. }
  1316. return 0;
  1317. }
  1318. BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
  1319. generation, 64);
  1320. BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
  1321. sequence, 64);
  1322. BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
  1323. transid, 64);
  1324. BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
  1325. BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
  1326. nbytes, 64);
  1327. BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
  1328. block_group, 64);
  1329. BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
  1330. BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
  1331. BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
  1332. BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
  1333. BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
  1334. BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
  1335. BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
  1336. BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
  1337. static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
  1338. struct btrfs_inode_item *inode_item,
  1339. struct inode *inode)
  1340. {
  1341. btrfs_set_stack_inode_uid(inode_item, inode->i_uid);
  1342. btrfs_set_stack_inode_gid(inode_item, inode->i_gid);
  1343. btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
  1344. btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
  1345. btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
  1346. btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
  1347. btrfs_set_stack_inode_generation(inode_item,
  1348. BTRFS_I(inode)->generation);
  1349. btrfs_set_stack_inode_sequence(inode_item, BTRFS_I(inode)->sequence);
  1350. btrfs_set_stack_inode_transid(inode_item, trans->transid);
  1351. btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
  1352. btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
  1353. btrfs_set_stack_inode_block_group(inode_item, 0);
  1354. btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
  1355. inode->i_atime.tv_sec);
  1356. btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
  1357. inode->i_atime.tv_nsec);
  1358. btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
  1359. inode->i_mtime.tv_sec);
  1360. btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
  1361. inode->i_mtime.tv_nsec);
  1362. btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
  1363. inode->i_ctime.tv_sec);
  1364. btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
  1365. inode->i_ctime.tv_nsec);
  1366. }
  1367. int btrfs_fill_inode(struct inode *inode, u32 *rdev)
  1368. {
  1369. struct btrfs_delayed_node *delayed_node;
  1370. struct btrfs_inode_item *inode_item;
  1371. struct btrfs_timespec *tspec;
  1372. delayed_node = btrfs_get_delayed_node(inode);
  1373. if (!delayed_node)
  1374. return -ENOENT;
  1375. mutex_lock(&delayed_node->mutex);
  1376. if (!delayed_node->inode_dirty) {
  1377. mutex_unlock(&delayed_node->mutex);
  1378. btrfs_release_delayed_node(delayed_node);
  1379. return -ENOENT;
  1380. }
  1381. inode_item = &delayed_node->inode_item;
  1382. inode->i_uid = btrfs_stack_inode_uid(inode_item);
  1383. inode->i_gid = btrfs_stack_inode_gid(inode_item);
  1384. btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
  1385. inode->i_mode = btrfs_stack_inode_mode(inode_item);
  1386. inode->i_nlink = btrfs_stack_inode_nlink(inode_item);
  1387. inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
  1388. BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
  1389. BTRFS_I(inode)->sequence = btrfs_stack_inode_sequence(inode_item);
  1390. inode->i_rdev = 0;
  1391. *rdev = btrfs_stack_inode_rdev(inode_item);
  1392. BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
  1393. tspec = btrfs_inode_atime(inode_item);
  1394. inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
  1395. inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
  1396. tspec = btrfs_inode_mtime(inode_item);
  1397. inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
  1398. inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
  1399. tspec = btrfs_inode_ctime(inode_item);
  1400. inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
  1401. inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
  1402. inode->i_generation = BTRFS_I(inode)->generation;
  1403. BTRFS_I(inode)->index_cnt = (u64)-1;
  1404. mutex_unlock(&delayed_node->mutex);
  1405. btrfs_release_delayed_node(delayed_node);
  1406. return 0;
  1407. }
  1408. int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
  1409. struct btrfs_root *root, struct inode *inode)
  1410. {
  1411. struct btrfs_delayed_node *delayed_node;
  1412. int ret = 0;
  1413. delayed_node = btrfs_get_or_create_delayed_node(inode);
  1414. if (IS_ERR(delayed_node))
  1415. return PTR_ERR(delayed_node);
  1416. mutex_lock(&delayed_node->mutex);
  1417. if (delayed_node->inode_dirty) {
  1418. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1419. goto release_node;
  1420. }
  1421. ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
  1422. /*
  1423. * we must reserve enough space when we start a new transaction,
  1424. * so reserving metadata failure is impossible
  1425. */
  1426. BUG_ON(ret);
  1427. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1428. delayed_node->inode_dirty = 1;
  1429. delayed_node->count++;
  1430. atomic_inc(&root->fs_info->delayed_root->items);
  1431. release_node:
  1432. mutex_unlock(&delayed_node->mutex);
  1433. btrfs_release_delayed_node(delayed_node);
  1434. return ret;
  1435. }
  1436. static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
  1437. {
  1438. struct btrfs_root *root = delayed_node->root;
  1439. struct btrfs_delayed_item *curr_item, *prev_item;
  1440. mutex_lock(&delayed_node->mutex);
  1441. curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
  1442. while (curr_item) {
  1443. btrfs_delayed_item_release_metadata(root, curr_item);
  1444. prev_item = curr_item;
  1445. curr_item = __btrfs_next_delayed_item(prev_item);
  1446. btrfs_release_delayed_item(prev_item);
  1447. }
  1448. curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
  1449. while (curr_item) {
  1450. btrfs_delayed_item_release_metadata(root, curr_item);
  1451. prev_item = curr_item;
  1452. curr_item = __btrfs_next_delayed_item(prev_item);
  1453. btrfs_release_delayed_item(prev_item);
  1454. }
  1455. if (delayed_node->inode_dirty) {
  1456. btrfs_delayed_inode_release_metadata(root, delayed_node);
  1457. btrfs_release_delayed_inode(delayed_node);
  1458. }
  1459. mutex_unlock(&delayed_node->mutex);
  1460. }
  1461. void btrfs_kill_delayed_inode_items(struct inode *inode)
  1462. {
  1463. struct btrfs_delayed_node *delayed_node;
  1464. delayed_node = btrfs_get_delayed_node(inode);
  1465. if (!delayed_node)
  1466. return;
  1467. __btrfs_kill_delayed_node(delayed_node);
  1468. btrfs_release_delayed_node(delayed_node);
  1469. }
  1470. void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
  1471. {
  1472. u64 inode_id = 0;
  1473. struct btrfs_delayed_node *delayed_nodes[8];
  1474. int i, n;
  1475. while (1) {
  1476. spin_lock(&root->inode_lock);
  1477. n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
  1478. (void **)delayed_nodes, inode_id,
  1479. ARRAY_SIZE(delayed_nodes));
  1480. if (!n) {
  1481. spin_unlock(&root->inode_lock);
  1482. break;
  1483. }
  1484. inode_id = delayed_nodes[n - 1]->inode_id + 1;
  1485. for (i = 0; i < n; i++)
  1486. atomic_inc(&delayed_nodes[i]->refs);
  1487. spin_unlock(&root->inode_lock);
  1488. for (i = 0; i < n; i++) {
  1489. __btrfs_kill_delayed_node(delayed_nodes[i]);
  1490. btrfs_release_delayed_node(delayed_nodes[i]);
  1491. }
  1492. }
  1493. }