PageRenderTime 50ms CodeModel.GetById 11ms RepoModel.GetById 0ms app.codeStats 1ms

/fs/btrfs/disk-io.c

https://github.com/mstsirkin/linux
C | 1802 lines | 1407 code | 225 blank | 170 comment | 193 complexity | 3995a6ce4bb858cee731300ea9feb914 MD5 | raw file
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <linux/ratelimit.h>
  32. #include <asm/unaligned.h>
  33. #include "compat.h"
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "async-thread.h"
  41. #include "locking.h"
  42. #include "tree-log.h"
  43. #include "free-space-cache.h"
  44. #include "inode-map.h"
  45. static struct extent_io_ops btree_extent_io_ops;
  46. static void end_workqueue_fn(struct btrfs_work *work);
  47. static void free_fs_root(struct btrfs_root *root);
  48. static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  49. int read_only);
  50. static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
  51. static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
  52. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  53. struct btrfs_root *root);
  54. static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
  55. static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  56. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  57. struct extent_io_tree *dirty_pages,
  58. int mark);
  59. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  60. struct extent_io_tree *pinned_extents);
  61. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  62. /*
  63. * end_io_wq structs are used to do processing in task context when an IO is
  64. * complete. This is used during reads to verify checksums, and it is used
  65. * by writes to insert metadata for new file extents after IO is complete.
  66. */
  67. struct end_io_wq {
  68. struct bio *bio;
  69. bio_end_io_t *end_io;
  70. void *private;
  71. struct btrfs_fs_info *info;
  72. int error;
  73. int metadata;
  74. struct list_head list;
  75. struct btrfs_work work;
  76. };
  77. /*
  78. * async submit bios are used to offload expensive checksumming
  79. * onto the worker threads. They checksum file and metadata bios
  80. * just before they are sent down the IO stack.
  81. */
  82. struct async_submit_bio {
  83. struct inode *inode;
  84. struct bio *bio;
  85. struct list_head list;
  86. extent_submit_bio_hook_t *submit_bio_start;
  87. extent_submit_bio_hook_t *submit_bio_done;
  88. int rw;
  89. int mirror_num;
  90. unsigned long bio_flags;
  91. /*
  92. * bio_offset is optional, can be used if the pages in the bio
  93. * can't tell us where in the file the bio should go
  94. */
  95. u64 bio_offset;
  96. struct btrfs_work work;
  97. };
  98. /*
  99. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  100. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  101. * the level the eb occupies in the tree.
  102. *
  103. * Different roots are used for different purposes and may nest inside each
  104. * other and they require separate keysets. As lockdep keys should be
  105. * static, assign keysets according to the purpose of the root as indicated
  106. * by btrfs_root->objectid. This ensures that all special purpose roots
  107. * have separate keysets.
  108. *
  109. * Lock-nesting across peer nodes is always done with the immediate parent
  110. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  111. * subclass to avoid triggering lockdep warning in such cases.
  112. *
  113. * The key is set by the readpage_end_io_hook after the buffer has passed
  114. * csum validation but before the pages are unlocked. It is also set by
  115. * btrfs_init_new_buffer on freshly allocated blocks.
  116. *
  117. * We also add a check to make sure the highest level of the tree is the
  118. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  119. * needs update as well.
  120. */
  121. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  122. # if BTRFS_MAX_LEVEL != 8
  123. # error
  124. # endif
  125. static struct btrfs_lockdep_keyset {
  126. u64 id; /* root objectid */
  127. const char *name_stem; /* lock name stem */
  128. char names[BTRFS_MAX_LEVEL + 1][20];
  129. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  130. } btrfs_lockdep_keysets[] = {
  131. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  132. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  133. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  134. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  135. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  136. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  137. { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
  138. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  139. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  140. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  141. { .id = 0, .name_stem = "tree" },
  142. };
  143. void __init btrfs_init_lockdep(void)
  144. {
  145. int i, j;
  146. /* initialize lockdep class names */
  147. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  148. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  149. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  150. snprintf(ks->names[j], sizeof(ks->names[j]),
  151. "btrfs-%s-%02d", ks->name_stem, j);
  152. }
  153. }
  154. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  155. int level)
  156. {
  157. struct btrfs_lockdep_keyset *ks;
  158. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  159. /* find the matching keyset, id 0 is the default entry */
  160. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  161. if (ks->id == objectid)
  162. break;
  163. lockdep_set_class_and_name(&eb->lock,
  164. &ks->keys[level], ks->names[level]);
  165. }
  166. #endif
  167. /*
  168. * extents on the btree inode are pretty simple, there's one extent
  169. * that covers the entire device
  170. */
  171. static struct extent_map *btree_get_extent(struct inode *inode,
  172. struct page *page, size_t pg_offset, u64 start, u64 len,
  173. int create)
  174. {
  175. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  176. struct extent_map *em;
  177. int ret;
  178. read_lock(&em_tree->lock);
  179. em = lookup_extent_mapping(em_tree, start, len);
  180. if (em) {
  181. em->bdev =
  182. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  183. read_unlock(&em_tree->lock);
  184. goto out;
  185. }
  186. read_unlock(&em_tree->lock);
  187. em = alloc_extent_map();
  188. if (!em) {
  189. em = ERR_PTR(-ENOMEM);
  190. goto out;
  191. }
  192. em->start = 0;
  193. em->len = (u64)-1;
  194. em->block_len = (u64)-1;
  195. em->block_start = 0;
  196. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  197. write_lock(&em_tree->lock);
  198. ret = add_extent_mapping(em_tree, em);
  199. if (ret == -EEXIST) {
  200. u64 failed_start = em->start;
  201. u64 failed_len = em->len;
  202. free_extent_map(em);
  203. em = lookup_extent_mapping(em_tree, start, len);
  204. if (em) {
  205. ret = 0;
  206. } else {
  207. em = lookup_extent_mapping(em_tree, failed_start,
  208. failed_len);
  209. ret = -EIO;
  210. }
  211. } else if (ret) {
  212. free_extent_map(em);
  213. em = NULL;
  214. }
  215. write_unlock(&em_tree->lock);
  216. if (ret)
  217. em = ERR_PTR(ret);
  218. out:
  219. return em;
  220. }
  221. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  222. {
  223. return crc32c(seed, data, len);
  224. }
  225. void btrfs_csum_final(u32 crc, char *result)
  226. {
  227. put_unaligned_le32(~crc, result);
  228. }
  229. /*
  230. * compute the csum for a btree block, and either verify it or write it
  231. * into the csum field of the block.
  232. */
  233. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  234. int verify)
  235. {
  236. u16 csum_size =
  237. btrfs_super_csum_size(&root->fs_info->super_copy);
  238. char *result = NULL;
  239. unsigned long len;
  240. unsigned long cur_len;
  241. unsigned long offset = BTRFS_CSUM_SIZE;
  242. char *kaddr;
  243. unsigned long map_start;
  244. unsigned long map_len;
  245. int err;
  246. u32 crc = ~(u32)0;
  247. unsigned long inline_result;
  248. len = buf->len - offset;
  249. while (len > 0) {
  250. err = map_private_extent_buffer(buf, offset, 32,
  251. &kaddr, &map_start, &map_len);
  252. if (err)
  253. return 1;
  254. cur_len = min(len, map_len - (offset - map_start));
  255. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  256. crc, cur_len);
  257. len -= cur_len;
  258. offset += cur_len;
  259. }
  260. if (csum_size > sizeof(inline_result)) {
  261. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  262. if (!result)
  263. return 1;
  264. } else {
  265. result = (char *)&inline_result;
  266. }
  267. btrfs_csum_final(crc, result);
  268. if (verify) {
  269. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  270. u32 val;
  271. u32 found = 0;
  272. memcpy(&found, result, csum_size);
  273. read_extent_buffer(buf, &val, 0, csum_size);
  274. printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
  275. "failed on %llu wanted %X found %X "
  276. "level %d\n",
  277. root->fs_info->sb->s_id,
  278. (unsigned long long)buf->start, val, found,
  279. btrfs_header_level(buf));
  280. if (result != (char *)&inline_result)
  281. kfree(result);
  282. return 1;
  283. }
  284. } else {
  285. write_extent_buffer(buf, result, 0, csum_size);
  286. }
  287. if (result != (char *)&inline_result)
  288. kfree(result);
  289. return 0;
  290. }
  291. /*
  292. * we can't consider a given block up to date unless the transid of the
  293. * block matches the transid in the parent node's pointer. This is how we
  294. * detect blocks that either didn't get written at all or got written
  295. * in the wrong place.
  296. */
  297. static int verify_parent_transid(struct extent_io_tree *io_tree,
  298. struct extent_buffer *eb, u64 parent_transid)
  299. {
  300. struct extent_state *cached_state = NULL;
  301. int ret;
  302. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  303. return 0;
  304. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  305. 0, &cached_state, GFP_NOFS);
  306. if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
  307. btrfs_header_generation(eb) == parent_transid) {
  308. ret = 0;
  309. goto out;
  310. }
  311. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  312. "found %llu\n",
  313. (unsigned long long)eb->start,
  314. (unsigned long long)parent_transid,
  315. (unsigned long long)btrfs_header_generation(eb));
  316. ret = 1;
  317. clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
  318. out:
  319. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  320. &cached_state, GFP_NOFS);
  321. return ret;
  322. }
  323. /*
  324. * helper to read a given tree block, doing retries as required when
  325. * the checksums don't match and we have alternate mirrors to try.
  326. */
  327. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  328. struct extent_buffer *eb,
  329. u64 start, u64 parent_transid)
  330. {
  331. struct extent_io_tree *io_tree;
  332. int ret;
  333. int num_copies = 0;
  334. int mirror_num = 0;
  335. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  336. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  337. while (1) {
  338. ret = read_extent_buffer_pages(io_tree, eb, start, 1,
  339. btree_get_extent, mirror_num);
  340. if (!ret &&
  341. !verify_parent_transid(io_tree, eb, parent_transid))
  342. return ret;
  343. /*
  344. * This buffer's crc is fine, but its contents are corrupted, so
  345. * there is no reason to read the other copies, they won't be
  346. * any less wrong.
  347. */
  348. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  349. return ret;
  350. num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
  351. eb->start, eb->len);
  352. if (num_copies == 1)
  353. return ret;
  354. mirror_num++;
  355. if (mirror_num > num_copies)
  356. return ret;
  357. }
  358. return -EIO;
  359. }
  360. /*
  361. * checksum a dirty tree block before IO. This has extra checks to make sure
  362. * we only fill in the checksum field in the first page of a multi-page block
  363. */
  364. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  365. {
  366. struct extent_io_tree *tree;
  367. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  368. u64 found_start;
  369. unsigned long len;
  370. struct extent_buffer *eb;
  371. int ret;
  372. tree = &BTRFS_I(page->mapping->host)->io_tree;
  373. if (page->private == EXTENT_PAGE_PRIVATE) {
  374. WARN_ON(1);
  375. goto out;
  376. }
  377. if (!page->private) {
  378. WARN_ON(1);
  379. goto out;
  380. }
  381. len = page->private >> 2;
  382. WARN_ON(len == 0);
  383. eb = alloc_extent_buffer(tree, start, len, page);
  384. if (eb == NULL) {
  385. WARN_ON(1);
  386. goto out;
  387. }
  388. ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
  389. btrfs_header_generation(eb));
  390. BUG_ON(ret);
  391. WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
  392. found_start = btrfs_header_bytenr(eb);
  393. if (found_start != start) {
  394. WARN_ON(1);
  395. goto err;
  396. }
  397. if (eb->first_page != page) {
  398. WARN_ON(1);
  399. goto err;
  400. }
  401. if (!PageUptodate(page)) {
  402. WARN_ON(1);
  403. goto err;
  404. }
  405. csum_tree_block(root, eb, 0);
  406. err:
  407. free_extent_buffer(eb);
  408. out:
  409. return 0;
  410. }
  411. static int check_tree_block_fsid(struct btrfs_root *root,
  412. struct extent_buffer *eb)
  413. {
  414. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  415. u8 fsid[BTRFS_UUID_SIZE];
  416. int ret = 1;
  417. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  418. BTRFS_FSID_SIZE);
  419. while (fs_devices) {
  420. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  421. ret = 0;
  422. break;
  423. }
  424. fs_devices = fs_devices->seed;
  425. }
  426. return ret;
  427. }
  428. #define CORRUPT(reason, eb, root, slot) \
  429. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  430. "root=%llu, slot=%d\n", reason, \
  431. (unsigned long long)btrfs_header_bytenr(eb), \
  432. (unsigned long long)root->objectid, slot)
  433. static noinline int check_leaf(struct btrfs_root *root,
  434. struct extent_buffer *leaf)
  435. {
  436. struct btrfs_key key;
  437. struct btrfs_key leaf_key;
  438. u32 nritems = btrfs_header_nritems(leaf);
  439. int slot;
  440. if (nritems == 0)
  441. return 0;
  442. /* Check the 0 item */
  443. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  444. BTRFS_LEAF_DATA_SIZE(root)) {
  445. CORRUPT("invalid item offset size pair", leaf, root, 0);
  446. return -EIO;
  447. }
  448. /*
  449. * Check to make sure each items keys are in the correct order and their
  450. * offsets make sense. We only have to loop through nritems-1 because
  451. * we check the current slot against the next slot, which verifies the
  452. * next slot's offset+size makes sense and that the current's slot
  453. * offset is correct.
  454. */
  455. for (slot = 0; slot < nritems - 1; slot++) {
  456. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  457. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  458. /* Make sure the keys are in the right order */
  459. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  460. CORRUPT("bad key order", leaf, root, slot);
  461. return -EIO;
  462. }
  463. /*
  464. * Make sure the offset and ends are right, remember that the
  465. * item data starts at the end of the leaf and grows towards the
  466. * front.
  467. */
  468. if (btrfs_item_offset_nr(leaf, slot) !=
  469. btrfs_item_end_nr(leaf, slot + 1)) {
  470. CORRUPT("slot offset bad", leaf, root, slot);
  471. return -EIO;
  472. }
  473. /*
  474. * Check to make sure that we don't point outside of the leaf,
  475. * just incase all the items are consistent to eachother, but
  476. * all point outside of the leaf.
  477. */
  478. if (btrfs_item_end_nr(leaf, slot) >
  479. BTRFS_LEAF_DATA_SIZE(root)) {
  480. CORRUPT("slot end outside of leaf", leaf, root, slot);
  481. return -EIO;
  482. }
  483. }
  484. return 0;
  485. }
  486. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  487. struct extent_state *state)
  488. {
  489. struct extent_io_tree *tree;
  490. u64 found_start;
  491. int found_level;
  492. unsigned long len;
  493. struct extent_buffer *eb;
  494. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  495. int ret = 0;
  496. tree = &BTRFS_I(page->mapping->host)->io_tree;
  497. if (page->private == EXTENT_PAGE_PRIVATE)
  498. goto out;
  499. if (!page->private)
  500. goto out;
  501. len = page->private >> 2;
  502. WARN_ON(len == 0);
  503. eb = alloc_extent_buffer(tree, start, len, page);
  504. if (eb == NULL) {
  505. ret = -EIO;
  506. goto out;
  507. }
  508. found_start = btrfs_header_bytenr(eb);
  509. if (found_start != start) {
  510. printk_ratelimited(KERN_INFO "btrfs bad tree block start "
  511. "%llu %llu\n",
  512. (unsigned long long)found_start,
  513. (unsigned long long)eb->start);
  514. ret = -EIO;
  515. goto err;
  516. }
  517. if (eb->first_page != page) {
  518. printk(KERN_INFO "btrfs bad first page %lu %lu\n",
  519. eb->first_page->index, page->index);
  520. WARN_ON(1);
  521. ret = -EIO;
  522. goto err;
  523. }
  524. if (check_tree_block_fsid(root, eb)) {
  525. printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
  526. (unsigned long long)eb->start);
  527. ret = -EIO;
  528. goto err;
  529. }
  530. found_level = btrfs_header_level(eb);
  531. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  532. eb, found_level);
  533. ret = csum_tree_block(root, eb, 1);
  534. if (ret) {
  535. ret = -EIO;
  536. goto err;
  537. }
  538. /*
  539. * If this is a leaf block and it is corrupt, set the corrupt bit so
  540. * that we don't try and read the other copies of this block, just
  541. * return -EIO.
  542. */
  543. if (found_level == 0 && check_leaf(root, eb)) {
  544. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  545. ret = -EIO;
  546. }
  547. end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
  548. end = eb->start + end - 1;
  549. err:
  550. free_extent_buffer(eb);
  551. out:
  552. return ret;
  553. }
  554. static void end_workqueue_bio(struct bio *bio, int err)
  555. {
  556. struct end_io_wq *end_io_wq = bio->bi_private;
  557. struct btrfs_fs_info *fs_info;
  558. fs_info = end_io_wq->info;
  559. end_io_wq->error = err;
  560. end_io_wq->work.func = end_workqueue_fn;
  561. end_io_wq->work.flags = 0;
  562. if (bio->bi_rw & REQ_WRITE) {
  563. if (end_io_wq->metadata == 1)
  564. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  565. &end_io_wq->work);
  566. else if (end_io_wq->metadata == 2)
  567. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  568. &end_io_wq->work);
  569. else
  570. btrfs_queue_worker(&fs_info->endio_write_workers,
  571. &end_io_wq->work);
  572. } else {
  573. if (end_io_wq->metadata)
  574. btrfs_queue_worker(&fs_info->endio_meta_workers,
  575. &end_io_wq->work);
  576. else
  577. btrfs_queue_worker(&fs_info->endio_workers,
  578. &end_io_wq->work);
  579. }
  580. }
  581. /*
  582. * For the metadata arg you want
  583. *
  584. * 0 - if data
  585. * 1 - if normal metadta
  586. * 2 - if writing to the free space cache area
  587. */
  588. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  589. int metadata)
  590. {
  591. struct end_io_wq *end_io_wq;
  592. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  593. if (!end_io_wq)
  594. return -ENOMEM;
  595. end_io_wq->private = bio->bi_private;
  596. end_io_wq->end_io = bio->bi_end_io;
  597. end_io_wq->info = info;
  598. end_io_wq->error = 0;
  599. end_io_wq->bio = bio;
  600. end_io_wq->metadata = metadata;
  601. bio->bi_private = end_io_wq;
  602. bio->bi_end_io = end_workqueue_bio;
  603. return 0;
  604. }
  605. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  606. {
  607. unsigned long limit = min_t(unsigned long,
  608. info->workers.max_workers,
  609. info->fs_devices->open_devices);
  610. return 256 * limit;
  611. }
  612. static void run_one_async_start(struct btrfs_work *work)
  613. {
  614. struct async_submit_bio *async;
  615. async = container_of(work, struct async_submit_bio, work);
  616. async->submit_bio_start(async->inode, async->rw, async->bio,
  617. async->mirror_num, async->bio_flags,
  618. async->bio_offset);
  619. }
  620. static void run_one_async_done(struct btrfs_work *work)
  621. {
  622. struct btrfs_fs_info *fs_info;
  623. struct async_submit_bio *async;
  624. int limit;
  625. async = container_of(work, struct async_submit_bio, work);
  626. fs_info = BTRFS_I(async->inode)->root->fs_info;
  627. limit = btrfs_async_submit_limit(fs_info);
  628. limit = limit * 2 / 3;
  629. atomic_dec(&fs_info->nr_async_submits);
  630. if (atomic_read(&fs_info->nr_async_submits) < limit &&
  631. waitqueue_active(&fs_info->async_submit_wait))
  632. wake_up(&fs_info->async_submit_wait);
  633. async->submit_bio_done(async->inode, async->rw, async->bio,
  634. async->mirror_num, async->bio_flags,
  635. async->bio_offset);
  636. }
  637. static void run_one_async_free(struct btrfs_work *work)
  638. {
  639. struct async_submit_bio *async;
  640. async = container_of(work, struct async_submit_bio, work);
  641. kfree(async);
  642. }
  643. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  644. int rw, struct bio *bio, int mirror_num,
  645. unsigned long bio_flags,
  646. u64 bio_offset,
  647. extent_submit_bio_hook_t *submit_bio_start,
  648. extent_submit_bio_hook_t *submit_bio_done)
  649. {
  650. struct async_submit_bio *async;
  651. async = kmalloc(sizeof(*async), GFP_NOFS);
  652. if (!async)
  653. return -ENOMEM;
  654. async->inode = inode;
  655. async->rw = rw;
  656. async->bio = bio;
  657. async->mirror_num = mirror_num;
  658. async->submit_bio_start = submit_bio_start;
  659. async->submit_bio_done = submit_bio_done;
  660. async->work.func = run_one_async_start;
  661. async->work.ordered_func = run_one_async_done;
  662. async->work.ordered_free = run_one_async_free;
  663. async->work.flags = 0;
  664. async->bio_flags = bio_flags;
  665. async->bio_offset = bio_offset;
  666. atomic_inc(&fs_info->nr_async_submits);
  667. if (rw & REQ_SYNC)
  668. btrfs_set_work_high_prio(&async->work);
  669. btrfs_queue_worker(&fs_info->workers, &async->work);
  670. while (atomic_read(&fs_info->async_submit_draining) &&
  671. atomic_read(&fs_info->nr_async_submits)) {
  672. wait_event(fs_info->async_submit_wait,
  673. (atomic_read(&fs_info->nr_async_submits) == 0));
  674. }
  675. return 0;
  676. }
  677. static int btree_csum_one_bio(struct bio *bio)
  678. {
  679. struct bio_vec *bvec = bio->bi_io_vec;
  680. int bio_index = 0;
  681. struct btrfs_root *root;
  682. WARN_ON(bio->bi_vcnt <= 0);
  683. while (bio_index < bio->bi_vcnt) {
  684. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  685. csum_dirty_buffer(root, bvec->bv_page);
  686. bio_index++;
  687. bvec++;
  688. }
  689. return 0;
  690. }
  691. static int __btree_submit_bio_start(struct inode *inode, int rw,
  692. struct bio *bio, int mirror_num,
  693. unsigned long bio_flags,
  694. u64 bio_offset)
  695. {
  696. /*
  697. * when we're called for a write, we're already in the async
  698. * submission context. Just jump into btrfs_map_bio
  699. */
  700. btree_csum_one_bio(bio);
  701. return 0;
  702. }
  703. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  704. int mirror_num, unsigned long bio_flags,
  705. u64 bio_offset)
  706. {
  707. /*
  708. * when we're called for a write, we're already in the async
  709. * submission context. Just jump into btrfs_map_bio
  710. */
  711. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  712. }
  713. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  714. int mirror_num, unsigned long bio_flags,
  715. u64 bio_offset)
  716. {
  717. int ret;
  718. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  719. bio, 1);
  720. BUG_ON(ret);
  721. if (!(rw & REQ_WRITE)) {
  722. /*
  723. * called for a read, do the setup so that checksum validation
  724. * can happen in the async kernel threads
  725. */
  726. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  727. mirror_num, 0);
  728. }
  729. /*
  730. * kthread helpers are used to submit writes so that checksumming
  731. * can happen in parallel across all CPUs
  732. */
  733. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  734. inode, rw, bio, mirror_num, 0,
  735. bio_offset,
  736. __btree_submit_bio_start,
  737. __btree_submit_bio_done);
  738. }
  739. #ifdef CONFIG_MIGRATION
  740. static int btree_migratepage(struct address_space *mapping,
  741. struct page *newpage, struct page *page)
  742. {
  743. /*
  744. * we can't safely write a btree page from here,
  745. * we haven't done the locking hook
  746. */
  747. if (PageDirty(page))
  748. return -EAGAIN;
  749. /*
  750. * Buffers may be managed in a filesystem specific way.
  751. * We must have no buffers or drop them.
  752. */
  753. if (page_has_private(page) &&
  754. !try_to_release_page(page, GFP_KERNEL))
  755. return -EAGAIN;
  756. return migrate_page(mapping, newpage, page);
  757. }
  758. #endif
  759. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  760. {
  761. struct extent_io_tree *tree;
  762. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  763. struct extent_buffer *eb;
  764. int was_dirty;
  765. tree = &BTRFS_I(page->mapping->host)->io_tree;
  766. if (!(current->flags & PF_MEMALLOC)) {
  767. return extent_write_full_page(tree, page,
  768. btree_get_extent, wbc);
  769. }
  770. redirty_page_for_writepage(wbc, page);
  771. eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
  772. WARN_ON(!eb);
  773. was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
  774. if (!was_dirty) {
  775. spin_lock(&root->fs_info->delalloc_lock);
  776. root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
  777. spin_unlock(&root->fs_info->delalloc_lock);
  778. }
  779. free_extent_buffer(eb);
  780. unlock_page(page);
  781. return 0;
  782. }
  783. static int btree_writepages(struct address_space *mapping,
  784. struct writeback_control *wbc)
  785. {
  786. struct extent_io_tree *tree;
  787. tree = &BTRFS_I(mapping->host)->io_tree;
  788. if (wbc->sync_mode == WB_SYNC_NONE) {
  789. struct btrfs_root *root = BTRFS_I(mapping->host)->root;
  790. u64 num_dirty;
  791. unsigned long thresh = 32 * 1024 * 1024;
  792. if (wbc->for_kupdate)
  793. return 0;
  794. /* this is a bit racy, but that's ok */
  795. num_dirty = root->fs_info->dirty_metadata_bytes;
  796. if (num_dirty < thresh)
  797. return 0;
  798. }
  799. return extent_writepages(tree, mapping, btree_get_extent, wbc);
  800. }
  801. static int btree_readpage(struct file *file, struct page *page)
  802. {
  803. struct extent_io_tree *tree;
  804. tree = &BTRFS_I(page->mapping->host)->io_tree;
  805. return extent_read_full_page(tree, page, btree_get_extent);
  806. }
  807. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  808. {
  809. struct extent_io_tree *tree;
  810. struct extent_map_tree *map;
  811. int ret;
  812. if (PageWriteback(page) || PageDirty(page))
  813. return 0;
  814. tree = &BTRFS_I(page->mapping->host)->io_tree;
  815. map = &BTRFS_I(page->mapping->host)->extent_tree;
  816. ret = try_release_extent_state(map, tree, page, gfp_flags);
  817. if (!ret)
  818. return 0;
  819. ret = try_release_extent_buffer(tree, page);
  820. if (ret == 1) {
  821. ClearPagePrivate(page);
  822. set_page_private(page, 0);
  823. page_cache_release(page);
  824. }
  825. return ret;
  826. }
  827. static void btree_invalidatepage(struct page *page, unsigned long offset)
  828. {
  829. struct extent_io_tree *tree;
  830. tree = &BTRFS_I(page->mapping->host)->io_tree;
  831. extent_invalidatepage(tree, page, offset);
  832. btree_releasepage(page, GFP_NOFS);
  833. if (PagePrivate(page)) {
  834. printk(KERN_WARNING "btrfs warning page private not zero "
  835. "on page %llu\n", (unsigned long long)page_offset(page));
  836. ClearPagePrivate(page);
  837. set_page_private(page, 0);
  838. page_cache_release(page);
  839. }
  840. }
  841. static const struct address_space_operations btree_aops = {
  842. .readpage = btree_readpage,
  843. .writepage = btree_writepage,
  844. .writepages = btree_writepages,
  845. .releasepage = btree_releasepage,
  846. .invalidatepage = btree_invalidatepage,
  847. #ifdef CONFIG_MIGRATION
  848. .migratepage = btree_migratepage,
  849. #endif
  850. };
  851. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  852. u64 parent_transid)
  853. {
  854. struct extent_buffer *buf = NULL;
  855. struct inode *btree_inode = root->fs_info->btree_inode;
  856. int ret = 0;
  857. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  858. if (!buf)
  859. return 0;
  860. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  861. buf, 0, 0, btree_get_extent, 0);
  862. free_extent_buffer(buf);
  863. return ret;
  864. }
  865. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  866. u64 bytenr, u32 blocksize)
  867. {
  868. struct inode *btree_inode = root->fs_info->btree_inode;
  869. struct extent_buffer *eb;
  870. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  871. bytenr, blocksize);
  872. return eb;
  873. }
  874. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  875. u64 bytenr, u32 blocksize)
  876. {
  877. struct inode *btree_inode = root->fs_info->btree_inode;
  878. struct extent_buffer *eb;
  879. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  880. bytenr, blocksize, NULL);
  881. return eb;
  882. }
  883. int btrfs_write_tree_block(struct extent_buffer *buf)
  884. {
  885. return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
  886. buf->start + buf->len - 1);
  887. }
  888. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  889. {
  890. return filemap_fdatawait_range(buf->first_page->mapping,
  891. buf->start, buf->start + buf->len - 1);
  892. }
  893. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  894. u32 blocksize, u64 parent_transid)
  895. {
  896. struct extent_buffer *buf = NULL;
  897. int ret;
  898. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  899. if (!buf)
  900. return NULL;
  901. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  902. if (ret == 0)
  903. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  904. return buf;
  905. }
  906. int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  907. struct extent_buffer *buf)
  908. {
  909. struct inode *btree_inode = root->fs_info->btree_inode;
  910. if (btrfs_header_generation(buf) ==
  911. root->fs_info->running_transaction->transid) {
  912. btrfs_assert_tree_locked(buf);
  913. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  914. spin_lock(&root->fs_info->delalloc_lock);
  915. if (root->fs_info->dirty_metadata_bytes >= buf->len)
  916. root->fs_info->dirty_metadata_bytes -= buf->len;
  917. else
  918. WARN_ON(1);
  919. spin_unlock(&root->fs_info->delalloc_lock);
  920. }
  921. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  922. btrfs_set_lock_blocking(buf);
  923. clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  924. buf);
  925. }
  926. return 0;
  927. }
  928. static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  929. u32 stripesize, struct btrfs_root *root,
  930. struct btrfs_fs_info *fs_info,
  931. u64 objectid)
  932. {
  933. root->node = NULL;
  934. root->commit_root = NULL;
  935. root->sectorsize = sectorsize;
  936. root->nodesize = nodesize;
  937. root->leafsize = leafsize;
  938. root->stripesize = stripesize;
  939. root->ref_cows = 0;
  940. root->track_dirty = 0;
  941. root->in_radix = 0;
  942. root->orphan_item_inserted = 0;
  943. root->orphan_cleanup_state = 0;
  944. root->fs_info = fs_info;
  945. root->objectid = objectid;
  946. root->last_trans = 0;
  947. root->highest_objectid = 0;
  948. root->name = NULL;
  949. root->inode_tree = RB_ROOT;
  950. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  951. root->block_rsv = NULL;
  952. root->orphan_block_rsv = NULL;
  953. INIT_LIST_HEAD(&root->dirty_list);
  954. INIT_LIST_HEAD(&root->orphan_list);
  955. INIT_LIST_HEAD(&root->root_list);
  956. spin_lock_init(&root->orphan_lock);
  957. spin_lock_init(&root->inode_lock);
  958. spin_lock_init(&root->accounting_lock);
  959. mutex_init(&root->objectid_mutex);
  960. mutex_init(&root->log_mutex);
  961. init_waitqueue_head(&root->log_writer_wait);
  962. init_waitqueue_head(&root->log_commit_wait[0]);
  963. init_waitqueue_head(&root->log_commit_wait[1]);
  964. atomic_set(&root->log_commit[0], 0);
  965. atomic_set(&root->log_commit[1], 0);
  966. atomic_set(&root->log_writers, 0);
  967. root->log_batch = 0;
  968. root->log_transid = 0;
  969. root->last_log_commit = 0;
  970. extent_io_tree_init(&root->dirty_log_pages,
  971. fs_info->btree_inode->i_mapping);
  972. memset(&root->root_key, 0, sizeof(root->root_key));
  973. memset(&root->root_item, 0, sizeof(root->root_item));
  974. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  975. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  976. root->defrag_trans_start = fs_info->generation;
  977. init_completion(&root->kobj_unregister);
  978. root->defrag_running = 0;
  979. root->root_key.objectid = objectid;
  980. root->anon_dev = 0;
  981. return 0;
  982. }
  983. static int find_and_setup_root(struct btrfs_root *tree_root,
  984. struct btrfs_fs_info *fs_info,
  985. u64 objectid,
  986. struct btrfs_root *root)
  987. {
  988. int ret;
  989. u32 blocksize;
  990. u64 generation;
  991. __setup_root(tree_root->nodesize, tree_root->leafsize,
  992. tree_root->sectorsize, tree_root->stripesize,
  993. root, fs_info, objectid);
  994. ret = btrfs_find_last_root(tree_root, objectid,
  995. &root->root_item, &root->root_key);
  996. if (ret > 0)
  997. return -ENOENT;
  998. BUG_ON(ret);
  999. generation = btrfs_root_generation(&root->root_item);
  1000. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1001. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1002. blocksize, generation);
  1003. if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
  1004. free_extent_buffer(root->node);
  1005. return -EIO;
  1006. }
  1007. root->commit_root = btrfs_root_node(root);
  1008. return 0;
  1009. }
  1010. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1011. struct btrfs_fs_info *fs_info)
  1012. {
  1013. struct btrfs_root *root;
  1014. struct btrfs_root *tree_root = fs_info->tree_root;
  1015. struct extent_buffer *leaf;
  1016. root = kzalloc(sizeof(*root), GFP_NOFS);
  1017. if (!root)
  1018. return ERR_PTR(-ENOMEM);
  1019. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1020. tree_root->sectorsize, tree_root->stripesize,
  1021. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1022. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1023. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1024. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1025. /*
  1026. * log trees do not get reference counted because they go away
  1027. * before a real commit is actually done. They do store pointers
  1028. * to file data extents, and those reference counts still get
  1029. * updated (along with back refs to the log tree).
  1030. */
  1031. root->ref_cows = 0;
  1032. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1033. BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
  1034. if (IS_ERR(leaf)) {
  1035. kfree(root);
  1036. return ERR_CAST(leaf);
  1037. }
  1038. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1039. btrfs_set_header_bytenr(leaf, leaf->start);
  1040. btrfs_set_header_generation(leaf, trans->transid);
  1041. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1042. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1043. root->node = leaf;
  1044. write_extent_buffer(root->node, root->fs_info->fsid,
  1045. (unsigned long)btrfs_header_fsid(root->node),
  1046. BTRFS_FSID_SIZE);
  1047. btrfs_mark_buffer_dirty(root->node);
  1048. btrfs_tree_unlock(root->node);
  1049. return root;
  1050. }
  1051. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1052. struct btrfs_fs_info *fs_info)
  1053. {
  1054. struct btrfs_root *log_root;
  1055. log_root = alloc_log_tree(trans, fs_info);
  1056. if (IS_ERR(log_root))
  1057. return PTR_ERR(log_root);
  1058. WARN_ON(fs_info->log_root_tree);
  1059. fs_info->log_root_tree = log_root;
  1060. return 0;
  1061. }
  1062. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1063. struct btrfs_root *root)
  1064. {
  1065. struct btrfs_root *log_root;
  1066. struct btrfs_inode_item *inode_item;
  1067. log_root = alloc_log_tree(trans, root->fs_info);
  1068. if (IS_ERR(log_root))
  1069. return PTR_ERR(log_root);
  1070. log_root->last_trans = trans->transid;
  1071. log_root->root_key.offset = root->root_key.objectid;
  1072. inode_item = &log_root->root_item.inode;
  1073. inode_item->generation = cpu_to_le64(1);
  1074. inode_item->size = cpu_to_le64(3);
  1075. inode_item->nlink = cpu_to_le32(1);
  1076. inode_item->nbytes = cpu_to_le64(root->leafsize);
  1077. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  1078. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1079. WARN_ON(root->log_root);
  1080. root->log_root = log_root;
  1081. root->log_transid = 0;
  1082. root->last_log_commit = 0;
  1083. return 0;
  1084. }
  1085. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  1086. struct btrfs_key *location)
  1087. {
  1088. struct btrfs_root *root;
  1089. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1090. struct btrfs_path *path;
  1091. struct extent_buffer *l;
  1092. u64 generation;
  1093. u32 blocksize;
  1094. int ret = 0;
  1095. root = kzalloc(sizeof(*root), GFP_NOFS);
  1096. if (!root)
  1097. return ERR_PTR(-ENOMEM);
  1098. if (location->offset == (u64)-1) {
  1099. ret = find_and_setup_root(tree_root, fs_info,
  1100. location->objectid, root);
  1101. if (ret) {
  1102. kfree(root);
  1103. return ERR_PTR(ret);
  1104. }
  1105. goto out;
  1106. }
  1107. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1108. tree_root->sectorsize, tree_root->stripesize,
  1109. root, fs_info, location->objectid);
  1110. path = btrfs_alloc_path();
  1111. if (!path) {
  1112. kfree(root);
  1113. return ERR_PTR(-ENOMEM);
  1114. }
  1115. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  1116. if (ret == 0) {
  1117. l = path->nodes[0];
  1118. read_extent_buffer(l, &root->root_item,
  1119. btrfs_item_ptr_offset(l, path->slots[0]),
  1120. sizeof(root->root_item));
  1121. memcpy(&root->root_key, location, sizeof(*location));
  1122. }
  1123. btrfs_free_path(path);
  1124. if (ret) {
  1125. kfree(root);
  1126. if (ret > 0)
  1127. ret = -ENOENT;
  1128. return ERR_PTR(ret);
  1129. }
  1130. generation = btrfs_root_generation(&root->root_item);
  1131. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1132. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1133. blocksize, generation);
  1134. root->commit_root = btrfs_root_node(root);
  1135. BUG_ON(!root->node);
  1136. out:
  1137. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  1138. root->ref_cows = 1;
  1139. btrfs_check_and_init_root_item(&root->root_item);
  1140. }
  1141. return root;
  1142. }
  1143. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1144. struct btrfs_key *location)
  1145. {
  1146. struct btrfs_root *root;
  1147. int ret;
  1148. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1149. return fs_info->tree_root;
  1150. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1151. return fs_info->extent_root;
  1152. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1153. return fs_info->chunk_root;
  1154. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1155. return fs_info->dev_root;
  1156. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1157. return fs_info->csum_root;
  1158. again:
  1159. spin_lock(&fs_info->fs_roots_radix_lock);
  1160. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1161. (unsigned long)location->objectid);
  1162. spin_unlock(&fs_info->fs_roots_radix_lock);
  1163. if (root)
  1164. return root;
  1165. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1166. if (IS_ERR(root))
  1167. return root;
  1168. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1169. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1170. GFP_NOFS);
  1171. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1172. ret = -ENOMEM;
  1173. goto fail;
  1174. }
  1175. btrfs_init_free_ino_ctl(root);
  1176. mutex_init(&root->fs_commit_mutex);
  1177. spin_lock_init(&root->cache_lock);
  1178. init_waitqueue_head(&root->cache_wait);
  1179. ret = get_anon_bdev(&root->anon_dev);
  1180. if (ret)
  1181. goto fail;
  1182. if (btrfs_root_refs(&root->root_item) == 0) {
  1183. ret = -ENOENT;
  1184. goto fail;
  1185. }
  1186. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1187. if (ret < 0)
  1188. goto fail;
  1189. if (ret == 0)
  1190. root->orphan_item_inserted = 1;
  1191. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1192. if (ret)
  1193. goto fail;
  1194. spin_lock(&fs_info->fs_roots_radix_lock);
  1195. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1196. (unsigned long)root->root_key.objectid,
  1197. root);
  1198. if (ret == 0)
  1199. root->in_radix = 1;
  1200. spin_unlock(&fs_info->fs_roots_radix_lock);
  1201. radix_tree_preload_end();
  1202. if (ret) {
  1203. if (ret == -EEXIST) {
  1204. free_fs_root(root);
  1205. goto again;
  1206. }
  1207. goto fail;
  1208. }
  1209. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1210. root->root_key.objectid);
  1211. WARN_ON(ret);
  1212. return root;
  1213. fail:
  1214. free_fs_root(root);
  1215. return ERR_PTR(ret);
  1216. }
  1217. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1218. {
  1219. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1220. int ret = 0;
  1221. struct btrfs_device *device;
  1222. struct backing_dev_info *bdi;
  1223. rcu_read_lock();
  1224. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1225. if (!device->bdev)
  1226. continue;
  1227. bdi = blk_get_backing_dev_info(device->bdev);
  1228. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1229. ret = 1;
  1230. break;
  1231. }
  1232. }
  1233. rcu_read_unlock();
  1234. return ret;
  1235. }
  1236. /*
  1237. * If this fails, caller must call bdi_destroy() to get rid of the
  1238. * bdi again.
  1239. */
  1240. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1241. {
  1242. int err;
  1243. bdi->capabilities = BDI_CAP_MAP_COPY;
  1244. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1245. if (err)
  1246. return err;
  1247. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1248. bdi->congested_fn = btrfs_congested_fn;
  1249. bdi->congested_data = info;
  1250. return 0;
  1251. }
  1252. static int bio_ready_for_csum(struct bio *bio)
  1253. {
  1254. u64 length = 0;
  1255. u64 buf_len = 0;
  1256. u64 start = 0;
  1257. struct page *page;
  1258. struct extent_io_tree *io_tree = NULL;
  1259. struct bio_vec *bvec;
  1260. int i;
  1261. int ret;
  1262. bio_for_each_segment(bvec, bio, i) {
  1263. page = bvec->bv_page;
  1264. if (page->private == EXTENT_PAGE_PRIVATE) {
  1265. length += bvec->bv_len;
  1266. continue;
  1267. }
  1268. if (!page->private) {
  1269. length += bvec->bv_len;
  1270. continue;
  1271. }
  1272. length = bvec->bv_len;
  1273. buf_len = page->private >> 2;
  1274. start = page_offset(page) + bvec->bv_offset;
  1275. io_tree = &BTRFS_I(page->mapping->host)->io_tree;
  1276. }
  1277. /* are we fully contained in this bio? */
  1278. if (buf_len <= length)
  1279. return 1;
  1280. ret = extent_range_uptodate(io_tree, start + length,
  1281. start + buf_len - 1);
  1282. return ret;
  1283. }
  1284. /*
  1285. * called by the kthread helper functions to finally call the bio end_io
  1286. * functions. This is where read checksum verification actually happens
  1287. */
  1288. static void end_workqueue_fn(struct btrfs_work *work)
  1289. {
  1290. struct bio *bio;
  1291. struct end_io_wq *end_io_wq;
  1292. struct btrfs_fs_info *fs_info;
  1293. int error;
  1294. end_io_wq = container_of(work, struct end_io_wq, work);
  1295. bio = end_io_wq->bio;
  1296. fs_info = end_io_wq->info;
  1297. /* metadata bio reads are special because the whole tree block must
  1298. * be checksummed at once. This makes sure the entire block is in
  1299. * ram and up to date before trying to verify things. For
  1300. * blocksize <= pagesize, it is basically a noop
  1301. */
  1302. if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
  1303. !bio_ready_for_csum(bio)) {
  1304. btrfs_queue_worker(&fs_info->endio_meta_workers,
  1305. &end_io_wq->work);
  1306. return;
  1307. }
  1308. error = end_io_wq->error;
  1309. bio->bi_private = end_io_wq->private;
  1310. bio->bi_end_io = end_io_wq->end_io;
  1311. kfree(end_io_wq);
  1312. bio_endio(bio, error);
  1313. }
  1314. static int cleaner_kthread(void *arg)
  1315. {
  1316. struct btrfs_root *root = arg;
  1317. do {
  1318. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1319. if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
  1320. mutex_trylock(&root->fs_info->cleaner_mutex)) {
  1321. btrfs_run_delayed_iputs(root);
  1322. btrfs_clean_old_snapshots(root);
  1323. mutex_unlock(&root->fs_info->cleaner_mutex);
  1324. btrfs_run_defrag_inodes(root->fs_info);
  1325. }
  1326. if (freezing(current)) {
  1327. refrigerator();
  1328. } else {
  1329. set_current_state(TASK_INTERRUPTIBLE);
  1330. if (!kthread_should_stop())
  1331. schedule();
  1332. __set_current_state(TASK_RUNNING);
  1333. }
  1334. } while (!kthread_should_stop());
  1335. return 0;
  1336. }
  1337. static int transaction_kthread(void *arg)
  1338. {
  1339. struct btrfs_root *root = arg;
  1340. struct btrfs_trans_handle *trans;
  1341. struct btrfs_transaction *cur;
  1342. u64 transid;
  1343. unsigned long now;
  1344. unsigned long delay;
  1345. int ret;
  1346. do {
  1347. delay = HZ * 30;
  1348. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1349. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1350. spin_lock(&root->fs_info->trans_lock);
  1351. cur = root->fs_info->running_transaction;
  1352. if (!cur) {
  1353. spin_unlock(&root->fs_info->trans_lock);
  1354. goto sleep;
  1355. }
  1356. now = get_seconds();
  1357. if (!cur->blocked &&
  1358. (now < cur->start_time || now - cur->start_time < 30)) {
  1359. spin_unlock(&root->fs_info->trans_lock);
  1360. delay = HZ * 5;
  1361. goto sleep;
  1362. }
  1363. transid = cur->transid;
  1364. spin_unlock(&root->fs_info->trans_lock);
  1365. trans = btrfs_join_transaction(root);
  1366. BUG_ON(IS_ERR(trans));
  1367. if (transid == trans->transid) {
  1368. ret = btrfs_commit_transaction(trans, root);
  1369. BUG_ON(ret);
  1370. } else {
  1371. btrfs_end_transaction(trans, root);
  1372. }
  1373. sleep:
  1374. wake_up_process(root->fs_info->cleaner_kthread);
  1375. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1376. if (freezing(current)) {
  1377. refrigerator();
  1378. } else {
  1379. set_current_state(TASK_INTERRUPTIBLE);
  1380. if (!kthread_should_stop() &&
  1381. !btrfs_transaction_blocked(root->fs_info))
  1382. schedule_timeout(delay);
  1383. __set_current_state(TASK_RUNNING);
  1384. }
  1385. } while (!kthread_should_stop());
  1386. return 0;
  1387. }
  1388. struct btrfs_root *open_ctree(struct super_block *sb,
  1389. struct btrfs_fs_devices *fs_devices,
  1390. char *options)
  1391. {
  1392. u32 sectorsize;
  1393. u32 nodesize;
  1394. u32 leafsize;
  1395. u32 blocksize;
  1396. u32 stripesize;
  1397. u64 generation;
  1398. u64 features;
  1399. struct btrfs_key location;
  1400. struct buffer_head *bh;
  1401. struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
  1402. GFP_NOFS);
  1403. struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
  1404. GFP_NOFS);
  1405. struct btrfs_root *tree_root = btrfs_sb(sb);
  1406. struct btrfs_fs_info *fs_info = NULL;
  1407. struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
  1408. GFP_NOFS);
  1409. struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
  1410. GFP_NOFS);
  1411. struct btrfs_root *log_tree_root;
  1412. int ret;
  1413. int err = -EINVAL;
  1414. struct btrfs_super_block *disk_super;
  1415. if (!extent_root || !tree_root || !tree_root->fs_info ||
  1416. !chunk_root || !dev_root || !csum_root) {
  1417. err = -ENOMEM;
  1418. goto fail;
  1419. }
  1420. fs_info = tree_root->fs_info;
  1421. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1422. if (ret) {
  1423. err = ret;
  1424. goto fail;
  1425. }
  1426. ret = setup_bdi(fs_info, &fs_info->bdi);
  1427. if (ret) {
  1428. err = ret;
  1429. goto fail_srcu;
  1430. }
  1431. fs_info->btree_inode = new_inode(sb);
  1432. if (!fs_info->btree_inode) {
  1433. err = -ENOMEM;
  1434. goto fail_bdi;
  1435. }
  1436. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1437. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1438. INIT_LIST_HEAD(&fs_info->trans_list);
  1439. INIT_LIST_HEAD(&fs_info->dead_roots);
  1440. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1441. INIT_LIST_HEAD(&fs_info->hashers);
  1442. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1443. INIT_LIST_HEAD(&fs_info->ordered_operations);
  1444. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1445. spin_lock_init(&fs_info->delalloc_lock);
  1446. spin_lock_init(&fs_info->trans_lock);
  1447. spin_lock_init(&fs_info->ref_cache_lock);
  1448. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1449. spin_lock_init(&fs_info->delayed_iput_lock);
  1450. spin_lock_init(&fs_info->defrag_inodes_lock);
  1451. mutex_init(&fs_info->reloc_mutex);
  1452. init_completion(&fs_info->kobj_unregister);
  1453. fs_info->tree_root = tree_root;
  1454. fs_info->extent_root = extent_root;
  1455. fs_info->csum_root = csum_root;
  1456. fs_info->chunk_root = chunk_root;
  1457. fs_info->dev_root = dev_root;
  1458. fs_info->fs_devices = fs_devices;
  1459. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1460. INIT_LIST_HEAD(&fs_info->space_info);
  1461. btrfs_mapping_init(&fs_info->mapping_tree);
  1462. btrfs_init_block_rsv(&fs_info->global_block_rsv);
  1463. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
  1464. btrfs_init_block_rsv(&fs_info->trans_block_rsv);
  1465. btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
  1466. btrfs_init_block_rsv(&fs_info->empty_block_rsv);
  1467. INIT_LIST_HEAD(&fs_info->durable_block_rsv_list);
  1468. mutex_init(&fs_info->durable_block_rsv_mutex);
  1469. atomic_set(&fs_info->nr_async_submits, 0);
  1470. atomic_set(&fs_info->async_delalloc_pages, 0);
  1471. atomic_set(&fs_info->async_submit_draining, 0);
  1472. atomic_set(&fs_info->nr_async_bios, 0);
  1473. atomic_set(&fs_info->defrag_running, 0);
  1474. fs_info->sb = sb;
  1475. fs_info->max_inline = 8192 * 1024;
  1476. fs_info->metadata_ratio = 0;
  1477. fs_info->defrag_inodes = RB_ROOT;
  1478. fs_info->trans_no_join = 0;
  1479. fs_info->thread_pool_size = min_t(unsigned long,
  1480. num_online_cpus() + 2, 8);
  1481. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1482. spin_lock_init(&fs_info->ordered_extent_lock);
  1483. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1484. GFP_NOFS);
  1485. if (!fs_info->delayed_root) {
  1486. err = -ENOMEM;
  1487. goto fail_iput;
  1488. }
  1489. btrfs_init_delayed_root(fs_info->delayed_root);
  1490. mutex_init(&fs_info->scrub_lock);
  1491. atomic_set(&fs_info->scrubs_running, 0);
  1492. atomic_set(&fs_info->scrub_pause_req, 0);
  1493. atomic_set(&fs_info->scrubs_paused, 0);
  1494. atomic_set(&fs_info->scrub_cancel_req, 0);
  1495. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1496. init_rwsem(&fs_info->scrub_super_lock);
  1497. fs_info->scrub_workers_refcnt = 0;
  1498. sb->s_blocksize = 4096;
  1499. sb->s_blocksize_bits = blksize_bits(4096);
  1500. sb->s_bdi = &fs_info->bdi;
  1501. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1502. fs_info->btree_inode->i_nlink = 1;
  1503. /*
  1504. * we set the i_size on the btree inode to the max possible int.
  1505. * the real end of the address space is determined by all of
  1506. * the devices in the system
  1507. */
  1508. fs_info->btree_inode->i_size = OFFSET_MAX;
  1509. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1510. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1511. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1512. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1513. fs_info->btree_inode->i_mapping);
  1514. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1515. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1516. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1517. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1518. sizeof(struct btrfs_key));
  1519. BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
  1520. insert_inode_hash(fs_info->btree_inode);
  1521. spin_lock_init(&fs_info->block_group_cache_lock);
  1522. fs_info->block_group_cache_tree = RB_ROOT;
  1523. extent_io_tree_init(&fs_info->freed_extents[0],
  1524. fs_info->btree_inode->i_mapping);
  1525. extent_io_tree_init(&fs_info->freed_extents[1],
  1526. fs_info->btree_inode->i_mapping);
  1527. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1528. fs_info->do_barriers = 1;
  1529. mutex_init(&fs_info->ordered_operations_mutex);
  1530. mutex_init(&fs_info->tree_log_mutex);
  1531. mutex_init(&fs_info->chunk_mutex);
  1532. mutex_init(&fs_info->transaction_kthread_mutex);
  1533. mutex_init(&fs_info->cleaner_mutex);
  1534. mutex_init(&fs_info->volume_mutex);
  1535. init_rwsem(&fs_info->extent_commit_sem);
  1536. init_rwsem(&fs_info->cleanup_work_sem);
  1537. init_rwsem(&fs_info->subvol_sem);
  1538. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1539. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1540. init_waitqueue_head(&fs_info->transaction_throttle);
  1541. init_waitqueue_head(&fs_info->transaction_wait);
  1542. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  1543. init_waitqueue_head(&fs_info->async_submit_wait);
  1544. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1545. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1546. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1547. if (!bh) {
  1548. err = -EINVAL;
  1549. goto fail_alloc;
  1550. }
  1551. memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
  1552. memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
  1553. sizeof(fs_info->super_for_commit));
  1554. brelse(bh);
  1555. memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
  1556. disk_super = &fs_info->super_copy;
  1557. if (!btrfs_super_root(disk_super))
  1558. goto fail_alloc;
  1559. /* check FS state, whether FS is broken. */
  1560. fs_info->fs_state |= btrfs_super_flags(disk_super);
  1561. btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  1562. /*
  1563. * In the long term, we'll store the compression type in the super
  1564. * block, and it'll be used for per file compression control.
  1565. */
  1566. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  1567. ret = btrfs_parse_options(tree_root, options);
  1568. if (ret) {
  1569. err = ret;
  1570. goto fail_alloc;
  1571. }
  1572. features = btrfs_super_incompat_flags(disk_super) &
  1573. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1574. if (features) {
  1575. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1576. "unsupported optional features (%Lx).\n",
  1577. (unsigned long long)