PageRenderTime 28ms CodeModel.GetById 10ms RepoModel.GetById 1ms app.codeStats 0ms

/net/rose/af_rose.c

https://github.com/mstsirkin/kvm
C | 1643 lines | 1232 code | 299 blank | 112 comment | 271 complexity | ce03c63ac589590cd906d2700243f306 MD5 | raw file
  1. /*
  2. * This program is free software; you can redistribute it and/or modify
  3. * it under the terms of the GNU General Public License as published by
  4. * the Free Software Foundation; either version 2 of the License, or
  5. * (at your option) any later version.
  6. *
  7. * Copyright (C) Jonathan Naylor G4KLX (g4klx@g4klx.demon.co.uk)
  8. * Copyright (C) Alan Cox GW4PTS (alan@lxorguk.ukuu.org.uk)
  9. * Copyright (C) Terry Dawson VK2KTJ (terry@animats.net)
  10. * Copyright (C) Tomi Manninen OH2BNS (oh2bns@sral.fi)
  11. */
  12. #include <linux/capability.h>
  13. #include <linux/module.h>
  14. #include <linux/moduleparam.h>
  15. #include <linux/init.h>
  16. #include <linux/errno.h>
  17. #include <linux/types.h>
  18. #include <linux/socket.h>
  19. #include <linux/in.h>
  20. #include <linux/slab.h>
  21. #include <linux/kernel.h>
  22. #include <linux/sched.h>
  23. #include <linux/spinlock.h>
  24. #include <linux/timer.h>
  25. #include <linux/string.h>
  26. #include <linux/sockios.h>
  27. #include <linux/net.h>
  28. #include <linux/stat.h>
  29. #include <net/net_namespace.h>
  30. #include <net/ax25.h>
  31. #include <linux/inet.h>
  32. #include <linux/netdevice.h>
  33. #include <linux/if_arp.h>
  34. #include <linux/skbuff.h>
  35. #include <net/sock.h>
  36. #include <asm/system.h>
  37. #include <asm/uaccess.h>
  38. #include <linux/fcntl.h>
  39. #include <linux/termios.h>
  40. #include <linux/mm.h>
  41. #include <linux/interrupt.h>
  42. #include <linux/notifier.h>
  43. #include <net/rose.h>
  44. #include <linux/proc_fs.h>
  45. #include <linux/seq_file.h>
  46. #include <net/tcp_states.h>
  47. #include <net/ip.h>
  48. #include <net/arp.h>
  49. static int rose_ndevs = 10;
  50. int sysctl_rose_restart_request_timeout = ROSE_DEFAULT_T0;
  51. int sysctl_rose_call_request_timeout = ROSE_DEFAULT_T1;
  52. int sysctl_rose_reset_request_timeout = ROSE_DEFAULT_T2;
  53. int sysctl_rose_clear_request_timeout = ROSE_DEFAULT_T3;
  54. int sysctl_rose_no_activity_timeout = ROSE_DEFAULT_IDLE;
  55. int sysctl_rose_ack_hold_back_timeout = ROSE_DEFAULT_HB;
  56. int sysctl_rose_routing_control = ROSE_DEFAULT_ROUTING;
  57. int sysctl_rose_link_fail_timeout = ROSE_DEFAULT_FAIL_TIMEOUT;
  58. int sysctl_rose_maximum_vcs = ROSE_DEFAULT_MAXVC;
  59. int sysctl_rose_window_size = ROSE_DEFAULT_WINDOW_SIZE;
  60. static HLIST_HEAD(rose_list);
  61. static DEFINE_SPINLOCK(rose_list_lock);
  62. static const struct proto_ops rose_proto_ops;
  63. ax25_address rose_callsign;
  64. /*
  65. * ROSE network devices are virtual network devices encapsulating ROSE
  66. * frames into AX.25 which will be sent through an AX.25 device, so form a
  67. * special "super class" of normal net devices; split their locks off into a
  68. * separate class since they always nest.
  69. */
  70. static struct lock_class_key rose_netdev_xmit_lock_key;
  71. static struct lock_class_key rose_netdev_addr_lock_key;
  72. static void rose_set_lockdep_one(struct net_device *dev,
  73. struct netdev_queue *txq,
  74. void *_unused)
  75. {
  76. lockdep_set_class(&txq->_xmit_lock, &rose_netdev_xmit_lock_key);
  77. }
  78. static void rose_set_lockdep_key(struct net_device *dev)
  79. {
  80. lockdep_set_class(&dev->addr_list_lock, &rose_netdev_addr_lock_key);
  81. netdev_for_each_tx_queue(dev, rose_set_lockdep_one, NULL);
  82. }
  83. /*
  84. * Convert a ROSE address into text.
  85. */
  86. char *rose2asc(char *buf, const rose_address *addr)
  87. {
  88. if (addr->rose_addr[0] == 0x00 && addr->rose_addr[1] == 0x00 &&
  89. addr->rose_addr[2] == 0x00 && addr->rose_addr[3] == 0x00 &&
  90. addr->rose_addr[4] == 0x00) {
  91. strcpy(buf, "*");
  92. } else {
  93. sprintf(buf, "%02X%02X%02X%02X%02X", addr->rose_addr[0] & 0xFF,
  94. addr->rose_addr[1] & 0xFF,
  95. addr->rose_addr[2] & 0xFF,
  96. addr->rose_addr[3] & 0xFF,
  97. addr->rose_addr[4] & 0xFF);
  98. }
  99. return buf;
  100. }
  101. /*
  102. * Compare two ROSE addresses, 0 == equal.
  103. */
  104. int rosecmp(rose_address *addr1, rose_address *addr2)
  105. {
  106. int i;
  107. for (i = 0; i < 5; i++)
  108. if (addr1->rose_addr[i] != addr2->rose_addr[i])
  109. return 1;
  110. return 0;
  111. }
  112. /*
  113. * Compare two ROSE addresses for only mask digits, 0 == equal.
  114. */
  115. int rosecmpm(rose_address *addr1, rose_address *addr2, unsigned short mask)
  116. {
  117. unsigned int i, j;
  118. if (mask > 10)
  119. return 1;
  120. for (i = 0; i < mask; i++) {
  121. j = i / 2;
  122. if ((i % 2) != 0) {
  123. if ((addr1->rose_addr[j] & 0x0F) != (addr2->rose_addr[j] & 0x0F))
  124. return 1;
  125. } else {
  126. if ((addr1->rose_addr[j] & 0xF0) != (addr2->rose_addr[j] & 0xF0))
  127. return 1;
  128. }
  129. }
  130. return 0;
  131. }
  132. /*
  133. * Socket removal during an interrupt is now safe.
  134. */
  135. static void rose_remove_socket(struct sock *sk)
  136. {
  137. spin_lock_bh(&rose_list_lock);
  138. sk_del_node_init(sk);
  139. spin_unlock_bh(&rose_list_lock);
  140. }
  141. /*
  142. * Kill all bound sockets on a broken link layer connection to a
  143. * particular neighbour.
  144. */
  145. void rose_kill_by_neigh(struct rose_neigh *neigh)
  146. {
  147. struct sock *s;
  148. struct hlist_node *node;
  149. spin_lock_bh(&rose_list_lock);
  150. sk_for_each(s, node, &rose_list) {
  151. struct rose_sock *rose = rose_sk(s);
  152. if (rose->neighbour == neigh) {
  153. rose_disconnect(s, ENETUNREACH, ROSE_OUT_OF_ORDER, 0);
  154. rose->neighbour->use--;
  155. rose->neighbour = NULL;
  156. }
  157. }
  158. spin_unlock_bh(&rose_list_lock);
  159. }
  160. /*
  161. * Kill all bound sockets on a dropped device.
  162. */
  163. static void rose_kill_by_device(struct net_device *dev)
  164. {
  165. struct sock *s;
  166. struct hlist_node *node;
  167. spin_lock_bh(&rose_list_lock);
  168. sk_for_each(s, node, &rose_list) {
  169. struct rose_sock *rose = rose_sk(s);
  170. if (rose->device == dev) {
  171. rose_disconnect(s, ENETUNREACH, ROSE_OUT_OF_ORDER, 0);
  172. rose->neighbour->use--;
  173. rose->device = NULL;
  174. }
  175. }
  176. spin_unlock_bh(&rose_list_lock);
  177. }
  178. /*
  179. * Handle device status changes.
  180. */
  181. static int rose_device_event(struct notifier_block *this, unsigned long event,
  182. void *ptr)
  183. {
  184. struct net_device *dev = (struct net_device *)ptr;
  185. if (!net_eq(dev_net(dev), &init_net))
  186. return NOTIFY_DONE;
  187. if (event != NETDEV_DOWN)
  188. return NOTIFY_DONE;
  189. switch (dev->type) {
  190. case ARPHRD_ROSE:
  191. rose_kill_by_device(dev);
  192. break;
  193. case ARPHRD_AX25:
  194. rose_link_device_down(dev);
  195. rose_rt_device_down(dev);
  196. break;
  197. }
  198. return NOTIFY_DONE;
  199. }
  200. /*
  201. * Add a socket to the bound sockets list.
  202. */
  203. static void rose_insert_socket(struct sock *sk)
  204. {
  205. spin_lock_bh(&rose_list_lock);
  206. sk_add_node(sk, &rose_list);
  207. spin_unlock_bh(&rose_list_lock);
  208. }
  209. /*
  210. * Find a socket that wants to accept the Call Request we just
  211. * received.
  212. */
  213. static struct sock *rose_find_listener(rose_address *addr, ax25_address *call)
  214. {
  215. struct sock *s;
  216. struct hlist_node *node;
  217. spin_lock_bh(&rose_list_lock);
  218. sk_for_each(s, node, &rose_list) {
  219. struct rose_sock *rose = rose_sk(s);
  220. if (!rosecmp(&rose->source_addr, addr) &&
  221. !ax25cmp(&rose->source_call, call) &&
  222. !rose->source_ndigis && s->sk_state == TCP_LISTEN)
  223. goto found;
  224. }
  225. sk_for_each(s, node, &rose_list) {
  226. struct rose_sock *rose = rose_sk(s);
  227. if (!rosecmp(&rose->source_addr, addr) &&
  228. !ax25cmp(&rose->source_call, &null_ax25_address) &&
  229. s->sk_state == TCP_LISTEN)
  230. goto found;
  231. }
  232. s = NULL;
  233. found:
  234. spin_unlock_bh(&rose_list_lock);
  235. return s;
  236. }
  237. /*
  238. * Find a connected ROSE socket given my LCI and device.
  239. */
  240. struct sock *rose_find_socket(unsigned int lci, struct rose_neigh *neigh)
  241. {
  242. struct sock *s;
  243. struct hlist_node *node;
  244. spin_lock_bh(&rose_list_lock);
  245. sk_for_each(s, node, &rose_list) {
  246. struct rose_sock *rose = rose_sk(s);
  247. if (rose->lci == lci && rose->neighbour == neigh)
  248. goto found;
  249. }
  250. s = NULL;
  251. found:
  252. spin_unlock_bh(&rose_list_lock);
  253. return s;
  254. }
  255. /*
  256. * Find a unique LCI for a given device.
  257. */
  258. unsigned int rose_new_lci(struct rose_neigh *neigh)
  259. {
  260. int lci;
  261. if (neigh->dce_mode) {
  262. for (lci = 1; lci <= sysctl_rose_maximum_vcs; lci++)
  263. if (rose_find_socket(lci, neigh) == NULL && rose_route_free_lci(lci, neigh) == NULL)
  264. return lci;
  265. } else {
  266. for (lci = sysctl_rose_maximum_vcs; lci > 0; lci--)
  267. if (rose_find_socket(lci, neigh) == NULL && rose_route_free_lci(lci, neigh) == NULL)
  268. return lci;
  269. }
  270. return 0;
  271. }
  272. /*
  273. * Deferred destroy.
  274. */
  275. void rose_destroy_socket(struct sock *);
  276. /*
  277. * Handler for deferred kills.
  278. */
  279. static void rose_destroy_timer(unsigned long data)
  280. {
  281. rose_destroy_socket((struct sock *)data);
  282. }
  283. /*
  284. * This is called from user mode and the timers. Thus it protects itself
  285. * against interrupt users but doesn't worry about being called during
  286. * work. Once it is removed from the queue no interrupt or bottom half
  287. * will touch it and we are (fairly 8-) ) safe.
  288. */
  289. void rose_destroy_socket(struct sock *sk)
  290. {
  291. struct sk_buff *skb;
  292. rose_remove_socket(sk);
  293. rose_stop_heartbeat(sk);
  294. rose_stop_idletimer(sk);
  295. rose_stop_timer(sk);
  296. rose_clear_queues(sk); /* Flush the queues */
  297. while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) {
  298. if (skb->sk != sk) { /* A pending connection */
  299. /* Queue the unaccepted socket for death */
  300. sock_set_flag(skb->sk, SOCK_DEAD);
  301. rose_start_heartbeat(skb->sk);
  302. rose_sk(skb->sk)->state = ROSE_STATE_0;
  303. }
  304. kfree_skb(skb);
  305. }
  306. if (sk_has_allocations(sk)) {
  307. /* Defer: outstanding buffers */
  308. setup_timer(&sk->sk_timer, rose_destroy_timer,
  309. (unsigned long)sk);
  310. sk->sk_timer.expires = jiffies + 10 * HZ;
  311. add_timer(&sk->sk_timer);
  312. } else
  313. sock_put(sk);
  314. }
  315. /*
  316. * Handling for system calls applied via the various interfaces to a
  317. * ROSE socket object.
  318. */
  319. static int rose_setsockopt(struct socket *sock, int level, int optname,
  320. char __user *optval, unsigned int optlen)
  321. {
  322. struct sock *sk = sock->sk;
  323. struct rose_sock *rose = rose_sk(sk);
  324. int opt;
  325. if (level != SOL_ROSE)
  326. return -ENOPROTOOPT;
  327. if (optlen < sizeof(int))
  328. return -EINVAL;
  329. if (get_user(opt, (int __user *)optval))
  330. return -EFAULT;
  331. switch (optname) {
  332. case ROSE_DEFER:
  333. rose->defer = opt ? 1 : 0;
  334. return 0;
  335. case ROSE_T1:
  336. if (opt < 1)
  337. return -EINVAL;
  338. rose->t1 = opt * HZ;
  339. return 0;
  340. case ROSE_T2:
  341. if (opt < 1)
  342. return -EINVAL;
  343. rose->t2 = opt * HZ;
  344. return 0;
  345. case ROSE_T3:
  346. if (opt < 1)
  347. return -EINVAL;
  348. rose->t3 = opt * HZ;
  349. return 0;
  350. case ROSE_HOLDBACK:
  351. if (opt < 1)
  352. return -EINVAL;
  353. rose->hb = opt * HZ;
  354. return 0;
  355. case ROSE_IDLE:
  356. if (opt < 0)
  357. return -EINVAL;
  358. rose->idle = opt * 60 * HZ;
  359. return 0;
  360. case ROSE_QBITINCL:
  361. rose->qbitincl = opt ? 1 : 0;
  362. return 0;
  363. default:
  364. return -ENOPROTOOPT;
  365. }
  366. }
  367. static int rose_getsockopt(struct socket *sock, int level, int optname,
  368. char __user *optval, int __user *optlen)
  369. {
  370. struct sock *sk = sock->sk;
  371. struct rose_sock *rose = rose_sk(sk);
  372. int val = 0;
  373. int len;
  374. if (level != SOL_ROSE)
  375. return -ENOPROTOOPT;
  376. if (get_user(len, optlen))
  377. return -EFAULT;
  378. if (len < 0)
  379. return -EINVAL;
  380. switch (optname) {
  381. case ROSE_DEFER:
  382. val = rose->defer;
  383. break;
  384. case ROSE_T1:
  385. val = rose->t1 / HZ;
  386. break;
  387. case ROSE_T2:
  388. val = rose->t2 / HZ;
  389. break;
  390. case ROSE_T3:
  391. val = rose->t3 / HZ;
  392. break;
  393. case ROSE_HOLDBACK:
  394. val = rose->hb / HZ;
  395. break;
  396. case ROSE_IDLE:
  397. val = rose->idle / (60 * HZ);
  398. break;
  399. case ROSE_QBITINCL:
  400. val = rose->qbitincl;
  401. break;
  402. default:
  403. return -ENOPROTOOPT;
  404. }
  405. len = min_t(unsigned int, len, sizeof(int));
  406. if (put_user(len, optlen))
  407. return -EFAULT;
  408. return copy_to_user(optval, &val, len) ? -EFAULT : 0;
  409. }
  410. static int rose_listen(struct socket *sock, int backlog)
  411. {
  412. struct sock *sk = sock->sk;
  413. if (sk->sk_state != TCP_LISTEN) {
  414. struct rose_sock *rose = rose_sk(sk);
  415. rose->dest_ndigis = 0;
  416. memset(&rose->dest_addr, 0, ROSE_ADDR_LEN);
  417. memset(&rose->dest_call, 0, AX25_ADDR_LEN);
  418. memset(rose->dest_digis, 0, AX25_ADDR_LEN * ROSE_MAX_DIGIS);
  419. sk->sk_max_ack_backlog = backlog;
  420. sk->sk_state = TCP_LISTEN;
  421. return 0;
  422. }
  423. return -EOPNOTSUPP;
  424. }
  425. static struct proto rose_proto = {
  426. .name = "ROSE",
  427. .owner = THIS_MODULE,
  428. .obj_size = sizeof(struct rose_sock),
  429. };
  430. static int rose_create(struct net *net, struct socket *sock, int protocol,
  431. int kern)
  432. {
  433. struct sock *sk;
  434. struct rose_sock *rose;
  435. if (!net_eq(net, &init_net))
  436. return -EAFNOSUPPORT;
  437. if (sock->type != SOCK_SEQPACKET || protocol != 0)
  438. return -ESOCKTNOSUPPORT;
  439. sk = sk_alloc(net, PF_ROSE, GFP_ATOMIC, &rose_proto);
  440. if (sk == NULL)
  441. return -ENOMEM;
  442. rose = rose_sk(sk);
  443. sock_init_data(sock, sk);
  444. skb_queue_head_init(&rose->ack_queue);
  445. #ifdef M_BIT
  446. skb_queue_head_init(&rose->frag_queue);
  447. rose->fraglen = 0;
  448. #endif
  449. sock->ops = &rose_proto_ops;
  450. sk->sk_protocol = protocol;
  451. init_timer(&rose->timer);
  452. init_timer(&rose->idletimer);
  453. rose->t1 = msecs_to_jiffies(sysctl_rose_call_request_timeout);
  454. rose->t2 = msecs_to_jiffies(sysctl_rose_reset_request_timeout);
  455. rose->t3 = msecs_to_jiffies(sysctl_rose_clear_request_timeout);
  456. rose->hb = msecs_to_jiffies(sysctl_rose_ack_hold_back_timeout);
  457. rose->idle = msecs_to_jiffies(sysctl_rose_no_activity_timeout);
  458. rose->state = ROSE_STATE_0;
  459. return 0;
  460. }
  461. static struct sock *rose_make_new(struct sock *osk)
  462. {
  463. struct sock *sk;
  464. struct rose_sock *rose, *orose;
  465. if (osk->sk_type != SOCK_SEQPACKET)
  466. return NULL;
  467. sk = sk_alloc(sock_net(osk), PF_ROSE, GFP_ATOMIC, &rose_proto);
  468. if (sk == NULL)
  469. return NULL;
  470. rose = rose_sk(sk);
  471. sock_init_data(NULL, sk);
  472. skb_queue_head_init(&rose->ack_queue);
  473. #ifdef M_BIT
  474. skb_queue_head_init(&rose->frag_queue);
  475. rose->fraglen = 0;
  476. #endif
  477. sk->sk_type = osk->sk_type;
  478. sk->sk_priority = osk->sk_priority;
  479. sk->sk_protocol = osk->sk_protocol;
  480. sk->sk_rcvbuf = osk->sk_rcvbuf;
  481. sk->sk_sndbuf = osk->sk_sndbuf;
  482. sk->sk_state = TCP_ESTABLISHED;
  483. sock_copy_flags(sk, osk);
  484. init_timer(&rose->timer);
  485. init_timer(&rose->idletimer);
  486. orose = rose_sk(osk);
  487. rose->t1 = orose->t1;
  488. rose->t2 = orose->t2;
  489. rose->t3 = orose->t3;
  490. rose->hb = orose->hb;
  491. rose->idle = orose->idle;
  492. rose->defer = orose->defer;
  493. rose->device = orose->device;
  494. rose->qbitincl = orose->qbitincl;
  495. return sk;
  496. }
  497. static int rose_release(struct socket *sock)
  498. {
  499. struct sock *sk = sock->sk;
  500. struct rose_sock *rose;
  501. if (sk == NULL) return 0;
  502. sock_hold(sk);
  503. sock_orphan(sk);
  504. lock_sock(sk);
  505. rose = rose_sk(sk);
  506. switch (rose->state) {
  507. case ROSE_STATE_0:
  508. release_sock(sk);
  509. rose_disconnect(sk, 0, -1, -1);
  510. lock_sock(sk);
  511. rose_destroy_socket(sk);
  512. break;
  513. case ROSE_STATE_2:
  514. rose->neighbour->use--;
  515. release_sock(sk);
  516. rose_disconnect(sk, 0, -1, -1);
  517. lock_sock(sk);
  518. rose_destroy_socket(sk);
  519. break;
  520. case ROSE_STATE_1:
  521. case ROSE_STATE_3:
  522. case ROSE_STATE_4:
  523. case ROSE_STATE_5:
  524. rose_clear_queues(sk);
  525. rose_stop_idletimer(sk);
  526. rose_write_internal(sk, ROSE_CLEAR_REQUEST);
  527. rose_start_t3timer(sk);
  528. rose->state = ROSE_STATE_2;
  529. sk->sk_state = TCP_CLOSE;
  530. sk->sk_shutdown |= SEND_SHUTDOWN;
  531. sk->sk_state_change(sk);
  532. sock_set_flag(sk, SOCK_DEAD);
  533. sock_set_flag(sk, SOCK_DESTROY);
  534. break;
  535. default:
  536. break;
  537. }
  538. sock->sk = NULL;
  539. release_sock(sk);
  540. sock_put(sk);
  541. return 0;
  542. }
  543. static int rose_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
  544. {
  545. struct sock *sk = sock->sk;
  546. struct rose_sock *rose = rose_sk(sk);
  547. struct sockaddr_rose *addr = (struct sockaddr_rose *)uaddr;
  548. struct net_device *dev;
  549. ax25_address *source;
  550. ax25_uid_assoc *user;
  551. int n;
  552. if (!sock_flag(sk, SOCK_ZAPPED))
  553. return -EINVAL;
  554. if (addr_len != sizeof(struct sockaddr_rose) && addr_len != sizeof(struct full_sockaddr_rose))
  555. return -EINVAL;
  556. if (addr->srose_family != AF_ROSE)
  557. return -EINVAL;
  558. if (addr_len == sizeof(struct sockaddr_rose) && addr->srose_ndigis > 1)
  559. return -EINVAL;
  560. if ((unsigned int) addr->srose_ndigis > ROSE_MAX_DIGIS)
  561. return -EINVAL;
  562. if ((dev = rose_dev_get(&addr->srose_addr)) == NULL)
  563. return -EADDRNOTAVAIL;
  564. source = &addr->srose_call;
  565. user = ax25_findbyuid(current_euid());
  566. if (user) {
  567. rose->source_call = user->call;
  568. ax25_uid_put(user);
  569. } else {
  570. if (ax25_uid_policy && !capable(CAP_NET_BIND_SERVICE))
  571. return -EACCES;
  572. rose->source_call = *source;
  573. }
  574. rose->source_addr = addr->srose_addr;
  575. rose->device = dev;
  576. rose->source_ndigis = addr->srose_ndigis;
  577. if (addr_len == sizeof(struct full_sockaddr_rose)) {
  578. struct full_sockaddr_rose *full_addr = (struct full_sockaddr_rose *)uaddr;
  579. for (n = 0 ; n < addr->srose_ndigis ; n++)
  580. rose->source_digis[n] = full_addr->srose_digis[n];
  581. } else {
  582. if (rose->source_ndigis == 1) {
  583. rose->source_digis[0] = addr->srose_digi;
  584. }
  585. }
  586. rose_insert_socket(sk);
  587. sock_reset_flag(sk, SOCK_ZAPPED);
  588. return 0;
  589. }
  590. static int rose_connect(struct socket *sock, struct sockaddr *uaddr, int addr_len, int flags)
  591. {
  592. struct sock *sk = sock->sk;
  593. struct rose_sock *rose = rose_sk(sk);
  594. struct sockaddr_rose *addr = (struct sockaddr_rose *)uaddr;
  595. unsigned char cause, diagnostic;
  596. struct net_device *dev;
  597. ax25_uid_assoc *user;
  598. int n, err = 0;
  599. if (addr_len != sizeof(struct sockaddr_rose) && addr_len != sizeof(struct full_sockaddr_rose))
  600. return -EINVAL;
  601. if (addr->srose_family != AF_ROSE)
  602. return -EINVAL;
  603. if (addr_len == sizeof(struct sockaddr_rose) && addr->srose_ndigis > 1)
  604. return -EINVAL;
  605. if ((unsigned int) addr->srose_ndigis > ROSE_MAX_DIGIS)
  606. return -EINVAL;
  607. /* Source + Destination digis should not exceed ROSE_MAX_DIGIS */
  608. if ((rose->source_ndigis + addr->srose_ndigis) > ROSE_MAX_DIGIS)
  609. return -EINVAL;
  610. lock_sock(sk);
  611. if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) {
  612. /* Connect completed during a ERESTARTSYS event */
  613. sock->state = SS_CONNECTED;
  614. goto out_release;
  615. }
  616. if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) {
  617. sock->state = SS_UNCONNECTED;
  618. err = -ECONNREFUSED;
  619. goto out_release;
  620. }
  621. if (sk->sk_state == TCP_ESTABLISHED) {
  622. /* No reconnect on a seqpacket socket */
  623. err = -EISCONN;
  624. goto out_release;
  625. }
  626. sk->sk_state = TCP_CLOSE;
  627. sock->state = SS_UNCONNECTED;
  628. rose->neighbour = rose_get_neigh(&addr->srose_addr, &cause,
  629. &diagnostic, 0);
  630. if (!rose->neighbour) {
  631. err = -ENETUNREACH;
  632. goto out_release;
  633. }
  634. rose->lci = rose_new_lci(rose->neighbour);
  635. if (!rose->lci) {
  636. err = -ENETUNREACH;
  637. goto out_release;
  638. }
  639. if (sock_flag(sk, SOCK_ZAPPED)) { /* Must bind first - autobinding in this may or may not work */
  640. sock_reset_flag(sk, SOCK_ZAPPED);
  641. if ((dev = rose_dev_first()) == NULL) {
  642. err = -ENETUNREACH;
  643. goto out_release;
  644. }
  645. user = ax25_findbyuid(current_euid());
  646. if (!user) {
  647. err = -EINVAL;
  648. goto out_release;
  649. }
  650. memcpy(&rose->source_addr, dev->dev_addr, ROSE_ADDR_LEN);
  651. rose->source_call = user->call;
  652. rose->device = dev;
  653. ax25_uid_put(user);
  654. rose_insert_socket(sk); /* Finish the bind */
  655. }
  656. rose->dest_addr = addr->srose_addr;
  657. rose->dest_call = addr->srose_call;
  658. rose->rand = ((long)rose & 0xFFFF) + rose->lci;
  659. rose->dest_ndigis = addr->srose_ndigis;
  660. if (addr_len == sizeof(struct full_sockaddr_rose)) {
  661. struct full_sockaddr_rose *full_addr = (struct full_sockaddr_rose *)uaddr;
  662. for (n = 0 ; n < addr->srose_ndigis ; n++)
  663. rose->dest_digis[n] = full_addr->srose_digis[n];
  664. } else {
  665. if (rose->dest_ndigis == 1) {
  666. rose->dest_digis[0] = addr->srose_digi;
  667. }
  668. }
  669. /* Move to connecting socket, start sending Connect Requests */
  670. sock->state = SS_CONNECTING;
  671. sk->sk_state = TCP_SYN_SENT;
  672. rose->state = ROSE_STATE_1;
  673. rose->neighbour->use++;
  674. rose_write_internal(sk, ROSE_CALL_REQUEST);
  675. rose_start_heartbeat(sk);
  676. rose_start_t1timer(sk);
  677. /* Now the loop */
  678. if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK)) {
  679. err = -EINPROGRESS;
  680. goto out_release;
  681. }
  682. /*
  683. * A Connect Ack with Choke or timeout or failed routing will go to
  684. * closed.
  685. */
  686. if (sk->sk_state == TCP_SYN_SENT) {
  687. DEFINE_WAIT(wait);
  688. for (;;) {
  689. prepare_to_wait(sk_sleep(sk), &wait,
  690. TASK_INTERRUPTIBLE);
  691. if (sk->sk_state != TCP_SYN_SENT)
  692. break;
  693. if (!signal_pending(current)) {
  694. release_sock(sk);
  695. schedule();
  696. lock_sock(sk);
  697. continue;
  698. }
  699. err = -ERESTARTSYS;
  700. break;
  701. }
  702. finish_wait(sk_sleep(sk), &wait);
  703. if (err)
  704. goto out_release;
  705. }
  706. if (sk->sk_state != TCP_ESTABLISHED) {
  707. sock->state = SS_UNCONNECTED;
  708. err = sock_error(sk); /* Always set at this point */
  709. goto out_release;
  710. }
  711. sock->state = SS_CONNECTED;
  712. out_release:
  713. release_sock(sk);
  714. return err;
  715. }
  716. static int rose_accept(struct socket *sock, struct socket *newsock, int flags)
  717. {
  718. struct sk_buff *skb;
  719. struct sock *newsk;
  720. DEFINE_WAIT(wait);
  721. struct sock *sk;
  722. int err = 0;
  723. if ((sk = sock->sk) == NULL)
  724. return -EINVAL;
  725. lock_sock(sk);
  726. if (sk->sk_type != SOCK_SEQPACKET) {
  727. err = -EOPNOTSUPP;
  728. goto out_release;
  729. }
  730. if (sk->sk_state != TCP_LISTEN) {
  731. err = -EINVAL;
  732. goto out_release;
  733. }
  734. /*
  735. * The write queue this time is holding sockets ready to use
  736. * hooked into the SABM we saved
  737. */
  738. for (;;) {
  739. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  740. skb = skb_dequeue(&sk->sk_receive_queue);
  741. if (skb)
  742. break;
  743. if (flags & O_NONBLOCK) {
  744. err = -EWOULDBLOCK;
  745. break;
  746. }
  747. if (!signal_pending(current)) {
  748. release_sock(sk);
  749. schedule();
  750. lock_sock(sk);
  751. continue;
  752. }
  753. err = -ERESTARTSYS;
  754. break;
  755. }
  756. finish_wait(sk_sleep(sk), &wait);
  757. if (err)
  758. goto out_release;
  759. newsk = skb->sk;
  760. sock_graft(newsk, newsock);
  761. /* Now attach up the new socket */
  762. skb->sk = NULL;
  763. kfree_skb(skb);
  764. sk->sk_ack_backlog--;
  765. out_release:
  766. release_sock(sk);
  767. return err;
  768. }
  769. static int rose_getname(struct socket *sock, struct sockaddr *uaddr,
  770. int *uaddr_len, int peer)
  771. {
  772. struct full_sockaddr_rose *srose = (struct full_sockaddr_rose *)uaddr;
  773. struct sock *sk = sock->sk;
  774. struct rose_sock *rose = rose_sk(sk);
  775. int n;
  776. memset(srose, 0, sizeof(*srose));
  777. if (peer != 0) {
  778. if (sk->sk_state != TCP_ESTABLISHED)
  779. return -ENOTCONN;
  780. srose->srose_family = AF_ROSE;
  781. srose->srose_addr = rose->dest_addr;
  782. srose->srose_call = rose->dest_call;
  783. srose->srose_ndigis = rose->dest_ndigis;
  784. for (n = 0; n < rose->dest_ndigis; n++)
  785. srose->srose_digis[n] = rose->dest_digis[n];
  786. } else {
  787. srose->srose_family = AF_ROSE;
  788. srose->srose_addr = rose->source_addr;
  789. srose->srose_call = rose->source_call;
  790. srose->srose_ndigis = rose->source_ndigis;
  791. for (n = 0; n < rose->source_ndigis; n++)
  792. srose->srose_digis[n] = rose->source_digis[n];
  793. }
  794. *uaddr_len = sizeof(struct full_sockaddr_rose);
  795. return 0;
  796. }
  797. int rose_rx_call_request(struct sk_buff *skb, struct net_device *dev, struct rose_neigh *neigh, unsigned int lci)
  798. {
  799. struct sock *sk;
  800. struct sock *make;
  801. struct rose_sock *make_rose;
  802. struct rose_facilities_struct facilities;
  803. int n;
  804. skb->sk = NULL; /* Initially we don't know who it's for */
  805. /*
  806. * skb->data points to the rose frame start
  807. */
  808. memset(&facilities, 0x00, sizeof(struct rose_facilities_struct));
  809. if (!rose_parse_facilities(skb->data + ROSE_CALL_REQ_FACILITIES_OFF,
  810. skb->len - ROSE_CALL_REQ_FACILITIES_OFF,
  811. &facilities)) {
  812. rose_transmit_clear_request(neigh, lci, ROSE_INVALID_FACILITY, 76);
  813. return 0;
  814. }
  815. sk = rose_find_listener(&facilities.source_addr, &facilities.source_call);
  816. /*
  817. * We can't accept the Call Request.
  818. */
  819. if (sk == NULL || sk_acceptq_is_full(sk) ||
  820. (make = rose_make_new(sk)) == NULL) {
  821. rose_transmit_clear_request(neigh, lci, ROSE_NETWORK_CONGESTION, 120);
  822. return 0;
  823. }
  824. skb->sk = make;
  825. make->sk_state = TCP_ESTABLISHED;
  826. make_rose = rose_sk(make);
  827. make_rose->lci = lci;
  828. make_rose->dest_addr = facilities.dest_addr;
  829. make_rose->dest_call = facilities.dest_call;
  830. make_rose->dest_ndigis = facilities.dest_ndigis;
  831. for (n = 0 ; n < facilities.dest_ndigis ; n++)
  832. make_rose->dest_digis[n] = facilities.dest_digis[n];
  833. make_rose->source_addr = facilities.source_addr;
  834. make_rose->source_call = facilities.source_call;
  835. make_rose->source_ndigis = facilities.source_ndigis;
  836. for (n = 0 ; n < facilities.source_ndigis ; n++)
  837. make_rose->source_digis[n]= facilities.source_digis[n];
  838. make_rose->neighbour = neigh;
  839. make_rose->device = dev;
  840. make_rose->facilities = facilities;
  841. make_rose->neighbour->use++;
  842. if (rose_sk(sk)->defer) {
  843. make_rose->state = ROSE_STATE_5;
  844. } else {
  845. rose_write_internal(make, ROSE_CALL_ACCEPTED);
  846. make_rose->state = ROSE_STATE_3;
  847. rose_start_idletimer(make);
  848. }
  849. make_rose->condition = 0x00;
  850. make_rose->vs = 0;
  851. make_rose->va = 0;
  852. make_rose->vr = 0;
  853. make_rose->vl = 0;
  854. sk->sk_ack_backlog++;
  855. rose_insert_socket(make);
  856. skb_queue_head(&sk->sk_receive_queue, skb);
  857. rose_start_heartbeat(make);
  858. if (!sock_flag(sk, SOCK_DEAD))
  859. sk->sk_data_ready(sk, skb->len);
  860. return 1;
  861. }
  862. static int rose_sendmsg(struct kiocb *iocb, struct socket *sock,
  863. struct msghdr *msg, size_t len)
  864. {
  865. struct sock *sk = sock->sk;
  866. struct rose_sock *rose = rose_sk(sk);
  867. struct sockaddr_rose *usrose = (struct sockaddr_rose *)msg->msg_name;
  868. int err;
  869. struct full_sockaddr_rose srose;
  870. struct sk_buff *skb;
  871. unsigned char *asmptr;
  872. int n, size, qbit = 0;
  873. if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_EOR|MSG_CMSG_COMPAT))
  874. return -EINVAL;
  875. if (sock_flag(sk, SOCK_ZAPPED))
  876. return -EADDRNOTAVAIL;
  877. if (sk->sk_shutdown & SEND_SHUTDOWN) {
  878. send_sig(SIGPIPE, current, 0);
  879. return -EPIPE;
  880. }
  881. if (rose->neighbour == NULL || rose->device == NULL)
  882. return -ENETUNREACH;
  883. if (usrose != NULL) {
  884. if (msg->msg_namelen != sizeof(struct sockaddr_rose) && msg->msg_namelen != sizeof(struct full_sockaddr_rose))
  885. return -EINVAL;
  886. memset(&srose, 0, sizeof(struct full_sockaddr_rose));
  887. memcpy(&srose, usrose, msg->msg_namelen);
  888. if (rosecmp(&rose->dest_addr, &srose.srose_addr) != 0 ||
  889. ax25cmp(&rose->dest_call, &srose.srose_call) != 0)
  890. return -EISCONN;
  891. if (srose.srose_ndigis != rose->dest_ndigis)
  892. return -EISCONN;
  893. if (srose.srose_ndigis == rose->dest_ndigis) {
  894. for (n = 0 ; n < srose.srose_ndigis ; n++)
  895. if (ax25cmp(&rose->dest_digis[n],
  896. &srose.srose_digis[n]))
  897. return -EISCONN;
  898. }
  899. if (srose.srose_family != AF_ROSE)
  900. return -EINVAL;
  901. } else {
  902. if (sk->sk_state != TCP_ESTABLISHED)
  903. return -ENOTCONN;
  904. srose.srose_family = AF_ROSE;
  905. srose.srose_addr = rose->dest_addr;
  906. srose.srose_call = rose->dest_call;
  907. srose.srose_ndigis = rose->dest_ndigis;
  908. for (n = 0 ; n < rose->dest_ndigis ; n++)
  909. srose.srose_digis[n] = rose->dest_digis[n];
  910. }
  911. /* Build a packet */
  912. /* Sanity check the packet size */
  913. if (len > 65535)
  914. return -EMSGSIZE;
  915. size = len + AX25_BPQ_HEADER_LEN + AX25_MAX_HEADER_LEN + ROSE_MIN_LEN;
  916. if ((skb = sock_alloc_send_skb(sk, size, msg->msg_flags & MSG_DONTWAIT, &err)) == NULL)
  917. return err;
  918. skb_reserve(skb, AX25_BPQ_HEADER_LEN + AX25_MAX_HEADER_LEN + ROSE_MIN_LEN);
  919. /*
  920. * Put the data on the end
  921. */
  922. skb_reset_transport_header(skb);
  923. skb_put(skb, len);
  924. err = memcpy_fromiovec(skb_transport_header(skb), msg->msg_iov, len);
  925. if (err) {
  926. kfree_skb(skb);
  927. return err;
  928. }
  929. /*
  930. * If the Q BIT Include socket option is in force, the first
  931. * byte of the user data is the logical value of the Q Bit.
  932. */
  933. if (rose->qbitincl) {
  934. qbit = skb->data[0];
  935. skb_pull(skb, 1);
  936. }
  937. /*
  938. * Push down the ROSE header
  939. */
  940. asmptr = skb_push(skb, ROSE_MIN_LEN);
  941. /* Build a ROSE Network header */
  942. asmptr[0] = ((rose->lci >> 8) & 0x0F) | ROSE_GFI;
  943. asmptr[1] = (rose->lci >> 0) & 0xFF;
  944. asmptr[2] = ROSE_DATA;
  945. if (qbit)
  946. asmptr[0] |= ROSE_Q_BIT;
  947. if (sk->sk_state != TCP_ESTABLISHED) {
  948. kfree_skb(skb);
  949. return -ENOTCONN;
  950. }
  951. #ifdef M_BIT
  952. #define ROSE_PACLEN (256-ROSE_MIN_LEN)
  953. if (skb->len - ROSE_MIN_LEN > ROSE_PACLEN) {
  954. unsigned char header[ROSE_MIN_LEN];
  955. struct sk_buff *skbn;
  956. int frontlen;
  957. int lg;
  958. /* Save a copy of the Header */
  959. skb_copy_from_linear_data(skb, header, ROSE_MIN_LEN);
  960. skb_pull(skb, ROSE_MIN_LEN);
  961. frontlen = skb_headroom(skb);
  962. while (skb->len > 0) {
  963. if ((skbn = sock_alloc_send_skb(sk, frontlen + ROSE_PACLEN, 0, &err)) == NULL) {
  964. kfree_skb(skb);
  965. return err;
  966. }
  967. skbn->sk = sk;
  968. skbn->free = 1;
  969. skbn->arp = 1;
  970. skb_reserve(skbn, frontlen);
  971. lg = (ROSE_PACLEN > skb->len) ? skb->len : ROSE_PACLEN;
  972. /* Copy the user data */
  973. skb_copy_from_linear_data(skb, skb_put(skbn, lg), lg);
  974. skb_pull(skb, lg);
  975. /* Duplicate the Header */
  976. skb_push(skbn, ROSE_MIN_LEN);
  977. skb_copy_to_linear_data(skbn, header, ROSE_MIN_LEN);
  978. if (skb->len > 0)
  979. skbn->data[2] |= M_BIT;
  980. skb_queue_tail(&sk->sk_write_queue, skbn); /* Throw it on the queue */
  981. }
  982. skb->free = 1;
  983. kfree_skb(skb);
  984. } else {
  985. skb_queue_tail(&sk->sk_write_queue, skb); /* Throw it on the queue */
  986. }
  987. #else
  988. skb_queue_tail(&sk->sk_write_queue, skb); /* Shove it onto the queue */
  989. #endif
  990. rose_kick(sk);
  991. return len;
  992. }
  993. static int rose_recvmsg(struct kiocb *iocb, struct socket *sock,
  994. struct msghdr *msg, size_t size, int flags)
  995. {
  996. struct sock *sk = sock->sk;
  997. struct rose_sock *rose = rose_sk(sk);
  998. struct sockaddr_rose *srose = (struct sockaddr_rose *)msg->msg_name;
  999. size_t copied;
  1000. unsigned char *asmptr;
  1001. struct sk_buff *skb;
  1002. int n, er, qbit;
  1003. /*
  1004. * This works for seqpacket too. The receiver has ordered the queue for
  1005. * us! We do one quick check first though
  1006. */
  1007. if (sk->sk_state != TCP_ESTABLISHED)
  1008. return -ENOTCONN;
  1009. /* Now we can treat all alike */
  1010. if ((skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT, flags & MSG_DONTWAIT, &er)) == NULL)
  1011. return er;
  1012. qbit = (skb->data[0] & ROSE_Q_BIT) == ROSE_Q_BIT;
  1013. skb_pull(skb, ROSE_MIN_LEN);
  1014. if (rose->qbitincl) {
  1015. asmptr = skb_push(skb, 1);
  1016. *asmptr = qbit;
  1017. }
  1018. skb_reset_transport_header(skb);
  1019. copied = skb->len;
  1020. if (copied > size) {
  1021. copied = size;
  1022. msg->msg_flags |= MSG_TRUNC;
  1023. }
  1024. skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
  1025. if (srose != NULL) {
  1026. srose->srose_family = AF_ROSE;
  1027. srose->srose_addr = rose->dest_addr;
  1028. srose->srose_call = rose->dest_call;
  1029. srose->srose_ndigis = rose->dest_ndigis;
  1030. if (msg->msg_namelen >= sizeof(struct full_sockaddr_rose)) {
  1031. struct full_sockaddr_rose *full_srose = (struct full_sockaddr_rose *)msg->msg_name;
  1032. for (n = 0 ; n < rose->dest_ndigis ; n++)
  1033. full_srose->srose_digis[n] = rose->dest_digis[n];
  1034. msg->msg_namelen = sizeof(struct full_sockaddr_rose);
  1035. } else {
  1036. if (rose->dest_ndigis >= 1) {
  1037. srose->srose_ndigis = 1;
  1038. srose->srose_digi = rose->dest_digis[0];
  1039. }
  1040. msg->msg_namelen = sizeof(struct sockaddr_rose);
  1041. }
  1042. }
  1043. skb_free_datagram(sk, skb);
  1044. return copied;
  1045. }
  1046. static int rose_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
  1047. {
  1048. struct sock *sk = sock->sk;
  1049. struct rose_sock *rose = rose_sk(sk);
  1050. void __user *argp = (void __user *)arg;
  1051. switch (cmd) {
  1052. case TIOCOUTQ: {
  1053. long amount;
  1054. amount = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
  1055. if (amount < 0)
  1056. amount = 0;
  1057. return put_user(amount, (unsigned int __user *) argp);
  1058. }
  1059. case TIOCINQ: {
  1060. struct sk_buff *skb;
  1061. long amount = 0L;
  1062. /* These two are safe on a single CPU system as only user tasks fiddle here */
  1063. if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL)
  1064. amount = skb->len;
  1065. return put_user(amount, (unsigned int __user *) argp);
  1066. }
  1067. case SIOCGSTAMP:
  1068. return sock_get_timestamp(sk, (struct timeval __user *) argp);
  1069. case SIOCGSTAMPNS:
  1070. return sock_get_timestampns(sk, (struct timespec __user *) argp);
  1071. case SIOCGIFADDR:
  1072. case SIOCSIFADDR:
  1073. case SIOCGIFDSTADDR:
  1074. case SIOCSIFDSTADDR:
  1075. case SIOCGIFBRDADDR:
  1076. case SIOCSIFBRDADDR:
  1077. case SIOCGIFNETMASK:
  1078. case SIOCSIFNETMASK:
  1079. case SIOCGIFMETRIC:
  1080. case SIOCSIFMETRIC:
  1081. return -EINVAL;
  1082. case SIOCADDRT:
  1083. case SIOCDELRT:
  1084. case SIOCRSCLRRT:
  1085. if (!capable(CAP_NET_ADMIN))
  1086. return -EPERM;
  1087. return rose_rt_ioctl(cmd, argp);
  1088. case SIOCRSGCAUSE: {
  1089. struct rose_cause_struct rose_cause;
  1090. rose_cause.cause = rose->cause;
  1091. rose_cause.diagnostic = rose->diagnostic;
  1092. return copy_to_user(argp, &rose_cause, sizeof(struct rose_cause_struct)) ? -EFAULT : 0;
  1093. }
  1094. case SIOCRSSCAUSE: {
  1095. struct rose_cause_struct rose_cause;
  1096. if (copy_from_user(&rose_cause, argp, sizeof(struct rose_cause_struct)))
  1097. return -EFAULT;
  1098. rose->cause = rose_cause.cause;
  1099. rose->diagnostic = rose_cause.diagnostic;
  1100. return 0;
  1101. }
  1102. case SIOCRSSL2CALL:
  1103. if (!capable(CAP_NET_ADMIN)) return -EPERM;
  1104. if (ax25cmp(&rose_callsign, &null_ax25_address) != 0)
  1105. ax25_listen_release(&rose_callsign, NULL);
  1106. if (copy_from_user(&rose_callsign, argp, sizeof(ax25_address)))
  1107. return -EFAULT;
  1108. if (ax25cmp(&rose_callsign, &null_ax25_address) != 0)
  1109. return ax25_listen_register(&rose_callsign, NULL);
  1110. return 0;
  1111. case SIOCRSGL2CALL:
  1112. return copy_to_user(argp, &rose_callsign, sizeof(ax25_address)) ? -EFAULT : 0;
  1113. case SIOCRSACCEPT:
  1114. if (rose->state == ROSE_STATE_5) {
  1115. rose_write_internal(sk, ROSE_CALL_ACCEPTED);
  1116. rose_start_idletimer(sk);
  1117. rose->condition = 0x00;
  1118. rose->vs = 0;
  1119. rose->va = 0;
  1120. rose->vr = 0;
  1121. rose->vl = 0;
  1122. rose->state = ROSE_STATE_3;
  1123. }
  1124. return 0;
  1125. default:
  1126. return -ENOIOCTLCMD;
  1127. }
  1128. return 0;
  1129. }
  1130. #ifdef CONFIG_PROC_FS
  1131. static void *rose_info_start(struct seq_file *seq, loff_t *pos)
  1132. __acquires(rose_list_lock)
  1133. {
  1134. spin_lock_bh(&rose_list_lock);
  1135. return seq_hlist_start_head(&rose_list, *pos);
  1136. }
  1137. static void *rose_info_next(struct seq_file *seq, void *v, loff_t *pos)
  1138. {
  1139. return seq_hlist_next(v, &rose_list, pos);
  1140. }
  1141. static void rose_info_stop(struct seq_file *seq, void *v)
  1142. __releases(rose_list_lock)
  1143. {
  1144. spin_unlock_bh(&rose_list_lock);
  1145. }
  1146. static int rose_info_show(struct seq_file *seq, void *v)
  1147. {
  1148. char buf[11], rsbuf[11];
  1149. if (v == SEQ_START_TOKEN)
  1150. seq_puts(seq,
  1151. "dest_addr dest_call src_addr src_call dev lci neigh st vs vr va t t1 t2 t3 hb idle Snd-Q Rcv-Q inode\n");
  1152. else {
  1153. struct sock *s = sk_entry(v);
  1154. struct rose_sock *rose = rose_sk(s);
  1155. const char *devname, *callsign;
  1156. const struct net_device *dev = rose->device;
  1157. if (!dev)
  1158. devname = "???";
  1159. else
  1160. devname = dev->name;
  1161. seq_printf(seq, "%-10s %-9s ",
  1162. rose2asc(rsbuf, &rose->dest_addr),
  1163. ax2asc(buf, &rose->dest_call));
  1164. if (ax25cmp(&rose->source_call, &null_ax25_address) == 0)
  1165. callsign = "??????-?";
  1166. else
  1167. callsign = ax2asc(buf, &rose->source_call);
  1168. seq_printf(seq,
  1169. "%-10s %-9s %-5s %3.3X %05d %d %d %d %d %3lu %3lu %3lu %3lu %3lu %3lu/%03lu %5d %5d %ld\n",
  1170. rose2asc(rsbuf, &rose->source_addr),
  1171. callsign,
  1172. devname,
  1173. rose->lci & 0x0FFF,
  1174. (rose->neighbour) ? rose->neighbour->number : 0,
  1175. rose->state,
  1176. rose->vs,
  1177. rose->vr,
  1178. rose->va,
  1179. ax25_display_timer(&rose->timer) / HZ,
  1180. rose->t1 / HZ,
  1181. rose->t2 / HZ,
  1182. rose->t3 / HZ,
  1183. rose->hb / HZ,
  1184. ax25_display_timer(&rose->idletimer) / (60 * HZ),
  1185. rose->idle / (60 * HZ),
  1186. sk_wmem_alloc_get(s),
  1187. sk_rmem_alloc_get(s),
  1188. s->sk_socket ? SOCK_INODE(s->sk_socket)->i_ino : 0L);
  1189. }
  1190. return 0;
  1191. }
  1192. static const struct seq_operations rose_info_seqops = {
  1193. .start = rose_info_start,
  1194. .next = rose_info_next,
  1195. .stop = rose_info_stop,
  1196. .show = rose_info_show,
  1197. };
  1198. static int rose_info_open(struct inode *inode, struct file *file)
  1199. {
  1200. return seq_open(file, &rose_info_seqops);
  1201. }
  1202. static const struct file_operations rose_info_fops = {
  1203. .owner = THIS_MODULE,
  1204. .open = rose_info_open,
  1205. .read = seq_read,
  1206. .llseek = seq_lseek,
  1207. .release = seq_release,
  1208. };
  1209. #endif /* CONFIG_PROC_FS */
  1210. static const struct net_proto_family rose_family_ops = {
  1211. .family = PF_ROSE,
  1212. .create = rose_create,
  1213. .owner = THIS_MODULE,
  1214. };
  1215. static const struct proto_ops rose_proto_ops = {
  1216. .family = PF_ROSE,
  1217. .owner = THIS_MODULE,
  1218. .release = rose_release,
  1219. .bind = rose_bind,
  1220. .connect = rose_connect,
  1221. .socketpair = sock_no_socketpair,
  1222. .accept = rose_accept,
  1223. .getname = rose_getname,
  1224. .poll = datagram_poll,
  1225. .ioctl = rose_ioctl,
  1226. .listen = rose_listen,
  1227. .shutdown = sock_no_shutdown,
  1228. .setsockopt = rose_setsockopt,
  1229. .getsockopt = rose_getsockopt,
  1230. .sendmsg = rose_sendmsg,
  1231. .recvmsg = rose_recvmsg,
  1232. .mmap = sock_no_mmap,
  1233. .sendpage = sock_no_sendpage,
  1234. };
  1235. static struct notifier_block rose_dev_notifier = {
  1236. .notifier_call = rose_device_event,
  1237. };
  1238. static struct net_device **dev_rose;
  1239. static struct ax25_protocol rose_pid = {
  1240. .pid = AX25_P_ROSE,
  1241. .func = rose_route_frame
  1242. };
  1243. static struct ax25_linkfail rose_linkfail_notifier = {
  1244. .func = rose_link_failed
  1245. };
  1246. static int __init rose_proto_init(void)
  1247. {
  1248. int i;
  1249. int rc;
  1250. if (rose_ndevs > 0x7FFFFFFF/sizeof(struct net_device *)) {
  1251. printk(KERN_ERR "ROSE: rose_proto_init - rose_ndevs parameter to large\n");
  1252. rc = -EINVAL;
  1253. goto out;
  1254. }
  1255. rc = proto_register(&rose_proto, 0);
  1256. if (rc != 0)
  1257. goto out;
  1258. rose_callsign = null_ax25_address;
  1259. dev_rose = kzalloc(rose_ndevs * sizeof(struct net_device *), GFP_KERNEL);
  1260. if (dev_rose == NULL) {
  1261. printk(KERN_ERR "ROSE: rose_proto_init - unable to allocate device structure\n");
  1262. rc = -ENOMEM;
  1263. goto out_proto_unregister;
  1264. }
  1265. for (i = 0; i < rose_ndevs; i++) {
  1266. struct net_device *dev;
  1267. char name[IFNAMSIZ];
  1268. sprintf(name, "rose%d", i);
  1269. dev = alloc_netdev(0, name, rose_setup);
  1270. if (!dev) {
  1271. printk(KERN_ERR "ROSE: rose_proto_init - unable to allocate memory\n");
  1272. rc = -ENOMEM;
  1273. goto fail;
  1274. }
  1275. rc = register_netdev(dev);
  1276. if (rc) {
  1277. printk(KERN_ERR "ROSE: netdevice registration failed\n");
  1278. free_netdev(dev);
  1279. goto fail;
  1280. }
  1281. rose_set_lockdep_key(dev);
  1282. dev_rose[i] = dev;
  1283. }
  1284. sock_register(&rose_family_ops);
  1285. register_netdevice_notifier(&rose_dev_notifier);
  1286. ax25_register_pid(&rose_pid);
  1287. ax25_linkfail_register(&rose_linkfail_notifier);
  1288. #ifdef CONFIG_SYSCTL
  1289. rose_register_sysctl();
  1290. #endif
  1291. rose_loopback_init();
  1292. rose_add_loopback_neigh();
  1293. proc_net_fops_create(&init_net, "rose", S_IRUGO, &rose_info_fops);
  1294. proc_net_fops_create(&init_net, "rose_neigh", S_IRUGO, &rose_neigh_fops);
  1295. proc_net_fops_create(&init_net, "rose_nodes", S_IRUGO, &rose_nodes_fops);
  1296. proc_net_fops_create(&init_net, "rose_routes", S_IRUGO, &rose_routes_fops);
  1297. out:
  1298. return rc;
  1299. fail:
  1300. while (--i >= 0) {
  1301. unregister_netdev(dev_rose[i]);
  1302. free_netdev(dev_rose[i]);
  1303. }
  1304. kfree(dev_rose);
  1305. out_proto_unregister:
  1306. proto_unregister(&rose_proto);
  1307. goto out;
  1308. }
  1309. module_init(rose_proto_init);
  1310. module_param(rose_ndevs, int, 0);
  1311. MODULE_PARM_DESC(rose_ndevs, "number of ROSE devices");
  1312. MODULE_AUTHOR("Jonathan Naylor G4KLX <g4klx@g4klx.demon.co.uk>");
  1313. MODULE_DESCRIPTION("The amateur radio ROSE network layer protocol");
  1314. MODULE_LICENSE("GPL");
  1315. MODULE_ALIAS_NETPROTO(PF_ROSE);
  1316. static void __exit rose_exit(void)
  1317. {
  1318. int i;
  1319. proc_net_remove(&init_net, "rose");
  1320. proc_net_remove(&init_net, "rose_neigh");
  1321. proc_net_remove(&init_net, "rose_nodes");
  1322. proc_net_remove(&init_net, "rose_routes");
  1323. rose_loopback_clear();
  1324. rose_rt_free();
  1325. ax25_protocol_release(AX25_P_ROSE);
  1326. ax25_linkfail_release(&rose_linkfail_notifier);
  1327. if (ax25cmp(&rose_callsign, &null_ax25_address) != 0)
  1328. ax25_listen_release(&rose_callsign, NULL);
  1329. #ifdef CONFIG_SYSCTL
  1330. rose_unregister_sysctl();
  1331. #endif
  1332. unregister_netdevice_notifier(&rose_dev_notifier);
  1333. sock_unregister(PF_ROSE);
  1334. for (i = 0; i < rose_ndevs; i++) {
  1335. struct net_device *dev = dev_rose[i];
  1336. if (dev) {
  1337. unregister_netdev(dev);
  1338. free_netdev(dev);
  1339. }
  1340. }
  1341. kfree(dev_rose);
  1342. proto_unregister(&rose_proto);
  1343. }
  1344. module_exit(rose_exit);