PageRenderTime 31ms CodeModel.GetById 19ms RepoModel.GetById 0ms app.codeStats 0ms

/net/sunrpc/svcsock.c

https://github.com/mstsirkin/kvm
C | 1665 lines | 1229 code | 213 blank | 223 comment | 192 complexity | 8a6671f52fad790a5c6e47a878c5d8a6 MD5 | raw file
  1. /*
  2. * linux/net/sunrpc/svcsock.c
  3. *
  4. * These are the RPC server socket internals.
  5. *
  6. * The server scheduling algorithm does not always distribute the load
  7. * evenly when servicing a single client. May need to modify the
  8. * svc_xprt_enqueue procedure...
  9. *
  10. * TCP support is largely untested and may be a little slow. The problem
  11. * is that we currently do two separate recvfrom's, one for the 4-byte
  12. * record length, and the second for the actual record. This could possibly
  13. * be improved by always reading a minimum size of around 100 bytes and
  14. * tucking any superfluous bytes away in a temporary store. Still, that
  15. * leaves write requests out in the rain. An alternative may be to peek at
  16. * the first skb in the queue, and if it matches the next TCP sequence
  17. * number, to extract the record marker. Yuck.
  18. *
  19. * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
  20. */
  21. #include <linux/kernel.h>
  22. #include <linux/sched.h>
  23. #include <linux/errno.h>
  24. #include <linux/fcntl.h>
  25. #include <linux/net.h>
  26. #include <linux/in.h>
  27. #include <linux/inet.h>
  28. #include <linux/udp.h>
  29. #include <linux/tcp.h>
  30. #include <linux/unistd.h>
  31. #include <linux/slab.h>
  32. #include <linux/netdevice.h>
  33. #include <linux/skbuff.h>
  34. #include <linux/file.h>
  35. #include <linux/freezer.h>
  36. #include <net/sock.h>
  37. #include <net/checksum.h>
  38. #include <net/ip.h>
  39. #include <net/ipv6.h>
  40. #include <net/tcp.h>
  41. #include <net/tcp_states.h>
  42. #include <asm/uaccess.h>
  43. #include <asm/ioctls.h>
  44. #include <linux/sunrpc/types.h>
  45. #include <linux/sunrpc/clnt.h>
  46. #include <linux/sunrpc/xdr.h>
  47. #include <linux/sunrpc/msg_prot.h>
  48. #include <linux/sunrpc/svcsock.h>
  49. #include <linux/sunrpc/stats.h>
  50. #include <linux/sunrpc/xprt.h>
  51. #include "sunrpc.h"
  52. #define RPCDBG_FACILITY RPCDBG_SVCXPRT
  53. static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
  54. int *errp, int flags);
  55. static void svc_udp_data_ready(struct sock *, int);
  56. static int svc_udp_recvfrom(struct svc_rqst *);
  57. static int svc_udp_sendto(struct svc_rqst *);
  58. static void svc_sock_detach(struct svc_xprt *);
  59. static void svc_tcp_sock_detach(struct svc_xprt *);
  60. static void svc_sock_free(struct svc_xprt *);
  61. static struct svc_xprt *svc_create_socket(struct svc_serv *, int,
  62. struct net *, struct sockaddr *,
  63. int, int);
  64. #if defined(CONFIG_SUNRPC_BACKCHANNEL)
  65. static struct svc_xprt *svc_bc_create_socket(struct svc_serv *, int,
  66. struct net *, struct sockaddr *,
  67. int, int);
  68. static void svc_bc_sock_free(struct svc_xprt *xprt);
  69. #endif /* CONFIG_SUNRPC_BACKCHANNEL */
  70. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  71. static struct lock_class_key svc_key[2];
  72. static struct lock_class_key svc_slock_key[2];
  73. static void svc_reclassify_socket(struct socket *sock)
  74. {
  75. struct sock *sk = sock->sk;
  76. BUG_ON(sock_owned_by_user(sk));
  77. switch (sk->sk_family) {
  78. case AF_INET:
  79. sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD",
  80. &svc_slock_key[0],
  81. "sk_xprt.xpt_lock-AF_INET-NFSD",
  82. &svc_key[0]);
  83. break;
  84. case AF_INET6:
  85. sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD",
  86. &svc_slock_key[1],
  87. "sk_xprt.xpt_lock-AF_INET6-NFSD",
  88. &svc_key[1]);
  89. break;
  90. default:
  91. BUG();
  92. }
  93. }
  94. #else
  95. static void svc_reclassify_socket(struct socket *sock)
  96. {
  97. }
  98. #endif
  99. /*
  100. * Release an skbuff after use
  101. */
  102. static void svc_release_skb(struct svc_rqst *rqstp)
  103. {
  104. struct sk_buff *skb = rqstp->rq_xprt_ctxt;
  105. if (skb) {
  106. struct svc_sock *svsk =
  107. container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
  108. rqstp->rq_xprt_ctxt = NULL;
  109. dprintk("svc: service %p, releasing skb %p\n", rqstp, skb);
  110. skb_free_datagram_locked(svsk->sk_sk, skb);
  111. }
  112. }
  113. union svc_pktinfo_u {
  114. struct in_pktinfo pkti;
  115. struct in6_pktinfo pkti6;
  116. };
  117. #define SVC_PKTINFO_SPACE \
  118. CMSG_SPACE(sizeof(union svc_pktinfo_u))
  119. static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh)
  120. {
  121. struct svc_sock *svsk =
  122. container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
  123. switch (svsk->sk_sk->sk_family) {
  124. case AF_INET: {
  125. struct in_pktinfo *pki = CMSG_DATA(cmh);
  126. cmh->cmsg_level = SOL_IP;
  127. cmh->cmsg_type = IP_PKTINFO;
  128. pki->ipi_ifindex = 0;
  129. pki->ipi_spec_dst.s_addr = rqstp->rq_daddr.addr.s_addr;
  130. cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
  131. }
  132. break;
  133. case AF_INET6: {
  134. struct in6_pktinfo *pki = CMSG_DATA(cmh);
  135. cmh->cmsg_level = SOL_IPV6;
  136. cmh->cmsg_type = IPV6_PKTINFO;
  137. pki->ipi6_ifindex = 0;
  138. ipv6_addr_copy(&pki->ipi6_addr,
  139. &rqstp->rq_daddr.addr6);
  140. cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
  141. }
  142. break;
  143. }
  144. }
  145. /*
  146. * send routine intended to be shared by the fore- and back-channel
  147. */
  148. int svc_send_common(struct socket *sock, struct xdr_buf *xdr,
  149. struct page *headpage, unsigned long headoffset,
  150. struct page *tailpage, unsigned long tailoffset)
  151. {
  152. int result;
  153. int size;
  154. struct page **ppage = xdr->pages;
  155. size_t base = xdr->page_base;
  156. unsigned int pglen = xdr->page_len;
  157. unsigned int flags = MSG_MORE;
  158. int slen;
  159. int len = 0;
  160. slen = xdr->len;
  161. /* send head */
  162. if (slen == xdr->head[0].iov_len)
  163. flags = 0;
  164. len = kernel_sendpage(sock, headpage, headoffset,
  165. xdr->head[0].iov_len, flags);
  166. if (len != xdr->head[0].iov_len)
  167. goto out;
  168. slen -= xdr->head[0].iov_len;
  169. if (slen == 0)
  170. goto out;
  171. /* send page data */
  172. size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen;
  173. while (pglen > 0) {
  174. if (slen == size)
  175. flags = 0;
  176. result = kernel_sendpage(sock, *ppage, base, size, flags);
  177. if (result > 0)
  178. len += result;
  179. if (result != size)
  180. goto out;
  181. slen -= size;
  182. pglen -= size;
  183. size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen;
  184. base = 0;
  185. ppage++;
  186. }
  187. /* send tail */
  188. if (xdr->tail[0].iov_len) {
  189. result = kernel_sendpage(sock, tailpage, tailoffset,
  190. xdr->tail[0].iov_len, 0);
  191. if (result > 0)
  192. len += result;
  193. }
  194. out:
  195. return len;
  196. }
  197. /*
  198. * Generic sendto routine
  199. */
  200. static int svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr)
  201. {
  202. struct svc_sock *svsk =
  203. container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
  204. struct socket *sock = svsk->sk_sock;
  205. union {
  206. struct cmsghdr hdr;
  207. long all[SVC_PKTINFO_SPACE / sizeof(long)];
  208. } buffer;
  209. struct cmsghdr *cmh = &buffer.hdr;
  210. int len = 0;
  211. unsigned long tailoff;
  212. unsigned long headoff;
  213. RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]);
  214. if (rqstp->rq_prot == IPPROTO_UDP) {
  215. struct msghdr msg = {
  216. .msg_name = &rqstp->rq_addr,
  217. .msg_namelen = rqstp->rq_addrlen,
  218. .msg_control = cmh,
  219. .msg_controllen = sizeof(buffer),
  220. .msg_flags = MSG_MORE,
  221. };
  222. svc_set_cmsg_data(rqstp, cmh);
  223. if (sock_sendmsg(sock, &msg, 0) < 0)
  224. goto out;
  225. }
  226. tailoff = ((unsigned long)xdr->tail[0].iov_base) & (PAGE_SIZE-1);
  227. headoff = 0;
  228. len = svc_send_common(sock, xdr, rqstp->rq_respages[0], headoff,
  229. rqstp->rq_respages[0], tailoff);
  230. out:
  231. dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %s)\n",
  232. svsk, xdr->head[0].iov_base, xdr->head[0].iov_len,
  233. xdr->len, len, svc_print_addr(rqstp, buf, sizeof(buf)));
  234. return len;
  235. }
  236. /*
  237. * Report socket names for nfsdfs
  238. */
  239. static int svc_one_sock_name(struct svc_sock *svsk, char *buf, int remaining)
  240. {
  241. const struct sock *sk = svsk->sk_sk;
  242. const char *proto_name = sk->sk_protocol == IPPROTO_UDP ?
  243. "udp" : "tcp";
  244. int len;
  245. switch (sk->sk_family) {
  246. case PF_INET:
  247. len = snprintf(buf, remaining, "ipv4 %s %pI4 %d\n",
  248. proto_name,
  249. &inet_sk(sk)->inet_rcv_saddr,
  250. inet_sk(sk)->inet_num);
  251. break;
  252. case PF_INET6:
  253. len = snprintf(buf, remaining, "ipv6 %s %pI6 %d\n",
  254. proto_name,
  255. &inet6_sk(sk)->rcv_saddr,
  256. inet_sk(sk)->inet_num);
  257. break;
  258. default:
  259. len = snprintf(buf, remaining, "*unknown-%d*\n",
  260. sk->sk_family);
  261. }
  262. if (len >= remaining) {
  263. *buf = '\0';
  264. return -ENAMETOOLONG;
  265. }
  266. return len;
  267. }
  268. /**
  269. * svc_sock_names - construct a list of listener names in a string
  270. * @serv: pointer to RPC service
  271. * @buf: pointer to a buffer to fill in with socket names
  272. * @buflen: size of the buffer to be filled
  273. * @toclose: pointer to '\0'-terminated C string containing the name
  274. * of a listener to be closed
  275. *
  276. * Fills in @buf with a '\n'-separated list of names of listener
  277. * sockets. If @toclose is not NULL, the socket named by @toclose
  278. * is closed, and is not included in the output list.
  279. *
  280. * Returns positive length of the socket name string, or a negative
  281. * errno value on error.
  282. */
  283. int svc_sock_names(struct svc_serv *serv, char *buf, const size_t buflen,
  284. const char *toclose)
  285. {
  286. struct svc_sock *svsk, *closesk = NULL;
  287. int len = 0;
  288. if (!serv)
  289. return 0;
  290. spin_lock_bh(&serv->sv_lock);
  291. list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list) {
  292. int onelen = svc_one_sock_name(svsk, buf + len, buflen - len);
  293. if (onelen < 0) {
  294. len = onelen;
  295. break;
  296. }
  297. if (toclose && strcmp(toclose, buf + len) == 0) {
  298. closesk = svsk;
  299. svc_xprt_get(&closesk->sk_xprt);
  300. } else
  301. len += onelen;
  302. }
  303. spin_unlock_bh(&serv->sv_lock);
  304. if (closesk) {
  305. /* Should unregister with portmap, but you cannot
  306. * unregister just one protocol...
  307. */
  308. svc_close_xprt(&closesk->sk_xprt);
  309. svc_xprt_put(&closesk->sk_xprt);
  310. } else if (toclose)
  311. return -ENOENT;
  312. return len;
  313. }
  314. EXPORT_SYMBOL_GPL(svc_sock_names);
  315. /*
  316. * Check input queue length
  317. */
  318. static int svc_recv_available(struct svc_sock *svsk)
  319. {
  320. struct socket *sock = svsk->sk_sock;
  321. int avail, err;
  322. err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail);
  323. return (err >= 0)? avail : err;
  324. }
  325. /*
  326. * Generic recvfrom routine.
  327. */
  328. static int svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr,
  329. int buflen)
  330. {
  331. struct svc_sock *svsk =
  332. container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
  333. struct msghdr msg = {
  334. .msg_flags = MSG_DONTWAIT,
  335. };
  336. int len;
  337. rqstp->rq_xprt_hlen = 0;
  338. len = kernel_recvmsg(svsk->sk_sock, &msg, iov, nr, buflen,
  339. msg.msg_flags);
  340. dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
  341. svsk, iov[0].iov_base, iov[0].iov_len, len);
  342. return len;
  343. }
  344. static int svc_partial_recvfrom(struct svc_rqst *rqstp,
  345. struct kvec *iov, int nr,
  346. int buflen, unsigned int base)
  347. {
  348. size_t save_iovlen;
  349. void __user *save_iovbase;
  350. unsigned int i;
  351. int ret;
  352. if (base == 0)
  353. return svc_recvfrom(rqstp, iov, nr, buflen);
  354. for (i = 0; i < nr; i++) {
  355. if (iov[i].iov_len > base)
  356. break;
  357. base -= iov[i].iov_len;
  358. }
  359. save_iovlen = iov[i].iov_len;
  360. save_iovbase = iov[i].iov_base;
  361. iov[i].iov_len -= base;
  362. iov[i].iov_base += base;
  363. ret = svc_recvfrom(rqstp, &iov[i], nr - i, buflen);
  364. iov[i].iov_len = save_iovlen;
  365. iov[i].iov_base = save_iovbase;
  366. return ret;
  367. }
  368. /*
  369. * Set socket snd and rcv buffer lengths
  370. */
  371. static void svc_sock_setbufsize(struct socket *sock, unsigned int snd,
  372. unsigned int rcv)
  373. {
  374. #if 0
  375. mm_segment_t oldfs;
  376. oldfs = get_fs(); set_fs(KERNEL_DS);
  377. sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF,
  378. (char*)&snd, sizeof(snd));
  379. sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
  380. (char*)&rcv, sizeof(rcv));
  381. #else
  382. /* sock_setsockopt limits use to sysctl_?mem_max,
  383. * which isn't acceptable. Until that is made conditional
  384. * on not having CAP_SYS_RESOURCE or similar, we go direct...
  385. * DaveM said I could!
  386. */
  387. lock_sock(sock->sk);
  388. sock->sk->sk_sndbuf = snd * 2;
  389. sock->sk->sk_rcvbuf = rcv * 2;
  390. sock->sk->sk_write_space(sock->sk);
  391. release_sock(sock->sk);
  392. #endif
  393. }
  394. /*
  395. * INET callback when data has been received on the socket.
  396. */
  397. static void svc_udp_data_ready(struct sock *sk, int count)
  398. {
  399. struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
  400. wait_queue_head_t *wq = sk_sleep(sk);
  401. if (svsk) {
  402. dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
  403. svsk, sk, count,
  404. test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags));
  405. set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
  406. svc_xprt_enqueue(&svsk->sk_xprt);
  407. }
  408. if (wq && waitqueue_active(wq))
  409. wake_up_interruptible(wq);
  410. }
  411. /*
  412. * INET callback when space is newly available on the socket.
  413. */
  414. static void svc_write_space(struct sock *sk)
  415. {
  416. struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data);
  417. wait_queue_head_t *wq = sk_sleep(sk);
  418. if (svsk) {
  419. dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
  420. svsk, sk, test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags));
  421. svc_xprt_enqueue(&svsk->sk_xprt);
  422. }
  423. if (wq && waitqueue_active(wq)) {
  424. dprintk("RPC svc_write_space: someone sleeping on %p\n",
  425. svsk);
  426. wake_up_interruptible(wq);
  427. }
  428. }
  429. static void svc_tcp_write_space(struct sock *sk)
  430. {
  431. struct socket *sock = sk->sk_socket;
  432. if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && sock)
  433. clear_bit(SOCK_NOSPACE, &sock->flags);
  434. svc_write_space(sk);
  435. }
  436. /*
  437. * See net/ipv6/ip_sockglue.c : ip_cmsg_recv_pktinfo
  438. */
  439. static int svc_udp_get_dest_address4(struct svc_rqst *rqstp,
  440. struct cmsghdr *cmh)
  441. {
  442. struct in_pktinfo *pki = CMSG_DATA(cmh);
  443. if (cmh->cmsg_type != IP_PKTINFO)
  444. return 0;
  445. rqstp->rq_daddr.addr.s_addr = pki->ipi_spec_dst.s_addr;
  446. return 1;
  447. }
  448. /*
  449. * See net/ipv6/datagram.c : datagram_recv_ctl
  450. */
  451. static int svc_udp_get_dest_address6(struct svc_rqst *rqstp,
  452. struct cmsghdr *cmh)
  453. {
  454. struct in6_pktinfo *pki = CMSG_DATA(cmh);
  455. if (cmh->cmsg_type != IPV6_PKTINFO)
  456. return 0;
  457. ipv6_addr_copy(&rqstp->rq_daddr.addr6, &pki->ipi6_addr);
  458. return 1;
  459. }
  460. /*
  461. * Copy the UDP datagram's destination address to the rqstp structure.
  462. * The 'destination' address in this case is the address to which the
  463. * peer sent the datagram, i.e. our local address. For multihomed
  464. * hosts, this can change from msg to msg. Note that only the IP
  465. * address changes, the port number should remain the same.
  466. */
  467. static int svc_udp_get_dest_address(struct svc_rqst *rqstp,
  468. struct cmsghdr *cmh)
  469. {
  470. switch (cmh->cmsg_level) {
  471. case SOL_IP:
  472. return svc_udp_get_dest_address4(rqstp, cmh);
  473. case SOL_IPV6:
  474. return svc_udp_get_dest_address6(rqstp, cmh);
  475. }
  476. return 0;
  477. }
  478. /*
  479. * Receive a datagram from a UDP socket.
  480. */
  481. static int svc_udp_recvfrom(struct svc_rqst *rqstp)
  482. {
  483. struct svc_sock *svsk =
  484. container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
  485. struct svc_serv *serv = svsk->sk_xprt.xpt_server;
  486. struct sk_buff *skb;
  487. union {
  488. struct cmsghdr hdr;
  489. long all[SVC_PKTINFO_SPACE / sizeof(long)];
  490. } buffer;
  491. struct cmsghdr *cmh = &buffer.hdr;
  492. struct msghdr msg = {
  493. .msg_name = svc_addr(rqstp),
  494. .msg_control = cmh,
  495. .msg_controllen = sizeof(buffer),
  496. .msg_flags = MSG_DONTWAIT,
  497. };
  498. size_t len;
  499. int err;
  500. if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags))
  501. /* udp sockets need large rcvbuf as all pending
  502. * requests are still in that buffer. sndbuf must
  503. * also be large enough that there is enough space
  504. * for one reply per thread. We count all threads
  505. * rather than threads in a particular pool, which
  506. * provides an upper bound on the number of threads
  507. * which will access the socket.
  508. */
  509. svc_sock_setbufsize(svsk->sk_sock,
  510. (serv->sv_nrthreads+3) * serv->sv_max_mesg,
  511. (serv->sv_nrthreads+3) * serv->sv_max_mesg);
  512. clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
  513. skb = NULL;
  514. err = kernel_recvmsg(svsk->sk_sock, &msg, NULL,
  515. 0, 0, MSG_PEEK | MSG_DONTWAIT);
  516. if (err >= 0)
  517. skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err);
  518. if (skb == NULL) {
  519. if (err != -EAGAIN) {
  520. /* possibly an icmp error */
  521. dprintk("svc: recvfrom returned error %d\n", -err);
  522. set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
  523. }
  524. return -EAGAIN;
  525. }
  526. len = svc_addr_len(svc_addr(rqstp));
  527. if (len == 0)
  528. return -EAFNOSUPPORT;
  529. rqstp->rq_addrlen = len;
  530. if (skb->tstamp.tv64 == 0) {
  531. skb->tstamp = ktime_get_real();
  532. /* Don't enable netstamp, sunrpc doesn't
  533. need that much accuracy */
  534. }
  535. svsk->sk_sk->sk_stamp = skb->tstamp;
  536. set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* there may be more data... */
  537. len = skb->len - sizeof(struct udphdr);
  538. rqstp->rq_arg.len = len;
  539. rqstp->rq_prot = IPPROTO_UDP;
  540. if (!svc_udp_get_dest_address(rqstp, cmh)) {
  541. if (net_ratelimit())
  542. printk(KERN_WARNING
  543. "svc: received unknown control message %d/%d; "
  544. "dropping RPC reply datagram\n",
  545. cmh->cmsg_level, cmh->cmsg_type);
  546. skb_free_datagram_locked(svsk->sk_sk, skb);
  547. return 0;
  548. }
  549. if (skb_is_nonlinear(skb)) {
  550. /* we have to copy */
  551. local_bh_disable();
  552. if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) {
  553. local_bh_enable();
  554. /* checksum error */
  555. skb_free_datagram_locked(svsk->sk_sk, skb);
  556. return 0;
  557. }
  558. local_bh_enable();
  559. skb_free_datagram_locked(svsk->sk_sk, skb);
  560. } else {
  561. /* we can use it in-place */
  562. rqstp->rq_arg.head[0].iov_base = skb->data +
  563. sizeof(struct udphdr);
  564. rqstp->rq_arg.head[0].iov_len = len;
  565. if (skb_checksum_complete(skb)) {
  566. skb_free_datagram_locked(svsk->sk_sk, skb);
  567. return 0;
  568. }
  569. rqstp->rq_xprt_ctxt = skb;
  570. }
  571. rqstp->rq_arg.page_base = 0;
  572. if (len <= rqstp->rq_arg.head[0].iov_len) {
  573. rqstp->rq_arg.head[0].iov_len = len;
  574. rqstp->rq_arg.page_len = 0;
  575. rqstp->rq_respages = rqstp->rq_pages+1;
  576. } else {
  577. rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
  578. rqstp->rq_respages = rqstp->rq_pages + 1 +
  579. DIV_ROUND_UP(rqstp->rq_arg.page_len, PAGE_SIZE);
  580. }
  581. if (serv->sv_stats)
  582. serv->sv_stats->netudpcnt++;
  583. return len;
  584. }
  585. static int
  586. svc_udp_sendto(struct svc_rqst *rqstp)
  587. {
  588. int error;
  589. error = svc_sendto(rqstp, &rqstp->rq_res);
  590. if (error == -ECONNREFUSED)
  591. /* ICMP error on earlier request. */
  592. error = svc_sendto(rqstp, &rqstp->rq_res);
  593. return error;
  594. }
  595. static void svc_udp_prep_reply_hdr(struct svc_rqst *rqstp)
  596. {
  597. }
  598. static int svc_udp_has_wspace(struct svc_xprt *xprt)
  599. {
  600. struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
  601. struct svc_serv *serv = xprt->xpt_server;
  602. unsigned long required;
  603. /*
  604. * Set the SOCK_NOSPACE flag before checking the available
  605. * sock space.
  606. */
  607. set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
  608. required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg;
  609. if (required*2 > sock_wspace(svsk->sk_sk))
  610. return 0;
  611. clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
  612. return 1;
  613. }
  614. static struct svc_xprt *svc_udp_accept(struct svc_xprt *xprt)
  615. {
  616. BUG();
  617. return NULL;
  618. }
  619. static struct svc_xprt *svc_udp_create(struct svc_serv *serv,
  620. struct net *net,
  621. struct sockaddr *sa, int salen,
  622. int flags)
  623. {
  624. return svc_create_socket(serv, IPPROTO_UDP, net, sa, salen, flags);
  625. }
  626. static struct svc_xprt_ops svc_udp_ops = {
  627. .xpo_create = svc_udp_create,
  628. .xpo_recvfrom = svc_udp_recvfrom,
  629. .xpo_sendto = svc_udp_sendto,
  630. .xpo_release_rqst = svc_release_skb,
  631. .xpo_detach = svc_sock_detach,
  632. .xpo_free = svc_sock_free,
  633. .xpo_prep_reply_hdr = svc_udp_prep_reply_hdr,
  634. .xpo_has_wspace = svc_udp_has_wspace,
  635. .xpo_accept = svc_udp_accept,
  636. };
  637. static struct svc_xprt_class svc_udp_class = {
  638. .xcl_name = "udp",
  639. .xcl_owner = THIS_MODULE,
  640. .xcl_ops = &svc_udp_ops,
  641. .xcl_max_payload = RPCSVC_MAXPAYLOAD_UDP,
  642. };
  643. static void svc_udp_init(struct svc_sock *svsk, struct svc_serv *serv)
  644. {
  645. int err, level, optname, one = 1;
  646. svc_xprt_init(&svc_udp_class, &svsk->sk_xprt, serv);
  647. clear_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
  648. svsk->sk_sk->sk_data_ready = svc_udp_data_ready;
  649. svsk->sk_sk->sk_write_space = svc_write_space;
  650. /* initialise setting must have enough space to
  651. * receive and respond to one request.
  652. * svc_udp_recvfrom will re-adjust if necessary
  653. */
  654. svc_sock_setbufsize(svsk->sk_sock,
  655. 3 * svsk->sk_xprt.xpt_server->sv_max_mesg,
  656. 3 * svsk->sk_xprt.xpt_server->sv_max_mesg);
  657. /* data might have come in before data_ready set up */
  658. set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
  659. set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
  660. /* make sure we get destination address info */
  661. switch (svsk->sk_sk->sk_family) {
  662. case AF_INET:
  663. level = SOL_IP;
  664. optname = IP_PKTINFO;
  665. break;
  666. case AF_INET6:
  667. level = SOL_IPV6;
  668. optname = IPV6_RECVPKTINFO;
  669. break;
  670. default:
  671. BUG();
  672. }
  673. err = kernel_setsockopt(svsk->sk_sock, level, optname,
  674. (char *)&one, sizeof(one));
  675. dprintk("svc: kernel_setsockopt returned %d\n", err);
  676. }
  677. /*
  678. * A data_ready event on a listening socket means there's a connection
  679. * pending. Do not use state_change as a substitute for it.
  680. */
  681. static void svc_tcp_listen_data_ready(struct sock *sk, int count_unused)
  682. {
  683. struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
  684. wait_queue_head_t *wq;
  685. dprintk("svc: socket %p TCP (listen) state change %d\n",
  686. sk, sk->sk_state);
  687. /*
  688. * This callback may called twice when a new connection
  689. * is established as a child socket inherits everything
  690. * from a parent LISTEN socket.
  691. * 1) data_ready method of the parent socket will be called
  692. * when one of child sockets become ESTABLISHED.
  693. * 2) data_ready method of the child socket may be called
  694. * when it receives data before the socket is accepted.
  695. * In case of 2, we should ignore it silently.
  696. */
  697. if (sk->sk_state == TCP_LISTEN) {
  698. if (svsk) {
  699. set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
  700. svc_xprt_enqueue(&svsk->sk_xprt);
  701. } else
  702. printk("svc: socket %p: no user data\n", sk);
  703. }
  704. wq = sk_sleep(sk);
  705. if (wq && waitqueue_active(wq))
  706. wake_up_interruptible_all(wq);
  707. }
  708. /*
  709. * A state change on a connected socket means it's dying or dead.
  710. */
  711. static void svc_tcp_state_change(struct sock *sk)
  712. {
  713. struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
  714. wait_queue_head_t *wq = sk_sleep(sk);
  715. dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
  716. sk, sk->sk_state, sk->sk_user_data);
  717. if (!svsk)
  718. printk("svc: socket %p: no user data\n", sk);
  719. else {
  720. set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
  721. svc_xprt_enqueue(&svsk->sk_xprt);
  722. }
  723. if (wq && waitqueue_active(wq))
  724. wake_up_interruptible_all(wq);
  725. }
  726. static void svc_tcp_data_ready(struct sock *sk, int count)
  727. {
  728. struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
  729. wait_queue_head_t *wq = sk_sleep(sk);
  730. dprintk("svc: socket %p TCP data ready (svsk %p)\n",
  731. sk, sk->sk_user_data);
  732. if (svsk) {
  733. set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
  734. svc_xprt_enqueue(&svsk->sk_xprt);
  735. }
  736. if (wq && waitqueue_active(wq))
  737. wake_up_interruptible(wq);
  738. }
  739. /*
  740. * Accept a TCP connection
  741. */
  742. static struct svc_xprt *svc_tcp_accept(struct svc_xprt *xprt)
  743. {
  744. struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
  745. struct sockaddr_storage addr;
  746. struct sockaddr *sin = (struct sockaddr *) &addr;
  747. struct svc_serv *serv = svsk->sk_xprt.xpt_server;
  748. struct socket *sock = svsk->sk_sock;
  749. struct socket *newsock;
  750. struct svc_sock *newsvsk;
  751. int err, slen;
  752. RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]);
  753. dprintk("svc: tcp_accept %p sock %p\n", svsk, sock);
  754. if (!sock)
  755. return NULL;
  756. clear_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
  757. err = kernel_accept(sock, &newsock, O_NONBLOCK);
  758. if (err < 0) {
  759. if (err == -ENOMEM)
  760. printk(KERN_WARNING "%s: no more sockets!\n",
  761. serv->sv_name);
  762. else if (err != -EAGAIN && net_ratelimit())
  763. printk(KERN_WARNING "%s: accept failed (err %d)!\n",
  764. serv->sv_name, -err);
  765. return NULL;
  766. }
  767. set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
  768. err = kernel_getpeername(newsock, sin, &slen);
  769. if (err < 0) {
  770. if (net_ratelimit())
  771. printk(KERN_WARNING "%s: peername failed (err %d)!\n",
  772. serv->sv_name, -err);
  773. goto failed; /* aborted connection or whatever */
  774. }
  775. /* Ideally, we would want to reject connections from unauthorized
  776. * hosts here, but when we get encryption, the IP of the host won't
  777. * tell us anything. For now just warn about unpriv connections.
  778. */
  779. if (!svc_port_is_privileged(sin)) {
  780. dprintk(KERN_WARNING
  781. "%s: connect from unprivileged port: %s\n",
  782. serv->sv_name,
  783. __svc_print_addr(sin, buf, sizeof(buf)));
  784. }
  785. dprintk("%s: connect from %s\n", serv->sv_name,
  786. __svc_print_addr(sin, buf, sizeof(buf)));
  787. /* make sure that a write doesn't block forever when
  788. * low on memory
  789. */
  790. newsock->sk->sk_sndtimeo = HZ*30;
  791. if (!(newsvsk = svc_setup_socket(serv, newsock, &err,
  792. (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY))))
  793. goto failed;
  794. svc_xprt_set_remote(&newsvsk->sk_xprt, sin, slen);
  795. err = kernel_getsockname(newsock, sin, &slen);
  796. if (unlikely(err < 0)) {
  797. dprintk("svc_tcp_accept: kernel_getsockname error %d\n", -err);
  798. slen = offsetof(struct sockaddr, sa_data);
  799. }
  800. svc_xprt_set_local(&newsvsk->sk_xprt, sin, slen);
  801. if (serv->sv_stats)
  802. serv->sv_stats->nettcpconn++;
  803. return &newsvsk->sk_xprt;
  804. failed:
  805. sock_release(newsock);
  806. return NULL;
  807. }
  808. static unsigned int svc_tcp_restore_pages(struct svc_sock *svsk, struct svc_rqst *rqstp)
  809. {
  810. unsigned int i, len, npages;
  811. if (svsk->sk_tcplen <= sizeof(rpc_fraghdr))
  812. return 0;
  813. len = svsk->sk_tcplen - sizeof(rpc_fraghdr);
  814. npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  815. for (i = 0; i < npages; i++) {
  816. if (rqstp->rq_pages[i] != NULL)
  817. put_page(rqstp->rq_pages[i]);
  818. BUG_ON(svsk->sk_pages[i] == NULL);
  819. rqstp->rq_pages[i] = svsk->sk_pages[i];
  820. svsk->sk_pages[i] = NULL;
  821. }
  822. rqstp->rq_arg.head[0].iov_base = page_address(rqstp->rq_pages[0]);
  823. return len;
  824. }
  825. static void svc_tcp_save_pages(struct svc_sock *svsk, struct svc_rqst *rqstp)
  826. {
  827. unsigned int i, len, npages;
  828. if (svsk->sk_tcplen <= sizeof(rpc_fraghdr))
  829. return;
  830. len = svsk->sk_tcplen - sizeof(rpc_fraghdr);
  831. npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  832. for (i = 0; i < npages; i++) {
  833. svsk->sk_pages[i] = rqstp->rq_pages[i];
  834. rqstp->rq_pages[i] = NULL;
  835. }
  836. }
  837. static void svc_tcp_clear_pages(struct svc_sock *svsk)
  838. {
  839. unsigned int i, len, npages;
  840. if (svsk->sk_tcplen <= sizeof(rpc_fraghdr))
  841. goto out;
  842. len = svsk->sk_tcplen - sizeof(rpc_fraghdr);
  843. npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  844. for (i = 0; i < npages; i++) {
  845. BUG_ON(svsk->sk_pages[i] == NULL);
  846. put_page(svsk->sk_pages[i]);
  847. svsk->sk_pages[i] = NULL;
  848. }
  849. out:
  850. svsk->sk_tcplen = 0;
  851. }
  852. /*
  853. * Receive data.
  854. * If we haven't gotten the record length yet, get the next four bytes.
  855. * Otherwise try to gobble up as much as possible up to the complete
  856. * record length.
  857. */
  858. static int svc_tcp_recv_record(struct svc_sock *svsk, struct svc_rqst *rqstp)
  859. {
  860. struct svc_serv *serv = svsk->sk_xprt.xpt_server;
  861. unsigned int want;
  862. int len;
  863. clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
  864. if (svsk->sk_tcplen < sizeof(rpc_fraghdr)) {
  865. struct kvec iov;
  866. want = sizeof(rpc_fraghdr) - svsk->sk_tcplen;
  867. iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen;
  868. iov.iov_len = want;
  869. if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0)
  870. goto error;
  871. svsk->sk_tcplen += len;
  872. if (len < want) {
  873. dprintk("svc: short recvfrom while reading record "
  874. "length (%d of %d)\n", len, want);
  875. return -EAGAIN;
  876. }
  877. svsk->sk_reclen = ntohl(svsk->sk_reclen);
  878. if (!(svsk->sk_reclen & RPC_LAST_STREAM_FRAGMENT)) {
  879. /* FIXME: technically, a record can be fragmented,
  880. * and non-terminal fragments will not have the top
  881. * bit set in the fragment length header.
  882. * But apparently no known nfs clients send fragmented
  883. * records. */
  884. if (net_ratelimit())
  885. printk(KERN_NOTICE "RPC: multiple fragments "
  886. "per record not supported\n");
  887. goto err_delete;
  888. }
  889. svsk->sk_reclen &= RPC_FRAGMENT_SIZE_MASK;
  890. dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen);
  891. if (svsk->sk_reclen > serv->sv_max_mesg) {
  892. if (net_ratelimit())
  893. printk(KERN_NOTICE "RPC: "
  894. "fragment too large: 0x%08lx\n",
  895. (unsigned long)svsk->sk_reclen);
  896. goto err_delete;
  897. }
  898. }
  899. if (svsk->sk_reclen < 8)
  900. goto err_delete; /* client is nuts. */
  901. len = svsk->sk_reclen;
  902. return len;
  903. error:
  904. dprintk("RPC: TCP recv_record got %d\n", len);
  905. return len;
  906. err_delete:
  907. set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
  908. return -EAGAIN;
  909. }
  910. static int receive_cb_reply(struct svc_sock *svsk, struct svc_rqst *rqstp)
  911. {
  912. struct rpc_xprt *bc_xprt = svsk->sk_xprt.xpt_bc_xprt;
  913. struct rpc_rqst *req = NULL;
  914. struct kvec *src, *dst;
  915. __be32 *p = (__be32 *)rqstp->rq_arg.head[0].iov_base;
  916. __be32 xid;
  917. __be32 calldir;
  918. xid = *p++;
  919. calldir = *p;
  920. if (bc_xprt)
  921. req = xprt_lookup_rqst(bc_xprt, xid);
  922. if (!req) {
  923. printk(KERN_NOTICE
  924. "%s: Got unrecognized reply: "
  925. "calldir 0x%x xpt_bc_xprt %p xid %08x\n",
  926. __func__, ntohl(calldir),
  927. bc_xprt, xid);
  928. return -EAGAIN;
  929. }
  930. memcpy(&req->rq_private_buf, &req->rq_rcv_buf, sizeof(struct xdr_buf));
  931. /*
  932. * XXX!: cheating for now! Only copying HEAD.
  933. * But we know this is good enough for now (in fact, for any
  934. * callback reply in the forseeable future).
  935. */
  936. dst = &req->rq_private_buf.head[0];
  937. src = &rqstp->rq_arg.head[0];
  938. if (dst->iov_len < src->iov_len)
  939. return -EAGAIN; /* whatever; just giving up. */
  940. memcpy(dst->iov_base, src->iov_base, src->iov_len);
  941. xprt_complete_rqst(req->rq_task, svsk->sk_reclen);
  942. rqstp->rq_arg.len = 0;
  943. return 0;
  944. }
  945. static int copy_pages_to_kvecs(struct kvec *vec, struct page **pages, int len)
  946. {
  947. int i = 0;
  948. int t = 0;
  949. while (t < len) {
  950. vec[i].iov_base = page_address(pages[i]);
  951. vec[i].iov_len = PAGE_SIZE;
  952. i++;
  953. t += PAGE_SIZE;
  954. }
  955. return i;
  956. }
  957. /*
  958. * Receive data from a TCP socket.
  959. */
  960. static int svc_tcp_recvfrom(struct svc_rqst *rqstp)
  961. {
  962. struct svc_sock *svsk =
  963. container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
  964. struct svc_serv *serv = svsk->sk_xprt.xpt_server;
  965. int len;
  966. struct kvec *vec;
  967. unsigned int want, base;
  968. __be32 *p;
  969. __be32 calldir;
  970. int pnum;
  971. dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
  972. svsk, test_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags),
  973. test_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags),
  974. test_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags));
  975. len = svc_tcp_recv_record(svsk, rqstp);
  976. if (len < 0)
  977. goto error;
  978. base = svc_tcp_restore_pages(svsk, rqstp);
  979. want = svsk->sk_reclen - base;
  980. vec = rqstp->rq_vec;
  981. pnum = copy_pages_to_kvecs(&vec[0], &rqstp->rq_pages[0],
  982. svsk->sk_reclen);
  983. rqstp->rq_respages = &rqstp->rq_pages[pnum];
  984. /* Now receive data */
  985. len = svc_partial_recvfrom(rqstp, vec, pnum, want, base);
  986. if (len >= 0)
  987. svsk->sk_tcplen += len;
  988. if (len != want) {
  989. if (len < 0 && len != -EAGAIN)
  990. goto err_other;
  991. svc_tcp_save_pages(svsk, rqstp);
  992. dprintk("svc: incomplete TCP record (%d of %d)\n",
  993. svsk->sk_tcplen, svsk->sk_reclen);
  994. goto err_noclose;
  995. }
  996. rqstp->rq_arg.len = svsk->sk_reclen;
  997. rqstp->rq_arg.page_base = 0;
  998. if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len) {
  999. rqstp->rq_arg.head[0].iov_len = rqstp->rq_arg.len;
  1000. rqstp->rq_arg.page_len = 0;
  1001. } else
  1002. rqstp->rq_arg.page_len = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
  1003. rqstp->rq_xprt_ctxt = NULL;
  1004. rqstp->rq_prot = IPPROTO_TCP;
  1005. p = (__be32 *)rqstp->rq_arg.head[0].iov_base;
  1006. calldir = p[1];
  1007. if (calldir)
  1008. len = receive_cb_reply(svsk, rqstp);
  1009. /* Reset TCP read info */
  1010. svsk->sk_reclen = 0;
  1011. svsk->sk_tcplen = 0;
  1012. /* If we have more data, signal svc_xprt_enqueue() to try again */
  1013. if (svc_recv_available(svsk) > sizeof(rpc_fraghdr))
  1014. set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
  1015. if (len < 0)
  1016. goto error;
  1017. svc_xprt_copy_addrs(rqstp, &svsk->sk_xprt);
  1018. if (serv->sv_stats)
  1019. serv->sv_stats->nettcpcnt++;
  1020. dprintk("svc: TCP complete record (%d bytes)\n", rqstp->rq_arg.len);
  1021. return rqstp->rq_arg.len;
  1022. error:
  1023. if (len != -EAGAIN)
  1024. goto err_other;
  1025. dprintk("RPC: TCP recvfrom got EAGAIN\n");
  1026. return -EAGAIN;
  1027. err_other:
  1028. printk(KERN_NOTICE "%s: recvfrom returned errno %d\n",
  1029. svsk->sk_xprt.xpt_server->sv_name, -len);
  1030. set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
  1031. err_noclose:
  1032. return -EAGAIN; /* record not complete */
  1033. }
  1034. /*
  1035. * Send out data on TCP socket.
  1036. */
  1037. static int svc_tcp_sendto(struct svc_rqst *rqstp)
  1038. {
  1039. struct xdr_buf *xbufp = &rqstp->rq_res;
  1040. int sent;
  1041. __be32 reclen;
  1042. /* Set up the first element of the reply kvec.
  1043. * Any other kvecs that may be in use have been taken
  1044. * care of by the server implementation itself.
  1045. */
  1046. reclen = htonl(0x80000000|((xbufp->len ) - 4));
  1047. memcpy(xbufp->head[0].iov_base, &reclen, 4);
  1048. sent = svc_sendto(rqstp, &rqstp->rq_res);
  1049. if (sent != xbufp->len) {
  1050. printk(KERN_NOTICE
  1051. "rpc-srv/tcp: %s: %s %d when sending %d bytes "
  1052. "- shutting down socket\n",
  1053. rqstp->rq_xprt->xpt_server->sv_name,
  1054. (sent<0)?"got error":"sent only",
  1055. sent, xbufp->len);
  1056. set_bit(XPT_CLOSE, &rqstp->rq_xprt->xpt_flags);
  1057. svc_xprt_enqueue(rqstp->rq_xprt);
  1058. sent = -EAGAIN;
  1059. }
  1060. return sent;
  1061. }
  1062. /*
  1063. * Setup response header. TCP has a 4B record length field.
  1064. */
  1065. static void svc_tcp_prep_reply_hdr(struct svc_rqst *rqstp)
  1066. {
  1067. struct kvec *resv = &rqstp->rq_res.head[0];
  1068. /* tcp needs a space for the record length... */
  1069. svc_putnl(resv, 0);
  1070. }
  1071. static int svc_tcp_has_wspace(struct svc_xprt *xprt)
  1072. {
  1073. struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
  1074. struct svc_serv *serv = svsk->sk_xprt.xpt_server;
  1075. int required;
  1076. if (test_bit(XPT_LISTENER, &xprt->xpt_flags))
  1077. return 1;
  1078. required = atomic_read(&xprt->xpt_reserved) + serv->sv_max_mesg;
  1079. if (sk_stream_wspace(svsk->sk_sk) >= required)
  1080. return 1;
  1081. set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
  1082. return 0;
  1083. }
  1084. static struct svc_xprt *svc_tcp_create(struct svc_serv *serv,
  1085. struct net *net,
  1086. struct sockaddr *sa, int salen,
  1087. int flags)
  1088. {
  1089. return svc_create_socket(serv, IPPROTO_TCP, net, sa, salen, flags);
  1090. }
  1091. #if defined(CONFIG_SUNRPC_BACKCHANNEL)
  1092. static struct svc_xprt *svc_bc_create_socket(struct svc_serv *, int,
  1093. struct net *, struct sockaddr *,
  1094. int, int);
  1095. static void svc_bc_sock_free(struct svc_xprt *xprt);
  1096. static struct svc_xprt *svc_bc_tcp_create(struct svc_serv *serv,
  1097. struct net *net,
  1098. struct sockaddr *sa, int salen,
  1099. int flags)
  1100. {
  1101. return svc_bc_create_socket(serv, IPPROTO_TCP, net, sa, salen, flags);
  1102. }
  1103. static void svc_bc_tcp_sock_detach(struct svc_xprt *xprt)
  1104. {
  1105. }
  1106. static struct svc_xprt_ops svc_tcp_bc_ops = {
  1107. .xpo_create = svc_bc_tcp_create,
  1108. .xpo_detach = svc_bc_tcp_sock_detach,
  1109. .xpo_free = svc_bc_sock_free,
  1110. .xpo_prep_reply_hdr = svc_tcp_prep_reply_hdr,
  1111. };
  1112. static struct svc_xprt_class svc_tcp_bc_class = {
  1113. .xcl_name = "tcp-bc",
  1114. .xcl_owner = THIS_MODULE,
  1115. .xcl_ops = &svc_tcp_bc_ops,
  1116. .xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP,
  1117. };
  1118. static void svc_init_bc_xprt_sock(void)
  1119. {
  1120. svc_reg_xprt_class(&svc_tcp_bc_class);
  1121. }
  1122. static void svc_cleanup_bc_xprt_sock(void)
  1123. {
  1124. svc_unreg_xprt_class(&svc_tcp_bc_class);
  1125. }
  1126. #else /* CONFIG_SUNRPC_BACKCHANNEL */
  1127. static void svc_init_bc_xprt_sock(void)
  1128. {
  1129. }
  1130. static void svc_cleanup_bc_xprt_sock(void)
  1131. {
  1132. }
  1133. #endif /* CONFIG_SUNRPC_BACKCHANNEL */
  1134. static struct svc_xprt_ops svc_tcp_ops = {
  1135. .xpo_create = svc_tcp_create,
  1136. .xpo_recvfrom = svc_tcp_recvfrom,
  1137. .xpo_sendto = svc_tcp_sendto,
  1138. .xpo_release_rqst = svc_release_skb,
  1139. .xpo_detach = svc_tcp_sock_detach,
  1140. .xpo_free = svc_sock_free,
  1141. .xpo_prep_reply_hdr = svc_tcp_prep_reply_hdr,
  1142. .xpo_has_wspace = svc_tcp_has_wspace,
  1143. .xpo_accept = svc_tcp_accept,
  1144. };
  1145. static struct svc_xprt_class svc_tcp_class = {
  1146. .xcl_name = "tcp",
  1147. .xcl_owner = THIS_MODULE,
  1148. .xcl_ops = &svc_tcp_ops,
  1149. .xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP,
  1150. };
  1151. void svc_init_xprt_sock(void)
  1152. {
  1153. svc_reg_xprt_class(&svc_tcp_class);
  1154. svc_reg_xprt_class(&svc_udp_class);
  1155. svc_init_bc_xprt_sock();
  1156. }
  1157. void svc_cleanup_xprt_sock(void)
  1158. {
  1159. svc_unreg_xprt_class(&svc_tcp_class);
  1160. svc_unreg_xprt_class(&svc_udp_class);
  1161. svc_cleanup_bc_xprt_sock();
  1162. }
  1163. static void svc_tcp_init(struct svc_sock *svsk, struct svc_serv *serv)
  1164. {
  1165. struct sock *sk = svsk->sk_sk;
  1166. svc_xprt_init(&svc_tcp_class, &svsk->sk_xprt, serv);
  1167. set_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
  1168. if (sk->sk_state == TCP_LISTEN) {
  1169. dprintk("setting up TCP socket for listening\n");
  1170. set_bit(XPT_LISTENER, &svsk->sk_xprt.xpt_flags);
  1171. sk->sk_data_ready = svc_tcp_listen_data_ready;
  1172. set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
  1173. } else {
  1174. dprintk("setting up TCP socket for reading\n");
  1175. sk->sk_state_change = svc_tcp_state_change;
  1176. sk->sk_data_ready = svc_tcp_data_ready;
  1177. sk->sk_write_space = svc_tcp_write_space;
  1178. svsk->sk_reclen = 0;
  1179. svsk->sk_tcplen = 0;
  1180. memset(&svsk->sk_pages[0], 0, sizeof(svsk->sk_pages));
  1181. tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF;
  1182. set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
  1183. if (sk->sk_state != TCP_ESTABLISHED)
  1184. set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
  1185. }
  1186. }
  1187. void svc_sock_update_bufs(struct svc_serv *serv)
  1188. {
  1189. /*
  1190. * The number of server threads has changed. Update
  1191. * rcvbuf and sndbuf accordingly on all sockets
  1192. */
  1193. struct svc_sock *svsk;
  1194. spin_lock_bh(&serv->sv_lock);
  1195. list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list)
  1196. set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
  1197. list_for_each_entry(svsk, &serv->sv_tempsocks, sk_xprt.xpt_list)
  1198. set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
  1199. spin_unlock_bh(&serv->sv_lock);
  1200. }
  1201. EXPORT_SYMBOL_GPL(svc_sock_update_bufs);
  1202. /*
  1203. * Initialize socket for RPC use and create svc_sock struct
  1204. * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
  1205. */
  1206. static struct svc_sock *svc_setup_socket(struct svc_serv *serv,
  1207. struct socket *sock,
  1208. int *errp, int flags)
  1209. {
  1210. struct svc_sock *svsk;
  1211. struct sock *inet;
  1212. int pmap_register = !(flags & SVC_SOCK_ANONYMOUS);
  1213. dprintk("svc: svc_setup_socket %p\n", sock);
  1214. if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) {
  1215. *errp = -ENOMEM;
  1216. return NULL;
  1217. }
  1218. inet = sock->sk;
  1219. /* Register socket with portmapper */
  1220. if (*errp >= 0 && pmap_register)
  1221. *errp = svc_register(serv, inet->sk_family, inet->sk_protocol,
  1222. ntohs(inet_sk(inet)->inet_sport));
  1223. if (*errp < 0) {
  1224. kfree(svsk);
  1225. return NULL;
  1226. }
  1227. inet->sk_user_data = svsk;
  1228. svsk->sk_sock = sock;
  1229. svsk->sk_sk = inet;
  1230. svsk->sk_ostate = inet->sk_state_change;
  1231. svsk->sk_odata = inet->sk_data_ready;
  1232. svsk->sk_owspace = inet->sk_write_space;
  1233. /* Initialize the socket */
  1234. if (sock->type == SOCK_DGRAM)
  1235. svc_udp_init(svsk, serv);
  1236. else {
  1237. /* initialise setting must have enough space to
  1238. * receive and respond to one request.
  1239. */
  1240. svc_sock_setbufsize(svsk->sk_sock, 4 * serv->sv_max_mesg,
  1241. 4 * serv->sv_max_mesg);
  1242. svc_tcp_init(svsk, serv);
  1243. }
  1244. dprintk("svc: svc_setup_socket created %p (inet %p)\n",
  1245. svsk, svsk->sk_sk);
  1246. return svsk;
  1247. }
  1248. /**
  1249. * svc_addsock - add a listener socket to an RPC service
  1250. * @serv: pointer to RPC service to which to add a new listener
  1251. * @fd: file descriptor of the new listener
  1252. * @name_return: pointer to buffer to fill in with name of listener
  1253. * @len: size of the buffer
  1254. *
  1255. * Fills in socket name and returns positive length of name if successful.
  1256. * Name is terminated with '\n'. On error, returns a negative errno
  1257. * value.
  1258. */
  1259. int svc_addsock(struct svc_serv *serv, const int fd, char *name_return,
  1260. const size_t len)
  1261. {
  1262. int err = 0;
  1263. struct socket *so = sockfd_lookup(fd, &err);
  1264. struct svc_sock *svsk = NULL;
  1265. if (!so)
  1266. return err;
  1267. if ((so->sk->sk_family != PF_INET) && (so->sk->sk_family != PF_INET6))
  1268. err = -EAFNOSUPPORT;
  1269. else if (so->sk->sk_protocol != IPPROTO_TCP &&
  1270. so->sk->sk_protocol != IPPROTO_UDP)
  1271. err = -EPROTONOSUPPORT;
  1272. else if (so->state > SS_UNCONNECTED)
  1273. err = -EISCONN;
  1274. else {
  1275. if (!try_module_get(THIS_MODULE))
  1276. err = -ENOENT;
  1277. else
  1278. svsk = svc_setup_socket(serv, so, &err,
  1279. SVC_SOCK_DEFAULTS);
  1280. if (svsk) {
  1281. struct sockaddr_storage addr;
  1282. struct sockaddr *sin = (struct sockaddr *)&addr;
  1283. int salen;
  1284. if (kernel_getsockname(svsk->sk_sock, sin, &salen) == 0)
  1285. svc_xprt_set_local(&svsk->sk_xprt, sin, salen);
  1286. clear_bit(XPT_TEMP, &svsk->sk_xprt.xpt_flags);
  1287. spin_lock_bh(&serv->sv_lock);
  1288. list_add(&svsk->sk_xprt.xpt_list, &serv->sv_permsocks);
  1289. spin_unlock_bh(&serv->sv_lock);
  1290. svc_xprt_received(&svsk->sk_xprt);
  1291. err = 0;
  1292. } else
  1293. module_put(THIS_MODULE);
  1294. }
  1295. if (err) {
  1296. sockfd_put(so);
  1297. return err;
  1298. }
  1299. return svc_one_sock_name(svsk, name_return, len);
  1300. }
  1301. EXPORT_SYMBOL_GPL(svc_addsock);
  1302. /*
  1303. * Create socket for RPC service.
  1304. */
  1305. static struct svc_xprt *svc_create_socket(struct svc_serv *serv,
  1306. int protocol,
  1307. struct net *net,
  1308. struct sockaddr *sin, int len,
  1309. int flags)
  1310. {
  1311. struct svc_sock *svsk;
  1312. struct socket *sock;
  1313. int error;
  1314. int type;
  1315. struct sockaddr_storage addr;
  1316. struct sockaddr *newsin = (struct sockaddr *)&addr;
  1317. int newlen;
  1318. int family;
  1319. int val;
  1320. RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]);
  1321. dprintk("svc: svc_create_socket(%s, %d, %s)\n",
  1322. serv->sv_program->pg_name, protocol,
  1323. __svc_print_addr(sin, buf, sizeof(buf)));
  1324. if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
  1325. printk(KERN_WARNING "svc: only UDP and TCP "
  1326. "sockets supported\n");
  1327. return ERR_PTR(-EINVAL);
  1328. }
  1329. type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
  1330. switch (sin->sa_family) {
  1331. case AF_INET6:
  1332. family = PF_INET6;
  1333. break;
  1334. case AF_INET:
  1335. family = PF_INET;
  1336. break;
  1337. default:
  1338. return ERR_PTR(-EINVAL);
  1339. }
  1340. error = __sock_create(net, family, type, protocol, &sock, 1);
  1341. if (error < 0)
  1342. return ERR_PTR(error);
  1343. svc_reclassify_socket(sock);
  1344. /*
  1345. * If this is an PF_INET6 listener, we want to avoid
  1346. * getting requests from IPv4 remotes. Those should
  1347. * be shunted to a PF_INET listener via rpcbind.
  1348. */
  1349. val = 1;
  1350. if (family == PF_INET6)
  1351. kernel_setsockopt(sock, SOL_IPV6, IPV6_V6ONLY,
  1352. (char *)&val, sizeof(val));
  1353. if (type == SOCK_STREAM)
  1354. sock->sk->sk_reuse = 1; /* allow address reuse */
  1355. error = kernel_bind(sock, sin, len);
  1356. if (error < 0)
  1357. goto bummer;
  1358. newlen = len;
  1359. error = kernel_getsockname(sock, newsin, &newlen);
  1360. if (error < 0)
  1361. goto bummer;
  1362. if (protocol == IPPROTO_TCP) {
  1363. if ((error = kernel_listen(sock, 64)) < 0)
  1364. goto bummer;
  1365. }
  1366. if ((svsk = svc_setup_socket(serv, sock, &error, flags)) != NULL) {
  1367. svc_xprt_set_local(&svsk->sk_xprt, newsin, newlen);
  1368. return (struct svc_xprt *)svsk;
  1369. }
  1370. bummer:
  1371. dprintk("svc: svc_create_socket error = %d\n", -error);
  1372. sock_release(sock);
  1373. return ERR_PTR(error);
  1374. }
  1375. /*
  1376. * Detach the svc_sock from the socket so that no
  1377. * more callbacks occur.
  1378. */
  1379. static void svc_sock_detach(struct svc_xprt *xprt)
  1380. {
  1381. struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
  1382. struct sock *sk = svsk->sk_sk;
  1383. wait_queue_head_t *wq;
  1384. dprintk("svc: svc_sock_detach(%p)\n", svsk);
  1385. /* put back the old socket callbacks */
  1386. sk->sk_state_change = svsk->sk_ostate;
  1387. sk->sk_data_ready = svsk->sk_odata;
  1388. sk->sk_write_space = svsk->sk_owspace;
  1389. wq = sk_sleep(sk);
  1390. if (wq && waitqueue_active(wq))
  1391. wake_up_interruptible(wq);
  1392. }
  1393. /*
  1394. * Disconnect the socket, and reset the callbacks
  1395. */
  1396. static void svc_tcp_sock_detach(struct svc_xprt *xprt)
  1397. {
  1398. struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
  1399. dprintk("svc: svc_tcp_sock_detach(%p)\n", svsk);
  1400. svc_sock_detach(xprt);
  1401. if (!test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
  1402. svc_tcp_clear_pages(svsk);
  1403. kernel_sock_shutdown(svsk->sk_sock, SHUT_RDWR);
  1404. }
  1405. }
  1406. /*
  1407. * Free the svc_sock's socket resources and the svc_sock itself.
  1408. */
  1409. static void svc_sock_free(struct svc_xprt *xprt)
  1410. {
  1411. struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
  1412. dprintk("svc: svc_sock_free(%p)\n", svsk);
  1413. if (svsk->sk_sock->file)
  1414. sockfd_put(svsk->sk_sock);
  1415. else
  1416. sock_release(svsk->sk_sock);
  1417. kfree(svsk);
  1418. }
  1419. #if defined(CONFIG_SUNRPC_BACKCHANNEL)
  1420. /*
  1421. * Create a back channel svc_xprt which shares the fore channel socket.
  1422. */
  1423. static struct svc_xprt *svc_bc_create_socket(struct svc_serv *serv,
  1424. int protocol,
  1425. struct net *net,
  1426. struct sockaddr *sin, int len,
  1427. int flags)
  1428. {
  1429. struct svc_sock *svsk;
  1430. struct svc_xprt *xprt;
  1431. if (protocol != IPPROTO_TCP) {
  1432. printk(KERN_WARNING "svc: only TCP sockets"
  1433. " supported on shared back channel\n");
  1434. return ERR_PTR(-EINVAL);
  1435. }
  1436. svsk = kzalloc(sizeof(*svsk), GFP_KERNEL);
  1437. if (!svsk)
  1438. return ERR_PTR(-ENOMEM);
  1439. xprt = &svsk->sk_xprt;
  1440. svc_xprt_init(&svc_tcp_bc_class, xprt, serv);
  1441. serv->sv_bc_xprt = xprt;
  1442. return xprt;
  1443. }
  1444. /*
  1445. * Free a back channel svc_sock.
  1446. */
  1447. static void svc_bc_sock_free(struct svc_xprt *xprt)
  1448. {
  1449. if (xprt)
  1450. kfree(container_of(xprt, struct svc_sock, sk_xprt));
  1451. }
  1452. #endif /* CONFIG_SUNRPC_BACKCHANNEL */