PageRenderTime 1459ms CodeModel.GetById 11ms RepoModel.GetById 0ms app.codeStats 1ms

/net/core/sock.c

https://github.com/Mengqi/linux-2.6
C | 1958 lines | 1364 code | 271 blank | 323 comment | 224 complexity | 6f7082aa99f44a3c846d94ae77c1fc09 MD5 | raw file
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Generic socket support routines. Memory allocators, socket lock/release
  7. * handler for protocols to use and generic option handler.
  8. *
  9. *
  10. * Authors: Ross Biro
  11. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Alan Cox, <A.Cox@swansea.ac.uk>
  14. *
  15. * Fixes:
  16. * Alan Cox : Numerous verify_area() problems
  17. * Alan Cox : Connecting on a connecting socket
  18. * now returns an error for tcp.
  19. * Alan Cox : sock->protocol is set correctly.
  20. * and is not sometimes left as 0.
  21. * Alan Cox : connect handles icmp errors on a
  22. * connect properly. Unfortunately there
  23. * is a restart syscall nasty there. I
  24. * can't match BSD without hacking the C
  25. * library. Ideas urgently sought!
  26. * Alan Cox : Disallow bind() to addresses that are
  27. * not ours - especially broadcast ones!!
  28. * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
  29. * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
  30. * instead they leave that for the DESTROY timer.
  31. * Alan Cox : Clean up error flag in accept
  32. * Alan Cox : TCP ack handling is buggy, the DESTROY timer
  33. * was buggy. Put a remove_sock() in the handler
  34. * for memory when we hit 0. Also altered the timer
  35. * code. The ACK stuff can wait and needs major
  36. * TCP layer surgery.
  37. * Alan Cox : Fixed TCP ack bug, removed remove sock
  38. * and fixed timer/inet_bh race.
  39. * Alan Cox : Added zapped flag for TCP
  40. * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
  41. * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42. * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
  43. * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44. * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45. * Rick Sladkey : Relaxed UDP rules for matching packets.
  46. * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
  47. * Pauline Middelink : identd support
  48. * Alan Cox : Fixed connect() taking signals I think.
  49. * Alan Cox : SO_LINGER supported
  50. * Alan Cox : Error reporting fixes
  51. * Anonymous : inet_create tidied up (sk->reuse setting)
  52. * Alan Cox : inet sockets don't set sk->type!
  53. * Alan Cox : Split socket option code
  54. * Alan Cox : Callbacks
  55. * Alan Cox : Nagle flag for Charles & Johannes stuff
  56. * Alex : Removed restriction on inet fioctl
  57. * Alan Cox : Splitting INET from NET core
  58. * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
  59. * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
  60. * Alan Cox : Split IP from generic code
  61. * Alan Cox : New kfree_skbmem()
  62. * Alan Cox : Make SO_DEBUG superuser only.
  63. * Alan Cox : Allow anyone to clear SO_DEBUG
  64. * (compatibility fix)
  65. * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
  66. * Alan Cox : Allocator for a socket is settable.
  67. * Alan Cox : SO_ERROR includes soft errors.
  68. * Alan Cox : Allow NULL arguments on some SO_ opts
  69. * Alan Cox : Generic socket allocation to make hooks
  70. * easier (suggested by Craig Metz).
  71. * Michael Pall : SO_ERROR returns positive errno again
  72. * Steve Whitehouse: Added default destructor to free
  73. * protocol private data.
  74. * Steve Whitehouse: Added various other default routines
  75. * common to several socket families.
  76. * Chris Evans : Call suser() check last on F_SETOWN
  77. * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78. * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
  79. * Andi Kleen : Fix write_space callback
  80. * Chris Evans : Security fixes - signedness again
  81. * Arnaldo C. Melo : cleanups, use skb_queue_purge
  82. *
  83. * To Fix:
  84. *
  85. *
  86. * This program is free software; you can redistribute it and/or
  87. * modify it under the terms of the GNU General Public License
  88. * as published by the Free Software Foundation; either version
  89. * 2 of the License, or (at your option) any later version.
  90. */
  91. #include <linux/capability.h>
  92. #include <linux/errno.h>
  93. #include <linux/types.h>
  94. #include <linux/socket.h>
  95. #include <linux/in.h>
  96. #include <linux/kernel.h>
  97. #include <linux/module.h>
  98. #include <linux/proc_fs.h>
  99. #include <linux/seq_file.h>
  100. #include <linux/sched.h>
  101. #include <linux/timer.h>
  102. #include <linux/string.h>
  103. #include <linux/sockios.h>
  104. #include <linux/net.h>
  105. #include <linux/mm.h>
  106. #include <linux/slab.h>
  107. #include <linux/interrupt.h>
  108. #include <linux/poll.h>
  109. #include <linux/tcp.h>
  110. #include <linux/init.h>
  111. #include <linux/highmem.h>
  112. #include <linux/user_namespace.h>
  113. #include <asm/uaccess.h>
  114. #include <asm/system.h>
  115. #include <linux/netdevice.h>
  116. #include <net/protocol.h>
  117. #include <linux/skbuff.h>
  118. #include <net/net_namespace.h>
  119. #include <net/request_sock.h>
  120. #include <net/sock.h>
  121. #include <linux/net_tstamp.h>
  122. #include <net/xfrm.h>
  123. #include <linux/ipsec.h>
  124. #include <net/cls_cgroup.h>
  125. #include <linux/filter.h>
  126. #include <trace/events/sock.h>
  127. #ifdef CONFIG_INET
  128. #include <net/tcp.h>
  129. #endif
  130. /*
  131. * Each address family might have different locking rules, so we have
  132. * one slock key per address family:
  133. */
  134. static struct lock_class_key af_family_keys[AF_MAX];
  135. static struct lock_class_key af_family_slock_keys[AF_MAX];
  136. /*
  137. * Make lock validator output more readable. (we pre-construct these
  138. * strings build-time, so that runtime initialization of socket
  139. * locks is fast):
  140. */
  141. static const char *const af_family_key_strings[AF_MAX+1] = {
  142. "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
  143. "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
  144. "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
  145. "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
  146. "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
  147. "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
  148. "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
  149. "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
  150. "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
  151. "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
  152. "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
  153. "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
  154. "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
  155. "sk_lock-AF_NFC" , "sk_lock-AF_MAX"
  156. };
  157. static const char *const af_family_slock_key_strings[AF_MAX+1] = {
  158. "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
  159. "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
  160. "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
  161. "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
  162. "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
  163. "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
  164. "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
  165. "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
  166. "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
  167. "slock-27" , "slock-28" , "slock-AF_CAN" ,
  168. "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
  169. "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
  170. "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
  171. "slock-AF_NFC" , "slock-AF_MAX"
  172. };
  173. static const char *const af_family_clock_key_strings[AF_MAX+1] = {
  174. "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
  175. "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
  176. "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
  177. "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
  178. "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
  179. "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
  180. "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
  181. "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
  182. "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
  183. "clock-27" , "clock-28" , "clock-AF_CAN" ,
  184. "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
  185. "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
  186. "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
  187. "clock-AF_NFC" , "clock-AF_MAX"
  188. };
  189. /*
  190. * sk_callback_lock locking rules are per-address-family,
  191. * so split the lock classes by using a per-AF key:
  192. */
  193. static struct lock_class_key af_callback_keys[AF_MAX];
  194. /* Take into consideration the size of the struct sk_buff overhead in the
  195. * determination of these values, since that is non-constant across
  196. * platforms. This makes socket queueing behavior and performance
  197. * not depend upon such differences.
  198. */
  199. #define _SK_MEM_PACKETS 256
  200. #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256)
  201. #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
  202. #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
  203. /* Run time adjustable parameters. */
  204. __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
  205. __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
  206. __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
  207. __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
  208. /* Maximal space eaten by iovec or ancillary data plus some space */
  209. int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
  210. EXPORT_SYMBOL(sysctl_optmem_max);
  211. #if defined(CONFIG_CGROUPS) && !defined(CONFIG_NET_CLS_CGROUP)
  212. int net_cls_subsys_id = -1;
  213. EXPORT_SYMBOL_GPL(net_cls_subsys_id);
  214. #endif
  215. static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
  216. {
  217. struct timeval tv;
  218. if (optlen < sizeof(tv))
  219. return -EINVAL;
  220. if (copy_from_user(&tv, optval, sizeof(tv)))
  221. return -EFAULT;
  222. if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
  223. return -EDOM;
  224. if (tv.tv_sec < 0) {
  225. static int warned __read_mostly;
  226. *timeo_p = 0;
  227. if (warned < 10 && net_ratelimit()) {
  228. warned++;
  229. printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
  230. "tries to set negative timeout\n",
  231. current->comm, task_pid_nr(current));
  232. }
  233. return 0;
  234. }
  235. *timeo_p = MAX_SCHEDULE_TIMEOUT;
  236. if (tv.tv_sec == 0 && tv.tv_usec == 0)
  237. return 0;
  238. if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
  239. *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
  240. return 0;
  241. }
  242. static void sock_warn_obsolete_bsdism(const char *name)
  243. {
  244. static int warned;
  245. static char warncomm[TASK_COMM_LEN];
  246. if (strcmp(warncomm, current->comm) && warned < 5) {
  247. strcpy(warncomm, current->comm);
  248. printk(KERN_WARNING "process `%s' is using obsolete "
  249. "%s SO_BSDCOMPAT\n", warncomm, name);
  250. warned++;
  251. }
  252. }
  253. static void sock_disable_timestamp(struct sock *sk, int flag)
  254. {
  255. if (sock_flag(sk, flag)) {
  256. sock_reset_flag(sk, flag);
  257. if (!sock_flag(sk, SOCK_TIMESTAMP) &&
  258. !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
  259. net_disable_timestamp();
  260. }
  261. }
  262. }
  263. int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
  264. {
  265. int err;
  266. int skb_len;
  267. unsigned long flags;
  268. struct sk_buff_head *list = &sk->sk_receive_queue;
  269. /* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
  270. number of warnings when compiling with -W --ANK
  271. */
  272. if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
  273. (unsigned)sk->sk_rcvbuf) {
  274. atomic_inc(&sk->sk_drops);
  275. trace_sock_rcvqueue_full(sk, skb);
  276. return -ENOMEM;
  277. }
  278. err = sk_filter(sk, skb);
  279. if (err)
  280. return err;
  281. if (!sk_rmem_schedule(sk, skb->truesize)) {
  282. atomic_inc(&sk->sk_drops);
  283. return -ENOBUFS;
  284. }
  285. skb->dev = NULL;
  286. skb_set_owner_r(skb, sk);
  287. /* Cache the SKB length before we tack it onto the receive
  288. * queue. Once it is added it no longer belongs to us and
  289. * may be freed by other threads of control pulling packets
  290. * from the queue.
  291. */
  292. skb_len = skb->len;
  293. /* we escape from rcu protected region, make sure we dont leak
  294. * a norefcounted dst
  295. */
  296. skb_dst_force(skb);
  297. spin_lock_irqsave(&list->lock, flags);
  298. skb->dropcount = atomic_read(&sk->sk_drops);
  299. __skb_queue_tail(list, skb);
  300. spin_unlock_irqrestore(&list->lock, flags);
  301. if (!sock_flag(sk, SOCK_DEAD))
  302. sk->sk_data_ready(sk, skb_len);
  303. return 0;
  304. }
  305. EXPORT_SYMBOL(sock_queue_rcv_skb);
  306. int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
  307. {
  308. int rc = NET_RX_SUCCESS;
  309. if (sk_filter(sk, skb))
  310. goto discard_and_relse;
  311. skb->dev = NULL;
  312. if (sk_rcvqueues_full(sk, skb)) {
  313. atomic_inc(&sk->sk_drops);
  314. goto discard_and_relse;
  315. }
  316. if (nested)
  317. bh_lock_sock_nested(sk);
  318. else
  319. bh_lock_sock(sk);
  320. if (!sock_owned_by_user(sk)) {
  321. /*
  322. * trylock + unlock semantics:
  323. */
  324. mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
  325. rc = sk_backlog_rcv(sk, skb);
  326. mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
  327. } else if (sk_add_backlog(sk, skb)) {
  328. bh_unlock_sock(sk);
  329. atomic_inc(&sk->sk_drops);
  330. goto discard_and_relse;
  331. }
  332. bh_unlock_sock(sk);
  333. out:
  334. sock_put(sk);
  335. return rc;
  336. discard_and_relse:
  337. kfree_skb(skb);
  338. goto out;
  339. }
  340. EXPORT_SYMBOL(sk_receive_skb);
  341. void sk_reset_txq(struct sock *sk)
  342. {
  343. sk_tx_queue_clear(sk);
  344. }
  345. EXPORT_SYMBOL(sk_reset_txq);
  346. struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
  347. {
  348. struct dst_entry *dst = __sk_dst_get(sk);
  349. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  350. sk_tx_queue_clear(sk);
  351. rcu_assign_pointer(sk->sk_dst_cache, NULL);
  352. dst_release(dst);
  353. return NULL;
  354. }
  355. return dst;
  356. }
  357. EXPORT_SYMBOL(__sk_dst_check);
  358. struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
  359. {
  360. struct dst_entry *dst = sk_dst_get(sk);
  361. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  362. sk_dst_reset(sk);
  363. dst_release(dst);
  364. return NULL;
  365. }
  366. return dst;
  367. }
  368. EXPORT_SYMBOL(sk_dst_check);
  369. static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
  370. {
  371. int ret = -ENOPROTOOPT;
  372. #ifdef CONFIG_NETDEVICES
  373. struct net *net = sock_net(sk);
  374. char devname[IFNAMSIZ];
  375. int index;
  376. /* Sorry... */
  377. ret = -EPERM;
  378. if (!capable(CAP_NET_RAW))
  379. goto out;
  380. ret = -EINVAL;
  381. if (optlen < 0)
  382. goto out;
  383. /* Bind this socket to a particular device like "eth0",
  384. * as specified in the passed interface name. If the
  385. * name is "" or the option length is zero the socket
  386. * is not bound.
  387. */
  388. if (optlen > IFNAMSIZ - 1)
  389. optlen = IFNAMSIZ - 1;
  390. memset(devname, 0, sizeof(devname));
  391. ret = -EFAULT;
  392. if (copy_from_user(devname, optval, optlen))
  393. goto out;
  394. index = 0;
  395. if (devname[0] != '\0') {
  396. struct net_device *dev;
  397. rcu_read_lock();
  398. dev = dev_get_by_name_rcu(net, devname);
  399. if (dev)
  400. index = dev->ifindex;
  401. rcu_read_unlock();
  402. ret = -ENODEV;
  403. if (!dev)
  404. goto out;
  405. }
  406. lock_sock(sk);
  407. sk->sk_bound_dev_if = index;
  408. sk_dst_reset(sk);
  409. release_sock(sk);
  410. ret = 0;
  411. out:
  412. #endif
  413. return ret;
  414. }
  415. static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
  416. {
  417. if (valbool)
  418. sock_set_flag(sk, bit);
  419. else
  420. sock_reset_flag(sk, bit);
  421. }
  422. /*
  423. * This is meant for all protocols to use and covers goings on
  424. * at the socket level. Everything here is generic.
  425. */
  426. int sock_setsockopt(struct socket *sock, int level, int optname,
  427. char __user *optval, unsigned int optlen)
  428. {
  429. struct sock *sk = sock->sk;
  430. int val;
  431. int valbool;
  432. struct linger ling;
  433. int ret = 0;
  434. /*
  435. * Options without arguments
  436. */
  437. if (optname == SO_BINDTODEVICE)
  438. return sock_bindtodevice(sk, optval, optlen);
  439. if (optlen < sizeof(int))
  440. return -EINVAL;
  441. if (get_user(val, (int __user *)optval))
  442. return -EFAULT;
  443. valbool = val ? 1 : 0;
  444. lock_sock(sk);
  445. switch (optname) {
  446. case SO_DEBUG:
  447. if (val && !capable(CAP_NET_ADMIN))
  448. ret = -EACCES;
  449. else
  450. sock_valbool_flag(sk, SOCK_DBG, valbool);
  451. break;
  452. case SO_REUSEADDR:
  453. sk->sk_reuse = valbool;
  454. break;
  455. case SO_TYPE:
  456. case SO_PROTOCOL:
  457. case SO_DOMAIN:
  458. case SO_ERROR:
  459. ret = -ENOPROTOOPT;
  460. break;
  461. case SO_DONTROUTE:
  462. sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
  463. break;
  464. case SO_BROADCAST:
  465. sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
  466. break;
  467. case SO_SNDBUF:
  468. /* Don't error on this BSD doesn't and if you think
  469. about it this is right. Otherwise apps have to
  470. play 'guess the biggest size' games. RCVBUF/SNDBUF
  471. are treated in BSD as hints */
  472. if (val > sysctl_wmem_max)
  473. val = sysctl_wmem_max;
  474. set_sndbuf:
  475. sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
  476. if ((val * 2) < SOCK_MIN_SNDBUF)
  477. sk->sk_sndbuf = SOCK_MIN_SNDBUF;
  478. else
  479. sk->sk_sndbuf = val * 2;
  480. /*
  481. * Wake up sending tasks if we
  482. * upped the value.
  483. */
  484. sk->sk_write_space(sk);
  485. break;
  486. case SO_SNDBUFFORCE:
  487. if (!capable(CAP_NET_ADMIN)) {
  488. ret = -EPERM;
  489. break;
  490. }
  491. goto set_sndbuf;
  492. case SO_RCVBUF:
  493. /* Don't error on this BSD doesn't and if you think
  494. about it this is right. Otherwise apps have to
  495. play 'guess the biggest size' games. RCVBUF/SNDBUF
  496. are treated in BSD as hints */
  497. if (val > sysctl_rmem_max)
  498. val = sysctl_rmem_max;
  499. set_rcvbuf:
  500. sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
  501. /*
  502. * We double it on the way in to account for
  503. * "struct sk_buff" etc. overhead. Applications
  504. * assume that the SO_RCVBUF setting they make will
  505. * allow that much actual data to be received on that
  506. * socket.
  507. *
  508. * Applications are unaware that "struct sk_buff" and
  509. * other overheads allocate from the receive buffer
  510. * during socket buffer allocation.
  511. *
  512. * And after considering the possible alternatives,
  513. * returning the value we actually used in getsockopt
  514. * is the most desirable behavior.
  515. */
  516. if ((val * 2) < SOCK_MIN_RCVBUF)
  517. sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
  518. else
  519. sk->sk_rcvbuf = val * 2;
  520. break;
  521. case SO_RCVBUFFORCE:
  522. if (!capable(CAP_NET_ADMIN)) {
  523. ret = -EPERM;
  524. break;
  525. }
  526. goto set_rcvbuf;
  527. case SO_KEEPALIVE:
  528. #ifdef CONFIG_INET
  529. if (sk->sk_protocol == IPPROTO_TCP)
  530. tcp_set_keepalive(sk, valbool);
  531. #endif
  532. sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
  533. break;
  534. case SO_OOBINLINE:
  535. sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
  536. break;
  537. case SO_NO_CHECK:
  538. sk->sk_no_check = valbool;
  539. break;
  540. case SO_PRIORITY:
  541. if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
  542. sk->sk_priority = val;
  543. else
  544. ret = -EPERM;
  545. break;
  546. case SO_LINGER:
  547. if (optlen < sizeof(ling)) {
  548. ret = -EINVAL; /* 1003.1g */
  549. break;
  550. }
  551. if (copy_from_user(&ling, optval, sizeof(ling))) {
  552. ret = -EFAULT;
  553. break;
  554. }
  555. if (!ling.l_onoff)
  556. sock_reset_flag(sk, SOCK_LINGER);
  557. else {
  558. #if (BITS_PER_LONG == 32)
  559. if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
  560. sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
  561. else
  562. #endif
  563. sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
  564. sock_set_flag(sk, SOCK_LINGER);
  565. }
  566. break;
  567. case SO_BSDCOMPAT:
  568. sock_warn_obsolete_bsdism("setsockopt");
  569. break;
  570. case SO_PASSCRED:
  571. if (valbool)
  572. set_bit(SOCK_PASSCRED, &sock->flags);
  573. else
  574. clear_bit(SOCK_PASSCRED, &sock->flags);
  575. break;
  576. case SO_TIMESTAMP:
  577. case SO_TIMESTAMPNS:
  578. if (valbool) {
  579. if (optname == SO_TIMESTAMP)
  580. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  581. else
  582. sock_set_flag(sk, SOCK_RCVTSTAMPNS);
  583. sock_set_flag(sk, SOCK_RCVTSTAMP);
  584. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  585. } else {
  586. sock_reset_flag(sk, SOCK_RCVTSTAMP);
  587. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  588. }
  589. break;
  590. case SO_TIMESTAMPING:
  591. if (val & ~SOF_TIMESTAMPING_MASK) {
  592. ret = -EINVAL;
  593. break;
  594. }
  595. sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
  596. val & SOF_TIMESTAMPING_TX_HARDWARE);
  597. sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
  598. val & SOF_TIMESTAMPING_TX_SOFTWARE);
  599. sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
  600. val & SOF_TIMESTAMPING_RX_HARDWARE);
  601. if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
  602. sock_enable_timestamp(sk,
  603. SOCK_TIMESTAMPING_RX_SOFTWARE);
  604. else
  605. sock_disable_timestamp(sk,
  606. SOCK_TIMESTAMPING_RX_SOFTWARE);
  607. sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
  608. val & SOF_TIMESTAMPING_SOFTWARE);
  609. sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
  610. val & SOF_TIMESTAMPING_SYS_HARDWARE);
  611. sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
  612. val & SOF_TIMESTAMPING_RAW_HARDWARE);
  613. break;
  614. case SO_RCVLOWAT:
  615. if (val < 0)
  616. val = INT_MAX;
  617. sk->sk_rcvlowat = val ? : 1;
  618. break;
  619. case SO_RCVTIMEO:
  620. ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
  621. break;
  622. case SO_SNDTIMEO:
  623. ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
  624. break;
  625. case SO_ATTACH_FILTER:
  626. ret = -EINVAL;
  627. if (optlen == sizeof(struct sock_fprog)) {
  628. struct sock_fprog fprog;
  629. ret = -EFAULT;
  630. if (copy_from_user(&fprog, optval, sizeof(fprog)))
  631. break;
  632. ret = sk_attach_filter(&fprog, sk);
  633. }
  634. break;
  635. case SO_DETACH_FILTER:
  636. ret = sk_detach_filter(sk);
  637. break;
  638. case SO_PASSSEC:
  639. if (valbool)
  640. set_bit(SOCK_PASSSEC, &sock->flags);
  641. else
  642. clear_bit(SOCK_PASSSEC, &sock->flags);
  643. break;
  644. case SO_MARK:
  645. if (!capable(CAP_NET_ADMIN))
  646. ret = -EPERM;
  647. else
  648. sk->sk_mark = val;
  649. break;
  650. /* We implement the SO_SNDLOWAT etc to
  651. not be settable (1003.1g 5.3) */
  652. case SO_RXQ_OVFL:
  653. if (valbool)
  654. sock_set_flag(sk, SOCK_RXQ_OVFL);
  655. else
  656. sock_reset_flag(sk, SOCK_RXQ_OVFL);
  657. break;
  658. default:
  659. ret = -ENOPROTOOPT;
  660. break;
  661. }
  662. release_sock(sk);
  663. return ret;
  664. }
  665. EXPORT_SYMBOL(sock_setsockopt);
  666. void cred_to_ucred(struct pid *pid, const struct cred *cred,
  667. struct ucred *ucred)
  668. {
  669. ucred->pid = pid_vnr(pid);
  670. ucred->uid = ucred->gid = -1;
  671. if (cred) {
  672. struct user_namespace *current_ns = current_user_ns();
  673. ucred->uid = user_ns_map_uid(current_ns, cred, cred->euid);
  674. ucred->gid = user_ns_map_gid(current_ns, cred, cred->egid);
  675. }
  676. }
  677. EXPORT_SYMBOL_GPL(cred_to_ucred);
  678. int sock_getsockopt(struct socket *sock, int level, int optname,
  679. char __user *optval, int __user *optlen)
  680. {
  681. struct sock *sk = sock->sk;
  682. union {
  683. int val;
  684. struct linger ling;
  685. struct timeval tm;
  686. } v;
  687. int lv = sizeof(int);
  688. int len;
  689. if (get_user(len, optlen))
  690. return -EFAULT;
  691. if (len < 0)
  692. return -EINVAL;
  693. memset(&v, 0, sizeof(v));
  694. switch (optname) {
  695. case SO_DEBUG:
  696. v.val = sock_flag(sk, SOCK_DBG);
  697. break;
  698. case SO_DONTROUTE:
  699. v.val = sock_flag(sk, SOCK_LOCALROUTE);
  700. break;
  701. case SO_BROADCAST:
  702. v.val = !!sock_flag(sk, SOCK_BROADCAST);
  703. break;
  704. case SO_SNDBUF:
  705. v.val = sk->sk_sndbuf;
  706. break;
  707. case SO_RCVBUF:
  708. v.val = sk->sk_rcvbuf;
  709. break;
  710. case SO_REUSEADDR:
  711. v.val = sk->sk_reuse;
  712. break;
  713. case SO_KEEPALIVE:
  714. v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
  715. break;
  716. case SO_TYPE:
  717. v.val = sk->sk_type;
  718. break;
  719. case SO_PROTOCOL:
  720. v.val = sk->sk_protocol;
  721. break;
  722. case SO_DOMAIN:
  723. v.val = sk->sk_family;
  724. break;
  725. case SO_ERROR:
  726. v.val = -sock_error(sk);
  727. if (v.val == 0)
  728. v.val = xchg(&sk->sk_err_soft, 0);
  729. break;
  730. case SO_OOBINLINE:
  731. v.val = !!sock_flag(sk, SOCK_URGINLINE);
  732. break;
  733. case SO_NO_CHECK:
  734. v.val = sk->sk_no_check;
  735. break;
  736. case SO_PRIORITY:
  737. v.val = sk->sk_priority;
  738. break;
  739. case SO_LINGER:
  740. lv = sizeof(v.ling);
  741. v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
  742. v.ling.l_linger = sk->sk_lingertime / HZ;
  743. break;
  744. case SO_BSDCOMPAT:
  745. sock_warn_obsolete_bsdism("getsockopt");
  746. break;
  747. case SO_TIMESTAMP:
  748. v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
  749. !sock_flag(sk, SOCK_RCVTSTAMPNS);
  750. break;
  751. case SO_TIMESTAMPNS:
  752. v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
  753. break;
  754. case SO_TIMESTAMPING:
  755. v.val = 0;
  756. if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
  757. v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
  758. if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
  759. v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
  760. if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
  761. v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
  762. if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
  763. v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
  764. if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
  765. v.val |= SOF_TIMESTAMPING_SOFTWARE;
  766. if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
  767. v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
  768. if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
  769. v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
  770. break;
  771. case SO_RCVTIMEO:
  772. lv = sizeof(struct timeval);
  773. if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
  774. v.tm.tv_sec = 0;
  775. v.tm.tv_usec = 0;
  776. } else {
  777. v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
  778. v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
  779. }
  780. break;
  781. case SO_SNDTIMEO:
  782. lv = sizeof(struct timeval);
  783. if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
  784. v.tm.tv_sec = 0;
  785. v.tm.tv_usec = 0;
  786. } else {
  787. v.tm.tv_sec = sk->sk_sndtimeo / HZ;
  788. v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
  789. }
  790. break;
  791. case SO_RCVLOWAT:
  792. v.val = sk->sk_rcvlowat;
  793. break;
  794. case SO_SNDLOWAT:
  795. v.val = 1;
  796. break;
  797. case SO_PASSCRED:
  798. v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
  799. break;
  800. case SO_PEERCRED:
  801. {
  802. struct ucred peercred;
  803. if (len > sizeof(peercred))
  804. len = sizeof(peercred);
  805. cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
  806. if (copy_to_user(optval, &peercred, len))
  807. return -EFAULT;
  808. goto lenout;
  809. }
  810. case SO_PEERNAME:
  811. {
  812. char address[128];
  813. if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
  814. return -ENOTCONN;
  815. if (lv < len)
  816. return -EINVAL;
  817. if (copy_to_user(optval, address, len))
  818. return -EFAULT;
  819. goto lenout;
  820. }
  821. /* Dubious BSD thing... Probably nobody even uses it, but
  822. * the UNIX standard wants it for whatever reason... -DaveM
  823. */
  824. case SO_ACCEPTCONN:
  825. v.val = sk->sk_state == TCP_LISTEN;
  826. break;
  827. case SO_PASSSEC:
  828. v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
  829. break;
  830. case SO_PEERSEC:
  831. return security_socket_getpeersec_stream(sock, optval, optlen, len);
  832. case SO_MARK:
  833. v.val = sk->sk_mark;
  834. break;
  835. case SO_RXQ_OVFL:
  836. v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
  837. break;
  838. default:
  839. return -ENOPROTOOPT;
  840. }
  841. if (len > lv)
  842. len = lv;
  843. if (copy_to_user(optval, &v, len))
  844. return -EFAULT;
  845. lenout:
  846. if (put_user(len, optlen))
  847. return -EFAULT;
  848. return 0;
  849. }
  850. /*
  851. * Initialize an sk_lock.
  852. *
  853. * (We also register the sk_lock with the lock validator.)
  854. */
  855. static inline void sock_lock_init(struct sock *sk)
  856. {
  857. sock_lock_init_class_and_name(sk,
  858. af_family_slock_key_strings[sk->sk_family],
  859. af_family_slock_keys + sk->sk_family,
  860. af_family_key_strings[sk->sk_family],
  861. af_family_keys + sk->sk_family);
  862. }
  863. /*
  864. * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
  865. * even temporarly, because of RCU lookups. sk_node should also be left as is.
  866. * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
  867. */
  868. static void sock_copy(struct sock *nsk, const struct sock *osk)
  869. {
  870. #ifdef CONFIG_SECURITY_NETWORK
  871. void *sptr = nsk->sk_security;
  872. #endif
  873. memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
  874. memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
  875. osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
  876. #ifdef CONFIG_SECURITY_NETWORK
  877. nsk->sk_security = sptr;
  878. security_sk_clone(osk, nsk);
  879. #endif
  880. }
  881. /*
  882. * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
  883. * un-modified. Special care is taken when initializing object to zero.
  884. */
  885. static inline void sk_prot_clear_nulls(struct sock *sk, int size)
  886. {
  887. if (offsetof(struct sock, sk_node.next) != 0)
  888. memset(sk, 0, offsetof(struct sock, sk_node.next));
  889. memset(&sk->sk_node.pprev, 0,
  890. size - offsetof(struct sock, sk_node.pprev));
  891. }
  892. void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
  893. {
  894. unsigned long nulls1, nulls2;
  895. nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
  896. nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
  897. if (nulls1 > nulls2)
  898. swap(nulls1, nulls2);
  899. if (nulls1 != 0)
  900. memset((char *)sk, 0, nulls1);
  901. memset((char *)sk + nulls1 + sizeof(void *), 0,
  902. nulls2 - nulls1 - sizeof(void *));
  903. memset((char *)sk + nulls2 + sizeof(void *), 0,
  904. size - nulls2 - sizeof(void *));
  905. }
  906. EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
  907. static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
  908. int family)
  909. {
  910. struct sock *sk;
  911. struct kmem_cache *slab;
  912. slab = prot->slab;
  913. if (slab != NULL) {
  914. sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
  915. if (!sk)
  916. return sk;
  917. if (priority & __GFP_ZERO) {
  918. if (prot->clear_sk)
  919. prot->clear_sk(sk, prot->obj_size);
  920. else
  921. sk_prot_clear_nulls(sk, prot->obj_size);
  922. }
  923. } else
  924. sk = kmalloc(prot->obj_size, priority);
  925. if (sk != NULL) {
  926. kmemcheck_annotate_bitfield(sk, flags);
  927. if (security_sk_alloc(sk, family, priority))
  928. goto out_free;
  929. if (!try_module_get(prot->owner))
  930. goto out_free_sec;
  931. sk_tx_queue_clear(sk);
  932. }
  933. return sk;
  934. out_free_sec:
  935. security_sk_free(sk);
  936. out_free:
  937. if (slab != NULL)
  938. kmem_cache_free(slab, sk);
  939. else
  940. kfree(sk);
  941. return NULL;
  942. }
  943. static void sk_prot_free(struct proto *prot, struct sock *sk)
  944. {
  945. struct kmem_cache *slab;
  946. struct module *owner;
  947. owner = prot->owner;
  948. slab = prot->slab;
  949. security_sk_free(sk);
  950. if (slab != NULL)
  951. kmem_cache_free(slab, sk);
  952. else
  953. kfree(sk);
  954. module_put(owner);
  955. }
  956. #ifdef CONFIG_CGROUPS
  957. void sock_update_classid(struct sock *sk)
  958. {
  959. u32 classid;
  960. rcu_read_lock(); /* doing current task, which cannot vanish. */
  961. classid = task_cls_classid(current);
  962. rcu_read_unlock();
  963. if (classid && classid != sk->sk_classid)
  964. sk->sk_classid = classid;
  965. }
  966. EXPORT_SYMBOL(sock_update_classid);
  967. #endif
  968. /**
  969. * sk_alloc - All socket objects are allocated here
  970. * @net: the applicable net namespace
  971. * @family: protocol family
  972. * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
  973. * @prot: struct proto associated with this new sock instance
  974. */
  975. struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
  976. struct proto *prot)
  977. {
  978. struct sock *sk;
  979. sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
  980. if (sk) {
  981. sk->sk_family = family;
  982. /*
  983. * See comment in struct sock definition to understand
  984. * why we need sk_prot_creator -acme
  985. */
  986. sk->sk_prot = sk->sk_prot_creator = prot;
  987. sock_lock_init(sk);
  988. sock_net_set(sk, get_net(net));
  989. atomic_set(&sk->sk_wmem_alloc, 1);
  990. sock_update_classid(sk);
  991. }
  992. return sk;
  993. }
  994. EXPORT_SYMBOL(sk_alloc);
  995. static void __sk_free(struct sock *sk)
  996. {
  997. struct sk_filter *filter;
  998. if (sk->sk_destruct)
  999. sk->sk_destruct(sk);
  1000. filter = rcu_dereference_check(sk->sk_filter,
  1001. atomic_read(&sk->sk_wmem_alloc) == 0);
  1002. if (filter) {
  1003. sk_filter_uncharge(sk, filter);
  1004. rcu_assign_pointer(sk->sk_filter, NULL);
  1005. }
  1006. sock_disable_timestamp(sk, SOCK_TIMESTAMP);
  1007. sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
  1008. if (atomic_read(&sk->sk_omem_alloc))
  1009. printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
  1010. __func__, atomic_read(&sk->sk_omem_alloc));
  1011. if (sk->sk_peer_cred)
  1012. put_cred(sk->sk_peer_cred);
  1013. put_pid(sk->sk_peer_pid);
  1014. put_net(sock_net(sk));
  1015. sk_prot_free(sk->sk_prot_creator, sk);
  1016. }
  1017. void sk_free(struct sock *sk)
  1018. {
  1019. /*
  1020. * We subtract one from sk_wmem_alloc and can know if
  1021. * some packets are still in some tx queue.
  1022. * If not null, sock_wfree() will call __sk_free(sk) later
  1023. */
  1024. if (atomic_dec_and_test(&sk->sk_wmem_alloc))
  1025. __sk_free(sk);
  1026. }
  1027. EXPORT_SYMBOL(sk_free);
  1028. /*
  1029. * Last sock_put should drop reference to sk->sk_net. It has already
  1030. * been dropped in sk_change_net. Taking reference to stopping namespace
  1031. * is not an option.
  1032. * Take reference to a socket to remove it from hash _alive_ and after that
  1033. * destroy it in the context of init_net.
  1034. */
  1035. void sk_release_kernel(struct sock *sk)
  1036. {
  1037. if (sk == NULL || sk->sk_socket == NULL)
  1038. return;
  1039. sock_hold(sk);
  1040. sock_release(sk->sk_socket);
  1041. release_net(sock_net(sk));
  1042. sock_net_set(sk, get_net(&init_net));
  1043. sock_put(sk);
  1044. }
  1045. EXPORT_SYMBOL(sk_release_kernel);
  1046. struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
  1047. {
  1048. struct sock *newsk;
  1049. newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
  1050. if (newsk != NULL) {
  1051. struct sk_filter *filter;
  1052. sock_copy(newsk, sk);
  1053. /* SANITY */
  1054. get_net(sock_net(newsk));
  1055. sk_node_init(&newsk->sk_node);
  1056. sock_lock_init(newsk);
  1057. bh_lock_sock(newsk);
  1058. newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
  1059. newsk->sk_backlog.len = 0;
  1060. atomic_set(&newsk->sk_rmem_alloc, 0);
  1061. /*
  1062. * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
  1063. */
  1064. atomic_set(&newsk->sk_wmem_alloc, 1);
  1065. atomic_set(&newsk->sk_omem_alloc, 0);
  1066. skb_queue_head_init(&newsk->sk_receive_queue);
  1067. skb_queue_head_init(&newsk->sk_write_queue);
  1068. #ifdef CONFIG_NET_DMA
  1069. skb_queue_head_init(&newsk->sk_async_wait_queue);
  1070. #endif
  1071. spin_lock_init(&newsk->sk_dst_lock);
  1072. rwlock_init(&newsk->sk_callback_lock);
  1073. lockdep_set_class_and_name(&newsk->sk_callback_lock,
  1074. af_callback_keys + newsk->sk_family,
  1075. af_family_clock_key_strings[newsk->sk_family]);
  1076. newsk->sk_dst_cache = NULL;
  1077. newsk->sk_wmem_queued = 0;
  1078. newsk->sk_forward_alloc = 0;
  1079. newsk->sk_send_head = NULL;
  1080. newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
  1081. sock_reset_flag(newsk, SOCK_DONE);
  1082. skb_queue_head_init(&newsk->sk_error_queue);
  1083. filter = rcu_dereference_protected(newsk->sk_filter, 1);
  1084. if (filter != NULL)
  1085. sk_filter_charge(newsk, filter);
  1086. if (unlikely(xfrm_sk_clone_policy(newsk))) {
  1087. /* It is still raw copy of parent, so invalidate
  1088. * destructor and make plain sk_free() */
  1089. newsk->sk_destruct = NULL;
  1090. sk_free(newsk);
  1091. newsk = NULL;
  1092. goto out;
  1093. }
  1094. newsk->sk_err = 0;
  1095. newsk->sk_priority = 0;
  1096. /*
  1097. * Before updating sk_refcnt, we must commit prior changes to memory
  1098. * (Documentation/RCU/rculist_nulls.txt for details)
  1099. */
  1100. smp_wmb();
  1101. atomic_set(&newsk->sk_refcnt, 2);
  1102. /*
  1103. * Increment the counter in the same struct proto as the master
  1104. * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
  1105. * is the same as sk->sk_prot->socks, as this field was copied
  1106. * with memcpy).
  1107. *
  1108. * This _changes_ the previous behaviour, where
  1109. * tcp_create_openreq_child always was incrementing the
  1110. * equivalent to tcp_prot->socks (inet_sock_nr), so this have
  1111. * to be taken into account in all callers. -acme
  1112. */
  1113. sk_refcnt_debug_inc(newsk);
  1114. sk_set_socket(newsk, NULL);
  1115. newsk->sk_wq = NULL;
  1116. if (newsk->sk_prot->sockets_allocated)
  1117. percpu_counter_inc(newsk->sk_prot->sockets_allocated);
  1118. if (sock_flag(newsk, SOCK_TIMESTAMP) ||
  1119. sock_flag(newsk, SOCK_TIMESTAMPING_RX_SOFTWARE))
  1120. net_enable_timestamp();
  1121. }
  1122. out:
  1123. return newsk;
  1124. }
  1125. EXPORT_SYMBOL_GPL(sk_clone);
  1126. void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
  1127. {
  1128. __sk_dst_set(sk, dst);
  1129. sk->sk_route_caps = dst->dev->features;
  1130. if (sk->sk_route_caps & NETIF_F_GSO)
  1131. sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
  1132. sk->sk_route_caps &= ~sk->sk_route_nocaps;
  1133. if (sk_can_gso(sk)) {
  1134. if (dst->header_len) {
  1135. sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
  1136. } else {
  1137. sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
  1138. sk->sk_gso_max_size = dst->dev->gso_max_size;
  1139. }
  1140. }
  1141. }
  1142. EXPORT_SYMBOL_GPL(sk_setup_caps);
  1143. void __init sk_init(void)
  1144. {
  1145. if (totalram_pages <= 4096) {
  1146. sysctl_wmem_max = 32767;
  1147. sysctl_rmem_max = 32767;
  1148. sysctl_wmem_default = 32767;
  1149. sysctl_rmem_default = 32767;
  1150. } else if (totalram_pages >= 131072) {
  1151. sysctl_wmem_max = 131071;
  1152. sysctl_rmem_max = 131071;
  1153. }
  1154. }
  1155. /*
  1156. * Simple resource managers for sockets.
  1157. */
  1158. /*
  1159. * Write buffer destructor automatically called from kfree_skb.
  1160. */
  1161. void sock_wfree(struct sk_buff *skb)
  1162. {
  1163. struct sock *sk = skb->sk;
  1164. unsigned int len = skb->truesize;
  1165. if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
  1166. /*
  1167. * Keep a reference on sk_wmem_alloc, this will be released
  1168. * after sk_write_space() call
  1169. */
  1170. atomic_sub(len - 1, &sk->sk_wmem_alloc);
  1171. sk->sk_write_space(sk);
  1172. len = 1;
  1173. }
  1174. /*
  1175. * if sk_wmem_alloc reaches 0, we must finish what sk_free()
  1176. * could not do because of in-flight packets
  1177. */
  1178. if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
  1179. __sk_free(sk);
  1180. }
  1181. EXPORT_SYMBOL(sock_wfree);
  1182. /*
  1183. * Read buffer destructor automatically called from kfree_skb.
  1184. */
  1185. void sock_rfree(struct sk_buff *skb)
  1186. {
  1187. struct sock *sk = skb->sk;
  1188. unsigned int len = skb->truesize;
  1189. atomic_sub(len, &sk->sk_rmem_alloc);
  1190. sk_mem_uncharge(sk, len);
  1191. }
  1192. EXPORT_SYMBOL(sock_rfree);
  1193. int sock_i_uid(struct sock *sk)
  1194. {
  1195. int uid;
  1196. read_lock_bh(&sk->sk_callback_lock);
  1197. uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
  1198. read_unlock_bh(&sk->sk_callback_lock);
  1199. return uid;
  1200. }
  1201. EXPORT_SYMBOL(sock_i_uid);
  1202. unsigned long sock_i_ino(struct sock *sk)
  1203. {
  1204. unsigned long ino;
  1205. read_lock_bh(&sk->sk_callback_lock);
  1206. ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
  1207. read_unlock_bh(&sk->sk_callback_lock);
  1208. return ino;
  1209. }
  1210. EXPORT_SYMBOL(sock_i_ino);
  1211. /*
  1212. * Allocate a skb from the socket's send buffer.
  1213. */
  1214. struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
  1215. gfp_t priority)
  1216. {
  1217. if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
  1218. struct sk_buff *skb = alloc_skb(size, priority);
  1219. if (skb) {
  1220. skb_set_owner_w(skb, sk);
  1221. return skb;
  1222. }
  1223. }
  1224. return NULL;
  1225. }
  1226. EXPORT_SYMBOL(sock_wmalloc);
  1227. /*
  1228. * Allocate a skb from the socket's receive buffer.
  1229. */
  1230. struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
  1231. gfp_t priority)
  1232. {
  1233. if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
  1234. struct sk_buff *skb = alloc_skb(size, priority);
  1235. if (skb) {
  1236. skb_set_owner_r(skb, sk);
  1237. return skb;
  1238. }
  1239. }
  1240. return NULL;
  1241. }
  1242. /*
  1243. * Allocate a memory block from the socket's option memory buffer.
  1244. */
  1245. void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
  1246. {
  1247. if ((unsigned)size <= sysctl_optmem_max &&
  1248. atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
  1249. void *mem;
  1250. /* First do the add, to avoid the race if kmalloc
  1251. * might sleep.
  1252. */
  1253. atomic_add(size, &sk->sk_omem_alloc);
  1254. mem = kmalloc(size, priority);
  1255. if (mem)
  1256. return mem;
  1257. atomic_sub(size, &sk->sk_omem_alloc);
  1258. }
  1259. return NULL;
  1260. }
  1261. EXPORT_SYMBOL(sock_kmalloc);
  1262. /*
  1263. * Free an option memory block.
  1264. */
  1265. void sock_kfree_s(struct sock *sk, void *mem, int size)
  1266. {
  1267. kfree(mem);
  1268. atomic_sub(size, &sk->sk_omem_alloc);
  1269. }
  1270. EXPORT_SYMBOL(sock_kfree_s);
  1271. /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
  1272. I think, these locks should be removed for datagram sockets.
  1273. */
  1274. static long sock_wait_for_wmem(struct sock *sk, long timeo)
  1275. {
  1276. DEFINE_WAIT(wait);
  1277. clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1278. for (;;) {
  1279. if (!timeo)
  1280. break;
  1281. if (signal_pending(current))
  1282. break;
  1283. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1284. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1285. if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
  1286. break;
  1287. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1288. break;
  1289. if (sk->sk_err)
  1290. break;
  1291. timeo = schedule_timeout(timeo);
  1292. }
  1293. finish_wait(sk_sleep(sk), &wait);
  1294. return timeo;
  1295. }
  1296. /*
  1297. * Generic send/receive buffer handlers
  1298. */
  1299. struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
  1300. unsigned long data_len, int noblock,
  1301. int *errcode)
  1302. {
  1303. struct sk_buff *skb;
  1304. gfp_t gfp_mask;
  1305. long timeo;
  1306. int err;
  1307. gfp_mask = sk->sk_allocation;
  1308. if (gfp_mask & __GFP_WAIT)
  1309. gfp_mask |= __GFP_REPEAT;
  1310. timeo = sock_sndtimeo(sk, noblock);
  1311. while (1) {
  1312. err = sock_error(sk);
  1313. if (err != 0)
  1314. goto failure;
  1315. err = -EPIPE;
  1316. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1317. goto failure;
  1318. if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
  1319. skb = alloc_skb(header_len, gfp_mask);
  1320. if (skb) {
  1321. int npages;
  1322. int i;
  1323. /* No pages, we're done... */
  1324. if (!data_len)
  1325. break;
  1326. npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
  1327. skb->truesize += data_len;
  1328. skb_shinfo(skb)->nr_frags = npages;
  1329. for (i = 0; i < npages; i++) {
  1330. struct page *page;
  1331. skb_frag_t *frag;
  1332. page = alloc_pages(sk->sk_allocation, 0);
  1333. if (!page) {
  1334. err = -ENOBUFS;
  1335. skb_shinfo(skb)->nr_frags = i;
  1336. kfree_skb(skb);
  1337. goto failure;
  1338. }
  1339. frag = &skb_shinfo(skb)->frags[i];
  1340. frag->page = page;
  1341. frag->page_offset = 0;
  1342. frag->size = (data_len >= PAGE_SIZE ?
  1343. PAGE_SIZE :
  1344. data_len);
  1345. data_len -= PAGE_SIZE;
  1346. }
  1347. /* Full success... */
  1348. break;
  1349. }
  1350. err = -ENOBUFS;
  1351. goto failure;
  1352. }
  1353. set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1354. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1355. err = -EAGAIN;
  1356. if (!timeo)
  1357. goto failure;
  1358. if (signal_pending(current))
  1359. goto interrupted;
  1360. timeo = sock_wait_for_wmem(sk, timeo);
  1361. }
  1362. skb_set_owner_w(skb, sk);
  1363. return skb;
  1364. interrupted:
  1365. err = sock_intr_errno(timeo);
  1366. failure:
  1367. *errcode = err;
  1368. return NULL;
  1369. }
  1370. EXPORT_SYMBOL(sock_alloc_send_pskb);
  1371. struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
  1372. int noblock, int *errcode)
  1373. {
  1374. return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
  1375. }
  1376. EXPORT_SYMBOL(sock_alloc_send_skb);
  1377. static void __lock_sock(struct sock *sk)
  1378. __releases(&sk->sk_lock.slock)
  1379. __acquires(&sk->sk_lock.slock)
  1380. {
  1381. DEFINE_WAIT(wait);
  1382. for (;;) {
  1383. prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
  1384. TASK_UNINTERRUPTIBLE);
  1385. spin_unlock_bh(&sk->sk_lock.slock);
  1386. schedule();
  1387. spin_lock_bh(&sk->sk_lock.slock);
  1388. if (!sock_owned_by_user(sk))
  1389. break;
  1390. }
  1391. finish_wait(&sk->sk_lock.wq, &wait);
  1392. }
  1393. static void __release_sock(struct sock *sk)
  1394. __releases(&sk->sk_lock.slock)
  1395. __acquires(&sk->sk_lock.slock)
  1396. {
  1397. struct sk_buff *skb = sk->sk_backlog.head;
  1398. do {
  1399. sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
  1400. bh_unlock_sock(sk);
  1401. do {
  1402. struct sk_buff *next = skb->next;
  1403. WARN_ON_ONCE(skb_dst_is_noref(skb));
  1404. skb->next = NULL;
  1405. sk_backlog_rcv(sk, skb);
  1406. /*
  1407. * We are in process context here with softirqs
  1408. * disabled, use cond_resched_softirq() to preempt.
  1409. * This is safe to do because we've taken the backlog
  1410. * queue private:
  1411. */
  1412. cond_resched_softirq();
  1413. skb = next;
  1414. } while (skb != NULL);
  1415. bh_lock_sock(sk);
  1416. } while ((skb = sk->sk_backlog.head) != NULL);
  1417. /*
  1418. * Doing the zeroing here guarantee we can not loop forever
  1419. * while a wild producer attempts to flood us.
  1420. */
  1421. sk->sk_backlog.len = 0;
  1422. }
  1423. /**
  1424. * sk_wait_data - wait for data to arrive at sk_receive_queue
  1425. * @sk: sock to wait on
  1426. * @timeo: for how long
  1427. *
  1428. * Now socket state including sk->sk_err is changed only under lock,
  1429. * hence we may omit checks after joining wait queue.
  1430. * We check receive queue before schedule() only as optimization;
  1431. * it is very likely that release_sock() added new data.
  1432. */
  1433. int sk_wait_data(struct sock *sk, long *timeo)
  1434. {
  1435. int rc;
  1436. DEFINE_WAIT(wait);
  1437. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1438. set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
  1439. rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
  1440. clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
  1441. finish_wait(sk_sleep(sk), &wait);
  1442. return rc;
  1443. }
  1444. EXPORT_SYMBOL(sk_wait_data);
  1445. /**
  1446. * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
  1447. * @sk: socket
  1448. * @size: memory size to allocate
  1449. * @kind: allocation type
  1450. *
  1451. * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
  1452. * rmem allocation. This function assumes that protocols which have
  1453. * memory_pressure use sk_wmem_queued as write buffer accounting.
  1454. */
  1455. int __sk_mem_schedule(struct sock *sk, int size, int kind)
  1456. {
  1457. struct proto *prot = sk->sk_prot;
  1458. int amt = sk_mem_pages(size);
  1459. long allocated;
  1460. sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
  1461. allocated = atomic_long_add_return(amt, prot->memory_allocated);
  1462. /* Under limit. */
  1463. if (allocated <= prot->sysctl_mem[0]) {
  1464. if (prot->memory_pressure && *prot->memory_pressure)
  1465. *prot->memory_pressure = 0;
  1466. return 1;
  1467. }
  1468. /* Under pressure. */
  1469. if (allocated > prot->sysctl_mem[1])
  1470. if (prot->enter_memory_pressure)
  1471. prot->enter_memory_pressure(sk);
  1472. /* Over hard limit. */
  1473. if (allocated > prot->sysctl_mem[2])
  1474. goto suppress_allocation;
  1475. /* guarantee minimum buffer size under pressure */
  1476. if (kind == SK_MEM_RECV) {
  1477. if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
  1478. return 1;
  1479. } else { /* SK_MEM_SEND */
  1480. if (sk->sk_type == SOCK_STREAM) {
  1481. if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
  1482. return 1;
  1483. } else if (atomic_read(&sk->sk_wmem_alloc) <
  1484. prot->sysctl_wmem[0])
  1485. return 1;
  1486. }
  1487. if (prot->memory_pressure) {
  1488. int alloc;
  1489. if (!*prot->memory_pressure)
  1490. return 1;
  1491. alloc = percpu_counter_read_positive(prot->sockets_allocated);
  1492. if (prot->sysctl_mem[2] > alloc *
  1493. sk_mem_pages(sk->sk_wmem_queued +
  1494. atomic_read(&sk->sk_rmem_alloc) +
  1495. sk->sk_forward_alloc))
  1496. return 1;
  1497. }
  1498. suppress_allocation:
  1499. if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
  1500. sk_stream_moderate_sndbuf(sk);
  1501. /* Fail only if socket is _under_ its sndbuf.
  1502. * In this case we cannot block, so that we have to fail.
  1503. */
  1504. if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
  1505. return 1;
  1506. }
  1507. trace_sock_exceed_buf_limit(sk, prot, allocated);
  1508. /* Alas. Undo changes. */
  1509. sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
  1510. atomic_long_sub(amt, prot->memory_allocated);
  1511. return 0;
  1512. }
  1513. EXPORT_SYMBOL(__sk_mem_schedule);
  1514. /**
  1515. * __sk_reclaim - reclaim memory_allocated
  1516. * @sk: socket
  1517. */
  1518. void __sk_mem_reclaim(struct sock *sk)
  1519. {
  1520. struct proto *prot = sk->sk_prot;
  1521. atomic_long_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
  1522. prot->memory_allocated);
  1523. sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
  1524. if (prot->memory_pressure && *prot->memory_pressure &&
  1525. (atomic_long_read(prot->memory_allocated) < prot->sysctl_mem[0]))
  1526. *prot->memory_pressure = 0;
  1527. }
  1528. EXPORT_SYMBOL(__sk_mem_reclaim);
  1529. /*
  1530. * Set of default routines for initialising struct proto_ops when
  1531. * the protocol does not support a particular function. In certain
  1532. * cases where it makes no sense for a protocol to have a "do nothing"
  1533. * function, some default processing is provided.
  1534. */
  1535. int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
  1536. {
  1537. return -EOPNOTSUPP;
  1538. }
  1539. EXPORT_SYMBOL(sock_no_bind);
  1540. int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
  1541. int len, int flags)
  1542. {
  1543. return -EOPNOTSUPP;
  1544. }
  1545. EXPORT_SYMBOL(sock_no_connect);
  1546. int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
  1547. {
  1548. return -EOPNOTSUPP;
  1549. }
  1550. EXPORT_SYMBOL(sock_no_socketpair);
  1551. int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
  1552. {
  1553. return -EOPNOTSUPP;
  1554. }
  1555. EXPORT_SYMBOL(sock_no_accept);
  1556. int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
  1557. int *len, int peer)
  1558. {
  1559. return -EOPNOTSUPP;
  1560. }
  1561. EXPORT_SYMBOL(sock_no_getname);
  1562. unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
  1563. {
  1564. return 0;
  1565. }
  1566. EXPORT_SYMBOL(sock_no_poll);
  1567. int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
  1568. {
  1569. return -EOPNOTSUPP;
  1570. }
  1571. EXPORT_SYMBOL(sock_no_ioctl);
  1572. int sock_no_listen(struct socket *sock, int backlog)
  1573. {
  1574. return -EOPNOTSUPP;
  1575. }
  1576. EXPORT_SYMBOL(sock_no_listen);
  1577. int sock_no_shutdown(struct socket *sock, int how)
  1578. {
  1579. return -EOPNOTSUPP;
  1580. }
  1581. EXPORT_SYMBOL(sock_no_shutdown);
  1582. int sock_no_setsockopt(struct socket *sock, int level, int optname,
  1583. char __user *optval, unsigned int optlen)
  1584. {
  1585. return -EOPNOTSUPP;
  1586. }
  1587. EXPORT_SYMBOL(sock_no_setsockopt);
  1588. int sock_no_getsockopt(struct socket *sock, int level, int optname,
  1589. char __user *optval, int __user *optlen)
  1590. {
  1591. return -EOPNOTSUPP;
  1592. }
  1593. EXPORT_SYMBOL(sock_no_getsockopt);
  1594. int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
  1595. size_t len)
  1596. {
  1597. return -EOPNOTSUPP;
  1598. }
  1599. EXPORT_SYMBOL(sock_no_sendmsg);
  1600. int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
  1601. size_t len, int flags)
  1602. {
  1603. return -EOPNOTSUPP;
  1604. }
  1605. EXPORT_SYMBOL(sock_no_recvmsg);
  1606. int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
  1607. {
  1608. /* Mirror missing mmap method error code */
  1609. return -ENODEV;
  1610. }
  1611. EXPORT_SYMBOL(sock_no_mmap);
  1612. ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
  1613. {
  1614. ssize_t res;
  1615. struct msghdr msg = {.msg_flags = flags};
  1616. struct kvec iov;
  1617. char *kaddr = kmap(page);
  1618. iov.iov_base = kaddr + offset;
  1619. iov.iov_len = size;
  1620. res = kernel_sendmsg(sock, &msg, &iov, 1, size);
  1621. kunmap(page);
  1622. return res;
  1623. }
  1624. EXPORT_SYMBOL(sock_no_sendpage);
  1625. /*
  1626. * Default Socket Callbacks
  1627. */
  1628. static void sock_def_wakeup(struct sock *sk)
  1629. {
  1630. struct socket_wq *wq;
  1631. rcu_read_lock();
  1632. wq = rcu_dereference(sk->sk_wq);
  1633. if (wq_has_sleeper(wq))
  1634. wake_up_interruptible_all(&wq->wait);
  1635. rcu_read_unlock();
  1636. }
  1637. static void sock_def_error_report(struct sock *sk)
  1638. {
  1639. struct socket_wq *wq;
  1640. rcu_read_lock();
  1641. wq = rcu_dereference(sk->sk_wq);
  1642. if (wq_has_sleeper(wq))
  1643. wake_up_interruptible_poll(&wq->wait, POLLERR);
  1644. sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
  1645. rcu_read_unlock();
  1646. }
  1647. static void sock_def_readable(struct sock *sk, int len)
  1648. {
  1649. struct socket_wq *wq;
  1650. rcu_read_lock();
  1651. wq = rcu_dereference(sk->sk_wq);
  1652. if (wq_has_sleeper(wq))
  1653. wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
  1654. POLLRDNORM | POLLRDBAND);
  1655. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  1656. rcu_read_unlock();
  1657. }
  1658. static void sock_def_write_space(struct sock *sk)
  1659. {
  1660. struct socket_wq *wq;
  1661. rcu_read_lock();
  1662. /* Do not wake up a writer until he can make "significant"
  1663. * progress. --DaveM
  1664. */
  1665. if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
  1666. wq = rcu_dereference(sk->sk_wq);
  1667. if (wq_has_sleeper(wq))
  1668. wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
  1669. POLLWRNORM | POLLWRBAND);
  1670. /* Should agree with poll, otherwise some programs break */
  1671. if (sock_writeable(sk))
  1672. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  1673. }
  1674. rcu_read_unlock();
  1675. }
  1676. static void sock_def_destruct(struct sock *sk)
  1677. {
  1678. kfree(sk->sk_protinfo);
  1679. }
  1680. void sk_send_sigurg(struct sock *sk)
  1681. {
  1682. if (sk->sk_socket && sk->sk_socket->file)
  1683. if (send_sigurg(&sk->sk_socket->file->f_owner))
  1684. sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
  1685. }
  1686. EXPORT_SYMBOL(sk_send_sigurg);
  1687. void sk_reset_timer(struct sock *sk, struct timer_list* timer,