PageRenderTime 57ms CodeModel.GetById 21ms RepoModel.GetById 1ms app.codeStats 0ms

/tools/perf/builtin-kmem.c

https://github.com/mturquette/linux
C | 1978 lines | 1615 code | 347 blank | 16 comment | 279 complexity | a1592755af0729dbbc87aa32632547ee MD5 | raw file
  1. #include "builtin.h"
  2. #include "perf.h"
  3. #include "util/evlist.h"
  4. #include "util/evsel.h"
  5. #include "util/util.h"
  6. #include "util/cache.h"
  7. #include "util/symbol.h"
  8. #include "util/thread.h"
  9. #include "util/header.h"
  10. #include "util/session.h"
  11. #include "util/tool.h"
  12. #include "util/callchain.h"
  13. #include <subcmd/parse-options.h>
  14. #include "util/trace-event.h"
  15. #include "util/data.h"
  16. #include "util/cpumap.h"
  17. #include "util/debug.h"
  18. #include <linux/rbtree.h>
  19. #include <linux/string.h>
  20. #include <locale.h>
  21. #include <regex.h>
  22. static int kmem_slab;
  23. static int kmem_page;
  24. static long kmem_page_size;
  25. static enum {
  26. KMEM_SLAB,
  27. KMEM_PAGE,
  28. } kmem_default = KMEM_SLAB; /* for backward compatibility */
  29. struct alloc_stat;
  30. typedef int (*sort_fn_t)(void *, void *);
  31. static int alloc_flag;
  32. static int caller_flag;
  33. static int alloc_lines = -1;
  34. static int caller_lines = -1;
  35. static bool raw_ip;
  36. struct alloc_stat {
  37. u64 call_site;
  38. u64 ptr;
  39. u64 bytes_req;
  40. u64 bytes_alloc;
  41. u32 hit;
  42. u32 pingpong;
  43. short alloc_cpu;
  44. struct rb_node node;
  45. };
  46. static struct rb_root root_alloc_stat;
  47. static struct rb_root root_alloc_sorted;
  48. static struct rb_root root_caller_stat;
  49. static struct rb_root root_caller_sorted;
  50. static unsigned long total_requested, total_allocated;
  51. static unsigned long nr_allocs, nr_cross_allocs;
  52. static int insert_alloc_stat(unsigned long call_site, unsigned long ptr,
  53. int bytes_req, int bytes_alloc, int cpu)
  54. {
  55. struct rb_node **node = &root_alloc_stat.rb_node;
  56. struct rb_node *parent = NULL;
  57. struct alloc_stat *data = NULL;
  58. while (*node) {
  59. parent = *node;
  60. data = rb_entry(*node, struct alloc_stat, node);
  61. if (ptr > data->ptr)
  62. node = &(*node)->rb_right;
  63. else if (ptr < data->ptr)
  64. node = &(*node)->rb_left;
  65. else
  66. break;
  67. }
  68. if (data && data->ptr == ptr) {
  69. data->hit++;
  70. data->bytes_req += bytes_req;
  71. data->bytes_alloc += bytes_alloc;
  72. } else {
  73. data = malloc(sizeof(*data));
  74. if (!data) {
  75. pr_err("%s: malloc failed\n", __func__);
  76. return -1;
  77. }
  78. data->ptr = ptr;
  79. data->pingpong = 0;
  80. data->hit = 1;
  81. data->bytes_req = bytes_req;
  82. data->bytes_alloc = bytes_alloc;
  83. rb_link_node(&data->node, parent, node);
  84. rb_insert_color(&data->node, &root_alloc_stat);
  85. }
  86. data->call_site = call_site;
  87. data->alloc_cpu = cpu;
  88. return 0;
  89. }
  90. static int insert_caller_stat(unsigned long call_site,
  91. int bytes_req, int bytes_alloc)
  92. {
  93. struct rb_node **node = &root_caller_stat.rb_node;
  94. struct rb_node *parent = NULL;
  95. struct alloc_stat *data = NULL;
  96. while (*node) {
  97. parent = *node;
  98. data = rb_entry(*node, struct alloc_stat, node);
  99. if (call_site > data->call_site)
  100. node = &(*node)->rb_right;
  101. else if (call_site < data->call_site)
  102. node = &(*node)->rb_left;
  103. else
  104. break;
  105. }
  106. if (data && data->call_site == call_site) {
  107. data->hit++;
  108. data->bytes_req += bytes_req;
  109. data->bytes_alloc += bytes_alloc;
  110. } else {
  111. data = malloc(sizeof(*data));
  112. if (!data) {
  113. pr_err("%s: malloc failed\n", __func__);
  114. return -1;
  115. }
  116. data->call_site = call_site;
  117. data->pingpong = 0;
  118. data->hit = 1;
  119. data->bytes_req = bytes_req;
  120. data->bytes_alloc = bytes_alloc;
  121. rb_link_node(&data->node, parent, node);
  122. rb_insert_color(&data->node, &root_caller_stat);
  123. }
  124. return 0;
  125. }
  126. static int perf_evsel__process_alloc_event(struct perf_evsel *evsel,
  127. struct perf_sample *sample)
  128. {
  129. unsigned long ptr = perf_evsel__intval(evsel, sample, "ptr"),
  130. call_site = perf_evsel__intval(evsel, sample, "call_site");
  131. int bytes_req = perf_evsel__intval(evsel, sample, "bytes_req"),
  132. bytes_alloc = perf_evsel__intval(evsel, sample, "bytes_alloc");
  133. if (insert_alloc_stat(call_site, ptr, bytes_req, bytes_alloc, sample->cpu) ||
  134. insert_caller_stat(call_site, bytes_req, bytes_alloc))
  135. return -1;
  136. total_requested += bytes_req;
  137. total_allocated += bytes_alloc;
  138. nr_allocs++;
  139. return 0;
  140. }
  141. static int perf_evsel__process_alloc_node_event(struct perf_evsel *evsel,
  142. struct perf_sample *sample)
  143. {
  144. int ret = perf_evsel__process_alloc_event(evsel, sample);
  145. if (!ret) {
  146. int node1 = cpu__get_node(sample->cpu),
  147. node2 = perf_evsel__intval(evsel, sample, "node");
  148. if (node1 != node2)
  149. nr_cross_allocs++;
  150. }
  151. return ret;
  152. }
  153. static int ptr_cmp(void *, void *);
  154. static int slab_callsite_cmp(void *, void *);
  155. static struct alloc_stat *search_alloc_stat(unsigned long ptr,
  156. unsigned long call_site,
  157. struct rb_root *root,
  158. sort_fn_t sort_fn)
  159. {
  160. struct rb_node *node = root->rb_node;
  161. struct alloc_stat key = { .ptr = ptr, .call_site = call_site };
  162. while (node) {
  163. struct alloc_stat *data;
  164. int cmp;
  165. data = rb_entry(node, struct alloc_stat, node);
  166. cmp = sort_fn(&key, data);
  167. if (cmp < 0)
  168. node = node->rb_left;
  169. else if (cmp > 0)
  170. node = node->rb_right;
  171. else
  172. return data;
  173. }
  174. return NULL;
  175. }
  176. static int perf_evsel__process_free_event(struct perf_evsel *evsel,
  177. struct perf_sample *sample)
  178. {
  179. unsigned long ptr = perf_evsel__intval(evsel, sample, "ptr");
  180. struct alloc_stat *s_alloc, *s_caller;
  181. s_alloc = search_alloc_stat(ptr, 0, &root_alloc_stat, ptr_cmp);
  182. if (!s_alloc)
  183. return 0;
  184. if ((short)sample->cpu != s_alloc->alloc_cpu) {
  185. s_alloc->pingpong++;
  186. s_caller = search_alloc_stat(0, s_alloc->call_site,
  187. &root_caller_stat,
  188. slab_callsite_cmp);
  189. if (!s_caller)
  190. return -1;
  191. s_caller->pingpong++;
  192. }
  193. s_alloc->alloc_cpu = -1;
  194. return 0;
  195. }
  196. static u64 total_page_alloc_bytes;
  197. static u64 total_page_free_bytes;
  198. static u64 total_page_nomatch_bytes;
  199. static u64 total_page_fail_bytes;
  200. static unsigned long nr_page_allocs;
  201. static unsigned long nr_page_frees;
  202. static unsigned long nr_page_fails;
  203. static unsigned long nr_page_nomatch;
  204. static bool use_pfn;
  205. static bool live_page;
  206. static struct perf_session *kmem_session;
  207. #define MAX_MIGRATE_TYPES 6
  208. #define MAX_PAGE_ORDER 11
  209. static int order_stats[MAX_PAGE_ORDER][MAX_MIGRATE_TYPES];
  210. struct page_stat {
  211. struct rb_node node;
  212. u64 page;
  213. u64 callsite;
  214. int order;
  215. unsigned gfp_flags;
  216. unsigned migrate_type;
  217. u64 alloc_bytes;
  218. u64 free_bytes;
  219. int nr_alloc;
  220. int nr_free;
  221. };
  222. static struct rb_root page_live_tree;
  223. static struct rb_root page_alloc_tree;
  224. static struct rb_root page_alloc_sorted;
  225. static struct rb_root page_caller_tree;
  226. static struct rb_root page_caller_sorted;
  227. struct alloc_func {
  228. u64 start;
  229. u64 end;
  230. char *name;
  231. };
  232. static int nr_alloc_funcs;
  233. static struct alloc_func *alloc_func_list;
  234. static int funcmp(const void *a, const void *b)
  235. {
  236. const struct alloc_func *fa = a;
  237. const struct alloc_func *fb = b;
  238. if (fa->start > fb->start)
  239. return 1;
  240. else
  241. return -1;
  242. }
  243. static int callcmp(const void *a, const void *b)
  244. {
  245. const struct alloc_func *fa = a;
  246. const struct alloc_func *fb = b;
  247. if (fb->start <= fa->start && fa->end < fb->end)
  248. return 0;
  249. if (fa->start > fb->start)
  250. return 1;
  251. else
  252. return -1;
  253. }
  254. static int build_alloc_func_list(void)
  255. {
  256. int ret;
  257. struct map *kernel_map;
  258. struct symbol *sym;
  259. struct rb_node *node;
  260. struct alloc_func *func;
  261. struct machine *machine = &kmem_session->machines.host;
  262. regex_t alloc_func_regex;
  263. const char pattern[] = "^_?_?(alloc|get_free|get_zeroed)_pages?";
  264. ret = regcomp(&alloc_func_regex, pattern, REG_EXTENDED);
  265. if (ret) {
  266. char err[BUFSIZ];
  267. regerror(ret, &alloc_func_regex, err, sizeof(err));
  268. pr_err("Invalid regex: %s\n%s", pattern, err);
  269. return -EINVAL;
  270. }
  271. kernel_map = machine__kernel_map(machine);
  272. if (map__load(kernel_map, NULL) < 0) {
  273. pr_err("cannot load kernel map\n");
  274. return -ENOENT;
  275. }
  276. map__for_each_symbol(kernel_map, sym, node) {
  277. if (regexec(&alloc_func_regex, sym->name, 0, NULL, 0))
  278. continue;
  279. func = realloc(alloc_func_list,
  280. (nr_alloc_funcs + 1) * sizeof(*func));
  281. if (func == NULL)
  282. return -ENOMEM;
  283. pr_debug("alloc func: %s\n", sym->name);
  284. func[nr_alloc_funcs].start = sym->start;
  285. func[nr_alloc_funcs].end = sym->end;
  286. func[nr_alloc_funcs].name = sym->name;
  287. alloc_func_list = func;
  288. nr_alloc_funcs++;
  289. }
  290. qsort(alloc_func_list, nr_alloc_funcs, sizeof(*func), funcmp);
  291. regfree(&alloc_func_regex);
  292. return 0;
  293. }
  294. /*
  295. * Find first non-memory allocation function from callchain.
  296. * The allocation functions are in the 'alloc_func_list'.
  297. */
  298. static u64 find_callsite(struct perf_evsel *evsel, struct perf_sample *sample)
  299. {
  300. struct addr_location al;
  301. struct machine *machine = &kmem_session->machines.host;
  302. struct callchain_cursor_node *node;
  303. if (alloc_func_list == NULL) {
  304. if (build_alloc_func_list() < 0)
  305. goto out;
  306. }
  307. al.thread = machine__findnew_thread(machine, sample->pid, sample->tid);
  308. sample__resolve_callchain(sample, &callchain_cursor, NULL, evsel, &al, 16);
  309. callchain_cursor_commit(&callchain_cursor);
  310. while (true) {
  311. struct alloc_func key, *caller;
  312. u64 addr;
  313. node = callchain_cursor_current(&callchain_cursor);
  314. if (node == NULL)
  315. break;
  316. key.start = key.end = node->ip;
  317. caller = bsearch(&key, alloc_func_list, nr_alloc_funcs,
  318. sizeof(key), callcmp);
  319. if (!caller) {
  320. /* found */
  321. if (node->map)
  322. addr = map__unmap_ip(node->map, node->ip);
  323. else
  324. addr = node->ip;
  325. return addr;
  326. } else
  327. pr_debug3("skipping alloc function: %s\n", caller->name);
  328. callchain_cursor_advance(&callchain_cursor);
  329. }
  330. out:
  331. pr_debug2("unknown callsite: %"PRIx64 "\n", sample->ip);
  332. return sample->ip;
  333. }
  334. struct sort_dimension {
  335. const char name[20];
  336. sort_fn_t cmp;
  337. struct list_head list;
  338. };
  339. static LIST_HEAD(page_alloc_sort_input);
  340. static LIST_HEAD(page_caller_sort_input);
  341. static struct page_stat *
  342. __page_stat__findnew_page(struct page_stat *pstat, bool create)
  343. {
  344. struct rb_node **node = &page_live_tree.rb_node;
  345. struct rb_node *parent = NULL;
  346. struct page_stat *data;
  347. while (*node) {
  348. s64 cmp;
  349. parent = *node;
  350. data = rb_entry(*node, struct page_stat, node);
  351. cmp = data->page - pstat->page;
  352. if (cmp < 0)
  353. node = &parent->rb_left;
  354. else if (cmp > 0)
  355. node = &parent->rb_right;
  356. else
  357. return data;
  358. }
  359. if (!create)
  360. return NULL;
  361. data = zalloc(sizeof(*data));
  362. if (data != NULL) {
  363. data->page = pstat->page;
  364. data->order = pstat->order;
  365. data->gfp_flags = pstat->gfp_flags;
  366. data->migrate_type = pstat->migrate_type;
  367. rb_link_node(&data->node, parent, node);
  368. rb_insert_color(&data->node, &page_live_tree);
  369. }
  370. return data;
  371. }
  372. static struct page_stat *page_stat__find_page(struct page_stat *pstat)
  373. {
  374. return __page_stat__findnew_page(pstat, false);
  375. }
  376. static struct page_stat *page_stat__findnew_page(struct page_stat *pstat)
  377. {
  378. return __page_stat__findnew_page(pstat, true);
  379. }
  380. static struct page_stat *
  381. __page_stat__findnew_alloc(struct page_stat *pstat, bool create)
  382. {
  383. struct rb_node **node = &page_alloc_tree.rb_node;
  384. struct rb_node *parent = NULL;
  385. struct page_stat *data;
  386. struct sort_dimension *sort;
  387. while (*node) {
  388. int cmp = 0;
  389. parent = *node;
  390. data = rb_entry(*node, struct page_stat, node);
  391. list_for_each_entry(sort, &page_alloc_sort_input, list) {
  392. cmp = sort->cmp(pstat, data);
  393. if (cmp)
  394. break;
  395. }
  396. if (cmp < 0)
  397. node = &parent->rb_left;
  398. else if (cmp > 0)
  399. node = &parent->rb_right;
  400. else
  401. return data;
  402. }
  403. if (!create)
  404. return NULL;
  405. data = zalloc(sizeof(*data));
  406. if (data != NULL) {
  407. data->page = pstat->page;
  408. data->order = pstat->order;
  409. data->gfp_flags = pstat->gfp_flags;
  410. data->migrate_type = pstat->migrate_type;
  411. rb_link_node(&data->node, parent, node);
  412. rb_insert_color(&data->node, &page_alloc_tree);
  413. }
  414. return data;
  415. }
  416. static struct page_stat *page_stat__find_alloc(struct page_stat *pstat)
  417. {
  418. return __page_stat__findnew_alloc(pstat, false);
  419. }
  420. static struct page_stat *page_stat__findnew_alloc(struct page_stat *pstat)
  421. {
  422. return __page_stat__findnew_alloc(pstat, true);
  423. }
  424. static struct page_stat *
  425. __page_stat__findnew_caller(struct page_stat *pstat, bool create)
  426. {
  427. struct rb_node **node = &page_caller_tree.rb_node;
  428. struct rb_node *parent = NULL;
  429. struct page_stat *data;
  430. struct sort_dimension *sort;
  431. while (*node) {
  432. int cmp = 0;
  433. parent = *node;
  434. data = rb_entry(*node, struct page_stat, node);
  435. list_for_each_entry(sort, &page_caller_sort_input, list) {
  436. cmp = sort->cmp(pstat, data);
  437. if (cmp)
  438. break;
  439. }
  440. if (cmp < 0)
  441. node = &parent->rb_left;
  442. else if (cmp > 0)
  443. node = &parent->rb_right;
  444. else
  445. return data;
  446. }
  447. if (!create)
  448. return NULL;
  449. data = zalloc(sizeof(*data));
  450. if (data != NULL) {
  451. data->callsite = pstat->callsite;
  452. data->order = pstat->order;
  453. data->gfp_flags = pstat->gfp_flags;
  454. data->migrate_type = pstat->migrate_type;
  455. rb_link_node(&data->node, parent, node);
  456. rb_insert_color(&data->node, &page_caller_tree);
  457. }
  458. return data;
  459. }
  460. static struct page_stat *page_stat__find_caller(struct page_stat *pstat)
  461. {
  462. return __page_stat__findnew_caller(pstat, false);
  463. }
  464. static struct page_stat *page_stat__findnew_caller(struct page_stat *pstat)
  465. {
  466. return __page_stat__findnew_caller(pstat, true);
  467. }
  468. static bool valid_page(u64 pfn_or_page)
  469. {
  470. if (use_pfn && pfn_or_page == -1UL)
  471. return false;
  472. if (!use_pfn && pfn_or_page == 0)
  473. return false;
  474. return true;
  475. }
  476. struct gfp_flag {
  477. unsigned int flags;
  478. char *compact_str;
  479. char *human_readable;
  480. };
  481. static struct gfp_flag *gfps;
  482. static int nr_gfps;
  483. static int gfpcmp(const void *a, const void *b)
  484. {
  485. const struct gfp_flag *fa = a;
  486. const struct gfp_flag *fb = b;
  487. return fa->flags - fb->flags;
  488. }
  489. /* see include/trace/events/mmflags.h */
  490. static const struct {
  491. const char *original;
  492. const char *compact;
  493. } gfp_compact_table[] = {
  494. { "GFP_TRANSHUGE", "THP" },
  495. { "GFP_HIGHUSER_MOVABLE", "HUM" },
  496. { "GFP_HIGHUSER", "HU" },
  497. { "GFP_USER", "U" },
  498. { "GFP_TEMPORARY", "TMP" },
  499. { "GFP_KERNEL_ACCOUNT", "KAC" },
  500. { "GFP_KERNEL", "K" },
  501. { "GFP_NOFS", "NF" },
  502. { "GFP_ATOMIC", "A" },
  503. { "GFP_NOIO", "NI" },
  504. { "GFP_NOWAIT", "NW" },
  505. { "GFP_DMA", "D" },
  506. { "__GFP_HIGHMEM", "HM" },
  507. { "GFP_DMA32", "D32" },
  508. { "__GFP_HIGH", "H" },
  509. { "__GFP_ATOMIC", "_A" },
  510. { "__GFP_IO", "I" },
  511. { "__GFP_FS", "F" },
  512. { "__GFP_COLD", "CO" },
  513. { "__GFP_NOWARN", "NWR" },
  514. { "__GFP_REPEAT", "R" },
  515. { "__GFP_NOFAIL", "NF" },
  516. { "__GFP_NORETRY", "NR" },
  517. { "__GFP_COMP", "C" },
  518. { "__GFP_ZERO", "Z" },
  519. { "__GFP_NOMEMALLOC", "NMA" },
  520. { "__GFP_MEMALLOC", "MA" },
  521. { "__GFP_HARDWALL", "HW" },
  522. { "__GFP_THISNODE", "TN" },
  523. { "__GFP_RECLAIMABLE", "RC" },
  524. { "__GFP_MOVABLE", "M" },
  525. { "__GFP_ACCOUNT", "AC" },
  526. { "__GFP_NOTRACK", "NT" },
  527. { "__GFP_WRITE", "WR" },
  528. { "__GFP_RECLAIM", "R" },
  529. { "__GFP_DIRECT_RECLAIM", "DR" },
  530. { "__GFP_KSWAPD_RECLAIM", "KR" },
  531. { "__GFP_OTHER_NODE", "ON" },
  532. };
  533. static size_t max_gfp_len;
  534. static char *compact_gfp_flags(char *gfp_flags)
  535. {
  536. char *orig_flags = strdup(gfp_flags);
  537. char *new_flags = NULL;
  538. char *str, *pos = NULL;
  539. size_t len = 0;
  540. if (orig_flags == NULL)
  541. return NULL;
  542. str = strtok_r(orig_flags, "|", &pos);
  543. while (str) {
  544. size_t i;
  545. char *new;
  546. const char *cpt;
  547. for (i = 0; i < ARRAY_SIZE(gfp_compact_table); i++) {
  548. if (strcmp(gfp_compact_table[i].original, str))
  549. continue;
  550. cpt = gfp_compact_table[i].compact;
  551. new = realloc(new_flags, len + strlen(cpt) + 2);
  552. if (new == NULL) {
  553. free(new_flags);
  554. return NULL;
  555. }
  556. new_flags = new;
  557. if (!len) {
  558. strcpy(new_flags, cpt);
  559. } else {
  560. strcat(new_flags, "|");
  561. strcat(new_flags, cpt);
  562. len++;
  563. }
  564. len += strlen(cpt);
  565. }
  566. str = strtok_r(NULL, "|", &pos);
  567. }
  568. if (max_gfp_len < len)
  569. max_gfp_len = len;
  570. free(orig_flags);
  571. return new_flags;
  572. }
  573. static char *compact_gfp_string(unsigned long gfp_flags)
  574. {
  575. struct gfp_flag key = {
  576. .flags = gfp_flags,
  577. };
  578. struct gfp_flag *gfp;
  579. gfp = bsearch(&key, gfps, nr_gfps, sizeof(*gfps), gfpcmp);
  580. if (gfp)
  581. return gfp->compact_str;
  582. return NULL;
  583. }
  584. static int parse_gfp_flags(struct perf_evsel *evsel, struct perf_sample *sample,
  585. unsigned int gfp_flags)
  586. {
  587. struct pevent_record record = {
  588. .cpu = sample->cpu,
  589. .data = sample->raw_data,
  590. .size = sample->raw_size,
  591. };
  592. struct trace_seq seq;
  593. char *str, *pos = NULL;
  594. if (nr_gfps) {
  595. struct gfp_flag key = {
  596. .flags = gfp_flags,
  597. };
  598. if (bsearch(&key, gfps, nr_gfps, sizeof(*gfps), gfpcmp))
  599. return 0;
  600. }
  601. trace_seq_init(&seq);
  602. pevent_event_info(&seq, evsel->tp_format, &record);
  603. str = strtok_r(seq.buffer, " ", &pos);
  604. while (str) {
  605. if (!strncmp(str, "gfp_flags=", 10)) {
  606. struct gfp_flag *new;
  607. new = realloc(gfps, (nr_gfps + 1) * sizeof(*gfps));
  608. if (new == NULL)
  609. return -ENOMEM;
  610. gfps = new;
  611. new += nr_gfps++;
  612. new->flags = gfp_flags;
  613. new->human_readable = strdup(str + 10);
  614. new->compact_str = compact_gfp_flags(str + 10);
  615. if (!new->human_readable || !new->compact_str)
  616. return -ENOMEM;
  617. qsort(gfps, nr_gfps, sizeof(*gfps), gfpcmp);
  618. }
  619. str = strtok_r(NULL, " ", &pos);
  620. }
  621. trace_seq_destroy(&seq);
  622. return 0;
  623. }
  624. static int perf_evsel__process_page_alloc_event(struct perf_evsel *evsel,
  625. struct perf_sample *sample)
  626. {
  627. u64 page;
  628. unsigned int order = perf_evsel__intval(evsel, sample, "order");
  629. unsigned int gfp_flags = perf_evsel__intval(evsel, sample, "gfp_flags");
  630. unsigned int migrate_type = perf_evsel__intval(evsel, sample,
  631. "migratetype");
  632. u64 bytes = kmem_page_size << order;
  633. u64 callsite;
  634. struct page_stat *pstat;
  635. struct page_stat this = {
  636. .order = order,
  637. .gfp_flags = gfp_flags,
  638. .migrate_type = migrate_type,
  639. };
  640. if (use_pfn)
  641. page = perf_evsel__intval(evsel, sample, "pfn");
  642. else
  643. page = perf_evsel__intval(evsel, sample, "page");
  644. nr_page_allocs++;
  645. total_page_alloc_bytes += bytes;
  646. if (!valid_page(page)) {
  647. nr_page_fails++;
  648. total_page_fail_bytes += bytes;
  649. return 0;
  650. }
  651. if (parse_gfp_flags(evsel, sample, gfp_flags) < 0)
  652. return -1;
  653. callsite = find_callsite(evsel, sample);
  654. /*
  655. * This is to find the current page (with correct gfp flags and
  656. * migrate type) at free event.
  657. */
  658. this.page = page;
  659. pstat = page_stat__findnew_page(&this);
  660. if (pstat == NULL)
  661. return -ENOMEM;
  662. pstat->nr_alloc++;
  663. pstat->alloc_bytes += bytes;
  664. pstat->callsite = callsite;
  665. if (!live_page) {
  666. pstat = page_stat__findnew_alloc(&this);
  667. if (pstat == NULL)
  668. return -ENOMEM;
  669. pstat->nr_alloc++;
  670. pstat->alloc_bytes += bytes;
  671. pstat->callsite = callsite;
  672. }
  673. this.callsite = callsite;
  674. pstat = page_stat__findnew_caller(&this);
  675. if (pstat == NULL)
  676. return -ENOMEM;
  677. pstat->nr_alloc++;
  678. pstat->alloc_bytes += bytes;
  679. order_stats[order][migrate_type]++;
  680. return 0;
  681. }
  682. static int perf_evsel__process_page_free_event(struct perf_evsel *evsel,
  683. struct perf_sample *sample)
  684. {
  685. u64 page;
  686. unsigned int order = perf_evsel__intval(evsel, sample, "order");
  687. u64 bytes = kmem_page_size << order;
  688. struct page_stat *pstat;
  689. struct page_stat this = {
  690. .order = order,
  691. };
  692. if (use_pfn)
  693. page = perf_evsel__intval(evsel, sample, "pfn");
  694. else
  695. page = perf_evsel__intval(evsel, sample, "page");
  696. nr_page_frees++;
  697. total_page_free_bytes += bytes;
  698. this.page = page;
  699. pstat = page_stat__find_page(&this);
  700. if (pstat == NULL) {
  701. pr_debug2("missing free at page %"PRIx64" (order: %d)\n",
  702. page, order);
  703. nr_page_nomatch++;
  704. total_page_nomatch_bytes += bytes;
  705. return 0;
  706. }
  707. this.gfp_flags = pstat->gfp_flags;
  708. this.migrate_type = pstat->migrate_type;
  709. this.callsite = pstat->callsite;
  710. rb_erase(&pstat->node, &page_live_tree);
  711. free(pstat);
  712. if (live_page) {
  713. order_stats[this.order][this.migrate_type]--;
  714. } else {
  715. pstat = page_stat__find_alloc(&this);
  716. if (pstat == NULL)
  717. return -ENOMEM;
  718. pstat->nr_free++;
  719. pstat->free_bytes += bytes;
  720. }
  721. pstat = page_stat__find_caller(&this);
  722. if (pstat == NULL)
  723. return -ENOENT;
  724. pstat->nr_free++;
  725. pstat->free_bytes += bytes;
  726. if (live_page) {
  727. pstat->nr_alloc--;
  728. pstat->alloc_bytes -= bytes;
  729. if (pstat->nr_alloc == 0) {
  730. rb_erase(&pstat->node, &page_caller_tree);
  731. free(pstat);
  732. }
  733. }
  734. return 0;
  735. }
  736. typedef int (*tracepoint_handler)(struct perf_evsel *evsel,
  737. struct perf_sample *sample);
  738. static int process_sample_event(struct perf_tool *tool __maybe_unused,
  739. union perf_event *event,
  740. struct perf_sample *sample,
  741. struct perf_evsel *evsel,
  742. struct machine *machine)
  743. {
  744. int err = 0;
  745. struct thread *thread = machine__findnew_thread(machine, sample->pid,
  746. sample->tid);
  747. if (thread == NULL) {
  748. pr_debug("problem processing %d event, skipping it.\n",
  749. event->header.type);
  750. return -1;
  751. }
  752. dump_printf(" ... thread: %s:%d\n", thread__comm_str(thread), thread->tid);
  753. if (evsel->handler != NULL) {
  754. tracepoint_handler f = evsel->handler;
  755. err = f(evsel, sample);
  756. }
  757. thread__put(thread);
  758. return err;
  759. }
  760. static struct perf_tool perf_kmem = {
  761. .sample = process_sample_event,
  762. .comm = perf_event__process_comm,
  763. .mmap = perf_event__process_mmap,
  764. .mmap2 = perf_event__process_mmap2,
  765. .ordered_events = true,
  766. };
  767. static double fragmentation(unsigned long n_req, unsigned long n_alloc)
  768. {
  769. if (n_alloc == 0)
  770. return 0.0;
  771. else
  772. return 100.0 - (100.0 * n_req / n_alloc);
  773. }
  774. static void __print_slab_result(struct rb_root *root,
  775. struct perf_session *session,
  776. int n_lines, int is_caller)
  777. {
  778. struct rb_node *next;
  779. struct machine *machine = &session->machines.host;
  780. printf("%.105s\n", graph_dotted_line);
  781. printf(" %-34s |", is_caller ? "Callsite": "Alloc Ptr");
  782. printf(" Total_alloc/Per | Total_req/Per | Hit | Ping-pong | Frag\n");
  783. printf("%.105s\n", graph_dotted_line);
  784. next = rb_first(root);
  785. while (next && n_lines--) {
  786. struct alloc_stat *data = rb_entry(next, struct alloc_stat,
  787. node);
  788. struct symbol *sym = NULL;
  789. struct map *map;
  790. char buf[BUFSIZ];
  791. u64 addr;
  792. if (is_caller) {
  793. addr = data->call_site;
  794. if (!raw_ip)
  795. sym = machine__find_kernel_function(machine, addr, &map, NULL);
  796. } else
  797. addr = data->ptr;
  798. if (sym != NULL)
  799. snprintf(buf, sizeof(buf), "%s+%" PRIx64 "", sym->name,
  800. addr - map->unmap_ip(map, sym->start));
  801. else
  802. snprintf(buf, sizeof(buf), "%#" PRIx64 "", addr);
  803. printf(" %-34s |", buf);
  804. printf(" %9llu/%-5lu | %9llu/%-5lu | %8lu | %9lu | %6.3f%%\n",
  805. (unsigned long long)data->bytes_alloc,
  806. (unsigned long)data->bytes_alloc / data->hit,
  807. (unsigned long long)data->bytes_req,
  808. (unsigned long)data->bytes_req / data->hit,
  809. (unsigned long)data->hit,
  810. (unsigned long)data->pingpong,
  811. fragmentation(data->bytes_req, data->bytes_alloc));
  812. next = rb_next(next);
  813. }
  814. if (n_lines == -1)
  815. printf(" ... | ... | ... | ... | ... | ... \n");
  816. printf("%.105s\n", graph_dotted_line);
  817. }
  818. static const char * const migrate_type_str[] = {
  819. "UNMOVABL",
  820. "RECLAIM",
  821. "MOVABLE",
  822. "RESERVED",
  823. "CMA/ISLT",
  824. "UNKNOWN",
  825. };
  826. static void __print_page_alloc_result(struct perf_session *session, int n_lines)
  827. {
  828. struct rb_node *next = rb_first(&page_alloc_sorted);
  829. struct machine *machine = &session->machines.host;
  830. const char *format;
  831. int gfp_len = max(strlen("GFP flags"), max_gfp_len);
  832. printf("\n%.105s\n", graph_dotted_line);
  833. printf(" %-16s | %5s alloc (KB) | Hits | Order | Mig.type | %-*s | Callsite\n",
  834. use_pfn ? "PFN" : "Page", live_page ? "Live" : "Total",
  835. gfp_len, "GFP flags");
  836. printf("%.105s\n", graph_dotted_line);
  837. if (use_pfn)
  838. format = " %16llu | %'16llu | %'9d | %5d | %8s | %-*s | %s\n";
  839. else
  840. format = " %016llx | %'16llu | %'9d | %5d | %8s | %-*s | %s\n";
  841. while (next && n_lines--) {
  842. struct page_stat *data;
  843. struct symbol *sym;
  844. struct map *map;
  845. char buf[32];
  846. char *caller = buf;
  847. data = rb_entry(next, struct page_stat, node);
  848. sym = machine__find_kernel_function(machine, data->callsite,
  849. &map, NULL);
  850. if (sym && sym->name)
  851. caller = sym->name;
  852. else
  853. scnprintf(buf, sizeof(buf), "%"PRIx64, data->callsite);
  854. printf(format, (unsigned long long)data->page,
  855. (unsigned long long)data->alloc_bytes / 1024,
  856. data->nr_alloc, data->order,
  857. migrate_type_str[data->migrate_type],
  858. gfp_len, compact_gfp_string(data->gfp_flags), caller);
  859. next = rb_next(next);
  860. }
  861. if (n_lines == -1) {
  862. printf(" ... | ... | ... | ... | ... | %-*s | ...\n",
  863. gfp_len, "...");
  864. }
  865. printf("%.105s\n", graph_dotted_line);
  866. }
  867. static void __print_page_caller_result(struct perf_session *session, int n_lines)
  868. {
  869. struct rb_node *next = rb_first(&page_caller_sorted);
  870. struct machine *machine = &session->machines.host;
  871. int gfp_len = max(strlen("GFP flags"), max_gfp_len);
  872. printf("\n%.105s\n", graph_dotted_line);
  873. printf(" %5s alloc (KB) | Hits | Order | Mig.type | %-*s | Callsite\n",
  874. live_page ? "Live" : "Total", gfp_len, "GFP flags");
  875. printf("%.105s\n", graph_dotted_line);
  876. while (next && n_lines--) {
  877. struct page_stat *data;
  878. struct symbol *sym;
  879. struct map *map;
  880. char buf[32];
  881. char *caller = buf;
  882. data = rb_entry(next, struct page_stat, node);
  883. sym = machine__find_kernel_function(machine, data->callsite,
  884. &map, NULL);
  885. if (sym && sym->name)
  886. caller = sym->name;
  887. else
  888. scnprintf(buf, sizeof(buf), "%"PRIx64, data->callsite);
  889. printf(" %'16llu | %'9d | %5d | %8s | %-*s | %s\n",
  890. (unsigned long long)data->alloc_bytes / 1024,
  891. data->nr_alloc, data->order,
  892. migrate_type_str[data->migrate_type],
  893. gfp_len, compact_gfp_string(data->gfp_flags), caller);
  894. next = rb_next(next);
  895. }
  896. if (n_lines == -1) {
  897. printf(" ... | ... | ... | ... | %-*s | ...\n",
  898. gfp_len, "...");
  899. }
  900. printf("%.105s\n", graph_dotted_line);
  901. }
  902. static void print_gfp_flags(void)
  903. {
  904. int i;
  905. printf("#\n");
  906. printf("# GFP flags\n");
  907. printf("# ---------\n");
  908. for (i = 0; i < nr_gfps; i++) {
  909. printf("# %08x: %*s: %s\n", gfps[i].flags,
  910. (int) max_gfp_len, gfps[i].compact_str,
  911. gfps[i].human_readable);
  912. }
  913. }
  914. static void print_slab_summary(void)
  915. {
  916. printf("\nSUMMARY (SLAB allocator)");
  917. printf("\n========================\n");
  918. printf("Total bytes requested: %'lu\n", total_requested);
  919. printf("Total bytes allocated: %'lu\n", total_allocated);
  920. printf("Total bytes wasted on internal fragmentation: %'lu\n",
  921. total_allocated - total_requested);
  922. printf("Internal fragmentation: %f%%\n",
  923. fragmentation(total_requested, total_allocated));
  924. printf("Cross CPU allocations: %'lu/%'lu\n", nr_cross_allocs, nr_allocs);
  925. }
  926. static void print_page_summary(void)
  927. {
  928. int o, m;
  929. u64 nr_alloc_freed = nr_page_frees - nr_page_nomatch;
  930. u64 total_alloc_freed_bytes = total_page_free_bytes - total_page_nomatch_bytes;
  931. printf("\nSUMMARY (page allocator)");
  932. printf("\n========================\n");
  933. printf("%-30s: %'16lu [ %'16"PRIu64" KB ]\n", "Total allocation requests",
  934. nr_page_allocs, total_page_alloc_bytes / 1024);
  935. printf("%-30s: %'16lu [ %'16"PRIu64" KB ]\n", "Total free requests",
  936. nr_page_frees, total_page_free_bytes / 1024);
  937. printf("\n");
  938. printf("%-30s: %'16"PRIu64" [ %'16"PRIu64" KB ]\n", "Total alloc+freed requests",
  939. nr_alloc_freed, (total_alloc_freed_bytes) / 1024);
  940. printf("%-30s: %'16"PRIu64" [ %'16"PRIu64" KB ]\n", "Total alloc-only requests",
  941. nr_page_allocs - nr_alloc_freed,
  942. (total_page_alloc_bytes - total_alloc_freed_bytes) / 1024);
  943. printf("%-30s: %'16lu [ %'16"PRIu64" KB ]\n", "Total free-only requests",
  944. nr_page_nomatch, total_page_nomatch_bytes / 1024);
  945. printf("\n");
  946. printf("%-30s: %'16lu [ %'16"PRIu64" KB ]\n", "Total allocation failures",
  947. nr_page_fails, total_page_fail_bytes / 1024);
  948. printf("\n");
  949. printf("%5s %12s %12s %12s %12s %12s\n", "Order", "Unmovable",
  950. "Reclaimable", "Movable", "Reserved", "CMA/Isolated");
  951. printf("%.5s %.12s %.12s %.12s %.12s %.12s\n", graph_dotted_line,
  952. graph_dotted_line, graph_dotted_line, graph_dotted_line,
  953. graph_dotted_line, graph_dotted_line);
  954. for (o = 0; o < MAX_PAGE_ORDER; o++) {
  955. printf("%5d", o);
  956. for (m = 0; m < MAX_MIGRATE_TYPES - 1; m++) {
  957. if (order_stats[o][m])
  958. printf(" %'12d", order_stats[o][m]);
  959. else
  960. printf(" %12c", '.');
  961. }
  962. printf("\n");
  963. }
  964. }
  965. static void print_slab_result(struct perf_session *session)
  966. {
  967. if (caller_flag)
  968. __print_slab_result(&root_caller_sorted, session, caller_lines, 1);
  969. if (alloc_flag)
  970. __print_slab_result(&root_alloc_sorted, session, alloc_lines, 0);
  971. print_slab_summary();
  972. }
  973. static void print_page_result(struct perf_session *session)
  974. {
  975. if (caller_flag || alloc_flag)
  976. print_gfp_flags();
  977. if (caller_flag)
  978. __print_page_caller_result(session, caller_lines);
  979. if (alloc_flag)
  980. __print_page_alloc_result(session, alloc_lines);
  981. print_page_summary();
  982. }
  983. static void print_result(struct perf_session *session)
  984. {
  985. if (kmem_slab)
  986. print_slab_result(session);
  987. if (kmem_page)
  988. print_page_result(session);
  989. }
  990. static LIST_HEAD(slab_caller_sort);
  991. static LIST_HEAD(slab_alloc_sort);
  992. static LIST_HEAD(page_caller_sort);
  993. static LIST_HEAD(page_alloc_sort);
  994. static void sort_slab_insert(struct rb_root *root, struct alloc_stat *data,
  995. struct list_head *sort_list)
  996. {
  997. struct rb_node **new = &(root->rb_node);
  998. struct rb_node *parent = NULL;
  999. struct sort_dimension *sort;
  1000. while (*new) {
  1001. struct alloc_stat *this;
  1002. int cmp = 0;
  1003. this = rb_entry(*new, struct alloc_stat, node);
  1004. parent = *new;
  1005. list_for_each_entry(sort, sort_list, list) {
  1006. cmp = sort->cmp(data, this);
  1007. if (cmp)
  1008. break;
  1009. }
  1010. if (cmp > 0)
  1011. new = &((*new)->rb_left);
  1012. else
  1013. new = &((*new)->rb_right);
  1014. }
  1015. rb_link_node(&data->node, parent, new);
  1016. rb_insert_color(&data->node, root);
  1017. }
  1018. static void __sort_slab_result(struct rb_root *root, struct rb_root *root_sorted,
  1019. struct list_head *sort_list)
  1020. {
  1021. struct rb_node *node;
  1022. struct alloc_stat *data;
  1023. for (;;) {
  1024. node = rb_first(root);
  1025. if (!node)
  1026. break;
  1027. rb_erase(node, root);
  1028. data = rb_entry(node, struct alloc_stat, node);
  1029. sort_slab_insert(root_sorted, data, sort_list);
  1030. }
  1031. }
  1032. static void sort_page_insert(struct rb_root *root, struct page_stat *data,
  1033. struct list_head *sort_list)
  1034. {
  1035. struct rb_node **new = &root->rb_node;
  1036. struct rb_node *parent = NULL;
  1037. struct sort_dimension *sort;
  1038. while (*new) {
  1039. struct page_stat *this;
  1040. int cmp = 0;
  1041. this = rb_entry(*new, struct page_stat, node);
  1042. parent = *new;
  1043. list_for_each_entry(sort, sort_list, list) {
  1044. cmp = sort->cmp(data, this);
  1045. if (cmp)
  1046. break;
  1047. }
  1048. if (cmp > 0)
  1049. new = &parent->rb_left;
  1050. else
  1051. new = &parent->rb_right;
  1052. }
  1053. rb_link_node(&data->node, parent, new);
  1054. rb_insert_color(&data->node, root);
  1055. }
  1056. static void __sort_page_result(struct rb_root *root, struct rb_root *root_sorted,
  1057. struct list_head *sort_list)
  1058. {
  1059. struct rb_node *node;
  1060. struct page_stat *data;
  1061. for (;;) {
  1062. node = rb_first(root);
  1063. if (!node)
  1064. break;
  1065. rb_erase(node, root);
  1066. data = rb_entry(node, struct page_stat, node);
  1067. sort_page_insert(root_sorted, data, sort_list);
  1068. }
  1069. }
  1070. static void sort_result(void)
  1071. {
  1072. if (kmem_slab) {
  1073. __sort_slab_result(&root_alloc_stat, &root_alloc_sorted,
  1074. &slab_alloc_sort);
  1075. __sort_slab_result(&root_caller_stat, &root_caller_sorted,
  1076. &slab_caller_sort);
  1077. }
  1078. if (kmem_page) {
  1079. if (live_page)
  1080. __sort_page_result(&page_live_tree, &page_alloc_sorted,
  1081. &page_alloc_sort);
  1082. else
  1083. __sort_page_result(&page_alloc_tree, &page_alloc_sorted,
  1084. &page_alloc_sort);
  1085. __sort_page_result(&page_caller_tree, &page_caller_sorted,
  1086. &page_caller_sort);
  1087. }
  1088. }
  1089. static int __cmd_kmem(struct perf_session *session)
  1090. {
  1091. int err = -EINVAL;
  1092. struct perf_evsel *evsel;
  1093. const struct perf_evsel_str_handler kmem_tracepoints[] = {
  1094. /* slab allocator */
  1095. { "kmem:kmalloc", perf_evsel__process_alloc_event, },
  1096. { "kmem:kmem_cache_alloc", perf_evsel__process_alloc_event, },
  1097. { "kmem:kmalloc_node", perf_evsel__process_alloc_node_event, },
  1098. { "kmem:kmem_cache_alloc_node", perf_evsel__process_alloc_node_event, },
  1099. { "kmem:kfree", perf_evsel__process_free_event, },
  1100. { "kmem:kmem_cache_free", perf_evsel__process_free_event, },
  1101. /* page allocator */
  1102. { "kmem:mm_page_alloc", perf_evsel__process_page_alloc_event, },
  1103. { "kmem:mm_page_free", perf_evsel__process_page_free_event, },
  1104. };
  1105. if (!perf_session__has_traces(session, "kmem record"))
  1106. goto out;
  1107. if (perf_session__set_tracepoints_handlers(session, kmem_tracepoints)) {
  1108. pr_err("Initializing perf session tracepoint handlers failed\n");
  1109. goto out;
  1110. }
  1111. evlist__for_each(session->evlist, evsel) {
  1112. if (!strcmp(perf_evsel__name(evsel), "kmem:mm_page_alloc") &&
  1113. perf_evsel__field(evsel, "pfn")) {
  1114. use_pfn = true;
  1115. break;
  1116. }
  1117. }
  1118. setup_pager();
  1119. err = perf_session__process_events(session);
  1120. if (err != 0) {
  1121. pr_err("error during process events: %d\n", err);
  1122. goto out;
  1123. }
  1124. sort_result();
  1125. print_result(session);
  1126. out:
  1127. return err;
  1128. }
  1129. /* slab sort keys */
  1130. static int ptr_cmp(void *a, void *b)
  1131. {
  1132. struct alloc_stat *l = a;
  1133. struct alloc_stat *r = b;
  1134. if (l->ptr < r->ptr)
  1135. return -1;
  1136. else if (l->ptr > r->ptr)
  1137. return 1;
  1138. return 0;
  1139. }
  1140. static struct sort_dimension ptr_sort_dimension = {
  1141. .name = "ptr",
  1142. .cmp = ptr_cmp,
  1143. };
  1144. static int slab_callsite_cmp(void *a, void *b)
  1145. {
  1146. struct alloc_stat *l = a;
  1147. struct alloc_stat *r = b;
  1148. if (l->call_site < r->call_site)
  1149. return -1;
  1150. else if (l->call_site > r->call_site)
  1151. return 1;
  1152. return 0;
  1153. }
  1154. static struct sort_dimension callsite_sort_dimension = {
  1155. .name = "callsite",
  1156. .cmp = slab_callsite_cmp,
  1157. };
  1158. static int hit_cmp(void *a, void *b)
  1159. {
  1160. struct alloc_stat *l = a;
  1161. struct alloc_stat *r = b;
  1162. if (l->hit < r->hit)
  1163. return -1;
  1164. else if (l->hit > r->hit)
  1165. return 1;
  1166. return 0;
  1167. }
  1168. static struct sort_dimension hit_sort_dimension = {
  1169. .name = "hit",
  1170. .cmp = hit_cmp,
  1171. };
  1172. static int bytes_cmp(void *a, void *b)
  1173. {
  1174. struct alloc_stat *l = a;
  1175. struct alloc_stat *r = b;
  1176. if (l->bytes_alloc < r->bytes_alloc)
  1177. return -1;
  1178. else if (l->bytes_alloc > r->bytes_alloc)
  1179. return 1;
  1180. return 0;
  1181. }
  1182. static struct sort_dimension bytes_sort_dimension = {
  1183. .name = "bytes",
  1184. .cmp = bytes_cmp,
  1185. };
  1186. static int frag_cmp(void *a, void *b)
  1187. {
  1188. double x, y;
  1189. struct alloc_stat *l = a;
  1190. struct alloc_stat *r = b;
  1191. x = fragmentation(l->bytes_req, l->bytes_alloc);
  1192. y = fragmentation(r->bytes_req, r->bytes_alloc);
  1193. if (x < y)
  1194. return -1;
  1195. else if (x > y)
  1196. return 1;
  1197. return 0;
  1198. }
  1199. static struct sort_dimension frag_sort_dimension = {
  1200. .name = "frag",
  1201. .cmp = frag_cmp,
  1202. };
  1203. static int pingpong_cmp(void *a, void *b)
  1204. {
  1205. struct alloc_stat *l = a;
  1206. struct alloc_stat *r = b;
  1207. if (l->pingpong < r->pingpong)
  1208. return -1;
  1209. else if (l->pingpong > r->pingpong)
  1210. return 1;
  1211. return 0;
  1212. }
  1213. static struct sort_dimension pingpong_sort_dimension = {
  1214. .name = "pingpong",
  1215. .cmp = pingpong_cmp,
  1216. };
  1217. /* page sort keys */
  1218. static int page_cmp(void *a, void *b)
  1219. {
  1220. struct page_stat *l = a;
  1221. struct page_stat *r = b;
  1222. if (l->page < r->page)
  1223. return -1;
  1224. else if (l->page > r->page)
  1225. return 1;
  1226. return 0;
  1227. }
  1228. static struct sort_dimension page_sort_dimension = {
  1229. .name = "page",
  1230. .cmp = page_cmp,
  1231. };
  1232. static int page_callsite_cmp(void *a, void *b)
  1233. {
  1234. struct page_stat *l = a;
  1235. struct page_stat *r = b;
  1236. if (l->callsite < r->callsite)
  1237. return -1;
  1238. else if (l->callsite > r->callsite)
  1239. return 1;
  1240. return 0;
  1241. }
  1242. static struct sort_dimension page_callsite_sort_dimension = {
  1243. .name = "callsite",
  1244. .cmp = page_callsite_cmp,
  1245. };
  1246. static int page_hit_cmp(void *a, void *b)
  1247. {
  1248. struct page_stat *l = a;
  1249. struct page_stat *r = b;
  1250. if (l->nr_alloc < r->nr_alloc)
  1251. return -1;
  1252. else if (l->nr_alloc > r->nr_alloc)
  1253. return 1;
  1254. return 0;
  1255. }
  1256. static struct sort_dimension page_hit_sort_dimension = {
  1257. .name = "hit",
  1258. .cmp = page_hit_cmp,
  1259. };
  1260. static int page_bytes_cmp(void *a, void *b)
  1261. {
  1262. struct page_stat *l = a;
  1263. struct page_stat *r = b;
  1264. if (l->alloc_bytes < r->alloc_bytes)
  1265. return -1;
  1266. else if (l->alloc_bytes > r->alloc_bytes)
  1267. return 1;
  1268. return 0;
  1269. }
  1270. static struct sort_dimension page_bytes_sort_dimension = {
  1271. .name = "bytes",
  1272. .cmp = page_bytes_cmp,
  1273. };
  1274. static int page_order_cmp(void *a, void *b)
  1275. {
  1276. struct page_stat *l = a;
  1277. struct page_stat *r = b;
  1278. if (l->order < r->order)
  1279. return -1;
  1280. else if (l->order > r->order)
  1281. return 1;
  1282. return 0;
  1283. }
  1284. static struct sort_dimension page_order_sort_dimension = {
  1285. .name = "order",
  1286. .cmp = page_order_cmp,
  1287. };
  1288. static int migrate_type_cmp(void *a, void *b)
  1289. {
  1290. struct page_stat *l = a;
  1291. struct page_stat *r = b;
  1292. /* for internal use to find free'd page */
  1293. if (l->migrate_type == -1U)
  1294. return 0;
  1295. if (l->migrate_type < r->migrate_type)
  1296. return -1;
  1297. else if (l->migrate_type > r->migrate_type)
  1298. return 1;
  1299. return 0;
  1300. }
  1301. static struct sort_dimension migrate_type_sort_dimension = {
  1302. .name = "migtype",
  1303. .cmp = migrate_type_cmp,
  1304. };
  1305. static int gfp_flags_cmp(void *a, void *b)
  1306. {
  1307. struct page_stat *l = a;
  1308. struct page_stat *r = b;
  1309. /* for internal use to find free'd page */
  1310. if (l->gfp_flags == -1U)
  1311. return 0;
  1312. if (l->gfp_flags < r->gfp_flags)
  1313. return -1;
  1314. else if (l->gfp_flags > r->gfp_flags)
  1315. return 1;
  1316. return 0;
  1317. }
  1318. static struct sort_dimension gfp_flags_sort_dimension = {
  1319. .name = "gfp",
  1320. .cmp = gfp_flags_cmp,
  1321. };
  1322. static struct sort_dimension *slab_sorts[] = {
  1323. &ptr_sort_dimension,
  1324. &callsite_sort_dimension,
  1325. &hit_sort_dimension,
  1326. &bytes_sort_dimension,
  1327. &frag_sort_dimension,
  1328. &pingpong_sort_dimension,
  1329. };
  1330. static struct sort_dimension *page_sorts[] = {
  1331. &page_sort_dimension,
  1332. &page_callsite_sort_dimension,
  1333. &page_hit_sort_dimension,
  1334. &page_bytes_sort_dimension,
  1335. &page_order_sort_dimension,
  1336. &migrate_type_sort_dimension,
  1337. &gfp_flags_sort_dimension,
  1338. };
  1339. static int slab_sort_dimension__add(const char *tok, struct list_head *list)
  1340. {
  1341. struct sort_dimension *sort;
  1342. int i;
  1343. for (i = 0; i < (int)ARRAY_SIZE(slab_sorts); i++) {
  1344. if (!strcmp(slab_sorts[i]->name, tok)) {
  1345. sort = memdup(slab_sorts[i], sizeof(*slab_sorts[i]));
  1346. if (!sort) {
  1347. pr_err("%s: memdup failed\n", __func__);
  1348. return -1;
  1349. }
  1350. list_add_tail(&sort->list, list);
  1351. return 0;
  1352. }
  1353. }
  1354. return -1;
  1355. }
  1356. static int page_sort_dimension__add(const char *tok, struct list_head *list)
  1357. {
  1358. struct sort_dimension *sort;
  1359. int i;
  1360. for (i = 0; i < (int)ARRAY_SIZE(page_sorts); i++) {
  1361. if (!strcmp(page_sorts[i]->name, tok)) {
  1362. sort = memdup(page_sorts[i], sizeof(*page_sorts[i]));
  1363. if (!sort) {
  1364. pr_err("%s: memdup failed\n", __func__);
  1365. return -1;
  1366. }
  1367. list_add_tail(&sort->list, list);
  1368. return 0;
  1369. }
  1370. }
  1371. return -1;
  1372. }
  1373. static int setup_slab_sorting(struct list_head *sort_list, const char *arg)
  1374. {
  1375. char *tok;
  1376. char *str = strdup(arg);
  1377. char *pos = str;
  1378. if (!str) {
  1379. pr_err("%s: strdup failed\n", __func__);
  1380. return -1;
  1381. }
  1382. while (true) {
  1383. tok = strsep(&pos, ",");
  1384. if (!tok)
  1385. break;
  1386. if (slab_sort_dimension__add(tok, sort_list) < 0) {
  1387. error("Unknown slab --sort key: '%s'", tok);
  1388. free(str);
  1389. return -1;
  1390. }
  1391. }
  1392. free(str);
  1393. return 0;
  1394. }
  1395. static int setup_page_sorting(struct list_head *sort_list, const char *arg)
  1396. {
  1397. char *tok;
  1398. char *str = strdup(arg);
  1399. char *pos = str;
  1400. if (!str) {
  1401. pr_err("%s: strdup failed\n", __func__);
  1402. return -1;
  1403. }
  1404. while (true) {
  1405. tok = strsep(&pos, ",");
  1406. if (!tok)
  1407. break;
  1408. if (page_sort_dimension__add(tok, sort_list) < 0) {
  1409. error("Unknown page --sort key: '%s'", tok);
  1410. free(str);
  1411. return -1;
  1412. }
  1413. }
  1414. free(str);
  1415. return 0;
  1416. }
  1417. static int parse_sort_opt(const struct option *opt __maybe_unused,
  1418. const char *arg, int unset __maybe_unused)
  1419. {
  1420. if (!arg)
  1421. return -1;
  1422. if (kmem_page > kmem_slab ||
  1423. (kmem_page == 0 && kmem_slab == 0 && kmem_default == KMEM_PAGE)) {
  1424. if (caller_flag > alloc_flag)
  1425. return setup_page_sorting(&page_caller_sort, arg);
  1426. else
  1427. return setup_page_sorting(&page_alloc_sort, arg);
  1428. } else {
  1429. if (caller_flag > alloc_flag)
  1430. return setup_slab_sorting(&slab_caller_sort, arg);
  1431. else
  1432. return setup_slab_sorting(&slab_alloc_sort, arg);
  1433. }
  1434. return 0;
  1435. }
  1436. static int parse_caller_opt(const struct option *opt __maybe_unused,
  1437. const char *arg __maybe_unused,
  1438. int unset __maybe_unused)
  1439. {
  1440. caller_flag = (alloc_flag + 1);
  1441. return 0;
  1442. }
  1443. static int parse_alloc_opt(const struct option *opt __maybe_unused,
  1444. const char *arg __maybe_unused,
  1445. int unset __maybe_unused)
  1446. {
  1447. alloc_flag = (caller_flag + 1);
  1448. return 0;
  1449. }
  1450. static int parse_slab_opt(const struct option *opt __maybe_unused,
  1451. const char *arg __maybe_unused,
  1452. int unset __maybe_unused)
  1453. {
  1454. kmem_slab = (kmem_page + 1);
  1455. return 0;
  1456. }
  1457. static int parse_page_opt(const struct option *opt __maybe_unused,
  1458. const char *arg __maybe_unused,
  1459. int unset __maybe_unused)
  1460. {
  1461. kmem_page = (kmem_slab + 1);
  1462. return 0;
  1463. }
  1464. static int parse_line_opt(const struct option *opt __maybe_unused,
  1465. const char *arg, int unset __maybe_unused)
  1466. {
  1467. int lines;
  1468. if (!arg)
  1469. return -1;
  1470. lines = strtoul(arg, NULL, 10);
  1471. if (caller_flag > alloc_flag)
  1472. caller_lines = lines;
  1473. else
  1474. alloc_lines = lines;
  1475. return 0;
  1476. }
  1477. static int __cmd_record(int argc, const char **argv)
  1478. {
  1479. const char * const record_args[] = {
  1480. "record", "-a", "-R", "-c", "1",
  1481. };
  1482. const char * const slab_events[] = {
  1483. "-e", "kmem:kmalloc",
  1484. "-e", "kmem:kmalloc_node",
  1485. "-e", "kmem:kfree",
  1486. "-e", "kmem:kmem_cache_alloc",
  1487. "-e", "kmem:kmem_cache_alloc_node",
  1488. "-e", "kmem:kmem_cache_free",
  1489. };
  1490. const char * const page_events[] = {
  1491. "-e", "kmem:mm_page_alloc",
  1492. "-e", "kmem:mm_page_free",
  1493. };
  1494. unsigned int rec_argc, i, j;
  1495. const char **rec_argv;
  1496. rec_argc = ARRAY_SIZE(record_args) + argc - 1;
  1497. if (kmem_slab)
  1498. rec_argc += ARRAY_SIZE(slab_events);
  1499. if (kmem_page)
  1500. rec_argc += ARRAY_SIZE(page_events) + 1; /* for -g */
  1501. rec_argv = calloc(rec_argc + 1, sizeof(char *));
  1502. if (rec_argv == NULL)
  1503. return -ENOMEM;
  1504. for (i = 0; i < ARRAY_SIZE(record_args); i++)
  1505. rec_argv[i] = strdup(record_args[i]);
  1506. if (kmem_slab) {
  1507. for (j = 0; j < ARRAY_SIZE(slab_events); j++, i++)
  1508. rec_argv[i] = strdup(slab_events[j]);
  1509. }
  1510. if (kmem_page) {
  1511. rec_argv[i++] = strdup("-g");
  1512. for (j = 0; j < ARRAY_SIZE(page_events); j++, i++)
  1513. rec_argv[i] = strdup(page_events[j]);
  1514. }
  1515. for (j = 1; j < (unsigned int)argc; j++, i++)
  1516. rec_argv[i] = argv[j];
  1517. return cmd_record(i, rec_argv, NULL);
  1518. }
  1519. static int kmem_config(const char *var, const char *value, void *cb __maybe_unused)
  1520. {
  1521. if (!strcmp(var, "kmem.default")) {
  1522. if (!strcmp(value, "slab"))
  1523. kmem_default = KMEM_SLAB;
  1524. else if (!strcmp(value, "page"))
  1525. kmem_default = KMEM_PAGE;
  1526. else
  1527. pr_err("invalid default value ('slab' or 'page' required): %s\n",
  1528. value);
  1529. return 0;
  1530. }
  1531. return 0;
  1532. }
  1533. int cmd_kmem(int argc, const char **argv, const char *prefix __maybe_unused)
  1534. {
  1535. const char * const default_slab_sort = "frag,hit,bytes";
  1536. const char * const default_page_sort = "bytes,hit";
  1537. struct perf_data_file file = {
  1538. .mode = PERF_DATA_MODE_READ,
  1539. };
  1540. const struct option kmem_options[] = {
  1541. OPT_STRING('i', "input", &input_name, "file", "input file name"),
  1542. OPT_INCR('v', "verbose", &verbose,
  1543. "be more verbose (show symbol address, etc)"),
  1544. OPT_CALLBACK_NOOPT(0, "caller", NULL, NULL,
  1545. "show per-callsite statistics", parse_caller_opt),
  1546. OPT_CALLBACK_NOOPT(0, "alloc", NULL, NULL,
  1547. "show per-allocation statistics", parse_alloc_opt),
  1548. OPT_CALLBACK('s', "sort", NULL, "key[,key2...]",
  1549. "sort by keys: ptr, callsite, bytes, hit, pingpong, frag, "
  1550. "page, order, migtype, gfp", parse_sort_opt),
  1551. OPT_CALLBACK('l', "line", NULL, "num", "show n lines", parse_line_opt),
  1552. OPT_BOOLEAN(0, "raw-ip", &raw_ip, "show raw ip instead of symbol"),
  1553. OPT_BOOLEAN('f', "force", &file.force, "don't complain, do it"),
  1554. OPT_CALLBACK_NOOPT(0, "slab", NULL, NULL, "Analyze slab allocator",
  1555. parse_slab_opt),
  1556. OPT_CALLBACK_NOOPT(0, "page", NULL, NULL, "Analyze page allocator",
  1557. parse_page_opt),
  1558. OPT_BOOLEAN(0, "live", &live_page, "Show live page stat"),
  1559. OPT_END()
  1560. };
  1561. const char *const kmem_subcommands[] = { "record", "stat", NULL };
  1562. const char *kmem_usage[] = {
  1563. NULL,
  1564. NULL
  1565. };
  1566. struct perf_session *session;
  1567. int ret = -1;
  1568. const char errmsg[] = "No %s allocation events found. Have you run 'perf kmem record --%s'?\n";
  1569. perf_config(kmem_config, NULL);
  1570. argc = parse_options_subcommand(argc, argv, kmem_options,
  1571. kmem_subcommands, kmem_usage, 0);
  1572. if (!argc)
  1573. usage_with_options(kmem_usage, kmem_options);
  1574. if (kmem_slab == 0 && kmem_page == 0) {
  1575. if (kmem_default == KMEM_SLAB)
  1576. kmem_slab = 1;
  1577. else
  1578. kmem_page = 1;
  1579. }
  1580. if (!strncmp(argv[0], "rec", 3)) {
  1581. symbol__init(NULL);
  1582. return __cmd_record(argc, argv);
  1583. }
  1584. file.path = input_name;
  1585. kmem_session = session = perf_session__new(&file, false, &perf_kmem);
  1586. if (session == NULL)
  1587. return -1;
  1588. if (kmem_slab) {
  1589. if (!perf_evlist__find_tracepoint_by_name(session->evlist,
  1590. "kmem:kmalloc")) {
  1591. pr_err(errmsg, "slab", "slab");
  1592. goto out_delete;
  1593. }
  1594. }
  1595. if (kmem_page) {
  1596. struct perf_evsel *evsel;
  1597. evsel = perf_evlist__find_tracepoint_by_name(session->evlist,
  1598. "kmem:mm_page_alloc");
  1599. if (evsel == NULL) {
  1600. pr_err(errmsg, "page", "page");
  1601. goto out_delete;
  1602. }
  1603. kmem_page_size = pevent_get_page_size(evsel->tp_format->pevent);
  1604. symbol_conf.use_callchain = true;
  1605. }
  1606. symbol__init(&session->header.env);
  1607. if (!strcmp(argv[0], "stat")) {
  1608. setlocale(LC_ALL, "");
  1609. if (cpu__setup_cpunode_map())
  1610. goto out_delete;
  1611. if (list_empty(&slab_caller_sort))
  1612. setup_slab_sorting(&slab_caller_sort, default_slab_sort);
  1613. if (list_empty(&slab_alloc_sort))
  1614. setup_slab_sorting(&slab_alloc_sort, default_slab_sort);
  1615. if (list_empty(&page_caller_sort))
  1616. setup_page_sorting(&page_caller_sort, default_page_sort);
  1617. if (list_empty(&page_alloc_sort))
  1618. setup_page_sorting(&page_alloc_sort, default_page_sort);
  1619. if (kmem_page) {
  1620. setup_page_sorting(&page_alloc_sort_input,
  1621. "page,order,migtype,gfp");
  1622. setup_page_sorting(&page_caller_sort_input,
  1623. "callsite,order,migtype,gfp");
  1624. }
  1625. ret = __cmd_kmem(session);
  1626. } else
  1627. usage_with_options(kmem_usage, kmem_options);
  1628. out_delete:
  1629. perf_session__delete(session);
  1630. return ret;
  1631. }