PageRenderTime 44ms CodeModel.GetById 14ms RepoModel.GetById 0ms app.codeStats 1ms

/Documentation/ptp/testptp.c

https://github.com/othane/linux
C | 523 lines | 439 code | 46 blank | 38 comment | 69 complexity | 4a1c40fc67d45f93eb2bcd654b329182 MD5 | raw file
  1. /*
  2. * PTP 1588 clock support - User space test program
  3. *
  4. * Copyright (C) 2010 OMICRON electronics GmbH
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19. */
  20. #define _GNU_SOURCE
  21. #define __SANE_USERSPACE_TYPES__ /* For PPC64, to get LL64 types */
  22. #include <errno.h>
  23. #include <fcntl.h>
  24. #include <inttypes.h>
  25. #include <math.h>
  26. #include <signal.h>
  27. #include <stdio.h>
  28. #include <stdlib.h>
  29. #include <string.h>
  30. #include <sys/ioctl.h>
  31. #include <sys/mman.h>
  32. #include <sys/stat.h>
  33. #include <sys/time.h>
  34. #include <sys/timex.h>
  35. #include <sys/types.h>
  36. #include <time.h>
  37. #include <unistd.h>
  38. #include <linux/ptp_clock.h>
  39. #define DEVICE "/dev/ptp0"
  40. #ifndef ADJ_SETOFFSET
  41. #define ADJ_SETOFFSET 0x0100
  42. #endif
  43. #ifndef CLOCK_INVALID
  44. #define CLOCK_INVALID -1
  45. #endif
  46. /* clock_adjtime is not available in GLIBC < 2.14 */
  47. #if !__GLIBC_PREREQ(2, 14)
  48. #include <sys/syscall.h>
  49. static int clock_adjtime(clockid_t id, struct timex *tx)
  50. {
  51. return syscall(__NR_clock_adjtime, id, tx);
  52. }
  53. #endif
  54. static clockid_t get_clockid(int fd)
  55. {
  56. #define CLOCKFD 3
  57. #define FD_TO_CLOCKID(fd) ((~(clockid_t) (fd) << 3) | CLOCKFD)
  58. return FD_TO_CLOCKID(fd);
  59. }
  60. static void handle_alarm(int s)
  61. {
  62. printf("received signal %d\n", s);
  63. }
  64. static int install_handler(int signum, void (*handler)(int))
  65. {
  66. struct sigaction action;
  67. sigset_t mask;
  68. /* Unblock the signal. */
  69. sigemptyset(&mask);
  70. sigaddset(&mask, signum);
  71. sigprocmask(SIG_UNBLOCK, &mask, NULL);
  72. /* Install the signal handler. */
  73. action.sa_handler = handler;
  74. action.sa_flags = 0;
  75. sigemptyset(&action.sa_mask);
  76. sigaction(signum, &action, NULL);
  77. return 0;
  78. }
  79. static long ppb_to_scaled_ppm(int ppb)
  80. {
  81. /*
  82. * The 'freq' field in the 'struct timex' is in parts per
  83. * million, but with a 16 bit binary fractional field.
  84. * Instead of calculating either one of
  85. *
  86. * scaled_ppm = (ppb / 1000) << 16 [1]
  87. * scaled_ppm = (ppb << 16) / 1000 [2]
  88. *
  89. * we simply use double precision math, in order to avoid the
  90. * truncation in [1] and the possible overflow in [2].
  91. */
  92. return (long) (ppb * 65.536);
  93. }
  94. static int64_t pctns(struct ptp_clock_time *t)
  95. {
  96. return t->sec * 1000000000LL + t->nsec;
  97. }
  98. static void usage(char *progname)
  99. {
  100. fprintf(stderr,
  101. "usage: %s [options]\n"
  102. " -a val request a one-shot alarm after 'val' seconds\n"
  103. " -A val request a periodic alarm every 'val' seconds\n"
  104. " -c query the ptp clock's capabilities\n"
  105. " -d name device to open\n"
  106. " -e val read 'val' external time stamp events\n"
  107. " -f val adjust the ptp clock frequency by 'val' ppb\n"
  108. " -g get the ptp clock time\n"
  109. " -h prints this message\n"
  110. " -i val index for event/trigger\n"
  111. " -k val measure the time offset between system and phc clock\n"
  112. " for 'val' times (Maximum 25)\n"
  113. " -l list the current pin configuration\n"
  114. " -L pin,val configure pin index 'pin' with function 'val'\n"
  115. " the channel index is taken from the '-i' option\n"
  116. " 'val' specifies the auxiliary function:\n"
  117. " 0 - none\n"
  118. " 1 - external time stamp\n"
  119. " 2 - periodic output\n"
  120. " -p val enable output with a period of 'val' nanoseconds\n"
  121. " -P val enable or disable (val=1|0) the system clock PPS\n"
  122. " -s set the ptp clock time from the system time\n"
  123. " -S set the system time from the ptp clock time\n"
  124. " -t val shift the ptp clock time by 'val' seconds\n"
  125. " -T val set the ptp clock time to 'val' seconds\n",
  126. progname);
  127. }
  128. int main(int argc, char *argv[])
  129. {
  130. struct ptp_clock_caps caps;
  131. struct ptp_extts_event event;
  132. struct ptp_extts_request extts_request;
  133. struct ptp_perout_request perout_request;
  134. struct ptp_pin_desc desc;
  135. struct timespec ts;
  136. struct timex tx;
  137. static timer_t timerid;
  138. struct itimerspec timeout;
  139. struct sigevent sigevent;
  140. struct ptp_clock_time *pct;
  141. struct ptp_sys_offset *sysoff;
  142. char *progname;
  143. unsigned int i;
  144. int c, cnt, fd;
  145. char *device = DEVICE;
  146. clockid_t clkid;
  147. int adjfreq = 0x7fffffff;
  148. int adjtime = 0;
  149. int capabilities = 0;
  150. int extts = 0;
  151. int gettime = 0;
  152. int index = 0;
  153. int list_pins = 0;
  154. int oneshot = 0;
  155. int pct_offset = 0;
  156. int n_samples = 0;
  157. int periodic = 0;
  158. int perout = -1;
  159. int pin_index = -1, pin_func;
  160. int pps = -1;
  161. int seconds = 0;
  162. int settime = 0;
  163. int64_t t1, t2, tp;
  164. int64_t interval, offset;
  165. progname = strrchr(argv[0], '/');
  166. progname = progname ? 1+progname : argv[0];
  167. while (EOF != (c = getopt(argc, argv, "a:A:cd:e:f:ghi:k:lL:p:P:sSt:T:v"))) {
  168. switch (c) {
  169. case 'a':
  170. oneshot = atoi(optarg);
  171. break;
  172. case 'A':
  173. periodic = atoi(optarg);
  174. break;
  175. case 'c':
  176. capabilities = 1;
  177. break;
  178. case 'd':
  179. device = optarg;
  180. break;
  181. case 'e':
  182. extts = atoi(optarg);
  183. break;
  184. case 'f':
  185. adjfreq = atoi(optarg);
  186. break;
  187. case 'g':
  188. gettime = 1;
  189. break;
  190. case 'i':
  191. index = atoi(optarg);
  192. break;
  193. case 'k':
  194. pct_offset = 1;
  195. n_samples = atoi(optarg);
  196. break;
  197. case 'l':
  198. list_pins = 1;
  199. break;
  200. case 'L':
  201. cnt = sscanf(optarg, "%d,%d", &pin_index, &pin_func);
  202. if (cnt != 2) {
  203. usage(progname);
  204. return -1;
  205. }
  206. break;
  207. case 'p':
  208. perout = atoi(optarg);
  209. break;
  210. case 'P':
  211. pps = atoi(optarg);
  212. break;
  213. case 's':
  214. settime = 1;
  215. break;
  216. case 'S':
  217. settime = 2;
  218. break;
  219. case 't':
  220. adjtime = atoi(optarg);
  221. break;
  222. case 'T':
  223. settime = 3;
  224. seconds = atoi(optarg);
  225. break;
  226. case 'h':
  227. usage(progname);
  228. return 0;
  229. case '?':
  230. default:
  231. usage(progname);
  232. return -1;
  233. }
  234. }
  235. fd = open(device, O_RDWR);
  236. if (fd < 0) {
  237. fprintf(stderr, "opening %s: %s\n", device, strerror(errno));
  238. return -1;
  239. }
  240. clkid = get_clockid(fd);
  241. if (CLOCK_INVALID == clkid) {
  242. fprintf(stderr, "failed to read clock id\n");
  243. return -1;
  244. }
  245. if (capabilities) {
  246. if (ioctl(fd, PTP_CLOCK_GETCAPS, &caps)) {
  247. perror("PTP_CLOCK_GETCAPS");
  248. } else {
  249. printf("capabilities:\n"
  250. " %d maximum frequency adjustment (ppb)\n"
  251. " %d programmable alarms\n"
  252. " %d external time stamp channels\n"
  253. " %d programmable periodic signals\n"
  254. " %d pulse per second\n"
  255. " %d programmable pins\n"
  256. " %d cross timestamping\n",
  257. caps.max_adj,
  258. caps.n_alarm,
  259. caps.n_ext_ts,
  260. caps.n_per_out,
  261. caps.pps,
  262. caps.n_pins,
  263. caps.cross_timestamping);
  264. }
  265. }
  266. if (0x7fffffff != adjfreq) {
  267. memset(&tx, 0, sizeof(tx));
  268. tx.modes = ADJ_FREQUENCY;
  269. tx.freq = ppb_to_scaled_ppm(adjfreq);
  270. if (clock_adjtime(clkid, &tx)) {
  271. perror("clock_adjtime");
  272. } else {
  273. puts("frequency adjustment okay");
  274. }
  275. }
  276. if (adjtime) {
  277. memset(&tx, 0, sizeof(tx));
  278. tx.modes = ADJ_SETOFFSET;
  279. tx.time.tv_sec = adjtime;
  280. tx.time.tv_usec = 0;
  281. if (clock_adjtime(clkid, &tx) < 0) {
  282. perror("clock_adjtime");
  283. } else {
  284. puts("time shift okay");
  285. }
  286. }
  287. if (gettime) {
  288. if (clock_gettime(clkid, &ts)) {
  289. perror("clock_gettime");
  290. } else {
  291. printf("clock time: %ld.%09ld or %s",
  292. ts.tv_sec, ts.tv_nsec, ctime(&ts.tv_sec));
  293. }
  294. }
  295. if (settime == 1) {
  296. clock_gettime(CLOCK_REALTIME, &ts);
  297. if (clock_settime(clkid, &ts)) {
  298. perror("clock_settime");
  299. } else {
  300. puts("set time okay");
  301. }
  302. }
  303. if (settime == 2) {
  304. clock_gettime(clkid, &ts);
  305. if (clock_settime(CLOCK_REALTIME, &ts)) {
  306. perror("clock_settime");
  307. } else {
  308. puts("set time okay");
  309. }
  310. }
  311. if (settime == 3) {
  312. ts.tv_sec = seconds;
  313. ts.tv_nsec = 0;
  314. if (clock_settime(clkid, &ts)) {
  315. perror("clock_settime");
  316. } else {
  317. puts("set time okay");
  318. }
  319. }
  320. if (extts) {
  321. memset(&extts_request, 0, sizeof(extts_request));
  322. extts_request.index = index;
  323. extts_request.flags = PTP_ENABLE_FEATURE;
  324. if (ioctl(fd, PTP_EXTTS_REQUEST, &extts_request)) {
  325. perror("PTP_EXTTS_REQUEST");
  326. extts = 0;
  327. } else {
  328. puts("external time stamp request okay");
  329. }
  330. for (; extts; extts--) {
  331. cnt = read(fd, &event, sizeof(event));
  332. if (cnt != sizeof(event)) {
  333. perror("read");
  334. break;
  335. }
  336. printf("event index %u at %lld.%09u\n", event.index,
  337. event.t.sec, event.t.nsec);
  338. fflush(stdout);
  339. }
  340. /* Disable the feature again. */
  341. extts_request.flags = 0;
  342. if (ioctl(fd, PTP_EXTTS_REQUEST, &extts_request)) {
  343. perror("PTP_EXTTS_REQUEST");
  344. }
  345. }
  346. if (list_pins) {
  347. int n_pins = 0;
  348. if (ioctl(fd, PTP_CLOCK_GETCAPS, &caps)) {
  349. perror("PTP_CLOCK_GETCAPS");
  350. } else {
  351. n_pins = caps.n_pins;
  352. }
  353. for (i = 0; i < n_pins; i++) {
  354. desc.index = i;
  355. if (ioctl(fd, PTP_PIN_GETFUNC, &desc)) {
  356. perror("PTP_PIN_GETFUNC");
  357. break;
  358. }
  359. printf("name %s index %u func %u chan %u\n",
  360. desc.name, desc.index, desc.func, desc.chan);
  361. }
  362. }
  363. if (oneshot) {
  364. install_handler(SIGALRM, handle_alarm);
  365. /* Create a timer. */
  366. sigevent.sigev_notify = SIGEV_SIGNAL;
  367. sigevent.sigev_signo = SIGALRM;
  368. if (timer_create(clkid, &sigevent, &timerid)) {
  369. perror("timer_create");
  370. return -1;
  371. }
  372. /* Start the timer. */
  373. memset(&timeout, 0, sizeof(timeout));
  374. timeout.it_value.tv_sec = oneshot;
  375. if (timer_settime(timerid, 0, &timeout, NULL)) {
  376. perror("timer_settime");
  377. return -1;
  378. }
  379. pause();
  380. timer_delete(timerid);
  381. }
  382. if (periodic) {
  383. install_handler(SIGALRM, handle_alarm);
  384. /* Create a timer. */
  385. sigevent.sigev_notify = SIGEV_SIGNAL;
  386. sigevent.sigev_signo = SIGALRM;
  387. if (timer_create(clkid, &sigevent, &timerid)) {
  388. perror("timer_create");
  389. return -1;
  390. }
  391. /* Start the timer. */
  392. memset(&timeout, 0, sizeof(timeout));
  393. timeout.it_interval.tv_sec = periodic;
  394. timeout.it_value.tv_sec = periodic;
  395. if (timer_settime(timerid, 0, &timeout, NULL)) {
  396. perror("timer_settime");
  397. return -1;
  398. }
  399. while (1) {
  400. pause();
  401. }
  402. timer_delete(timerid);
  403. }
  404. if (perout >= 0) {
  405. if (clock_gettime(clkid, &ts)) {
  406. perror("clock_gettime");
  407. return -1;
  408. }
  409. memset(&perout_request, 0, sizeof(perout_request));
  410. perout_request.index = index;
  411. perout_request.start.sec = ts.tv_sec + 2;
  412. perout_request.start.nsec = 0;
  413. perout_request.period.sec = 0;
  414. perout_request.period.nsec = perout;
  415. if (ioctl(fd, PTP_PEROUT_REQUEST, &perout_request)) {
  416. perror("PTP_PEROUT_REQUEST");
  417. } else {
  418. puts("periodic output request okay");
  419. }
  420. }
  421. if (pin_index >= 0) {
  422. memset(&desc, 0, sizeof(desc));
  423. desc.index = pin_index;
  424. desc.func = pin_func;
  425. desc.chan = index;
  426. if (ioctl(fd, PTP_PIN_SETFUNC, &desc)) {
  427. perror("PTP_PIN_SETFUNC");
  428. } else {
  429. puts("set pin function okay");
  430. }
  431. }
  432. if (pps != -1) {
  433. int enable = pps ? 1 : 0;
  434. if (ioctl(fd, PTP_ENABLE_PPS, enable)) {
  435. perror("PTP_ENABLE_PPS");
  436. } else {
  437. puts("pps for system time request okay");
  438. }
  439. }
  440. if (pct_offset) {
  441. if (n_samples <= 0 || n_samples > 25) {
  442. puts("n_samples should be between 1 and 25");
  443. usage(progname);
  444. return -1;
  445. }
  446. sysoff = calloc(1, sizeof(*sysoff));
  447. if (!sysoff) {
  448. perror("calloc");
  449. return -1;
  450. }
  451. sysoff->n_samples = n_samples;
  452. if (ioctl(fd, PTP_SYS_OFFSET, sysoff))
  453. perror("PTP_SYS_OFFSET");
  454. else
  455. puts("system and phc clock time offset request okay");
  456. pct = &sysoff->ts[0];
  457. for (i = 0; i < sysoff->n_samples; i++) {
  458. t1 = pctns(pct+2*i);
  459. tp = pctns(pct+2*i+1);
  460. t2 = pctns(pct+2*i+2);
  461. interval = t2 - t1;
  462. offset = (t2 + t1) / 2 - tp;
  463. printf("system time: %lld.%u\n",
  464. (pct+2*i)->sec, (pct+2*i)->nsec);
  465. printf("phc time: %lld.%u\n",
  466. (pct+2*i+1)->sec, (pct+2*i+1)->nsec);
  467. printf("system time: %lld.%u\n",
  468. (pct+2*i+2)->sec, (pct+2*i+2)->nsec);
  469. printf("system/phc clock time offset is %" PRId64 " ns\n"
  470. "system clock time delay is %" PRId64 " ns\n",
  471. offset, interval);
  472. }
  473. free(sysoff);
  474. }
  475. close(fd);
  476. return 0;
  477. }