/myOpenCV/cpp/tutorial_code/core/interoperability_with_OpenCV_1/interoperability_with_OpenCV_1.cpp
C++ | 134 lines | 86 code | 27 blank | 21 comment | 6 complexity | c080ee5df32e5efce7747e1d217e7104 MD5 | raw file
- #include <stdio.h>
- #include <iostream>
- #include <opencv2/core/core.hpp>
- #include <opencv2/imgproc/imgproc.hpp>
- #include <opencv2/highgui/highgui.hpp>
- using namespace cv; // The new C++ interface API is inside this namespace. Import it.
- using namespace std;
- static void help( char* progName)
- {
- cout << endl << progName
- << " shows how to use cv::Mat and IplImages together (converting back and forth)." << endl
- << "Also contains example for image read, spliting the planes, merging back and " << endl
- << " color conversion, plus iterating through pixels. " << endl
- << "Usage:" << endl
- << progName << " [image-name Default: lena.jpg]" << endl << endl;
- }
- // comment out the define to use only the latest C++ API
- #define DEMO_MIXED_API_USE
- int main( int argc, char** argv )
- {
- help(argv[0]);
- const char* imagename = argc > 1 ? argv[1] : "lena.jpg";
- #ifdef DEMO_MIXED_API_USE
- Ptr<IplImage> IplI = cvLoadImage(imagename); // Ptr<T> is safe ref-counting pointer class
- if(IplI.empty())
- {
- cerr << "Can not load image " << imagename << endl;
- return -1;
- }
- Mat I(IplI); // Convert to the new style container. Only header created. Image not copied.
- #else
- Mat I = imread(imagename); // the newer cvLoadImage alternative, MATLAB-style function
- if( I.empty() ) // same as if( !I.data )
- {
- cerr << "Can not load image " << imagename << endl;
- return -1;
- }
- #endif
- // convert image to YUV color space. The output image will be created automatically.
- Mat I_YUV;
- cvtColor(I, I_YUV, CV_BGR2YCrCb);
- vector<Mat> planes; // Use the STL's vector structure to store multiple Mat objects
- split(I_YUV, planes); // split the image into separate color planes (Y U V)
- #if 1 // change it to 0 if you want to see a blurred and noisy version of this processing
- // Mat scanning
- // Method 1. process Y plane using an iterator
- MatIterator_<uchar> it = planes[0].begin<uchar>(), it_end = planes[0].end<uchar>();
- for(; it != it_end; ++it)
- {
- double v = *it * 1.7 + rand()%21 - 10;
- *it = saturate_cast<uchar>(v*v/255);
- }
- for( int y = 0; y < I_YUV.rows; y++ )
- {
- // Method 2. process the first chroma plane using pre-stored row pointer.
- uchar* Uptr = planes[1].ptr<uchar>(y);
- for( int x = 0; x < I_YUV.cols; x++ )
- {
- Uptr[x] = saturate_cast<uchar>((Uptr[x]-128)/2 + 128);
- // Method 3. process the second chroma plane using individual element access
- uchar& Vxy = planes[2].at<uchar>(y, x);
- Vxy = saturate_cast<uchar>((Vxy-128)/2 + 128);
- }
- }
- #else
- Mat noisyI(I.size(), CV_8U); // Create a matrix of the specified size and type
- // Fills the matrix with normally distributed random values (around number with deviation off).
- // There is also randu() for uniformly distributed random number generation
- randn(noisyI, Scalar::all(128), Scalar::all(20));
- // blur the noisyI a bit, kernel size is 3x3 and both sigma's are set to 0.5
- GaussianBlur(noisyI, noisyI, Size(3, 3), 0.5, 0.5);
- const double brightness_gain = 0;
- const double contrast_gain = 1.7;
- #ifdef DEMO_MIXED_API_USE
- // To pass the new matrices to the functions that only work with IplImage or CvMat do:
- // step 1) Convert the headers (tip: data will not be copied).
- // step 2) call the function (tip: to pass a pointer do not forget unary "&" to form pointers)
- IplImage cv_planes_0 = planes[0], cv_noise = noisyI;
- cvAddWeighted(&cv_planes_0, contrast_gain, &cv_noise, 1, -128 + brightness_gain, &cv_planes_0);
- #else
- addWeighted(planes[0], contrast_gain, noisyI, 1, -128 + brightness_gain, planes[0]);
- #endif
- const double color_scale = 0.5;
- // Mat::convertTo() replaces cvConvertScale.
- // One must explicitly specify the output matrix type (we keep it intact - planes[1].type())
- planes[1].convertTo(planes[1], planes[1].type(), color_scale, 128*(1-color_scale));
- // alternative form of cv::convertScale if we know the datatype at compile time ("uchar" here).
- // This expression will not create any temporary arrays ( so should be almost as fast as above)
- planes[2] = Mat_<uchar>(planes[2]*color_scale + 128*(1-color_scale));
- // Mat::mul replaces cvMul(). Again, no temporary arrays are created in case of simple expressions.
- planes[0] = planes[0].mul(planes[0], 1./255);
- #endif
- merge(planes, I_YUV); // now merge the results back
- cvtColor(I_YUV, I, CV_YCrCb2BGR); // and produce the output RGB image
- namedWindow("image with grain", CV_WINDOW_AUTOSIZE); // use this to create images
- #ifdef DEMO_MIXED_API_USE
- // this is to demonstrate that I and IplI really share the data - the result of the above
- // processing is stored in I and thus in IplI too.
- cvShowImage("image with grain", IplI);
- #else
- imshow("image with grain", I); // the new MATLAB style function show
- #endif
- waitKey();
- // Tip: No memory freeing is required!
- // All the memory will be automatically released by the Vector<>, Mat and Ptr<> destructor.
- return 0;
- }