/dep/SFMT/SFMT.h
C Header | 308 lines | 202 code | 34 blank | 72 comment | 27 complexity | 83dc2eccd135cf46acd134e776279e08 MD5 | raw file
- /*
- * Copyright notice
- * ================
- * GNU General Public License http://www.gnu.org/licenses/gpl.html
- * This C++ implementation of SFMT contains parts of the original C code
- * which was published under the following BSD license, which is therefore
- * in effect in addition to the GNU General Public License.
- * Copyright (c) 2006, 2007 by Mutsuo Saito, Makoto Matsumoto and Hiroshima University.
- * Copyright (c) 2008 by Agner Fog.
- * Copyright (c) 2010 Trinity Core
- *
- * BSD License:
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are met:
- * > Redistributions of source code must retain the above copyright notice,
- * this list of conditions and the following disclaimer.
- * > Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- * > Neither the name of the Hiroshima University nor the names of its
- * contributors may be used to endorse or promote products derived from
- * this software without specific prior written permission.
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
- #ifndef SFMT_H
- #define SFMT_H
- #include <emmintrin.h> // Define SSE2 intrinsics
- #include "randomc.h" // Define integer types etc
- #include <time.h>
- // Choose one of the possible Mersenne exponents.
- // Higher values give longer cycle length and use more memory:
- //#define MEXP 607
- //#define MEXP 1279
- //#define MEXP 2281
- //#define MEXP 4253
- #define MEXP 11213
- //#define MEXP 19937
- //#define MEXP 44497
- // Define constants for the selected Mersenne exponent:
- #if MEXP == 44497
- #define SFMT_N 348 // Size of state vector
- #define SFMT_M 330 // Position of intermediate feedback
- #define SFMT_SL1 5 // Left shift of W[N-1], 32-bit words
- #define SFMT_SL2 3 // Left shift of W[0], *8, 128-bit words
- #define SFMT_SR1 9 // Right shift of W[M], 32-bit words
- #define SFMT_SR2 3 // Right shift of W[N-2], *8, 128-bit words
- #define SFMT_MASK 0xeffffffb,0xdfbebfff,0xbfbf7bef,0x9ffd7bff // AND mask
- #define SFMT_PARITY 1,0,0xa3ac4000,0xecc1327a // Period certification vector
- #elif MEXP == 19937
- #define SFMT_N 156 // Size of state vector
- #define SFMT_M 122 // Position of intermediate feedback
- #define SFMT_SL1 18 // Left shift of W[N-1], 32-bit words
- #define SFMT_SL2 1 // Left shift of W[0], *8, 128-bit words
- #define SFMT_SR1 11 // Right shift of W[M], 32-bit words
- #define SFMT_SR2 1 // Right shift of W[N-2], *8, 128-bit words
- #define SFMT_MASK 0xdfffffef,0xddfecb7f,0xbffaffff,0xbffffff6 // AND mask
- #define SFMT_PARITY 1,0,0,0x13c9e684 // Period certification vector
- #elif MEXP == 11213
- #define SFMT_N 88 // Size of state vector
- #define SFMT_M 68 // Position of intermediate feedback
- #define SFMT_SL1 14 // Left shift of W[N-1], 32-bit words
- #define SFMT_SL2 3 // Left shift of W[0], *8, 128-bit words
- #define SFMT_SR1 7 // Right shift of W[M], 32-bit words
- #define SFMT_SR2 3 // Right shift of W[N-2], *8, 128-bit words
- #define SFMT_MASK 0xeffff7fb,0xffffffef,0xdfdfbfff,0x7fffdbfd // AND mask
- #define SFMT_PARITY 1,0,0xe8148000,0xd0c7afa3 // Period certification vector
- #elif MEXP == 4253
- #define SFMT_N 34 // Size of state vector
- #define SFMT_M 17 // Position of intermediate feedback
- #define SFMT_SL1 20 // Left shift of W[N-1], 32-bit words
- #define SFMT_SL2 1 // Left shift of W[0], *8, 128-bit words
- #define SFMT_SR1 7 // Right shift of W[M], 32-bit words
- #define SFMT_SR2 1 // Right shift of W[N-2], *8, 128-bit words
- #define SFMT_MASK 0x9f7bffff, 0x9fffff5f, 0x3efffffb, 0xfffff7bb // AND mask
- #define SFMT_PARITY 0xa8000001, 0xaf5390a3, 0xb740b3f8, 0x6c11486d // Period certification vector
- #elif MEXP == 2281
- #define SFMT_N 18 // Size of state vector
- #define SFMT_M 12 // Position of intermediate feedback
- #define SFMT_SL1 19 // Left shift of W[N-1], 32-bit words
- #define SFMT_SL2 1 // Left shift of W[0], *8, 128-bit words
- #define SFMT_SR1 5 // Right shift of W[M], 32-bit words
- #define SFMT_SR2 1 // Right shift of W[N-2], *8, 128-bit words
- #define SFMT_MASK 0xbff7ffbf, 0xfdfffffe, 0xf7ffef7f, 0xf2f7cbbf // AND mask
- #define SFMT_PARITY 0x00000001, 0x00000000, 0x00000000, 0x41dfa600 // Period certification vector
- #elif MEXP == 1279
- #define SFMT_N 10 // Size of state vector
- #define SFMT_M 7 // Position of intermediate feedback
- #define SFMT_SL1 14 // Left shift of W[N-1], 32-bit words
- #define SFMT_SL2 3 // Left shift of W[0], *8, 128-bit words
- #define SFMT_SR1 5 // Right shift of W[M], 32-bit words
- #define SFMT_SR2 1 // Right shift of W[N-2], *8, 128-bit words
- #define SFMT_MASK 0xf7fefffd, 0x7fefcfff, 0xaff3ef3f, 0xb5ffff7f // AND mask
- #define SFMT_PARITY 0x00000001, 0x00000000, 0x00000000, 0x20000000 // Period certification vector
- #elif MEXP == 607
- #define SFMT_N 5 // Size of state vector
- #define SFMT_M 2 // Position of intermediate feedback
- #define SFMT_SL1 15 // Left shift of W[N-1], 32-bit words
- #define SFMT_SL2 3 // Left shift of W[0], *8, 128-bit words
- #define SFMT_SR1 13 // Right shift of W[M], 32-bit words
- #define SFMT_SR2 3 // Right shift of W[N-2], *8, 128-bit words
- #define SFMT_MASK 0xfdff37ff, 0xef7f3f7d, 0xff777b7d, 0x7ff7fb2f // AND mask
- #define SFMT_PARITY 0x00000001, 0x00000000, 0x00000000, 0x5986f054 // Period certification vector
- #endif
- // Functions used by SFMTRand::RandomInitByArray
- static uint32_t func1(uint32_t x) {
- return (x ^ (x >> 27)) * 1664525U;
- }
- static uint32_t func2(uint32_t x) {
- return (x ^ (x >> 27)) * 1566083941U;
- }
- // Subfunction for the sfmt algorithm
- static inline __m128i sfmt_recursion(__m128i const &a, __m128i const &b,
- __m128i const &c, __m128i const &d, __m128i const &mask) {
- __m128i a1, b1, c1, d1, z1, z2;
- b1 = _mm_srli_epi32(b, SFMT_SR1);
- a1 = _mm_slli_si128(a, SFMT_SL2);
- c1 = _mm_srli_si128(c, SFMT_SR2);
- d1 = _mm_slli_epi32(d, SFMT_SL1);
- b1 = _mm_and_si128(b1, mask);
- z1 = _mm_xor_si128(a, a1);
- z2 = _mm_xor_si128(b1, d1);
- z1 = _mm_xor_si128(z1, c1);
- z2 = _mm_xor_si128(z1, z2);
- return z2;
- }
- // Class for SFMT generator
- class SFMTRand { // Encapsulate random number generator
- public:
- SFMTRand() { LastInterval = 0; RandomInit((int)(time(0))); }
- void RandomInit(int seed) // Re-seed
- {
- // Re-seed
- uint32_t i; // Loop counter
- uint32_t y = seed; // Temporary
- uint32_t statesize = SFMT_N*4; // Size of state vector
- // Fill state vector with random numbers from seed
- ((uint32_t*)state)[0] = y;
- const uint32_t factor = 1812433253U;// Multiplication factor
- for (i = 1; i < statesize; i++) {
- y = factor * (y ^ (y >> 30)) + i;
- ((uint32_t*)state)[i] = y;
- }
- // Further initialization and period certification
- Init2();
- }
- int32_t IRandom(int32_t min, int32_t max) // Output random integer
- {
- // Output random integer in the interval min <= x <= max
- // Slightly inaccurate if (max-min+1) is not a power of 2
- if (max <= min) {
- if (max == min) return min; else return 0x80000000;
- }
- // Assume 64 bit integers supported. Use multiply and shift method
- uint32_t interval; // Length of interval
- uint64_t longran; // Random bits * interval
- uint32_t iran; // Longran / 2^32
- interval = (uint32_t)(max - min + 1);
- longran = (uint64_t)BRandom() * interval;
- iran = (uint32_t)(longran >> 32);
- // Convert back to signed and return result
- return (int32_t)iran + min;
- }
- uint32_t URandom(uint32_t min, uint32_t max)
- {
- // Output random integer in the interval min <= x <= max
- // Slightly inaccurate if (max-min+1) is not a power of 2
- if (max <= min) {
- if (max == min) return min; else return 0;
- }
- // Assume 64 bit integers supported. Use multiply and shift method
- uint32_t interval; // Length of interval
- uint64_t longran; // Random bits * interval
- uint32_t iran; // Longran / 2^32
- interval = (uint32_t)(max - min + 1);
- longran = (uint64_t)BRandom() * interval;
- iran = (uint32_t)(longran >> 32);
- // Convert back to signed and return result
- return iran + min;
- }
- double Random() // Output random floating point number
- {
- // Output random floating point number
- if (ix >= SFMT_N*4-1) {
- // Make sure we have at least two 32-bit numbers
- Generate();
- }
- uint64_t r = *(uint64_t*)((uint32_t*)state+ix);
- ix += 2;
- // 52 bits resolution for compatibility with assembly version:
- return (int64_t)(r >> 12) * (1./(67108864.0*67108864.0));
- }
- uint32_t BRandom() // Output random bits
- {
- // Output 32 random bits
- uint32_t y;
- if (ix >= SFMT_N*4) {
- Generate();
- }
- y = ((uint32_t*)state)[ix++];
- return y;
- }
- private:
- void Init2() // Various initializations and period certification
- {
- // Various initializations and period certification
- uint32_t i, j, temp;
-
- // Initialize mask
- static const uint32_t maskinit[4] = {SFMT_MASK};
- mask = _mm_loadu_si128((__m128i*)maskinit);
- // Period certification
- // Define period certification vector
- static const uint32_t parityvec[4] = {SFMT_PARITY};
- // Check if parityvec & state[0] has odd parity
- temp = 0;
- for (i = 0; i < 4; i++)
- temp ^= parityvec[i] & ((uint32_t*)state)[i];
- for (i = 16; i > 0; i >>= 1) temp ^= temp >> i;
- if (!(temp & 1)) {
- // parity is even. Certification failed
- // Find a nonzero bit in period certification vector
- for (i = 0; i < 4; i++) {
- if (parityvec[i]) {
- for (j = 1; j; j <<= 1) {
- if (parityvec[i] & j) {
- // Flip the corresponding bit in state[0] to change parity
- ((uint32_t*)state)[i] ^= j;
- // Done. Exit i and j loops
- i = 5; break;
- }
- }
- }
- }
- }
- // Generate first random numbers and set ix = 0
- Generate();
- }
- void Generate() // Fill state array with new random numbers
- {
- // Fill state array with new random numbers
- int i;
- __m128i r, r1, r2;
- r1 = state[SFMT_N - 2];
- r2 = state[SFMT_N - 1];
- for (i = 0; i < SFMT_N - SFMT_M; i++) {
- r = sfmt_recursion(state[i], state[i + SFMT_M], r1, r2, mask);
- state[i] = r;
- r1 = r2;
- r2 = r;
- }
- for (; i < SFMT_N; i++) {
- r = sfmt_recursion(state[i], state[i + SFMT_M - SFMT_N], r1, r2, mask);
- state[i] = r;
- r1 = r2;
- r2 = r;
- }
- ix = 0;
- }
- uint32_t ix; // Index into state array
- uint32_t LastInterval; // Last interval length for IRandom
- uint32_t RLimit; // Rejection limit used by IRandom
- __m128i mask; // AND mask
- __m128i state[SFMT_N]; // State vector for SFMT generator
- };
- #endif // SFMT_H