/interpreter/ghc/libraries/base/Data/Foldable.hs
https://github.com/khskrede/mehh · Haskell · 317 lines · 156 code · 45 blank · 116 comment · 5 complexity · fcf875a78310f696f5a818b7ea58e208 MD5 · raw file
- -----------------------------------------------------------------------------
- -- |
- -- Module : Data.Foldable
- -- Copyright : Ross Paterson 2005
- -- License : BSD-style (see the LICENSE file in the distribution)
- --
- -- Maintainer : libraries@haskell.org
- -- Stability : experimental
- -- Portability : portable
- --
- -- Class of data structures that can be folded to a summary value.
- --
- -- Many of these functions generalize "Prelude", "Control.Monad" and
- -- "Data.List" functions of the same names from lists to any 'Foldable'
- -- functor. To avoid ambiguity, either import those modules hiding
- -- these names or qualify uses of these function names with an alias
- -- for this module.
- module Data.Foldable (
- -- * Folds
- Foldable(..),
- -- ** Special biased folds
- foldr',
- foldl',
- foldrM,
- foldlM,
- -- ** Folding actions
- -- *** Applicative actions
- traverse_,
- for_,
- sequenceA_,
- asum,
- -- *** Monadic actions
- mapM_,
- forM_,
- sequence_,
- msum,
- -- ** Specialized folds
- toList,
- concat,
- concatMap,
- and,
- or,
- any,
- all,
- sum,
- product,
- maximum,
- maximumBy,
- minimum,
- minimumBy,
- -- ** Searches
- elem,
- notElem,
- find
- ) where
- import Prelude hiding (foldl, foldr, foldl1, foldr1, mapM_, sequence_,
- elem, notElem, concat, concatMap, and, or, any, all,
- sum, product, maximum, minimum)
- import qualified Prelude (foldl, foldr, foldl1, foldr1)
- import Control.Applicative
- import Control.Monad (MonadPlus(..))
- import Data.Maybe (fromMaybe, listToMaybe)
- import Data.Monoid
- #ifdef __NHC__
- import Control.Arrow (ArrowZero(..)) -- work around nhc98 typechecker problem
- #endif
- #ifdef __GLASGOW_HASKELL__
- import GHC.Exts (build)
- #endif
- #if defined(__GLASGOW_HASKELL__)
- import GHC.Arr
- #elif defined(__HUGS__)
- import Hugs.Array
- #elif defined(__NHC__)
- import Array
- #endif
- -- | Data structures that can be folded.
- --
- -- Minimal complete definition: 'foldMap' or 'foldr'.
- --
- -- For example, given a data type
- --
- -- > data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)
- --
- -- a suitable instance would be
- --
- -- > instance Foldable Tree where
- -- > foldMap f Empty = mempty
- -- > foldMap f (Leaf x) = f x
- -- > foldMap f (Node l k r) = foldMap f l `mappend` f k `mappend` foldMap f r
- --
- -- This is suitable even for abstract types, as the monoid is assumed
- -- to satisfy the monoid laws. Alternatively, one could define @foldr@:
- --
- -- > instance Foldable Tree where
- -- > foldr f z Empty = z
- -- > foldr f z (Leaf x) = f x z
- -- > foldr f z (Node l k r) = foldr f (f k (foldr f z r)) l
- --
- class Foldable t where
- -- | Combine the elements of a structure using a monoid.
- fold :: Monoid m => t m -> m
- fold = foldMap id
- -- | Map each element of the structure to a monoid,
- -- and combine the results.
- foldMap :: Monoid m => (a -> m) -> t a -> m
- foldMap f = foldr (mappend . f) mempty
- -- | Right-associative fold of a structure.
- --
- -- @'foldr' f z = 'Prelude.foldr' f z . 'toList'@
- foldr :: (a -> b -> b) -> b -> t a -> b
- foldr f z t = appEndo (foldMap (Endo . f) t) z
- -- | Left-associative fold of a structure.
- --
- -- @'foldl' f z = 'Prelude.foldl' f z . 'toList'@
- foldl :: (a -> b -> a) -> a -> t b -> a
- foldl f z t = appEndo (getDual (foldMap (Dual . Endo . flip f) t)) z
- -- | A variant of 'foldr' that has no base case,
- -- and thus may only be applied to non-empty structures.
- --
- -- @'foldr1' f = 'Prelude.foldr1' f . 'toList'@
- foldr1 :: (a -> a -> a) -> t a -> a
- foldr1 f xs = fromMaybe (error "foldr1: empty structure")
- (foldr mf Nothing xs)
- where mf x Nothing = Just x
- mf x (Just y) = Just (f x y)
- -- | A variant of 'foldl' that has no base case,
- -- and thus may only be applied to non-empty structures.
- --
- -- @'foldl1' f = 'Prelude.foldl1' f . 'toList'@
- foldl1 :: (a -> a -> a) -> t a -> a
- foldl1 f xs = fromMaybe (error "foldl1: empty structure")
- (foldl mf Nothing xs)
- where mf Nothing y = Just y
- mf (Just x) y = Just (f x y)
- -- instances for Prelude types
- instance Foldable Maybe where
- foldr _ z Nothing = z
- foldr f z (Just x) = f x z
- foldl _ z Nothing = z
- foldl f z (Just x) = f z x
- instance Foldable [] where
- foldr = Prelude.foldr
- foldl = Prelude.foldl
- foldr1 = Prelude.foldr1
- foldl1 = Prelude.foldl1
- instance Ix i => Foldable (Array i) where
- foldr f z = Prelude.foldr f z . elems
- foldl f z = Prelude.foldl f z . elems
- foldr1 f = Prelude.foldr1 f . elems
- foldl1 f = Prelude.foldl1 f . elems
- -- | Fold over the elements of a structure,
- -- associating to the right, but strictly.
- foldr' :: Foldable t => (a -> b -> b) -> b -> t a -> b
- foldr' f z0 xs = foldl f' id xs z0
- where f' k x z = k $! f x z
- -- | Monadic fold over the elements of a structure,
- -- associating to the right, i.e. from right to left.
- foldrM :: (Foldable t, Monad m) => (a -> b -> m b) -> b -> t a -> m b
- foldrM f z0 xs = foldl f' return xs z0
- where f' k x z = f x z >>= k
- -- | Fold over the elements of a structure,
- -- associating to the left, but strictly.
- foldl' :: Foldable t => (a -> b -> a) -> a -> t b -> a
- foldl' f z0 xs = foldr f' id xs z0
- where f' x k z = k $! f z x
- -- | Monadic fold over the elements of a structure,
- -- associating to the left, i.e. from left to right.
- foldlM :: (Foldable t, Monad m) => (a -> b -> m a) -> a -> t b -> m a
- foldlM f z0 xs = foldr f' return xs z0
- where f' x k z = f z x >>= k
- -- | Map each element of a structure to an action, evaluate
- -- these actions from left to right, and ignore the results.
- traverse_ :: (Foldable t, Applicative f) => (a -> f b) -> t a -> f ()
- traverse_ f = foldr ((*>) . f) (pure ())
- -- | 'for_' is 'traverse_' with its arguments flipped.
- for_ :: (Foldable t, Applicative f) => t a -> (a -> f b) -> f ()
- {-# INLINE for_ #-}
- for_ = flip traverse_
- -- | Map each element of a structure to a monadic action, evaluate
- -- these actions from left to right, and ignore the results.
- mapM_ :: (Foldable t, Monad m) => (a -> m b) -> t a -> m ()
- mapM_ f = foldr ((>>) . f) (return ())
- -- | 'forM_' is 'mapM_' with its arguments flipped.
- forM_ :: (Foldable t, Monad m) => t a -> (a -> m b) -> m ()
- {-# INLINE forM_ #-}
- forM_ = flip mapM_
- -- | Evaluate each action in the structure from left to right,
- -- and ignore the results.
- sequenceA_ :: (Foldable t, Applicative f) => t (f a) -> f ()
- sequenceA_ = foldr (*>) (pure ())
- -- | Evaluate each monadic action in the structure from left to right,
- -- and ignore the results.
- sequence_ :: (Foldable t, Monad m) => t (m a) -> m ()
- sequence_ = foldr (>>) (return ())
- -- | The sum of a collection of actions, generalizing 'concat'.
- asum :: (Foldable t, Alternative f) => t (f a) -> f a
- {-# INLINE asum #-}
- asum = foldr (<|>) empty
- -- | The sum of a collection of actions, generalizing 'concat'.
- msum :: (Foldable t, MonadPlus m) => t (m a) -> m a
- {-# INLINE msum #-}
- msum = foldr mplus mzero
- -- These use foldr rather than foldMap to avoid repeated concatenation.
- -- | List of elements of a structure.
- toList :: Foldable t => t a -> [a]
- {-# INLINE toList #-}
- #ifdef __GLASGOW_HASKELL__
- toList t = build (\ c n -> foldr c n t)
- #else
- toList = foldr (:) []
- #endif
- -- | The concatenation of all the elements of a container of lists.
- concat :: Foldable t => t [a] -> [a]
- concat = fold
- -- | Map a function over all the elements of a container and concatenate
- -- the resulting lists.
- concatMap :: Foldable t => (a -> [b]) -> t a -> [b]
- concatMap = foldMap
- -- | 'and' returns the conjunction of a container of Bools. For the
- -- result to be 'True', the container must be finite; 'False', however,
- -- results from a 'False' value finitely far from the left end.
- and :: Foldable t => t Bool -> Bool
- and = getAll . foldMap All
- -- | 'or' returns the disjunction of a container of Bools. For the
- -- result to be 'False', the container must be finite; 'True', however,
- -- results from a 'True' value finitely far from the left end.
- or :: Foldable t => t Bool -> Bool
- or = getAny . foldMap Any
- -- | Determines whether any element of the structure satisfies the predicate.
- any :: Foldable t => (a -> Bool) -> t a -> Bool
- any p = getAny . foldMap (Any . p)
- -- | Determines whether all elements of the structure satisfy the predicate.
- all :: Foldable t => (a -> Bool) -> t a -> Bool
- all p = getAll . foldMap (All . p)
- -- | The 'sum' function computes the sum of the numbers of a structure.
- sum :: (Foldable t, Num a) => t a -> a
- sum = getSum . foldMap Sum
- -- | The 'product' function computes the product of the numbers of a structure.
- product :: (Foldable t, Num a) => t a -> a
- product = getProduct . foldMap Product
- -- | The largest element of a non-empty structure.
- maximum :: (Foldable t, Ord a) => t a -> a
- maximum = foldr1 max
- -- | The largest element of a non-empty structure with respect to the
- -- given comparison function.
- maximumBy :: Foldable t => (a -> a -> Ordering) -> t a -> a
- maximumBy cmp = foldr1 max'
- where max' x y = case cmp x y of
- GT -> x
- _ -> y
- -- | The least element of a non-empty structure.
- minimum :: (Foldable t, Ord a) => t a -> a
- minimum = foldr1 min
- -- | The least element of a non-empty structure with respect to the
- -- given comparison function.
- minimumBy :: Foldable t => (a -> a -> Ordering) -> t a -> a
- minimumBy cmp = foldr1 min'
- where min' x y = case cmp x y of
- GT -> y
- _ -> x
- -- | Does the element occur in the structure?
- elem :: (Foldable t, Eq a) => a -> t a -> Bool
- elem = any . (==)
- -- | 'notElem' is the negation of 'elem'.
- notElem :: (Foldable t, Eq a) => a -> t a -> Bool
- notElem x = not . elem x
- -- | The 'find' function takes a predicate and a structure and returns
- -- the leftmost element of the structure matching the predicate, or
- -- 'Nothing' if there is no such element.
- find :: Foldable t => (a -> Bool) -> t a -> Maybe a
- find p = listToMaybe . concatMap (\ x -> if p x then [x] else [])