nltk /nltk/chunk/regexp.py

Language Python Lines 1385
MD5 Hash 948dc5daa3ff794374f760cccae91ed2
Repository https://github.com/BrucePHill/nltk.git View Raw File
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
# Natural Language Toolkit: Regular Expression Chunkers
#
# Copyright (C) 2001-2013 NLTK Project
# Author: Edward Loper <edloper@gradient.cis.upenn.edu>
#         Steven Bird <stevenbird1@gmail.com> (minor additions)
# URL: <http://www.nltk.org/>
# For license information, see LICENSE.TXT
from __future__ import print_function, unicode_literals
from __future__ import division

import re

from nltk.tree import Tree
from nltk.chunk.api import ChunkParserI
from nltk.compat import python_2_unicode_compatible, string_types, unicode_repr

##//////////////////////////////////////////////////////
##  ChunkString
##//////////////////////////////////////////////////////

@python_2_unicode_compatible
class ChunkString(object):
    """
    A string-based encoding of a particular chunking of a text.
    Internally, the ``ChunkString`` class uses a single string to
    encode the chunking of the input text.  This string contains a
    sequence of angle-bracket delimited tags, with chunking indicated
    by braces.  An example of this encoding is::

        {<DT><JJ><NN>}<VBN><IN>{<DT><NN>}<.>{<DT><NN>}<VBD><.>

    ``ChunkString`` are created from tagged texts (i.e., lists of
    ``tokens`` whose type is ``TaggedType``).  Initially, nothing is
    chunked.

    The chunking of a ``ChunkString`` can be modified with the ``xform()``
    method, which uses a regular expression to transform the string
    representation.  These transformations should only add and remove
    braces; they should *not* modify the sequence of angle-bracket
    delimited tags.

    :type _str: str
    :ivar _str: The internal string representation of the text's
        encoding.  This string representation contains a sequence of
        angle-bracket delimited tags, with chunking indicated by
        braces.  An example of this encoding is::

            {<DT><JJ><NN>}<VBN><IN>{<DT><NN>}<.>{<DT><NN>}<VBD><.>

    :type _pieces: list(tagged tokens and chunks)
    :ivar _pieces: The tagged tokens and chunks encoded by this ``ChunkString``.
    :ivar _debug: The debug level.  See the constructor docs.

    :cvar IN_CHUNK_PATTERN: A zero-width regexp pattern string that
        will only match positions that are in chunks.
    :cvar IN_CHINK_PATTERN: A zero-width regexp pattern string that
        will only match positions that are in chinks.
    """
    CHUNK_TAG_CHAR = r'[^\{\}<>]'
    CHUNK_TAG = r'(<%s+?>)' % CHUNK_TAG_CHAR

    IN_CHUNK_PATTERN = r'(?=[^\{]*\})'
    IN_CHINK_PATTERN = r'(?=[^\}]*(\{|$))'

    # These are used by _verify
    _CHUNK = r'(\{%s+?\})+?' % CHUNK_TAG
    _CHINK = r'(%s+?)+?' % CHUNK_TAG
    _VALID = re.compile(r'^(\{?%s\}?)*?$' % CHUNK_TAG)
    _BRACKETS = re.compile('[^\{\}]+')
    _BALANCED_BRACKETS = re.compile(r'(\{\})*$')

    def __init__(self, chunk_struct, debug_level=1):
        """
        Construct a new ``ChunkString`` that encodes the chunking of
        the text ``tagged_tokens``.

        :type chunk_struct: Tree
        :param chunk_struct: The chunk structure to be further chunked.
        :type debug_level: int
        :param debug_level: The level of debugging which should be
            applied to transformations on the ``ChunkString``.  The
            valid levels are:
                - 0: no checks
                - 1: full check on to_chunkstruct
                - 2: full check on to_chunkstruct and cursory check after
                   each transformation.
                - 3: full check on to_chunkstruct and full check after
                   each transformation.
            We recommend you use at least level 1.  You should
            probably use level 3 if you use any non-standard
            subclasses of ``RegexpChunkRule``.
        """
        self._top_node = chunk_struct.node
        self._pieces = chunk_struct[:]
        tags = [self._tag(tok) for tok in self._pieces]
        self._str = '<' + '><'.join(tags) + '>'
        self._debug = debug_level

    def _tag(self, tok):
        if isinstance(tok, tuple):
            return tok[1]
        elif isinstance(tok, Tree):
            return tok.node
        else:
            raise ValueError('chunk structures must contain tagged '
                             'tokens or trees')

    def _verify(self, s, verify_tags):
        """
        Check to make sure that ``s`` still corresponds to some chunked
        version of ``_pieces``.

        :type verify_tags: bool
        :param verify_tags: Whether the individual tags should be
            checked.  If this is false, ``_verify`` will check to make
            sure that ``_str`` encodes a chunked version of *some*
            list of tokens.  If this is true, then ``_verify`` will
            check to make sure that the tags in ``_str`` match those in
            ``_pieces``.

        :raise ValueError: if the internal string representation of
            this ``ChunkString`` is invalid or not consistent with _pieces.
        """
        # Check overall form
        if not ChunkString._VALID.match(s):
            raise ValueError('Transformation generated invalid '
                             'chunkstring:\n  %s' % s)

        # Check that parens are balanced.  If the string is long, we
        # have to do this in pieces, to avoid a maximum recursion
        # depth limit for regular expressions.
        brackets = ChunkString._BRACKETS.sub('', s)
        for i in range(1 + len(brackets) // 5000):
            substr = brackets[i*5000:i*5000+5000]
            if not ChunkString._BALANCED_BRACKETS.match(substr):
                raise ValueError('Transformation generated invalid '
                                 'chunkstring:\n  %s' % s)

        if verify_tags<=0: return

        tags1 = (re.split(r'[\{\}<>]+', s))[1:-1]
        tags2 = [self._tag(piece) for piece in self._pieces]
        if tags1 != tags2:
            raise ValueError('Transformation generated invalid '
                             'chunkstring: tag changed')

    def to_chunkstruct(self, chunk_node='CHUNK'):
        """
        Return the chunk structure encoded by this ``ChunkString``.

        :rtype: Tree
        :raise ValueError: If a transformation has generated an
            invalid chunkstring.
        """
        if self._debug > 0: self._verify(self._str, 1)

        # Use this alternating list to create the chunkstruct.
        pieces = []
        index = 0
        piece_in_chunk = 0
        for piece in re.split('[{}]', self._str):

            # Find the list of tokens contained in this piece.
            length = piece.count('<')
            subsequence = self._pieces[index:index+length]

            # Add this list of tokens to our pieces.
            if piece_in_chunk:
                pieces.append(Tree(chunk_node, subsequence))
            else:
                pieces += subsequence

            # Update index, piece_in_chunk
            index += length
            piece_in_chunk = not piece_in_chunk

        return Tree(self._top_node, pieces)

    def xform(self, regexp, repl):
        """
        Apply the given transformation to the string encoding of this
        ``ChunkString``.  In particular, find all occurrences that match
        ``regexp``, and replace them using ``repl`` (as done by
        ``re.sub``).

        This transformation should only add and remove braces; it
        should *not* modify the sequence of angle-bracket delimited
        tags.  Furthermore, this transformation may not result in
        improper bracketing.  Note, in particular, that bracketing may
        not be nested.

        :type regexp: str or regexp
        :param regexp: A regular expression matching the substring
            that should be replaced.  This will typically include a
            named group, which can be used by ``repl``.
        :type repl: str
        :param repl: An expression specifying what should replace the
            matched substring.  Typically, this will include a named
            replacement group, specified by ``regexp``.
        :rtype: None
        :raise ValueError: If this transformation generated an
            invalid chunkstring.
        """
        # Do the actual substitution
        s = re.sub(regexp, repl, self._str)

        # The substitution might have generated "empty chunks"
        # (substrings of the form "{}").  Remove them, so they don't
        # interfere with other transformations.
        s = re.sub('\{\}', '', s)

        # Make sure that the transformation was legal.
        if self._debug > 1: self._verify(s, self._debug-2)

        # Commit the transformation.
        self._str = s

    def __repr__(self):
        """
        Return a string representation of this ``ChunkString``.
        It has the form::

            <ChunkString: '{<DT><JJ><NN>}<VBN><IN>{<DT><NN>}'>

        :rtype: str
        """
        return '<ChunkString: %s>' % unicode_repr(self._str)

    def __str__(self):
        """
        Return a formatted representation of this ``ChunkString``.
        This representation will include extra spaces to ensure that
        tags will line up with the representation of other
        ``ChunkStrings`` for the same text, regardless of the chunking.

       :rtype: str
        """
        # Add spaces to make everything line up.
        str = re.sub(r'>(?!\})', r'> ', self._str)
        str = re.sub(r'([^\{])<', r'\1 <', str)
        if str[0] == '<': str = ' ' + str
        return str

##//////////////////////////////////////////////////////
##  Chunking Rules
##//////////////////////////////////////////////////////

@python_2_unicode_compatible
class RegexpChunkRule(object):
    """
    A rule specifying how to modify the chunking in a ``ChunkString``,
    using a transformational regular expression.  The
    ``RegexpChunkRule`` class itself can be used to implement any
    transformational rule based on regular expressions.  There are
    also a number of subclasses, which can be used to implement
    simpler types of rules, based on matching regular expressions.

    Each ``RegexpChunkRule`` has a regular expression and a
    replacement expression.  When a ``RegexpChunkRule`` is "applied"
    to a ``ChunkString``, it searches the ``ChunkString`` for any
    substring that matches the regular expression, and replaces it
    using the replacement expression.  This search/replace operation
    has the same semantics as ``re.sub``.

    Each ``RegexpChunkRule`` also has a description string, which
    gives a short (typically less than 75 characters) description of
    the purpose of the rule.

    This transformation defined by this ``RegexpChunkRule`` should
    only add and remove braces; it should *not* modify the sequence
    of angle-bracket delimited tags.  Furthermore, this transformation
    may not result in nested or mismatched bracketing.
    """
    def __init__(self, regexp, repl, descr):
        """
        Construct a new RegexpChunkRule.

        :type regexp: regexp or str
        :param regexp: The regular expression for this ``RegexpChunkRule``.
            When this rule is applied to a ``ChunkString``, any
            substring that matches ``regexp`` will be replaced using
            the replacement string ``repl``.  Note that this must be a
            normal regular expression, not a tag pattern.
        :type repl: str
        :param repl: The replacement expression for this ``RegexpChunkRule``.
            When this rule is applied to a ``ChunkString``, any substring
            that matches ``regexp`` will be replaced using ``repl``.
        :type descr: str
        :param descr: A short description of the purpose and/or effect
            of this rule.
        """
        if isinstance(regexp, string_types):
            regexp = re.compile(regexp)
        self._repl = repl
        self._descr = descr
        self._regexp = regexp

    def apply(self, chunkstr):
        # Keep docstring generic so we can inherit it.
        """
        Apply this rule to the given ``ChunkString``.  See the
        class reference documentation for a description of what it
        means to apply a rule.

        :type chunkstr: ChunkString
        :param chunkstr: The chunkstring to which this rule is applied.
        :rtype: None
        :raise ValueError: If this transformation generated an
            invalid chunkstring.
        """
        chunkstr.xform(self._regexp, self._repl)

    def descr(self):
        """
        Return a short description of the purpose and/or effect of
        this rule.

        :rtype: str
        """
        return self._descr

    def __repr__(self):
        """
        Return a string representation of this rule.  It has the form::

            <RegexpChunkRule: '{<IN|VB.*>}'->'<IN>'>

        Note that this representation does not include the
        description string; that string can be accessed
        separately with the ``descr()`` method.

        :rtype: str
        """
        return ('<RegexpChunkRule: '+unicode_repr(self._regexp.pattern)+
                '->'+unicode_repr(self._repl)+'>')

    @staticmethod
    def parse(s):
        """
        Create a RegexpChunkRule from a string description.
        Currently, the following formats are supported::

          {regexp}         # chunk rule
          }regexp{         # chink rule
          regexp}{regexp   # split rule
          regexp{}regexp   # merge rule

        Where ``regexp`` is a regular expression for the rule.  Any
        text following the comment marker (``#``) will be used as
        the rule's description:

        >>> from nltk.chunk.regexp import RegexpChunkRule
        >>> RegexpChunkRule.parse('{<DT>?<NN.*>+}')
        <ChunkRule: '<DT>?<NN.*>+'>
        """
        # Split off the comment (but don't split on '\#')
        m = re.match(r'(?P<rule>(\\.|[^#])*)(?P<comment>#.*)?', s)
        rule = m.group('rule').strip()
        comment = (m.group('comment') or '')[1:].strip()

        # Pattern bodies: chunk, chink, split, merge
        try:
            if not rule:
                raise ValueError('Empty chunk pattern')
            if rule[0] == '{' and rule[-1] == '}':
                return ChunkRule(rule[1:-1], comment)
            elif rule[0] == '}' and rule[-1] == '{':
                return ChinkRule(rule[1:-1], comment)
            elif '}{' in rule:
                left, right = rule.split('}{')
                return SplitRule(left, right, comment)
            elif '{}' in rule:
                left, right = rule.split('{}')
                return MergeRule(left, right, comment)
            elif re.match('[^{}]*{[^{}]*}[^{}]*', rule):
                left, chunk, right = re.split('[{}]', rule)
                return ChunkRuleWithContext(left, chunk, right, comment)
            else:
                raise ValueError('Illegal chunk pattern: %s' % rule)
        except (ValueError, re.error):
            raise ValueError('Illegal chunk pattern: %s' % rule)


@python_2_unicode_compatible
class ChunkRule(RegexpChunkRule):
    """
    A rule specifying how to add chunks to a ``ChunkString``, using a
    matching tag pattern.  When applied to a ``ChunkString``, it will
    find any substring that matches this tag pattern and that is not
    already part of a chunk, and create a new chunk containing that
    substring.
    """
    def __init__(self, tag_pattern, descr):

        """
        Construct a new ``ChunkRule``.

        :type tag_pattern: str
        :param tag_pattern: This rule's tag pattern.  When
            applied to a ``ChunkString``, this rule will
            chunk any substring that matches this tag pattern and that
            is not already part of a chunk.
        :type descr: str
        :param descr: A short description of the purpose and/or effect
            of this rule.
        """
        self._pattern = tag_pattern
        regexp = re.compile('(?P<chunk>%s)%s' %
                            (tag_pattern2re_pattern(tag_pattern),
                             ChunkString.IN_CHINK_PATTERN))
        RegexpChunkRule.__init__(self, regexp, '{\g<chunk>}', descr)

    def __repr__(self):
        """
        Return a string representation of this rule.  It has the form::

            <ChunkRule: '<IN|VB.*>'>

        Note that this representation does not include the
        description string; that string can be accessed
        separately with the ``descr()`` method.

        :rtype: str
        """
        return '<ChunkRule: '+unicode_repr(self._pattern)+'>'

@python_2_unicode_compatible
class ChinkRule(RegexpChunkRule):
    """
    A rule specifying how to remove chinks to a ``ChunkString``,
    using a matching tag pattern.  When applied to a
    ``ChunkString``, it will find any substring that matches this
    tag pattern and that is contained in a chunk, and remove it
    from that chunk, thus creating two new chunks.
    """
    def __init__(self, tag_pattern, descr):
        """
        Construct a new ``ChinkRule``.

        :type tag_pattern: str
        :param tag_pattern: This rule's tag pattern.  When
            applied to a ``ChunkString``, this rule will
            find any substring that matches this tag pattern and that
            is contained in a chunk, and remove it from that chunk,
            thus creating two new chunks.
        :type descr: str
        :param descr: A short description of the purpose and/or effect
            of this rule.
        """
        self._pattern = tag_pattern
        regexp = re.compile('(?P<chink>%s)%s' %
                            (tag_pattern2re_pattern(tag_pattern),
                             ChunkString.IN_CHUNK_PATTERN))
        RegexpChunkRule.__init__(self, regexp, '}\g<chink>{', descr)

    def __repr__(self):
        """
        Return a string representation of this rule.  It has the form::

            <ChinkRule: '<IN|VB.*>'>

        Note that this representation does not include the
        description string; that string can be accessed
        separately with the ``descr()`` method.

        :rtype: str
        """
        return '<ChinkRule: '+unicode_repr(self._pattern)+'>'


@python_2_unicode_compatible
class UnChunkRule(RegexpChunkRule):
    """
    A rule specifying how to remove chunks to a ``ChunkString``,
    using a matching tag pattern.  When applied to a
    ``ChunkString``, it will find any complete chunk that matches this
    tag pattern, and un-chunk it.
    """
    def __init__(self, tag_pattern, descr):
        """
        Construct a new ``UnChunkRule``.

        :type tag_pattern: str
        :param tag_pattern: This rule's tag pattern.  When
            applied to a ``ChunkString``, this rule will
            find any complete chunk that matches this tag pattern,
            and un-chunk it.
        :type descr: str
        :param descr: A short description of the purpose and/or effect
            of this rule.
        """
        self._pattern = tag_pattern
        regexp = re.compile('\{(?P<chunk>%s)\}' %
                            tag_pattern2re_pattern(tag_pattern))
        RegexpChunkRule.__init__(self, regexp, '\g<chunk>', descr)

    def __repr__(self):
        """
        Return a string representation of this rule.  It has the form::

            <UnChunkRule: '<IN|VB.*>'>

        Note that this representation does not include the
        description string; that string can be accessed
        separately with the ``descr()`` method.

        :rtype: str
        """
        return '<UnChunkRule: '+unicode_repr(self._pattern)+'>'


@python_2_unicode_compatible
class MergeRule(RegexpChunkRule):
    """
    A rule specifying how to merge chunks in a ``ChunkString``, using
    two matching tag patterns: a left pattern, and a right pattern.
    When applied to a ``ChunkString``, it will find any chunk whose end
    matches left pattern, and immediately followed by a chunk whose
    beginning matches right pattern.  It will then merge those two
    chunks into a single chunk.
    """
    def __init__(self, left_tag_pattern, right_tag_pattern, descr):
        """
        Construct a new ``MergeRule``.

        :type right_tag_pattern: str
        :param right_tag_pattern: This rule's right tag
            pattern.  When applied to a ``ChunkString``, this
            rule will find any chunk whose end matches
            ``left_tag_pattern``, and immediately followed by a chunk
            whose beginning matches this pattern.  It will
            then merge those two chunks into a single chunk.
        :type left_tag_pattern: str
        :param left_tag_pattern: This rule's left tag
            pattern.  When applied to a ``ChunkString``, this
            rule will find any chunk whose end matches
            this pattern, and immediately followed by a chunk
            whose beginning matches ``right_tag_pattern``.  It will
            then merge those two chunks into a single chunk.

        :type descr: str
        :param descr: A short description of the purpose and/or effect
            of this rule.
        """
        # Ensure that the individual patterns are coherent.  E.g., if
        # left='(' and right=')', then this will raise an exception:
        re.compile(tag_pattern2re_pattern(left_tag_pattern))
        re.compile(tag_pattern2re_pattern(right_tag_pattern))

        self._left_tag_pattern = left_tag_pattern
        self._right_tag_pattern = right_tag_pattern
        regexp = re.compile('(?P<left>%s)}{(?=%s)' %
                            (tag_pattern2re_pattern(left_tag_pattern),
                             tag_pattern2re_pattern(right_tag_pattern)))
        RegexpChunkRule.__init__(self, regexp, '\g<left>', descr)

    def __repr__(self):
        """
        Return a string representation of this rule.  It has the form::

            <MergeRule: '<NN|DT|JJ>', '<NN|JJ>'>

        Note that this representation does not include the
        description string; that string can be accessed
        separately with the ``descr()`` method.

        :rtype: str
        """
        return ('<MergeRule: '+unicode_repr(self._left_tag_pattern)+', '+
                unicode_repr(self._right_tag_pattern)+'>')


@python_2_unicode_compatible
class SplitRule(RegexpChunkRule):
    """
    A rule specifying how to split chunks in a ``ChunkString``, using
    two matching tag patterns: a left pattern, and a right pattern.
    When applied to a ``ChunkString``, it will find any chunk that
    matches the left pattern followed by the right pattern.  It will
    then split the chunk into two new chunks, at the point between the
    two pattern matches.
    """
    def __init__(self, left_tag_pattern, right_tag_pattern, descr):
        """
        Construct a new ``SplitRule``.

        :type right_tag_pattern: str
        :param right_tag_pattern: This rule's right tag
            pattern.  When applied to a ``ChunkString``, this rule will
            find any chunk containing a substring that matches
            ``left_tag_pattern`` followed by this pattern.  It will
            then split the chunk into two new chunks at the point
            between these two matching patterns.
        :type left_tag_pattern: str
        :param left_tag_pattern: This rule's left tag
            pattern.  When applied to a ``ChunkString``, this rule will
            find any chunk containing a substring that matches this
            pattern followed by ``right_tag_pattern``.  It will then
            split the chunk into two new chunks at the point between
            these two matching patterns.
        :type descr: str
        :param descr: A short description of the purpose and/or effect
            of this rule.
        """
        # Ensure that the individual patterns are coherent.  E.g., if
        # left='(' and right=')', then this will raise an exception:
        re.compile(tag_pattern2re_pattern(left_tag_pattern))
        re.compile(tag_pattern2re_pattern(right_tag_pattern))

        self._left_tag_pattern = left_tag_pattern
        self._right_tag_pattern = right_tag_pattern
        regexp = re.compile('(?P<left>%s)(?=%s)' %
                            (tag_pattern2re_pattern(left_tag_pattern),
                             tag_pattern2re_pattern(right_tag_pattern)))
        RegexpChunkRule.__init__(self, regexp, r'\g<left>}{', descr)

    def __repr__(self):
        """
        Return a string representation of this rule.  It has the form::

            <SplitRule: '<NN>', '<DT>'>

        Note that this representation does not include the
        description string; that string can be accessed
        separately with the ``descr()`` method.

       :rtype: str
        """
        return ('<SplitRule: '+unicode_repr(self._left_tag_pattern)+', '+
                unicode_repr(self._right_tag_pattern)+'>')


@python_2_unicode_compatible
class ExpandLeftRule(RegexpChunkRule):
    """
    A rule specifying how to expand chunks in a ``ChunkString`` to the left,
    using two matching tag patterns: a left pattern, and a right pattern.
    When applied to a ``ChunkString``, it will find any chunk whose beginning
    matches right pattern, and immediately preceded by a chink whose
    end matches left pattern.  It will then expand the chunk to incorporate
    the new material on the left.
    """
    def __init__(self, left_tag_pattern, right_tag_pattern, descr):
        """
        Construct a new ``ExpandRightRule``.

        :type right_tag_pattern: str
        :param right_tag_pattern: This rule's right tag
            pattern.  When applied to a ``ChunkString``, this
            rule will find any chunk whose beginning matches
            ``right_tag_pattern``, and immediately preceded by a chink
            whose end matches this pattern.  It will
            then merge those two chunks into a single chunk.
        :type left_tag_pattern: str
        :param left_tag_pattern: This rule's left tag
            pattern.  When applied to a ``ChunkString``, this
            rule will find any chunk whose beginning matches
            this pattern, and immediately preceded by a chink
            whose end matches ``left_tag_pattern``.  It will
            then expand the chunk to incorporate the new material on the left.

        :type descr: str
        :param descr: A short description of the purpose and/or effect
            of this rule.
        """
        # Ensure that the individual patterns are coherent.  E.g., if
        # left='(' and right=')', then this will raise an exception:
        re.compile(tag_pattern2re_pattern(left_tag_pattern))
        re.compile(tag_pattern2re_pattern(right_tag_pattern))

        self._left_tag_pattern = left_tag_pattern
        self._right_tag_pattern = right_tag_pattern
        regexp = re.compile('(?P<left>%s)\{(?P<right>%s)' %
                            (tag_pattern2re_pattern(left_tag_pattern),
                             tag_pattern2re_pattern(right_tag_pattern)))
        RegexpChunkRule.__init__(self, regexp, '{\g<left>\g<right>', descr)

    def __repr__(self):
        """
        Return a string representation of this rule.  It has the form::

            <ExpandLeftRule: '<NN|DT|JJ>', '<NN|JJ>'>

        Note that this representation does not include the
        description string; that string can be accessed
        separately with the ``descr()`` method.

        :rtype: str
        """
        return ('<ExpandLeftRule: '+unicode_repr(self._left_tag_pattern)+', '+
                unicode_repr(self._right_tag_pattern)+'>')


@python_2_unicode_compatible
class ExpandRightRule(RegexpChunkRule):
    """
    A rule specifying how to expand chunks in a ``ChunkString`` to the
    right, using two matching tag patterns: a left pattern, and a
    right pattern.  When applied to a ``ChunkString``, it will find any
    chunk whose end matches left pattern, and immediately followed by
    a chink whose beginning matches right pattern.  It will then
    expand the chunk to incorporate the new material on the right.
    """
    def __init__(self, left_tag_pattern, right_tag_pattern, descr):
        """
        Construct a new ``ExpandRightRule``.

        :type right_tag_pattern: str
        :param right_tag_pattern: This rule's right tag
            pattern.  When applied to a ``ChunkString``, this
            rule will find any chunk whose end matches
            ``left_tag_pattern``, and immediately followed by a chink
            whose beginning matches this pattern.  It will
            then merge those two chunks into a single chunk.
        :type left_tag_pattern: str
        :param left_tag_pattern: This rule's left tag
            pattern.  When applied to a ``ChunkString``, this
            rule will find any chunk whose end matches
            this pattern, and immediately followed by a chink
            whose beginning matches ``right_tag_pattern``.  It will
            then expand the chunk to incorporate the new material on the right.

        :type descr: str
        :param descr: A short description of the purpose and/or effect
            of this rule.
        """
        # Ensure that the individual patterns are coherent.  E.g., if
        # left='(' and right=')', then this will raise an exception:
        re.compile(tag_pattern2re_pattern(left_tag_pattern))
        re.compile(tag_pattern2re_pattern(right_tag_pattern))

        self._left_tag_pattern = left_tag_pattern
        self._right_tag_pattern = right_tag_pattern
        regexp = re.compile('(?P<left>%s)\}(?P<right>%s)' %
                            (tag_pattern2re_pattern(left_tag_pattern),
                             tag_pattern2re_pattern(right_tag_pattern)))
        RegexpChunkRule.__init__(self, regexp, '\g<left>\g<right>}', descr)

    def __repr__(self):
        """
        Return a string representation of this rule.  It has the form::

            <ExpandRightRule: '<NN|DT|JJ>', '<NN|JJ>'>

        Note that this representation does not include the
        description string; that string can be accessed
        separately with the ``descr()`` method.

        :rtype: str
        """
        return ('<ExpandRightRule: '+unicode_repr(self._left_tag_pattern)+', '+
                unicode_repr(self._right_tag_pattern)+'>')


@python_2_unicode_compatible
class ChunkRuleWithContext(RegexpChunkRule):
    """
    A rule specifying how to add chunks to a ``ChunkString``, using
    three matching tag patterns: one for the left context, one for the
    chunk, and one for the right context.  When applied to a
    ``ChunkString``, it will find any substring that matches the chunk
    tag pattern, is surrounded by substrings that match the two
    context patterns, and is not already part of a chunk; and create a
    new chunk containing the substring that matched the chunk tag
    pattern.

    Caveat: Both the left and right context are consumed when this
    rule matches; therefore, if you need to find overlapping matches,
    you will need to apply your rule more than once.
    """
    def __init__(self, left_context_tag_pattern, chunk_tag_pattern,
                 right_context_tag_pattern, descr):
        """
        Construct a new ``ChunkRuleWithContext``.

        :type left_context_tag_pattern: str
        :param left_context_tag_pattern: A tag pattern that must match
            the left context of ``chunk_tag_pattern`` for this rule to
            apply.
        :type chunk_tag_pattern: str
        :param chunk_tag_pattern: A tag pattern that must match for this
            rule to apply.  If the rule does apply, then this pattern
            also identifies the substring that will be made into a chunk.
        :type right_context_tag_pattern: str
        :param right_context_tag_pattern: A tag pattern that must match
            the right context of ``chunk_tag_pattern`` for this rule to
            apply.
        :type descr: str
        :param descr: A short description of the purpose and/or effect
            of this rule.
        """
        # Ensure that the individual patterns are coherent.  E.g., if
        # left='(' and right=')', then this will raise an exception:
        re.compile(tag_pattern2re_pattern(left_context_tag_pattern))
        re.compile(tag_pattern2re_pattern(chunk_tag_pattern))
        re.compile(tag_pattern2re_pattern(right_context_tag_pattern))

        self._left_context_tag_pattern = left_context_tag_pattern
        self._chunk_tag_pattern = chunk_tag_pattern
        self._right_context_tag_pattern = right_context_tag_pattern
        regexp = re.compile('(?P<left>%s)(?P<chunk>%s)(?P<right>%s)%s' %
                            (tag_pattern2re_pattern(left_context_tag_pattern),
                             tag_pattern2re_pattern(chunk_tag_pattern),
                             tag_pattern2re_pattern(right_context_tag_pattern),
                             ChunkString.IN_CHINK_PATTERN))
        replacement = r'\g<left>{\g<chunk>}\g<right>'
        RegexpChunkRule.__init__(self, regexp, replacement, descr)

    def __repr__(self):
        """
        Return a string representation of this rule.  It has the form::

            <ChunkRuleWithContext: '<IN>', '<NN>', '<DT>'>

        Note that this representation does not include the
        description string; that string can be accessed
        separately with the ``descr()`` method.

        :rtype: str
        """
        return '<ChunkRuleWithContext:  %r, %r, %r>' % (
            self._left_context_tag_pattern, self._chunk_tag_pattern,
            self._right_context_tag_pattern)

##//////////////////////////////////////////////////////
##  Tag Pattern Format Conversion
##//////////////////////////////////////////////////////

# this should probably be made more strict than it is -- e.g., it
# currently accepts 'foo'.
CHUNK_TAG_PATTERN = re.compile(r'^((%s|<%s>)*)$' %
                                ('[^\{\}<>]+',
                                 '[^\{\}<>]+'))

def tag_pattern2re_pattern(tag_pattern):
    """
    Convert a tag pattern to a regular expression pattern.  A "tag
    pattern" is a modified version of a regular expression, designed
    for matching sequences of tags.  The differences between regular
    expression patterns and tag patterns are:

        - In tag patterns, ``'<'`` and ``'>'`` act as parentheses; so
          ``'<NN>+'`` matches one or more repetitions of ``'<NN>'``, not
          ``'<NN'`` followed by one or more repetitions of ``'>'``.
        - Whitespace in tag patterns is ignored.  So
          ``'<DT> | <NN>'`` is equivalant to ``'<DT>|<NN>'``
        - In tag patterns, ``'.'`` is equivalant to ``'[^{}<>]'``; so
          ``'<NN.*>'`` matches any single tag starting with ``'NN'``.

    In particular, ``tag_pattern2re_pattern`` performs the following
    transformations on the given pattern:

        - Replace '.' with '[^<>{}]'
        - Remove any whitespace
        - Add extra parens around '<' and '>', to make '<' and '>' act
          like parentheses.  E.g., so that in '<NN>+', the '+' has scope
          over the entire '<NN>'; and so that in '<NN|IN>', the '|' has
          scope over 'NN' and 'IN', but not '<' or '>'.
        - Check to make sure the resulting pattern is valid.

    :type tag_pattern: str
    :param tag_pattern: The tag pattern to convert to a regular
        expression pattern.
    :raise ValueError: If ``tag_pattern`` is not a valid tag pattern.
        In particular, ``tag_pattern`` should not include braces; and it
        should not contain nested or mismatched angle-brackets.
    :rtype: str
    :return: A regular expression pattern corresponding to
        ``tag_pattern``.
    """
    # Clean up the regular expression
    tag_pattern = re.sub(r'\s', '', tag_pattern)
    tag_pattern = re.sub(r'<', '(<(', tag_pattern)
    tag_pattern = re.sub(r'>', ')>)', tag_pattern)

    # Check the regular expression
    if not CHUNK_TAG_PATTERN.match(tag_pattern):
        raise ValueError('Bad tag pattern: %r' % tag_pattern)

    # Replace "." with CHUNK_TAG_CHAR.
    # We have to do this after, since it adds {}[]<>s, which would
    # confuse CHUNK_TAG_PATTERN.
    # PRE doesn't have lookback assertions, so reverse twice, and do
    # the pattern backwards (with lookahead assertions).  This can be
    # made much cleaner once we can switch back to SRE.
    def reverse_str(str):
        lst = list(str)
        lst.reverse()
        return ''.join(lst)
    tc_rev = reverse_str(ChunkString.CHUNK_TAG_CHAR)
    reversed = reverse_str(tag_pattern)
    reversed = re.sub(r'\.(?!\\(\\\\)*($|[^\\]))', tc_rev, reversed)
    tag_pattern = reverse_str(reversed)

    return tag_pattern


##//////////////////////////////////////////////////////
##  RegexpChunkParser
##//////////////////////////////////////////////////////

@python_2_unicode_compatible
class RegexpChunkParser(ChunkParserI):
    """
    A regular expression based chunk parser.  ``RegexpChunkParser`` uses a
    sequence of "rules" to find chunks of a single type within a
    text.  The chunking of the text is encoded using a ``ChunkString``,
    and each rule acts by modifying the chunking in the
    ``ChunkString``.  The rules are all implemented using regular
    expression matching and substitution.

    The ``RegexpChunkRule`` class and its subclasses (``ChunkRule``,
    ``ChinkRule``, ``UnChunkRule``, ``MergeRule``, and ``SplitRule``)
    define the rules that are used by ``RegexpChunkParser``.  Each rule
    defines an ``apply()`` method, which modifies the chunking encoded
    by a given ``ChunkString``.

    :type _rules: list(RegexpChunkRule)
    :ivar _rules: The list of rules that should be applied to a text.
    :type _trace: int
    :ivar _trace: The default level of tracing.

    """
    def __init__(self, rules, chunk_node='NP', top_node='S', trace=0):
        """
        Construct a new ``RegexpChunkParser``.

        :type rules: list(RegexpChunkRule)
        :param rules: The sequence of rules that should be used to
            generate the chunking for a tagged text.
        :type chunk_node: str
        :param chunk_node: The node value that should be used for
            chunk subtrees.  This is typically a short string
            describing the type of information contained by the chunk,
            such as ``"NP"`` for base noun phrases.
        :type top_node: str
        :param top_node: The node value that should be used for the
            top node of the chunk structure.
        :type trace: int
        :param trace: The level of tracing that should be used when
            parsing a text.  ``0`` will generate no tracing output;
            ``1`` will generate normal tracing output; and ``2`` or
            higher will generate verbose tracing output.
        """
        self._rules = rules
        self._trace = trace
        self._chunk_node = chunk_node
        self._top_node = top_node

    def _trace_apply(self, chunkstr, verbose):
        """
        Apply each rule of this ``RegexpChunkParser`` to ``chunkstr``, in
        turn.  Generate trace output between each rule.  If ``verbose``
        is true, then generate verbose output.

        :type chunkstr: ChunkString
        :param chunkstr: The chunk string to which each rule should be
            applied.
        :type verbose: bool
        :param verbose: Whether output should be verbose.
        :rtype: None
        """
        print('# Input:')
        print(chunkstr)
        for rule in self._rules:
            rule.apply(chunkstr)
            if verbose:
                print('#', rule.descr()+' ('+unicode_repr(rule)+'):')
            else:
                print('#', rule.descr()+':')
            print(chunkstr)

    def _notrace_apply(self, chunkstr):
        """
        Apply each rule of this ``RegexpChunkParser`` to ``chunkstr``, in
        turn.

        :param chunkstr: The chunk string to which each rule should be
            applied.
        :type chunkstr: ChunkString
        :rtype: None
        """

        for rule in self._rules:
            rule.apply(chunkstr)

    def parse(self, chunk_struct, trace=None):
        """
        :type chunk_struct: Tree
        :param chunk_struct: the chunk structure to be (further) chunked
        :type trace: int
        :param trace: The level of tracing that should be used when
            parsing a text.  ``0`` will generate no tracing output;
            ``1`` will generate normal tracing output; and ``2`` or
            highter will generate verbose tracing output.  This value
            overrides the trace level value that was given to the
            constructor.
        :rtype: Tree
        :return: a chunk structure that encodes the chunks in a given
            tagged sentence.  A chunk is a non-overlapping linguistic
            group, such as a noun phrase.  The set of chunks
            identified in the chunk structure depends on the rules
            used to define this ``RegexpChunkParser``.
        """
        if len(chunk_struct) == 0:
            print('Warning: parsing empty text')
            return Tree(self._top_node, [])

        try:
            chunk_struct.node
        except AttributeError:
            chunk_struct = Tree(self._top_node, chunk_struct)

        # Use the default trace value?
        if trace is None: trace = self._trace

        chunkstr = ChunkString(chunk_struct)

        # Apply the sequence of rules to the chunkstring.
        if trace:
            verbose = (trace>1)
            self._trace_apply(chunkstr, verbose)
        else:
            self._notrace_apply(chunkstr)

        # Use the chunkstring to create a chunk structure.
        return chunkstr.to_chunkstruct(self._chunk_node)

    def rules(self):
        """
        :return: the sequence of rules used by ``RegexpChunkParser``.
        :rtype: list(RegexpChunkRule)
        """
        return self._rules

    def __repr__(self):
        """
        :return: a concise string representation of this
            ``RegexpChunkParser``.
        :rtype: str
        """
        return "<RegexpChunkParser with %d rules>" % len(self._rules)

    def __str__(self):
        """
        :return: a verbose string representation of this ``RegexpChunkParser``.
        :rtype: str
        """
        s = "RegexpChunkParser with %d rules:\n" % len(self._rules)
        margin = 0
        for rule in self._rules:
            margin = max(margin, len(rule.descr()))
        if margin < 35:
            format = "    %" + repr(-(margin+3)) + "s%s\n"
        else:
            format = "    %s\n      %s\n"
        for rule in self._rules:
            s += format % (rule.descr(), unicode_repr(rule))
        return s[:-1]

##//////////////////////////////////////////////////////
##  Chunk Grammar
##//////////////////////////////////////////////////////

@python_2_unicode_compatible
class RegexpParser(ChunkParserI):
    """
    A grammar based chunk parser.  ``chunk.RegexpParser`` uses a set of
    regular expression patterns to specify the behavior of the parser.
    The chunking of the text is encoded using a ``ChunkString``, and
    each rule acts by modifying the chunking in the ``ChunkString``.
    The rules are all implemented using regular expression matching
    and substitution.

    A grammar contains one or more clauses in the following form::

     NP:
       {<DT|JJ>}          # chunk determiners and adjectives
       }<[\.VI].*>+{      # chink any tag beginning with V, I, or .
       <.*>}{<DT>         # split a chunk at a determiner
       <DT|JJ>{}<NN.*>    # merge chunk ending with det/adj
                          # with one starting with a noun

    The patterns of a clause are executed in order.  An earlier
    pattern may introduce a chunk boundary that prevents a later
    pattern from executing.  Sometimes an individual pattern will
    match on multiple, overlapping extents of the input.  As with
    regular expression substitution more generally, the chunker will
    identify the first match possible, then continue looking for matches
    after this one has ended.

    The clauses of a grammar are also executed in order.  A cascaded
    chunk parser is one having more than one clause.  The maximum depth
    of a parse tree created by this chunk parser is the same as the
    number of clauses in the grammar.

    When tracing is turned on, the comment portion of a line is displayed
    each time the corresponding pattern is applied.

    :type _start: str
    :ivar _start: The start symbol of the grammar (the root node of
        resulting trees)
    :type _stages: int
    :ivar _stages: The list of parsing stages corresponding to the grammar

    """
    def __init__(self, grammar, top_node='S', loop=1, trace=0):
        """
        Create a new chunk parser, from the given start state
        and set of chunk patterns.

        :param grammar: The grammar, or a list of RegexpChunkParser objects
        :type grammar: str or list(RegexpChunkParser)
        :param top_node: The top node of the tree being created
        :type top_node: str or Nonterminal
        :param loop: The number of times to run through the patterns
        :type loop: int
        :type trace: int
        :param trace: The level of tracing that should be used when
            parsing a text.  ``0`` will generate no tracing output;
            ``1`` will generate normal tracing output; and ``2`` or
            higher will generate verbose tracing output.
        """
        self._trace = trace
        self._stages = []
        self._grammar = grammar
        self._loop = loop

        if isinstance(grammar, string_types):
            self._parse_grammar(grammar, top_node, trace)
        else:
            # Make sur the grammar looks like it has the right type:
            type_err = ('Expected string or list of RegexpChunkParsers '
                        'for the grammar.')
            try: grammar = list(grammar)
            except: raise TypeError(type_err)
            for elt in grammar:
                if not isinstance(elt, RegexpChunkParser):
                    raise TypeError(type_err)
            self._stages = grammar

    def _parse_grammar(self, grammar, top_node, trace):
        """
        Helper function for __init__: parse the grammar if it is a
        string.
        """
        rules = []
        lhs = None
        for line in grammar.split('\n'):
            line = line.strip()

            # New stage begins if there's an unescaped ':'
            m = re.match('(?P<nonterminal>(\\.|[^:])*)(:(?P<rule>.*))', line)
            if m:
                # Record the stage that we just completed.
                self._add_stage(rules, lhs, top_node, trace)
                # Start a new stage.
                lhs = m.group('nonterminal').strip()
                rules = []
                line = m.group('rule').strip()

            # Skip blank & comment-only lines
            if line=='' or line.startswith('#'): continue

            # Add the rule
            rules.append(RegexpChunkRule.parse(line))

        # Record the final stage
        self._add_stage(rules, lhs, top_node, trace)

    def _add_stage(self, rules, lhs, top_node, trace):
        """
        Helper function for __init__: add a new stage to the parser.
        """
        if rules != []:
            if not lhs:
                raise ValueError('Expected stage marker (eg NP:)')
            parser = RegexpChunkParser(rules, chunk_node=lhs,
                                       top_node=top_node, trace=trace)
            self._stages.append(parser)

    def parse(self, chunk_struct, trace=None):
        """
        Apply the chunk parser to this input.

        :type chunk_struct: Tree
        :param chunk_struct: the chunk structure to be (further) chunked
            (this tree is modified, and is also returned)
        :type trace: int
        :param trace: The level of tracing that should be used when
            parsing a text.  ``0`` will generate no tracing output;
            ``1`` will generate normal tracing output; and ``2`` or
            highter will generate verbose tracing output.  This value
            overrides the trace level value that was given to the
            constructor.
        :return: the chunked output.
        :rtype: Tree
        """
        if trace is None: trace = self._trace
        for i in range(self._loop):
            for parser in self._stages:
                chunk_struct = parser.parse(chunk_struct, trace=trace)
        return chunk_struct

    def __repr__(self):
        """
        :return: a concise string representation of this ``chunk.RegexpParser``.
        :rtype: str
        """
        return "<chunk.RegexpParser with %d stages>" % len(self._stages)

    def __str__(self):
        """
        :return: a verbose string representation of this
            ``RegexpParser``.
        :rtype: str
        """
        s = "chunk.RegexpParser with %d stages:\n" % len(self._stages)
        margin = 0
        for parser in self._stages:
            s += "%s\n" % parser
        return s[:-1]

##//////////////////////////////////////////////////////
##  Demonstration code
##//////////////////////////////////////////////////////

def demo_eval(chunkparser, text):
    """
    Demonstration code for evaluating a chunk parser, using a
    ``ChunkScore``.  This function assumes that ``text`` contains one
    sentence per line, and that each sentence has the form expected by
    ``tree.chunk``.  It runs the given chunk parser on each sentence in
    the text, and scores the result.  It prints the final score
    (precision, recall, and f-measure); and reports the set of chunks
    that were missed and the set of chunks that were incorrect.  (At
    most 10 missing chunks and 10 incorrect chunks are reported).

    :param chunkparser: The chunkparser to be tested
    :type chunkparser: ChunkParserI
    :param text: The chunked tagged text that should be used for
        evaluation.
    :type text: str
    """
    from nltk import chunk
    from nltk.tree import Tree

    # Evaluate our chunk parser.
    chunkscore = chunk.ChunkScore()

    for sentence in text.split('\n'):
        print(sentence)
        sentence = sentence.strip()
        if not sentence: continue
        gold = chunk.tagstr2tree(sentence)
        tokens = gold.leaves()
        test = chunkparser.parse(Tree('S', tokens), trace=1)
        chunkscore.score(gold, test)
        print()

    print('/'+('='*75)+'\\')
    print('Scoring', chunkparser)
    print(('-'*77))
    print('Precision: %5.1f%%' % (chunkscore.precision()*100), ' '*4, end=' ')
    print('Recall: %5.1f%%' % (chunkscore.recall()*100), ' '*6, end=' ')
    print('F-Measure: %5.1f%%' % (chunkscore.f_measure()*100))


    # Missed chunks.
    if chunkscore.missed():
        print('Missed:')
        missed = chunkscore.missed()
        for chunk in missed[:10]:
            print('  ', ' '.join("%s" % c for c in chunk))
        if len(chunkscore.missed()) > 10:
            print('  ...')

    # Incorrect chunks.
    if chunkscore.incorrect():
        print('Incorrect:')
        incorrect = chunkscore.incorrect()
        for chunk in incorrect[:10]:
            print('  ', ' '.join("%s" % c for c in chunk))
        if len(chunkscore.incorrect()) > 10:
            print('  ...')

    print('\\'+('='*75)+'/')
    print()

def demo():
    """
    A demonstration for the ``RegexpChunkParser`` class.  A single text is
    parsed with four different chunk parsers, using a variety of rules
    and strategies.
    """

    from nltk import chunk, Tree

    text = """\
    [ the/DT little/JJ cat/NN ] sat/VBD on/IN [ the/DT mat/NN ] ./.
    [ John/NNP ] saw/VBD [the/DT cats/NNS] [the/DT dog/NN] chased/VBD ./.
    [ John/NNP ] thinks/VBZ [ Mary/NN ] saw/VBD [ the/DT cat/NN ] sit/VB on/IN [ the/DT mat/NN ]./.
    """

    print('*'*75)
    print('Evaluation text:')
    print(text)
    print('*'*75)
    print()

    grammar = r"""
    NP:                   # NP stage
      {<DT>?<JJ>*<NN>}    # chunk determiners, adjectives and nouns
      {<NNP>+}            # chunk proper nouns
    """
    cp = chunk.RegexpParser(grammar)
    chunk.demo_eval(cp, text)

    grammar = r"""
    NP:
      {<.*>}              # start by chunking each tag
      }<[\.VI].*>+{       # unchunk any verbs, prepositions or periods
      <DT|JJ>{}<NN.*>     # merge det/adj with nouns
    """
    cp = chunk.RegexpParser(grammar)
    chunk.demo_eval(cp, text)

    grammar = r"""
    NP: {<DT>?<JJ>*<NN>}    # chunk determiners, adjectives and nouns
    VP: {<TO>?<VB.*>}       # VP = verb words
    """
    cp = chunk.RegexpParser(grammar)
    chunk.demo_eval(cp, text)

    grammar = r"""
    NP: {<.*>*}             # start by chunking everything
        }<[\.VI].*>+{       # chink any verbs, prepositions or periods
        <.*>}{<DT>          # separate on determiners
    PP: {<IN><NP>}          # PP = preposition + noun phrase
    VP: {<VB.*><NP|PP>*}    # VP = verb words + NPs and PPs
    """
    cp = chunk.RegexpParser(grammar)
    chunk.demo_eval(cp, text)

# Evaluation

    from nltk.corpus import conll2000

    print()
    print("Demonstration of empty grammar:")

    cp = chunk.RegexpParser("")
    print(chunk.accuracy(cp, conll2000.chunked_sents('test.txt',
                                                     chunk_types=('NP',))))

    print()
    print("Demonstration of accuracy evaluation using CoNLL tags:")

    grammar = r"""
    NP:
      {<.*>}              # start by chunking each tag
      }<[\.VI].*>+{       # unchunk any verbs, prepositions or periods
      <DT|JJ>{}<NN.*>     # merge det/adj with nouns
    """
    cp = chunk.RegexpParser(grammar)
    print(chunk.accuracy(cp, conll2000.chunked_sents('test.txt')[:5]))

    print()
    print("Demonstration of tagged token input")

    grammar = r"""
    NP: {<.*>*}             # start by chunking everything
        }<[\.VI].*>+{       # chink any verbs, prepositions or periods
        <.*>}{<DT>          # separate on determiners
    PP: {<IN><NP>}          # PP = preposition + noun phrase
    VP: {<VB.*><NP|PP>*}    # VP = verb words + NPs and PPs
    """
    cp = chunk.RegexpParser(grammar)
    print(cp.parse([("the","DT"), ("little","JJ"), ("cat", "NN"),
                    ("sat", "VBD"), ("on", "IN"), ("the", "DT"),
                    ("mat", "NN"), (".", ".")]))

if __name__ == '__main__':
    demo()
Back to Top