/qd/dd_inline.h
https://github.com/rudimeier/mprime · C Header · 598 lines · 390 code · 104 blank · 104 comment · 62 complexity · 1812f5b38aca52225177b1a678981296 MD5 · raw file
- /*
- * include/dd_inline.h
- *
- * This work was supported by the Director, Office of Science, Division
- * of Mathematical, Information, and Computational Sciences of the
- * U.S. Department of Energy under contract number DE-AC03-76SF00098.
- *
- * Copyright (c) 2000-2001
- *
- * Contains small functions (suitable for inlining) in the double-double
- * arithmetic package.
- */
- #ifndef _DD_INLINE_H_
- #define _DD_INLINE_H_
- #include <cmath>
- #include "inline.h"
- #ifdef NO_INLINE
- #define inline
- #endif
- /*********** Additions ************/
- /* double-double = double + double */
- inline dd_real dd_real::add(double a, double b) {
- double s, e;
- s = two_sum(a, b, e);
- return dd_real(s, e);
- }
- /* double-double + double */
- inline dd_real operator+(const dd_real &a, double b) {
- double s1, s2;
- s1 = two_sum(a.hi, b, s2);
- s2 += a.lo;
- s1 = quick_two_sum(s1, s2, s2);
- return dd_real(s1, s2);
- }
- /* double-double + double-double */
- inline dd_real operator+(const dd_real &a, const dd_real &b) {
- #ifndef ACCURATE
- /* This is the less accurate version ... obeys Cray-style
- error bound. */
- double s, e;
- s = two_sum(a.hi, b.hi, e);
- e += a.lo;
- e += b.lo;
- s = quick_two_sum(s, e, e);
- return dd_real(s, e);
- #else
- /* This one satisfies IEEE style error bound,
- due to K. Briggs and W. Kahan. */
- double s1, s2, t1, t2;
- s1 = two_sum(a.hi, b.hi, s2);
- t1 = two_sum(a.lo, b.lo, t2);
- s2 += t1;
- s1 = quick_two_sum(s1, s2, s2);
- s2 += t2;
- s1 = quick_two_sum(s1, s2, s2);
- return dd_real(s1, s2);
- #endif
- }
- /* double + double-double */
- inline dd_real operator+(double a, const dd_real &b) {
- return (b + a);
- }
- /*********** Self-Additions ************/
- /* double-double += double */
- inline dd_real &dd_real::operator+=(double a) {
- double s1, s2;
- s1 = two_sum(hi, a, s2);
- s2 += lo;
- hi = quick_two_sum(s1, s2, lo);
- return *this;
- }
- /* double-double += double-double */
- inline dd_real &dd_real::operator+=(const dd_real &a) {
- #ifndef ACCURATE
- double s, e;
- s = two_sum(hi, a.hi, e);
- e += lo;
- e += a.lo;
- hi = quick_two_sum(s, e, lo);
- return *this;
- #else
- double s1, s2, t1, t2;
- s1 = two_sum(hi, a.hi, s2);
- t1 = two_sum(lo, a.lo, t2);
- s2 += t1;
- s1 = quick_two_sum(s1, s2, s2);
- s2 += t2;
- hi = quick_two_sum(s1, s2, lo);
- return *this;
- #endif
- }
- /*********** Subtractions ************/
- /* double-double = double - double */
- inline dd_real dd_real::sub(double a, double b) {
- double s, e;
- s = two_diff(a, b, e);
- return dd_real(s, e);
- }
- /* double-double - double */
- inline dd_real operator-(const dd_real &a, double b) {
- double s1, s2;
- s1 = two_diff(a.hi, b, s2);
- s2 += a.lo;
- s1 = quick_two_sum(s1, s2, s2);
- return dd_real(s1, s2);
- }
- /* double-double - double-double */
- inline dd_real operator-(const dd_real &a, const dd_real &b) {
- #ifndef ACCURATE
- double s, e;
- s = two_diff(a.hi, b.hi, e);
- e += a.lo;
- e -= b.lo;
- s = quick_two_sum(s, e, e);
- return dd_real(s, e);
- #else
- double s1, s2, t1, t2;
- s1 = two_diff(a.hi, b.hi, s2);
- t1 = two_diff(a.lo, b.lo, t2);
- s2 += t1;
- s1 = quick_two_sum(s1, s2, s2);
- s2 += t2;
- s1 = quick_two_sum(s1, s2, s2);
- return dd_real(s1, s2);
- #endif
- }
- /* double - double-double */
- inline dd_real operator-(double a, const dd_real &b) {
- double s1, s2;
- s1 = two_diff(a, b.hi, s2);
- s2 -= b.lo;
- s1 = quick_two_sum(s1, s2, s2);
- return dd_real(s1, s2);
- }
- /*********** Self-Subtractions ************/
- /* double-double -= double */
- inline dd_real &dd_real::operator-=(double a) {
- double s1, s2;
- s1 = two_diff(hi, a, s2);
- s2 += lo;
- hi = quick_two_sum(s1, s2, lo);
- return *this;
- }
- /* double-double -= double-double */
- inline dd_real &dd_real::operator-=(const dd_real &a) {
- #ifndef ACCURATE
- double s, e;
- s = two_diff(hi, a.hi, e);
- e += lo;
- e -= a.lo;
- hi = quick_two_sum(s, e, lo);
- return *this;
- #else
- double s1, s2, t1, t2;
- s1 = two_diff(hi, a.hi, s2);
- t1 = two_diff(lo, a.lo, t2);
- s2 += t1;
- s1 = quick_two_sum(s1, s2, s2);
- s2 += t2;
- hi = quick_two_sum(s1, s2, lo);
- return *this;
- #endif
- }
- /*********** Unary Minus ***********/
- inline dd_real dd_real::operator-() const {
- return dd_real(-hi, -lo);
- }
- /*********** Multiplications ************/
- /* double-double = double * double */
- inline dd_real dd_real::mul(double a, double b) {
- double p, e;
- p = two_prod(a, b, e);
- return dd_real(p, e);
- }
- /* double-double * (2.0 ^ exp) */
- inline dd_real ldexp(const dd_real &a, int exp) {
- return dd_real(ldexp(a.hi, exp), ldexp(a.lo, exp));
- }
- /* double-double * double, where double is a power of 2. */
- inline dd_real mul_pwr2(const dd_real &a, double b) {
- return dd_real(a.hi * b, a.lo * b);
- }
- /* double-double * double */
- inline dd_real operator*(const dd_real &a, double b) {
- double p1, p2;
- p1 = two_prod(a.hi, b, p2);
- p2 += (a.lo * b);
- p1 = quick_two_sum(p1, p2, p2);
- return dd_real(p1, p2);
- }
- /* double-double * double-double */
- inline dd_real operator*(const dd_real &a, const dd_real &b) {
- double p1, p2;
- p1 = two_prod(a.hi, b.hi, p2);
- p2 += a.hi * b.lo;
- p2 += a.lo * b.hi;
- p1 = quick_two_sum(p1, p2, p2);
- return dd_real(p1, p2);
- }
- /* double * double-double */
- inline dd_real operator*(double a, const dd_real &b) {
- return (b * a);
- }
- /*********** Self-Multiplications ************/
- /* double-double *= double */
- inline dd_real &dd_real::operator*=(double a) {
- double p1, p2;
- p1 = two_prod(hi, a, p2);
- p2 += lo * a;
- hi = quick_two_sum(p1, p2, lo);
- return *this;
- }
- /* double-double *= double-double */
- inline dd_real &dd_real::operator*=(const dd_real &a) {
- double p1, p2;
- p1 = two_prod(hi, a.hi, p2);
- p2 += a.lo * hi;
- p2 += a.hi * lo;
- hi = quick_two_sum(p1, p2, lo);
- return *this;
- }
- /*********** Divisions ************/
- inline dd_real dd_real::div(double a, double b) {
- double q1, q2;
- double p1, p2;
- double s, e;
- q1 = a / b;
- /* Compute a - q1 * b */
- p1 = two_prod(q1, b, p2);
- s = two_diff(a, p1, e);
- e -= p2;
- /* get next approximation */
- q2 = (s + e) / b;
- s = quick_two_sum(q1, q2, e);
- return dd_real(s, e);
- }
- /* double-double / double */
- inline dd_real operator/(const dd_real &a, double b) {
- double q1, q2;
- double p1, p2;
- double s, e;
- dd_real r;
-
- q1 = a.hi / b; /* approximate quotient. */
- /* Compute this - q1 * d */
- p1 = two_prod(q1, b, p2);
- s = two_diff(a.hi, p1, e);
- e += a.lo;
- e -= p2;
-
- /* get next approximation. */
- q2 = (s + e) / b;
- /* renormalize */
- r.hi = quick_two_sum(q1, q2, r.lo);
- return r;
- }
- /* double-double / double-double */
- inline dd_real operator/(const dd_real &a, const dd_real &b) {
- double q1, q2;
- dd_real r;
- q1 = a.hi / b.hi; /* approximate quotient */
- #ifdef SLOPPY
- double s1, s2;
- /* compute this - q1 * dd */
- r = b * q1;
- s1 = two_diff(a.hi, r.hi, s2);
- s2 -= r.lo;
- s2 += a.lo;
- /* get next approximation */
- q2 = (s1 + s2) / b.hi;
- /* renormalize */
- r.hi = quick_two_sum(q1, q2, r.lo);
- return r;
- #else
- double q3;
- r = a - q1 * b;
-
- q2 = r.hi / b.hi;
- r -= (q2 * b);
- q3 = r.hi / b.hi;
- q1 = quick_two_sum(q1, q2, q2);
- r = dd_real(q1, q2) + q3;
- return r;
- #endif
- }
- /* double / double-double */
- inline dd_real operator/(double a, const dd_real &b) {
- return dd_real(a) / b;
- }
- inline dd_real inv(const dd_real &a) {
- return 1.0 / a;
- }
- /*********** Self-Divisions ************/
- /* double-double /= double */
- inline dd_real &dd_real::operator/=(double a) {
- *this = *this / a;
- return *this;
- }
- /* double-double /= double-double */
- inline dd_real &dd_real::operator/=(const dd_real &a) {
- *this = *this / a;
- return *this;
- }
- /********** Remainder **********/
- inline dd_real drem(const dd_real &a, const dd_real &b) {
- dd_real n = nint(a / b);
- return (a - n * b);
- }
- inline dd_real divrem(const dd_real &a, const dd_real &b, dd_real &r) {
- dd_real n = nint(a / b);
- r = a - n * b;
- return n;
- }
- /*********** Squaring **********/
- inline dd_real sqr(const dd_real &a) {
- double p1, p2;
- double s1, s2;
- p1 = two_sqr(a.hi, p2);
- p2 += 2.0 * a.hi * a.lo;
- p2 += a.lo * a.lo;
- s1 = quick_two_sum(p1, p2, s2);
- return dd_real(s1, s2);
- }
- inline dd_real dd_real::sqr(double a) {
- double p1, p2;
- p1 = two_sqr(a, p2);
- return dd_real(p1, p2);
- }
- /********** Exponentiation **********/
- inline dd_real dd_real::operator^(int n) {
- return npwr(*this, n);
- }
- /*********** Assignments ************/
- /* double-double = double */
- inline dd_real &dd_real::operator=(double a) {
- hi = a;
- lo = 0.0;
- return *this;
- }
- /*********** Equality Comparisons ************/
- /* double-double == double */
- inline bool operator==(const dd_real &a, double b) {
- return (a.hi == b && a.lo == 0.0);
- }
- /* double-double == double-double */
- inline bool operator==(const dd_real &a, const dd_real &b) {
- return (a.hi == b.hi && a.lo == b.lo);
- }
- /* double == double-double */
- inline bool operator==(double a, const dd_real &b) {
- return (a == b.hi && b.lo == 0.0);
- }
- /*********** Greater-Than Comparisons ************/
- /* double-double > double */
- inline bool operator>(const dd_real &a, double b) {
- return (a.hi > b || (a.hi == b && a.lo > 0.0));
- }
- /* double-double > double-double */
- inline bool operator>(const dd_real &a, const dd_real &b) {
- return (a.hi > b.hi || (a.hi == b.hi && a.lo > b.lo));
- }
- /* double > double-double */
- inline bool operator>(double a, const dd_real &b) {
- return (a > b.hi || (a == b.hi && b.lo < 0.0));
- }
- /*********** Less-Than Comparisons ************/
- /* double-double < double */
- inline bool operator<(const dd_real &a, double b) {
- return (a.hi < b || (a.hi == b && a.lo < 0.0));
- }
- /* double-double < double-double */
- inline bool operator<(const dd_real &a, const dd_real &b) {
- return (a.hi < b.hi || (a.hi == b.hi && a.lo < b.lo));
- }
- /* double < double-double */
- inline bool operator<(double a, const dd_real &b) {
- return (a < b.hi || (a == b.hi && b.lo > 0.0));
- }
- /*********** Greater-Than-Or-Equal-To Comparisons ************/
- /* double-double >= double */
- inline bool operator>=(const dd_real &a, double b) {
- return (a.hi > b || (a.hi == b && a.lo >= 0.0));
- }
- /* double-double >= double-double */
- inline bool operator>=(const dd_real &a, const dd_real &b) {
- return (a.hi > b.hi || (a.hi == b.hi && a.lo >= b.lo));
- }
- /* double >= double-double */
- inline bool operator>=(double a, const dd_real &b) {
- return (b <= a);
- }
- /*********** Less-Than-Or-Equal-To Comparisons ************/
- /* double-double <= double */
- inline bool operator<=(const dd_real &a, double b) {
- return (a.hi < b || (a.hi == b && a.lo <= 0.0));
- }
- /* double-double <= double-double */
- inline bool operator<=(const dd_real &a, const dd_real &b) {
- return (a.hi < b.hi || (a.hi == b.hi && a.lo <= b.lo));
- }
- /* double <= double-double */
- inline bool operator<=(double a, const dd_real &b) {
- return (b >= a);
- }
- /*********** Not-Equal-To Comparisons ************/
- /* double-double != double */
- inline bool operator!=(const dd_real &a, double b) {
- return (a.hi != b || a.lo != 0.0);
- }
- /* double-double != double-double */
- inline bool operator!=(const dd_real &a, const dd_real &b) {
- return (a.hi != b.hi || a.lo != b.lo);
- }
- /* double != double-double */
- inline bool operator!=(double a, const dd_real &b) {
- return (a != b.hi || b.lo != 0.0);
- }
- /*********** Micellaneous ************/
- /* this == 0 */
- inline bool dd_real::is_zero() const {
- return (hi == 0.0);
- }
- /* this == 1 */
- inline bool dd_real::is_one() const {
- return (hi == 1.0 && lo == 0.0);
- }
- /* this > 0 */
- inline bool dd_real::is_positive() const {
- return (hi > 0.0);
- }
- /* this < 0 */
- inline bool dd_real::is_negative() const {
- return (hi < 0.0);
- }
- /* Absolute value */
- inline dd_real fabs(const dd_real &a) {
- return (a.hi < 0.0) ? -a : a;
- }
- inline dd_real abs(const dd_real &a) {
- return fabs(a);
- }
- /* Round to Nearest integer */
- inline dd_real nint(const dd_real &a) {
- double hi = nint(a.hi);
- double lo;
- if (hi == a.hi) {
- /* High word is an integer already. Round the low word.*/
- lo = nint(a.lo);
-
- /* Renormalize. This is needed if hi = some integer, lo = 1/2.*/
- hi = quick_two_sum(hi, lo, lo);
- } else {
- /* High word is not an integer. */
- lo = 0.0;
- if (fabs(hi-a.hi) == 0.5 && a.lo < 0.0) {
- /* There is a tie in the high word, consult the low word
- to break the tie. */
- hi -= 1.0; /* NOTE: This does not cause INEXACT. */
- }
- }
- return dd_real(hi, lo);
- }
- inline dd_real floor(const dd_real &a) {
- double hi = floor(a.hi);
- double lo = 0.0;
- if (hi == a.hi) {
- /* High word is integer already. Round the low word. */
- lo = floor(a.lo);
- hi = quick_two_sum(hi, lo, lo);
- }
- return dd_real(hi, lo);
- }
- inline dd_real ceil(const dd_real &a) {
- double hi = ceil(a.hi);
- double lo = 0.0;
- if (hi == a.hi) {
- /* High word is integer already. Round the low word. */
- lo = ceil(a.lo);
- hi = quick_two_sum(hi, lo, lo);
- }
- return dd_real(hi, lo);
- }
- inline dd_real aint(const dd_real &a) {
- return (a.hi >= 0.0) ? floor(a) : ceil(a);
- }
- /* Cast to double. */
- inline dd_real::operator double() const {
- return hi;
- }
- /* Cast to int. */
- inline dd_real::operator int() const {
- return (int) hi;
- }
- /* Random number generator */
- inline dd_real dd_real::rand() {
- return ddrand();
- }
- #endif /* _DD_INLINE_H_ */