/skimage/feature/tests/test_hog.py
Python | 142 lines | 80 code | 31 blank | 31 comment | 8 complexity | 92f029d83efcd1adbb975e24c705c6c1 MD5 | raw file
- import numpy as np
- from scipy import ndimage
- from skimage import data
- from skimage import feature
- from skimage import img_as_float
- from skimage import draw
- from numpy.testing import (assert_raises,
- assert_almost_equal,
- )
- def test_histogram_of_oriented_gradients():
- img = img_as_float(data.lena()[:256, :].mean(axis=2))
- fd = feature.hog(img, orientations=9, pixels_per_cell=(8, 8),
- cells_per_block=(1, 1))
- assert len(fd) == 9 * (256 // 8) * (512 // 8)
- def test_hog_image_size_cell_size_mismatch():
- image = data.camera()[:150, :200]
- fd = feature.hog(image, orientations=9, pixels_per_cell=(8, 8),
- cells_per_block=(1, 1))
- assert len(fd) == 9 * (150 // 8) * (200 // 8)
- def test_hog_color_image_unsupported_error():
- image = np.zeros((20, 20, 3))
- assert_raises(ValueError, feature.hog, image)
- def test_hog_basic_orientations_and_data_types():
- # scenario:
- # 1) create image (with float values) where upper half is filled by zeros, bottom half by 100
- # 2) create unsigned integer version of this image
- # 3) calculate feature.hog() for both images, both with 'normalise' option enabled and disabled
- # 4) verify that all results are equal where expected
- # 5) verify that computed feature vector is as expected
- # 6) repeat the scenario for 90, 180 and 270 degrees rotated images
- # size of testing image
- width = height = 35
- image0 = np.zeros((height, width), dtype='float')
- image0[height / 2:] = 100
- for rot in range(4):
- # rotate by 0, 90, 180 and 270 degrees
- image_float = np.rot90(image0, rot)
- # create uint8 image from image_float
- image_uint8 = image_float.astype('uint8')
- (hog_float, hog_img_float) = feature.hog(image_float, orientations=4, pixels_per_cell=(8, 8),
- cells_per_block=(1, 1), visualise=True, normalise=False)
- (hog_uint8, hog_img_uint8) = feature.hog(image_uint8, orientations=4, pixels_per_cell=(8, 8),
- cells_per_block=(1, 1), visualise=True, normalise=False)
- (hog_float_norm, hog_img_float_norm) = feature.hog(image_float, orientations=4, pixels_per_cell=(8, 8),
- cells_per_block=(1, 1), visualise=True, normalise=True)
- (hog_uint8_norm, hog_img_uint8_norm) = feature.hog(image_uint8, orientations=4, pixels_per_cell=(8, 8),
- cells_per_block=(1, 1), visualise=True, normalise=True)
- # set to True to enable manual debugging with graphical output,
- # must be False for automatic testing
- if False:
- import matplotlib.pyplot as plt
- plt.figure()
- plt.subplot(2, 3, 1); plt.imshow(image_float); plt.colorbar(); plt.title('image')
- plt.subplot(2, 3, 2); plt.imshow(hog_img_float); plt.colorbar(); plt.title('HOG result visualisation (float img)')
- plt.subplot(2, 3, 5); plt.imshow(hog_img_uint8); plt.colorbar(); plt.title('HOG result visualisation (uint8 img)')
- plt.subplot(2, 3, 3); plt.imshow(hog_img_float_norm); plt.colorbar(); plt.title('HOG result (normalise) visualisation (float img)')
- plt.subplot(2, 3, 6); plt.imshow(hog_img_uint8_norm); plt.colorbar(); plt.title('HOG result (normalise) visualisation (uint8 img)')
- plt.show()
- # results (features and visualisation) for float and uint8 images must be almost equal
- assert_almost_equal(hog_float, hog_uint8)
- assert_almost_equal(hog_img_float, hog_img_uint8)
- # resulting features should be almost equal when 'normalise' is enabled or disabled (for current simple testing image)
- assert_almost_equal(hog_float, hog_float_norm, decimal=4)
- assert_almost_equal(hog_float, hog_uint8_norm, decimal=4)
- # reshape resulting feature vector to matrix with 4 columns (each corresponding to one of 4 directions),
- # only one direction should contain nonzero values (this is manually determined for testing image)
- actual = np.max(hog_float.reshape(-1, 4), axis=0)
- if rot in [0, 2]:
- # image is rotated by 0 and 180 degrees
- desired = [0, 0, 1, 0]
- elif rot in [1, 3]:
- # image is rotated by 90 and 270 degrees
- desired = [1, 0, 0, 0]
- else:
- raise Exception('Result is not determined for this rotation.')
- assert_almost_equal(actual, desired, decimal=2)
- def test_hog_orientations_circle():
- # scenario:
- # 1) create image with blurred circle in the middle
- # 2) calculate feature.hog()
- # 3) verify that the resulting feature vector contains uniformly distributed values for all orientations,
- # i.e. no orientation is lost or emphasized
- # 4) repeat the scenario for other 'orientations' option
- # size of testing image
- width = height = 100
- image = np.zeros((height, width))
- rr, cc = draw.circle(int(height / 2), int(width / 2), int(width / 3))
- image[rr, cc] = 100
- image = ndimage.gaussian_filter(image, 2)
- for orientations in range(2, 15):
- (hog, hog_img) = feature.hog(image, orientations=orientations, pixels_per_cell=(8, 8),
- cells_per_block=(1, 1), visualise=True, normalise=False)
- # set to True to enable manual debugging with graphical output,
- # must be False for automatic testing
- if False:
- import matplotlib.pyplot as plt
- plt.figure()
- plt.subplot(1, 2, 1); plt.imshow(image); plt.colorbar(); plt.title('image_float')
- plt.subplot(1, 2, 2); plt.imshow(hog_img); plt.colorbar(); plt.title('HOG result visualisation, orientations=%d' % (orientations))
- plt.show()
- # reshape resulting feature vector to matrix with N columns (each column corresponds to one direction),
- hog_matrix = hog.reshape(-1, orientations)
- # compute mean values in the resulting feature vector for each direction,
- # these values should be almost equal to the global mean value (since the image contains a circle),
- # i.e. all directions have same contribution to the result
- actual = np.mean(hog_matrix, axis=0)
- desired = np.mean(hog_matrix)
- assert_almost_equal(actual, desired, decimal=1)
- if __name__ == '__main__':
- from numpy.testing import run_module_suite
- run_module_suite()