/opencascade-6.5.1/ros/inc/gp_Hypr.hxx
https://github.com/jehc/MondocosmOS · C++ Header · 299 lines · 103 code · 59 blank · 137 comment · 1 complexity · 6dcdb154a0f19495508735785e4c45bf MD5 · raw file
- // This file is generated by WOK (CPPExt).
- // Please do not edit this file; modify original file instead.
- // The copyright and license terms as defined for the original file apply to
- // this header file considered to be the "object code" form of the original source.
- #ifndef _gp_Hypr_HeaderFile
- #define _gp_Hypr_HeaderFile
- #ifndef _Standard_HeaderFile
- #include <Standard.hxx>
- #endif
- #ifndef _Standard_Macro_HeaderFile
- #include <Standard_Macro.hxx>
- #endif
- #ifndef _gp_Ax2_HeaderFile
- #include <gp_Ax2.hxx>
- #endif
- #ifndef _Standard_Real_HeaderFile
- #include <Standard_Real.hxx>
- #endif
- #ifndef _Standard_Storable_HeaderFile
- #include <Standard_Storable.hxx>
- #endif
- #ifndef _gp_Ax1_HeaderFile
- #include <gp_Ax1.hxx>
- #endif
- #ifndef _gp_Pnt_HeaderFile
- #include <gp_Pnt.hxx>
- #endif
- #ifndef _Standard_PrimitiveTypes_HeaderFile
- #include <Standard_PrimitiveTypes.hxx>
- #endif
- class Standard_ConstructionError;
- class Standard_DomainError;
- class gp_Ax2;
- class gp_Ax1;
- class gp_Pnt;
- class gp_Trsf;
- class gp_Vec;
- Standard_EXPORT const Handle(Standard_Type)& STANDARD_TYPE(gp_Hypr);
- //! Describes a branch of a hyperbola in 3D space. <br>
- //! A hyperbola is defined by its major and minor radii and <br>
- //! positioned in space with a coordinate system (a gp_Ax2 <br>
- //! object) of which: <br>
- //! - the origin is the center of the hyperbola, <br>
- //! - the "X Direction" defines the major axis of the <br>
- //! hyperbola, and <br>
- //! - the "Y Direction" defines the minor axis of the hyperbola. <br>
- //! The origin, "X Direction" and "Y Direction" of this <br>
- //! coordinate system together define the plane of the <br>
- //! hyperbola. This coordinate system is the "local <br>
- //! coordinate system" of the hyperbola. In this coordinate <br>
- //! system, the equation of the hyperbola is: <br>
- //! X*X/(MajorRadius**2)-Y*Y/(MinorRadius**2) = 1.0 <br>
- //! The branch of the hyperbola described is the one located <br>
- //! on the positive side of the major axis. <br>
- //! The "main Direction" of the local coordinate system is a <br>
- //! normal vector to the plane of the hyperbola. This vector <br>
- //! gives an implicit orientation to the hyperbola. We refer to <br>
- //! the "main Axis" of the local coordinate system as the <br>
- //! "Axis" of the hyperbola. <br>
- //! The following schema shows the plane of the hyperbola, <br>
- //! and in it, the respective positions of the three branches of <br>
- //! hyperbolas constructed with the functions OtherBranch, <br>
- //! ConjugateBranch1, and ConjugateBranch2: <br>
- class gp_Hypr {
- public:
- void* operator new(size_t,void* anAddress)
- {
- return anAddress;
- }
- void* operator new(size_t size)
- {
- return Standard::Allocate(size);
- }
- void operator delete(void *anAddress)
- {
- if (anAddress) Standard::Free((Standard_Address&)anAddress);
- }
- //! Creates of an indefinite hyperbola. <br>
- gp_Hypr();
- //! Creates a hyperbola with radii MajorRadius and <br>
- //! MinorRadius, positioned in the space by the <br>
- //! coordinate system A2 such that: <br>
- //! - the origin of A2 is the center of the hyperbola, <br>
- //! - the "X Direction" of A2 defines the major axis of <br>
- //! the hyperbola, that is, the major radius <br>
- //! MajorRadius is measured along this axis, and <br>
- //! - the "Y Direction" of A2 defines the minor axis of <br>
- //! the hyperbola, that is, the minor radius <br>
- //! MinorRadius is measured along this axis. <br>
- //! Note: This class does not prevent the creation of a <br>
- //! hyperbola where: <br>
- //! - MajorAxis is equal to MinorAxis, or <br>
- //! - MajorAxis is less than MinorAxis. <br>
- //! Exceptions <br>
- //! Standard_ConstructionError if MajorAxis or MinorAxis is negative. <br>
- //! Raises ConstructionError if MajorRadius < 0.0 or MinorRadius < 0.0 <br>//! Raised if MajorRadius < 0.0 or MinorRadius < 0.0 <br>
- gp_Hypr(const gp_Ax2& A2,const Standard_Real MajorRadius,const Standard_Real MinorRadius);
- //! Modifies this hyperbola, by redefining its local coordinate <br>
- //! system so that: <br>
- //! - its origin and "main Direction" become those of the <br>
- //! axis A1 (the "X Direction" and "Y Direction" are then <br>
- //! recomputed in the same way as for any gp_Ax2). <br>
- //! Raises ConstructionError if the direction of A1 is parallel to the direction of <br>
- //! the "XAxis" of the hyperbola. <br>
- void SetAxis(const gp_Ax1& A1) ;
- //! Modifies this hyperbola, by redefining its local coordinate <br>
- //! system so that its origin becomes P. <br>
- void SetLocation(const gp_Pnt& P) ;
-
- //! Modifies the major radius of this hyperbola. <br>
- //! Exceptions <br>
- //! Standard_ConstructionError if MajorRadius is negative. <br>
- void SetMajorRadius(const Standard_Real MajorRadius) ;
-
- //! Modifies the minor radius of this hyperbola. <br>
- //! Exceptions <br>
- //! Standard_ConstructionError if MinorRadius is negative. <br>
- void SetMinorRadius(const Standard_Real MinorRadius) ;
- //! Modifies this hyperbola, by redefining its local coordinate <br>
- //! system so that it becomes A2. <br>
- void SetPosition(const gp_Ax2& A2) ;
-
- //! In the local coordinate system of the hyperbola the equation of <br>
- //! the hyperbola is (X*X)/(A*A) - (Y*Y)/(B*B) = 1.0 and the <br>
- //! equation of the first asymptote is Y = (B/A)*X <br>
- //! where A is the major radius and B is the minor radius. Raises ConstructionError if MajorRadius = 0.0 <br>
- gp_Ax1 Asymptote1() const;
-
- //! In the local coordinate system of the hyperbola the equation of <br>
- //! the hyperbola is (X*X)/(A*A) - (Y*Y)/(B*B) = 1.0 and the <br>
- //! equation of the first asymptote is Y = -(B/A)*X. <br>
- //! where A is the major radius and B is the minor radius. Raises ConstructionError if MajorRadius = 0.0 <br>
- gp_Ax1 Asymptote2() const;
- //! Returns the axis passing through the center, <br>
- //! and normal to the plane of this hyperbola. <br>
- const gp_Ax1& Axis() const;
-
- //! Computes the branch of hyperbola which is on the positive side of the <br>
- //! "YAxis" of <me>. <br>
- gp_Hypr ConjugateBranch1() const;
-
- //! Computes the branch of hyperbola which is on the negative side of the <br>
- //! "YAxis" of <me>. <br>
- gp_Hypr ConjugateBranch2() const;
-
- //! This directrix is the line normal to the XAxis of the hyperbola <br>
- //! in the local plane (Z = 0) at a distance d = MajorRadius / e <br>
- //! from the center of the hyperbola, where e is the eccentricity of <br>
- //! the hyperbola. <br>
- //! This line is parallel to the "YAxis". The intersection point <br>
- //! between the directrix1 and the "XAxis" is the "Location" point <br>
- //! of the directrix1. This point is on the positive side of the <br>
- //! "XAxis". <br>
- gp_Ax1 Directrix1() const;
-
- //! This line is obtained by the symmetrical transformation <br>
- //! of "Directrix1" with respect to the "YAxis" of the hyperbola. <br>
- gp_Ax1 Directrix2() const;
-
- //! Returns the excentricity of the hyperbola (e > 1). <br>
- //! If f is the distance between the location of the hyperbola <br>
- //! and the Focus1 then the eccentricity e = f / MajorRadius. Raises DomainError if MajorRadius = 0.0 <br>
- Standard_Real Eccentricity() const;
-
- //! Computes the focal distance. It is the distance between the <br>
- //! the two focus of the hyperbola. <br>
- Standard_Real Focal() const;
-
- //! Returns the first focus of the hyperbola. This focus is on the <br>
- //! positive side of the "XAxis" of the hyperbola. <br>
- gp_Pnt Focus1() const;
-
- //! Returns the second focus of the hyperbola. This focus is on the <br>
- //! negative side of the "XAxis" of the hyperbola. <br>
- gp_Pnt Focus2() const;
-
- //! Returns the location point of the hyperbola. It is the <br>
- //! intersection point between the "XAxis" and the "YAxis". <br>
- const gp_Pnt& Location() const;
-
- //! Returns the major radius of the hyperbola. It is the radius <br>
- //! on the "XAxis" of the hyperbola. <br>
- Standard_Real MajorRadius() const;
-
- //! Returns the minor radius of the hyperbola. It is the radius <br>
- //! on the "YAxis" of the hyperbola. <br>
- Standard_Real MinorRadius() const;
-
- //! Returns the branch of hyperbola obtained by doing the <br>
- //! symmetrical transformation of <me> with respect to the <br>
- //! "YAxis" of <me>. <br>
- gp_Hypr OtherBranch() const;
-
- //! Returns p = (e * e - 1) * MajorRadius where e is the <br>
- //! eccentricity of the hyperbola. <br>
- //! Raises DomainError if MajorRadius = 0.0 <br>
- Standard_Real Parameter() const;
- //! Returns the coordinate system of the hyperbola. <br>
- const gp_Ax2& Position() const;
- //! Computes an axis, whose <br>
- //! - the origin is the center of this hyperbola, and <br>
- //! - the unit vector is the "X Direction" <br>
- //! of the local coordinate system of this hyperbola. <br>
- //! These axes are, the major axis (the "X <br>
- //! Axis") and of this hyperboReturns the "XAxis" of the hyperbola. <br>
- gp_Ax1 XAxis() const;
- //! Computes an axis, whose <br>
- //! - the origin is the center of this hyperbola, and <br>
- //! - the unit vector is the "Y Direction" <br>
- //! of the local coordinate system of this hyperbola. <br>
- //! These axes are the minor axis (the "Y Axis") of this hyperbola <br>
- gp_Ax1 YAxis() const;
-
- Standard_EXPORT void Mirror(const gp_Pnt& P) ;
-
- //! Performs the symmetrical transformation of an hyperbola with <br>
- //! respect to the point P which is the center of the symmetry. <br>
- Standard_EXPORT gp_Hypr Mirrored(const gp_Pnt& P) const;
-
- Standard_EXPORT void Mirror(const gp_Ax1& A1) ;
-
- //! Performs the symmetrical transformation of an hyperbola with <br>
- //! respect to an axis placement which is the axis of the symmetry. <br>
- Standard_EXPORT gp_Hypr Mirrored(const gp_Ax1& A1) const;
-
- Standard_EXPORT void Mirror(const gp_Ax2& A2) ;
-
- //! Performs the symmetrical transformation of an hyperbola with <br>
- //! respect to a plane. The axis placement A2 locates the plane <br>
- //! of the symmetry (Location, XDirection, YDirection). <br>
- Standard_EXPORT gp_Hypr Mirrored(const gp_Ax2& A2) const;
-
- void Rotate(const gp_Ax1& A1,const Standard_Real Ang) ;
-
- //! Rotates an hyperbola. A1 is the axis of the rotation. <br>
- //! Ang is the angular value of the rotation in radians. <br>
- gp_Hypr Rotated(const gp_Ax1& A1,const Standard_Real Ang) const;
-
- void Scale(const gp_Pnt& P,const Standard_Real S) ;
-
- //! Scales an hyperbola. S is the scaling value. <br>
- gp_Hypr Scaled(const gp_Pnt& P,const Standard_Real S) const;
-
- void Transform(const gp_Trsf& T) ;
-
- //! Transforms an hyperbola with the transformation T from <br>
- //! class Trsf. <br>
- gp_Hypr Transformed(const gp_Trsf& T) const;
-
- void Translate(const gp_Vec& V) ;
-
- //! Translates an hyperbola in the direction of the vector V. <br>
- //! The magnitude of the translation is the vector's magnitude. <br>
- gp_Hypr Translated(const gp_Vec& V) const;
-
- void Translate(const gp_Pnt& P1,const gp_Pnt& P2) ;
-
- //! Translates an hyperbola from the point P1 to the point P2. <br>
- gp_Hypr Translated(const gp_Pnt& P1,const gp_Pnt& P2) const;
- const gp_Ax2& _CSFDB_Getgp_Hyprpos() const { return pos; }
- Standard_Real _CSFDB_Getgp_HyprmajorRadius() const { return majorRadius; }
- void _CSFDB_Setgp_HyprmajorRadius(const Standard_Real p) { majorRadius = p; }
- Standard_Real _CSFDB_Getgp_HyprminorRadius() const { return minorRadius; }
- void _CSFDB_Setgp_HyprminorRadius(const Standard_Real p) { minorRadius = p; }
- protected:
- private:
- gp_Ax2 pos;
- Standard_Real majorRadius;
- Standard_Real minorRadius;
- };
- #include <gp_Hypr.lxx>
- // other Inline functions and methods (like "C++: function call" methods)
- #endif