/hardware/arduino/sam/system/CMSIS/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_iir_lattice_q15.c
https://github.com/sgk/Arduino · C · 403 lines · 166 code · 88 blank · 149 comment · 8 complexity · be472e713a634f05101856153b226b15 MD5 · raw file
- /* ----------------------------------------------------------------------
- * Copyright (C) 2010 ARM Limited. All rights reserved.
- *
- * $Date: 15. July 2011
- * $Revision: V1.0.10
- *
- * Project: CMSIS DSP Library
- * Title: arm_iir_lattice_q15.c
- *
- * Description: Q15 IIR lattice filter processing function.
- *
- * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
- *
- * Version 1.0.10 2011/7/15
- * Big Endian support added and Merged M0 and M3/M4 Source code.
- *
- * Version 1.0.3 2010/11/29
- * Re-organized the CMSIS folders and updated documentation.
- *
- * Version 1.0.2 2010/11/11
- * Documentation updated.
- *
- * Version 1.0.1 2010/10/05
- * Production release and review comments incorporated.
- *
- * Version 1.0.0 2010/09/20
- * Production release and review comments incorporated
- *
- * Version 0.0.7 2010/06/10
- * Misra-C changes done
- * -------------------------------------------------------------------- */
- #include "arm_math.h"
- /**
- * @ingroup groupFilters
- */
- /**
- * @addtogroup IIR_Lattice
- * @{
- */
- /**
- * @brief Processing function for the Q15 IIR lattice filter.
- * @param[in] *S points to an instance of the Q15 IIR lattice structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- * @return none.
- *
- * @details
- * <b>Scaling and Overflow Behavior:</b>
- * \par
- * The function is implemented using a 64-bit internal accumulator.
- * Both coefficients and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
- * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
- * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
- * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
- * Lastly, the accumulator is saturated to yield a result in 1.15 format.
- */
- void arm_iir_lattice_q15(
- const arm_iir_lattice_instance_q15 * S,
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize)
- {
- #ifndef ARM_MATH_CM0
- /* Run the below code for Cortex-M4 and Cortex-M3 */
- q31_t fcurr, fnext, gcurr = 0, gnext; /* Temporary variables for lattice stages */
- q15_t gnext1, gnext2; /* Temporary variables for lattice stages */
- uint32_t stgCnt; /* Temporary variables for counts */
- q63_t acc; /* Accumlator */
- uint32_t blkCnt, tapCnt; /* Temporary variables for counts */
- q15_t *px1, *px2, *pk, *pv; /* temporary pointers for state and coef */
- uint32_t numStages = S->numStages; /* number of stages */
- q15_t *pState; /* State pointer */
- q15_t *pStateCurnt; /* State current pointer */
- q15_t out; /* Temporary variable for output */
- q31_t v; /* Temporary variable for ladder coefficient */
- blkCnt = blockSize;
- pState = &S->pState[0];
- /* Sample processing */
- while(blkCnt > 0u)
- {
- /* Read Sample from input buffer */
- /* fN(n) = x(n) */
- fcurr = *pSrc++;
- /* Initialize state read pointer */
- px1 = pState;
- /* Initialize state write pointer */
- px2 = pState;
- /* Set accumulator to zero */
- acc = 0;
- /* Initialize Ladder coeff pointer */
- pv = &S->pvCoeffs[0];
- /* Initialize Reflection coeff pointer */
- pk = &S->pkCoeffs[0];
- /* Process sample for first tap */
- gcurr = *px1++;
- /* fN-1(n) = fN(n) - kN * gN-1(n-1) */
- fnext = fcurr - (((q31_t) gcurr * (*pk)) >> 15);
- fnext = __SSAT(fnext, 16);
- /* gN(n) = kN * fN-1(n) + gN-1(n-1) */
- gnext = (((q31_t) fnext * (*pk++)) >> 15) + gcurr;
- gnext = __SSAT(gnext, 16);
- /* write gN(n) into state for next sample processing */
- *px2++ = (q15_t) gnext;
- /* y(n) += gN(n) * vN */
- acc += (q31_t) ((gnext * (*pv++)));
- /* Update f values for next coefficient processing */
- fcurr = fnext;
- /* Loop unrolling. Process 4 taps at a time. */
- tapCnt = (numStages - 1u) >> 2;
- while(tapCnt > 0u)
- {
- /* Process sample for 2nd, 6th ...taps */
- /* Read gN-2(n-1) from state buffer */
- gcurr = *px1++;
- /* Process sample for 2nd, 6th .. taps */
- /* fN-2(n) = fN-1(n) - kN-1 * gN-2(n-1) */
- fnext = fcurr - (((q31_t) gcurr * (*pk)) >> 15);
- fnext = __SSAT(fnext, 16);
- /* gN-1(n) = kN-1 * fN-2(n) + gN-2(n-1) */
- gnext = (((q31_t) fnext * (*pk++)) >> 15) + gcurr;
- gnext1 = (q15_t) __SSAT(gnext, 16);
- /* write gN-1(n) into state */
- *px2++ = (q15_t) gnext1;
- /* Process sample for 3nd, 7th ...taps */
- /* Read gN-3(n-1) from state */
- gcurr = *px1++;
- /* Process sample for 3rd, 7th .. taps */
- /* fN-3(n) = fN-2(n) - kN-2 * gN-3(n-1) */
- fcurr = fnext - (((q31_t) gcurr * (*pk)) >> 15);
- fcurr = __SSAT(fcurr, 16);
- /* gN-2(n) = kN-2 * fN-3(n) + gN-3(n-1) */
- gnext = (((q31_t) fcurr * (*pk++)) >> 15) + gcurr;
- gnext2 = (q15_t) __SSAT(gnext, 16);
- /* write gN-2(n) into state */
- *px2++ = (q15_t) gnext2;
- /* Read vN-1 and vN-2 at a time */
- v = *__SIMD32(pv)++;
- /* Pack gN-1(n) and gN-2(n) */
- #ifndef ARM_MATH_BIG_ENDIAN
- gnext = __PKHBT(gnext1, gnext2, 16);
- #else
- gnext = __PKHBT(gnext2, gnext1, 16);
- #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
- /* y(n) += gN-1(n) * vN-1 */
- /* process for gN-5(n) * vN-5, gN-9(n) * vN-9 ... */
- /* y(n) += gN-2(n) * vN-2 */
- /* process for gN-6(n) * vN-6, gN-10(n) * vN-10 ... */
- acc = __SMLALD(gnext, v, acc);
- /* Process sample for 4th, 8th ...taps */
- /* Read gN-4(n-1) from state */
- gcurr = *px1++;
- /* Process sample for 4th, 8th .. taps */
- /* fN-4(n) = fN-3(n) - kN-3 * gN-4(n-1) */
- fnext = fcurr - (((q31_t) gcurr * (*pk)) >> 15);
- fnext = __SSAT(fnext, 16);
- /* gN-3(n) = kN-3 * fN-1(n) + gN-1(n-1) */
- gnext = (((q31_t) fnext * (*pk++)) >> 15) + gcurr;
- gnext1 = (q15_t) __SSAT(gnext, 16);
- /* write gN-3(n) for the next sample process */
- *px2++ = (q15_t) gnext1;
- /* Process sample for 5th, 9th ...taps */
- /* Read gN-5(n-1) from state */
- gcurr = *px1++;
- /* Process sample for 5th, 9th .. taps */
- /* fN-5(n) = fN-4(n) - kN-4 * gN-5(n-1) */
- fcurr = fnext - (((q31_t) gcurr * (*pk)) >> 15);
- fcurr = __SSAT(fcurr, 16);
- /* gN-4(n) = kN-4 * fN-5(n) + gN-5(n-1) */
- gnext = (((q31_t) fcurr * (*pk++)) >> 15) + gcurr;
- gnext2 = (q15_t) __SSAT(gnext, 16);
- /* write gN-4(n) for the next sample process */
- *px2++ = (q15_t) gnext2;
- /* Read vN-3 and vN-4 at a time */
- v = *__SIMD32(pv)++;
- /* Pack gN-3(n) and gN-4(n) */
- #ifndef ARM_MATH_BIG_ENDIAN
- gnext = __PKHBT(gnext1, gnext2, 16);
- #else
- gnext = __PKHBT(gnext2, gnext1, 16);
- #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
- /* y(n) += gN-4(n) * vN-4 */
- /* process for gN-8(n) * vN-8, gN-12(n) * vN-12 ... */
- /* y(n) += gN-3(n) * vN-3 */
- /* process for gN-7(n) * vN-7, gN-11(n) * vN-11 ... */
- acc = __SMLALD(gnext, v, acc);
- tapCnt--;
- }
- fnext = fcurr;
- /* If the filter length is not a multiple of 4, compute the remaining filter taps */
- tapCnt = (numStages - 1u) % 0x4u;
- while(tapCnt > 0u)
- {
- gcurr = *px1++;
- /* Process sample for last taps */
- fnext = fcurr - (((q31_t) gcurr * (*pk)) >> 15);
- fnext = __SSAT(fnext, 16);
- gnext = (((q31_t) fnext * (*pk++)) >> 15) + gcurr;
- gnext = __SSAT(gnext, 16);
- /* Output samples for last taps */
- acc += (q31_t) (((q31_t) gnext * (*pv++)));
- *px2++ = (q15_t) gnext;
- fcurr = fnext;
- tapCnt--;
- }
- /* y(n) += g0(n) * v0 */
- acc += (q31_t) (((q31_t) fnext * (*pv++)));
- out = (q15_t) __SSAT(acc >> 15, 16);
- *px2++ = (q15_t) fnext;
- /* write out into pDst */
- *pDst++ = out;
- /* Advance the state pointer by 4 to process the next group of 4 samples */
- pState = pState + 1u;
- blkCnt--;
- }
- /* Processing is complete. Now copy last S->numStages samples to start of the buffer
- for the preperation of next frame process */
- /* Points to the start of the state buffer */
- pStateCurnt = &S->pState[0];
- pState = &S->pState[blockSize];
- stgCnt = (numStages >> 2u);
- /* copy data */
- while(stgCnt > 0u)
- {
- *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
- *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
- /* Decrement the loop counter */
- stgCnt--;
- }
- /* Calculation of count for remaining q15_t data */
- stgCnt = (numStages) % 0x4u;
- /* copy data */
- while(stgCnt > 0u)
- {
- *pStateCurnt++ = *pState++;
- /* Decrement the loop counter */
- stgCnt--;
- }
- #else
- /* Run the below code for Cortex-M0 */
- q31_t fcurr, fnext = 0, gcurr = 0, gnext; /* Temporary variables for lattice stages */
- uint32_t stgCnt; /* Temporary variables for counts */
- q63_t acc; /* Accumlator */
- uint32_t blkCnt, tapCnt; /* Temporary variables for counts */
- q15_t *px1, *px2, *pk, *pv; /* temporary pointers for state and coef */
- uint32_t numStages = S->numStages; /* number of stages */
- q15_t *pState; /* State pointer */
- q15_t *pStateCurnt; /* State current pointer */
- q15_t out; /* Temporary variable for output */
- blkCnt = blockSize;
- pState = &S->pState[0];
- /* Sample processing */
- while(blkCnt > 0u)
- {
- /* Read Sample from input buffer */
- /* fN(n) = x(n) */
- fcurr = *pSrc++;
- /* Initialize state read pointer */
- px1 = pState;
- /* Initialize state write pointer */
- px2 = pState;
- /* Set accumulator to zero */
- acc = 0;
- /* Initialize Ladder coeff pointer */
- pv = &S->pvCoeffs[0];
- /* Initialize Reflection coeff pointer */
- pk = &S->pkCoeffs[0];
- tapCnt = numStages;
- while(tapCnt > 0u)
- {
- gcurr = *px1++;
- /* Process sample */
- /* fN-1(n) = fN(n) - kN * gN-1(n-1) */
- fnext = fcurr - ((gcurr * (*pk)) >> 15);
- fnext = __SSAT(fnext, 16);
- /* gN(n) = kN * fN-1(n) + gN-1(n-1) */
- gnext = ((fnext * (*pk++)) >> 15) + gcurr;
- gnext = __SSAT(gnext, 16);
- /* Output samples */
- /* y(n) += gN(n) * vN */
- acc += (q31_t) ((gnext * (*pv++)));
- /* write gN(n) into state for next sample processing */
- *px2++ = (q15_t) gnext;
- /* Update f values for next coefficient processing */
- fcurr = fnext;
- tapCnt--;
- }
- /* y(n) += g0(n) * v0 */
- acc += (q31_t) ((fnext * (*pv++)));
- out = (q15_t) __SSAT(acc >> 15, 16);
- *px2++ = (q15_t) fnext;
- /* write out into pDst */
- *pDst++ = out;
- /* Advance the state pointer by 1 to process the next group of samples */
- pState = pState + 1u;
- blkCnt--;
- }
- /* Processing is complete. Now copy last S->numStages samples to start of the buffer
- for the preperation of next frame process */
- /* Points to the start of the state buffer */
- pStateCurnt = &S->pState[0];
- pState = &S->pState[blockSize];
- stgCnt = numStages;
- /* copy data */
- while(stgCnt > 0u)
- {
- *pStateCurnt++ = *pState++;
- /* Decrement the loop counter */
- stgCnt--;
- }
- #endif /* #ifndef ARM_MATH_CM0 */
- }
- /**
- * @} end of IIR_Lattice group
- */