/base/rational.jl

https://github.com/stevengj/julia · Lisp · 193 lines · 159 code · 34 blank · 0 comment · 37 complexity · dfcd3750086b12cdd60cc410027bc559 MD5 · raw file

  1. immutable Rational{T<:Integer} <: Real
  2. num::T
  3. den::T
  4. function Rational(num::T, den::T)
  5. if num == 0 && den == 0
  6. error("invalid rational: 0//0")
  7. end
  8. g = gcd(den, num)
  9. new(div(num, g), div(den, g))
  10. end
  11. end
  12. Rational{T<:Integer}(n::T, d::T) = Rational{T}(n,d)
  13. Rational(n::Integer, d::Integer) = Rational(promote(n,d)...)
  14. Rational(n::Integer) = Rational(n,one(n))
  15. //(n::Integer, d::Integer ) = Rational(n,d)
  16. //(x::Rational, y::Integer ) = x.num//(x.den*y)
  17. //(x::Integer, y::Rational) = (x*y.den)//y.num
  18. //(x::Rational, y::Rational) = (x.num*y.den)//(x.den*y.num)
  19. //(x::Complex, y::Real ) = complex(real(x)//y,imag(x)//y)
  20. //(x::Real, y::Complex ) = x*y'//real(y*y')
  21. function //(x::Complex, y::Complex)
  22. xy = x*y'
  23. yy = real(y*y')
  24. complex(real(xy)//yy, imag(xy)//yy)
  25. end
  26. function show(io::IO, x::Rational)
  27. if isinf(x)
  28. print(io, x.num > 0 ? "Inf" : "-Inf")
  29. else
  30. show(io, num(x)); print(io, "//"); show(io, den(x))
  31. end
  32. end
  33. convert{T<:Integer}(::Type{Rational{T}}, x::Rational) = Rational(convert(T,x.num),convert(T,x.den))
  34. convert{T<:Integer}(::Type{Rational{T}}, x::Integer) = Rational(convert(T,x), convert(T,1))
  35. convert(::Type{Rational}, x::Rational) = x
  36. convert(::Type{Rational}, x::Integer) = convert(Rational{typeof(x)},x)
  37. convert(::Type{Bool}, x::Rational) = (x!=0) # to resolve ambiguity
  38. convert{T<:Integer}(::Type{T}, x::Rational) = (isinteger(x) ? convert(T, x.num) : throw(InexactError()))
  39. convert{T<:FloatingPoint}(::Type{T}, x::Rational) = convert(T,x.num)/convert(T,x.den)
  40. function convert{T<:Integer}(::Type{Rational{T}}, x::FloatingPoint)
  41. x == 0 && return zero(T)//one(T)
  42. if !isfinite(x)
  43. x < 0 && return -one(T)//zero(T)
  44. x > 0 && return +one(T)//zero(T)
  45. error(InexactError())
  46. end
  47. # TODO: handle values that can't be converted exactly
  48. p = get_precision(x)-1
  49. n = convert(T, significand(x)*2.0^p)
  50. p -= exponent(x)
  51. z = trailing_zeros(n)
  52. p - z > 0 ? (n>>z)//(one(T)<<(p-z)) :
  53. p > 0 ? (n>>p)//one(T) :
  54. (n<<-p)//one(T)
  55. end
  56. convert(::Type{Rational}, x::Union(Float64,Float32)) = convert(Rational{Int}, x)
  57. promote_rule{T<:Integer}(::Type{Rational{T}}, ::Type{T}) = Rational{T}
  58. promote_rule{T<:Integer,S<:Integer}(::Type{Rational{T}}, ::Type{S}) = Rational{promote_type(T,S)}
  59. promote_rule{T<:Integer,S<:Integer}(::Type{Rational{T}}, ::Type{Rational{S}}) = Rational{promote_type(T,S)}
  60. promote_rule{T<:SmallSigned,S<:Union(Float32,Float64)}(::Type{Rational{T}}, ::Type{S}) = Rational{Int}
  61. promote_rule{T<:SmallUnsigned,S<:Union(Float32,Float64)}(::Type{Rational{T}}, ::Type{S}) = Rational{Uint}
  62. promote_rule{T<:Union(Int64,Int128),S<:Union(Float32,Float64)}(::Type{Rational{T}}, ::Type{S}) = Rational{T}
  63. promote_rule{T<:Union(Uint64,Uint128),S<:Union(Float32,Float64)}(::Type{Rational{T}}, ::Type{S}) = Rational{T}
  64. function rationalize{T<:Integer}(::Type{T}, x::FloatingPoint; tol::Real=eps(x))
  65. if isnan(x); return zero(T)//zero(T); end
  66. if x < typemin(T); return -one(T)//zero(T); end
  67. if typemax(T) < x; return one(T)//zero(T); end
  68. tm = x < 0 ? typemin(T) : typemax(T)
  69. z = x*tm
  70. if z <= 0.5 return zero(T)//one(T) end
  71. if z <= 1.0 return one(T)//tm end
  72. y = x
  73. a = d = 1
  74. b = c = 0
  75. while true
  76. f = itrunc(y); y -= f
  77. p, q = f*a+c, f*b+d
  78. typemin(T) <= p <= typemax(T) &&
  79. typemin(T) <= q <= typemax(T) || break
  80. a, b, c, d = p, q, a, b
  81. if y == 0 || abs(a/b-x) <= tol
  82. break
  83. end
  84. y = inv(y)
  85. end
  86. return convert(T,a)//convert(T,b)
  87. end
  88. rationalize(x::Union(Float64,Float32); tol::Real=eps(x)) = rationalize(Int, x, tol=tol)
  89. num(x::Integer) = x
  90. den(x::Integer) = one(x)
  91. num(x::Rational) = x.num
  92. den(x::Rational) = x.den
  93. sign(x::Rational) = sign(x.num)
  94. signbit(x::Rational) = signbit(x.num)
  95. copysign(x::Rational, y::Real) = copysign(x.num,y) // x.den
  96. copysign(x::Rational, y::Rational) = copysign(x.num,y.num) // x.den
  97. isnan(x::Rational) = false
  98. isinf(x::Rational) = x.den == 0
  99. isfinite(x::Rational) = x.den != 0
  100. typemin{T<:Integer}(::Type{Rational{T}}) = -one(T)//zero(T)
  101. typemax{T<:Integer}(::Type{Rational{T}}) = one(T)//zero(T)
  102. isinteger(x::Rational) = x.den == 1
  103. isfloat64(x::Rational) = ispow2(x.den) & (abs(x.num) <= x.den*maxintfloat(Float64))
  104. hash(x::Rational) = isinteger(x) ? hash(x.num) :
  105. isfloat64(x) ? hash(float64(x)) :
  106. bitmix(hash(x.num), hash(x.den))
  107. -(x::Rational) = (-x.num) // x.den
  108. +(x::Rational, y::Rational) = (x.num*y.den + x.den*y.num) // (x.den*y.den)
  109. -(x::Rational, y::Rational) = (x.num*y.den - x.den*y.num) // (x.den*y.den)
  110. *(x::Rational, y::Rational) = (x.num*y.num) // (x.den*y.den)
  111. /(x::Rational, y::Rational) = (x.num*y.den) // (x.den*y.num)
  112. /(x::Rational, z::Complex ) = inv(z/x)
  113. ==(x::Rational, y::Rational) = (x.den == y.den) & (x.num == y.num)
  114. ==(x::Rational, y::Integer ) = (x.den == 1) & (x.num == y)
  115. ==(x::Integer , y::Rational) = y == x
  116. # needed to avoid ambiguity between ==(x::Real, z::Complex) and ==(x::Rational, y::Number)
  117. ==(z::Complex , x::Rational) = isreal(z) & (real(z) == x)
  118. ==(x::Rational, z::Complex ) = isreal(z) & (real(z) == x)
  119. ==(x::FloatingPoint, q::Rational) = ispow2(q.den) & (x == q.num/q.den) & (x*q.den == q.num)
  120. ==(q::Rational, x::FloatingPoint) = ispow2(q.den) & (x == q.num/q.den) & (x*q.den == q.num)
  121. # TODO: fix inequalities to be in line with equality check
  122. < (x::Rational, y::Rational) = x.den == y.den ? x.num < y.num : x.num*y.den < x.den*y.num
  123. < (x::Rational, y::Real ) = x.num < x.den*y
  124. < (x::Real , y::Rational) = x*y.den < y.num
  125. <=(x::Rational, y::Rational) = x.den == y.den ? x.num <= y.num : x.num*y.den <= x.den*y.num
  126. <=(x::Rational, y::Real ) = x.num <= x.den*y
  127. <=(x::Real , y::Rational) = x*y.den <= y.num
  128. rem(x::Rational, y::Rational) = Rational(rem(x.num*y.den, x.den*y.num),
  129. x.den*y.den)
  130. mod(x::Rational, y::Rational) = Rational(mod(x.num*y.den, x.den*y.num),
  131. x.den*y.den)
  132. div(x::Rational, y::Rational) = div(x.num*y.den, x.den*y.num)
  133. div(x::Rational, y::Real ) = div(x.num, x.den*y)
  134. div(x::Real , y::Rational) = div(x*y.den, y.num)
  135. fld(x::Rational, y::Rational) = fld(x.num*y.den, x.den*y.num)
  136. fld(x::Rational, y::Real ) = fld(x.num, x.den*y)
  137. fld(x::Real , y::Rational) = fld(x*y.den, y.num)
  138. itrunc(x::Rational) = div(x.num,x.den)
  139. ifloor(x::Rational) = fld(x.num,x.den)
  140. iceil (x::Rational) = -fld(-x.num,x.den)
  141. iround(x::Rational) = div(x.num*2 + copysign(x.den,x.num), x.den*2)
  142. trunc(x::Rational) = Rational(itrunc(x))
  143. floor(x::Rational) = Rational(ifloor(x))
  144. ceil (x::Rational) = Rational(iceil(x))
  145. round(x::Rational) = Rational(iround(x))
  146. ## rational to int coercion ##
  147. for f in (:int8, :int16, :int32, :int64, :int128,
  148. :uint8, :uint16, :uint32, :uint64, :uint128,
  149. :signed, :integer, :unsigned, :int, :uint)
  150. @eval ($f)(x::Rational) = ($f)(iround(x))
  151. end
  152. ^(x::Rational, y::Integer) = y < 0 ?
  153. Rational(x.den^-y, x.num^-y) : Rational(x.num^y, x.den^y)
  154. ^(x::Number, y::Rational) = x^(y.num/y.den)
  155. ^{T<:FloatingPoint}(x::T, y::Rational) = x^(convert(T,y.num)/y.den)
  156. ^{T<:FloatingPoint}(x::Complex{T}, y::Rational) = x^(convert(T,y.num)/y.den)
  157. ^{T<:Rational}(z::Complex{T}, n::Bool) = n ? z : one(z) # to resolve ambiguity
  158. ^{T<:Rational}(z::Complex{T}, n::Integer) =
  159. n>=0 ? power_by_squaring(z,n) : power_by_squaring(inv(z),-n)