/base/rational.jl
https://github.com/stevengj/julia · Lisp · 193 lines · 159 code · 34 blank · 0 comment · 37 complexity · dfcd3750086b12cdd60cc410027bc559 MD5 · raw file
- immutable Rational{T<:Integer} <: Real
- num::T
- den::T
- function Rational(num::T, den::T)
- if num == 0 && den == 0
- error("invalid rational: 0//0")
- end
- g = gcd(den, num)
- new(div(num, g), div(den, g))
- end
- end
- Rational{T<:Integer}(n::T, d::T) = Rational{T}(n,d)
- Rational(n::Integer, d::Integer) = Rational(promote(n,d)...)
- Rational(n::Integer) = Rational(n,one(n))
- //(n::Integer, d::Integer ) = Rational(n,d)
- //(x::Rational, y::Integer ) = x.num//(x.den*y)
- //(x::Integer, y::Rational) = (x*y.den)//y.num
- //(x::Rational, y::Rational) = (x.num*y.den)//(x.den*y.num)
- //(x::Complex, y::Real ) = complex(real(x)//y,imag(x)//y)
- //(x::Real, y::Complex ) = x*y'//real(y*y')
- function //(x::Complex, y::Complex)
- xy = x*y'
- yy = real(y*y')
- complex(real(xy)//yy, imag(xy)//yy)
- end
- function show(io::IO, x::Rational)
- if isinf(x)
- print(io, x.num > 0 ? "Inf" : "-Inf")
- else
- show(io, num(x)); print(io, "//"); show(io, den(x))
- end
- end
- convert{T<:Integer}(::Type{Rational{T}}, x::Rational) = Rational(convert(T,x.num),convert(T,x.den))
- convert{T<:Integer}(::Type{Rational{T}}, x::Integer) = Rational(convert(T,x), convert(T,1))
- convert(::Type{Rational}, x::Rational) = x
- convert(::Type{Rational}, x::Integer) = convert(Rational{typeof(x)},x)
- convert(::Type{Bool}, x::Rational) = (x!=0) # to resolve ambiguity
- convert{T<:Integer}(::Type{T}, x::Rational) = (isinteger(x) ? convert(T, x.num) : throw(InexactError()))
- convert{T<:FloatingPoint}(::Type{T}, x::Rational) = convert(T,x.num)/convert(T,x.den)
- function convert{T<:Integer}(::Type{Rational{T}}, x::FloatingPoint)
- x == 0 && return zero(T)//one(T)
- if !isfinite(x)
- x < 0 && return -one(T)//zero(T)
- x > 0 && return +one(T)//zero(T)
- error(InexactError())
- end
- # TODO: handle values that can't be converted exactly
- p = get_precision(x)-1
- n = convert(T, significand(x)*2.0^p)
- p -= exponent(x)
- z = trailing_zeros(n)
- p - z > 0 ? (n>>z)//(one(T)<<(p-z)) :
- p > 0 ? (n>>p)//one(T) :
- (n<<-p)//one(T)
- end
- convert(::Type{Rational}, x::Union(Float64,Float32)) = convert(Rational{Int}, x)
- promote_rule{T<:Integer}(::Type{Rational{T}}, ::Type{T}) = Rational{T}
- promote_rule{T<:Integer,S<:Integer}(::Type{Rational{T}}, ::Type{S}) = Rational{promote_type(T,S)}
- promote_rule{T<:Integer,S<:Integer}(::Type{Rational{T}}, ::Type{Rational{S}}) = Rational{promote_type(T,S)}
- promote_rule{T<:SmallSigned,S<:Union(Float32,Float64)}(::Type{Rational{T}}, ::Type{S}) = Rational{Int}
- promote_rule{T<:SmallUnsigned,S<:Union(Float32,Float64)}(::Type{Rational{T}}, ::Type{S}) = Rational{Uint}
- promote_rule{T<:Union(Int64,Int128),S<:Union(Float32,Float64)}(::Type{Rational{T}}, ::Type{S}) = Rational{T}
- promote_rule{T<:Union(Uint64,Uint128),S<:Union(Float32,Float64)}(::Type{Rational{T}}, ::Type{S}) = Rational{T}
- function rationalize{T<:Integer}(::Type{T}, x::FloatingPoint; tol::Real=eps(x))
- if isnan(x); return zero(T)//zero(T); end
- if x < typemin(T); return -one(T)//zero(T); end
- if typemax(T) < x; return one(T)//zero(T); end
- tm = x < 0 ? typemin(T) : typemax(T)
- z = x*tm
- if z <= 0.5 return zero(T)//one(T) end
- if z <= 1.0 return one(T)//tm end
- y = x
- a = d = 1
- b = c = 0
- while true
- f = itrunc(y); y -= f
- p, q = f*a+c, f*b+d
- typemin(T) <= p <= typemax(T) &&
- typemin(T) <= q <= typemax(T) || break
- a, b, c, d = p, q, a, b
- if y == 0 || abs(a/b-x) <= tol
- break
- end
- y = inv(y)
- end
- return convert(T,a)//convert(T,b)
- end
- rationalize(x::Union(Float64,Float32); tol::Real=eps(x)) = rationalize(Int, x, tol=tol)
- num(x::Integer) = x
- den(x::Integer) = one(x)
- num(x::Rational) = x.num
- den(x::Rational) = x.den
- sign(x::Rational) = sign(x.num)
- signbit(x::Rational) = signbit(x.num)
- copysign(x::Rational, y::Real) = copysign(x.num,y) // x.den
- copysign(x::Rational, y::Rational) = copysign(x.num,y.num) // x.den
- isnan(x::Rational) = false
- isinf(x::Rational) = x.den == 0
- isfinite(x::Rational) = x.den != 0
- typemin{T<:Integer}(::Type{Rational{T}}) = -one(T)//zero(T)
- typemax{T<:Integer}(::Type{Rational{T}}) = one(T)//zero(T)
- isinteger(x::Rational) = x.den == 1
- isfloat64(x::Rational) = ispow2(x.den) & (abs(x.num) <= x.den*maxintfloat(Float64))
- hash(x::Rational) = isinteger(x) ? hash(x.num) :
- isfloat64(x) ? hash(float64(x)) :
- bitmix(hash(x.num), hash(x.den))
- -(x::Rational) = (-x.num) // x.den
- +(x::Rational, y::Rational) = (x.num*y.den + x.den*y.num) // (x.den*y.den)
- -(x::Rational, y::Rational) = (x.num*y.den - x.den*y.num) // (x.den*y.den)
- *(x::Rational, y::Rational) = (x.num*y.num) // (x.den*y.den)
- /(x::Rational, y::Rational) = (x.num*y.den) // (x.den*y.num)
- /(x::Rational, z::Complex ) = inv(z/x)
- ==(x::Rational, y::Rational) = (x.den == y.den) & (x.num == y.num)
- ==(x::Rational, y::Integer ) = (x.den == 1) & (x.num == y)
- ==(x::Integer , y::Rational) = y == x
- # needed to avoid ambiguity between ==(x::Real, z::Complex) and ==(x::Rational, y::Number)
- ==(z::Complex , x::Rational) = isreal(z) & (real(z) == x)
- ==(x::Rational, z::Complex ) = isreal(z) & (real(z) == x)
- ==(x::FloatingPoint, q::Rational) = ispow2(q.den) & (x == q.num/q.den) & (x*q.den == q.num)
- ==(q::Rational, x::FloatingPoint) = ispow2(q.den) & (x == q.num/q.den) & (x*q.den == q.num)
- # TODO: fix inequalities to be in line with equality check
- < (x::Rational, y::Rational) = x.den == y.den ? x.num < y.num : x.num*y.den < x.den*y.num
- < (x::Rational, y::Real ) = x.num < x.den*y
- < (x::Real , y::Rational) = x*y.den < y.num
- <=(x::Rational, y::Rational) = x.den == y.den ? x.num <= y.num : x.num*y.den <= x.den*y.num
- <=(x::Rational, y::Real ) = x.num <= x.den*y
- <=(x::Real , y::Rational) = x*y.den <= y.num
- rem(x::Rational, y::Rational) = Rational(rem(x.num*y.den, x.den*y.num),
- x.den*y.den)
- mod(x::Rational, y::Rational) = Rational(mod(x.num*y.den, x.den*y.num),
- x.den*y.den)
- div(x::Rational, y::Rational) = div(x.num*y.den, x.den*y.num)
- div(x::Rational, y::Real ) = div(x.num, x.den*y)
- div(x::Real , y::Rational) = div(x*y.den, y.num)
- fld(x::Rational, y::Rational) = fld(x.num*y.den, x.den*y.num)
- fld(x::Rational, y::Real ) = fld(x.num, x.den*y)
- fld(x::Real , y::Rational) = fld(x*y.den, y.num)
- itrunc(x::Rational) = div(x.num,x.den)
- ifloor(x::Rational) = fld(x.num,x.den)
- iceil (x::Rational) = -fld(-x.num,x.den)
- iround(x::Rational) = div(x.num*2 + copysign(x.den,x.num), x.den*2)
- trunc(x::Rational) = Rational(itrunc(x))
- floor(x::Rational) = Rational(ifloor(x))
- ceil (x::Rational) = Rational(iceil(x))
- round(x::Rational) = Rational(iround(x))
- ## rational to int coercion ##
- for f in (:int8, :int16, :int32, :int64, :int128,
- :uint8, :uint16, :uint32, :uint64, :uint128,
- :signed, :integer, :unsigned, :int, :uint)
- @eval ($f)(x::Rational) = ($f)(iround(x))
- end
- ^(x::Rational, y::Integer) = y < 0 ?
- Rational(x.den^-y, x.num^-y) : Rational(x.num^y, x.den^y)
- ^(x::Number, y::Rational) = x^(y.num/y.den)
- ^{T<:FloatingPoint}(x::T, y::Rational) = x^(convert(T,y.num)/y.den)
- ^{T<:FloatingPoint}(x::Complex{T}, y::Rational) = x^(convert(T,y.num)/y.den)
- ^{T<:Rational}(z::Complex{T}, n::Bool) = n ? z : one(z) # to resolve ambiguity
- ^{T<:Rational}(z::Complex{T}, n::Integer) =
- n>=0 ? power_by_squaring(z,n) : power_by_squaring(inv(z),-n)