/blitz/blitz/numinquire.h
https://github.com/qingguang/sdpd-blitz · C Header · 306 lines · 208 code · 53 blank · 45 comment · 0 complexity · e6e328834e1e6e03e6bef5ed32af9985 MD5 · raw file
- /***************************************************************************
- * blitz/numinquire.h Numeric inquiry functions
- *
- * $Id: numinquire.h,v 1.6 2005/11/01 02:42:23 julianc Exp $
- *
- * Copyright (C) 1997-2001 Todd Veldhuizen <tveldhui@oonumerics.org>
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version 2
- * of the License, or (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * Suggestions: blitz-dev@oonumerics.org
- * Bugs: blitz-bugs@oonumerics.org
- *
- * For more information, please see the Blitz++ Home Page:
- * http://oonumerics.org/blitz/
- *
- ***************************************************************************/
- /*
- * These numeric inquiry functions are provided as an alternative
- * to the somewhat klunky numeric_limits<T>::yadda_yadda syntax.
- * Where a similar Fortran 90 function exists, the same name has
- * been used.
- *
- * The argument in all cases is a dummy of the appropriate type
- * (double, int, etc.)
- *
- * These functions assume that numeric_limits<T> has been specialized
- * for the appropriate case. If not, the results are not useful.
- */
- #ifndef BZ_NUMINQUIRE_H
- #define BZ_NUMINQUIRE_H
- #ifndef BZ_BLITZ_H
- #include <blitz/blitz.h>
- #endif
- #ifndef BZ_HAVE_NUMERIC_LIMITS
- #include <blitz/limits-hack.h>
- #else
- #include <limits>
- #endif
- #ifndef BZ_RANGE_H
- #include <blitz/range.h>
- #endif
- BZ_NAMESPACE(blitz)
- /*
- * This traits class provides zero and one values for numeric
- * types. This was previously a template function with specializations,
- * but the specializations were causing multiply-defined symbols
- * at link time. TV 980226
- */
- template<typename T_numtype>
- struct _bz_OneZeroTraits {
- static inline T_numtype zero() { return 0; }
- static inline T_numtype one() { return 1; }
- };
- #ifdef BZ_HAVE_COMPLEX
- template<>
- struct _bz_OneZeroTraits<complex<float> > {
- static inline complex<float> zero() { return complex<float>(0.0f,0.0f); }
- static inline complex<float> one() { return complex<float>(1.0f,0.0f); }
- };
- template<>
- struct _bz_OneZeroTraits<complex<double> > {
- static inline complex<double> zero() { return complex<double>(0.0,0.0); }
- static inline complex<double> one() { return complex<double>(1.0,0.0); }
- };
- template<>
- struct _bz_OneZeroTraits<complex<long double> > {
- static inline complex<long double> zero()
- { return complex<long double>(0.0,0.0); }
- static inline complex<long double> one()
- { return complex<long double>(1.0,0.0); }
- };
- #endif // BZ_HAVE_COMPLEX
- template<typename T>
- inline T zero(T)
- {
- return _bz_OneZeroTraits<T>::zero();
- }
- template<typename T>
- inline T one(T)
- {
- return _bz_OneZeroTraits<T>::one();
- }
- template<typename T>
- inline int digits(T)
- {
- return numeric_limits<T>::digits;
- }
- template<typename T>
- inline int digits10(T)
- {
- return numeric_limits<T>::digits10;
- }
- template<typename T>
- inline T epsilon(T) BZ_THROW
- {
- return numeric_limits<T>::epsilon();
- }
- // neghuge() by Theodore Papadopoulo, to fix a problem with
- // max() reductions.
- template<typename T>
- inline T neghuge(T) BZ_THROW
- {
- return numeric_limits<T>::is_integer ? (numeric_limits<T>::min)()
- : - (numeric_limits<T>::max)();
- }
- template<typename T>
- inline T huge(T) BZ_THROW
- {
- return (numeric_limits<T>::max)();
- }
- template<typename T>
- inline T tiny(T) BZ_THROW
- {
- return (numeric_limits<T>::min)();
- }
- template<typename T>
- inline int max_exponent(T)
- {
- return numeric_limits<T>::max_exponent;
- }
- template<typename T>
- inline int min_exponent(T)
- {
- return numeric_limits<T>::min_exponent;
- }
- template<typename T>
- inline int min_exponent10(T)
- {
- return numeric_limits<T>::min_exponent10;
- }
- template<typename T>
- inline int max_exponent10(T)
- {
- return numeric_limits<T>::max_exponent10;
- }
- template<typename T>
- inline int precision(T)
- {
- return numeric_limits<T>::digits10;
- }
- template<typename T>
- inline int radix(T)
- {
- return numeric_limits<T>::radix;
- }
- template<typename T>
- inline Range range(T)
- {
- return Range(numeric_limits<T>::min_exponent10,
- numeric_limits<T>::max_exponent10);
- }
- template<typename T>
- inline bool is_signed(T) {
- return numeric_limits<T>::is_signed;
- }
- template<typename T>
- inline bool is_integer(T) {
- return numeric_limits<T>::is_integer;
- }
- template<typename T>
- inline bool is_exact(T) {
- return numeric_limits<T>::is_exact;
- }
- template<typename T>
- inline T round_error(T) BZ_THROW
- {
- return numeric_limits<T>::round_error();
- }
- template<typename T>
- inline bool has_infinity(T) {
- return numeric_limits<T>::has_infinity;
- }
- template<typename T>
- inline bool has_quiet_NaN(T) {
- return numeric_limits<T>::has_quiet_NaN;
- }
- template<typename T>
- inline bool has_signaling_NaN(T) {
- return numeric_limits<T>::has_signaling_NaN;
- }
- // Provided for non-US english users
- template<typename T>
- inline bool has_signalling_NaN(T) {
- return numeric_limits<T>::has_signaling_NaN;
- }
- template<typename T>
- inline bool has_denorm(T) {
- return numeric_limits<T>::has_denorm;
- }
- template<typename T>
- inline bool has_denorm_loss(T) {
- return numeric_limits<T>::has_denorm_loss;
- }
- template<typename T>
- inline T infinity(T) BZ_THROW
- {
- return numeric_limits<T>::infinity();
- }
- template<typename T>
- inline T quiet_NaN(T) BZ_THROW
- {
- return numeric_limits<T>::quiet_NaN();
- }
- template<typename T>
- inline T signaling_NaN(T) BZ_THROW
- {
- return numeric_limits<T>::signaling_NaN();
- }
- template<typename T>
- inline T signalling_NaN(T) BZ_THROW
- {
- return numeric_limits<T>::signaling_NaN();
- }
- template<typename T>
- inline T denorm_min(T) BZ_THROW
- {
- return numeric_limits<T>::denorm_min();
- }
- template<typename T>
- inline bool is_iec559(T) {
- return numeric_limits<T>::is_iec559;
- }
- template<typename T>
- inline bool is_bounded(T) {
- return numeric_limits<T>::is_bounded;
- }
- template<typename T>
- inline bool is_modulo(T) {
- return numeric_limits<T>::is_modulo;
- }
- template<typename T>
- inline bool traps(T) {
- return numeric_limits<T>::traps;
- }
- template<typename T>
- inline bool tinyness_before(T) {
- return numeric_limits<T>::tinyness_before;
- }
- template<typename T>
- inline BZ_STD_SCOPE(float_round_style) round_style(T)
- {
- return numeric_limits<T>::round_style;
- }
- BZ_NAMESPACE_END
- #endif // BZ_NUMINQUIRE_H