/src/pkg/regexp/syntax/simplify.go
http://github.com/tav/go · Go · 151 lines · 88 code · 17 blank · 46 comment · 47 complexity · 156c854698d8a8afa8202b591125d70e MD5 · raw file
- // Copyright 2011 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package syntax
- // Simplify returns a regexp equivalent to re but without counted repetitions
- // and with various other simplifications, such as rewriting /(?:a+)+/ to /a+/.
- // The resulting regexp will execute correctly but its string representation
- // will not produce the same parse tree, because capturing parentheses
- // may have been duplicated or removed. For example, the simplified form
- // for /(x){1,2}/ is /(x)(x)?/ but both parentheses capture as $1.
- // The returned regexp may share structure with or be the original.
- func (re *Regexp) Simplify() *Regexp {
- if re == nil {
- return nil
- }
- switch re.Op {
- case OpCapture, OpConcat, OpAlternate:
- // Simplify children, building new Regexp if children change.
- nre := re
- for i, sub := range re.Sub {
- nsub := sub.Simplify()
- if nre == re && nsub != sub {
- // Start a copy.
- nre = new(Regexp)
- *nre = *re
- nre.Rune = nil
- nre.Sub = append(nre.Sub0[:0], re.Sub[:i]...)
- }
- if nre != re {
- nre.Sub = append(nre.Sub, nsub)
- }
- }
- return nre
- case OpStar, OpPlus, OpQuest:
- sub := re.Sub[0].Simplify()
- return simplify1(re.Op, re.Flags, sub, re)
- case OpRepeat:
- // Special special case: x{0} matches the empty string
- // and doesn't even need to consider x.
- if re.Min == 0 && re.Max == 0 {
- return &Regexp{Op: OpEmptyMatch}
- }
- // The fun begins.
- sub := re.Sub[0].Simplify()
- // x{n,} means at least n matches of x.
- if re.Max == -1 {
- // Special case: x{0,} is x*.
- if re.Min == 0 {
- return simplify1(OpStar, re.Flags, sub, nil)
- }
- // Special case: x{1,} is x+.
- if re.Min == 1 {
- return simplify1(OpPlus, re.Flags, sub, nil)
- }
- // General case: x{4,} is xxxx+.
- nre := &Regexp{Op: OpConcat}
- nre.Sub = nre.Sub0[:0]
- for i := 0; i < re.Min-1; i++ {
- nre.Sub = append(nre.Sub, sub)
- }
- nre.Sub = append(nre.Sub, simplify1(OpPlus, re.Flags, sub, nil))
- return nre
- }
- // Special case x{0} handled above.
- // Special case: x{1} is just x.
- if re.Min == 1 && re.Max == 1 {
- return sub
- }
- // General case: x{n,m} means n copies of x and m copies of x?
- // The machine will do less work if we nest the final m copies,
- // so that x{2,5} = xx(x(x(x)?)?)?
- // Build leading prefix: xx.
- var prefix *Regexp
- if re.Min > 0 {
- prefix = &Regexp{Op: OpConcat}
- prefix.Sub = prefix.Sub0[:0]
- for i := 0; i < re.Min; i++ {
- prefix.Sub = append(prefix.Sub, sub)
- }
- }
- // Build and attach suffix: (x(x(x)?)?)?
- if re.Max > re.Min {
- suffix := simplify1(OpQuest, re.Flags, sub, nil)
- for i := re.Min + 1; i < re.Max; i++ {
- nre2 := &Regexp{Op: OpConcat}
- nre2.Sub = append(nre2.Sub0[:0], sub, suffix)
- suffix = simplify1(OpQuest, re.Flags, nre2, nil)
- }
- if prefix == nil {
- return suffix
- }
- prefix.Sub = append(prefix.Sub, suffix)
- }
- if prefix != nil {
- return prefix
- }
- // Some degenerate case like min > max or min < max < 0.
- // Handle as impossible match.
- return &Regexp{Op: OpNoMatch}
- }
- return re
- }
- // simplify1 implements Simplify for the unary OpStar,
- // OpPlus, and OpQuest operators. It returns the simple regexp
- // equivalent to
- //
- // Regexp{Op: op, Flags: flags, Sub: {sub}}
- //
- // under the assumption that sub is already simple, and
- // without first allocating that structure. If the regexp
- // to be returned turns out to be equivalent to re, simplify1
- // returns re instead.
- //
- // simplify1 is factored out of Simplify because the implementation
- // for other operators generates these unary expressions.
- // Letting them call simplify1 makes sure the expressions they
- // generate are simple.
- func simplify1(op Op, flags Flags, sub, re *Regexp) *Regexp {
- // Special case: repeat the empty string as much as
- // you want, but it's still the empty string.
- if sub.Op == OpEmptyMatch {
- return sub
- }
- // The operators are idempotent if the flags match.
- if op == sub.Op && flags&NonGreedy == sub.Flags&NonGreedy {
- return sub
- }
- if re != nil && re.Op == op && re.Flags&NonGreedy == flags&NonGreedy && sub == re.Sub[0] {
- return re
- }
- re = &Regexp{Op: op, Flags: flags}
- re.Sub = append(re.Sub0[:0], sub)
- return re
- }