/tweencee/easing.c

https://github.com/PerlGameDev/SDLx-Tween · C · 302 lines · 214 code · 33 blank · 55 comment · 20 complexity · a46716a7f9a31e11c68bf350b9876bc2 MD5 · raw file

  1. //
  2. // easing.c
  3. //
  4. // Copyright (c) 2011, Auerhaus Development, LLC
  5. //
  6. // This program is free software. It comes without any warranty, to
  7. // the extent permitted by applicable law. You can redistribute it
  8. // and/or modify it under the terms of the Do What The Fuck You Want
  9. // To Public License, Version 2, as published by Sam Hocevar. See
  10. // http://sam.zoy.org/wtfpl/COPYING for more details.
  11. //
  12. #include <math.h>
  13. #include "easing.h"
  14. // Modeled after the line y = x
  15. AHFloat LinearInterpolation(AHFloat p)
  16. {
  17. return p;
  18. }
  19. // Modeled after the parabola y = x^2
  20. AHFloat QuadraticEaseIn(AHFloat p)
  21. {
  22. return p * p;
  23. }
  24. // Modeled after the parabola y = -x^2 + 2x
  25. AHFloat QuadraticEaseOut(AHFloat p)
  26. {
  27. return -(p * (p - 2));
  28. }
  29. // Modeled after the piecewise quadratic
  30. // y = (1/2)((2x)^2) ; [0, 0.5)
  31. // y = -(1/2)((2x-1)*(2x-3) - 1) ; [0.5, 1]
  32. AHFloat QuadraticEaseInOut(AHFloat p)
  33. {
  34. if(p < 0.5)
  35. {
  36. return 2 * p * p;
  37. }
  38. else
  39. {
  40. return (-2 * p * p) + (4 * p) - 1;
  41. }
  42. }
  43. // Modeled after the cubic y = x^3
  44. AHFloat CubicEaseIn(AHFloat p)
  45. {
  46. return p * p * p;
  47. }
  48. // Modeled after the cubic y = (x - 1)^3 + 1
  49. AHFloat CubicEaseOut(AHFloat p)
  50. {
  51. AHFloat f = (p - 1);
  52. return f * f * f + 1;
  53. }
  54. // Modeled after the piecewise cubic
  55. // y = (1/2)((2x)^3) ; [0, 0.5)
  56. // y = (1/2)((2x-2)^3 + 2) ; [0.5, 1]
  57. AHFloat CubicEaseInOut(AHFloat p)
  58. {
  59. if(p < 0.5)
  60. {
  61. return 4 * p * p * p;
  62. }
  63. else
  64. {
  65. AHFloat f = ((2 * p) - 2);
  66. return 0.5 * f * f * f + 1;
  67. }
  68. }
  69. // Modeled after the quartic x^4
  70. AHFloat QuarticEaseIn(AHFloat p)
  71. {
  72. return p * p * p * p;
  73. }
  74. // Modeled after the quartic y = 1 - (x - 1)^4
  75. AHFloat QuarticEaseOut(AHFloat p)
  76. {
  77. AHFloat f = (p - 1);
  78. return f * f * f * (1 - p) + 1;
  79. }
  80. // Modeled after the piecewise quartic
  81. // y = (1/2)((2x)^4) ; [0, 0.5)
  82. // y = -(1/2)((2x-2)^4 - 2) ; [0.5, 1]
  83. AHFloat QuarticEaseInOut(AHFloat p)
  84. {
  85. if(p < 0.5)
  86. {
  87. return 8 * p * p * p * p;
  88. }
  89. else
  90. {
  91. AHFloat f = (p - 1);
  92. return -8 * f * f * f * f + 1;
  93. }
  94. }
  95. // Modeled after the quintic y = x^5
  96. AHFloat QuinticEaseIn(AHFloat p)
  97. {
  98. return p * p * p * p * p;
  99. }
  100. // Modeled after the quintic y = (x - 1)^5 + 1
  101. AHFloat QuinticEaseOut(AHFloat p)
  102. {
  103. AHFloat f = (p - 1);
  104. return f * f * f * f * f + 1;
  105. }
  106. // Modeled after the piecewise quintic
  107. // y = (1/2)((2x)^5) ; [0, 0.5)
  108. // y = (1/2)((2x-2)^5 + 2) ; [0.5, 1]
  109. AHFloat QuinticEaseInOut(AHFloat p)
  110. {
  111. if(p < 0.5)
  112. {
  113. return 16 * p * p * p * p * p;
  114. }
  115. else
  116. {
  117. AHFloat f = ((2 * p) - 2);
  118. return 0.5 * f * f * f * f * f + 1;
  119. }
  120. }
  121. // Modeled after quarter-cycle of sine wave
  122. AHFloat SineEaseIn(AHFloat p)
  123. {
  124. return sin((p - 1) * M_PI_2) + 1;
  125. }
  126. // Modeled after quarter-cycle of sine wave (different phase)
  127. AHFloat SineEaseOut(AHFloat p)
  128. {
  129. return sin(p * M_PI_2);
  130. }
  131. // Modeled after half sine wave
  132. AHFloat SineEaseInOut(AHFloat p)
  133. {
  134. return 0.5 * (1 - cos(p * M_PI));
  135. }
  136. // Modeled after shifted quadrant IV of unit circle
  137. AHFloat CircularEaseIn(AHFloat p)
  138. {
  139. return 1 - sqrt(1 - (p * p));
  140. }
  141. // Modeled after shifted quadrant II of unit circle
  142. AHFloat CircularEaseOut(AHFloat p)
  143. {
  144. return sqrt((2 - p) * p);
  145. }
  146. // Modeled after the piecewise circular function
  147. // y = (1/2)(1 - sqrt(1 - 4x^2)) ; [0, 0.5)
  148. // y = (1/2)(sqrt(-(2x - 3)*(2x - 1)) + 1) ; [0.5, 1]
  149. AHFloat CircularEaseInOut(AHFloat p)
  150. {
  151. if(p < 0.5)
  152. {
  153. return 0.5 * (1 - sqrt(1 - 4 * (p * p)));
  154. }
  155. else
  156. {
  157. return 0.5 * (sqrt(-((2 * p) - 3) * ((2 * p) - 1)) + 1);
  158. }
  159. }
  160. // Modeled after the exponential function y = 2^(10(x - 1))
  161. AHFloat ExponentialEaseIn(AHFloat p)
  162. {
  163. return (p == 0.0) ? p : pow(2, 10 * (p - 1));
  164. }
  165. // Modeled after the exponential function y = -2^(-10x) + 1
  166. AHFloat ExponentialEaseOut(AHFloat p)
  167. {
  168. return (p == 1.0) ? p : 1 - pow(2, -10 * p);
  169. }
  170. // Modeled after the piecewise exponential
  171. // y = (1/2)2^(10(2x - 1)) ; [0,0.5)
  172. // y = -(1/2)*2^(-10(2x - 1))) + 1 ; [0.5,1]
  173. AHFloat ExponentialEaseInOut(AHFloat p)
  174. {
  175. if(p == 0.0 || p == 1.0) return p;
  176. if(p < 0.5)
  177. {
  178. return 0.5 * pow(2, (20 * p) - 10);
  179. }
  180. else
  181. {
  182. return -0.5 * pow(2, (-20 * p) + 10) + 1;
  183. }
  184. }
  185. // Modeled after the damped sine wave y = sin(13pi/2*x)*pow(2, 10 * (x - 1))
  186. AHFloat ElasticEaseIn(AHFloat p)
  187. {
  188. return sin(13 * M_PI_2 * p) * pow(2, 10 * (p - 1));
  189. }
  190. // Modeled after the damped sine wave y = sin(-13pi/2*(x + 1))*pow(2, -10x) + 1
  191. AHFloat ElasticEaseOut(AHFloat p)
  192. {
  193. return sin(-13 * M_PI_2 * (p + 1)) * pow(2, -10 * p) + 1;
  194. }
  195. // Modeled after the piecewise exponentially-damped sine wave:
  196. // y = (1/2)*sin(13pi/2*(2*x))*pow(2, 10 * ((2*x) - 1)) ; [0,0.5)
  197. // y = (1/2)*(sin(-13pi/2*((2x-1)+1))*pow(2,-10(2*x-1)) + 2) ; [0.5, 1]
  198. AHFloat ElasticEaseInOut(AHFloat p)
  199. {
  200. if(p < 0.5)
  201. {
  202. return 0.5 * sin(13 * M_PI_2 * (2 * p)) * pow(2, 10 * ((2 * p) - 1));
  203. }
  204. else
  205. {
  206. return 0.5 * (sin(-13 * M_PI_2 * ((2 * p - 1) + 1)) * pow(2, -10 * (2 * p - 1)) + 2);
  207. }
  208. }
  209. // Modeled after the overshooting cubic y = x^3-x*sin(x*pi)
  210. AHFloat BackEaseIn(AHFloat p)
  211. {
  212. return p * p * p - p * sin(p * M_PI);
  213. }
  214. // Modeled after overshooting cubic y = 1-((1-x)^3-(1-x)*sin((1-x)*pi))
  215. AHFloat BackEaseOut(AHFloat p)
  216. {
  217. AHFloat f = (1 - p);
  218. return 1 - (f * f * f - f * sin(f * M_PI));
  219. }
  220. // Modeled after the piecewise overshooting cubic function:
  221. // y = (1/2)*((2x)^3-(2x)*sin(2*x*pi)) ; [0, 0.5)
  222. // y = (1/2)*(1-((1-x)^3-(1-x)*sin((1-x)*pi))+1) ; [0.5, 1]
  223. AHFloat BackEaseInOut(AHFloat p)
  224. {
  225. if(p < 0.5)
  226. {
  227. AHFloat f = 2 * p;
  228. return 0.5 * (f * f * f - f * sin(f * M_PI));
  229. }
  230. else
  231. {
  232. AHFloat f = (1 - (2*p - 1));
  233. return 0.5 * (1 - (f * f * f - f * sin(f * M_PI))) + 0.5;
  234. }
  235. }
  236. AHFloat BounceEaseIn(AHFloat p)
  237. {
  238. return 1 - BounceEaseOut(1 - p);
  239. }
  240. AHFloat BounceEaseOut(AHFloat p)
  241. {
  242. if(p < 4/11.0)
  243. {
  244. return (121 * p * p)/16.0;
  245. }
  246. else if(p < 8/11.0)
  247. {
  248. return (363/40.0 * p * p) - (99/10.0 * p) + 17/5.0;
  249. }
  250. else if(p < 9/10.0)
  251. {
  252. return (4356/361.0 * p * p) - (35442/1805.0 * p) + 16061/1805.0;
  253. }
  254. else
  255. {
  256. return (54/5.0 * p * p) - (513/25.0 * p) + 268/25.0;
  257. }
  258. }
  259. AHFloat BounceEaseInOut(AHFloat p)
  260. {
  261. if(p < 0.5)
  262. {
  263. return 0.5 * BounceEaseIn(p*2);
  264. }
  265. else
  266. {
  267. return 0.5 * BounceEaseOut(p * 2 - 1) + 0.5;
  268. }
  269. }