/vendor/gems/ferret-0.11.4/ext/utilities.c

https://github.com/ekcell/lovdbyless · C · 446 lines · 369 code · 54 blank · 23 comment · 155 complexity · c03d91e7a593d21a8298967ae855156d MD5 · raw file

  1. #include <stdio.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include "header.h"
  5. #define unless(C) if(!(C))
  6. #define CREATE_SIZE 1
  7. extern symbol * create_s(void) {
  8. symbol * p;
  9. void * mem = malloc(HEAD + (CREATE_SIZE + 1) * sizeof(symbol));
  10. if (mem == NULL) return NULL;
  11. p = (symbol *) (HEAD + (char *) mem);
  12. CAPACITY(p) = CREATE_SIZE;
  13. SET_SIZE(p, CREATE_SIZE);
  14. return p;
  15. }
  16. extern void lose_s(symbol * p) {
  17. if (p == NULL) return;
  18. free((char *) p - HEAD);
  19. }
  20. /*
  21. new_p = X_skip_utf8(p, c, lb, l, n); skips n characters forwards from p + c
  22. if n +ve, or n characters backwards from p +c - 1 if n -ve. new_p is the new
  23. position, or 0 on failure.
  24. -- used to implement hop and next in the utf8 case.
  25. */
  26. extern int skip_utf8(const symbol * p, int c, int lb, int l, int n) {
  27. int b;
  28. if (n >= 0) {
  29. for (; n > 0; n--) {
  30. if (c >= l) return -1;
  31. b = p[c++];
  32. if (b >= 0xC0) { /* 1100 0000 */
  33. while (c < l) {
  34. b = p[c];
  35. if (b >= 0xC0 || b < 0x80) break;
  36. /* break unless b is 10------ */
  37. c++;
  38. }
  39. }
  40. }
  41. } else {
  42. for (; n < 0; n++) {
  43. if (c <= lb) return -1;
  44. b = p[--c];
  45. if (b >= 0x80) { /* 1000 0000 */
  46. while (c > lb) {
  47. b = p[c];
  48. if (b >= 0xC0) break; /* 1100 0000 */
  49. c--;
  50. }
  51. }
  52. }
  53. }
  54. return c;
  55. }
  56. /* Code for character groupings: utf8 cases */
  57. static int get_utf8(const symbol * p, int c, int l, int * slot) {
  58. int b0, b1;
  59. if (c >= l) return 0;
  60. b0 = p[c++];
  61. if (b0 < 0xC0 || c == l) { /* 1100 0000 */
  62. * slot = b0; return 1;
  63. }
  64. b1 = p[c++];
  65. if (b0 < 0xE0 || c == l) { /* 1110 0000 */
  66. * slot = (b0 & 0x1F) << 6 | (b1 & 0x3F); return 2;
  67. }
  68. * slot = (b0 & 0xF) << 12 | (b1 & 0x3F) << 6 | (*p & 0x3F); return 3;
  69. }
  70. static int get_b_utf8(const symbol * p, int c, int lb, int * slot) {
  71. int b0, b1;
  72. if (c <= lb) return 0;
  73. b0 = p[--c];
  74. if (b0 < 0x80 || c == lb) { /* 1000 0000 */
  75. * slot = b0; return 1;
  76. }
  77. b1 = p[--c];
  78. if (b1 >= 0xC0 || c == lb) { /* 1100 0000 */
  79. * slot = (b1 & 0x1F) << 6 | (b0 & 0x3F); return 2;
  80. }
  81. * slot = (*p & 0xF) << 12 | (b1 & 0x3F) << 6 | (b0 & 0x3F); return 3;
  82. }
  83. extern int in_grouping_U(struct SN_env * z, unsigned char * s, int min, int max) {
  84. int ch;
  85. int w = get_utf8(z->p, z->c, z->l, & ch);
  86. unless (w) return 0;
  87. if (ch > max || (ch -= min) < 0 || (s[ch >> 3] & (0X1 << (ch & 0X7))) == 0) return 0;
  88. z->c += w; return 1;
  89. }
  90. extern int in_grouping_b_U(struct SN_env * z, unsigned char * s, int min, int max) {
  91. int ch;
  92. int w = get_b_utf8(z->p, z->c, z->lb, & ch);
  93. unless (w) return 0;
  94. if (ch > max || (ch -= min) < 0 || (s[ch >> 3] & (0X1 << (ch & 0X7))) == 0) return 0;
  95. z->c -= w; return 1;
  96. }
  97. extern int out_grouping_U(struct SN_env * z, unsigned char * s, int min, int max) {
  98. int ch;
  99. int w = get_utf8(z->p, z->c, z->l, & ch);
  100. unless (w) return 0;
  101. unless (ch > max || (ch -= min) < 0 || (s[ch >> 3] & (0X1 << (ch & 0X7))) == 0) return 0;
  102. z->c += w; return 1;
  103. }
  104. extern int out_grouping_b_U(struct SN_env * z, unsigned char * s, int min, int max) {
  105. int ch;
  106. int w = get_b_utf8(z->p, z->c, z->lb, & ch);
  107. unless (w) return 0;
  108. unless (ch > max || (ch -= min) < 0 || (s[ch >> 3] & (0X1 << (ch & 0X7))) == 0) return 0;
  109. z->c -= w; return 1;
  110. }
  111. /* Code for character groupings: non-utf8 cases */
  112. extern int in_grouping(struct SN_env * z, unsigned char * s, int min, int max) {
  113. int ch;
  114. if (z->c >= z->l) return 0;
  115. ch = z->p[z->c];
  116. if (ch > max || (ch -= min) < 0 || (s[ch >> 3] & (0X1 << (ch & 0X7))) == 0) return 0;
  117. z->c++; return 1;
  118. }
  119. extern int in_grouping_b(struct SN_env * z, unsigned char * s, int min, int max) {
  120. int ch;
  121. if (z->c <= z->lb) return 0;
  122. ch = z->p[z->c - 1];
  123. if (ch > max || (ch -= min) < 0 || (s[ch >> 3] & (0X1 << (ch & 0X7))) == 0) return 0;
  124. z->c--; return 1;
  125. }
  126. extern int out_grouping(struct SN_env * z, unsigned char * s, int min, int max) {
  127. int ch;
  128. if (z->c >= z->l) return 0;
  129. ch = z->p[z->c];
  130. unless (ch > max || (ch -= min) < 0 || (s[ch >> 3] & (0X1 << (ch & 0X7))) == 0) return 0;
  131. z->c++; return 1;
  132. }
  133. extern int out_grouping_b(struct SN_env * z, unsigned char * s, int min, int max) {
  134. int ch;
  135. if (z->c <= z->lb) return 0;
  136. ch = z->p[z->c - 1];
  137. unless (ch > max || (ch -= min) < 0 || (s[ch >> 3] & (0X1 << (ch & 0X7))) == 0) return 0;
  138. z->c--; return 1;
  139. }
  140. extern int eq_s(struct SN_env * z, int s_size, symbol * s) {
  141. if (z->l - z->c < s_size || memcmp(z->p + z->c, s, s_size * sizeof(symbol)) != 0) return 0;
  142. z->c += s_size; return 1;
  143. }
  144. extern int eq_s_b(struct SN_env * z, int s_size, symbol * s) {
  145. if (z->c - z->lb < s_size || memcmp(z->p + z->c - s_size, s, s_size * sizeof(symbol)) != 0) return 0;
  146. z->c -= s_size; return 1;
  147. }
  148. extern int eq_v(struct SN_env * z, symbol * p) {
  149. return eq_s(z, SIZE(p), p);
  150. }
  151. extern int eq_v_b(struct SN_env * z, symbol * p) {
  152. return eq_s_b(z, SIZE(p), p);
  153. }
  154. extern int find_among(struct SN_env * z, struct among * v, int v_size) {
  155. int i = 0;
  156. int j = v_size;
  157. int c = z->c; int l = z->l;
  158. symbol * q = z->p + c;
  159. struct among * w;
  160. int common_i = 0;
  161. int common_j = 0;
  162. int first_key_inspected = 0;
  163. while(1) {
  164. int k = i + ((j - i) >> 1);
  165. int diff = 0;
  166. int common = common_i < common_j ? common_i : common_j; /* smaller */
  167. w = v + k;
  168. {
  169. int i; for (i = common; i < w->s_size; i++) {
  170. if (c + common == l) { diff = -1; break; }
  171. diff = q[common] - w->s[i];
  172. if (diff != 0) break;
  173. common++;
  174. }
  175. }
  176. if (diff < 0) { j = k; common_j = common; }
  177. else { i = k; common_i = common; }
  178. if (j - i <= 1) {
  179. if (i > 0) break; /* v->s has been inspected */
  180. if (j == i) break; /* only one item in v */
  181. /* - but now we need to go round once more to get
  182. v->s inspected. This looks messy, but is actually
  183. the optimal approach. */
  184. if (first_key_inspected) break;
  185. first_key_inspected = 1;
  186. }
  187. }
  188. while(1) {
  189. w = v + i;
  190. if (common_i >= w->s_size) {
  191. z->c = c + w->s_size;
  192. if (w->function == 0) return w->result;
  193. {
  194. int res = w->function(z);
  195. z->c = c + w->s_size;
  196. if (res) return w->result;
  197. }
  198. }
  199. i = w->substring_i;
  200. if (i < 0) return 0;
  201. }
  202. }
  203. /* find_among_b is for backwards processing. Same comments apply */
  204. extern int find_among_b(struct SN_env * z, struct among * v, int v_size) {
  205. int i = 0;
  206. int j = v_size;
  207. int c = z->c; int lb = z->lb;
  208. symbol * q = z->p + c - 1;
  209. struct among * w;
  210. int common_i = 0;
  211. int common_j = 0;
  212. int first_key_inspected = 0;
  213. while(1) {
  214. int k = i + ((j - i) >> 1);
  215. int diff = 0;
  216. int common = common_i < common_j ? common_i : common_j;
  217. w = v + k;
  218. {
  219. int i; for (i = w->s_size - 1 - common; i >= 0; i--) {
  220. if (c - common == lb) { diff = -1; break; }
  221. diff = q[- common] - w->s[i];
  222. if (diff != 0) break;
  223. common++;
  224. }
  225. }
  226. if (diff < 0) { j = k; common_j = common; }
  227. else { i = k; common_i = common; }
  228. if (j - i <= 1) {
  229. if (i > 0) break;
  230. if (j == i) break;
  231. if (first_key_inspected) break;
  232. first_key_inspected = 1;
  233. }
  234. }
  235. while(1) {
  236. w = v + i;
  237. if (common_i >= w->s_size) {
  238. z->c = c - w->s_size;
  239. if (w->function == 0) return w->result;
  240. {
  241. int res = w->function(z);
  242. z->c = c - w->s_size;
  243. if (res) return w->result;
  244. }
  245. }
  246. i = w->substring_i;
  247. if (i < 0) return 0;
  248. }
  249. }
  250. /* Increase the size of the buffer pointed to by p to at least n symbols.
  251. * If insufficient memory, returns NULL and frees the old buffer.
  252. */
  253. static symbol * increase_size(symbol * p, int n) {
  254. symbol * q;
  255. int new_size = n + 20;
  256. void * mem = realloc((char *) p - HEAD,
  257. HEAD + (new_size + 1) * sizeof(symbol));
  258. if (mem == NULL) {
  259. lose_s(p);
  260. return NULL;
  261. }
  262. q = (symbol *) (HEAD + (char *)mem);
  263. CAPACITY(q) = new_size;
  264. return q;
  265. }
  266. /* to replace symbols between c_bra and c_ket in z->p by the
  267. s_size symbols at s.
  268. Returns 0 on success, -1 on error.
  269. Also, frees z->p (and sets it to NULL) on error.
  270. */
  271. extern int replace_s(struct SN_env * z, int c_bra, int c_ket, int s_size, const symbol * s, int * adjptr)
  272. {
  273. int adjustment;
  274. int len;
  275. if (z->p == NULL) {
  276. z->p = create_s();
  277. if (z->p == NULL) return -1;
  278. }
  279. adjustment = s_size - (c_ket - c_bra);
  280. len = SIZE(z->p);
  281. if (adjustment != 0) {
  282. if (adjustment + len > CAPACITY(z->p)) {
  283. z->p = increase_size(z->p, adjustment + len);
  284. if (z->p == NULL) return -1;
  285. }
  286. memmove(z->p + c_ket + adjustment,
  287. z->p + c_ket,
  288. (len - c_ket) * sizeof(symbol));
  289. SET_SIZE(z->p, adjustment + len);
  290. z->l += adjustment;
  291. if (z->c >= c_ket)
  292. z->c += adjustment;
  293. else
  294. if (z->c > c_bra)
  295. z->c = c_bra;
  296. }
  297. unless (s_size == 0) memmove(z->p + c_bra, s, s_size * sizeof(symbol));
  298. if (adjptr != NULL)
  299. *adjptr = adjustment;
  300. return 0;
  301. }
  302. static int slice_check(struct SN_env * z) {
  303. if (z->bra < 0 ||
  304. z->bra > z->ket ||
  305. z->ket > z->l ||
  306. z->p == NULL ||
  307. z->l > SIZE(z->p)) /* this line could be removed */
  308. {
  309. #if 0
  310. fprintf(stderr, "faulty slice operation:\n");
  311. debug(z, -1, 0);
  312. #endif
  313. return -1;
  314. }
  315. return 0;
  316. }
  317. extern int slice_from_s(struct SN_env * z, int s_size, symbol * s) {
  318. if (slice_check(z)) return -1;
  319. return replace_s(z, z->bra, z->ket, s_size, s, NULL);
  320. }
  321. extern int slice_from_v(struct SN_env * z, symbol * p) {
  322. return slice_from_s(z, SIZE(p), p);
  323. }
  324. extern int slice_del(struct SN_env * z) {
  325. return slice_from_s(z, 0, 0);
  326. }
  327. extern int insert_s(struct SN_env * z, int bra, int ket, int s_size, symbol * s) {
  328. int adjustment;
  329. if (replace_s(z, bra, ket, s_size, s, &adjustment))
  330. return -1;
  331. if (bra <= z->bra) z->bra += adjustment;
  332. if (bra <= z->ket) z->ket += adjustment;
  333. return 0;
  334. }
  335. extern int insert_v(struct SN_env * z, int bra, int ket, symbol * p) {
  336. int adjustment;
  337. if (replace_s(z, bra, ket, SIZE(p), p, &adjustment))
  338. return -1;
  339. if (bra <= z->bra) z->bra += adjustment;
  340. if (bra <= z->ket) z->ket += adjustment;
  341. return 0;
  342. }
  343. extern symbol * slice_to(struct SN_env * z, symbol * p) {
  344. if (slice_check(z)) {
  345. lose_s(p);
  346. return NULL;
  347. }
  348. {
  349. int len = z->ket - z->bra;
  350. if (CAPACITY(p) < len) {
  351. p = increase_size(p, len);
  352. if (p == NULL)
  353. return NULL;
  354. }
  355. memmove(p, z->p + z->bra, len * sizeof(symbol));
  356. SET_SIZE(p, len);
  357. }
  358. return p;
  359. }
  360. extern symbol * assign_to(struct SN_env * z, symbol * p) {
  361. int len = z->l;
  362. if (CAPACITY(p) < len) {
  363. p = increase_size(p, len);
  364. if (p == NULL)
  365. return NULL;
  366. }
  367. memmove(p, z->p, len * sizeof(symbol));
  368. SET_SIZE(p, len);
  369. return p;
  370. }
  371. #if 0
  372. extern void debug(struct SN_env * z, int number, int line_count) {
  373. int i;
  374. int limit = SIZE(z->p);
  375. /*if (number >= 0) printf("%3d (line %4d): '", number, line_count);*/
  376. if (number >= 0) printf("%3d (line %4d): [%d]'", number, line_count,limit);
  377. for (i = 0; i <= limit; i++) {
  378. if (z->lb == i) printf("{");
  379. if (z->bra == i) printf("[");
  380. if (z->c == i) printf("|");
  381. if (z->ket == i) printf("]");
  382. if (z->l == i) printf("}");
  383. if (i < limit)
  384. { int ch = z->p[i];
  385. if (ch == 0) ch = '#';
  386. printf("%c", ch);
  387. }
  388. }
  389. printf("'\n");
  390. }
  391. #endif