/kernel/generic/trsm_kernel_LN.c

https://github.com/nega0/gbp · C · 333 lines · 228 code · 68 blank · 37 comment · 34 complexity · 4b1ba9c8bd4f28d44681528c7ba942cf MD5 · raw file

  1. /*********************************************************************/
  2. /* Copyright 2009, 2010 The University of Texas at Austin. */
  3. /* All rights reserved. */
  4. /* */
  5. /* Redistribution and use in source and binary forms, with or */
  6. /* without modification, are permitted provided that the following */
  7. /* conditions are met: */
  8. /* */
  9. /* 1. Redistributions of source code must retain the above */
  10. /* copyright notice, this list of conditions and the following */
  11. /* disclaimer. */
  12. /* */
  13. /* 2. Redistributions in binary form must reproduce the above */
  14. /* copyright notice, this list of conditions and the following */
  15. /* disclaimer in the documentation and/or other materials */
  16. /* provided with the distribution. */
  17. /* */
  18. /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
  19. /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
  20. /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
  21. /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
  22. /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
  23. /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
  24. /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
  25. /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
  26. /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
  27. /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
  28. /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
  29. /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
  30. /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
  31. /* POSSIBILITY OF SUCH DAMAGE. */
  32. /* */
  33. /* The views and conclusions contained in the software and */
  34. /* documentation are those of the authors and should not be */
  35. /* interpreted as representing official policies, either expressed */
  36. /* or implied, of The University of Texas at Austin. */
  37. /*********************************************************************/
  38. #include "common.h"
  39. static FLOAT dm1 = -1.;
  40. #ifdef CONJ
  41. #define GEMM_KERNEL GEMM_KERNEL_L
  42. #else
  43. #define GEMM_KERNEL GEMM_KERNEL_N
  44. #endif
  45. #if GEMM_DEFAULT_UNROLL_M == 1
  46. #define GEMM_UNROLL_M_SHIFT 0
  47. #endif
  48. #if GEMM_DEFAULT_UNROLL_M == 2
  49. #define GEMM_UNROLL_M_SHIFT 1
  50. #endif
  51. #if GEMM_DEFAULT_UNROLL_M == 4
  52. #define GEMM_UNROLL_M_SHIFT 2
  53. #endif
  54. #if GEMM_DEFAULT_UNROLL_M == 8
  55. #define GEMM_UNROLL_M_SHIFT 3
  56. #endif
  57. #if GEMM_DEFAULT_UNROLL_M == 16
  58. #define GEMM_UNROLL_M_SHIFT 4
  59. #endif
  60. #if GEMM_DEFAULT_UNROLL_N == 1
  61. #define GEMM_UNROLL_N_SHIFT 0
  62. #endif
  63. #if GEMM_DEFAULT_UNROLL_N == 2
  64. #define GEMM_UNROLL_N_SHIFT 1
  65. #endif
  66. #if GEMM_DEFAULT_UNROLL_N == 4
  67. #define GEMM_UNROLL_N_SHIFT 2
  68. #endif
  69. #if GEMM_DEFAULT_UNROLL_N == 8
  70. #define GEMM_UNROLL_N_SHIFT 3
  71. #endif
  72. #if GEMM_DEFAULT_UNROLL_N == 16
  73. #define GEMM_UNROLL_N_SHIFT 4
  74. #endif
  75. #ifndef COMPLEX
  76. static inline void solve(BLASLONG m, BLASLONG n, FLOAT *a, FLOAT *b, FLOAT *c, BLASLONG ldc) {
  77. FLOAT aa, bb;
  78. int i, j, k;
  79. a += (m - 1) * m;
  80. b += (m - 1) * n;
  81. for (i = m - 1; i >= 0; i--) {
  82. aa = *(a + i);
  83. for (j = 0; j < n; j ++) {
  84. bb = *(c + i + j * ldc);
  85. bb *= aa;
  86. *b = bb;
  87. *(c + i + j * ldc) = bb;
  88. b ++;
  89. for (k = 0; k < i; k ++){
  90. *(c + k + j * ldc) -= bb * *(a + k);
  91. }
  92. }
  93. a -= m;
  94. b -= 2 * n;
  95. }
  96. }
  97. #else
  98. static inline void solve(BLASLONG m, BLASLONG n, FLOAT *a, FLOAT *b, FLOAT *c, BLASLONG ldc) {
  99. FLOAT aa1, aa2;
  100. FLOAT bb1, bb2;
  101. FLOAT cc1, cc2;
  102. int i, j, k;
  103. ldc *= 2;
  104. a += (m - 1) * m * 2;
  105. b += (m - 1) * n * 2;
  106. for (i = m - 1; i >= 0; i--) {
  107. aa1 = *(a + i * 2 + 0);
  108. aa2 = *(a + i * 2 + 1);
  109. for (j = 0; j < n; j ++) {
  110. bb1 = *(c + i * 2 + 0 + j * ldc);
  111. bb2 = *(c + i * 2 + 1 + j * ldc);
  112. #ifndef CONJ
  113. cc1 = aa1 * bb1 - aa2 * bb2;
  114. cc2 = aa1 * bb2 + aa2 * bb1;
  115. #else
  116. cc1 = aa1 * bb1 + aa2 * bb2;
  117. cc2 = aa1 * bb2 - aa2 * bb1;
  118. #endif
  119. *(b + 0) = cc1;
  120. *(b + 1) = cc2;
  121. *(c + i * 2 + 0 + j * ldc) = cc1;
  122. *(c + i * 2 + 1 + j * ldc) = cc2;
  123. b += 2;
  124. for (k = 0; k < i; k ++){
  125. #ifndef CONJ
  126. *(c + k * 2 + 0 + j * ldc) -= cc1 * *(a + k * 2 + 0) - cc2 * *(a + k * 2 + 1);
  127. *(c + k * 2 + 1 + j * ldc) -= cc1 * *(a + k * 2 + 1) + cc2 * *(a + k * 2 + 0);
  128. #else
  129. *(c + k * 2 + 0 + j * ldc) -= cc1 * *(a + k * 2 + 0) + cc2 * *(a + k * 2 + 1);
  130. *(c + k * 2 + 1 + j * ldc) -= - cc1 * *(a + k * 2 + 1) + cc2 * *(a + k * 2 + 0);
  131. #endif
  132. }
  133. }
  134. a -= m * 2;
  135. b -= 4 * n;
  136. }
  137. }
  138. #endif
  139. int CNAME(BLASLONG m, BLASLONG n, BLASLONG k, FLOAT dummy1,
  140. #ifdef COMPLEX
  141. FLOAT dummy2,
  142. #endif
  143. FLOAT *a, FLOAT *b, FLOAT *c, BLASLONG ldc, BLASLONG offset){
  144. BLASLONG i, j;
  145. FLOAT *aa, *cc;
  146. BLASLONG kk;
  147. #if 0
  148. fprintf(stderr, "TRSM KERNEL LN : m = %3ld n = %3ld k = %3ld offset = %3ld\n",
  149. m, n, k, offset);
  150. #endif
  151. j = (n >> GEMM_UNROLL_N_SHIFT);
  152. while (j > 0) {
  153. kk = m + offset;
  154. if (m & (GEMM_UNROLL_M - 1)) {
  155. for (i = 1; i < GEMM_UNROLL_M; i *= 2){
  156. if (m & i) {
  157. aa = a + ((m & ~(i - 1)) - i) * k * COMPSIZE;
  158. cc = c + ((m & ~(i - 1)) - i) * COMPSIZE;
  159. if (k - kk > 0) {
  160. GEMM_KERNEL(i, GEMM_UNROLL_N, k - kk, dm1,
  161. #ifdef COMPLEX
  162. ZERO,
  163. #endif
  164. aa + i * kk * COMPSIZE,
  165. b + GEMM_UNROLL_N * kk * COMPSIZE,
  166. cc,
  167. ldc);
  168. }
  169. solve(i, GEMM_UNROLL_N,
  170. aa + (kk - i) * i * COMPSIZE,
  171. b + (kk - i) * GEMM_UNROLL_N * COMPSIZE,
  172. cc, ldc);
  173. kk -= i;
  174. }
  175. }
  176. }
  177. i = (m >> GEMM_UNROLL_M_SHIFT);
  178. if (i > 0) {
  179. aa = a + ((m & ~(GEMM_UNROLL_M - 1)) - GEMM_UNROLL_M) * k * COMPSIZE;
  180. cc = c + ((m & ~(GEMM_UNROLL_M - 1)) - GEMM_UNROLL_M) * COMPSIZE;
  181. do {
  182. if (k - kk > 0) {
  183. GEMM_KERNEL(GEMM_UNROLL_M, GEMM_UNROLL_N, k - kk, dm1,
  184. #ifdef COMPLEX
  185. ZERO,
  186. #endif
  187. aa + GEMM_UNROLL_M * kk * COMPSIZE,
  188. b + GEMM_UNROLL_N * kk * COMPSIZE,
  189. cc,
  190. ldc);
  191. }
  192. solve(GEMM_UNROLL_M, GEMM_UNROLL_N,
  193. aa + (kk - GEMM_UNROLL_M) * GEMM_UNROLL_M * COMPSIZE,
  194. b + (kk - GEMM_UNROLL_M) * GEMM_UNROLL_N * COMPSIZE,
  195. cc, ldc);
  196. aa -= GEMM_UNROLL_M * k * COMPSIZE;
  197. cc -= GEMM_UNROLL_M * COMPSIZE;
  198. kk -= GEMM_UNROLL_M;
  199. i --;
  200. } while (i > 0);
  201. }
  202. b += GEMM_UNROLL_N * k * COMPSIZE;
  203. c += GEMM_UNROLL_N * ldc * COMPSIZE;
  204. j --;
  205. }
  206. if (n & (GEMM_UNROLL_N - 1)) {
  207. j = (GEMM_UNROLL_N >> 1);
  208. while (j > 0) {
  209. if (n & j) {
  210. kk = m + offset;
  211. if (m & (GEMM_UNROLL_M - 1)) {
  212. for (i = 1; i < GEMM_UNROLL_M; i *= 2){
  213. if (m & i) {
  214. aa = a + ((m & ~(i - 1)) - i) * k * COMPSIZE;
  215. cc = c + ((m & ~(i - 1)) - i) * COMPSIZE;
  216. if (k - kk > 0) {
  217. GEMM_KERNEL(i, j, k - kk, dm1,
  218. #ifdef COMPLEX
  219. ZERO,
  220. #endif
  221. aa + i * kk * COMPSIZE,
  222. b + j * kk * COMPSIZE,
  223. cc, ldc);
  224. }
  225. solve(i, j,
  226. aa + (kk - i) * i * COMPSIZE,
  227. b + (kk - i) * j * COMPSIZE,
  228. cc, ldc);
  229. kk -= i;
  230. }
  231. }
  232. }
  233. i = (m >> GEMM_UNROLL_M_SHIFT);
  234. if (i > 0) {
  235. aa = a + ((m & ~(GEMM_UNROLL_M - 1)) - GEMM_UNROLL_M) * k * COMPSIZE;
  236. cc = c + ((m & ~(GEMM_UNROLL_M - 1)) - GEMM_UNROLL_M) * COMPSIZE;
  237. do {
  238. if (k - kk > 0) {
  239. GEMM_KERNEL(GEMM_UNROLL_M, j, k - kk, dm1,
  240. #ifdef COMPLEX
  241. ZERO,
  242. #endif
  243. aa + GEMM_UNROLL_M * kk * COMPSIZE,
  244. b + j * kk * COMPSIZE,
  245. cc,
  246. ldc);
  247. }
  248. solve(GEMM_UNROLL_M, j,
  249. aa + (kk - GEMM_UNROLL_M) * GEMM_UNROLL_M * COMPSIZE,
  250. b + (kk - GEMM_UNROLL_M) * j * COMPSIZE,
  251. cc, ldc);
  252. aa -= GEMM_UNROLL_M * k * COMPSIZE;
  253. cc -= GEMM_UNROLL_M * COMPSIZE;
  254. kk -= GEMM_UNROLL_M;
  255. i --;
  256. } while (i > 0);
  257. }
  258. b += j * k * COMPSIZE;
  259. c += j * ldc * COMPSIZE;
  260. }
  261. j >>= 1;
  262. }
  263. }
  264. return 0;
  265. }