/fftw-3.3/dft/simd/common/n2bv_12.c

https://github.com/triciatricia/SIMPLE · C · 301 lines · 253 code · 15 blank · 33 comment · 2 complexity · 6f7f36e00183a9f3a3cc6a6a68447424 MD5 · raw file

  1. /*
  2. * Copyright (c) 2003, 2007-11 Matteo Frigo
  3. * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. *
  19. */
  20. /* This file was automatically generated --- DO NOT EDIT */
  21. /* Generated on Wed Jul 27 06:14:02 EDT 2011 */
  22. #include "codelet-dft.h"
  23. #ifdef HAVE_FMA
  24. /* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 12 -name n2bv_12 -with-ostride 2 -include n2b.h -store-multiple 2 */
  25. /*
  26. * This function contains 48 FP additions, 20 FP multiplications,
  27. * (or, 30 additions, 2 multiplications, 18 fused multiply/add),
  28. * 61 stack variables, 2 constants, and 30 memory accesses
  29. */
  30. #include "n2b.h"
  31. static void n2bv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
  32. {
  33. DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
  34. DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
  35. {
  36. INT i;
  37. const R *xi;
  38. R *xo;
  39. xi = ii;
  40. xo = io;
  41. for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(is), MAKE_VOLATILE_STRIDE(os)) {
  42. V T1, T6, Tc, Th, Td, Te, Ti, Tz, T4, TA, T9, Tj, Tf, Tw;
  43. {
  44. V T2, T3, T7, T8;
  45. T1 = LD(&(xi[0]), ivs, &(xi[0]));
  46. T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
  47. T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
  48. T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
  49. T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
  50. T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
  51. Tc = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
  52. Th = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
  53. Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
  54. Te = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
  55. Ti = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
  56. Tz = VSUB(T2, T3);
  57. T4 = VADD(T2, T3);
  58. TA = VSUB(T7, T8);
  59. T9 = VADD(T7, T8);
  60. Tj = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
  61. }
  62. Tf = VADD(Td, Te);
  63. Tw = VSUB(Td, Te);
  64. {
  65. V T5, Tp, TJ, TB, Ta, Tq, Tk, Tx, Tg, Ts;
  66. T5 = VADD(T1, T4);
  67. Tp = VFNMS(LDK(KP500000000), T4, T1);
  68. TJ = VSUB(Tz, TA);
  69. TB = VADD(Tz, TA);
  70. Ta = VADD(T6, T9);
  71. Tq = VFNMS(LDK(KP500000000), T9, T6);
  72. Tk = VADD(Ti, Tj);
  73. Tx = VSUB(Tj, Ti);
  74. Tg = VADD(Tc, Tf);
  75. Ts = VFNMS(LDK(KP500000000), Tf, Tc);
  76. {
  77. V Tr, TF, Tb, Tn, TG, Ty, Tl, Tt;
  78. Tr = VADD(Tp, Tq);
  79. TF = VSUB(Tp, Tq);
  80. Tb = VSUB(T5, Ta);
  81. Tn = VADD(T5, Ta);
  82. TG = VADD(Tw, Tx);
  83. Ty = VSUB(Tw, Tx);
  84. Tl = VADD(Th, Tk);
  85. Tt = VFNMS(LDK(KP500000000), Tk, Th);
  86. {
  87. V TC, TE, TH, TL, Tu, TI, Tm, To;
  88. TC = VMUL(LDK(KP866025403), VSUB(Ty, TB));
  89. TE = VMUL(LDK(KP866025403), VADD(TB, Ty));
  90. TH = VFNMS(LDK(KP866025403), TG, TF);
  91. TL = VFMA(LDK(KP866025403), TG, TF);
  92. Tu = VADD(Ts, Tt);
  93. TI = VSUB(Ts, Tt);
  94. Tm = VSUB(Tg, Tl);
  95. To = VADD(Tg, Tl);
  96. {
  97. V TK, TM, Tv, TD;
  98. TK = VFMA(LDK(KP866025403), TJ, TI);
  99. TM = VFNMS(LDK(KP866025403), TJ, TI);
  100. Tv = VSUB(Tr, Tu);
  101. TD = VADD(Tr, Tu);
  102. {
  103. V TN, TO, TP, TQ;
  104. TN = VADD(Tn, To);
  105. STM2(&(xo[0]), TN, ovs, &(xo[0]));
  106. TO = VSUB(Tn, To);
  107. STM2(&(xo[12]), TO, ovs, &(xo[0]));
  108. TP = VFMAI(Tm, Tb);
  109. STM2(&(xo[18]), TP, ovs, &(xo[2]));
  110. TQ = VFNMSI(Tm, Tb);
  111. STM2(&(xo[6]), TQ, ovs, &(xo[2]));
  112. {
  113. V TR, TS, TT, TU;
  114. TR = VFMAI(TM, TL);
  115. STM2(&(xo[10]), TR, ovs, &(xo[2]));
  116. TS = VFNMSI(TM, TL);
  117. STM2(&(xo[14]), TS, ovs, &(xo[2]));
  118. STN2(&(xo[12]), TO, TS, ovs);
  119. TT = VFNMSI(TK, TH);
  120. STM2(&(xo[22]), TT, ovs, &(xo[2]));
  121. TU = VFMAI(TK, TH);
  122. STM2(&(xo[2]), TU, ovs, &(xo[2]));
  123. STN2(&(xo[0]), TN, TU, ovs);
  124. {
  125. V TV, TW, TX, TY;
  126. TV = VFNMSI(TE, TD);
  127. STM2(&(xo[16]), TV, ovs, &(xo[0]));
  128. STN2(&(xo[16]), TV, TP, ovs);
  129. TW = VFMAI(TE, TD);
  130. STM2(&(xo[8]), TW, ovs, &(xo[0]));
  131. STN2(&(xo[8]), TW, TR, ovs);
  132. TX = VFMAI(TC, Tv);
  133. STM2(&(xo[4]), TX, ovs, &(xo[0]));
  134. STN2(&(xo[4]), TX, TQ, ovs);
  135. TY = VFNMSI(TC, Tv);
  136. STM2(&(xo[20]), TY, ovs, &(xo[0]));
  137. STN2(&(xo[20]), TY, TT, ovs);
  138. }
  139. }
  140. }
  141. }
  142. }
  143. }
  144. }
  145. }
  146. }
  147. VLEAVE();
  148. }
  149. static const kdft_desc desc = { 12, XSIMD_STRING("n2bv_12"), {30, 2, 18, 0}, &GENUS, 0, 2, 0, 0 };
  150. void XSIMD(codelet_n2bv_12) (planner *p) {
  151. X(kdft_register) (p, n2bv_12, &desc);
  152. }
  153. #else /* HAVE_FMA */
  154. /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 12 -name n2bv_12 -with-ostride 2 -include n2b.h -store-multiple 2 */
  155. /*
  156. * This function contains 48 FP additions, 8 FP multiplications,
  157. * (or, 44 additions, 4 multiplications, 4 fused multiply/add),
  158. * 33 stack variables, 2 constants, and 30 memory accesses
  159. */
  160. #include "n2b.h"
  161. static void n2bv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
  162. {
  163. DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
  164. DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
  165. {
  166. INT i;
  167. const R *xi;
  168. R *xo;
  169. xi = ii;
  170. xo = io;
  171. for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(is), MAKE_VOLATILE_STRIDE(os)) {
  172. V T5, Ta, TG, TF, Ty, Tm, Ti, Tp, TJ, TI, Tx, Ts;
  173. {
  174. V T1, T6, T4, Tk, T9, Tl;
  175. T1 = LD(&(xi[0]), ivs, &(xi[0]));
  176. T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
  177. {
  178. V T2, T3, T7, T8;
  179. T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
  180. T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
  181. T4 = VADD(T2, T3);
  182. Tk = VSUB(T2, T3);
  183. T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
  184. T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
  185. T9 = VADD(T7, T8);
  186. Tl = VSUB(T7, T8);
  187. }
  188. T5 = VFNMS(LDK(KP500000000), T4, T1);
  189. Ta = VFNMS(LDK(KP500000000), T9, T6);
  190. TG = VADD(T6, T9);
  191. TF = VADD(T1, T4);
  192. Ty = VADD(Tk, Tl);
  193. Tm = VMUL(LDK(KP866025403), VSUB(Tk, Tl));
  194. }
  195. {
  196. V Tn, Tq, Te, To, Th, Tr;
  197. Tn = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
  198. Tq = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
  199. {
  200. V Tc, Td, Tf, Tg;
  201. Tc = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
  202. Td = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
  203. Te = VSUB(Tc, Td);
  204. To = VADD(Tc, Td);
  205. Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
  206. Tg = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
  207. Th = VSUB(Tf, Tg);
  208. Tr = VADD(Tf, Tg);
  209. }
  210. Ti = VMUL(LDK(KP866025403), VSUB(Te, Th));
  211. Tp = VFNMS(LDK(KP500000000), To, Tn);
  212. TJ = VADD(Tq, Tr);
  213. TI = VADD(Tn, To);
  214. Tx = VADD(Te, Th);
  215. Ts = VFNMS(LDK(KP500000000), Tr, Tq);
  216. }
  217. {
  218. V TN, TO, TP, TQ, TR, TS;
  219. {
  220. V TH, TK, TL, TM;
  221. TH = VSUB(TF, TG);
  222. TK = VBYI(VSUB(TI, TJ));
  223. TN = VSUB(TH, TK);
  224. STM2(&(xo[6]), TN, ovs, &(xo[2]));
  225. TO = VADD(TH, TK);
  226. STM2(&(xo[18]), TO, ovs, &(xo[2]));
  227. TL = VADD(TF, TG);
  228. TM = VADD(TI, TJ);
  229. TP = VSUB(TL, TM);
  230. STM2(&(xo[12]), TP, ovs, &(xo[0]));
  231. TQ = VADD(TL, TM);
  232. STM2(&(xo[0]), TQ, ovs, &(xo[0]));
  233. }
  234. {
  235. V Tj, Tv, Tu, Tw, Tb, Tt, TT, TU;
  236. Tb = VSUB(T5, Ta);
  237. Tj = VSUB(Tb, Ti);
  238. Tv = VADD(Tb, Ti);
  239. Tt = VSUB(Tp, Ts);
  240. Tu = VBYI(VADD(Tm, Tt));
  241. Tw = VBYI(VSUB(Tt, Tm));
  242. TR = VSUB(Tj, Tu);
  243. STM2(&(xo[22]), TR, ovs, &(xo[2]));
  244. TS = VADD(Tv, Tw);
  245. STM2(&(xo[10]), TS, ovs, &(xo[2]));
  246. TT = VADD(Tj, Tu);
  247. STM2(&(xo[2]), TT, ovs, &(xo[2]));
  248. STN2(&(xo[0]), TQ, TT, ovs);
  249. TU = VSUB(Tv, Tw);
  250. STM2(&(xo[14]), TU, ovs, &(xo[2]));
  251. STN2(&(xo[12]), TP, TU, ovs);
  252. }
  253. {
  254. V Tz, TD, TC, TE, TA, TB;
  255. Tz = VBYI(VMUL(LDK(KP866025403), VSUB(Tx, Ty)));
  256. TD = VBYI(VMUL(LDK(KP866025403), VADD(Ty, Tx)));
  257. TA = VADD(T5, Ta);
  258. TB = VADD(Tp, Ts);
  259. TC = VSUB(TA, TB);
  260. TE = VADD(TA, TB);
  261. {
  262. V TV, TW, TX, TY;
  263. TV = VADD(Tz, TC);
  264. STM2(&(xo[4]), TV, ovs, &(xo[0]));
  265. STN2(&(xo[4]), TV, TN, ovs);
  266. TW = VSUB(TE, TD);
  267. STM2(&(xo[16]), TW, ovs, &(xo[0]));
  268. STN2(&(xo[16]), TW, TO, ovs);
  269. TX = VSUB(TC, Tz);
  270. STM2(&(xo[20]), TX, ovs, &(xo[0]));
  271. STN2(&(xo[20]), TX, TR, ovs);
  272. TY = VADD(TD, TE);
  273. STM2(&(xo[8]), TY, ovs, &(xo[0]));
  274. STN2(&(xo[8]), TY, TS, ovs);
  275. }
  276. }
  277. }
  278. }
  279. }
  280. VLEAVE();
  281. }
  282. static const kdft_desc desc = { 12, XSIMD_STRING("n2bv_12"), {44, 4, 4, 0}, &GENUS, 0, 2, 0, 0 };
  283. void XSIMD(codelet_n2bv_12) (planner *p) {
  284. X(kdft_register) (p, n2bv_12, &desc);
  285. }
  286. #endif /* HAVE_FMA */