/media/libjpeg/simd/jimmxint.asm

http://github.com/zpao/v8monkey · Assembly · 852 lines · 597 code · 143 blank · 112 comment · 1 complexity · 0eaf46a641f04a8c2c93ac45b71bb56a MD5 · raw file

  1. ;
  2. ; jimmxint.asm - accurate integer IDCT (MMX)
  3. ;
  4. ; Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
  5. ;
  6. ; Based on
  7. ; x86 SIMD extension for IJG JPEG library
  8. ; Copyright (C) 1999-2006, MIYASAKA Masaru.
  9. ; For conditions of distribution and use, see copyright notice in jsimdext.inc
  10. ;
  11. ; This file should be assembled with NASM (Netwide Assembler),
  12. ; can *not* be assembled with Microsoft's MASM or any compatible
  13. ; assembler (including Borland's Turbo Assembler).
  14. ; NASM is available from http://nasm.sourceforge.net/ or
  15. ; http://sourceforge.net/project/showfiles.php?group_id=6208
  16. ;
  17. ; This file contains a slow-but-accurate integer implementation of the
  18. ; inverse DCT (Discrete Cosine Transform). The following code is based
  19. ; directly on the IJG's original jidctint.c; see the jidctint.c for
  20. ; more details.
  21. ;
  22. ; [TAB8]
  23. %include "jsimdext.inc"
  24. %include "jdct.inc"
  25. ; --------------------------------------------------------------------------
  26. %define CONST_BITS 13
  27. %define PASS1_BITS 2
  28. %define DESCALE_P1 (CONST_BITS-PASS1_BITS)
  29. %define DESCALE_P2 (CONST_BITS+PASS1_BITS+3)
  30. %if CONST_BITS == 13
  31. F_0_298 equ 2446 ; FIX(0.298631336)
  32. F_0_390 equ 3196 ; FIX(0.390180644)
  33. F_0_541 equ 4433 ; FIX(0.541196100)
  34. F_0_765 equ 6270 ; FIX(0.765366865)
  35. F_0_899 equ 7373 ; FIX(0.899976223)
  36. F_1_175 equ 9633 ; FIX(1.175875602)
  37. F_1_501 equ 12299 ; FIX(1.501321110)
  38. F_1_847 equ 15137 ; FIX(1.847759065)
  39. F_1_961 equ 16069 ; FIX(1.961570560)
  40. F_2_053 equ 16819 ; FIX(2.053119869)
  41. F_2_562 equ 20995 ; FIX(2.562915447)
  42. F_3_072 equ 25172 ; FIX(3.072711026)
  43. %else
  44. ; NASM cannot do compile-time arithmetic on floating-point constants.
  45. %define DESCALE(x,n) (((x)+(1<<((n)-1)))>>(n))
  46. F_0_298 equ DESCALE( 320652955,30-CONST_BITS) ; FIX(0.298631336)
  47. F_0_390 equ DESCALE( 418953276,30-CONST_BITS) ; FIX(0.390180644)
  48. F_0_541 equ DESCALE( 581104887,30-CONST_BITS) ; FIX(0.541196100)
  49. F_0_765 equ DESCALE( 821806413,30-CONST_BITS) ; FIX(0.765366865)
  50. F_0_899 equ DESCALE( 966342111,30-CONST_BITS) ; FIX(0.899976223)
  51. F_1_175 equ DESCALE(1262586813,30-CONST_BITS) ; FIX(1.175875602)
  52. F_1_501 equ DESCALE(1612031267,30-CONST_BITS) ; FIX(1.501321110)
  53. F_1_847 equ DESCALE(1984016188,30-CONST_BITS) ; FIX(1.847759065)
  54. F_1_961 equ DESCALE(2106220350,30-CONST_BITS) ; FIX(1.961570560)
  55. F_2_053 equ DESCALE(2204520673,30-CONST_BITS) ; FIX(2.053119869)
  56. F_2_562 equ DESCALE(2751909506,30-CONST_BITS) ; FIX(2.562915447)
  57. F_3_072 equ DESCALE(3299298341,30-CONST_BITS) ; FIX(3.072711026)
  58. %endif
  59. ; --------------------------------------------------------------------------
  60. SECTION SEG_CONST
  61. alignz 16
  62. global EXTN(jconst_idct_islow_mmx)
  63. EXTN(jconst_idct_islow_mmx):
  64. PW_F130_F054 times 2 dw (F_0_541+F_0_765), F_0_541
  65. PW_F054_MF130 times 2 dw F_0_541, (F_0_541-F_1_847)
  66. PW_MF078_F117 times 2 dw (F_1_175-F_1_961), F_1_175
  67. PW_F117_F078 times 2 dw F_1_175, (F_1_175-F_0_390)
  68. PW_MF060_MF089 times 2 dw (F_0_298-F_0_899),-F_0_899
  69. PW_MF089_F060 times 2 dw -F_0_899, (F_1_501-F_0_899)
  70. PW_MF050_MF256 times 2 dw (F_2_053-F_2_562),-F_2_562
  71. PW_MF256_F050 times 2 dw -F_2_562, (F_3_072-F_2_562)
  72. PD_DESCALE_P1 times 2 dd 1 << (DESCALE_P1-1)
  73. PD_DESCALE_P2 times 2 dd 1 << (DESCALE_P2-1)
  74. PB_CENTERJSAMP times 8 db CENTERJSAMPLE
  75. alignz 16
  76. ; --------------------------------------------------------------------------
  77. SECTION SEG_TEXT
  78. BITS 32
  79. ;
  80. ; Perform dequantization and inverse DCT on one block of coefficients.
  81. ;
  82. ; GLOBAL(void)
  83. ; jsimd_idct_islow_mmx (void * dct_table, JCOEFPTR coef_block,
  84. ; JSAMPARRAY output_buf, JDIMENSION output_col)
  85. ;
  86. %define dct_table(b) (b)+8 ; jpeg_component_info * compptr
  87. %define coef_block(b) (b)+12 ; JCOEFPTR coef_block
  88. %define output_buf(b) (b)+16 ; JSAMPARRAY output_buf
  89. %define output_col(b) (b)+20 ; JDIMENSION output_col
  90. %define original_ebp ebp+0
  91. %define wk(i) ebp-(WK_NUM-(i))*SIZEOF_MMWORD ; mmword wk[WK_NUM]
  92. %define WK_NUM 12
  93. %define workspace wk(0)-DCTSIZE2*SIZEOF_JCOEF
  94. ; JCOEF workspace[DCTSIZE2]
  95. align 16
  96. global EXTN(jsimd_idct_islow_mmx)
  97. EXTN(jsimd_idct_islow_mmx):
  98. push ebp
  99. mov eax,esp ; eax = original ebp
  100. sub esp, byte 4
  101. and esp, byte (-SIZEOF_MMWORD) ; align to 64 bits
  102. mov [esp],eax
  103. mov ebp,esp ; ebp = aligned ebp
  104. lea esp, [workspace]
  105. push ebx
  106. ; push ecx ; need not be preserved
  107. ; push edx ; need not be preserved
  108. push esi
  109. push edi
  110. get_GOT ebx ; get GOT address
  111. ; ---- Pass 1: process columns from input, store into work array.
  112. ; mov eax, [original_ebp]
  113. mov edx, POINTER [dct_table(eax)] ; quantptr
  114. mov esi, JCOEFPTR [coef_block(eax)] ; inptr
  115. lea edi, [workspace] ; JCOEF * wsptr
  116. mov ecx, DCTSIZE/4 ; ctr
  117. alignx 16,7
  118. .columnloop:
  119. %ifndef NO_ZERO_COLUMN_TEST_ISLOW_MMX
  120. mov eax, DWORD [DWBLOCK(1,0,esi,SIZEOF_JCOEF)]
  121. or eax, DWORD [DWBLOCK(2,0,esi,SIZEOF_JCOEF)]
  122. jnz short .columnDCT
  123. movq mm0, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)]
  124. movq mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)]
  125. por mm0, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)]
  126. por mm1, MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)]
  127. por mm0, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)]
  128. por mm1, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)]
  129. por mm0, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)]
  130. por mm1,mm0
  131. packsswb mm1,mm1
  132. movd eax,mm1
  133. test eax,eax
  134. jnz short .columnDCT
  135. ; -- AC terms all zero
  136. movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)]
  137. pmullw mm0, MMWORD [MMBLOCK(0,0,edx,SIZEOF_ISLOW_MULT_TYPE)]
  138. psllw mm0,PASS1_BITS
  139. movq mm2,mm0 ; mm0=in0=(00 01 02 03)
  140. punpcklwd mm0,mm0 ; mm0=(00 00 01 01)
  141. punpckhwd mm2,mm2 ; mm2=(02 02 03 03)
  142. movq mm1,mm0
  143. punpckldq mm0,mm0 ; mm0=(00 00 00 00)
  144. punpckhdq mm1,mm1 ; mm1=(01 01 01 01)
  145. movq mm3,mm2
  146. punpckldq mm2,mm2 ; mm2=(02 02 02 02)
  147. punpckhdq mm3,mm3 ; mm3=(03 03 03 03)
  148. movq MMWORD [MMBLOCK(0,0,edi,SIZEOF_JCOEF)], mm0
  149. movq MMWORD [MMBLOCK(0,1,edi,SIZEOF_JCOEF)], mm0
  150. movq MMWORD [MMBLOCK(1,0,edi,SIZEOF_JCOEF)], mm1
  151. movq MMWORD [MMBLOCK(1,1,edi,SIZEOF_JCOEF)], mm1
  152. movq MMWORD [MMBLOCK(2,0,edi,SIZEOF_JCOEF)], mm2
  153. movq MMWORD [MMBLOCK(2,1,edi,SIZEOF_JCOEF)], mm2
  154. movq MMWORD [MMBLOCK(3,0,edi,SIZEOF_JCOEF)], mm3
  155. movq MMWORD [MMBLOCK(3,1,edi,SIZEOF_JCOEF)], mm3
  156. jmp near .nextcolumn
  157. alignx 16,7
  158. %endif
  159. .columnDCT:
  160. ; -- Even part
  161. movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)]
  162. movq mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)]
  163. pmullw mm0, MMWORD [MMBLOCK(0,0,edx,SIZEOF_ISLOW_MULT_TYPE)]
  164. pmullw mm1, MMWORD [MMBLOCK(2,0,edx,SIZEOF_ISLOW_MULT_TYPE)]
  165. movq mm2, MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)]
  166. movq mm3, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)]
  167. pmullw mm2, MMWORD [MMBLOCK(4,0,edx,SIZEOF_ISLOW_MULT_TYPE)]
  168. pmullw mm3, MMWORD [MMBLOCK(6,0,edx,SIZEOF_ISLOW_MULT_TYPE)]
  169. ; (Original)
  170. ; z1 = (z2 + z3) * 0.541196100;
  171. ; tmp2 = z1 + z3 * -1.847759065;
  172. ; tmp3 = z1 + z2 * 0.765366865;
  173. ;
  174. ; (This implementation)
  175. ; tmp2 = z2 * 0.541196100 + z3 * (0.541196100 - 1.847759065);
  176. ; tmp3 = z2 * (0.541196100 + 0.765366865) + z3 * 0.541196100;
  177. movq mm4,mm1 ; mm1=in2=z2
  178. movq mm5,mm1
  179. punpcklwd mm4,mm3 ; mm3=in6=z3
  180. punpckhwd mm5,mm3
  181. movq mm1,mm4
  182. movq mm3,mm5
  183. pmaddwd mm4,[GOTOFF(ebx,PW_F130_F054)] ; mm4=tmp3L
  184. pmaddwd mm5,[GOTOFF(ebx,PW_F130_F054)] ; mm5=tmp3H
  185. pmaddwd mm1,[GOTOFF(ebx,PW_F054_MF130)] ; mm1=tmp2L
  186. pmaddwd mm3,[GOTOFF(ebx,PW_F054_MF130)] ; mm3=tmp2H
  187. movq mm6,mm0
  188. paddw mm0,mm2 ; mm0=in0+in4
  189. psubw mm6,mm2 ; mm6=in0-in4
  190. pxor mm7,mm7
  191. pxor mm2,mm2
  192. punpcklwd mm7,mm0 ; mm7=tmp0L
  193. punpckhwd mm2,mm0 ; mm2=tmp0H
  194. psrad mm7,(16-CONST_BITS) ; psrad mm7,16 & pslld mm7,CONST_BITS
  195. psrad mm2,(16-CONST_BITS) ; psrad mm2,16 & pslld mm2,CONST_BITS
  196. movq mm0,mm7
  197. paddd mm7,mm4 ; mm7=tmp10L
  198. psubd mm0,mm4 ; mm0=tmp13L
  199. movq mm4,mm2
  200. paddd mm2,mm5 ; mm2=tmp10H
  201. psubd mm4,mm5 ; mm4=tmp13H
  202. movq MMWORD [wk(0)], mm7 ; wk(0)=tmp10L
  203. movq MMWORD [wk(1)], mm2 ; wk(1)=tmp10H
  204. movq MMWORD [wk(2)], mm0 ; wk(2)=tmp13L
  205. movq MMWORD [wk(3)], mm4 ; wk(3)=tmp13H
  206. pxor mm5,mm5
  207. pxor mm7,mm7
  208. punpcklwd mm5,mm6 ; mm5=tmp1L
  209. punpckhwd mm7,mm6 ; mm7=tmp1H
  210. psrad mm5,(16-CONST_BITS) ; psrad mm5,16 & pslld mm5,CONST_BITS
  211. psrad mm7,(16-CONST_BITS) ; psrad mm7,16 & pslld mm7,CONST_BITS
  212. movq mm2,mm5
  213. paddd mm5,mm1 ; mm5=tmp11L
  214. psubd mm2,mm1 ; mm2=tmp12L
  215. movq mm0,mm7
  216. paddd mm7,mm3 ; mm7=tmp11H
  217. psubd mm0,mm3 ; mm0=tmp12H
  218. movq MMWORD [wk(4)], mm5 ; wk(4)=tmp11L
  219. movq MMWORD [wk(5)], mm7 ; wk(5)=tmp11H
  220. movq MMWORD [wk(6)], mm2 ; wk(6)=tmp12L
  221. movq MMWORD [wk(7)], mm0 ; wk(7)=tmp12H
  222. ; -- Odd part
  223. movq mm4, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)]
  224. movq mm6, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)]
  225. pmullw mm4, MMWORD [MMBLOCK(1,0,edx,SIZEOF_ISLOW_MULT_TYPE)]
  226. pmullw mm6, MMWORD [MMBLOCK(3,0,edx,SIZEOF_ISLOW_MULT_TYPE)]
  227. movq mm1, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)]
  228. movq mm3, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)]
  229. pmullw mm1, MMWORD [MMBLOCK(5,0,edx,SIZEOF_ISLOW_MULT_TYPE)]
  230. pmullw mm3, MMWORD [MMBLOCK(7,0,edx,SIZEOF_ISLOW_MULT_TYPE)]
  231. movq mm5,mm6
  232. movq mm7,mm4
  233. paddw mm5,mm3 ; mm5=z3
  234. paddw mm7,mm1 ; mm7=z4
  235. ; (Original)
  236. ; z5 = (z3 + z4) * 1.175875602;
  237. ; z3 = z3 * -1.961570560; z4 = z4 * -0.390180644;
  238. ; z3 += z5; z4 += z5;
  239. ;
  240. ; (This implementation)
  241. ; z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602;
  242. ; z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644);
  243. movq mm2,mm5
  244. movq mm0,mm5
  245. punpcklwd mm2,mm7
  246. punpckhwd mm0,mm7
  247. movq mm5,mm2
  248. movq mm7,mm0
  249. pmaddwd mm2,[GOTOFF(ebx,PW_MF078_F117)] ; mm2=z3L
  250. pmaddwd mm0,[GOTOFF(ebx,PW_MF078_F117)] ; mm0=z3H
  251. pmaddwd mm5,[GOTOFF(ebx,PW_F117_F078)] ; mm5=z4L
  252. pmaddwd mm7,[GOTOFF(ebx,PW_F117_F078)] ; mm7=z4H
  253. movq MMWORD [wk(10)], mm2 ; wk(10)=z3L
  254. movq MMWORD [wk(11)], mm0 ; wk(11)=z3H
  255. ; (Original)
  256. ; z1 = tmp0 + tmp3; z2 = tmp1 + tmp2;
  257. ; tmp0 = tmp0 * 0.298631336; tmp1 = tmp1 * 2.053119869;
  258. ; tmp2 = tmp2 * 3.072711026; tmp3 = tmp3 * 1.501321110;
  259. ; z1 = z1 * -0.899976223; z2 = z2 * -2.562915447;
  260. ; tmp0 += z1 + z3; tmp1 += z2 + z4;
  261. ; tmp2 += z2 + z3; tmp3 += z1 + z4;
  262. ;
  263. ; (This implementation)
  264. ; tmp0 = tmp0 * (0.298631336 - 0.899976223) + tmp3 * -0.899976223;
  265. ; tmp1 = tmp1 * (2.053119869 - 2.562915447) + tmp2 * -2.562915447;
  266. ; tmp2 = tmp1 * -2.562915447 + tmp2 * (3.072711026 - 2.562915447);
  267. ; tmp3 = tmp0 * -0.899976223 + tmp3 * (1.501321110 - 0.899976223);
  268. ; tmp0 += z3; tmp1 += z4;
  269. ; tmp2 += z3; tmp3 += z4;
  270. movq mm2,mm3
  271. movq mm0,mm3
  272. punpcklwd mm2,mm4
  273. punpckhwd mm0,mm4
  274. movq mm3,mm2
  275. movq mm4,mm0
  276. pmaddwd mm2,[GOTOFF(ebx,PW_MF060_MF089)] ; mm2=tmp0L
  277. pmaddwd mm0,[GOTOFF(ebx,PW_MF060_MF089)] ; mm0=tmp0H
  278. pmaddwd mm3,[GOTOFF(ebx,PW_MF089_F060)] ; mm3=tmp3L
  279. pmaddwd mm4,[GOTOFF(ebx,PW_MF089_F060)] ; mm4=tmp3H
  280. paddd mm2, MMWORD [wk(10)] ; mm2=tmp0L
  281. paddd mm0, MMWORD [wk(11)] ; mm0=tmp0H
  282. paddd mm3,mm5 ; mm3=tmp3L
  283. paddd mm4,mm7 ; mm4=tmp3H
  284. movq MMWORD [wk(8)], mm2 ; wk(8)=tmp0L
  285. movq MMWORD [wk(9)], mm0 ; wk(9)=tmp0H
  286. movq mm2,mm1
  287. movq mm0,mm1
  288. punpcklwd mm2,mm6
  289. punpckhwd mm0,mm6
  290. movq mm1,mm2
  291. movq mm6,mm0
  292. pmaddwd mm2,[GOTOFF(ebx,PW_MF050_MF256)] ; mm2=tmp1L
  293. pmaddwd mm0,[GOTOFF(ebx,PW_MF050_MF256)] ; mm0=tmp1H
  294. pmaddwd mm1,[GOTOFF(ebx,PW_MF256_F050)] ; mm1=tmp2L
  295. pmaddwd mm6,[GOTOFF(ebx,PW_MF256_F050)] ; mm6=tmp2H
  296. paddd mm2,mm5 ; mm2=tmp1L
  297. paddd mm0,mm7 ; mm0=tmp1H
  298. paddd mm1, MMWORD [wk(10)] ; mm1=tmp2L
  299. paddd mm6, MMWORD [wk(11)] ; mm6=tmp2H
  300. movq MMWORD [wk(10)], mm2 ; wk(10)=tmp1L
  301. movq MMWORD [wk(11)], mm0 ; wk(11)=tmp1H
  302. ; -- Final output stage
  303. movq mm5, MMWORD [wk(0)] ; mm5=tmp10L
  304. movq mm7, MMWORD [wk(1)] ; mm7=tmp10H
  305. movq mm2,mm5
  306. movq mm0,mm7
  307. paddd mm5,mm3 ; mm5=data0L
  308. paddd mm7,mm4 ; mm7=data0H
  309. psubd mm2,mm3 ; mm2=data7L
  310. psubd mm0,mm4 ; mm0=data7H
  311. movq mm3,[GOTOFF(ebx,PD_DESCALE_P1)] ; mm3=[PD_DESCALE_P1]
  312. paddd mm5,mm3
  313. paddd mm7,mm3
  314. psrad mm5,DESCALE_P1
  315. psrad mm7,DESCALE_P1
  316. paddd mm2,mm3
  317. paddd mm0,mm3
  318. psrad mm2,DESCALE_P1
  319. psrad mm0,DESCALE_P1
  320. packssdw mm5,mm7 ; mm5=data0=(00 01 02 03)
  321. packssdw mm2,mm0 ; mm2=data7=(70 71 72 73)
  322. movq mm4, MMWORD [wk(4)] ; mm4=tmp11L
  323. movq mm3, MMWORD [wk(5)] ; mm3=tmp11H
  324. movq mm7,mm4
  325. movq mm0,mm3
  326. paddd mm4,mm1 ; mm4=data1L
  327. paddd mm3,mm6 ; mm3=data1H
  328. psubd mm7,mm1 ; mm7=data6L
  329. psubd mm0,mm6 ; mm0=data6H
  330. movq mm1,[GOTOFF(ebx,PD_DESCALE_P1)] ; mm1=[PD_DESCALE_P1]
  331. paddd mm4,mm1
  332. paddd mm3,mm1
  333. psrad mm4,DESCALE_P1
  334. psrad mm3,DESCALE_P1
  335. paddd mm7,mm1
  336. paddd mm0,mm1
  337. psrad mm7,DESCALE_P1
  338. psrad mm0,DESCALE_P1
  339. packssdw mm4,mm3 ; mm4=data1=(10 11 12 13)
  340. packssdw mm7,mm0 ; mm7=data6=(60 61 62 63)
  341. movq mm6,mm5 ; transpose coefficients(phase 1)
  342. punpcklwd mm5,mm4 ; mm5=(00 10 01 11)
  343. punpckhwd mm6,mm4 ; mm6=(02 12 03 13)
  344. movq mm1,mm7 ; transpose coefficients(phase 1)
  345. punpcklwd mm7,mm2 ; mm7=(60 70 61 71)
  346. punpckhwd mm1,mm2 ; mm1=(62 72 63 73)
  347. movq mm3, MMWORD [wk(6)] ; mm3=tmp12L
  348. movq mm0, MMWORD [wk(7)] ; mm0=tmp12H
  349. movq mm4, MMWORD [wk(10)] ; mm4=tmp1L
  350. movq mm2, MMWORD [wk(11)] ; mm2=tmp1H
  351. movq MMWORD [wk(0)], mm5 ; wk(0)=(00 10 01 11)
  352. movq MMWORD [wk(1)], mm6 ; wk(1)=(02 12 03 13)
  353. movq MMWORD [wk(4)], mm7 ; wk(4)=(60 70 61 71)
  354. movq MMWORD [wk(5)], mm1 ; wk(5)=(62 72 63 73)
  355. movq mm5,mm3
  356. movq mm6,mm0
  357. paddd mm3,mm4 ; mm3=data2L
  358. paddd mm0,mm2 ; mm0=data2H
  359. psubd mm5,mm4 ; mm5=data5L
  360. psubd mm6,mm2 ; mm6=data5H
  361. movq mm7,[GOTOFF(ebx,PD_DESCALE_P1)] ; mm7=[PD_DESCALE_P1]
  362. paddd mm3,mm7
  363. paddd mm0,mm7
  364. psrad mm3,DESCALE_P1
  365. psrad mm0,DESCALE_P1
  366. paddd mm5,mm7
  367. paddd mm6,mm7
  368. psrad mm5,DESCALE_P1
  369. psrad mm6,DESCALE_P1
  370. packssdw mm3,mm0 ; mm3=data2=(20 21 22 23)
  371. packssdw mm5,mm6 ; mm5=data5=(50 51 52 53)
  372. movq mm1, MMWORD [wk(2)] ; mm1=tmp13L
  373. movq mm4, MMWORD [wk(3)] ; mm4=tmp13H
  374. movq mm2, MMWORD [wk(8)] ; mm2=tmp0L
  375. movq mm7, MMWORD [wk(9)] ; mm7=tmp0H
  376. movq mm0,mm1
  377. movq mm6,mm4
  378. paddd mm1,mm2 ; mm1=data3L
  379. paddd mm4,mm7 ; mm4=data3H
  380. psubd mm0,mm2 ; mm0=data4L
  381. psubd mm6,mm7 ; mm6=data4H
  382. movq mm2,[GOTOFF(ebx,PD_DESCALE_P1)] ; mm2=[PD_DESCALE_P1]
  383. paddd mm1,mm2
  384. paddd mm4,mm2
  385. psrad mm1,DESCALE_P1
  386. psrad mm4,DESCALE_P1
  387. paddd mm0,mm2
  388. paddd mm6,mm2
  389. psrad mm0,DESCALE_P1
  390. psrad mm6,DESCALE_P1
  391. packssdw mm1,mm4 ; mm1=data3=(30 31 32 33)
  392. packssdw mm0,mm6 ; mm0=data4=(40 41 42 43)
  393. movq mm7, MMWORD [wk(0)] ; mm7=(00 10 01 11)
  394. movq mm2, MMWORD [wk(1)] ; mm2=(02 12 03 13)
  395. movq mm4,mm3 ; transpose coefficients(phase 1)
  396. punpcklwd mm3,mm1 ; mm3=(20 30 21 31)
  397. punpckhwd mm4,mm1 ; mm4=(22 32 23 33)
  398. movq mm6,mm0 ; transpose coefficients(phase 1)
  399. punpcklwd mm0,mm5 ; mm0=(40 50 41 51)
  400. punpckhwd mm6,mm5 ; mm6=(42 52 43 53)
  401. movq mm1,mm7 ; transpose coefficients(phase 2)
  402. punpckldq mm7,mm3 ; mm7=(00 10 20 30)
  403. punpckhdq mm1,mm3 ; mm1=(01 11 21 31)
  404. movq mm5,mm2 ; transpose coefficients(phase 2)
  405. punpckldq mm2,mm4 ; mm2=(02 12 22 32)
  406. punpckhdq mm5,mm4 ; mm5=(03 13 23 33)
  407. movq mm3, MMWORD [wk(4)] ; mm3=(60 70 61 71)
  408. movq mm4, MMWORD [wk(5)] ; mm4=(62 72 63 73)
  409. movq MMWORD [MMBLOCK(0,0,edi,SIZEOF_JCOEF)], mm7
  410. movq MMWORD [MMBLOCK(1,0,edi,SIZEOF_JCOEF)], mm1
  411. movq MMWORD [MMBLOCK(2,0,edi,SIZEOF_JCOEF)], mm2
  412. movq MMWORD [MMBLOCK(3,0,edi,SIZEOF_JCOEF)], mm5
  413. movq mm7,mm0 ; transpose coefficients(phase 2)
  414. punpckldq mm0,mm3 ; mm0=(40 50 60 70)
  415. punpckhdq mm7,mm3 ; mm7=(41 51 61 71)
  416. movq mm1,mm6 ; transpose coefficients(phase 2)
  417. punpckldq mm6,mm4 ; mm6=(42 52 62 72)
  418. punpckhdq mm1,mm4 ; mm1=(43 53 63 73)
  419. movq MMWORD [MMBLOCK(0,1,edi,SIZEOF_JCOEF)], mm0
  420. movq MMWORD [MMBLOCK(1,1,edi,SIZEOF_JCOEF)], mm7
  421. movq MMWORD [MMBLOCK(2,1,edi,SIZEOF_JCOEF)], mm6
  422. movq MMWORD [MMBLOCK(3,1,edi,SIZEOF_JCOEF)], mm1
  423. .nextcolumn:
  424. add esi, byte 4*SIZEOF_JCOEF ; coef_block
  425. add edx, byte 4*SIZEOF_ISLOW_MULT_TYPE ; quantptr
  426. add edi, byte 4*DCTSIZE*SIZEOF_JCOEF ; wsptr
  427. dec ecx ; ctr
  428. jnz near .columnloop
  429. ; ---- Pass 2: process rows from work array, store into output array.
  430. mov eax, [original_ebp]
  431. lea esi, [workspace] ; JCOEF * wsptr
  432. mov edi, JSAMPARRAY [output_buf(eax)] ; (JSAMPROW *)
  433. mov eax, JDIMENSION [output_col(eax)]
  434. mov ecx, DCTSIZE/4 ; ctr
  435. alignx 16,7
  436. .rowloop:
  437. ; -- Even part
  438. movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)]
  439. movq mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)]
  440. movq mm2, MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)]
  441. movq mm3, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)]
  442. ; (Original)
  443. ; z1 = (z2 + z3) * 0.541196100;
  444. ; tmp2 = z1 + z3 * -1.847759065;
  445. ; tmp3 = z1 + z2 * 0.765366865;
  446. ;
  447. ; (This implementation)
  448. ; tmp2 = z2 * 0.541196100 + z3 * (0.541196100 - 1.847759065);
  449. ; tmp3 = z2 * (0.541196100 + 0.765366865) + z3 * 0.541196100;
  450. movq mm4,mm1 ; mm1=in2=z2
  451. movq mm5,mm1
  452. punpcklwd mm4,mm3 ; mm3=in6=z3
  453. punpckhwd mm5,mm3
  454. movq mm1,mm4
  455. movq mm3,mm5
  456. pmaddwd mm4,[GOTOFF(ebx,PW_F130_F054)] ; mm4=tmp3L
  457. pmaddwd mm5,[GOTOFF(ebx,PW_F130_F054)] ; mm5=tmp3H
  458. pmaddwd mm1,[GOTOFF(ebx,PW_F054_MF130)] ; mm1=tmp2L
  459. pmaddwd mm3,[GOTOFF(ebx,PW_F054_MF130)] ; mm3=tmp2H
  460. movq mm6,mm0
  461. paddw mm0,mm2 ; mm0=in0+in4
  462. psubw mm6,mm2 ; mm6=in0-in4
  463. pxor mm7,mm7
  464. pxor mm2,mm2
  465. punpcklwd mm7,mm0 ; mm7=tmp0L
  466. punpckhwd mm2,mm0 ; mm2=tmp0H
  467. psrad mm7,(16-CONST_BITS) ; psrad mm7,16 & pslld mm7,CONST_BITS
  468. psrad mm2,(16-CONST_BITS) ; psrad mm2,16 & pslld mm2,CONST_BITS
  469. movq mm0,mm7
  470. paddd mm7,mm4 ; mm7=tmp10L
  471. psubd mm0,mm4 ; mm0=tmp13L
  472. movq mm4,mm2
  473. paddd mm2,mm5 ; mm2=tmp10H
  474. psubd mm4,mm5 ; mm4=tmp13H
  475. movq MMWORD [wk(0)], mm7 ; wk(0)=tmp10L
  476. movq MMWORD [wk(1)], mm2 ; wk(1)=tmp10H
  477. movq MMWORD [wk(2)], mm0 ; wk(2)=tmp13L
  478. movq MMWORD [wk(3)], mm4 ; wk(3)=tmp13H
  479. pxor mm5,mm5
  480. pxor mm7,mm7
  481. punpcklwd mm5,mm6 ; mm5=tmp1L
  482. punpckhwd mm7,mm6 ; mm7=tmp1H
  483. psrad mm5,(16-CONST_BITS) ; psrad mm5,16 & pslld mm5,CONST_BITS
  484. psrad mm7,(16-CONST_BITS) ; psrad mm7,16 & pslld mm7,CONST_BITS
  485. movq mm2,mm5
  486. paddd mm5,mm1 ; mm5=tmp11L
  487. psubd mm2,mm1 ; mm2=tmp12L
  488. movq mm0,mm7
  489. paddd mm7,mm3 ; mm7=tmp11H
  490. psubd mm0,mm3 ; mm0=tmp12H
  491. movq MMWORD [wk(4)], mm5 ; wk(4)=tmp11L
  492. movq MMWORD [wk(5)], mm7 ; wk(5)=tmp11H
  493. movq MMWORD [wk(6)], mm2 ; wk(6)=tmp12L
  494. movq MMWORD [wk(7)], mm0 ; wk(7)=tmp12H
  495. ; -- Odd part
  496. movq mm4, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)]
  497. movq mm6, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)]
  498. movq mm1, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)]
  499. movq mm3, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)]
  500. movq mm5,mm6
  501. movq mm7,mm4
  502. paddw mm5,mm3 ; mm5=z3
  503. paddw mm7,mm1 ; mm7=z4
  504. ; (Original)
  505. ; z5 = (z3 + z4) * 1.175875602;
  506. ; z3 = z3 * -1.961570560; z4 = z4 * -0.390180644;
  507. ; z3 += z5; z4 += z5;
  508. ;
  509. ; (This implementation)
  510. ; z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602;
  511. ; z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644);
  512. movq mm2,mm5
  513. movq mm0,mm5
  514. punpcklwd mm2,mm7
  515. punpckhwd mm0,mm7
  516. movq mm5,mm2
  517. movq mm7,mm0
  518. pmaddwd mm2,[GOTOFF(ebx,PW_MF078_F117)] ; mm2=z3L
  519. pmaddwd mm0,[GOTOFF(ebx,PW_MF078_F117)] ; mm0=z3H
  520. pmaddwd mm5,[GOTOFF(ebx,PW_F117_F078)] ; mm5=z4L
  521. pmaddwd mm7,[GOTOFF(ebx,PW_F117_F078)] ; mm7=z4H
  522. movq MMWORD [wk(10)], mm2 ; wk(10)=z3L
  523. movq MMWORD [wk(11)], mm0 ; wk(11)=z3H
  524. ; (Original)
  525. ; z1 = tmp0 + tmp3; z2 = tmp1 + tmp2;
  526. ; tmp0 = tmp0 * 0.298631336; tmp1 = tmp1 * 2.053119869;
  527. ; tmp2 = tmp2 * 3.072711026; tmp3 = tmp3 * 1.501321110;
  528. ; z1 = z1 * -0.899976223; z2 = z2 * -2.562915447;
  529. ; tmp0 += z1 + z3; tmp1 += z2 + z4;
  530. ; tmp2 += z2 + z3; tmp3 += z1 + z4;
  531. ;
  532. ; (This implementation)
  533. ; tmp0 = tmp0 * (0.298631336 - 0.899976223) + tmp3 * -0.899976223;
  534. ; tmp1 = tmp1 * (2.053119869 - 2.562915447) + tmp2 * -2.562915447;
  535. ; tmp2 = tmp1 * -2.562915447 + tmp2 * (3.072711026 - 2.562915447);
  536. ; tmp3 = tmp0 * -0.899976223 + tmp3 * (1.501321110 - 0.899976223);
  537. ; tmp0 += z3; tmp1 += z4;
  538. ; tmp2 += z3; tmp3 += z4;
  539. movq mm2,mm3
  540. movq mm0,mm3
  541. punpcklwd mm2,mm4
  542. punpckhwd mm0,mm4
  543. movq mm3,mm2
  544. movq mm4,mm0
  545. pmaddwd mm2,[GOTOFF(ebx,PW_MF060_MF089)] ; mm2=tmp0L
  546. pmaddwd mm0,[GOTOFF(ebx,PW_MF060_MF089)] ; mm0=tmp0H
  547. pmaddwd mm3,[GOTOFF(ebx,PW_MF089_F060)] ; mm3=tmp3L
  548. pmaddwd mm4,[GOTOFF(ebx,PW_MF089_F060)] ; mm4=tmp3H
  549. paddd mm2, MMWORD [wk(10)] ; mm2=tmp0L
  550. paddd mm0, MMWORD [wk(11)] ; mm0=tmp0H
  551. paddd mm3,mm5 ; mm3=tmp3L
  552. paddd mm4,mm7 ; mm4=tmp3H
  553. movq MMWORD [wk(8)], mm2 ; wk(8)=tmp0L
  554. movq MMWORD [wk(9)], mm0 ; wk(9)=tmp0H
  555. movq mm2,mm1
  556. movq mm0,mm1
  557. punpcklwd mm2,mm6
  558. punpckhwd mm0,mm6
  559. movq mm1,mm2
  560. movq mm6,mm0
  561. pmaddwd mm2,[GOTOFF(ebx,PW_MF050_MF256)] ; mm2=tmp1L
  562. pmaddwd mm0,[GOTOFF(ebx,PW_MF050_MF256)] ; mm0=tmp1H
  563. pmaddwd mm1,[GOTOFF(ebx,PW_MF256_F050)] ; mm1=tmp2L
  564. pmaddwd mm6,[GOTOFF(ebx,PW_MF256_F050)] ; mm6=tmp2H
  565. paddd mm2,mm5 ; mm2=tmp1L
  566. paddd mm0,mm7 ; mm0=tmp1H
  567. paddd mm1, MMWORD [wk(10)] ; mm1=tmp2L
  568. paddd mm6, MMWORD [wk(11)] ; mm6=tmp2H
  569. movq MMWORD [wk(10)], mm2 ; wk(10)=tmp1L
  570. movq MMWORD [wk(11)], mm0 ; wk(11)=tmp1H
  571. ; -- Final output stage
  572. movq mm5, MMWORD [wk(0)] ; mm5=tmp10L
  573. movq mm7, MMWORD [wk(1)] ; mm7=tmp10H
  574. movq mm2,mm5
  575. movq mm0,mm7
  576. paddd mm5,mm3 ; mm5=data0L
  577. paddd mm7,mm4 ; mm7=data0H
  578. psubd mm2,mm3 ; mm2=data7L
  579. psubd mm0,mm4 ; mm0=data7H
  580. movq mm3,[GOTOFF(ebx,PD_DESCALE_P2)] ; mm3=[PD_DESCALE_P2]
  581. paddd mm5,mm3
  582. paddd mm7,mm3
  583. psrad mm5,DESCALE_P2
  584. psrad mm7,DESCALE_P2
  585. paddd mm2,mm3
  586. paddd mm0,mm3
  587. psrad mm2,DESCALE_P2
  588. psrad mm0,DESCALE_P2
  589. packssdw mm5,mm7 ; mm5=data0=(00 10 20 30)
  590. packssdw mm2,mm0 ; mm2=data7=(07 17 27 37)
  591. movq mm4, MMWORD [wk(4)] ; mm4=tmp11L
  592. movq mm3, MMWORD [wk(5)] ; mm3=tmp11H
  593. movq mm7,mm4
  594. movq mm0,mm3
  595. paddd mm4,mm1 ; mm4=data1L
  596. paddd mm3,mm6 ; mm3=data1H
  597. psubd mm7,mm1 ; mm7=data6L
  598. psubd mm0,mm6 ; mm0=data6H
  599. movq mm1,[GOTOFF(ebx,PD_DESCALE_P2)] ; mm1=[PD_DESCALE_P2]
  600. paddd mm4,mm1
  601. paddd mm3,mm1
  602. psrad mm4,DESCALE_P2
  603. psrad mm3,DESCALE_P2
  604. paddd mm7,mm1
  605. paddd mm0,mm1
  606. psrad mm7,DESCALE_P2
  607. psrad mm0,DESCALE_P2
  608. packssdw mm4,mm3 ; mm4=data1=(01 11 21 31)
  609. packssdw mm7,mm0 ; mm7=data6=(06 16 26 36)
  610. packsswb mm5,mm7 ; mm5=(00 10 20 30 06 16 26 36)
  611. packsswb mm4,mm2 ; mm4=(01 11 21 31 07 17 27 37)
  612. movq mm6, MMWORD [wk(6)] ; mm6=tmp12L
  613. movq mm1, MMWORD [wk(7)] ; mm1=tmp12H
  614. movq mm3, MMWORD [wk(10)] ; mm3=tmp1L
  615. movq mm0, MMWORD [wk(11)] ; mm0=tmp1H
  616. movq MMWORD [wk(0)], mm5 ; wk(0)=(00 10 20 30 06 16 26 36)
  617. movq MMWORD [wk(1)], mm4 ; wk(1)=(01 11 21 31 07 17 27 37)
  618. movq mm7,mm6
  619. movq mm2,mm1
  620. paddd mm6,mm3 ; mm6=data2L
  621. paddd mm1,mm0 ; mm1=data2H
  622. psubd mm7,mm3 ; mm7=data5L
  623. psubd mm2,mm0 ; mm2=data5H
  624. movq mm5,[GOTOFF(ebx,PD_DESCALE_P2)] ; mm5=[PD_DESCALE_P2]
  625. paddd mm6,mm5
  626. paddd mm1,mm5
  627. psrad mm6,DESCALE_P2
  628. psrad mm1,DESCALE_P2
  629. paddd mm7,mm5
  630. paddd mm2,mm5
  631. psrad mm7,DESCALE_P2
  632. psrad mm2,DESCALE_P2
  633. packssdw mm6,mm1 ; mm6=data2=(02 12 22 32)
  634. packssdw mm7,mm2 ; mm7=data5=(05 15 25 35)
  635. movq mm4, MMWORD [wk(2)] ; mm4=tmp13L
  636. movq mm3, MMWORD [wk(3)] ; mm3=tmp13H
  637. movq mm0, MMWORD [wk(8)] ; mm0=tmp0L
  638. movq mm5, MMWORD [wk(9)] ; mm5=tmp0H
  639. movq mm1,mm4
  640. movq mm2,mm3
  641. paddd mm4,mm0 ; mm4=data3L
  642. paddd mm3,mm5 ; mm3=data3H
  643. psubd mm1,mm0 ; mm1=data4L
  644. psubd mm2,mm5 ; mm2=data4H
  645. movq mm0,[GOTOFF(ebx,PD_DESCALE_P2)] ; mm0=[PD_DESCALE_P2]
  646. paddd mm4,mm0
  647. paddd mm3,mm0
  648. psrad mm4,DESCALE_P2
  649. psrad mm3,DESCALE_P2
  650. paddd mm1,mm0
  651. paddd mm2,mm0
  652. psrad mm1,DESCALE_P2
  653. psrad mm2,DESCALE_P2
  654. movq mm5,[GOTOFF(ebx,PB_CENTERJSAMP)] ; mm5=[PB_CENTERJSAMP]
  655. packssdw mm4,mm3 ; mm4=data3=(03 13 23 33)
  656. packssdw mm1,mm2 ; mm1=data4=(04 14 24 34)
  657. movq mm0, MMWORD [wk(0)] ; mm0=(00 10 20 30 06 16 26 36)
  658. movq mm3, MMWORD [wk(1)] ; mm3=(01 11 21 31 07 17 27 37)
  659. packsswb mm6,mm1 ; mm6=(02 12 22 32 04 14 24 34)
  660. packsswb mm4,mm7 ; mm4=(03 13 23 33 05 15 25 35)
  661. paddb mm0,mm5
  662. paddb mm3,mm5
  663. paddb mm6,mm5
  664. paddb mm4,mm5
  665. movq mm2,mm0 ; transpose coefficients(phase 1)
  666. punpcklbw mm0,mm3 ; mm0=(00 01 10 11 20 21 30 31)
  667. punpckhbw mm2,mm3 ; mm2=(06 07 16 17 26 27 36 37)
  668. movq mm1,mm6 ; transpose coefficients(phase 1)
  669. punpcklbw mm6,mm4 ; mm6=(02 03 12 13 22 23 32 33)
  670. punpckhbw mm1,mm4 ; mm1=(04 05 14 15 24 25 34 35)
  671. movq mm7,mm0 ; transpose coefficients(phase 2)
  672. punpcklwd mm0,mm6 ; mm0=(00 01 02 03 10 11 12 13)
  673. punpckhwd mm7,mm6 ; mm7=(20 21 22 23 30 31 32 33)
  674. movq mm5,mm1 ; transpose coefficients(phase 2)
  675. punpcklwd mm1,mm2 ; mm1=(04 05 06 07 14 15 16 17)
  676. punpckhwd mm5,mm2 ; mm5=(24 25 26 27 34 35 36 37)
  677. movq mm3,mm0 ; transpose coefficients(phase 3)
  678. punpckldq mm0,mm1 ; mm0=(00 01 02 03 04 05 06 07)
  679. punpckhdq mm3,mm1 ; mm3=(10 11 12 13 14 15 16 17)
  680. movq mm4,mm7 ; transpose coefficients(phase 3)
  681. punpckldq mm7,mm5 ; mm7=(20 21 22 23 24 25 26 27)
  682. punpckhdq mm4,mm5 ; mm4=(30 31 32 33 34 35 36 37)
  683. pushpic ebx ; save GOT address
  684. mov edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW]
  685. mov ebx, JSAMPROW [edi+1*SIZEOF_JSAMPROW]
  686. movq MMWORD [edx+eax*SIZEOF_JSAMPLE], mm0
  687. movq MMWORD [ebx+eax*SIZEOF_JSAMPLE], mm3
  688. mov edx, JSAMPROW [edi+2*SIZEOF_JSAMPROW]
  689. mov ebx, JSAMPROW [edi+3*SIZEOF_JSAMPROW]
  690. movq MMWORD [edx+eax*SIZEOF_JSAMPLE], mm7
  691. movq MMWORD [ebx+eax*SIZEOF_JSAMPLE], mm4
  692. poppic ebx ; restore GOT address
  693. add esi, byte 4*SIZEOF_JCOEF ; wsptr
  694. add edi, byte 4*SIZEOF_JSAMPROW
  695. dec ecx ; ctr
  696. jnz near .rowloop
  697. emms ; empty MMX state
  698. pop edi
  699. pop esi
  700. ; pop edx ; need not be preserved
  701. ; pop ecx ; need not be preserved
  702. pop ebx
  703. mov esp,ebp ; esp <- aligned ebp
  704. pop esp ; esp <- original ebp
  705. pop ebp
  706. ret
  707. ; For some reason, the OS X linker does not honor the request to align the
  708. ; segment unless we do this.
  709. align 16