#### /extra/project-euler/035/035.factor

http://github.com/abeaumont/factor
Unknown | 61 lines | 43 code | 18 blank | 0 comment | 0 complexity | 2286f1fa5ac45df1ff88396f7b59b906 MD5 | raw file
``` 1! Copyright (c) 2008 Aaron Schaefer.
3USING: kernel math math.combinatorics math.parser math.primes
4    project-euler.common sequences ;
5IN: project-euler.035
6
7! http://projecteuler.net/index.php?section=problems&id=35
8
9! DESCRIPTION
10! -----------
11
12! The number, 197, is called a circular prime because all rotations of the
13! digits: 197, 971, and 719, are themselves prime.
14
15! There are thirteen such primes below 100:
16!     2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, and 97.
17
18! How many circular primes are there below one million?
19
20
21! SOLUTION
22! --------
23
24<PRIVATE
25
26: source-035 ( -- seq )
27    1000000 primes-upto [ number>digits ] map ;
28
29: possible? ( seq -- ? )
30    dup length 1 > [
31        [ even? ] any? not
32    ] [
33        drop t
34    ] if ;
35
36: rotate ( seq n -- seq )
37    cut* prepend ;
38
39: (circular?) ( seq n -- ? )
40    dup 0 > [
41        2dup rotate 10 digits>integer
42        prime? [ 1 - (circular?) ] [ 2drop f ] if
43    ] [
44        2drop t
45    ] if ;
46
47: circular? ( seq -- ? )
48    dup length 1 - (circular?) ;
49
50PRIVATE>
51
52: euler035 ( -- answer )
53    source-035 [ possible? ] filter [ circular? ] count ;
54
55! [ euler035 ] 100 ave-time
56! 538 ms ave run time - 17.16 SD (100 trials)
57
58! TODO: try using bit arrays or other methods outlined here:
59!     http://home.comcast.net/~babdulbaki/Circular_Primes.html
60
61SOLUTION: euler035
```