/tags/R2009-05-08/extra/nurbs/inst/bspdegelev.m
# · Objective C · 294 lines · 282 code · 12 blank · 0 comment · 96 complexity · f55f26beebbc99ca5d95183b3e23944f MD5 · raw file
- %% Copyright (C) 2003 Mark Spink, 2007 Daniel Claxton
- %%
- %% This program is free software; you can redistribute it and/or modify
- %% it under the terms of the GNU General Public License as published by
- %% the Free Software Foundation; either version 2 of the License, or
- %% (at your option) any later version.
- %%
- %% This program is distributed in the hope that it will be useful,
- %% but WITHOUT ANY WARRANTY; without even the implied warranty of
- %% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- %% GNU General Public License for more details.
- %%
- %% You should have received a copy of the GNU General Public License
- %% along with this program; if not, see <http://www.gnu.org/licenses/>.
- function [ic,ik] = bspdegelev(d,c,k,t)
- % BSPDEGELEV: Degree elevate a univariate B-Spline.
- %
- % Calling Sequence:
- %
- % [ic,ik] = bspdegelev(d,c,k,t)
- %
- % Parameters:
- %
- % d - Degree of the B-Spline.
- % c - Control points, matrix of size (dim,nc).
- % k - Knot sequence, row vector of size nk.
- % t - Raise the B-Spline degree t times.
- %
- % ic - Control points of the new B-Spline.
- % ik - Knot vector of the new B-Spline.
- %
- [mc,nc] = size(c);
- %
- % int bspdegelev(int d, double *c, int mc, int nc, double *k, int nk,
- % int t, int *nh, double *ic, double *ik)
- % {
- % int row,col;
- %
- % int ierr = 0;
- % int i, j, q, s, m, ph, ph2, mpi, mh, r, a, b, cind, oldr, mul;
- % int n, lbz, rbz, save, tr, kj, first, kind, last, bet, ii;
- % double inv, ua, ub, numer, den, alf, gam;
- % double **bezalfs, **bpts, **ebpts, **Nextbpts, *alfs;
- %
- % double **ctrl = vec2mat(c, mc, nc);
- % ic = zeros(mc,nc*(t)); % double **ictrl = vec2mat(ic, mc, nc*(t+1));
- %
- n = nc - 1; % n = nc - 1;
- %
- bezalfs = zeros(d+1,d+t+1); % bezalfs = matrix(d+1,d+t+1);
- bpts = zeros(mc,d+1); % bpts = matrix(mc,d+1);
- ebpts = zeros(mc,d+t+1); % ebpts = matrix(mc,d+t+1);
- Nextbpts = zeros(mc,d+1); % Nextbpts = matrix(mc,d+1);
- alfs = zeros(d,1); % alfs = (double *) mxMalloc(d*sizeof(double));
- %
- m = n + d + 1; % m = n + d + 1;
- ph = d + t; % ph = d + t;
- ph2 = floor(ph / 2); % ph2 = ph / 2;
- %
- % // compute bezier degree elevation coefficeients
- bezalfs(1,1) = 1; % bezalfs[0][0] = bezalfs[ph][d] = 1.0;
- bezalfs(d+1,ph+1) = 1; %
- for i=1:ph2 % for (i = 1; i <= ph2; i++) {
- inv = 1/bincoeff(ph,i); % inv = 1.0 / bincoeff(ph,i);
- mpi = min(d,i); % mpi = min(d,i);
- %
- for j=max(0,i-t):mpi % for (j = max(0,i-t); j <= mpi; j++)
- bezalfs(j+1,i+1) = inv*bincoeff(d,j)*bincoeff(t,i-j); % bezalfs[i][j] = inv * bincoeff(d,j) * bincoeff(t,i-j);
- end
- end % }
- %
- for i=ph2+1:ph-1 % for (i = ph2+1; i <= ph-1; i++) {
- mpi = min(d,i); % mpi = min(d, i);
- for j=max(0,i-t):mpi % for (j = max(0,i-t); j <= mpi; j++)
- bezalfs(j+1,i+1) = bezalfs(d-j+1,ph-i+1); % bezalfs[i][j] = bezalfs[ph-i][d-j];
- end
- end % }
- %
- mh = ph; % mh = ph;
- kind = ph+1; % kind = ph+1;
- r = -1; % r = -1;
- a = d; % a = d;
- b = d+1; % b = d+1;
- cind = 1; % cind = 1;
- ua = k(1); % ua = k[0];
- %
- for ii=0:mc-1 % for (ii = 0; ii < mc; ii++)
- ic(ii+1,1) = c(ii+1,1); % ictrl[0][ii] = ctrl[0][ii];
- end %
- for i=0:ph % for (i = 0; i <= ph; i++)
- ik(i+1) = ua; % ik[i] = ua;
- end %
- % // initialise first bezier seg
- for i=0:d % for (i = 0; i <= d; i++)
- for ii=0:mc-1 % for (ii = 0; ii < mc; ii++)
- bpts(ii+1,i+1) = c(ii+1,i+1); % bpts[i][ii] = ctrl[i][ii];
- end
- end %
- % // big loop thru knot vector
- while b < m % while (b < m) {
- i = b; % i = b;
- while b < m && k(b+1) == k(b+2) % while (b < m && k[b] == k[b+1])
- b = b + 1; % b++;
- end %
- mul = b - i + 1; % mul = b - i + 1;
- mh = mh + mul + t; % mh += mul + t;
- ub = k(b+1); % ub = k[b];
- oldr = r; % oldr = r;
- r = d - mul; % r = d - mul;
- %
- % // insert knot u(b) r times
- if oldr > 0 % if (oldr > 0)
- lbz = floor((oldr+2)/2); % lbz = (oldr+2) / 2;
- else % else
- lbz = 1; % lbz = 1;
- end %
-
- if r > 0 % if (r > 0)
- rbz = ph - floor((r+1)/2); % rbz = ph - (r+1)/2;
- else % else
- rbz = ph; % rbz = ph;
- end %
-
- if r > 0 % if (r > 0) {
- % // insert knot to get bezier segment
- numer = ub - ua; % numer = ub - ua;
- for q=d:-1:mul+1 % for (q = d; q > mul; q--)
- alfs(q-mul) = numer / (k(a+q+1)-ua); % alfs[q-mul-1] = numer / (k[a+q]-ua);
- end
-
- for j=1:r % for (j = 1; j <= r; j++) {
- save = r - j; % save = r - j;
- s = mul + j; % s = mul + j;
- %
- for q=d:-1:s % for (q = d; q >= s; q--)
- for ii=0:mc-1 % for (ii = 0; ii < mc; ii++)
- tmp1 = alfs(q-s+1)*bpts(ii+1,q+1);
- tmp2 = (1-alfs(q-s+1))*bpts(ii+1,q);
- bpts(ii+1,q+1) = tmp1 + tmp2; % bpts[q][ii] = alfs[q-s]*bpts[q][ii]+(1.0-alfs[q-s])*bpts[q-1][ii];
- end
- end %
-
- for ii=0:mc-1 % for (ii = 0; ii < mc; ii++)
- Nextbpts(ii+1,save+1) = bpts(ii+1,d+1); % Nextbpts[save][ii] = bpts[d][ii];
- end
- end % }
- end % }
- % // end of insert knot
- %
- % // degree elevate bezier
- for i=lbz:ph % for (i = lbz; i <= ph; i++) {
- for ii=0:mc-1 % for (ii = 0; ii < mc; ii++)
- ebpts(ii+1,i+1) = 0; % ebpts[i][ii] = 0.0;
- end
- mpi = min(d, i); % mpi = min(d, i);
- for j=max(0,i-t):mpi % for (j = max(0,i-t); j <= mpi; j++)
- for ii=0:mc-1 % for (ii = 0; ii < mc; ii++)
- tmp1 = ebpts(ii+1,i+1);
- tmp2 = bezalfs(j+1,i+1)*bpts(ii+1,j+1);
- ebpts(ii+1,i+1) = tmp1 + tmp2; % ebpts[i][ii] = ebpts[i][ii] + bezalfs[i][j]*bpts[j][ii];
- end
- end
- end % }
- % // end of degree elevating bezier
- %
- if oldr > 1 % if (oldr > 1) {
- % // must remove knot u=k[a] oldr times
- first = kind - 2; % first = kind - 2;
- last = kind; % last = kind;
- den = ub - ua; % den = ub - ua;
- bet = floor((ub-ik(kind)) / den); % bet = (ub-ik[kind-1]) / den;
- %
- % // knot removal loop
- for tr=1:oldr-1 % for (tr = 1; tr < oldr; tr++) {
- i = first; % i = first;
- j = last; % j = last;
- kj = j - kind + 1; % kj = j - kind + 1;
- while j-i > tr % while (j - i > tr) {
- % // loop and compute the new control points
- % // for one removal step
- if i < cind % if (i < cind) {
- alf = (ub-ik(i+1))/(ua-ik(i+1)); % alf = (ub-ik[i])/(ua-ik[i]);
- for ii=0:mc-1 % for (ii = 0; ii < mc; ii++)
- tmp1 = alf*ic(ii+1,i+1);
- tmp2 = (1-alf)*ic(ii+1,i);
- ic(ii+1,i+1) = tmp1 + tmp2; % ictrl[i][ii] = alf * ictrl[i][ii] + (1.0-alf) * ictrl[i-1][ii];
- end
- end % }
- if j >= lbz % if (j >= lbz) {
- if j-tr <= kind-ph+oldr % if (j-tr <= kind-ph+oldr) {
- gam = (ub-ik(j-tr+1)) / den; % gam = (ub-ik[j-tr]) / den;
- for ii=0:mc-1 % for (ii = 0; ii < mc; ii++)
- tmp1 = gam*ebpts(ii+1,kj+1);
- tmp2 = (1-gam)*ebpts(ii+1,kj+2);
- ebpts(ii+1,kj+1) = tmp1 + tmp2; % ebpts[kj][ii] = gam*ebpts[kj][ii] + (1.0-gam)*ebpts[kj+1][ii];
- end % }
- else % else {
- for ii=0:mc-1 % for (ii = 0; ii < mc; ii++)
- tmp1 = bet*ebpts(ii+1,kj+1);
- tmp2 = (1-bet)*ebpts(ii+1,kj+2);
- ebpts(ii+1,kj+1) = tmp1 + tmp2; % ebpts[kj][ii] = bet*ebpts[kj][ii] + (1.0-bet)*ebpts[kj+1][ii];
- end
- end % }
- end % }
- i = i + 1; % i++;
- j = j - 1; % j--;
- kj = kj - 1; % kj--;
- end % }
- %
- first = first - 1; % first--;
- last = last + 1; % last++;
- end % }
- end % }
- % // end of removing knot n=k[a]
- %
- % // load the knot ua
- if a ~= d % if (a != d)
- for i=0:ph-oldr-1 % for (i = 0; i < ph-oldr; i++) {
- ik(kind+1) = ua; % ik[kind] = ua;
- kind = kind + 1; % kind++;
- end
- end % }
- %
- % // load ctrl pts into ic
- for j=lbz:rbz % for (j = lbz; j <= rbz; j++) {
- for ii=0:mc-1 % for (ii = 0; ii < mc; ii++)
- ic(ii+1,cind+1) = ebpts(ii+1,j+1); % ictrl[cind][ii] = ebpts[j][ii];
- end
- cind = cind + 1; % cind++;
- end % }
- %
- if b < m % if (b < m) {
- % // setup for next pass thru loop
- for j=0:r-1 % for (j = 0; j < r; j++)
- for ii=0:mc-1 % for (ii = 0; ii < mc; ii++)
- bpts(ii+1,j+1) = Nextbpts(ii+1,j+1); % bpts[j][ii] = Nextbpts[j][ii];
- end
- end
- for j=r:d % for (j = r; j <= d; j++)
- for ii=0:mc-1 % for (ii = 0; ii < mc; ii++)
- bpts(ii+1,j+1) = c(ii+1,b-d+j+1); % bpts[j][ii] = ctrl[b-d+j][ii];
- end
- end
- a = b; % a = b;
- b = b+1; % b++;
- ua = ub; % ua = ub;
- % }
- else % else
- % // end knot
- for i=0:ph % for (i = 0; i <= ph; i++)
- ik(kind+i+1) = ub; % ik[kind+i] = ub;
- end
- end
- end % }
- % End big while loop % // end while loop
- %
- % *nh = mh - ph - 1;
- %
- % freevec2mat(ctrl);
- % freevec2mat(ictrl);
- % freematrix(bezalfs);
- % freematrix(bpts);
- % freematrix(ebpts);
- % freematrix(Nextbpts);
- % mxFree(alfs);
- %
- % return(ierr);
- % }
-
- function b = bincoeff(n,k)
- % Computes the binomial coefficient.
- %
- % ( n ) n!
- % ( ) = --------
- % ( k ) k!(n-k)!
- %
- % b = bincoeff(n,k)
- %
- % Algorithm from 'Numerical Recipes in C, 2nd Edition' pg215.
- % double bincoeff(int n, int k)
- % {
- b = floor(0.5+exp(factln(n)-factln(k)-factln(n-k))); % return floor(0.5+exp(factln(n)-factln(k)-factln(n-k)));
- % }
- function f = factln(n)
- % computes ln(n!)
- if n <= 1, f = 0; return, end
- f = gammaln(n+1); %log(factorial(n));