/tags/R2008-02-16/main/nnet/inst/__calcperf.m
# · MATLAB · 110 lines · 98 code · 12 blank · 0 comment · 10 complexity · 60410a9ca2ffb768a9e6e84bdc40ed42 MD5 · raw file
- ## Copyright (C) 2006 Michel D. Schmid <email: michaelschmid@users.sourceforge.net>
- ##
- ##
- ## This program is free software; you can redistribute it and/or modify it
- ## under the terms of the GNU General Public License as published by
- ## the Free Software Foundation; either version 2, or (at your option)
- ## any later version.
- ##
- ## This program is distributed in the hope that it will be useful, but
- ## WITHOUT ANY WARRANTY; without even the implied warranty of
- ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- ## General Public License for more details.
- ##
- ## You should have received a copy of the GNU General Public License
- ## along with this program; see the file COPYING. If not, see
- ## <http://www.gnu.org/licenses/>.
-
- ## -*- texinfo -*-
- ## @deftypefn {Function File} {}[@var{perf}, @var{Ee}, @var{Aa}, @var{Nn}] = __calcperf (@var{net},@var{xx},@var{Im},@var{Tt})
- ## @code{__calcperf} calculates the performance of a multi-layer neural network.
- ## PLEASE DON'T USE IT ELSEWHERE, it proparly won't work.
- ## @end deftypefn
-
- ## Author: Michel D. Schmid
-
-
- function [perf,Ee,Aa,Nn] = __calcperf(net,xx,Im,Tt)
-
- ## comment:
- ## perf, net performance.. from input to output through the hidden layers
- ## Aa, output values of the hidden and last layer (output layer)
- ## is used for NEWFF network types
-
- ## calculate bias terms
- ## must have the same number of columns like the input matrix Im
- [nRows, nColumns] = size(Im);
- Btemp = cell(net.numLayers,1); # Btemp: bias matrix
- ones1xQ = ones(1,nColumns);
- for i= 1:net.numLayers
- Btemp{i} = net.b{i}(:,ones1xQ);
- endfor
-
- ## shortcuts
- IWtemp = cell(net.numLayers,net.numInputs,1);# IW: input weights ...
- LWtemp = cell(net.numLayers,net.numLayers,1);# LW: layer weights ...
- Aa = cell(net.numLayers,1);# Outputs hidden and output layer
- Nn = cell(net.numLayers,1);# outputs before the transfer function
- IW = net.IW; # input weights
- LW = net.LW; # layer weights
-
- ## calculate the whole network till outputs are reached...
- for iLayers = 1:net.numLayers
-
- ## calculate first input weights to weighted inputs..
- ## this can be done with matrix calculation...
- ## called "dotprod"
- ## to do this, there must be a special matrix ...
- ## e.g. IW = [1 2 3 4 5; 6 7 8 910] * [ 1 2 3; 4 5 6; 7 8 9; 10 11 12; 1 2 3];
- if (iLayers==1)
- IWtemp{iLayers,1} = IW{iLayers,1} * Im;
- onlyTempVar = [IWtemp(iLayers,1) Btemp(iLayers)];
- else
- IWtemp{iLayers,1} = [];
- endif
-
- ## now calculate layer weights to weighted layer outputs
- if (iLayers>1)
- Ad = Aa{iLayers-1,1};
- LWtemp{iLayers,1} = LW{iLayers,iLayers-1} * Ad;
- onlyTempVar = [LWtemp(iLayers,1) Btemp(iLayers)];
- else
- LWtemp{iLayers,1} = [];
- endif
-
- Nn{iLayers,1} = onlyTempVar{1};
- for k=2:length(onlyTempVar)
- Nn{iLayers,1} = Nn{iLayers,1} + onlyTempVar{k};
- endfor
-
- ## now calculate with the transfer functions the layer output
- switch net.layers{iLayers}.transferFcn
- case "purelin"
- Aa{iLayers,1} = purelin(Nn{iLayers,1});
- case "tansig"
- Aa{iLayers,1} = tansig(Nn{iLayers,1});
- case "logsig"
- Aa{iLayers,1} = logsig(Nn{iLayers,1});
- otherwise
- error(["Transfer function: " net.layers{iLayers}.transferFcn " doesn't exist!"])
- endswitch
-
- endfor # iLayers = 1:net.numLayers
-
- ## now calc network error
- Ee = cell(net.numLayers,1);
-
- for i=net.numLayers
- Ee{i,1} = Tt{i,1} - Aa{i,1};# Tt: target
- # Ee will be the error vector cell array
- endfor
-
- ## now calc network performance
- switch(net.performFcn)
- case "mse"
- perf = __mse(Ee);
- otherwise
- error("for performance functions, only mse is currently valid!")
- endswitch
-
- endfunction