PageRenderTime 62ms CodeModel.GetById 19ms RepoModel.GetById 0ms app.codeStats 1ms

/lapack-netlib/TESTING/EIG/dchkee.f

http://github.com/xianyi/OpenBLAS
FORTRAN Legacy | 2507 lines | 1008 code | 0 blank | 1499 comment | 0 complexity | 93ea655f0fe2f4195637cdbd8a1d43a0 MD5 | raw file
Possible License(s): BSD-3-Clause, LGPL-2.0
  1. *> \brief \b DCHKEE
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * PROGRAM DCHKEE
  12. *
  13. *
  14. *> \par Purpose:
  15. * =============
  16. *>
  17. *> \verbatim
  18. *>
  19. *> DCHKEE tests the DOUBLE PRECISION LAPACK subroutines for the matrix
  20. *> eigenvalue problem. The test paths in this version are
  21. *>
  22. *> NEP (Nonsymmetric Eigenvalue Problem):
  23. *> Test DGEHRD, DORGHR, DHSEQR, DTREVC, DHSEIN, and DORMHR
  24. *>
  25. *> SEP (Symmetric Eigenvalue Problem):
  26. *> Test DSYTRD, DORGTR, DSTEQR, DSTERF, DSTEIN, DSTEDC,
  27. *> and drivers DSYEV(X), DSBEV(X), DSPEV(X), DSTEV(X),
  28. *> DSYEVD, DSBEVD, DSPEVD, DSTEVD
  29. *>
  30. *> SVD (Singular Value Decomposition):
  31. *> Test DGEBRD, DORGBR, DBDSQR, DBDSDC
  32. *> and the drivers DGESVD, DGESDD
  33. *>
  34. *> DEV (Nonsymmetric Eigenvalue/eigenvector Driver):
  35. *> Test DGEEV
  36. *>
  37. *> DES (Nonsymmetric Schur form Driver):
  38. *> Test DGEES
  39. *>
  40. *> DVX (Nonsymmetric Eigenvalue/eigenvector Expert Driver):
  41. *> Test DGEEVX
  42. *>
  43. *> DSX (Nonsymmetric Schur form Expert Driver):
  44. *> Test DGEESX
  45. *>
  46. *> DGG (Generalized Nonsymmetric Eigenvalue Problem):
  47. *> Test DGGHD3, DGGBAL, DGGBAK, DHGEQZ, and DTGEVC
  48. *>
  49. *> DGS (Generalized Nonsymmetric Schur form Driver):
  50. *> Test DGGES
  51. *>
  52. *> DGV (Generalized Nonsymmetric Eigenvalue/eigenvector Driver):
  53. *> Test DGGEV
  54. *>
  55. *> DGX (Generalized Nonsymmetric Schur form Expert Driver):
  56. *> Test DGGESX
  57. *>
  58. *> DXV (Generalized Nonsymmetric Eigenvalue/eigenvector Expert Driver):
  59. *> Test DGGEVX
  60. *>
  61. *> DSG (Symmetric Generalized Eigenvalue Problem):
  62. *> Test DSYGST, DSYGV, DSYGVD, DSYGVX, DSPGST, DSPGV, DSPGVD,
  63. *> DSPGVX, DSBGST, DSBGV, DSBGVD, and DSBGVX
  64. *>
  65. *> DSB (Symmetric Band Eigenvalue Problem):
  66. *> Test DSBTRD
  67. *>
  68. *> DBB (Band Singular Value Decomposition):
  69. *> Test DGBBRD
  70. *>
  71. *> DEC (Eigencondition estimation):
  72. *> Test DLALN2, DLASY2, DLAEQU, DLAEXC, DTRSYL, DTREXC, DTRSNA,
  73. *> DTRSEN, and DLAQTR
  74. *>
  75. *> DBL (Balancing a general matrix)
  76. *> Test DGEBAL
  77. *>
  78. *> DBK (Back transformation on a balanced matrix)
  79. *> Test DGEBAK
  80. *>
  81. *> DGL (Balancing a matrix pair)
  82. *> Test DGGBAL
  83. *>
  84. *> DGK (Back transformation on a matrix pair)
  85. *> Test DGGBAK
  86. *>
  87. *> GLM (Generalized Linear Regression Model):
  88. *> Tests DGGGLM
  89. *>
  90. *> GQR (Generalized QR and RQ factorizations):
  91. *> Tests DGGQRF and DGGRQF
  92. *>
  93. *> GSV (Generalized Singular Value Decomposition):
  94. *> Tests DGGSVD, DGGSVP, DTGSJA, DLAGS2, DLAPLL, and DLAPMT
  95. *>
  96. *> CSD (CS decomposition):
  97. *> Tests DORCSD
  98. *>
  99. *> LSE (Constrained Linear Least Squares):
  100. *> Tests DGGLSE
  101. *>
  102. *> Each test path has a different set of inputs, but the data sets for
  103. *> the driver routines xEV, xES, xVX, and xSX can be concatenated in a
  104. *> single input file. The first line of input should contain one of the
  105. *> 3-character path names in columns 1-3. The number of remaining lines
  106. *> depends on what is found on the first line.
  107. *>
  108. *> The number of matrix types used in testing is often controllable from
  109. *> the input file. The number of matrix types for each path, and the
  110. *> test routine that describes them, is as follows:
  111. *>
  112. *> Path name(s) Types Test routine
  113. *>
  114. *> DHS or NEP 21 DCHKHS
  115. *> DST or SEP 21 DCHKST (routines)
  116. *> 18 DDRVST (drivers)
  117. *> DBD or SVD 16 DCHKBD (routines)
  118. *> 5 DDRVBD (drivers)
  119. *> DEV 21 DDRVEV
  120. *> DES 21 DDRVES
  121. *> DVX 21 DDRVVX
  122. *> DSX 21 DDRVSX
  123. *> DGG 26 DCHKGG (routines)
  124. *> DGS 26 DDRGES
  125. *> DGX 5 DDRGSX
  126. *> DGV 26 DDRGEV
  127. *> DXV 2 DDRGVX
  128. *> DSG 21 DDRVSG
  129. *> DSB 15 DCHKSB
  130. *> DBB 15 DCHKBB
  131. *> DEC - DCHKEC
  132. *> DBL - DCHKBL
  133. *> DBK - DCHKBK
  134. *> DGL - DCHKGL
  135. *> DGK - DCHKGK
  136. *> GLM 8 DCKGLM
  137. *> GQR 8 DCKGQR
  138. *> GSV 8 DCKGSV
  139. *> CSD 3 DCKCSD
  140. *> LSE 8 DCKLSE
  141. *>
  142. *>-----------------------------------------------------------------------
  143. *>
  144. *> NEP input file:
  145. *>
  146. *> line 2: NN, INTEGER
  147. *> Number of values of N.
  148. *>
  149. *> line 3: NVAL, INTEGER array, dimension (NN)
  150. *> The values for the matrix dimension N.
  151. *>
  152. *> line 4: NPARMS, INTEGER
  153. *> Number of values of the parameters NB, NBMIN, NX, NS, and
  154. *> MAXB.
  155. *>
  156. *> line 5: NBVAL, INTEGER array, dimension (NPARMS)
  157. *> The values for the blocksize NB.
  158. *>
  159. *> line 6: NBMIN, INTEGER array, dimension (NPARMS)
  160. *> The values for the minimum blocksize NBMIN.
  161. *>
  162. *> line 7: NXVAL, INTEGER array, dimension (NPARMS)
  163. *> The values for the crossover point NX.
  164. *>
  165. *> line 8: INMIN, INTEGER array, dimension (NPARMS)
  166. *> LAHQR vs TTQRE crossover point, >= 11
  167. *>
  168. *> line 9: INWIN, INTEGER array, dimension (NPARMS)
  169. *> recommended deflation window size
  170. *>
  171. *> line 10: INIBL, INTEGER array, dimension (NPARMS)
  172. *> nibble crossover point
  173. *>
  174. *> line 11: ISHFTS, INTEGER array, dimension (NPARMS)
  175. *> number of simultaneous shifts)
  176. *>
  177. *> line 12: IACC22, INTEGER array, dimension (NPARMS)
  178. *> select structured matrix multiply: 0, 1 or 2)
  179. *>
  180. *> line 13: THRESH
  181. *> Threshold value for the test ratios. Information will be
  182. *> printed about each test for which the test ratio is greater
  183. *> than or equal to the threshold. To have all of the test
  184. *> ratios printed, use THRESH = 0.0 .
  185. *>
  186. *> line 14: NEWSD, INTEGER
  187. *> A code indicating how to set the random number seed.
  188. *> = 0: Set the seed to a default value before each run
  189. *> = 1: Initialize the seed to a default value only before the
  190. *> first run
  191. *> = 2: Like 1, but use the seed values on the next line
  192. *>
  193. *> If line 14 was 2:
  194. *>
  195. *> line 15: INTEGER array, dimension (4)
  196. *> Four integer values for the random number seed.
  197. *>
  198. *> lines 15-EOF: The remaining lines occur in sets of 1 or 2 and allow
  199. *> the user to specify the matrix types. Each line contains
  200. *> a 3-character path name in columns 1-3, and the number
  201. *> of matrix types must be the first nonblank item in columns
  202. *> 4-80. If the number of matrix types is at least 1 but is
  203. *> less than the maximum number of possible types, a second
  204. *> line will be read to get the numbers of the matrix types to
  205. *> be used. For example,
  206. *> NEP 21
  207. *> requests all of the matrix types for the nonsymmetric
  208. *> eigenvalue problem, while
  209. *> NEP 4
  210. *> 9 10 11 12
  211. *> requests only matrices of type 9, 10, 11, and 12.
  212. *>
  213. *> The valid 3-character path names are 'NEP' or 'SHS' for the
  214. *> nonsymmetric eigenvalue routines.
  215. *>
  216. *>-----------------------------------------------------------------------
  217. *>
  218. *> SEP or DSG input file:
  219. *>
  220. *> line 2: NN, INTEGER
  221. *> Number of values of N.
  222. *>
  223. *> line 3: NVAL, INTEGER array, dimension (NN)
  224. *> The values for the matrix dimension N.
  225. *>
  226. *> line 4: NPARMS, INTEGER
  227. *> Number of values of the parameters NB, NBMIN, and NX.
  228. *>
  229. *> line 5: NBVAL, INTEGER array, dimension (NPARMS)
  230. *> The values for the blocksize NB.
  231. *>
  232. *> line 6: NBMIN, INTEGER array, dimension (NPARMS)
  233. *> The values for the minimum blocksize NBMIN.
  234. *>
  235. *> line 7: NXVAL, INTEGER array, dimension (NPARMS)
  236. *> The values for the crossover point NX.
  237. *>
  238. *> line 8: THRESH
  239. *> Threshold value for the test ratios. Information will be
  240. *> printed about each test for which the test ratio is greater
  241. *> than or equal to the threshold.
  242. *>
  243. *> line 9: TSTCHK, LOGICAL
  244. *> Flag indicating whether or not to test the LAPACK routines.
  245. *>
  246. *> line 10: TSTDRV, LOGICAL
  247. *> Flag indicating whether or not to test the driver routines.
  248. *>
  249. *> line 11: TSTERR, LOGICAL
  250. *> Flag indicating whether or not to test the error exits for
  251. *> the LAPACK routines and driver routines.
  252. *>
  253. *> line 12: NEWSD, INTEGER
  254. *> A code indicating how to set the random number seed.
  255. *> = 0: Set the seed to a default value before each run
  256. *> = 1: Initialize the seed to a default value only before the
  257. *> first run
  258. *> = 2: Like 1, but use the seed values on the next line
  259. *>
  260. *> If line 12 was 2:
  261. *>
  262. *> line 13: INTEGER array, dimension (4)
  263. *> Four integer values for the random number seed.
  264. *>
  265. *> lines 13-EOF: Lines specifying matrix types, as for NEP.
  266. *> The 3-character path names are 'SEP' or 'SST' for the
  267. *> symmetric eigenvalue routines and driver routines, and
  268. *> 'DSG' for the routines for the symmetric generalized
  269. *> eigenvalue problem.
  270. *>
  271. *>-----------------------------------------------------------------------
  272. *>
  273. *> SVD input file:
  274. *>
  275. *> line 2: NN, INTEGER
  276. *> Number of values of M and N.
  277. *>
  278. *> line 3: MVAL, INTEGER array, dimension (NN)
  279. *> The values for the matrix row dimension M.
  280. *>
  281. *> line 4: NVAL, INTEGER array, dimension (NN)
  282. *> The values for the matrix column dimension N.
  283. *>
  284. *> line 5: NPARMS, INTEGER
  285. *> Number of values of the parameter NB, NBMIN, NX, and NRHS.
  286. *>
  287. *> line 6: NBVAL, INTEGER array, dimension (NPARMS)
  288. *> The values for the blocksize NB.
  289. *>
  290. *> line 7: NBMIN, INTEGER array, dimension (NPARMS)
  291. *> The values for the minimum blocksize NBMIN.
  292. *>
  293. *> line 8: NXVAL, INTEGER array, dimension (NPARMS)
  294. *> The values for the crossover point NX.
  295. *>
  296. *> line 9: NSVAL, INTEGER array, dimension (NPARMS)
  297. *> The values for the number of right hand sides NRHS.
  298. *>
  299. *> line 10: THRESH
  300. *> Threshold value for the test ratios. Information will be
  301. *> printed about each test for which the test ratio is greater
  302. *> than or equal to the threshold.
  303. *>
  304. *> line 11: TSTCHK, LOGICAL
  305. *> Flag indicating whether or not to test the LAPACK routines.
  306. *>
  307. *> line 12: TSTDRV, LOGICAL
  308. *> Flag indicating whether or not to test the driver routines.
  309. *>
  310. *> line 13: TSTERR, LOGICAL
  311. *> Flag indicating whether or not to test the error exits for
  312. *> the LAPACK routines and driver routines.
  313. *>
  314. *> line 14: NEWSD, INTEGER
  315. *> A code indicating how to set the random number seed.
  316. *> = 0: Set the seed to a default value before each run
  317. *> = 1: Initialize the seed to a default value only before the
  318. *> first run
  319. *> = 2: Like 1, but use the seed values on the next line
  320. *>
  321. *> If line 14 was 2:
  322. *>
  323. *> line 15: INTEGER array, dimension (4)
  324. *> Four integer values for the random number seed.
  325. *>
  326. *> lines 15-EOF: Lines specifying matrix types, as for NEP.
  327. *> The 3-character path names are 'SVD' or 'SBD' for both the
  328. *> SVD routines and the SVD driver routines.
  329. *>
  330. *>-----------------------------------------------------------------------
  331. *>
  332. *> DEV and DES data files:
  333. *>
  334. *> line 1: 'DEV' or 'DES' in columns 1 to 3.
  335. *>
  336. *> line 2: NSIZES, INTEGER
  337. *> Number of sizes of matrices to use. Should be at least 0
  338. *> and at most 20. If NSIZES = 0, no testing is done
  339. *> (although the remaining 3 lines are still read).
  340. *>
  341. *> line 3: NN, INTEGER array, dimension(NSIZES)
  342. *> Dimensions of matrices to be tested.
  343. *>
  344. *> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs
  345. *> These integer parameters determine how blocking is done
  346. *> (see ILAENV for details)
  347. *> NB : block size
  348. *> NBMIN : minimum block size
  349. *> NX : minimum dimension for blocking
  350. *> NS : number of shifts in xHSEQR
  351. *> NBCOL : minimum column dimension for blocking
  352. *>
  353. *> line 5: THRESH, REAL
  354. *> The test threshold against which computed residuals are
  355. *> compared. Should generally be in the range from 10. to 20.
  356. *> If it is 0., all test case data will be printed.
  357. *>
  358. *> line 6: TSTERR, LOGICAL
  359. *> Flag indicating whether or not to test the error exits.
  360. *>
  361. *> line 7: NEWSD, INTEGER
  362. *> A code indicating how to set the random number seed.
  363. *> = 0: Set the seed to a default value before each run
  364. *> = 1: Initialize the seed to a default value only before the
  365. *> first run
  366. *> = 2: Like 1, but use the seed values on the next line
  367. *>
  368. *> If line 7 was 2:
  369. *>
  370. *> line 8: INTEGER array, dimension (4)
  371. *> Four integer values for the random number seed.
  372. *>
  373. *> lines 9 and following: Lines specifying matrix types, as for NEP.
  374. *> The 3-character path name is 'DEV' to test SGEEV, or
  375. *> 'DES' to test SGEES.
  376. *>
  377. *>-----------------------------------------------------------------------
  378. *>
  379. *> The DVX data has two parts. The first part is identical to DEV,
  380. *> and the second part consists of test matrices with precomputed
  381. *> solutions.
  382. *>
  383. *> line 1: 'DVX' in columns 1-3.
  384. *>
  385. *> line 2: NSIZES, INTEGER
  386. *> If NSIZES = 0, no testing of randomly generated examples
  387. *> is done, but any precomputed examples are tested.
  388. *>
  389. *> line 3: NN, INTEGER array, dimension(NSIZES)
  390. *>
  391. *> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs
  392. *>
  393. *> line 5: THRESH, REAL
  394. *>
  395. *> line 6: TSTERR, LOGICAL
  396. *>
  397. *> line 7: NEWSD, INTEGER
  398. *>
  399. *> If line 7 was 2:
  400. *>
  401. *> line 8: INTEGER array, dimension (4)
  402. *>
  403. *> lines 9 and following: The first line contains 'DVX' in columns 1-3
  404. *> followed by the number of matrix types, possibly with
  405. *> a second line to specify certain matrix types.
  406. *> If the number of matrix types = 0, no testing of randomly
  407. *> generated examples is done, but any precomputed examples
  408. *> are tested.
  409. *>
  410. *> remaining lines : Each matrix is stored on 1+2*N lines, where N is
  411. *> its dimension. The first line contains the dimension (a
  412. *> single integer). The next N lines contain the matrix, one
  413. *> row per line. The last N lines correspond to each
  414. *> eigenvalue. Each of these last N lines contains 4 real
  415. *> values: the real part of the eigenvalue, the imaginary
  416. *> part of the eigenvalue, the reciprocal condition number of
  417. *> the eigenvalues, and the reciprocal condition number of the
  418. *> eigenvector. The end of data is indicated by dimension N=0.
  419. *> Even if no data is to be tested, there must be at least one
  420. *> line containing N=0.
  421. *>
  422. *>-----------------------------------------------------------------------
  423. *>
  424. *> The DSX data is like DVX. The first part is identical to DEV, and the
  425. *> second part consists of test matrices with precomputed solutions.
  426. *>
  427. *> line 1: 'DSX' in columns 1-3.
  428. *>
  429. *> line 2: NSIZES, INTEGER
  430. *> If NSIZES = 0, no testing of randomly generated examples
  431. *> is done, but any precomputed examples are tested.
  432. *>
  433. *> line 3: NN, INTEGER array, dimension(NSIZES)
  434. *>
  435. *> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs
  436. *>
  437. *> line 5: THRESH, REAL
  438. *>
  439. *> line 6: TSTERR, LOGICAL
  440. *>
  441. *> line 7: NEWSD, INTEGER
  442. *>
  443. *> If line 7 was 2:
  444. *>
  445. *> line 8: INTEGER array, dimension (4)
  446. *>
  447. *> lines 9 and following: The first line contains 'DSX' in columns 1-3
  448. *> followed by the number of matrix types, possibly with
  449. *> a second line to specify certain matrix types.
  450. *> If the number of matrix types = 0, no testing of randomly
  451. *> generated examples is done, but any precomputed examples
  452. *> are tested.
  453. *>
  454. *> remaining lines : Each matrix is stored on 3+N lines, where N is its
  455. *> dimension. The first line contains the dimension N and the
  456. *> dimension M of an invariant subspace. The second line
  457. *> contains M integers, identifying the eigenvalues in the
  458. *> invariant subspace (by their position in a list of
  459. *> eigenvalues ordered by increasing real part). The next N
  460. *> lines contain the matrix. The last line contains the
  461. *> reciprocal condition number for the average of the selected
  462. *> eigenvalues, and the reciprocal condition number for the
  463. *> corresponding right invariant subspace. The end of data is
  464. *> indicated by a line containing N=0 and M=0. Even if no data
  465. *> is to be tested, there must be at least one line containing
  466. *> N=0 and M=0.
  467. *>
  468. *>-----------------------------------------------------------------------
  469. *>
  470. *> DGG input file:
  471. *>
  472. *> line 2: NN, INTEGER
  473. *> Number of values of N.
  474. *>
  475. *> line 3: NVAL, INTEGER array, dimension (NN)
  476. *> The values for the matrix dimension N.
  477. *>
  478. *> line 4: NPARMS, INTEGER
  479. *> Number of values of the parameters NB, NBMIN, NS, MAXB, and
  480. *> NBCOL.
  481. *>
  482. *> line 5: NBVAL, INTEGER array, dimension (NPARMS)
  483. *> The values for the blocksize NB.
  484. *>
  485. *> line 6: NBMIN, INTEGER array, dimension (NPARMS)
  486. *> The values for NBMIN, the minimum row dimension for blocks.
  487. *>
  488. *> line 7: NSVAL, INTEGER array, dimension (NPARMS)
  489. *> The values for the number of shifts.
  490. *>
  491. *> line 8: MXBVAL, INTEGER array, dimension (NPARMS)
  492. *> The values for MAXB, used in determining minimum blocksize.
  493. *>
  494. *> line 9: IACC22, INTEGER array, dimension (NPARMS)
  495. *> select structured matrix multiply: 1 or 2)
  496. *>
  497. *> line 10: NBCOL, INTEGER array, dimension (NPARMS)
  498. *> The values for NBCOL, the minimum column dimension for
  499. *> blocks.
  500. *>
  501. *> line 11: THRESH
  502. *> Threshold value for the test ratios. Information will be
  503. *> printed about each test for which the test ratio is greater
  504. *> than or equal to the threshold.
  505. *>
  506. *> line 12: TSTCHK, LOGICAL
  507. *> Flag indicating whether or not to test the LAPACK routines.
  508. *>
  509. *> line 13: TSTDRV, LOGICAL
  510. *> Flag indicating whether or not to test the driver routines.
  511. *>
  512. *> line 14: TSTERR, LOGICAL
  513. *> Flag indicating whether or not to test the error exits for
  514. *> the LAPACK routines and driver routines.
  515. *>
  516. *> line 15: NEWSD, INTEGER
  517. *> A code indicating how to set the random number seed.
  518. *> = 0: Set the seed to a default value before each run
  519. *> = 1: Initialize the seed to a default value only before the
  520. *> first run
  521. *> = 2: Like 1, but use the seed values on the next line
  522. *>
  523. *> If line 15 was 2:
  524. *>
  525. *> line 16: INTEGER array, dimension (4)
  526. *> Four integer values for the random number seed.
  527. *>
  528. *> lines 17-EOF: Lines specifying matrix types, as for NEP.
  529. *> The 3-character path name is 'DGG' for the generalized
  530. *> eigenvalue problem routines and driver routines.
  531. *>
  532. *>-----------------------------------------------------------------------
  533. *>
  534. *> DGS and DGV input files:
  535. *>
  536. *> line 1: 'DGS' or 'DGV' in columns 1 to 3.
  537. *>
  538. *> line 2: NN, INTEGER
  539. *> Number of values of N.
  540. *>
  541. *> line 3: NVAL, INTEGER array, dimension(NN)
  542. *> Dimensions of matrices to be tested.
  543. *>
  544. *> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs
  545. *> These integer parameters determine how blocking is done
  546. *> (see ILAENV for details)
  547. *> NB : block size
  548. *> NBMIN : minimum block size
  549. *> NX : minimum dimension for blocking
  550. *> NS : number of shifts in xHGEQR
  551. *> NBCOL : minimum column dimension for blocking
  552. *>
  553. *> line 5: THRESH, REAL
  554. *> The test threshold against which computed residuals are
  555. *> compared. Should generally be in the range from 10. to 20.
  556. *> If it is 0., all test case data will be printed.
  557. *>
  558. *> line 6: TSTERR, LOGICAL
  559. *> Flag indicating whether or not to test the error exits.
  560. *>
  561. *> line 7: NEWSD, INTEGER
  562. *> A code indicating how to set the random number seed.
  563. *> = 0: Set the seed to a default value before each run
  564. *> = 1: Initialize the seed to a default value only before the
  565. *> first run
  566. *> = 2: Like 1, but use the seed values on the next line
  567. *>
  568. *> If line 17 was 2:
  569. *>
  570. *> line 7: INTEGER array, dimension (4)
  571. *> Four integer values for the random number seed.
  572. *>
  573. *> lines 7-EOF: Lines specifying matrix types, as for NEP.
  574. *> The 3-character path name is 'DGS' for the generalized
  575. *> eigenvalue problem routines and driver routines.
  576. *>
  577. *>-----------------------------------------------------------------------
  578. *>
  579. *> DXV input files:
  580. *>
  581. *> line 1: 'DXV' in columns 1 to 3.
  582. *>
  583. *> line 2: N, INTEGER
  584. *> Value of N.
  585. *>
  586. *> line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs
  587. *> These integer parameters determine how blocking is done
  588. *> (see ILAENV for details)
  589. *> NB : block size
  590. *> NBMIN : minimum block size
  591. *> NX : minimum dimension for blocking
  592. *> NS : number of shifts in xHGEQR
  593. *> NBCOL : minimum column dimension for blocking
  594. *>
  595. *> line 4: THRESH, REAL
  596. *> The test threshold against which computed residuals are
  597. *> compared. Should generally be in the range from 10. to 20.
  598. *> Information will be printed about each test for which the
  599. *> test ratio is greater than or equal to the threshold.
  600. *>
  601. *> line 5: TSTERR, LOGICAL
  602. *> Flag indicating whether or not to test the error exits for
  603. *> the LAPACK routines and driver routines.
  604. *>
  605. *> line 6: NEWSD, INTEGER
  606. *> A code indicating how to set the random number seed.
  607. *> = 0: Set the seed to a default value before each run
  608. *> = 1: Initialize the seed to a default value only before the
  609. *> first run
  610. *> = 2: Like 1, but use the seed values on the next line
  611. *>
  612. *> If line 6 was 2:
  613. *>
  614. *> line 7: INTEGER array, dimension (4)
  615. *> Four integer values for the random number seed.
  616. *>
  617. *> If line 2 was 0:
  618. *>
  619. *> line 7-EOF: Precomputed examples are tested.
  620. *>
  621. *> remaining lines : Each example is stored on 3+2*N lines, where N is
  622. *> its dimension. The first line contains the dimension (a
  623. *> single integer). The next N lines contain the matrix A, one
  624. *> row per line. The next N lines contain the matrix B. The
  625. *> next line contains the reciprocals of the eigenvalue
  626. *> condition numbers. The last line contains the reciprocals of
  627. *> the eigenvector condition numbers. The end of data is
  628. *> indicated by dimension N=0. Even if no data is to be tested,
  629. *> there must be at least one line containing N=0.
  630. *>
  631. *>-----------------------------------------------------------------------
  632. *>
  633. *> DGX input files:
  634. *>
  635. *> line 1: 'DGX' in columns 1 to 3.
  636. *>
  637. *> line 2: N, INTEGER
  638. *> Value of N.
  639. *>
  640. *> line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs
  641. *> These integer parameters determine how blocking is done
  642. *> (see ILAENV for details)
  643. *> NB : block size
  644. *> NBMIN : minimum block size
  645. *> NX : minimum dimension for blocking
  646. *> NS : number of shifts in xHGEQR
  647. *> NBCOL : minimum column dimension for blocking
  648. *>
  649. *> line 4: THRESH, REAL
  650. *> The test threshold against which computed residuals are
  651. *> compared. Should generally be in the range from 10. to 20.
  652. *> Information will be printed about each test for which the
  653. *> test ratio is greater than or equal to the threshold.
  654. *>
  655. *> line 5: TSTERR, LOGICAL
  656. *> Flag indicating whether or not to test the error exits for
  657. *> the LAPACK routines and driver routines.
  658. *>
  659. *> line 6: NEWSD, INTEGER
  660. *> A code indicating how to set the random number seed.
  661. *> = 0: Set the seed to a default value before each run
  662. *> = 1: Initialize the seed to a default value only before the
  663. *> first run
  664. *> = 2: Like 1, but use the seed values on the next line
  665. *>
  666. *> If line 6 was 2:
  667. *>
  668. *> line 7: INTEGER array, dimension (4)
  669. *> Four integer values for the random number seed.
  670. *>
  671. *> If line 2 was 0:
  672. *>
  673. *> line 7-EOF: Precomputed examples are tested.
  674. *>
  675. *> remaining lines : Each example is stored on 3+2*N lines, where N is
  676. *> its dimension. The first line contains the dimension (a
  677. *> single integer). The next line contains an integer k such
  678. *> that only the last k eigenvalues will be selected and appear
  679. *> in the leading diagonal blocks of $A$ and $B$. The next N
  680. *> lines contain the matrix A, one row per line. The next N
  681. *> lines contain the matrix B. The last line contains the
  682. *> reciprocal of the eigenvalue cluster condition number and the
  683. *> reciprocal of the deflating subspace (associated with the
  684. *> selected eigencluster) condition number. The end of data is
  685. *> indicated by dimension N=0. Even if no data is to be tested,
  686. *> there must be at least one line containing N=0.
  687. *>
  688. *>-----------------------------------------------------------------------
  689. *>
  690. *> DSB input file:
  691. *>
  692. *> line 2: NN, INTEGER
  693. *> Number of values of N.
  694. *>
  695. *> line 3: NVAL, INTEGER array, dimension (NN)
  696. *> The values for the matrix dimension N.
  697. *>
  698. *> line 4: NK, INTEGER
  699. *> Number of values of K.
  700. *>
  701. *> line 5: KVAL, INTEGER array, dimension (NK)
  702. *> The values for the matrix dimension K.
  703. *>
  704. *> line 6: THRESH
  705. *> Threshold value for the test ratios. Information will be
  706. *> printed about each test for which the test ratio is greater
  707. *> than or equal to the threshold.
  708. *>
  709. *> line 7: NEWSD, INTEGER
  710. *> A code indicating how to set the random number seed.
  711. *> = 0: Set the seed to a default value before each run
  712. *> = 1: Initialize the seed to a default value only before the
  713. *> first run
  714. *> = 2: Like 1, but use the seed values on the next line
  715. *>
  716. *> If line 7 was 2:
  717. *>
  718. *> line 8: INTEGER array, dimension (4)
  719. *> Four integer values for the random number seed.
  720. *>
  721. *> lines 8-EOF: Lines specifying matrix types, as for NEP.
  722. *> The 3-character path name is 'DSB'.
  723. *>
  724. *>-----------------------------------------------------------------------
  725. *>
  726. *> DBB input file:
  727. *>
  728. *> line 2: NN, INTEGER
  729. *> Number of values of M and N.
  730. *>
  731. *> line 3: MVAL, INTEGER array, dimension (NN)
  732. *> The values for the matrix row dimension M.
  733. *>
  734. *> line 4: NVAL, INTEGER array, dimension (NN)
  735. *> The values for the matrix column dimension N.
  736. *>
  737. *> line 4: NK, INTEGER
  738. *> Number of values of K.
  739. *>
  740. *> line 5: KVAL, INTEGER array, dimension (NK)
  741. *> The values for the matrix bandwidth K.
  742. *>
  743. *> line 6: NPARMS, INTEGER
  744. *> Number of values of the parameter NRHS
  745. *>
  746. *> line 7: NSVAL, INTEGER array, dimension (NPARMS)
  747. *> The values for the number of right hand sides NRHS.
  748. *>
  749. *> line 8: THRESH
  750. *> Threshold value for the test ratios. Information will be
  751. *> printed about each test for which the test ratio is greater
  752. *> than or equal to the threshold.
  753. *>
  754. *> line 9: NEWSD, INTEGER
  755. *> A code indicating how to set the random number seed.
  756. *> = 0: Set the seed to a default value before each run
  757. *> = 1: Initialize the seed to a default value only before the
  758. *> first run
  759. *> = 2: Like 1, but use the seed values on the next line
  760. *>
  761. *> If line 9 was 2:
  762. *>
  763. *> line 10: INTEGER array, dimension (4)
  764. *> Four integer values for the random number seed.
  765. *>
  766. *> lines 10-EOF: Lines specifying matrix types, as for SVD.
  767. *> The 3-character path name is 'DBB'.
  768. *>
  769. *>-----------------------------------------------------------------------
  770. *>
  771. *> DEC input file:
  772. *>
  773. *> line 2: THRESH, REAL
  774. *> Threshold value for the test ratios. Information will be
  775. *> printed about each test for which the test ratio is greater
  776. *> than or equal to the threshold.
  777. *>
  778. *> lines 3-EOF:
  779. *>
  780. *> Input for testing the eigencondition routines consists of a set of
  781. *> specially constructed test cases and their solutions. The data
  782. *> format is not intended to be modified by the user.
  783. *>
  784. *>-----------------------------------------------------------------------
  785. *>
  786. *> DBL and DBK input files:
  787. *>
  788. *> line 1: 'DBL' in columns 1-3 to test SGEBAL, or 'DBK' in
  789. *> columns 1-3 to test SGEBAK.
  790. *>
  791. *> The remaining lines consist of specially constructed test cases.
  792. *>
  793. *>-----------------------------------------------------------------------
  794. *>
  795. *> DGL and DGK input files:
  796. *>
  797. *> line 1: 'DGL' in columns 1-3 to test DGGBAL, or 'DGK' in
  798. *> columns 1-3 to test DGGBAK.
  799. *>
  800. *> The remaining lines consist of specially constructed test cases.
  801. *>
  802. *>-----------------------------------------------------------------------
  803. *>
  804. *> GLM data file:
  805. *>
  806. *> line 1: 'GLM' in columns 1 to 3.
  807. *>
  808. *> line 2: NN, INTEGER
  809. *> Number of values of M, P, and N.
  810. *>
  811. *> line 3: MVAL, INTEGER array, dimension(NN)
  812. *> Values of M (row dimension).
  813. *>
  814. *> line 4: PVAL, INTEGER array, dimension(NN)
  815. *> Values of P (row dimension).
  816. *>
  817. *> line 5: NVAL, INTEGER array, dimension(NN)
  818. *> Values of N (column dimension), note M <= N <= M+P.
  819. *>
  820. *> line 6: THRESH, REAL
  821. *> Threshold value for the test ratios. Information will be
  822. *> printed about each test for which the test ratio is greater
  823. *> than or equal to the threshold.
  824. *>
  825. *> line 7: TSTERR, LOGICAL
  826. *> Flag indicating whether or not to test the error exits for
  827. *> the LAPACK routines and driver routines.
  828. *>
  829. *> line 8: NEWSD, INTEGER
  830. *> A code indicating how to set the random number seed.
  831. *> = 0: Set the seed to a default value before each run
  832. *> = 1: Initialize the seed to a default value only before the
  833. *> first run
  834. *> = 2: Like 1, but use the seed values on the next line
  835. *>
  836. *> If line 8 was 2:
  837. *>
  838. *> line 9: INTEGER array, dimension (4)
  839. *> Four integer values for the random number seed.
  840. *>
  841. *> lines 9-EOF: Lines specifying matrix types, as for NEP.
  842. *> The 3-character path name is 'GLM' for the generalized
  843. *> linear regression model routines.
  844. *>
  845. *>-----------------------------------------------------------------------
  846. *>
  847. *> GQR data file:
  848. *>
  849. *> line 1: 'GQR' in columns 1 to 3.
  850. *>
  851. *> line 2: NN, INTEGER
  852. *> Number of values of M, P, and N.
  853. *>
  854. *> line 3: MVAL, INTEGER array, dimension(NN)
  855. *> Values of M.
  856. *>
  857. *> line 4: PVAL, INTEGER array, dimension(NN)
  858. *> Values of P.
  859. *>
  860. *> line 5: NVAL, INTEGER array, dimension(NN)
  861. *> Values of N.
  862. *>
  863. *> line 6: THRESH, REAL
  864. *> Threshold value for the test ratios. Information will be
  865. *> printed about each test for which the test ratio is greater
  866. *> than or equal to the threshold.
  867. *>
  868. *> line 7: TSTERR, LOGICAL
  869. *> Flag indicating whether or not to test the error exits for
  870. *> the LAPACK routines and driver routines.
  871. *>
  872. *> line 8: NEWSD, INTEGER
  873. *> A code indicating how to set the random number seed.
  874. *> = 0: Set the seed to a default value before each run
  875. *> = 1: Initialize the seed to a default value only before the
  876. *> first run
  877. *> = 2: Like 1, but use the seed values on the next line
  878. *>
  879. *> If line 8 was 2:
  880. *>
  881. *> line 9: INTEGER array, dimension (4)
  882. *> Four integer values for the random number seed.
  883. *>
  884. *> lines 9-EOF: Lines specifying matrix types, as for NEP.
  885. *> The 3-character path name is 'GQR' for the generalized
  886. *> QR and RQ routines.
  887. *>
  888. *>-----------------------------------------------------------------------
  889. *>
  890. *> GSV data file:
  891. *>
  892. *> line 1: 'GSV' in columns 1 to 3.
  893. *>
  894. *> line 2: NN, INTEGER
  895. *> Number of values of M, P, and N.
  896. *>
  897. *> line 3: MVAL, INTEGER array, dimension(NN)
  898. *> Values of M (row dimension).
  899. *>
  900. *> line 4: PVAL, INTEGER array, dimension(NN)
  901. *> Values of P (row dimension).
  902. *>
  903. *> line 5: NVAL, INTEGER array, dimension(NN)
  904. *> Values of N (column dimension).
  905. *>
  906. *> line 6: THRESH, REAL
  907. *> Threshold value for the test ratios. Information will be
  908. *> printed about each test for which the test ratio is greater
  909. *> than or equal to the threshold.
  910. *>
  911. *> line 7: TSTERR, LOGICAL
  912. *> Flag indicating whether or not to test the error exits for
  913. *> the LAPACK routines and driver routines.
  914. *>
  915. *> line 8: NEWSD, INTEGER
  916. *> A code indicating how to set the random number seed.
  917. *> = 0: Set the seed to a default value before each run
  918. *> = 1: Initialize the seed to a default value only before the
  919. *> first run
  920. *> = 2: Like 1, but use the seed values on the next line
  921. *>
  922. *> If line 8 was 2:
  923. *>
  924. *> line 9: INTEGER array, dimension (4)
  925. *> Four integer values for the random number seed.
  926. *>
  927. *> lines 9-EOF: Lines specifying matrix types, as for NEP.
  928. *> The 3-character path name is 'GSV' for the generalized
  929. *> SVD routines.
  930. *>
  931. *>-----------------------------------------------------------------------
  932. *>
  933. *> CSD data file:
  934. *>
  935. *> line 1: 'CSD' in columns 1 to 3.
  936. *>
  937. *> line 2: NM, INTEGER
  938. *> Number of values of M, P, and N.
  939. *>
  940. *> line 3: MVAL, INTEGER array, dimension(NM)
  941. *> Values of M (row and column dimension of orthogonal matrix).
  942. *>
  943. *> line 4: PVAL, INTEGER array, dimension(NM)
  944. *> Values of P (row dimension of top-left block).
  945. *>
  946. *> line 5: NVAL, INTEGER array, dimension(NM)
  947. *> Values of N (column dimension of top-left block).
  948. *>
  949. *> line 6: THRESH, REAL
  950. *> Threshold value for the test ratios. Information will be
  951. *> printed about each test for which the test ratio is greater
  952. *> than or equal to the threshold.
  953. *>
  954. *> line 7: TSTERR, LOGICAL
  955. *> Flag indicating whether or not to test the error exits for
  956. *> the LAPACK routines and driver routines.
  957. *>
  958. *> line 8: NEWSD, INTEGER
  959. *> A code indicating how to set the random number seed.
  960. *> = 0: Set the seed to a default value before each run
  961. *> = 1: Initialize the seed to a default value only before the
  962. *> first run
  963. *> = 2: Like 1, but use the seed values on the next line
  964. *>
  965. *> If line 8 was 2:
  966. *>
  967. *> line 9: INTEGER array, dimension (4)
  968. *> Four integer values for the random number seed.
  969. *>
  970. *> lines 9-EOF: Lines specifying matrix types, as for NEP.
  971. *> The 3-character path name is 'CSD' for the CSD routine.
  972. *>
  973. *>-----------------------------------------------------------------------
  974. *>
  975. *> LSE data file:
  976. *>
  977. *> line 1: 'LSE' in columns 1 to 3.
  978. *>
  979. *> line 2: NN, INTEGER
  980. *> Number of values of M, P, and N.
  981. *>
  982. *> line 3: MVAL, INTEGER array, dimension(NN)
  983. *> Values of M.
  984. *>
  985. *> line 4: PVAL, INTEGER array, dimension(NN)
  986. *> Values of P.
  987. *>
  988. *> line 5: NVAL, INTEGER array, dimension(NN)
  989. *> Values of N, note P <= N <= P+M.
  990. *>
  991. *> line 6: THRESH, REAL
  992. *> Threshold value for the test ratios. Information will be
  993. *> printed about each test for which the test ratio is greater
  994. *> than or equal to the threshold.
  995. *>
  996. *> line 7: TSTERR, LOGICAL
  997. *> Flag indicating whether or not to test the error exits for
  998. *> the LAPACK routines and driver routines.
  999. *>
  1000. *> line 8: NEWSD, INTEGER
  1001. *> A code indicating how to set the random number seed.
  1002. *> = 0: Set the seed to a default value before each run
  1003. *> = 1: Initialize the seed to a default value only before the
  1004. *> first run
  1005. *> = 2: Like 1, but use the seed values on the next line
  1006. *>
  1007. *> If line 8 was 2:
  1008. *>
  1009. *> line 9: INTEGER array, dimension (4)
  1010. *> Four integer values for the random number seed.
  1011. *>
  1012. *> lines 9-EOF: Lines specifying matrix types, as for NEP.
  1013. *> The 3-character path name is 'GSV' for the generalized
  1014. *> SVD routines.
  1015. *>
  1016. *>-----------------------------------------------------------------------
  1017. *>
  1018. *> NMAX is currently set to 132 and must be at least 12 for some of the
  1019. *> precomputed examples, and LWORK = NMAX*(5*NMAX+5)+1 in the parameter
  1020. *> statements below. For SVD, we assume NRHS may be as big as N. The
  1021. *> parameter NEED is set to 14 to allow for 14 N-by-N matrices for DGG.
  1022. *> \endverbatim
  1023. *
  1024. * Arguments:
  1025. * ==========
  1026. *
  1027. *
  1028. * Authors:
  1029. * ========
  1030. *
  1031. *> \author Univ. of Tennessee
  1032. *> \author Univ. of California Berkeley
  1033. *> \author Univ. of Colorado Denver
  1034. *> \author NAG Ltd.
  1035. *
  1036. *> \date June 2016
  1037. *
  1038. *> \ingroup double_eig
  1039. *
  1040. * =====================================================================
  1041. PROGRAM DCHKEE
  1042. *
  1043. * -- LAPACK test routine (version 3.7.0) --
  1044. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  1045. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  1046. * June 2016
  1047. *
  1048. * =====================================================================
  1049. *
  1050. * .. Parameters ..
  1051. INTEGER NMAX
  1052. PARAMETER ( NMAX = 132 )
  1053. INTEGER NCMAX
  1054. PARAMETER ( NCMAX = 20 )
  1055. INTEGER NEED
  1056. PARAMETER ( NEED = 14 )
  1057. INTEGER LWORK
  1058. PARAMETER ( LWORK = NMAX*( 5*NMAX+5 )+1 )
  1059. INTEGER LIWORK
  1060. PARAMETER ( LIWORK = NMAX*( 5*NMAX+20 ) )
  1061. INTEGER MAXIN
  1062. PARAMETER ( MAXIN = 20 )
  1063. INTEGER MAXT
  1064. PARAMETER ( MAXT = 30 )
  1065. INTEGER NIN, NOUT
  1066. PARAMETER ( NIN = 5, NOUT = 6 )
  1067. * ..
  1068. * .. Local Scalars ..
  1069. LOGICAL CSD, DBB, DGG, DSB, FATAL, GLM, GQR, GSV, LSE,
  1070. $ NEP, DBK, DBL, SEP, DES, DEV, DGK, DGL, DGS,
  1071. $ DGV, DGX, DSX, SVD, DVX, DXV, TSTCHK, TSTDIF,
  1072. $ TSTDRV, TSTERR
  1073. CHARACTER C1
  1074. CHARACTER*3 C3, PATH
  1075. CHARACTER*32 VNAME
  1076. CHARACTER*10 INTSTR
  1077. CHARACTER*80 LINE
  1078. INTEGER I, I1, IC, INFO, ITMP, K, LENP, MAXTYP, NEWSD,
  1079. $ NK, NN, NPARMS, NRHS, NTYPES,
  1080. $ VERS_MAJOR, VERS_MINOR, VERS_PATCH
  1081. DOUBLE PRECISION EPS, S1, S2, THRESH, THRSHN
  1082. * ..
  1083. * .. Local Arrays ..
  1084. LOGICAL DOTYPE( MAXT ), LOGWRK( NMAX )
  1085. INTEGER IOLDSD( 4 ), ISEED( 4 ), IWORK( LIWORK ),
  1086. $ KVAL( MAXIN ), MVAL( MAXIN ), MXBVAL( MAXIN ),
  1087. $ NBCOL( MAXIN ), NBMIN( MAXIN ), NBVAL( MAXIN ),
  1088. $ NSVAL( MAXIN ), NVAL( MAXIN ), NXVAL( MAXIN ),
  1089. $ PVAL( MAXIN )
  1090. INTEGER INMIN( MAXIN ), INWIN( MAXIN ), INIBL( MAXIN ),
  1091. $ ISHFTS( MAXIN ), IACC22( MAXIN )
  1092. DOUBLE PRECISION A( NMAX*NMAX, NEED ), B( NMAX*NMAX, 5 ),
  1093. $ C( NCMAX*NCMAX, NCMAX*NCMAX ), D( NMAX, 12 ),
  1094. $ RESULT( 500 ), TAUA( NMAX ), TAUB( NMAX ),
  1095. $ WORK( LWORK ), X( 5*NMAX )
  1096. * ..
  1097. * .. External Functions ..
  1098. LOGICAL LSAMEN
  1099. DOUBLE PRECISION DLAMCH, DSECND
  1100. EXTERNAL LSAMEN, DLAMCH, DSECND
  1101. * ..
  1102. * .. External Subroutines ..
  1103. EXTERNAL ALAREQ, DCHKBB, DCHKBD, DCHKBK, DCHKBL, DCHKEC,
  1104. $ DCHKGG, DCHKGK, DCHKGL, DCHKHS, DCHKSB, DCHKST,
  1105. $ DCKCSD, DCKGLM, DCKGQR, DCKGSV, DCKLSE, DDRGES,
  1106. $ DDRGEV, DDRGSX, DDRGVX, DDRVBD, DDRVES, DDRVEV,
  1107. $ DDRVSG, DDRVST, DDRVSX, DDRVVX, DERRBD,
  1108. $ DERRED, DERRGG, DERRHS, DERRST, ILAVER, XLAENV,
  1109. $ DDRGES3, DDRGEV3,
  1110. $ DCHKST2STG, DDRVST2STG, DCHKSB2STG, DDRVSG2STG
  1111. * ..
  1112. * .. Intrinsic Functions ..
  1113. INTRINSIC LEN, MIN
  1114. * ..
  1115. * .. Scalars in Common ..
  1116. LOGICAL LERR, OK
  1117. CHARACTER*32 SRNAMT
  1118. INTEGER INFOT, MAXB, NPROC, NSHIFT, NUNIT, SELDIM,
  1119. $ SELOPT
  1120. * ..
  1121. * .. Arrays in Common ..
  1122. LOGICAL SELVAL( 20 )
  1123. INTEGER IPARMS( 100 )
  1124. DOUBLE PRECISION SELWI( 20 ), SELWR( 20 )
  1125. * ..
  1126. * .. Common blocks ..
  1127. COMMON / CENVIR / NPROC, NSHIFT, MAXB
  1128. COMMON / INFOC / INFOT, NUNIT, OK, LERR
  1129. COMMON / SRNAMC / SRNAMT
  1130. COMMON / SSLCT / SELOPT, SELDIM, SELVAL, SELWR, SELWI
  1131. COMMON / CLAENV / IPARMS
  1132. * ..
  1133. * .. Data statements ..
  1134. DATA INTSTR / '0123456789' /
  1135. DATA IOLDSD / 0, 0, 0, 1 /
  1136. * ..
  1137. * .. Executable Statements ..
  1138. *
  1139. A = 0.0
  1140. B = 0.0
  1141. C = 0.0
  1142. D = 0.0
  1143. S1 = DSECND( )
  1144. FATAL = .FALSE.
  1145. NUNIT = NOUT
  1146. *
  1147. * Return to here to read multiple sets of data
  1148. *
  1149. 10 CONTINUE
  1150. *
  1151. * Read the first line and set the 3-character test path
  1152. *
  1153. READ( NIN, FMT = '(A80)', END = 380 )LINE
  1154. PATH = LINE( 1: 3 )
  1155. NEP = LSAMEN( 3, PATH, 'NEP' ) .OR. LSAMEN( 3, PATH, 'DHS' )
  1156. SEP = LSAMEN( 3, PATH, 'SEP' ) .OR. LSAMEN( 3, PATH, 'DST' ) .OR.
  1157. $ LSAMEN( 3, PATH, 'DSG' ) .OR. LSAMEN( 3, PATH, 'SE2' )
  1158. SVD = LSAMEN( 3, PATH, 'SVD' ) .OR. LSAMEN( 3, PATH, 'DBD' )
  1159. DEV = LSAMEN( 3, PATH, 'DEV' )
  1160. DES = LSAMEN( 3, PATH, 'DES' )
  1161. DVX = LSAMEN( 3, PATH, 'DVX' )
  1162. DSX = LSAMEN( 3, PATH, 'DSX' )
  1163. DGG = LSAMEN( 3, PATH, 'DGG' )
  1164. DGS = LSAMEN( 3, PATH, 'DGS' )
  1165. DGX = LSAMEN( 3, PATH, 'DGX' )
  1166. DGV = LSAMEN( 3, PATH, 'DGV' )
  1167. DXV = LSAMEN( 3, PATH, 'DXV' )
  1168. DSB = LSAMEN( 3, PATH, 'DSB' )
  1169. DBB = LSAMEN( 3, PATH, 'DBB' )
  1170. GLM = LSAMEN( 3, PATH, 'GLM' )
  1171. GQR = LSAMEN( 3, PATH, 'GQR' ) .OR. LSAMEN( 3, PATH, 'GRQ' )
  1172. GSV = LSAMEN( 3, PATH, 'GSV' )
  1173. CSD = LSAMEN( 3, PATH, 'CSD' )
  1174. LSE = LSAMEN( 3, PATH, 'LSE' )
  1175. DBL = LSAMEN( 3, PATH, 'DBL' )
  1176. DBK = LSAMEN( 3, PATH, 'DBK' )
  1177. DGL = LSAMEN( 3, PATH, 'DGL' )
  1178. DGK = LSAMEN( 3, PATH, 'DGK' )
  1179. *
  1180. * Report values of parameters.
  1181. *
  1182. IF( PATH.EQ.' ' ) THEN
  1183. GO TO 10
  1184. ELSE IF( NEP ) THEN
  1185. WRITE( NOUT, FMT = 9987 )
  1186. ELSE IF( SEP ) THEN
  1187. WRITE( NOUT, FMT = 9986 )
  1188. ELSE IF( SVD ) THEN
  1189. WRITE( NOUT, FMT = 9985 )
  1190. ELSE IF( DEV ) THEN
  1191. WRITE( NOUT, FMT = 9979 )
  1192. ELSE IF( DES ) THEN
  1193. WRITE( NOUT, FMT = 9978 )
  1194. ELSE IF( DVX ) THEN
  1195. WRITE( NOUT, FMT = 9977 )
  1196. ELSE IF( DSX ) THEN
  1197. WRITE( NOUT, FMT = 9976 )
  1198. ELSE IF( DGG ) THEN
  1199. WRITE( NOUT, FMT = 9975 )
  1200. ELSE IF( DGS ) THEN
  1201. WRITE( NOUT, FMT = 9964 )
  1202. ELSE IF( DGX ) THEN
  1203. WRITE( NOUT, FMT = 9965 )
  1204. ELSE IF( DGV ) THEN
  1205. WRITE( NOUT, FMT = 9963 )
  1206. ELSE IF( DXV ) THEN
  1207. WRITE( NOUT, FMT = 9962 )
  1208. ELSE IF( DSB ) THEN
  1209. WRITE( NOUT, FMT = 9974 )
  1210. ELSE IF( DBB ) THEN
  1211. WRITE( NOUT, FMT = 9967 )
  1212. ELSE IF( GLM ) THEN
  1213. WRITE( NOUT, FMT = 9971 )
  1214. ELSE IF( GQR ) THEN
  1215. WRITE( NOUT, FMT = 9970 )
  1216. ELSE IF( GSV ) THEN
  1217. WRITE( NOUT, FMT = 9969 )
  1218. ELSE IF( CSD ) THEN
  1219. WRITE( NOUT, FMT = 9960 )
  1220. ELSE IF( LSE ) THEN
  1221. WRITE( NOUT, FMT = 9968 )
  1222. ELSE IF( DBL ) THEN
  1223. *
  1224. * DGEBAL: Balancing
  1225. *
  1226. CALL DCHKBL( NIN, NOUT )
  1227. GO TO 10
  1228. ELSE IF( DBK ) THEN
  1229. *
  1230. * DGEBAK: Back transformation
  1231. *
  1232. CALL DCHKBK( NIN, NOUT )
  1233. GO TO 10
  1234. ELSE IF( DGL ) THEN
  1235. *
  1236. * DGGBAL: Balancing
  1237. *
  1238. CALL DCHKGL( NIN, NOUT )
  1239. GO TO 10
  1240. ELSE IF( DGK ) THEN
  1241. *
  1242. * DGGBAK: Back transformation
  1243. *
  1244. CALL DCHKGK( NIN, NOUT )
  1245. GO TO 10
  1246. ELSE IF( LSAMEN( 3, PATH, 'DEC' ) ) THEN
  1247. *
  1248. * DEC: Eigencondition estimation
  1249. *
  1250. READ( NIN, FMT = * )THRESH
  1251. CALL XLAENV( 1, 1 )
  1252. CALL XLAENV( 12, 11 )
  1253. CALL XLAENV( 13, 2 )
  1254. CALL XLAENV( 14, 0 )
  1255. CALL XLAENV( 15, 2 )
  1256. CALL XLAENV( 16, 2 )
  1257. TSTERR = .TRUE.
  1258. CALL DCHKEC( THRESH, TSTERR, NIN, NOUT )
  1259. GO TO 10
  1260. ELSE
  1261. WRITE( NOUT, FMT = 9992 )PATH
  1262. GO TO 10
  1263. END IF
  1264. CALL ILAVER( VERS_MAJOR, VERS_MINOR, VERS_PATCH )
  1265. WRITE( NOUT, FMT = 9972 ) VERS_MAJOR, VERS_MINOR, VERS_PATCH
  1266. WRITE( NOUT, FMT = 9984 )
  1267. *
  1268. * Read the number of values of M, P, and N.
  1269. *
  1270. READ( NIN, FMT = * )NN
  1271. IF( NN.LT.0 ) THEN
  1272. WRITE( NOUT, FMT = 9989 )' NN ', NN, 1
  1273. NN = 0
  1274. FATAL = .TRUE.
  1275. ELSE IF( NN.GT.MAXIN ) THEN
  1276. WRITE( NOUT, FMT = 9988 )' NN ', NN, MAXIN
  1277. NN = 0
  1278. FATAL = .TRUE.
  1279. END IF
  1280. *
  1281. * Read the values of M
  1282. *
  1283. IF( .NOT.( DGX .OR. DXV ) ) THEN
  1284. READ( NIN, FMT = * )( MVAL( I ), I = 1, NN )
  1285. IF( SVD ) THEN
  1286. VNAME = ' M '
  1287. ELSE
  1288. VNAME = ' N '
  1289. END IF
  1290. DO 20 I = 1, NN
  1291. IF( MVAL( I ).LT.0 ) THEN
  1292. WRITE( NOUT, FMT = 9989 )VNAME, MVAL( I ), 0
  1293. FATAL = .TRUE.
  1294. ELSE IF( MVAL( I ).GT.NMAX ) THEN
  1295. WRITE( NOUT, FMT = 9988 )VNAME, MVAL( I ), NMAX
  1296. FATAL = .TRUE.
  1297. END IF
  1298. 20 CONTINUE
  1299. WRITE( NOUT, FMT = 9983 )'M: ', ( MVAL( I ), I = 1, NN )
  1300. END IF
  1301. *
  1302. * Read the values of P
  1303. *
  1304. IF( GLM .OR. GQR .OR. GSV .OR. CSD .OR. LSE ) THEN
  1305. READ( NIN, FMT = * )( PVAL( I ), I = 1, NN )
  1306. DO 30 I = 1, NN
  1307. IF( PVAL( I ).LT.0 ) THEN
  1308. WRITE( NOUT, FMT = 9989 )' P ', PVAL( I ), 0
  1309. FATAL = .TRUE.
  1310. ELSE IF( PVAL( I ).GT.NMAX ) THEN
  1311. WRITE( NOUT, FMT = 9988 )' P ', PVAL( I ), NMAX
  1312. FATAL = .TRUE.
  1313. END IF
  1314. 30 CONTINUE
  1315. WRITE( NOUT, FMT = 9983 )'P: ', ( PVAL( I ), I = 1, NN )
  1316. END IF
  1317. *
  1318. * Read the values of N
  1319. *
  1320. IF( SVD .OR. DBB .OR. GLM .OR. GQR .OR. GSV .OR. CSD .OR.
  1321. $ LSE ) THEN
  1322. READ( NIN, FMT = * )( NVAL( I ), I = 1, NN )
  1323. DO 40 I = 1, NN
  1324. IF( NVAL( I ).LT.0 ) THEN
  1325. WRITE( NOUT, FMT = 9989 )' N ', NVAL( I ), 0
  1326. FATAL = .TRUE.
  1327. ELSE IF( NVAL( I ).GT.NMAX ) THEN
  1328. WRITE( NOUT, FMT = 9988 )' N ', NVAL( I ), NMAX
  1329. FATAL = .TRUE.
  1330. END IF
  1331. 40 CONTINUE
  1332. ELSE
  1333. DO 50 I = 1, NN
  1334. NVAL( I ) = MVAL( I )
  1335. 50 CONTINUE
  1336. END IF
  1337. IF( .NOT.( DGX .OR. DXV ) ) THEN
  1338. WRITE( NOUT, FMT = 9983 )'N: ', ( NVAL( I ), I = 1, NN )
  1339. ELSE
  1340. WRITE( NOUT, FMT = 9983 )'N: ', NN
  1341. END IF
  1342. *
  1343. * Read the number of values of K, followed by the values of K
  1344. *
  1345. IF( DSB .OR. DBB ) THEN
  1346. READ( NIN, FMT = * )NK
  1347. READ( NIN, FMT = * )( KVAL( I ), I = 1, NK )
  1348. DO 60 I = 1, NK
  1349. IF( KVAL( I ).LT.0 ) THEN
  1350. WRITE( NOUT, FMT = 9989 )' K ', KVAL( I ), 0
  1351. FATAL = .TRUE.
  1352. ELSE IF( KVAL( I ).GT.NMAX ) THEN
  1353. WRITE( NOUT, FMT = 9988 )' K ', KVAL( I ), NMAX
  1354. FATAL = .TRUE.
  1355. END IF
  1356. 60 CONTINUE
  1357. WRITE( NOUT, FMT = 9983 )'K: ', ( KVAL( I ), I = 1, NK )
  1358. END IF
  1359. *
  1360. IF( DEV .OR. DES .OR. DVX .OR. DSX ) THEN
  1361. *
  1362. * For the nonsymmetric QR driver routines, only one set of
  1363. * parameters is allowed.
  1364. *
  1365. READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ),
  1366. $ INMIN( 1 ), INWIN( 1 ), INIBL(1), ISHFTS(1), IACC22(1)
  1367. IF( NBVAL( 1 ).LT.1 ) THEN
  1368. WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1
  1369. FATAL = .TRUE.
  1370. ELSE IF( NBMIN( 1 ).LT.1 ) THEN
  1371. WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1
  1372. FATAL = .TRUE.
  1373. ELSE IF( NXVAL( 1 ).LT.1 ) THEN
  1374. WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1
  1375. FATAL = .TRUE.
  1376. ELSE IF( INMIN( 1 ).LT.1 ) THEN
  1377. WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( 1 ), 1
  1378. FATAL = .TRUE.
  1379. ELSE IF( INWIN( 1 ).LT.1 ) THEN
  1380. WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( 1 ), 1
  1381. FATAL = .TRUE.
  1382. ELSE IF( INIBL( 1 ).LT.1 ) THEN
  1383. WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( 1 ), 1
  1384. FATAL = .TRUE.
  1385. ELSE IF( ISHFTS( 1 ).LT.1 ) THEN
  1386. WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( 1 ), 1
  1387. FATAL = .TRUE.
  1388. ELSE IF( IACC22( 1 ).LT.0 ) THEN
  1389. WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( 1 ), 0
  1390. FATAL = .TRUE.
  1391. END IF
  1392. CALL XLAENV( 1, NBVAL( 1 ) )
  1393. CALL XLAENV( 2, NBMIN( 1 ) )
  1394. CALL XLAENV( 3, NXVAL( 1 ) )
  1395. CALL XLAENV(12, MAX( 11, INMIN( 1 ) ) )
  1396. CALL XLAENV(13, INWIN( 1 ) )
  1397. CALL XLAENV(14, INIBL( 1 ) )
  1398. CALL XLAENV(15, ISHFTS( 1 ) )
  1399. CALL XLAENV(16, IACC22( 1 ) )
  1400. WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 )
  1401. WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 )
  1402. WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 )
  1403. WRITE( NOUT, FMT = 9983 )'INMIN: ', INMIN( 1 )
  1404. WRITE( NOUT, FMT = 9983 )'INWIN: ', INWIN( 1 )
  1405. WRITE( NOUT, FMT = 9983 )'INIBL: ', INIBL( 1 )
  1406. WRITE( NOUT, FMT = 9983 )'ISHFTS: ', ISHFTS( 1 )
  1407. WRITE( NOUT, FMT = 9983 )'IACC22: ', IACC22( 1 )
  1408. *
  1409. ELSEIF( DGS .OR. DGX .OR. DGV .OR. DXV ) THEN
  1410. *
  1411. * For the nonsymmetric generalized driver routines, only one set
  1412. * of parameters is allowed.
  1413. *
  1414. READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ),
  1415. $ NSVAL( 1 ), MXBVAL( 1 )
  1416. IF( NBVAL( 1 ).LT.1 ) THEN
  1417. WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1
  1418. FATAL = .TRUE.
  1419. ELSE IF( NBMIN( 1 ).LT.1 ) THEN
  1420. WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1
  1421. FATAL = .TRUE.
  1422. ELSE IF( NXVAL( 1 ).LT.1 ) THEN
  1423. WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1
  1424. FATAL = .TRUE.
  1425. ELSE IF( NSVAL( 1 ).LT.2 ) THEN
  1426. WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( 1 ), 2
  1427. FATAL = .TRUE.
  1428. ELSE IF( MXBVAL( 1 ).LT.1 ) THEN
  1429. WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( 1 ), 1
  1430. FATAL = .TRUE.
  1431. END IF
  1432. CALL XLAENV( 1, NBVAL( 1 ) )
  1433. CALL XLAENV( 2, NBMIN( 1 ) )
  1434. CALL XLAENV( 3, NXVAL( 1 ) )
  1435. CALL XLAENV( 4, NSVAL( 1 ) )
  1436. CALL XLAENV( 8, MXBVAL( 1 ) )
  1437. WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 )
  1438. WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 )
  1439. WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 )
  1440. WRITE( NOUT, FMT = 9983 )'NS: ', NSVAL( 1 )
  1441. WRITE( NOUT, FMT = 9983 )'MAXB: ', MXBVAL( 1 )
  1442. *
  1443. ELSE IF( .NOT.DSB .AND. .NOT.GLM .AND. .NOT.GQR .AND. .NOT.
  1444. $ GSV .AND. .NOT.CSD .AND. .NOT.LSE ) THEN
  1445. *
  1446. * For the other paths, the number of parameters can be varied
  1447. * from the input file. Read the number of parameter values.
  1448. *
  1449. READ( NIN, FMT = * )NPARMS
  1450. IF( NPARMS.LT.1 ) THEN
  1451. WRITE( NOUT, FMT = 9989 )'NPARMS', NPARMS, 1
  1452. NPARMS = 0
  1453. FATAL = .TRUE.
  1454. ELSE IF( NPARMS.GT.MAXIN ) THEN
  1455. WRITE( NOUT, FMT = 9988 )'NPARMS', NPARMS, MAXIN
  1456. NPARMS = 0
  1457. FATAL = .TRUE.
  1458. END IF
  1459. *
  1460. * Read the values of NB
  1461. *
  1462. IF( .NOT.DBB ) THEN
  1463. READ( NIN, FMT = * )( NBVAL( I ), I = 1, NPARMS )
  1464. DO 70 I = 1, NPARMS
  1465. IF( NBVAL( I ).LT.0 ) THEN
  1466. WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( I ), 0
  1467. FATAL = .TRUE.
  1468. ELSE IF( NBVAL( I ).GT.NMAX ) THEN
  1469. WRITE( NOUT, FMT = 9988 )' NB ', NBVAL( I ), NMAX
  1470. FATAL = .TRUE.
  1471. END IF
  1472. 70 CONTINUE
  1473. WRITE( NOUT, FMT = 9983 )'NB: ',
  1474. $ ( NBVAL( I ), I = 1, NPARMS )
  1475. END IF
  1476. *
  1477. * Read the values of NBMIN
  1478. *
  1479. IF( NEP .OR. SEP .OR. SVD .OR. DGG ) THEN
  1480. READ( NIN, FMT = * )( NBMIN( I ), I = 1, NPARMS )
  1481. DO 80 I = 1, NPARMS
  1482. IF( NBMIN( I ).LT.0 ) THEN
  1483. WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( I ), 0
  1484. FATAL = .TRUE.
  1485. ELSE IF( NBMIN( I ).GT.NMAX ) THEN
  1486. WRITE( NOUT, FMT = 9988 )'NBMIN ', NBMIN( I ), NMAX
  1487. FATAL = .TRUE.
  1488. END IF
  1489. 80 CONTINUE
  1490. WRITE( NOUT, FMT = 9983 )'NBMIN:',
  1491. $ ( NBMIN( I ), I = 1, NPARMS )
  1492. ELSE
  1493. DO 90 I = 1, NPARMS
  1494. NBMIN( I ) = 1
  1495. 90 CONTINUE
  1496. END IF
  1497. *
  1498. * Read the values of NX
  1499. *
  1500. IF( NEP .OR. SEP .OR. SVD ) THEN
  1501. READ( NIN, FMT = * )( NXVAL( I ), I = 1, NPARMS )
  1502. DO 100 I = 1, NPARMS
  1503. IF( NXVAL( I ).LT.0 ) THEN
  1504. WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( I ), 0
  1505. FATAL = .TRUE.
  1506. ELSE IF( NXVAL( I ).GT.NMAX ) THEN
  1507. WRITE( NOUT, FMT = 9988 )' NX ', NXVAL( I ), NMAX
  1508. FATAL = .TRUE.
  1509. END IF
  1510. 100 CONTINUE
  1511. WRITE( NOUT, FMT = 9983 )'NX: ',
  1512. $ ( NXVAL( I ), I = 1, NPARMS )
  1513. ELSE
  1514. DO 110 I = 1, NPARMS
  1515. NXVAL( I ) = 1
  1516. 110 CONTINUE
  1517. END IF
  1518. *
  1519. * Read the values of NSHIFT (if DGG) or NRHS (if SVD
  1520. * or DBB).
  1521. *
  1522. IF( SVD .OR. DBB .OR. DGG ) THEN
  1523. READ( NIN, FMT = * )( NSVAL( I ), I = 1, NPARMS )
  1524. DO 120 I = 1, NPARMS
  1525. IF( NSVAL( I ).LT.0 ) THEN
  1526. WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( I ), 0
  1527. FATAL = .TRUE.
  1528. ELSE IF( NSVAL( I ).GT.NMAX ) THEN
  1529. WRITE( NOUT, FMT = 9988 )' NS ', NSVAL( I ), NMAX
  1530. FATAL = .TRUE.
  1531. END IF
  1532. 120 CONTINUE
  1533. WRITE( NOUT, FMT = 9983 )'NS: ',
  1534. $ ( NSVAL( I ), I = 1, NPARMS )
  1535. ELSE
  1536. DO 130 I = 1, NPARMS
  1537. NSVAL( I ) = 1
  1538. 130 CONTINUE
  1539. END IF
  1540. *
  1541. * Read the values for MAXB.
  1542. *
  1543. IF( DGG ) THEN
  1544. READ( NIN, FMT = * )( MXBVAL( I ), I = 1, NPARMS )
  1545. DO 140 I = 1, NPARMS
  1546. IF( MXBVAL( I ).LT.0 ) THEN
  1547. WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( I ), 0
  1548. FATAL = .TRUE.
  1549. ELSE IF( MXBVAL( I ).GT.NMAX ) THEN
  1550. WRITE( NOUT, FMT = 9988 )' MAXB ', MXBVAL( I ), NMAX
  1551. FATAL = .TRUE.
  1552. END IF
  1553. 140 CONTINUE
  1554. WRITE( NOUT, FMT = 9983 )'MAXB: ',
  1555. $ ( MXBVAL( I ), I = 1, NPARMS )
  1556. ELSE
  1557. DO 150 I = 1, NPARMS
  1558. MXBVAL( I ) = 1
  1559. 150 CONTINUE
  1560. END IF
  1561. *
  1562. * Read the values for INMIN.
  1563. *
  1564. IF( NEP ) THEN
  1565. READ( NIN, FMT = * )( INMIN( I ), I = 1, NPARMS )
  1566. DO 540 I = 1, NPARMS
  1567. IF( INMIN( I ).LT.0 ) THEN
  1568. WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( I ), 0
  1569. FATAL = .TRUE.
  1570. END IF
  1571. 540 CONTINUE
  1572. WRITE( NOUT, FMT = 9983 )'INMIN: ',
  1573. $ ( INMIN( I ), I = 1, NPARMS )
  1574. ELSE
  1575. DO 550 I = 1, NPARMS
  1576. INMIN( I ) = 1
  1577. 550 CONTINUE
  1578. END IF
  1579. *
  1580. * Read the values for INWIN.
  1581. *
  1582. IF( NEP ) THEN
  1583. READ( NIN, FMT = * )( INWIN( I ), I = 1, NPARMS )
  1584. DO 560 I = 1, NPARMS
  1585. IF( INWIN( I ).LT.0 ) THEN
  1586. WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( I ), 0
  1587. FATAL = .TRUE.
  1588. END IF
  1589. 560 CONTINUE
  1590. WRITE( NOUT, FMT = 9983 )'INWIN: ',
  1591. $ ( INWIN( I ), I = 1, NPARMS )
  1592. ELSE
  1593. DO 570 I = 1, NPARMS
  1594. INWIN( I ) = 1
  1595. 570 CONTINUE
  1596. END IF
  1597. *
  1598. * Read the values for INIBL.
  1599. *
  1600. IF( NEP ) THEN
  1601. READ( NIN, FMT = * )( INIBL( I ), I = 1, NPARMS )
  1602. DO 580 I = 1, NPARMS
  1603. IF( INIBL( I ).LT.0 ) THEN
  1604. WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( I ), 0
  1605. FATAL = .TRUE.
  1606. END IF
  1607. 580 CONTINUE
  1608. WRITE( NOUT, FMT = 9983 )'INIBL: ',
  1609. $ ( INIBL( I ), I = 1, NPARMS )
  1610. ELSE
  1611. DO 590 I = 1, NPARMS
  1612. INIBL( I ) = 1
  1613. 590 CONTINUE
  1614. END IF
  1615. *
  1616. * Read the values for ISHFTS.
  1617. *
  1618. IF( NEP ) THEN
  1619. READ( NIN, FMT = * )( ISHFTS( I ), I = 1, NPARMS )
  1620. DO 600 I = 1, NPARMS
  1621. IF( ISHFTS( I ).LT.0 ) THEN
  1622. WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( I ), 0
  1623. FATAL = .TRUE.
  1624. END IF
  1625. 600 CONTINUE
  1626. WRITE( NOUT, FMT = 9983 )'ISHFTS: ',
  1627. $ ( ISHFTS( I ), I = 1, NPARMS )
  1628. ELSE
  1629. DO 610 I = 1, NPARMS
  1630. ISHFTS( I ) = 1
  1631. 610 CONTINUE
  1632. END IF
  1633. *
  1634. * Read the values for IACC22.
  1635. *
  1636. IF( NEP .OR. DGG ) THEN
  1637. READ( NIN, FMT = * )( IACC22( I ), I = 1, NPARMS )
  1638. DO 620 I = 1, NPARMS
  1639. IF( IACC22( I ).LT.0 ) THEN
  1640. WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( I ), 0
  1641. FATAL = .TRUE.
  1642. END IF
  1643. 620 CONTINUE
  1644. WRITE( NOUT, FMT = 9983 )'IACC22: ',
  1645. $ ( IACC22( I ), I = 1, NPARMS )
  1646. ELSE
  1647. DO 630 I = 1, NPARMS
  1648. IACC22( I ) = 1
  1649. 630 CONTINUE
  1650. END IF
  1651. *
  1652. * Read the values for NBCOL.
  1653. *
  1654. IF( DGG ) THEN
  1655. READ( NIN, FMT = * )( NBCOL( I ), I = 1, NPARMS )
  1656. DO 160 I = 1, NPARMS
  1657. IF( NBCOL( I ).LT.0 ) THEN
  1658. WRITE( NOUT, FMT = 9989 )'NBCOL ', NBCOL( I ), 0
  1659. FATAL = .TRUE.
  1660. ELSE IF( NBCOL( I ).GT.NMAX ) THEN
  1661. WRITE( NOUT, FMT = 9988 )'NBCOL ', NBCOL( I ), NMAX
  1662. FATAL = .TRUE.
  1663. END IF
  1664. 160 CONTINUE
  1665. WRITE( NOUT, FMT = 9983 )'NBCOL:',
  1666. $ ( NBCOL( I ), I = 1, NPARMS )
  1667. ELSE
  1668. DO 170 I = 1, NPARMS
  1669. NBCOL( I ) = 1
  1670. 170 CONTINUE
  1671. END IF
  1672. END IF
  1673. *
  1674. * Calculate and print the machine dependent constants.
  1675. *
  1676. WRITE( NOUT, FMT = * )
  1677. EPS = DLAMCH( 'Underflow threshold' )
  1678. WRITE( NOUT, FMT = 9981 )'underflow', EPS
  1679. EPS = DLAMCH( 'Overflow threshold' )
  1680. WRITE( NOUT, FMT = 9981 )'overflow ', EPS
  1681. EPS = DLAMCH( 'Epsilon' )
  1682. WRITE( NOUT, FMT = 9981 )'precision', EPS
  1683. *
  1684. * Read the threshold value for the test ratios.
  1685. *
  1686. READ( NIN, FMT = * )THRESH
  1687. WRITE( NOUT, FMT = 9982 )THRESH
  1688. IF( SEP .OR. SVD .OR. DGG ) THEN
  1689. *
  1690. * Read the flag that indicates whether to test LAPACK routines.
  1691. *
  1692. READ( NIN, FMT = * )TSTCHK
  1693. *
  1694. * Read the flag that indicates whether to test driver routines.
  1695. *
  1696. READ( NIN, FMT = * )TSTDRV
  1697. END IF
  1698. *
  1699. * Read the flag that indicates whether to test the error exits.
  1700. *
  1701. READ( NIN, FMT = * )TSTERR
  1702. *
  1703. * Read the code describing how to set the random number seed.
  1704. *
  1705. READ( NIN, FMT = * )NEWSD
  1706. *
  1707. * If NEWSD = 2, read another line with 4 integers for the seed.
  1708. *
  1709. IF( NEWSD.EQ.2 )
  1710. $ READ( NIN, FMT = * )( IOLDSD( I ), I = 1, 4 )
  1711. *
  1712. DO 180 I = 1, 4
  1713. ISEED( I ) = IOLDSD( I )
  1714. 180 CONTINUE
  1715. *
  1716. IF( FATAL ) THEN
  1717. WRITE( NOUT, FMT = 9999 )
  1718. STOP
  1719. END IF
  1720. *
  1721. * Read the input lines indicating the test path and its parameters.
  1722. * The first three characters indicate the test path, and the number
  1723. * of test matrix types must be the first nonblank item in columns
  1724. * 4-80.
  1725. *
  1726. 190 CONTINUE
  1727. *
  1728. IF( .NOT.( DGX .OR. DXV ) ) THEN
  1729. *
  1730. 200 CONTINUE
  1731. READ( NIN, FMT = '(A80)', END = 380 )LINE
  1732. C3 = LINE( 1: 3 )
  1733. LENP = LEN( LINE )
  1734. I = 3
  1735. ITMP = 0
  1736. I1 = 0
  1737. 210 CONTINUE
  1738. I = I + 1
  1739. IF( I.GT.LENP ) THEN
  1740. IF( I1.GT.0 ) THEN
  1741. GO TO 240
  1742. ELSE
  1743. NTYPES = MAXT
  1744. GO TO 240
  1745. END IF
  1746. END IF
  1747. IF( LINE( I: I ).NE.' ' .AND. LINE( I: I ).NE.',' ) THEN
  1748. I1 = I
  1749. C1 = LINE( I1: I1 )
  1750. *
  1751. * Check that a valid integer was read
  1752. *
  1753. DO 220 K = 1, 10
  1754. IF( C1.EQ.INTSTR( K: K ) ) THEN
  1755. IC = K - 1
  1756. GO TO 230
  1757. END IF
  1758. 220 CONTINUE
  1759. WRITE( NOUT, FMT = 9991 )I, LINE
  1760. GO TO 200
  1761. 230 CONTINUE
  1762. ITMP = 10*ITMP + IC
  1763. GO TO 210
  1764. ELSE IF( I1.GT.0 ) THEN
  1765. GO TO 240
  1766. ELSE
  1767. GO TO 210
  1768. END IF
  1769. 240 CONTINUE
  1770. NTYPES = ITMP
  1771. *
  1772. * Skip the tests if NTYPES is <= 0.
  1773. *
  1774. IF( .NOT.( DEV .OR. DES .OR. DVX .OR. DSX .OR. DGV .OR.
  1775. $ DGS ) .AND. NTYPES.LE.0 ) THEN
  1776. WRITE( NOUT, FMT = 9990 )C3
  1777. GO TO 200
  1778. END IF
  1779. *
  1780. ELSE
  1781. IF( DXV )
  1782. $ C3 = 'DXV'
  1783. IF( DGX )
  1784. $ C3 = 'DGX'
  1785. END IF
  1786. *
  1787. * Reset the random number seed.
  1788. *
  1789. IF( NEWSD.EQ.0 ) THEN
  1790. DO 250 K = 1, 4
  1791. ISEED( K ) = IOLDSD( K )
  1792. 250 CONTINUE
  1793. END IF
  1794. *
  1795. IF( LSAMEN( 3, C3, 'DHS' ) .OR. LSAMEN( 3, C3, 'NEP' ) ) THEN
  1796. *
  1797. * -------------------------------------
  1798. * NEP: Nonsymmetric Eigenvalue Problem
  1799. * -------------------------------------
  1800. * Vary the parameters
  1801. * NB = block size
  1802. * NBMIN = minimum block size
  1803. * NX = crossover point
  1804. * NS = number of shifts
  1805. * MAXB = minimum submatrix size
  1806. *
  1807. MAXTYP = 21
  1808. NTYPES = MIN( MAXTYP, NTYPES )
  1809. CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
  1810. CALL XLAENV( 1, 1 )
  1811. IF( TSTERR )
  1812. $ CALL DERRHS( 'DHSEQR', NOUT )
  1813. DO 270 I = 1, NPARMS
  1814. CALL XLAENV( 1, NBVAL( I ) )
  1815. CALL XLAENV( 2, NBMIN( I ) )
  1816. CALL XLAENV( 3, NXVAL( I ) )
  1817. CALL XLAENV(12, MAX( 11, INMIN( I ) ) )
  1818. CALL XLAENV(13, INWIN( I ) )
  1819. CALL XLAENV(14, INIBL( I ) )
  1820. CALL XLAENV(15, ISHFTS( I ) )
  1821. CALL XLAENV(16, IACC22( I ) )
  1822. *
  1823. IF( NEWSD.EQ.0 ) THEN
  1824. DO 260 K = 1, 4
  1825. ISEED( K ) = IOLDSD( K )
  1826. 260 CONTINUE
  1827. END IF
  1828. WRITE( NOUT, FMT = 9961 )C3, NBVAL( I ), NBMIN( I ),
  1829. $ NXVAL( I ), MAX( 11, INMIN(I)),
  1830. $ INWIN( I ), INIBL( I ), ISHFTS( I ), IACC22( I )
  1831. CALL DCHKHS( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT,
  1832. $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
  1833. $ A( 1, 4 ), A( 1, 5 ), NMAX, A( 1, 6 ),
  1834. $ A( 1, 7 ), D( 1, 1 ), D( 1, 2 ), D( 1, 3 ),
  1835. $ D( 1, 4 ), D( 1, 5 ), D( 1, 6 ), A( 1, 8 ),
  1836. $ A( 1, 9 ), A( 1, 10 ), A( 1, 11 ), A( 1, 12 ),
  1837. $ D( 1, 7 ), WORK, LWORK, IWORK, LOGWRK, RESULT,
  1838. $ INFO )
  1839. IF( INFO.NE.0 )
  1840. $ WRITE( NOUT, FMT = 9980 )'DCHKHS', INFO
  1841. 270 CONTINUE
  1842. *
  1843. ELSE IF( LSAMEN( 3, C3, 'DST' ) .OR. LSAMEN( 3, C3, 'SEP' )
  1844. $ .OR. LSAMEN( 3, C3, 'SE2' ) ) THEN
  1845. *
  1846. * ----------------------------------
  1847. * SEP: Symmetric Eigenvalue Problem
  1848. * ----------------------------------
  1849. * Vary the parameters
  1850. * NB = block size
  1851. * NBMIN = minimum block size
  1852. * NX = crossover point
  1853. *
  1854. MAXTYP = 21
  1855. NTYPES = MIN( MAXTYP, NTYPES )
  1856. CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
  1857. CALL XLAENV( 1, 1 )
  1858. CALL XLAENV( 9, 25 )
  1859. IF( TSTERR )
  1860. $ CALL DERRST( 'DST', NOUT )
  1861. DO 290 I = 1, NPARMS
  1862. CALL XLAENV( 1, NBVAL( I ) )
  1863. CALL XLAENV( 2, NBMIN( I ) )
  1864. CALL XLAENV( 3, NXVAL( I ) )
  1865. *
  1866. IF( NEWSD.EQ.0 ) THEN
  1867. DO 280 K = 1, 4
  1868. ISEED( K ) = IOLDSD( K )
  1869. 280 CONTINUE
  1870. END IF
  1871. WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ),
  1872. $ NXVAL( I )
  1873. IF( TSTCHK ) THEN
  1874. IF( LSAMEN( 3, C3, 'SE2' ) ) THEN
  1875. CALL DCHKST2STG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
  1876. $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ),
  1877. $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), D( 1, 5 ),
  1878. $ D( 1, 6 ), D( 1, 7 ), D( 1, 8 ), D( 1, 9 ),
  1879. $ D( 1, 10 ), D( 1, 11 ), A( 1, 3 ), NMAX,
  1880. $ A( 1, 4 ), A( 1, 5 ), D( 1, 12 ), A( 1, 6 ),
  1881. $ WORK, LWORK, IWORK, LIWORK, RESULT, INFO )
  1882. ELSE
  1883. CALL DCHKST( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
  1884. $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ),
  1885. $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), D( 1, 5 ),
  1886. $ D( 1, 6 ), D( 1, 7 ), D( 1, 8 ), D( 1, 9 ),
  1887. $ D( 1, 10 ), D( 1, 11 ), A( 1, 3 ), NMAX,
  1888. $ A( 1, 4 ), A( 1, 5 ), D( 1, 12 ), A( 1, 6 ),
  1889. $ WORK, LWORK, IWORK, LIWORK, RESULT, INFO )
  1890. ENDIF
  1891. IF( INFO.NE.0 )
  1892. $ WRITE( NOUT, FMT = 9980 )'DCHKST', INFO
  1893. END IF
  1894. IF( TSTDRV ) THEN
  1895. IF( LSAMEN( 3, C3, 'SE2' ) ) THEN
  1896. CALL DDRVST2STG( NN, NVAL, 18, DOTYPE, ISEED, THRESH,
  1897. $ NOUT, A( 1, 1 ), NMAX, D( 1, 3 ), D( 1, 4 ),
  1898. $ D( 1, 5 ), D( 1, 6 ), D( 1, 8 ), D( 1, 9 ),
  1899. $ D( 1, 10 ), D( 1, 11 ), A( 1, 2 ), NMAX,
  1900. $ A( 1, 3 ), D( 1, 12 ), A( 1, 4 ), WORK,
  1901. $ LWORK, IWORK, LIWORK, RESULT, INFO )
  1902. ELSE
  1903. CALL DDRVST( NN, NVAL, 18, DOTYPE, ISEED, THRESH, NOUT,
  1904. $ A( 1, 1 ), NMAX, D( 1, 3 ), D( 1, 4 ),
  1905. $ D( 1, 5 ), D( 1, 6 ), D( 1, 8 ), D( 1, 9 ),
  1906. $ D( 1, 10 ), D( 1, 11 ), A( 1, 2 ), NMAX,
  1907. $ A( 1, 3 ), D( 1, 12 ), A( 1, 4 ), WORK,
  1908. $ LWORK, IWORK, LIWORK, RESULT, INFO )
  1909. ENDIF
  1910. IF( INFO.NE.0 )
  1911. $ WRITE( NOUT, FMT = 9980 )'DDRVST', INFO
  1912. END IF
  1913. 290 CONTINUE
  1914. *
  1915. ELSE IF( LSAMEN( 3, C3, 'DSG' ) ) THEN
  1916. *
  1917. * ----------------------------------------------
  1918. * DSG: Symmetric Generalized Eigenvalue Problem
  1919. * ----------------------------------------------
  1920. * Vary the parameters
  1921. * NB = block size
  1922. * NBMIN = minimum block size
  1923. * NX = crossover point
  1924. *
  1925. MAXTYP = 21
  1926. NTYPES = MIN( MAXTYP, NTYPES )
  1927. CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
  1928. CALL XLAENV( 9, 25 )
  1929. DO 310 I = 1, NPARMS
  1930. CALL XLAENV( 1, NBVAL( I ) )
  1931. CALL XLAENV( 2, NBMIN( I ) )
  1932. CALL XLAENV( 3, NXVAL( I ) )
  1933. *
  1934. IF( NEWSD.EQ.0 ) THEN
  1935. DO 300 K = 1, 4
  1936. ISEED( K ) = IOLDSD( K )
  1937. 300 CONTINUE
  1938. END IF
  1939. WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ),
  1940. $ NXVAL( I )
  1941. IF( TSTCHK ) THEN
  1942. * CALL DDRVSG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
  1943. * $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX,
  1944. * $ D( 1, 3 ), A( 1, 3 ), NMAX, A( 1, 4 ),
  1945. * $ A( 1, 5 ), A( 1, 6 ), A( 1, 7 ), WORK,
  1946. * $ LWORK, IWORK, LIWORK, RESULT, INFO )
  1947. CALL DDRVSG2STG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
  1948. $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX,
  1949. $ D( 1, 3 ), D( 1, 3 ), A( 1, 3 ), NMAX,
  1950. $ A( 1, 4 ), A( 1, 5 ), A( 1, 6 ),
  1951. $ A( 1, 7 ), WORK, LWORK, IWORK, LIWORK,
  1952. $ RESULT, INFO )
  1953. IF( INFO.NE.0 )
  1954. $ WRITE( NOUT, FMT = 9980 )'DDRVSG', INFO
  1955. END IF
  1956. 310 CONTINUE
  1957. *
  1958. ELSE IF( LSAMEN( 3, C3, 'DBD' ) .OR. LSAMEN( 3, C3, 'SVD' ) ) THEN
  1959. *
  1960. * ----------------------------------
  1961. * SVD: Singular Value Decomposition
  1962. * ----------------------------------
  1963. * Vary the parameters
  1964. * NB = block size
  1965. * NBMIN = minimum block size
  1966. * NX = crossover point
  1967. * NRHS = number of right hand sides
  1968. *
  1969. MAXTYP = 16
  1970. NTYPES = MIN( MAXTYP, NTYPES )
  1971. CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
  1972. CALL XLAENV( 1, 1 )
  1973. CALL XLAENV( 9, 25 )
  1974. *
  1975. * Test the error exits
  1976. *
  1977. IF( TSTERR .AND. TSTCHK )
  1978. $ CALL DERRBD( 'DBD', NOUT )
  1979. IF( TSTERR .AND. TSTDRV )
  1980. $ CALL DERRED( 'DBD', NOUT )
  1981. *
  1982. DO 330 I = 1, NPARMS
  1983. NRHS = NSVAL( I )
  1984. CALL XLAENV( 1, NBVAL( I ) )
  1985. CALL XLAENV( 2, NBMIN( I ) )
  1986. CALL XLAENV( 3, NXVAL( I ) )
  1987. IF( NEWSD.EQ.0 ) THEN
  1988. DO 320 K = 1, 4
  1989. ISEED( K ) = IOLDSD( K )
  1990. 320 CONTINUE
  1991. END IF
  1992. WRITE( NOUT, FMT = 9995 )C3, NBVAL( I ), NBMIN( I ),
  1993. $ NXVAL( I ), NRHS
  1994. IF( TSTCHK ) THEN
  1995. CALL DCHKBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, NRHS, ISEED,
  1996. $ THRESH, A( 1, 1 ), NMAX, D( 1, 1 ),
  1997. $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), A( 1, 2 ),
  1998. $ NMAX, A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), NMAX,
  1999. $ A( 1, 6 ), NMAX, A( 1, 7 ), A( 1, 8 ), WORK,
  2000. $ LWORK, IWORK, NOUT, INFO )
  2001. IF( INFO.NE.0 )
  2002. $ WRITE( NOUT, FMT = 9980 )'DCHKBD', INFO
  2003. END IF
  2004. IF( TSTDRV )
  2005. $ CALL DDRVBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, ISEED,
  2006. $ THRESH, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX,
  2007. $ A( 1, 3 ), NMAX, A( 1, 4 ), A( 1, 5 ),
  2008. $ A( 1, 6 ), D( 1, 1 ), D( 1, 2 ), D( 1, 3 ),
  2009. $ WORK, LWORK, IWORK, NOUT, INFO )
  2010. 330 CONTINUE
  2011. *
  2012. ELSE IF( LSAMEN( 3, C3, 'DEV' ) ) THEN
  2013. *
  2014. * --------------------------------------------
  2015. * DEV: Nonsymmetric Eigenvalue Problem Driver
  2016. * DGEEV (eigenvalues and eigenvectors)
  2017. * --------------------------------------------
  2018. *
  2019. MAXTYP = 21
  2020. NTYPES = MIN( MAXTYP, NTYPES )
  2021. IF( NTYPES.LE.0 ) THEN
  2022. WRITE( NOUT, FMT = 9990 )C3
  2023. ELSE
  2024. IF( TSTERR )
  2025. $ CALL DERRED( C3, NOUT )
  2026. CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
  2027. CALL DDRVEV( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT,
  2028. $ A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ),
  2029. $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), A( 1, 3 ),
  2030. $ NMAX, A( 1, 4 ), NMAX, A( 1, 5 ), NMAX, RESULT,
  2031. $ WORK, LWORK, IWORK, INFO )
  2032. IF( INFO.NE.0 )
  2033. $ WRITE( NOUT, FMT = 9980 )'DGEEV', INFO
  2034. END IF
  2035. WRITE( NOUT, FMT = 9973 )
  2036. GO TO 10
  2037. *
  2038. ELSE IF( LSAMEN( 3, C3, 'DES' ) ) THEN
  2039. *
  2040. * --------------------------------------------
  2041. * DES: Nonsymmetric Eigenvalue Problem Driver
  2042. * DGEES (Schur form)
  2043. * --------------------------------------------
  2044. *
  2045. MAXTYP = 21
  2046. NTYPES = MIN( MAXTYP, NTYPES )
  2047. IF( NTYPES.LE.0 ) THEN
  2048. WRITE( NOUT, FMT = 9990 )C3
  2049. ELSE
  2050. IF( TSTERR )
  2051. $ CALL DERRED( C3, NOUT )
  2052. CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
  2053. CALL DDRVES( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT,
  2054. $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
  2055. $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), D( 1, 4 ),
  2056. $ A( 1, 4 ), NMAX, RESULT, WORK, LWORK, IWORK,
  2057. $ LOGWRK, INFO )
  2058. IF( INFO.NE.0 )
  2059. $ WRITE( NOUT, FMT = 9980 )'DGEES', INFO
  2060. END IF
  2061. WRITE( NOUT, FMT = 9973 )
  2062. GO TO 10
  2063. *
  2064. ELSE IF( LSAMEN( 3, C3, 'DVX' ) ) THEN
  2065. *
  2066. * --------------------------------------------------------------
  2067. * DVX: Nonsymmetric Eigenvalue Problem Expert Driver
  2068. * DGEEVX (eigenvalues, eigenvectors and condition numbers)
  2069. * --------------------------------------------------------------
  2070. *
  2071. MAXTYP = 21
  2072. NTYPES = MIN( MAXTYP, NTYPES )
  2073. IF( NTYPES.LT.0 ) THEN
  2074. WRITE( NOUT, FMT = 9990 )C3
  2075. ELSE
  2076. IF( TSTERR )
  2077. $ CALL DERRED( C3, NOUT )
  2078. CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
  2079. CALL DDRVVX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN,
  2080. $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ),
  2081. $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), A( 1, 3 ),
  2082. $ NMAX, A( 1, 4 ), NMAX, A( 1, 5 ), NMAX,
  2083. $ D( 1, 5 ), D( 1, 6 ), D( 1, 7 ), D( 1, 8 ),
  2084. $ D( 1, 9 ), D( 1, 10 ), D( 1, 11 ), D( 1, 12 ),
  2085. $ RESULT, WORK, LWORK, IWORK, INFO )
  2086. IF( INFO.NE.0 )
  2087. $ WRITE( NOUT, FMT = 9980 )'DGEEVX', INFO
  2088. END IF
  2089. WRITE( NOUT, FMT = 9973 )
  2090. GO TO 10
  2091. *
  2092. ELSE IF( LSAMEN( 3, C3, 'DSX' ) ) THEN
  2093. *
  2094. * ---------------------------------------------------
  2095. * DSX: Nonsymmetric Eigenvalue Problem Expert Driver
  2096. * DGEESX (Schur form and condition numbers)
  2097. * ---------------------------------------------------
  2098. *
  2099. MAXTYP = 21
  2100. NTYPES = MIN( MAXTYP, NTYPES )
  2101. IF( NTYPES.LT.0 ) THEN
  2102. WRITE( NOUT, FMT = 9990 )C3
  2103. ELSE
  2104. IF( TSTERR )
  2105. $ CALL DERRED( C3, NOUT )
  2106. CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
  2107. CALL DDRVSX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN,
  2108. $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
  2109. $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), D( 1, 4 ),
  2110. $ D( 1, 5 ), D( 1, 6 ), A( 1, 4 ), NMAX,
  2111. $ A( 1, 5 ), RESULT, WORK, LWORK, IWORK, LOGWRK,
  2112. $ INFO )
  2113. IF( INFO.NE.0 )
  2114. $ WRITE( NOUT, FMT = 9980 )'DGEESX', INFO
  2115. END IF
  2116. WRITE( NOUT, FMT = 9973 )
  2117. GO TO 10
  2118. *
  2119. ELSE IF( LSAMEN( 3, C3, 'DGG' ) ) THEN
  2120. *
  2121. * -------------------------------------------------
  2122. * DGG: Generalized Nonsymmetric Eigenvalue Problem
  2123. * -------------------------------------------------
  2124. * Vary the parameters
  2125. * NB = block size
  2126. * NBMIN = minimum block size
  2127. * NS = number of shifts
  2128. * MAXB = minimum submatrix size
  2129. * IACC22: structured matrix multiply
  2130. * NBCOL = minimum column dimension for blocks
  2131. *
  2132. MAXTYP = 26
  2133. NTYPES = MIN( MAXTYP, NTYPES )
  2134. CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
  2135. CALL XLAENV(1,1)
  2136. IF( TSTCHK .AND. TSTERR )
  2137. $ CALL DERRGG( C3, NOUT )
  2138. DO 350 I = 1, NPARMS
  2139. CALL XLAENV( 1, NBVAL( I ) )
  2140. CALL XLAENV( 2, NBMIN( I ) )
  2141. CALL XLAENV( 4, NSVAL( I ) )
  2142. CALL XLAENV( 8, MXBVAL( I ) )
  2143. CALL XLAENV( 16, IACC22( I ) )
  2144. CALL XLAENV( 5, NBCOL( I ) )
  2145. *
  2146. IF( NEWSD.EQ.0 ) THEN
  2147. DO 340 K = 1, 4
  2148. ISEED( K ) = IOLDSD( K )
  2149. 340 CONTINUE
  2150. END IF
  2151. WRITE( NOUT, FMT = 9996 )C3, NBVAL( I ), NBMIN( I ),
  2152. $ NSVAL( I ), MXBVAL( I ), IACC22( I ), NBCOL( I )
  2153. TSTDIF = .FALSE.
  2154. THRSHN = 10.D0
  2155. IF( TSTCHK ) THEN
  2156. CALL DCHKGG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
  2157. $ TSTDIF, THRSHN, NOUT, A( 1, 1 ), NMAX,
  2158. $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ),
  2159. $ A( 1, 6 ), A( 1, 7 ), A( 1, 8 ), A( 1, 9 ),
  2160. $ NMAX, A( 1, 10 ), A( 1, 11 ), A( 1, 12 ),
  2161. $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), D( 1, 4 ),
  2162. $ D( 1, 5 ), D( 1, 6 ), A( 1, 13 ),
  2163. $ A( 1, 14 ), WORK, LWORK, LOGWRK, RESULT,
  2164. $ INFO )
  2165. IF( INFO.NE.0 )
  2166. $ WRITE( NOUT, FMT = 9980 )'DCHKGG', INFO
  2167. END IF
  2168. 350 CONTINUE
  2169. *
  2170. ELSE IF( LSAMEN( 3, C3, 'DGS' ) ) THEN
  2171. *
  2172. * -------------------------------------------------
  2173. * DGS: Generalized Nonsymmetric Eigenvalue Problem
  2174. * DGGES (Schur form)
  2175. * -------------------------------------------------
  2176. *
  2177. MAXTYP = 26
  2178. NTYPES = MIN( MAXTYP, NTYPES )
  2179. IF( NTYPES.LE.0 ) THEN
  2180. WRITE( NOUT, FMT = 9990 )C3
  2181. ELSE
  2182. IF( TSTERR )
  2183. $ CALL DERRGG( C3, NOUT )
  2184. CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
  2185. CALL DDRGES( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT,
  2186. $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
  2187. $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ),
  2188. $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), WORK, LWORK,
  2189. $ RESULT, LOGWRK, INFO )
  2190. IF( INFO.NE.0 )
  2191. $ WRITE( NOUT, FMT = 9980 )'DDRGES', INFO
  2192. *
  2193. * Blocked version
  2194. *
  2195. CALL XLAENV(16, 2)
  2196. CALL DDRGES3( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT,
  2197. $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
  2198. $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ),
  2199. $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), WORK, LWORK,
  2200. $ RESULT, LOGWRK, INFO )
  2201. IF( INFO.NE.0 )
  2202. $ WRITE( NOUT, FMT = 9980 )'DDRGES3', INFO
  2203. END IF
  2204. WRITE( NOUT, FMT = 9973 )
  2205. GO TO 10
  2206. *
  2207. ELSE IF( DGX ) THEN
  2208. *
  2209. * -------------------------------------------------
  2210. * DGX: Generalized Nonsymmetric Eigenvalue Problem
  2211. * DGGESX (Schur form and condition numbers)
  2212. * -------------------------------------------------
  2213. *
  2214. MAXTYP = 5
  2215. NTYPES = MAXTYP
  2216. IF( NN.LT.0 ) THEN
  2217. WRITE( NOUT, FMT = 9990 )C3
  2218. ELSE
  2219. IF( TSTERR )
  2220. $ CALL DERRGG( C3, NOUT )
  2221. CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
  2222. CALL XLAENV( 5, 2 )
  2223. CALL DDRGSX( NN, NCMAX, THRESH, NIN, NOUT, A( 1, 1 ), NMAX,
  2224. $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ),
  2225. $ A( 1, 6 ), D( 1, 1 ), D( 1, 2 ), D( 1, 3 ),
  2226. $ C( 1, 1 ), NCMAX*NCMAX, A( 1, 12 ), WORK,
  2227. $ LWORK, IWORK, LIWORK, LOGWRK, INFO )
  2228. IF( INFO.NE.0 )
  2229. $ WRITE( NOUT, FMT = 9980 )'DDRGSX', INFO
  2230. END IF
  2231. WRITE( NOUT, FMT = 9973 )
  2232. GO TO 10
  2233. *
  2234. ELSE IF( LSAMEN( 3, C3, 'DGV' ) ) THEN
  2235. *
  2236. * -------------------------------------------------
  2237. * DGV: Generalized Nonsymmetric Eigenvalue Problem
  2238. * DGGEV (Eigenvalue/vector form)
  2239. * -------------------------------------------------
  2240. *
  2241. MAXTYP = 26
  2242. NTYPES = MIN( MAXTYP, NTYPES )
  2243. IF( NTYPES.LE.0 ) THEN
  2244. WRITE( NOUT, FMT = 9990 )C3
  2245. ELSE
  2246. IF( TSTERR )
  2247. $ CALL DERRGG( C3, NOUT )
  2248. CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
  2249. CALL DDRGEV( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT,
  2250. $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
  2251. $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ),
  2252. $ A( 1, 9 ), NMAX, D( 1, 1 ), D( 1, 2 ),
  2253. $ D( 1, 3 ), D( 1, 4 ), D( 1, 5 ), D( 1, 6 ),
  2254. $ WORK, LWORK, RESULT, INFO )
  2255. IF( INFO.NE.0 )
  2256. $ WRITE( NOUT, FMT = 9980 )'DDRGEV', INFO
  2257. *
  2258. * Blocked version
  2259. *
  2260. CALL DDRGEV3( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT,
  2261. $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
  2262. $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ),
  2263. $ A( 1, 9 ), NMAX, D( 1, 1 ), D( 1, 2 ),
  2264. $ D( 1, 3 ), D( 1, 4 ), D( 1, 5 ), D( 1, 6 ),
  2265. $ WORK, LWORK, RESULT, INFO )
  2266. IF( INFO.NE.0 )
  2267. $ WRITE( NOUT, FMT = 9980 )'DDRGEV3', INFO
  2268. END IF
  2269. WRITE( NOUT, FMT = 9973 )
  2270. GO TO 10
  2271. *
  2272. ELSE IF( DXV ) THEN
  2273. *
  2274. * -------------------------------------------------
  2275. * DXV: Generalized Nonsymmetric Eigenvalue Problem
  2276. * DGGEVX (eigenvalue/vector with condition numbers)
  2277. * -------------------------------------------------
  2278. *
  2279. MAXTYP = 2
  2280. NTYPES = MAXTYP
  2281. IF( NN.LT.0 ) THEN
  2282. WRITE( NOUT, FMT = 9990 )C3
  2283. ELSE
  2284. IF( TSTERR )
  2285. $ CALL DERRGG( C3, NOUT )
  2286. CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
  2287. CALL DDRGVX( NN, THRESH, NIN, NOUT, A( 1, 1 ), NMAX,
  2288. $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), D( 1, 1 ),
  2289. $ D( 1, 2 ), D( 1, 3 ), A( 1, 5 ), A( 1, 6 ),
  2290. $ IWORK( 1 ), IWORK( 2 ), D( 1, 4 ), D( 1, 5 ),
  2291. $ D( 1, 6 ), D( 1, 7 ), D( 1, 8 ), D( 1, 9 ),
  2292. $ WORK, LWORK, IWORK( 3 ), LIWORK-2, RESULT,
  2293. $ LOGWRK, INFO )
  2294. *
  2295. IF( INFO.NE.0 )
  2296. $ WRITE( NOUT, FMT = 9980 )'DDRGVX', INFO
  2297. END IF
  2298. WRITE( NOUT, FMT = 9973 )
  2299. GO TO 10
  2300. *
  2301. ELSE IF( LSAMEN( 3, C3, 'DSB' ) ) THEN
  2302. *
  2303. * ------------------------------
  2304. * DSB: Symmetric Band Reduction
  2305. * ------------------------------
  2306. *
  2307. MAXTYP = 15
  2308. NTYPES = MIN( MAXTYP, NTYPES )
  2309. CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
  2310. IF( TSTERR )
  2311. $ CALL DERRST( 'DSB', NOUT )
  2312. * CALL DCHKSB( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED, THRESH,
  2313. * $ NOUT, A( 1, 1 ), NMAX, D( 1, 1 ), D( 1, 2 ),
  2314. * $ A( 1, 2 ), NMAX, WORK, LWORK, RESULT, INFO )
  2315. CALL DCHKSB2STG( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED,
  2316. $ THRESH, NOUT, A( 1, 1 ), NMAX, D( 1, 1 ),
  2317. $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), D( 1, 5 ),
  2318. $ A( 1, 2 ), NMAX, WORK, LWORK, RESULT, INFO )
  2319. IF( INFO.NE.0 )
  2320. $ WRITE( NOUT, FMT = 9980 )'DCHKSB', INFO
  2321. *
  2322. ELSE IF( LSAMEN( 3, C3, 'DBB' ) ) THEN
  2323. *
  2324. * ------------------------------
  2325. * DBB: General Band Reduction
  2326. * ------------------------------
  2327. *
  2328. MAXTYP = 15
  2329. NTYPES = MIN( MAXTYP, NTYPES )
  2330. CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
  2331. DO 370 I = 1, NPARMS
  2332. NRHS = NSVAL( I )
  2333. *
  2334. IF( NEWSD.EQ.0 ) THEN
  2335. DO 360 K = 1, 4
  2336. ISEED( K ) = IOLDSD( K )
  2337. 360 CONTINUE
  2338. END IF
  2339. WRITE( NOUT, FMT = 9966 )C3, NRHS
  2340. CALL DCHKBB( NN, MVAL, NVAL, NK, KVAL, MAXTYP, DOTYPE, NRHS,
  2341. $ ISEED, THRESH, NOUT, A( 1, 1 ), NMAX,
  2342. $ A( 1, 2 ), 2*NMAX, D( 1, 1 ), D( 1, 2 ),
  2343. $ A( 1, 4 ), NMAX, A( 1, 5 ), NMAX, A( 1, 6 ),
  2344. $ NMAX, A( 1, 7 ), WORK, LWORK, RESULT, INFO )
  2345. IF( INFO.NE.0 )
  2346. $ WRITE( NOUT, FMT = 9980 )'DCHKBB', INFO
  2347. 370 CONTINUE
  2348. *
  2349. ELSE IF( LSAMEN( 3, C3, 'GLM' ) ) THEN
  2350. *
  2351. * -----------------------------------------
  2352. * GLM: Generalized Linear Regression Model
  2353. * -----------------------------------------
  2354. *
  2355. CALL XLAENV( 1, 1 )
  2356. IF( TSTERR )
  2357. $ CALL DERRGG( 'GLM', NOUT )
  2358. CALL DCKGLM( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX,
  2359. $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X,
  2360. $ WORK, D( 1, 1 ), NIN, NOUT, INFO )
  2361. IF( INFO.NE.0 )
  2362. $ WRITE( NOUT, FMT = 9980 )'DCKGLM', INFO
  2363. *
  2364. ELSE IF( LSAMEN( 3, C3, 'GQR' ) ) THEN
  2365. *
  2366. * ------------------------------------------
  2367. * GQR: Generalized QR and RQ factorizations
  2368. * ------------------------------------------
  2369. *
  2370. CALL XLAENV( 1, 1 )
  2371. IF( TSTERR )
  2372. $ CALL DERRGG( 'GQR', NOUT )
  2373. CALL DCKGQR( NN, MVAL, NN, PVAL, NN, NVAL, NTYPES, ISEED,
  2374. $ THRESH, NMAX, A( 1, 1 ), A( 1, 2 ), A( 1, 3 ),
  2375. $ A( 1, 4 ), TAUA, B( 1, 1 ), B( 1, 2 ), B( 1, 3 ),
  2376. $ B( 1, 4 ), B( 1, 5 ), TAUB, WORK, D( 1, 1 ), NIN,
  2377. $ NOUT, INFO )
  2378. IF( INFO.NE.0 )
  2379. $ WRITE( NOUT, FMT = 9980 )'DCKGQR', INFO
  2380. *
  2381. ELSE IF( LSAMEN( 3, C3, 'GSV' ) ) THEN
  2382. *
  2383. * ----------------------------------------------
  2384. * GSV: Generalized Singular Value Decomposition
  2385. * ----------------------------------------------
  2386. *
  2387. CALL XLAENV(1,1)
  2388. IF( TSTERR )
  2389. $ CALL DERRGG( 'GSV', NOUT )
  2390. CALL DCKGSV( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX,
  2391. $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ),
  2392. $ A( 1, 3 ), B( 1, 3 ), A( 1, 4 ), TAUA, TAUB,
  2393. $ B( 1, 4 ), IWORK, WORK, D( 1, 1 ), NIN, NOUT,
  2394. $ INFO )
  2395. IF( INFO.NE.0 )
  2396. $ WRITE( NOUT, FMT = 9980 )'DCKGSV', INFO
  2397. *
  2398. ELSE IF( LSAMEN( 3, C3, 'CSD' ) ) THEN
  2399. *
  2400. * ----------------------------------------------
  2401. * CSD: CS Decomposition
  2402. * ----------------------------------------------
  2403. *
  2404. CALL XLAENV(1,1)
  2405. IF( TSTERR )
  2406. $ CALL DERRGG( 'CSD', NOUT )
  2407. CALL DCKCSD( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX,
  2408. $ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), A( 1, 4 ),
  2409. $ A( 1, 5 ), A( 1, 6 ), A( 1, 7 ), IWORK, WORK,
  2410. $ D( 1, 1 ), NIN, NOUT, INFO )
  2411. IF( INFO.NE.0 )
  2412. $ WRITE( NOUT, FMT = 9980 )'DCKCSD', INFO
  2413. *
  2414. ELSE IF( LSAMEN( 3, C3, 'LSE' ) ) THEN
  2415. *
  2416. * --------------------------------------
  2417. * LSE: Constrained Linear Least Squares
  2418. * --------------------------------------
  2419. *
  2420. CALL XLAENV( 1, 1 )
  2421. IF( TSTERR )
  2422. $ CALL DERRGG( 'LSE', NOUT )
  2423. CALL DCKLSE( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX,
  2424. $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X,
  2425. $ WORK, D( 1, 1 ), NIN, NOUT, INFO )
  2426. IF( INFO.NE.0 )
  2427. $ WRITE( NOUT, FMT = 9980 )'DCKLSE', INFO
  2428. *
  2429. ELSE
  2430. WRITE( NOUT, FMT = * )
  2431. WRITE( NOUT, FMT = * )
  2432. WRITE( NOUT, FMT = 9992 )C3
  2433. END IF
  2434. IF( .NOT.( DGX .OR. DXV ) )
  2435. $ GO TO 190
  2436. 380 CONTINUE
  2437. WRITE( NOUT, FMT = 9994 )
  2438. S2 = DSECND( )
  2439. WRITE( NOUT, FMT = 9993 )S2 - S1
  2440. *
  2441. 9999 FORMAT( / ' Execution not attempted due to input errors' )
  2442. 9997 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4 )
  2443. 9996 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NS =', I4,
  2444. $ ', MAXB =', I4, ', IACC22 =', I4, ', NBCOL =', I4 )
  2445. 9995 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4,
  2446. $ ', NRHS =', I4 )
  2447. 9994 FORMAT( / / ' End of tests' )
  2448. 9993 FORMAT( ' Total time used = ', F12.2, ' seconds', / )
  2449. 9992 FORMAT( 1X, A3, ': Unrecognized path name' )
  2450. 9991 FORMAT( / / ' *** Invalid integer value in column ', I2,
  2451. $ ' of input', ' line:', / A79 )
  2452. 9990 FORMAT( / / 1X, A3, ' routines were not tested' )
  2453. 9989 FORMAT( ' Invalid input value: ', A, '=', I6, '; must be >=',
  2454. $ I6 )
  2455. 9988 FORMAT( ' Invalid input value: ', A, '=', I6, '; must be <=',
  2456. $ I6 )
  2457. 9987 FORMAT( ' Tests of the Nonsymmetric Eigenvalue Problem routines' )
  2458. 9986 FORMAT( ' Tests of the Symmetric Eigenvalue Problem routines' )
  2459. 9985 FORMAT( ' Tests of the Singular Value Decomposition routines' )
  2460. 9984 FORMAT( / ' The following parameter values will be used:' )
  2461. 9983 FORMAT( 4X, A, 10I6, / 10X, 10I6 )
  2462. 9982 FORMAT( / ' Routines pass computational tests if test ratio is ',
  2463. $ 'less than', F8.2, / )
  2464. 9981 FORMAT( ' Relative machine ', A, ' is taken to be', D16.6 )
  2465. 9980 FORMAT( ' *** Error code from ', A, ' = ', I4 )
  2466. 9979 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver',
  2467. $ / ' DGEEV (eigenvalues and eigevectors)' )
  2468. 9978 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver',
  2469. $ / ' DGEES (Schur form)' )
  2470. 9977 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert',
  2471. $ ' Driver', / ' DGEEVX (eigenvalues, eigenvectors and',
  2472. $ ' condition numbers)' )
  2473. 9976 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert',
  2474. $ ' Driver', / ' DGEESX (Schur form and condition',
  2475. $ ' numbers)' )
  2476. 9975 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
  2477. $ 'Problem routines' )
  2478. 9974 FORMAT( ' Tests of DSBTRD', / ' (reduction of a symmetric band ',
  2479. $ 'matrix to tridiagonal form)' )
  2480. 9973 FORMAT( / 1X, 71( '-' ) )
  2481. 9972 FORMAT( / ' LAPACK VERSION ', I1, '.', I1, '.', I1 )
  2482. 9971 FORMAT( / ' Tests of the Generalized Linear Regression Model ',
  2483. $ 'routines' )
  2484. 9970 FORMAT( / ' Tests of the Generalized QR and RQ routines' )
  2485. 9969 FORMAT( / ' Tests of the Generalized Singular Value',
  2486. $ ' Decomposition routines' )
  2487. 9968 FORMAT( / ' Tests of the Linear Least Squares routines' )
  2488. 9967 FORMAT( ' Tests of DGBBRD', / ' (reduction of a general band ',
  2489. $ 'matrix to real bidiagonal form)' )
  2490. 9966 FORMAT( / / 1X, A3, ': NRHS =', I4 )
  2491. 9965 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
  2492. $ 'Problem Expert Driver DGGESX' )
  2493. 9964 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
  2494. $ 'Problem Driver DGGES' )
  2495. 9963 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
  2496. $ 'Problem Driver DGGEV' )
  2497. 9962 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
  2498. $ 'Problem Expert Driver DGGEVX' )
  2499. 9961 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4,
  2500. $ ', INMIN=', I4,
  2501. $ ', INWIN =', I4, ', INIBL =', I4, ', ISHFTS =', I4,
  2502. $ ', IACC22 =', I4)
  2503. 9960 FORMAT( / ' Tests of the CS Decomposition routines' )
  2504. *
  2505. * End of DCHKEE
  2506. *
  2507. END