PageRenderTime 39ms CodeModel.GetById 27ms RepoModel.GetById 1ms app.codeStats 0ms

/fs/btrfs/extent_io.c

https://gitlab.com/LiquidSmooth-Devices/android_kernel_htc_msm8974
C | 4300 lines | 3703 code | 578 blank | 19 comment | 749 complexity | 713a1225fd840aed76eb7dba1f1e4e2c MD5 | raw file
Possible License(s): GPL-2.0
  1. #include <linux/bitops.h>
  2. #include <linux/slab.h>
  3. #include <linux/bio.h>
  4. #include <linux/mm.h>
  5. #include <linux/pagemap.h>
  6. #include <linux/page-flags.h>
  7. #include <linux/module.h>
  8. #include <linux/spinlock.h>
  9. #include <linux/blkdev.h>
  10. #include <linux/swap.h>
  11. #include <linux/writeback.h>
  12. #include <linux/pagevec.h>
  13. #include <linux/prefetch.h>
  14. #include <linux/cleancache.h>
  15. #include "extent_io.h"
  16. #include "extent_map.h"
  17. #include "compat.h"
  18. #include "ctree.h"
  19. #include "btrfs_inode.h"
  20. #include "volumes.h"
  21. #include "check-integrity.h"
  22. #include "locking.h"
  23. static struct kmem_cache *extent_state_cache;
  24. static struct kmem_cache *extent_buffer_cache;
  25. static LIST_HEAD(buffers);
  26. static LIST_HEAD(states);
  27. #define LEAK_DEBUG 0
  28. #if LEAK_DEBUG
  29. static DEFINE_SPINLOCK(leak_lock);
  30. #endif
  31. #define BUFFER_LRU_MAX 64
  32. struct tree_entry {
  33. u64 start;
  34. u64 end;
  35. struct rb_node rb_node;
  36. };
  37. struct extent_page_data {
  38. struct bio *bio;
  39. struct extent_io_tree *tree;
  40. get_extent_t *get_extent;
  41. unsigned int extent_locked:1;
  42. unsigned int sync_io:1;
  43. };
  44. static noinline void flush_write_bio(void *data);
  45. static inline struct btrfs_fs_info *
  46. tree_fs_info(struct extent_io_tree *tree)
  47. {
  48. return btrfs_sb(tree->mapping->host->i_sb);
  49. }
  50. int __init extent_io_init(void)
  51. {
  52. extent_state_cache = kmem_cache_create("extent_state",
  53. sizeof(struct extent_state), 0,
  54. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
  55. if (!extent_state_cache)
  56. return -ENOMEM;
  57. extent_buffer_cache = kmem_cache_create("extent_buffers",
  58. sizeof(struct extent_buffer), 0,
  59. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
  60. if (!extent_buffer_cache)
  61. goto free_state_cache;
  62. return 0;
  63. free_state_cache:
  64. kmem_cache_destroy(extent_state_cache);
  65. return -ENOMEM;
  66. }
  67. void extent_io_exit(void)
  68. {
  69. struct extent_state *state;
  70. struct extent_buffer *eb;
  71. while (!list_empty(&states)) {
  72. state = list_entry(states.next, struct extent_state, leak_list);
  73. printk(KERN_ERR "btrfs state leak: start %llu end %llu "
  74. "state %lu in tree %p refs %d\n",
  75. (unsigned long long)state->start,
  76. (unsigned long long)state->end,
  77. state->state, state->tree, atomic_read(&state->refs));
  78. list_del(&state->leak_list);
  79. kmem_cache_free(extent_state_cache, state);
  80. }
  81. while (!list_empty(&buffers)) {
  82. eb = list_entry(buffers.next, struct extent_buffer, leak_list);
  83. printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
  84. "refs %d\n", (unsigned long long)eb->start,
  85. eb->len, atomic_read(&eb->refs));
  86. list_del(&eb->leak_list);
  87. kmem_cache_free(extent_buffer_cache, eb);
  88. }
  89. if (extent_state_cache)
  90. kmem_cache_destroy(extent_state_cache);
  91. if (extent_buffer_cache)
  92. kmem_cache_destroy(extent_buffer_cache);
  93. }
  94. void extent_io_tree_init(struct extent_io_tree *tree,
  95. struct address_space *mapping)
  96. {
  97. tree->state = RB_ROOT;
  98. INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
  99. tree->ops = NULL;
  100. tree->dirty_bytes = 0;
  101. spin_lock_init(&tree->lock);
  102. spin_lock_init(&tree->buffer_lock);
  103. tree->mapping = mapping;
  104. }
  105. static struct extent_state *alloc_extent_state(gfp_t mask)
  106. {
  107. struct extent_state *state;
  108. #if LEAK_DEBUG
  109. unsigned long flags;
  110. #endif
  111. state = kmem_cache_alloc(extent_state_cache, mask);
  112. if (!state)
  113. return state;
  114. state->state = 0;
  115. state->private = 0;
  116. state->tree = NULL;
  117. #if LEAK_DEBUG
  118. spin_lock_irqsave(&leak_lock, flags);
  119. list_add(&state->leak_list, &states);
  120. spin_unlock_irqrestore(&leak_lock, flags);
  121. #endif
  122. atomic_set(&state->refs, 1);
  123. init_waitqueue_head(&state->wq);
  124. trace_alloc_extent_state(state, mask, _RET_IP_);
  125. return state;
  126. }
  127. void free_extent_state(struct extent_state *state)
  128. {
  129. if (!state)
  130. return;
  131. if (atomic_dec_and_test(&state->refs)) {
  132. #if LEAK_DEBUG
  133. unsigned long flags;
  134. #endif
  135. WARN_ON(state->tree);
  136. #if LEAK_DEBUG
  137. spin_lock_irqsave(&leak_lock, flags);
  138. list_del(&state->leak_list);
  139. spin_unlock_irqrestore(&leak_lock, flags);
  140. #endif
  141. trace_free_extent_state(state, _RET_IP_);
  142. kmem_cache_free(extent_state_cache, state);
  143. }
  144. }
  145. static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
  146. struct rb_node *node)
  147. {
  148. struct rb_node **p = &root->rb_node;
  149. struct rb_node *parent = NULL;
  150. struct tree_entry *entry;
  151. while (*p) {
  152. parent = *p;
  153. entry = rb_entry(parent, struct tree_entry, rb_node);
  154. if (offset < entry->start)
  155. p = &(*p)->rb_left;
  156. else if (offset > entry->end)
  157. p = &(*p)->rb_right;
  158. else
  159. return parent;
  160. }
  161. entry = rb_entry(node, struct tree_entry, rb_node);
  162. rb_link_node(node, parent, p);
  163. rb_insert_color(node, root);
  164. return NULL;
  165. }
  166. static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
  167. struct rb_node **prev_ret,
  168. struct rb_node **next_ret)
  169. {
  170. struct rb_root *root = &tree->state;
  171. struct rb_node *n = root->rb_node;
  172. struct rb_node *prev = NULL;
  173. struct rb_node *orig_prev = NULL;
  174. struct tree_entry *entry;
  175. struct tree_entry *prev_entry = NULL;
  176. while (n) {
  177. entry = rb_entry(n, struct tree_entry, rb_node);
  178. prev = n;
  179. prev_entry = entry;
  180. if (offset < entry->start)
  181. n = n->rb_left;
  182. else if (offset > entry->end)
  183. n = n->rb_right;
  184. else
  185. return n;
  186. }
  187. if (prev_ret) {
  188. orig_prev = prev;
  189. while (prev && offset > prev_entry->end) {
  190. prev = rb_next(prev);
  191. prev_entry = rb_entry(prev, struct tree_entry, rb_node);
  192. }
  193. *prev_ret = prev;
  194. prev = orig_prev;
  195. }
  196. if (next_ret) {
  197. prev_entry = rb_entry(prev, struct tree_entry, rb_node);
  198. while (prev && offset < prev_entry->start) {
  199. prev = rb_prev(prev);
  200. prev_entry = rb_entry(prev, struct tree_entry, rb_node);
  201. }
  202. *next_ret = prev;
  203. }
  204. return NULL;
  205. }
  206. static inline struct rb_node *tree_search(struct extent_io_tree *tree,
  207. u64 offset)
  208. {
  209. struct rb_node *prev = NULL;
  210. struct rb_node *ret;
  211. ret = __etree_search(tree, offset, &prev, NULL);
  212. if (!ret)
  213. return prev;
  214. return ret;
  215. }
  216. static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
  217. struct extent_state *other)
  218. {
  219. if (tree->ops && tree->ops->merge_extent_hook)
  220. tree->ops->merge_extent_hook(tree->mapping->host, new,
  221. other);
  222. }
  223. static void merge_state(struct extent_io_tree *tree,
  224. struct extent_state *state)
  225. {
  226. struct extent_state *other;
  227. struct rb_node *other_node;
  228. if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
  229. return;
  230. other_node = rb_prev(&state->rb_node);
  231. if (other_node) {
  232. other = rb_entry(other_node, struct extent_state, rb_node);
  233. if (other->end == state->start - 1 &&
  234. other->state == state->state) {
  235. merge_cb(tree, state, other);
  236. state->start = other->start;
  237. other->tree = NULL;
  238. rb_erase(&other->rb_node, &tree->state);
  239. free_extent_state(other);
  240. }
  241. }
  242. other_node = rb_next(&state->rb_node);
  243. if (other_node) {
  244. other = rb_entry(other_node, struct extent_state, rb_node);
  245. if (other->start == state->end + 1 &&
  246. other->state == state->state) {
  247. merge_cb(tree, state, other);
  248. state->end = other->end;
  249. other->tree = NULL;
  250. rb_erase(&other->rb_node, &tree->state);
  251. free_extent_state(other);
  252. }
  253. }
  254. }
  255. static void set_state_cb(struct extent_io_tree *tree,
  256. struct extent_state *state, int *bits)
  257. {
  258. if (tree->ops && tree->ops->set_bit_hook)
  259. tree->ops->set_bit_hook(tree->mapping->host, state, bits);
  260. }
  261. static void clear_state_cb(struct extent_io_tree *tree,
  262. struct extent_state *state, int *bits)
  263. {
  264. if (tree->ops && tree->ops->clear_bit_hook)
  265. tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
  266. }
  267. static void set_state_bits(struct extent_io_tree *tree,
  268. struct extent_state *state, int *bits);
  269. static int insert_state(struct extent_io_tree *tree,
  270. struct extent_state *state, u64 start, u64 end,
  271. int *bits)
  272. {
  273. struct rb_node *node;
  274. if (end < start) {
  275. printk(KERN_ERR "btrfs end < start %llu %llu\n",
  276. (unsigned long long)end,
  277. (unsigned long long)start);
  278. WARN_ON(1);
  279. }
  280. state->start = start;
  281. state->end = end;
  282. set_state_bits(tree, state, bits);
  283. node = tree_insert(&tree->state, end, &state->rb_node);
  284. if (node) {
  285. struct extent_state *found;
  286. found = rb_entry(node, struct extent_state, rb_node);
  287. printk(KERN_ERR "btrfs found node %llu %llu on insert of "
  288. "%llu %llu\n", (unsigned long long)found->start,
  289. (unsigned long long)found->end,
  290. (unsigned long long)start, (unsigned long long)end);
  291. return -EEXIST;
  292. }
  293. state->tree = tree;
  294. merge_state(tree, state);
  295. return 0;
  296. }
  297. static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
  298. u64 split)
  299. {
  300. if (tree->ops && tree->ops->split_extent_hook)
  301. tree->ops->split_extent_hook(tree->mapping->host, orig, split);
  302. }
  303. static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
  304. struct extent_state *prealloc, u64 split)
  305. {
  306. struct rb_node *node;
  307. split_cb(tree, orig, split);
  308. prealloc->start = orig->start;
  309. prealloc->end = split - 1;
  310. prealloc->state = orig->state;
  311. orig->start = split;
  312. node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
  313. if (node) {
  314. free_extent_state(prealloc);
  315. return -EEXIST;
  316. }
  317. prealloc->tree = tree;
  318. return 0;
  319. }
  320. static struct extent_state *next_state(struct extent_state *state)
  321. {
  322. struct rb_node *next = rb_next(&state->rb_node);
  323. if (next)
  324. return rb_entry(next, struct extent_state, rb_node);
  325. else
  326. return NULL;
  327. }
  328. static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
  329. struct extent_state *state,
  330. int *bits, int wake)
  331. {
  332. struct extent_state *next;
  333. int bits_to_clear = *bits & ~EXTENT_CTLBITS;
  334. if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
  335. u64 range = state->end - state->start + 1;
  336. WARN_ON(range > tree->dirty_bytes);
  337. tree->dirty_bytes -= range;
  338. }
  339. clear_state_cb(tree, state, bits);
  340. state->state &= ~bits_to_clear;
  341. if (wake)
  342. wake_up(&state->wq);
  343. if (state->state == 0) {
  344. next = next_state(state);
  345. if (state->tree) {
  346. rb_erase(&state->rb_node, &tree->state);
  347. state->tree = NULL;
  348. free_extent_state(state);
  349. } else {
  350. WARN_ON(1);
  351. }
  352. } else {
  353. merge_state(tree, state);
  354. next = next_state(state);
  355. }
  356. return next;
  357. }
  358. static struct extent_state *
  359. alloc_extent_state_atomic(struct extent_state *prealloc)
  360. {
  361. if (!prealloc)
  362. prealloc = alloc_extent_state(GFP_ATOMIC);
  363. return prealloc;
  364. }
  365. void extent_io_tree_panic(struct extent_io_tree *tree, int err)
  366. {
  367. btrfs_panic(tree_fs_info(tree), err, "Locking error: "
  368. "Extent tree was modified by another "
  369. "thread while locked.");
  370. }
  371. int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
  372. int bits, int wake, int delete,
  373. struct extent_state **cached_state,
  374. gfp_t mask)
  375. {
  376. struct extent_state *state;
  377. struct extent_state *cached;
  378. struct extent_state *prealloc = NULL;
  379. struct rb_node *node;
  380. u64 last_end;
  381. int err;
  382. int clear = 0;
  383. if (delete)
  384. bits |= ~EXTENT_CTLBITS;
  385. bits |= EXTENT_FIRST_DELALLOC;
  386. if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
  387. clear = 1;
  388. again:
  389. if (!prealloc && (mask & __GFP_WAIT)) {
  390. prealloc = alloc_extent_state(mask);
  391. if (!prealloc)
  392. return -ENOMEM;
  393. }
  394. spin_lock(&tree->lock);
  395. if (cached_state) {
  396. cached = *cached_state;
  397. if (clear) {
  398. *cached_state = NULL;
  399. cached_state = NULL;
  400. }
  401. if (cached && cached->tree && cached->start <= start &&
  402. cached->end > start) {
  403. if (clear)
  404. atomic_dec(&cached->refs);
  405. state = cached;
  406. goto hit_next;
  407. }
  408. if (clear)
  409. free_extent_state(cached);
  410. }
  411. node = tree_search(tree, start);
  412. if (!node)
  413. goto out;
  414. state = rb_entry(node, struct extent_state, rb_node);
  415. hit_next:
  416. if (state->start > end)
  417. goto out;
  418. WARN_ON(state->end < start);
  419. last_end = state->end;
  420. if (!(state->state & bits)) {
  421. state = next_state(state);
  422. goto next;
  423. }
  424. if (state->start < start) {
  425. prealloc = alloc_extent_state_atomic(prealloc);
  426. BUG_ON(!prealloc);
  427. err = split_state(tree, state, prealloc, start);
  428. if (err)
  429. extent_io_tree_panic(tree, err);
  430. prealloc = NULL;
  431. if (err)
  432. goto out;
  433. if (state->end <= end) {
  434. clear_state_bit(tree, state, &bits, wake);
  435. if (last_end == (u64)-1)
  436. goto out;
  437. start = last_end + 1;
  438. }
  439. goto search_again;
  440. }
  441. if (state->start <= end && state->end > end) {
  442. prealloc = alloc_extent_state_atomic(prealloc);
  443. BUG_ON(!prealloc);
  444. err = split_state(tree, state, prealloc, end + 1);
  445. if (err)
  446. extent_io_tree_panic(tree, err);
  447. if (wake)
  448. wake_up(&state->wq);
  449. clear_state_bit(tree, prealloc, &bits, wake);
  450. prealloc = NULL;
  451. goto out;
  452. }
  453. state = clear_state_bit(tree, state, &bits, wake);
  454. next:
  455. if (last_end == (u64)-1)
  456. goto out;
  457. start = last_end + 1;
  458. if (start <= end && state && !need_resched())
  459. goto hit_next;
  460. goto search_again;
  461. out:
  462. spin_unlock(&tree->lock);
  463. if (prealloc)
  464. free_extent_state(prealloc);
  465. return 0;
  466. search_again:
  467. if (start > end)
  468. goto out;
  469. spin_unlock(&tree->lock);
  470. if (mask & __GFP_WAIT)
  471. cond_resched();
  472. goto again;
  473. }
  474. static void wait_on_state(struct extent_io_tree *tree,
  475. struct extent_state *state)
  476. __releases(tree->lock)
  477. __acquires(tree->lock)
  478. {
  479. DEFINE_WAIT(wait);
  480. prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
  481. spin_unlock(&tree->lock);
  482. schedule();
  483. spin_lock(&tree->lock);
  484. finish_wait(&state->wq, &wait);
  485. }
  486. void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
  487. {
  488. struct extent_state *state;
  489. struct rb_node *node;
  490. spin_lock(&tree->lock);
  491. again:
  492. while (1) {
  493. node = tree_search(tree, start);
  494. if (!node)
  495. break;
  496. state = rb_entry(node, struct extent_state, rb_node);
  497. if (state->start > end)
  498. goto out;
  499. if (state->state & bits) {
  500. start = state->start;
  501. atomic_inc(&state->refs);
  502. wait_on_state(tree, state);
  503. free_extent_state(state);
  504. goto again;
  505. }
  506. start = state->end + 1;
  507. if (start > end)
  508. break;
  509. cond_resched_lock(&tree->lock);
  510. }
  511. out:
  512. spin_unlock(&tree->lock);
  513. }
  514. static void set_state_bits(struct extent_io_tree *tree,
  515. struct extent_state *state,
  516. int *bits)
  517. {
  518. int bits_to_set = *bits & ~EXTENT_CTLBITS;
  519. set_state_cb(tree, state, bits);
  520. if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
  521. u64 range = state->end - state->start + 1;
  522. tree->dirty_bytes += range;
  523. }
  524. state->state |= bits_to_set;
  525. }
  526. static void cache_state(struct extent_state *state,
  527. struct extent_state **cached_ptr)
  528. {
  529. if (cached_ptr && !(*cached_ptr)) {
  530. if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
  531. *cached_ptr = state;
  532. atomic_inc(&state->refs);
  533. }
  534. }
  535. }
  536. static void uncache_state(struct extent_state **cached_ptr)
  537. {
  538. if (cached_ptr && (*cached_ptr)) {
  539. struct extent_state *state = *cached_ptr;
  540. *cached_ptr = NULL;
  541. free_extent_state(state);
  542. }
  543. }
  544. static int __must_check
  545. __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
  546. int bits, int exclusive_bits, u64 *failed_start,
  547. struct extent_state **cached_state, gfp_t mask)
  548. {
  549. struct extent_state *state;
  550. struct extent_state *prealloc = NULL;
  551. struct rb_node *node;
  552. int err = 0;
  553. u64 last_start;
  554. u64 last_end;
  555. bits |= EXTENT_FIRST_DELALLOC;
  556. again:
  557. if (!prealloc && (mask & __GFP_WAIT)) {
  558. prealloc = alloc_extent_state(mask);
  559. BUG_ON(!prealloc);
  560. }
  561. spin_lock(&tree->lock);
  562. if (cached_state && *cached_state) {
  563. state = *cached_state;
  564. if (state->start <= start && state->end > start &&
  565. state->tree) {
  566. node = &state->rb_node;
  567. goto hit_next;
  568. }
  569. }
  570. node = tree_search(tree, start);
  571. if (!node) {
  572. prealloc = alloc_extent_state_atomic(prealloc);
  573. BUG_ON(!prealloc);
  574. err = insert_state(tree, prealloc, start, end, &bits);
  575. if (err)
  576. extent_io_tree_panic(tree, err);
  577. prealloc = NULL;
  578. goto out;
  579. }
  580. state = rb_entry(node, struct extent_state, rb_node);
  581. hit_next:
  582. last_start = state->start;
  583. last_end = state->end;
  584. if (state->start == start && state->end <= end) {
  585. struct rb_node *next_node;
  586. if (state->state & exclusive_bits) {
  587. *failed_start = state->start;
  588. err = -EEXIST;
  589. goto out;
  590. }
  591. set_state_bits(tree, state, &bits);
  592. cache_state(state, cached_state);
  593. merge_state(tree, state);
  594. if (last_end == (u64)-1)
  595. goto out;
  596. start = last_end + 1;
  597. next_node = rb_next(&state->rb_node);
  598. if (next_node && start < end && prealloc && !need_resched()) {
  599. state = rb_entry(next_node, struct extent_state,
  600. rb_node);
  601. if (state->start == start)
  602. goto hit_next;
  603. }
  604. goto search_again;
  605. }
  606. if (state->start < start) {
  607. if (state->state & exclusive_bits) {
  608. *failed_start = start;
  609. err = -EEXIST;
  610. goto out;
  611. }
  612. prealloc = alloc_extent_state_atomic(prealloc);
  613. BUG_ON(!prealloc);
  614. err = split_state(tree, state, prealloc, start);
  615. if (err)
  616. extent_io_tree_panic(tree, err);
  617. prealloc = NULL;
  618. if (err)
  619. goto out;
  620. if (state->end <= end) {
  621. set_state_bits(tree, state, &bits);
  622. cache_state(state, cached_state);
  623. merge_state(tree, state);
  624. if (last_end == (u64)-1)
  625. goto out;
  626. start = last_end + 1;
  627. }
  628. goto search_again;
  629. }
  630. if (state->start > start) {
  631. u64 this_end;
  632. if (end < last_start)
  633. this_end = end;
  634. else
  635. this_end = last_start - 1;
  636. prealloc = alloc_extent_state_atomic(prealloc);
  637. BUG_ON(!prealloc);
  638. err = insert_state(tree, prealloc, start, this_end,
  639. &bits);
  640. if (err)
  641. extent_io_tree_panic(tree, err);
  642. cache_state(prealloc, cached_state);
  643. prealloc = NULL;
  644. start = this_end + 1;
  645. goto search_again;
  646. }
  647. if (state->start <= end && state->end > end) {
  648. if (state->state & exclusive_bits) {
  649. *failed_start = start;
  650. err = -EEXIST;
  651. goto out;
  652. }
  653. prealloc = alloc_extent_state_atomic(prealloc);
  654. BUG_ON(!prealloc);
  655. err = split_state(tree, state, prealloc, end + 1);
  656. if (err)
  657. extent_io_tree_panic(tree, err);
  658. set_state_bits(tree, prealloc, &bits);
  659. cache_state(prealloc, cached_state);
  660. merge_state(tree, prealloc);
  661. prealloc = NULL;
  662. goto out;
  663. }
  664. goto search_again;
  665. out:
  666. spin_unlock(&tree->lock);
  667. if (prealloc)
  668. free_extent_state(prealloc);
  669. return err;
  670. search_again:
  671. if (start > end)
  672. goto out;
  673. spin_unlock(&tree->lock);
  674. if (mask & __GFP_WAIT)
  675. cond_resched();
  676. goto again;
  677. }
  678. int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
  679. u64 *failed_start, struct extent_state **cached_state,
  680. gfp_t mask)
  681. {
  682. return __set_extent_bit(tree, start, end, bits, 0, failed_start,
  683. cached_state, mask);
  684. }
  685. int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
  686. int bits, int clear_bits, gfp_t mask)
  687. {
  688. struct extent_state *state;
  689. struct extent_state *prealloc = NULL;
  690. struct rb_node *node;
  691. int err = 0;
  692. u64 last_start;
  693. u64 last_end;
  694. again:
  695. if (!prealloc && (mask & __GFP_WAIT)) {
  696. prealloc = alloc_extent_state(mask);
  697. if (!prealloc)
  698. return -ENOMEM;
  699. }
  700. spin_lock(&tree->lock);
  701. node = tree_search(tree, start);
  702. if (!node) {
  703. prealloc = alloc_extent_state_atomic(prealloc);
  704. if (!prealloc) {
  705. err = -ENOMEM;
  706. goto out;
  707. }
  708. err = insert_state(tree, prealloc, start, end, &bits);
  709. prealloc = NULL;
  710. if (err)
  711. extent_io_tree_panic(tree, err);
  712. goto out;
  713. }
  714. state = rb_entry(node, struct extent_state, rb_node);
  715. hit_next:
  716. last_start = state->start;
  717. last_end = state->end;
  718. if (state->start == start && state->end <= end) {
  719. struct rb_node *next_node;
  720. set_state_bits(tree, state, &bits);
  721. clear_state_bit(tree, state, &clear_bits, 0);
  722. if (last_end == (u64)-1)
  723. goto out;
  724. start = last_end + 1;
  725. next_node = rb_next(&state->rb_node);
  726. if (next_node && start < end && prealloc && !need_resched()) {
  727. state = rb_entry(next_node, struct extent_state,
  728. rb_node);
  729. if (state->start == start)
  730. goto hit_next;
  731. }
  732. goto search_again;
  733. }
  734. if (state->start < start) {
  735. prealloc = alloc_extent_state_atomic(prealloc);
  736. if (!prealloc) {
  737. err = -ENOMEM;
  738. goto out;
  739. }
  740. err = split_state(tree, state, prealloc, start);
  741. if (err)
  742. extent_io_tree_panic(tree, err);
  743. prealloc = NULL;
  744. if (err)
  745. goto out;
  746. if (state->end <= end) {
  747. set_state_bits(tree, state, &bits);
  748. clear_state_bit(tree, state, &clear_bits, 0);
  749. if (last_end == (u64)-1)
  750. goto out;
  751. start = last_end + 1;
  752. }
  753. goto search_again;
  754. }
  755. if (state->start > start) {
  756. u64 this_end;
  757. if (end < last_start)
  758. this_end = end;
  759. else
  760. this_end = last_start - 1;
  761. prealloc = alloc_extent_state_atomic(prealloc);
  762. if (!prealloc) {
  763. err = -ENOMEM;
  764. goto out;
  765. }
  766. err = insert_state(tree, prealloc, start, this_end,
  767. &bits);
  768. if (err)
  769. extent_io_tree_panic(tree, err);
  770. prealloc = NULL;
  771. start = this_end + 1;
  772. goto search_again;
  773. }
  774. if (state->start <= end && state->end > end) {
  775. prealloc = alloc_extent_state_atomic(prealloc);
  776. if (!prealloc) {
  777. err = -ENOMEM;
  778. goto out;
  779. }
  780. err = split_state(tree, state, prealloc, end + 1);
  781. if (err)
  782. extent_io_tree_panic(tree, err);
  783. set_state_bits(tree, prealloc, &bits);
  784. clear_state_bit(tree, prealloc, &clear_bits, 0);
  785. prealloc = NULL;
  786. goto out;
  787. }
  788. goto search_again;
  789. out:
  790. spin_unlock(&tree->lock);
  791. if (prealloc)
  792. free_extent_state(prealloc);
  793. return err;
  794. search_again:
  795. if (start > end)
  796. goto out;
  797. spin_unlock(&tree->lock);
  798. if (mask & __GFP_WAIT)
  799. cond_resched();
  800. goto again;
  801. }
  802. int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
  803. gfp_t mask)
  804. {
  805. return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
  806. NULL, mask);
  807. }
  808. int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
  809. int bits, gfp_t mask)
  810. {
  811. return set_extent_bit(tree, start, end, bits, NULL,
  812. NULL, mask);
  813. }
  814. int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
  815. int bits, gfp_t mask)
  816. {
  817. return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
  818. }
  819. int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
  820. struct extent_state **cached_state, gfp_t mask)
  821. {
  822. return set_extent_bit(tree, start, end,
  823. EXTENT_DELALLOC | EXTENT_UPTODATE,
  824. NULL, cached_state, mask);
  825. }
  826. int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
  827. gfp_t mask)
  828. {
  829. return clear_extent_bit(tree, start, end,
  830. EXTENT_DIRTY | EXTENT_DELALLOC |
  831. EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
  832. }
  833. int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
  834. gfp_t mask)
  835. {
  836. return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
  837. NULL, mask);
  838. }
  839. int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
  840. struct extent_state **cached_state, gfp_t mask)
  841. {
  842. return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
  843. cached_state, mask);
  844. }
  845. static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
  846. u64 end, struct extent_state **cached_state,
  847. gfp_t mask)
  848. {
  849. return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
  850. cached_state, mask);
  851. }
  852. int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
  853. int bits, struct extent_state **cached_state)
  854. {
  855. int err;
  856. u64 failed_start;
  857. while (1) {
  858. err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
  859. EXTENT_LOCKED, &failed_start,
  860. cached_state, GFP_NOFS);
  861. if (err == -EEXIST) {
  862. wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
  863. start = failed_start;
  864. } else
  865. break;
  866. WARN_ON(start > end);
  867. }
  868. return err;
  869. }
  870. int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
  871. {
  872. return lock_extent_bits(tree, start, end, 0, NULL);
  873. }
  874. int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
  875. {
  876. int err;
  877. u64 failed_start;
  878. err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
  879. &failed_start, NULL, GFP_NOFS);
  880. if (err == -EEXIST) {
  881. if (failed_start > start)
  882. clear_extent_bit(tree, start, failed_start - 1,
  883. EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
  884. return 0;
  885. }
  886. return 1;
  887. }
  888. int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
  889. struct extent_state **cached, gfp_t mask)
  890. {
  891. return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
  892. mask);
  893. }
  894. int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
  895. {
  896. return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
  897. GFP_NOFS);
  898. }
  899. static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
  900. {
  901. unsigned long index = start >> PAGE_CACHE_SHIFT;
  902. unsigned long end_index = end >> PAGE_CACHE_SHIFT;
  903. struct page *page;
  904. while (index <= end_index) {
  905. page = find_get_page(tree->mapping, index);
  906. BUG_ON(!page);
  907. set_page_writeback(page);
  908. page_cache_release(page);
  909. index++;
  910. }
  911. return 0;
  912. }
  913. struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
  914. u64 start, int bits)
  915. {
  916. struct rb_node *node;
  917. struct extent_state *state;
  918. node = tree_search(tree, start);
  919. if (!node)
  920. goto out;
  921. while (1) {
  922. state = rb_entry(node, struct extent_state, rb_node);
  923. if (state->end >= start && (state->state & bits))
  924. return state;
  925. node = rb_next(node);
  926. if (!node)
  927. break;
  928. }
  929. out:
  930. return NULL;
  931. }
  932. int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
  933. u64 *start_ret, u64 *end_ret, int bits)
  934. {
  935. struct extent_state *state;
  936. int ret = 1;
  937. spin_lock(&tree->lock);
  938. state = find_first_extent_bit_state(tree, start, bits);
  939. if (state) {
  940. *start_ret = state->start;
  941. *end_ret = state->end;
  942. ret = 0;
  943. }
  944. spin_unlock(&tree->lock);
  945. return ret;
  946. }
  947. static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
  948. u64 *start, u64 *end, u64 max_bytes,
  949. struct extent_state **cached_state)
  950. {
  951. struct rb_node *node;
  952. struct extent_state *state;
  953. u64 cur_start = *start;
  954. u64 found = 0;
  955. u64 total_bytes = 0;
  956. spin_lock(&tree->lock);
  957. node = tree_search(tree, cur_start);
  958. if (!node) {
  959. if (!found)
  960. *end = (u64)-1;
  961. goto out;
  962. }
  963. while (1) {
  964. state = rb_entry(node, struct extent_state, rb_node);
  965. if (found && (state->start != cur_start ||
  966. (state->state & EXTENT_BOUNDARY))) {
  967. goto out;
  968. }
  969. if (!(state->state & EXTENT_DELALLOC)) {
  970. if (!found)
  971. *end = state->end;
  972. goto out;
  973. }
  974. if (!found) {
  975. *start = state->start;
  976. *cached_state = state;
  977. atomic_inc(&state->refs);
  978. }
  979. found++;
  980. *end = state->end;
  981. cur_start = state->end + 1;
  982. node = rb_next(node);
  983. if (!node)
  984. break;
  985. total_bytes += state->end - state->start + 1;
  986. if (total_bytes >= max_bytes)
  987. break;
  988. }
  989. out:
  990. spin_unlock(&tree->lock);
  991. return found;
  992. }
  993. static noinline void __unlock_for_delalloc(struct inode *inode,
  994. struct page *locked_page,
  995. u64 start, u64 end)
  996. {
  997. int ret;
  998. struct page *pages[16];
  999. unsigned long index = start >> PAGE_CACHE_SHIFT;
  1000. unsigned long end_index = end >> PAGE_CACHE_SHIFT;
  1001. unsigned long nr_pages = end_index - index + 1;
  1002. int i;
  1003. if (index == locked_page->index && end_index == index)
  1004. return;
  1005. while (nr_pages > 0) {
  1006. ret = find_get_pages_contig(inode->i_mapping, index,
  1007. min_t(unsigned long, nr_pages,
  1008. ARRAY_SIZE(pages)), pages);
  1009. for (i = 0; i < ret; i++) {
  1010. if (pages[i] != locked_page)
  1011. unlock_page(pages[i]);
  1012. page_cache_release(pages[i]);
  1013. }
  1014. nr_pages -= ret;
  1015. index += ret;
  1016. cond_resched();
  1017. }
  1018. }
  1019. static noinline int lock_delalloc_pages(struct inode *inode,
  1020. struct page *locked_page,
  1021. u64 delalloc_start,
  1022. u64 delalloc_end)
  1023. {
  1024. unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
  1025. unsigned long start_index = index;
  1026. unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
  1027. unsigned long pages_locked = 0;
  1028. struct page *pages[16];
  1029. unsigned long nrpages;
  1030. int ret;
  1031. int i;
  1032. if (index == locked_page->index && index == end_index)
  1033. return 0;
  1034. nrpages = end_index - index + 1;
  1035. while (nrpages > 0) {
  1036. ret = find_get_pages_contig(inode->i_mapping, index,
  1037. min_t(unsigned long,
  1038. nrpages, ARRAY_SIZE(pages)), pages);
  1039. if (ret == 0) {
  1040. ret = -EAGAIN;
  1041. goto done;
  1042. }
  1043. for (i = 0; i < ret; i++) {
  1044. if (pages[i] != locked_page) {
  1045. lock_page(pages[i]);
  1046. if (!PageDirty(pages[i]) ||
  1047. pages[i]->mapping != inode->i_mapping) {
  1048. ret = -EAGAIN;
  1049. unlock_page(pages[i]);
  1050. page_cache_release(pages[i]);
  1051. goto done;
  1052. }
  1053. }
  1054. page_cache_release(pages[i]);
  1055. pages_locked++;
  1056. }
  1057. nrpages -= ret;
  1058. index += ret;
  1059. cond_resched();
  1060. }
  1061. ret = 0;
  1062. done:
  1063. if (ret && pages_locked) {
  1064. __unlock_for_delalloc(inode, locked_page,
  1065. delalloc_start,
  1066. ((u64)(start_index + pages_locked - 1)) <<
  1067. PAGE_CACHE_SHIFT);
  1068. }
  1069. return ret;
  1070. }
  1071. static noinline u64 find_lock_delalloc_range(struct inode *inode,
  1072. struct extent_io_tree *tree,
  1073. struct page *locked_page,
  1074. u64 *start, u64 *end,
  1075. u64 max_bytes)
  1076. {
  1077. u64 delalloc_start;
  1078. u64 delalloc_end;
  1079. u64 found;
  1080. struct extent_state *cached_state = NULL;
  1081. int ret;
  1082. int loops = 0;
  1083. again:
  1084. delalloc_start = *start;
  1085. delalloc_end = 0;
  1086. found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
  1087. max_bytes, &cached_state);
  1088. if (!found || delalloc_end <= *start) {
  1089. *start = delalloc_start;
  1090. *end = delalloc_end;
  1091. free_extent_state(cached_state);
  1092. return found;
  1093. }
  1094. if (delalloc_start < *start)
  1095. delalloc_start = *start;
  1096. if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
  1097. delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
  1098. ret = lock_delalloc_pages(inode, locked_page,
  1099. delalloc_start, delalloc_end);
  1100. if (ret == -EAGAIN) {
  1101. free_extent_state(cached_state);
  1102. if (!loops) {
  1103. unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
  1104. max_bytes = PAGE_CACHE_SIZE - offset;
  1105. loops = 1;
  1106. goto again;
  1107. } else {
  1108. found = 0;
  1109. goto out_failed;
  1110. }
  1111. }
  1112. BUG_ON(ret);
  1113. lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
  1114. ret = test_range_bit(tree, delalloc_start, delalloc_end,
  1115. EXTENT_DELALLOC, 1, cached_state);
  1116. if (!ret) {
  1117. unlock_extent_cached(tree, delalloc_start, delalloc_end,
  1118. &cached_state, GFP_NOFS);
  1119. __unlock_for_delalloc(inode, locked_page,
  1120. delalloc_start, delalloc_end);
  1121. cond_resched();
  1122. goto again;
  1123. }
  1124. free_extent_state(cached_state);
  1125. *start = delalloc_start;
  1126. *end = delalloc_end;
  1127. out_failed:
  1128. return found;
  1129. }
  1130. int extent_clear_unlock_delalloc(struct inode *inode,
  1131. struct extent_io_tree *tree,
  1132. u64 start, u64 end, struct page *locked_page,
  1133. unsigned long op)
  1134. {
  1135. int ret;
  1136. struct page *pages[16];
  1137. unsigned long index = start >> PAGE_CACHE_SHIFT;
  1138. unsigned long end_index = end >> PAGE_CACHE_SHIFT;
  1139. unsigned long nr_pages = end_index - index + 1;
  1140. int i;
  1141. int clear_bits = 0;
  1142. if (op & EXTENT_CLEAR_UNLOCK)
  1143. clear_bits |= EXTENT_LOCKED;
  1144. if (op & EXTENT_CLEAR_DIRTY)
  1145. clear_bits |= EXTENT_DIRTY;
  1146. if (op & EXTENT_CLEAR_DELALLOC)
  1147. clear_bits |= EXTENT_DELALLOC;
  1148. clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
  1149. if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
  1150. EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
  1151. EXTENT_SET_PRIVATE2)))
  1152. return 0;
  1153. while (nr_pages > 0) {
  1154. ret = find_get_pages_contig(inode->i_mapping, index,
  1155. min_t(unsigned long,
  1156. nr_pages, ARRAY_SIZE(pages)), pages);
  1157. for (i = 0; i < ret; i++) {
  1158. if (op & EXTENT_SET_PRIVATE2)
  1159. SetPagePrivate2(pages[i]);
  1160. if (pages[i] == locked_page) {
  1161. page_cache_release(pages[i]);
  1162. continue;
  1163. }
  1164. if (op & EXTENT_CLEAR_DIRTY)
  1165. clear_page_dirty_for_io(pages[i]);
  1166. if (op & EXTENT_SET_WRITEBACK)
  1167. set_page_writeback(pages[i]);
  1168. if (op & EXTENT_END_WRITEBACK)
  1169. end_page_writeback(pages[i]);
  1170. if (op & EXTENT_CLEAR_UNLOCK_PAGE)
  1171. unlock_page(pages[i]);
  1172. page_cache_release(pages[i]);
  1173. }
  1174. nr_pages -= ret;
  1175. index += ret;
  1176. cond_resched();
  1177. }
  1178. return 0;
  1179. }
  1180. u64 count_range_bits(struct extent_io_tree *tree,
  1181. u64 *start, u64 search_end, u64 max_bytes,
  1182. unsigned long bits, int contig)
  1183. {
  1184. struct rb_node *node;
  1185. struct extent_state *state;
  1186. u64 cur_start = *start;
  1187. u64 total_bytes = 0;
  1188. u64 last = 0;
  1189. int found = 0;
  1190. if (search_end <= cur_start) {
  1191. WARN_ON(1);
  1192. return 0;
  1193. }
  1194. spin_lock(&tree->lock);
  1195. if (cur_start == 0 && bits == EXTENT_DIRTY) {
  1196. total_bytes = tree->dirty_bytes;
  1197. goto out;
  1198. }
  1199. node = tree_search(tree, cur_start);
  1200. if (!node)
  1201. goto out;
  1202. while (1) {
  1203. state = rb_entry(node, struct extent_state, rb_node);
  1204. if (state->start > search_end)
  1205. break;
  1206. if (contig && found && state->start > last + 1)
  1207. break;
  1208. if (state->end >= cur_start && (state->state & bits) == bits) {
  1209. total_bytes += min(search_end, state->end) + 1 -
  1210. max(cur_start, state->start);
  1211. if (total_bytes >= max_bytes)
  1212. break;
  1213. if (!found) {
  1214. *start = max(cur_start, state->start);
  1215. found = 1;
  1216. }
  1217. last = state->end;
  1218. } else if (contig && found) {
  1219. break;
  1220. }
  1221. node = rb_next(node);
  1222. if (!node)
  1223. break;
  1224. }
  1225. out:
  1226. spin_unlock(&tree->lock);
  1227. return total_bytes;
  1228. }
  1229. int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
  1230. {
  1231. struct rb_node *node;
  1232. struct extent_state *state;
  1233. int ret = 0;
  1234. spin_lock(&tree->lock);
  1235. node = tree_search(tree, start);
  1236. if (!node) {
  1237. ret = -ENOENT;
  1238. goto out;
  1239. }
  1240. state = rb_entry(node, struct extent_state, rb_node);
  1241. if (state->start != start) {
  1242. ret = -ENOENT;
  1243. goto out;
  1244. }
  1245. state->private = private;
  1246. out:
  1247. spin_unlock(&tree->lock);
  1248. return ret;
  1249. }
  1250. int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
  1251. {
  1252. struct rb_node *node;
  1253. struct extent_state *state;
  1254. int ret = 0;
  1255. spin_lock(&tree->lock);
  1256. node = tree_search(tree, start);
  1257. if (!node) {
  1258. ret = -ENOENT;
  1259. goto out;
  1260. }
  1261. state = rb_entry(node, struct extent_state, rb_node);
  1262. if (state->start != start) {
  1263. ret = -ENOENT;
  1264. goto out;
  1265. }
  1266. *private = state->private;
  1267. out:
  1268. spin_unlock(&tree->lock);
  1269. return ret;
  1270. }
  1271. int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
  1272. int bits, int filled, struct extent_state *cached)
  1273. {
  1274. struct extent_state *state = NULL;
  1275. struct rb_node *node;
  1276. int bitset = 0;
  1277. spin_lock(&tree->lock);
  1278. if (cached && cached->tree && cached->start <= start &&
  1279. cached->end > start)
  1280. node = &cached->rb_node;
  1281. else
  1282. node = tree_search(tree, start);
  1283. while (node && start <= end) {
  1284. state = rb_entry(node, struct extent_state, rb_node);
  1285. if (filled && state->start > start) {
  1286. bitset = 0;
  1287. break;
  1288. }
  1289. if (state->start > end)
  1290. break;
  1291. if (state->state & bits) {
  1292. bitset = 1;
  1293. if (!filled)
  1294. break;
  1295. } else if (filled) {
  1296. bitset = 0;
  1297. break;
  1298. }
  1299. if (state->end == (u64)-1)
  1300. break;
  1301. start = state->end + 1;
  1302. if (start > end)
  1303. break;
  1304. node = rb_next(node);
  1305. if (!node) {
  1306. if (filled)
  1307. bitset = 0;
  1308. break;
  1309. }
  1310. }
  1311. spin_unlock(&tree->lock);
  1312. return bitset;
  1313. }
  1314. static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
  1315. {
  1316. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  1317. u64 end = start + PAGE_CACHE_SIZE - 1;
  1318. if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
  1319. SetPageUptodate(page);
  1320. }
  1321. static void check_page_locked(struct extent_io_tree *tree, struct page *page)
  1322. {
  1323. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  1324. u64 end = start + PAGE_CACHE_SIZE - 1;
  1325. if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
  1326. unlock_page(page);
  1327. }
  1328. static void check_page_writeback(struct extent_io_tree *tree,
  1329. struct page *page)
  1330. {
  1331. end_page_writeback(page);
  1332. }
  1333. struct io_failure_record {
  1334. struct page *page;
  1335. u64 start;
  1336. u64 len;
  1337. u64 logical;
  1338. unsigned long bio_flags;
  1339. int this_mirror;
  1340. int failed_mirror;
  1341. int in_validation;
  1342. };
  1343. static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
  1344. int did_repair)
  1345. {
  1346. int ret;
  1347. int err = 0;
  1348. struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
  1349. set_state_private(failure_tree, rec->start, 0);
  1350. ret = clear_extent_bits(failure_tree, rec->start,
  1351. rec->start + rec->len - 1,
  1352. EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
  1353. if (ret)
  1354. err = ret;
  1355. if (did_repair) {
  1356. ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
  1357. rec->start + rec->len - 1,
  1358. EXTENT_DAMAGED, GFP_NOFS);
  1359. if (ret && !err)
  1360. err = ret;
  1361. }
  1362. kfree(rec);
  1363. return err;
  1364. }
  1365. static void repair_io_failure_callback(struct bio *bio, int err)
  1366. {
  1367. complete(bio->bi_private);
  1368. }
  1369. int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
  1370. u64 length, u64 logical, struct page *page,
  1371. int mirror_num)
  1372. {
  1373. struct bio *bio;
  1374. struct btrfs_device *dev;
  1375. DECLARE_COMPLETION_ONSTACK(compl);
  1376. u64 map_length = 0;
  1377. u64 sector;
  1378. struct btrfs_bio *bbio = NULL;
  1379. int ret;
  1380. BUG_ON(!mirror_num);
  1381. bio = bio_alloc(GFP_NOFS, 1);
  1382. if (!bio)
  1383. return -EIO;
  1384. bio->bi_private = &compl;
  1385. bio->bi_end_io = repair_io_failure_callback;
  1386. bio->bi_size = 0;
  1387. map_length = length;
  1388. ret = btrfs_map_block(map_tree, WRITE, logical,
  1389. &map_length, &bbio, mirror_num);
  1390. if (ret) {
  1391. bio_put(bio);
  1392. return -EIO;
  1393. }
  1394. BUG_ON(mirror_num != bbio->mirror_num);
  1395. sector = bbio->stripes[mirror_num-1].physical >> 9;
  1396. bio->bi_sector = sector;
  1397. dev = bbio->stripes[mirror_num-1].dev;
  1398. kfree(bbio);
  1399. if (!dev || !dev->bdev || !dev->writeable) {
  1400. bio_put(bio);
  1401. return -EIO;
  1402. }
  1403. bio->bi_bdev = dev->bdev;
  1404. bio_add_page(bio, page, length, start-page_offset(page));
  1405. btrfsic_submit_bio(WRITE_SYNC, bio);
  1406. wait_for_completion(&compl);
  1407. if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  1408. bio_put(bio);
  1409. return -EIO;
  1410. }
  1411. printk(KERN_INFO "btrfs read error corrected: ino %lu off %llu (dev %s "
  1412. "sector %llu)\n", page->mapping->host->i_ino, start,
  1413. dev->name, sector);
  1414. bio_put(bio);
  1415. return 0;
  1416. }
  1417. int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
  1418. int mirror_num)
  1419. {
  1420. struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
  1421. u64 start = eb->start;
  1422. unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
  1423. int ret = 0;
  1424. for (i = 0; i < num_pages; i++) {
  1425. struct page *p = extent_buffer_page(eb, i);
  1426. ret = repair_io_failure(map_tree, start, PAGE_CACHE_SIZE,
  1427. start, p, mirror_num);
  1428. if (ret)
  1429. break;
  1430. start += PAGE_CACHE_SIZE;
  1431. }
  1432. return ret;
  1433. }
  1434. static int clean_io_failure(u64 start, struct page *page)
  1435. {
  1436. u64 private;
  1437. u64 private_failure;
  1438. struct io_failure_record *failrec;
  1439. struct btrfs_mapping_tree *map_tree;
  1440. struct extent_state *state;
  1441. int num_copies;
  1442. int did_repair = 0;
  1443. int ret;
  1444. struct inode *inode = page->mapping->host;
  1445. private = 0;
  1446. ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
  1447. (u64)-1, 1, EXTENT_DIRTY, 0);
  1448. if (!ret)
  1449. return 0;
  1450. ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
  1451. &private_failure);
  1452. if (ret)
  1453. return 0;
  1454. failrec = (struct io_failure_record *)(unsigned long) private_failure;
  1455. BUG_ON(!failrec->this_mirror);
  1456. if (failrec->in_validation) {
  1457. pr_debug("clean_io_failure: freeing dummy error at %llu\n",
  1458. failrec->start);
  1459. did_repair = 1;
  1460. goto out;
  1461. }
  1462. spin_lock(&BTRFS_I(inode)->io_tree.lock);
  1463. state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
  1464. failrec->start,
  1465. EXTENT_LOCKED);
  1466. spin_unlock(&BTRFS_I(inode)->io_tree.lock);
  1467. if (state && state->start == failrec->start) {
  1468. map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
  1469. num_copies = btrfs_num_copies(map_tree, failrec->logical,
  1470. failrec->len);
  1471. if (num_copies > 1) {
  1472. ret = repair_io_failure(map_tree, start, failrec->len,
  1473. failrec->logical, page,
  1474. failrec->failed_mirror);
  1475. did_repair = !ret;
  1476. }
  1477. }
  1478. out:
  1479. if (!ret)
  1480. ret = free_io_failure(inode, failrec, did_repair);
  1481. return ret;
  1482. }
  1483. static int bio_readpage_error(struct bio *failed_bio, struct page *page,
  1484. u64 start, u64 end, int failed_mirror,
  1485. struct extent_state *state)
  1486. {
  1487. struct io_failure_record *failrec = NULL;
  1488. u64 private;
  1489. struct extent_map *em;
  1490. struct inode *inode = page->mapping->host;
  1491. struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
  1492. struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
  1493. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  1494. struct bio *bio;
  1495. int num_copies;
  1496. int ret;
  1497. int read_mode;
  1498. u64 logical;
  1499. BUG_ON(failed_bio->bi_rw & REQ_WRITE);
  1500. ret = get_state_private(failure_tree, start, &private);
  1501. if (ret) {
  1502. failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
  1503. if (!failrec)
  1504. return -ENOMEM;
  1505. failrec->start = start;
  1506. failrec->len = end - start + 1;
  1507. failrec->this_mirror = 0;
  1508. failrec->bio_flags = 0;
  1509. failrec->in_validation = 0;
  1510. read_lock(&em_tree->lock);
  1511. em = lookup_extent_mapping(em_tree, start, failrec->len);
  1512. if (!em) {
  1513. read_unlock(&em_tree->lock);
  1514. kfree(failrec);
  1515. return -EIO;
  1516. }
  1517. if (em->start > start || em->start + em->len < start) {
  1518. free_extent_map(em);
  1519. em = NULL;
  1520. }
  1521. read_unlock(&em_tree->lock);
  1522. if (!em || IS_ERR(em)) {
  1523. kfree(failrec);
  1524. return -EIO;
  1525. }
  1526. logical = start - em->start;
  1527. logical = em->block_start + logical;
  1528. if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
  1529. logical = em->block_start;
  1530. failrec->bio_flags = EXTENT_BIO_COMPRESSED;
  1531. extent_set_compress_type(&failrec->bio_flags,
  1532. em->compress_type);
  1533. }
  1534. pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
  1535. "len=%llu\n", logical, start, failrec->len);
  1536. failrec->logical = logical;
  1537. free_extent_map(em);
  1538. ret = set_extent_bits(failure_tree, start, end,
  1539. EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
  1540. if (ret >= 0)
  1541. ret = set_state_private(failure_tree, start,
  1542. (u64)(unsigned long)failrec);
  1543. if (ret >= 0)
  1544. ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
  1545. GFP_NOFS);
  1546. if (ret < 0) {
  1547. kfree(failrec);
  1548. return ret;
  1549. }
  1550. } else {
  1551. failrec = (struct io_failure_record *)(unsigned long)private;
  1552. pr_debug("bio_readpage_error: (found) logical=%llu, "
  1553. "start=%llu, len=%llu, validation=%d\n",
  1554. failrec->logical, failrec->start, failrec->len,
  1555. failrec->in_validation);
  1556. }
  1557. num_copies = btrfs_num_copies(
  1558. &BTRFS_I(inode)->root->fs_info->mapping_tree,
  1559. failrec->logical, failrec->len);
  1560. if (num_copies == 1) {
  1561. pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
  1562. "state=%p, num_copies=%d, next_mirror %d, "
  1563. "failed_mirror %d\n", state, num_copies,
  1564. failrec->this_mirror, failed_mirror);
  1565. free_io_failure(inode, failrec, 0);
  1566. return -EIO;
  1567. }
  1568. if (!state) {
  1569. spin_lock(&tree->lock);
  1570. state = find_first_extent_bit_state(tree, failrec->start,
  1571. EXTENT_LOCKED);
  1572. if (state && state->start != failrec->start)
  1573. state = NULL;
  1574. spin_unlock(&tree->lock);
  1575. }
  1576. if (failed_bio->bi_vcnt > 1) {
  1577. BUG_ON(failrec->in_validation);
  1578. failrec->in_validation = 1;
  1579. failrec->this_mirror = failed_mirror;
  1580. read_mode = READ_SYNC | REQ_FAILFAST_DEV;
  1581. } else {
  1582. if (failrec->in_validation) {
  1583. BUG_ON(failrec->this_mirror != failed_mirror);
  1584. failrec->in_validation = 0;
  1585. failrec->this_mirror = 0;
  1586. }
  1587. failrec->failed_mirror = failed_mirror;
  1588. failrec->this_mirror++;
  1589. if (failrec->this_mirror == failed_mirror)
  1590. failrec->this_mirror++;
  1591. read_mode = READ_SYNC;
  1592. }
  1593. if (!state || failrec->this_mirror > num_copies) {
  1594. pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
  1595. "next_mirror %d, failed_mirror %d\n", state,
  1596. num_copies, failrec->this_mirror, failed_mirror);
  1597. free_io_failure(inode, failrec, 0);
  1598. return -EIO;
  1599. }
  1600. bio = bio_alloc(GFP_NOFS, 1);
  1601. if (!bio) {
  1602. free_io_failure(inode, failrec, 0);
  1603. return -EIO;
  1604. }
  1605. bio->bi_private = state;
  1606. bio->bi_end_io = failed_bio->bi_end_io;
  1607. bio->bi_sector = failrec->logical >> 9;
  1608. bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  1609. bio->bi_size = 0;
  1610. bio_add_page(bio, page, failrec->len, start - page_offset(page));
  1611. pr_debug("bio_readpage_error: submitting new read[%#x] to "
  1612. "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
  1613. failrec->this_mirror, num_copies, failrec->in_validation);
  1614. ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
  1615. failrec->this_mirror,
  1616. failrec->bio_flags, 0);
  1617. return ret;
  1618. }
  1619. int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
  1620. {
  1621. int uptodate = (err == 0);
  1622. struct extent_io_tree *tree;
  1623. int ret;
  1624. tree = &BTRFS_I(page->mapping->host)->io_tree;
  1625. if (tree->ops && tree->ops->writepage_end_io_hook) {
  1626. ret = tree->ops->writepage_end_io_hook(page, start,
  1627. end, NULL, uptodate);
  1628. if (ret)
  1629. uptodate = 0;
  1630. }
  1631. if (!uptodate && tree->ops &&
  1632. tree->ops->writepage_io_failed_hook) {
  1633. ret = tree->ops->writepage_io_failed_hook(NULL, page,
  1634. start, end, NULL);
  1635. if (ret == 0)
  1636. return 1;
  1637. }
  1638. if (!uptodate) {
  1639. clear_extent_uptodate(tree, start, end, NULL, GFP_NOFS);
  1640. ClearPageUptodate(page);
  1641. SetPageError(page);
  1642. }
  1643. return 0;
  1644. }
  1645. static void end_bio_extent_writepage(struct bio *bio, int err)
  1646. {
  1647. struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
  1648. struct extent_io_tree *tree;
  1649. u64 start;
  1650. u64 end;
  1651. int whole_page;
  1652. do {
  1653. struct page *page = bvec->bv_page;
  1654. tree = &BTRFS_I(page->mapping->host)->io_tree;
  1655. start = ((u64)page->index << PAGE_CACHE_SHIFT) +
  1656. bvec->bv_offset;
  1657. end = start + bvec->bv_len - 1;
  1658. if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
  1659. whole_page = 1;
  1660. else
  1661. whole_page = 0;
  1662. if (--bvec >= bio->bi_io_vec)
  1663. prefetchw(&bvec->bv_page->flags);
  1664. if (end_extent_writepage(page, err, start, end))
  1665. continue;
  1666. if (whole_page)
  1667. end_page_writeback(page);
  1668. else
  1669. check_page_writeback(tree, page);
  1670. } while (bvec >= bio->bi_io_vec);
  1671. bio_put(bio);
  1672. }
  1673. static void end_bio_extent_readpage(struct bio *bio, int err)
  1674. {
  1675. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  1676. struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
  1677. struct bio_vec *bvec = bio->bi_io_vec;
  1678. struct extent_io_tree *tree;
  1679. u64 start;
  1680. u64 end;
  1681. int whole_page;
  1682. int mirror;
  1683. int ret;
  1684. if (err)
  1685. uptodate = 0;
  1686. do {
  1687. struct page *page = bvec->bv_page;
  1688. struct extent_state *cached = NULL;
  1689. struct extent_state *state;
  1690. pr_debug("end_bio_extent_readpage: bi_vcnt=%d, idx=%d, err=%d, "
  1691. "mirror=%ld\n", bio->bi_vcnt, bio->bi_idx, err,
  1692. (long int)bio->bi_bdev);
  1693. tree = &BTRFS_I(page->mapping->host)->io_tree;
  1694. start = ((u64)page->index << PAGE_CACHE_SHIFT) +
  1695. bvec->bv_offset;
  1696. end = start + bvec->bv_len - 1;
  1697. if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
  1698. whole_page = 1;
  1699. else
  1700. whole_page = 0;
  1701. if (++bvec <= bvec_end)
  1702. prefetchw(&bvec->bv_page->flags);
  1703. spin_lock(&tree->lock);
  1704. state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
  1705. if (state && state->start == start) {
  1706. cache_state(state, &cached);
  1707. }
  1708. spin_unlock(&tree->lock);
  1709. mirror = (int)(unsigned long)bio->bi_bdev;
  1710. if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
  1711. ret = tree->ops->readpage_end_io_hook(page, start, end,
  1712. state, mirror);
  1713. if (ret)
  1714. uptodate = 0;
  1715. else
  1716. clean_io_failure(start, page);
  1717. }
  1718. if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
  1719. ret = tree->ops->readpage_io_failed_hook(page, mirror);
  1720. if (!ret && !err &&
  1721. test_bit(BIO_UPTODATE, &bio->bi_flags))
  1722. uptodate = 1;
  1723. } else if (!uptodate) {
  1724. ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
  1725. if (ret == 0) {
  1726. uptodate =
  1727. test_bit(BIO_UPTODATE, &bio->bi_flags);
  1728. if (err)
  1729. uptodate = 0;
  1730. uncache_state(&cached);
  1731. continue;
  1732. }
  1733. }
  1734. if (uptodate && tree->track_uptodate) {
  1735. set_extent_uptodate(tree, start, end, &cached,
  1736. GFP_ATOMIC);
  1737. }
  1738. unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
  1739. if (whole_page) {
  1740. if (uptodate) {
  1741. SetPageUptodate(page);
  1742. } else {
  1743. ClearPageUptodate(page);
  1744. SetPageError(page);
  1745. }
  1746. unlock_page(page);
  1747. } else {
  1748. if (uptodate) {
  1749. check_page_uptodate(tree, page);
  1750. } else {
  1751. ClearPageUptodate(page);
  1752. SetPageError(page);
  1753. }
  1754. check_page_locked(tree, page);
  1755. }
  1756. } while (bvec <= bvec_end);
  1757. bio_put(bio);
  1758. }
  1759. struct bio *
  1760. btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
  1761. gfp_t gfp_flags)
  1762. {
  1763. struct bio *bio;
  1764. bio = bio_alloc(gfp_flags, nr_vecs);
  1765. if (bio == NULL && (current->flags & PF_MEMALLOC)) {
  1766. while (!bio && (nr_vecs /= 2))
  1767. bio = bio_alloc(gfp_flags, nr_vecs);
  1768. }
  1769. if (bio) {
  1770. bio->bi_size = 0;
  1771. bio->bi_bdev = bdev;
  1772. bio->bi_sector = first_sector;
  1773. }
  1774. return bio;
  1775. }
  1776. static int __must_check submit_one_bio(int rw, struct bio *bio,
  1777. int mirror_num, unsigned long bio_flags)
  1778. {
  1779. int ret = 0;
  1780. struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
  1781. struct page *page = bvec->bv_page;
  1782. struct extent_io_tree *tree = bio->bi_private;
  1783. u64 start;
  1784. start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
  1785. bio->bi_private = NULL;
  1786. bio_get(bio);
  1787. if (tree->ops && tree->ops->submit_bio_hook)
  1788. ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
  1789. mirror_num, bio_flags, start);
  1790. else
  1791. btrfsic_submit_bio(rw, bio);
  1792. if (bio_flagged(bio, BIO_EOPNOTSUPP))
  1793. ret = -EOPNOTSUPP;
  1794. bio_put(bio);
  1795. return ret;
  1796. }
  1797. static int merge_bio(struct extent_io_tree *tree, struct page *page,
  1798. unsigned long offset, size_t size, struct bio *bio,
  1799. unsigned long bio_flags)
  1800. {
  1801. int ret = 0;
  1802. if (tree->ops && tree->ops->merge_bio_hook)
  1803. ret = tree->ops->merge_bio_hook(page, offset, size, bio,
  1804. bio_flags);
  1805. BUG_ON(ret < 0);
  1806. return ret;
  1807. }
  1808. static int submit_extent_page(int rw, struct extent_io_tree *tree,
  1809. struct page *page, sector_t sector,
  1810. size_t size, unsigned long offset,
  1811. struct block_device *bdev,
  1812. struct bio **bio_ret,
  1813. unsigned long max_pages,
  1814. bio_end_io_t end_io_func,
  1815. int mirror_num,
  1816. unsigned long prev_bio_flags,
  1817. unsigned long bio_flags)
  1818. {
  1819. int ret = 0;
  1820. struct bio *bio;
  1821. int nr;
  1822. int contig = 0;
  1823. int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
  1824. int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
  1825. size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
  1826. if (bio_ret && *bio_ret) {
  1827. bio = *bio_ret;
  1828. if (old_compressed)
  1829. contig = bio->bi_sector == sector;
  1830. else
  1831. contig = bio->bi_sector + (bio->bi_size >> 9) ==
  1832. sector;
  1833. if (prev_bio_flags != bio_flags || !contig ||
  1834. merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
  1835. bio_add_page(bio, page, page_size, offset) < page_size) {
  1836. ret = submit_one_bio(rw, bio, mirror_num,
  1837. prev_bio_flags);
  1838. if (ret < 0)
  1839. return ret;
  1840. bio = NULL;
  1841. } else {
  1842. return 0;
  1843. }
  1844. }
  1845. if (this_compressed)
  1846. nr = BIO_MAX_PAGES;
  1847. else
  1848. nr = bio_get_nr_vecs(bdev);
  1849. bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
  1850. if (!bio)
  1851. return -ENOMEM;
  1852. bio_add_page(bio, page, page_size, offset);
  1853. bio->bi_end_io = end_io_func;
  1854. bio->bi_private = tree;
  1855. if (bio_ret)
  1856. *bio_ret = bio;
  1857. else
  1858. ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
  1859. return ret;
  1860. }
  1861. void attach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
  1862. {
  1863. if (!PagePrivate(page)) {
  1864. SetPagePrivate(page);
  1865. page_cache_get(page);
  1866. set_page_private(page, (unsigned long)eb);
  1867. } else {
  1868. WARN_ON(page->private != (unsigned long)eb);
  1869. }
  1870. }
  1871. void set_page_extent_mapped(struct page *page)
  1872. {
  1873. if (!PagePrivate(page)) {
  1874. SetPagePrivate(page);
  1875. page_cache_get(page);
  1876. set_page_private(page, EXTENT_PAGE_PRIVATE);
  1877. }
  1878. }
  1879. static int __extent_read_full_page(struct extent_io_tree *tree,
  1880. struct page *page,
  1881. get_extent_t *get_extent,
  1882. struct bio **bio, int mirror_num,
  1883. unsigned long *bio_flags)
  1884. {
  1885. struct inode *inode = page->mapping->host;
  1886. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  1887. u64 page_end = start + PAGE_CACHE_SIZE - 1;
  1888. u64 end;
  1889. u64 cur = start;
  1890. u64 extent_offset;
  1891. u64 last_byte = i_size_read(inode);
  1892. u64 block_start;
  1893. u64 cur_end;
  1894. sector_t sector;
  1895. struct extent_map *em;
  1896. struct block_device *bdev;
  1897. struct btrfs_ordered_extent *ordered;
  1898. int ret;
  1899. int nr = 0;
  1900. size_t pg_offset = 0;
  1901. size_t iosize;
  1902. size_t disk_io_size;
  1903. size_t blocksize = inode->i_sb->s_blocksize;
  1904. unsigned long this_bio_flag = 0;
  1905. set_page_extent_mapped(page);
  1906. if (!PageUptodate(page)) {
  1907. if (cleancache_get_page(page) == 0) {
  1908. BUG_ON(blocksize != PAGE_SIZE);
  1909. goto out;
  1910. }
  1911. }
  1912. end = page_end;
  1913. while (1) {
  1914. lock_extent(tree, start, end);
  1915. ordered = btrfs_lookup_ordered_extent(inode, start);
  1916. if (!ordered)
  1917. break;
  1918. unlock_extent(tree, start, end);
  1919. btrfs_start_ordered_extent(inode, ordered, 1);
  1920. btrfs_put_ordered_extent(ordered);
  1921. }
  1922. if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
  1923. char *userpage;
  1924. size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
  1925. if (zero_offset) {
  1926. iosize = PAGE_CACHE_SIZE - zero_offset;
  1927. userpage = kmap_atomic(page);
  1928. memset(userpage + zero_offset, 0, iosize);
  1929. flush_dcache_page(page);
  1930. kunmap_atomic(userpage);
  1931. }
  1932. }
  1933. while (cur <= end) {
  1934. if (cur >= last_byte) {
  1935. char *userpage;
  1936. struct extent_state *cached = NULL;
  1937. iosize = PAGE_CACHE_SIZE - pg_offset;
  1938. userpage = kmap_atomic(page);
  1939. memset(userpage + pg_offset, 0, iosize);
  1940. flush_dcache_page(page);
  1941. kunmap_atomic(userpage);
  1942. set_extent_uptodate(tree, cur, cur + iosize - 1,
  1943. &cached, GFP_NOFS);
  1944. unlock_extent_cached(tree, cur, cur + iosize - 1,
  1945. &cached, GFP_NOFS);
  1946. break;
  1947. }
  1948. em = get_extent(inode, page, pg_offset, cur,
  1949. end - cur + 1, 0);
  1950. if (IS_ERR_OR_NULL(em)) {
  1951. SetPageError(page);
  1952. unlock_extent(tree, cur, end);
  1953. break;
  1954. }
  1955. extent_offset = cur - em->start;
  1956. BUG_ON(extent_map_end(em) <= cur);
  1957. BUG_ON(end < cur);
  1958. if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
  1959. this_bio_flag = EXTENT_BIO_COMPRESSED;
  1960. extent_set_compress_type(&this_bio_flag,
  1961. em->compress_type);
  1962. }
  1963. iosize = min(extent_map_end(em) - cur, end - cur + 1);
  1964. cur_end = min(extent_map_end(em) - 1, end);
  1965. iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
  1966. if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
  1967. disk_io_size = em->block_len;
  1968. sector = em->block_start >> 9;
  1969. } else {
  1970. sector = (em->block_start + extent_offset) >> 9;
  1971. disk_io_size = iosize;
  1972. }
  1973. bdev = em->bdev;
  1974. block_start = em->block_start;
  1975. if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
  1976. block_start = EXTENT_MAP_HOLE;
  1977. free_extent_map(em);
  1978. em = NULL;
  1979. if (block_start == EXTENT_MAP_HOLE) {
  1980. char *userpage;
  1981. struct extent_state *cached = NULL;
  1982. userpage = kmap_atomic(page);
  1983. memset(userpage + pg_offset, 0, iosize);
  1984. flush_dcache_page(page);
  1985. kunmap_atomic(userpage);
  1986. set_extent_uptodate(tree, cur, cur + iosize - 1,
  1987. &cached, GFP_NOFS);
  1988. unlock_extent_cached(tree, cur, cur + iosize - 1,
  1989. &cached, GFP_NOFS);
  1990. cur = cur + iosize;
  1991. pg_offset += iosize;
  1992. continue;
  1993. }
  1994. if (test_range_bit(tree, cur, cur_end,
  1995. EXTENT_UPTODATE, 1, NULL)) {
  1996. check_page_uptodate(tree, page);
  1997. unlock_extent(tree, cur, cur + iosize - 1);
  1998. cur = cur + iosize;
  1999. pg_offset += iosize;
  2000. continue;
  2001. }
  2002. if (block_start == EXTENT_MAP_INLINE) {
  2003. SetPageError(page);
  2004. unlock_extent(tree, cur, cur + iosize - 1);
  2005. cur = cur + iosize;
  2006. pg_offset += iosize;
  2007. continue;
  2008. }
  2009. ret = 0;
  2010. if (tree->ops && tree->ops->readpage_io_hook) {
  2011. ret = tree->ops->readpage_io_hook(page, cur,
  2012. cur + iosize - 1);
  2013. }
  2014. if (!ret) {
  2015. unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
  2016. pnr -= page->index;
  2017. ret = submit_extent_page(READ, tree, page,
  2018. sector, disk_io_size, pg_offset,
  2019. bdev, bio, pnr,
  2020. end_bio_extent_readpage, mirror_num,
  2021. *bio_flags,
  2022. this_bio_flag);
  2023. BUG_ON(ret == -ENOMEM);
  2024. nr++;
  2025. *bio_flags = this_bio_flag;
  2026. }
  2027. if (ret)
  2028. SetPageError(page);
  2029. cur = cur + iosize;
  2030. pg_offset += iosize;
  2031. }
  2032. out:
  2033. if (!nr) {
  2034. if (!PageError(page))
  2035. SetPageUptodate(page);
  2036. unlock_page(page);
  2037. }
  2038. return 0;
  2039. }
  2040. int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
  2041. get_extent_t *get_extent, int mirror_num)
  2042. {
  2043. struct bio *bio = NULL;
  2044. unsigned long bio_flags = 0;
  2045. int ret;
  2046. ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
  2047. &bio_flags);
  2048. if (bio)
  2049. ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
  2050. return ret;
  2051. }
  2052. static noinline void update_nr_written(struct page *page,
  2053. struct writeback_control *wbc,
  2054. unsigned long nr_written)
  2055. {
  2056. wbc->nr_to_write -= nr_written;
  2057. if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
  2058. wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
  2059. page->mapping->writeback_index = page->index + nr_written;
  2060. }
  2061. static int __extent_writepage(struct page *page, struct writeback_control *wbc,
  2062. void *data)
  2063. {
  2064. struct inode *inode = page->mapping->host;
  2065. struct extent_page_data *epd = data;
  2066. struct extent_io_tree *tree = epd->tree;
  2067. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  2068. u64 delalloc_start;
  2069. u64 page_end = start + PAGE_CACHE_SIZE - 1;
  2070. u64 end;
  2071. u64 cur = start;
  2072. u64 extent_offset;
  2073. u64 last_byte = i_size_read(inode);
  2074. u64 block_start;
  2075. u64 iosize;
  2076. sector_t sector;
  2077. struct extent_state *cached_state = NULL;
  2078. struct extent_map *em;
  2079. struct block_device *bdev;
  2080. int ret;
  2081. int nr = 0;
  2082. size_t pg_offset = 0;
  2083. size_t blocksize;
  2084. loff_t i_size = i_size_read(inode);
  2085. unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
  2086. u64 nr_delalloc;
  2087. u64 delalloc_end;
  2088. int page_started;
  2089. int compressed;
  2090. int write_flags;
  2091. unsigned long nr_written = 0;
  2092. bool fill_delalloc = true;
  2093. if (wbc->sync_mode == WB_SYNC_ALL)
  2094. write_flags = WRITE_SYNC;
  2095. else
  2096. write_flags = WRITE;
  2097. trace___extent_writepage(page, inode, wbc);
  2098. WARN_ON(!PageLocked(page));
  2099. ClearPageError(page);
  2100. pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
  2101. if (page->index > end_index ||
  2102. (page->index == end_index && !pg_offset)) {
  2103. page->mapping->a_ops->invalidatepage(page, 0);
  2104. unlock_page(page);
  2105. return 0;
  2106. }
  2107. if (page->index == end_index) {
  2108. char *userpage;
  2109. userpage = kmap_atomic(page);
  2110. memset(userpage + pg_offset, 0,
  2111. PAGE_CACHE_SIZE - pg_offset);
  2112. kunmap_atomic(userpage);
  2113. flush_dcache_page(page);
  2114. }
  2115. pg_offset = 0;
  2116. set_page_extent_mapped(page);
  2117. if (!tree->ops || !tree->ops->fill_delalloc)
  2118. fill_delalloc = false;
  2119. delalloc_start = start;
  2120. delalloc_end = 0;
  2121. page_started = 0;
  2122. if (!epd->extent_locked && fill_delalloc) {
  2123. u64 delalloc_to_write = 0;
  2124. update_nr_written(page, wbc, 0);
  2125. while (delalloc_end < page_end) {
  2126. nr_delalloc = find_lock_delalloc_range(inode, tree,
  2127. page,
  2128. &delalloc_start,
  2129. &delalloc_end,
  2130. 128 * 1024 * 1024);
  2131. if (nr_delalloc == 0) {
  2132. delalloc_start = delalloc_end + 1;
  2133. continue;
  2134. }
  2135. ret = tree->ops->fill_delalloc(inode, page,
  2136. delalloc_start,
  2137. delalloc_end,
  2138. &page_started,
  2139. &nr_written);
  2140. if (ret) {
  2141. SetPageError(page);
  2142. goto done;
  2143. }
  2144. delalloc_to_write += (delalloc_end - delalloc_start +
  2145. PAGE_CACHE_SIZE) >>
  2146. PAGE_CACHE_SHIFT;
  2147. delalloc_start = delalloc_end + 1;
  2148. }
  2149. if (wbc->nr_to_write < delalloc_to_write) {
  2150. int thresh = 8192;
  2151. if (delalloc_to_write < thresh * 2)
  2152. thresh = delalloc_to_write;
  2153. wbc->nr_to_write = min_t(u64, delalloc_to_write,
  2154. thresh);
  2155. }
  2156. if (page_started) {
  2157. ret = 0;
  2158. wbc->nr_to_write -= nr_written;
  2159. goto done_unlocked;
  2160. }
  2161. }
  2162. if (tree->ops && tree->ops->writepage_start_hook) {
  2163. ret = tree->ops->writepage_start_hook(page, start,
  2164. page_end);
  2165. if (ret) {
  2166. if (ret == -EBUSY)
  2167. wbc->pages_skipped++;
  2168. else
  2169. redirty_page_for_writepage(wbc, page);
  2170. update_nr_written(page, wbc, nr_written);
  2171. unlock_page(page);
  2172. ret = 0;
  2173. goto done_unlocked;
  2174. }
  2175. }
  2176. update_nr_written(page, wbc, nr_written + 1);
  2177. end = page_end;
  2178. if (last_byte <= start) {
  2179. if (tree->ops && tree->ops->writepage_end_io_hook)
  2180. tree->ops->writepage_end_io_hook(page, start,
  2181. page_end, NULL, 1);
  2182. goto done;
  2183. }
  2184. blocksize = inode->i_sb->s_blocksize;
  2185. while (cur <= end) {
  2186. if (cur >= last_byte) {
  2187. if (tree->ops && tree->ops->writepage_end_io_hook)
  2188. tree->ops->writepage_end_io_hook(page, cur,
  2189. page_end, NULL, 1);
  2190. break;
  2191. }
  2192. em = epd->get_extent(inode, page, pg_offset, cur,
  2193. end - cur + 1, 1);
  2194. if (IS_ERR_OR_NULL(em)) {
  2195. SetPageError(page);
  2196. break;
  2197. }
  2198. extent_offset = cur - em->start;
  2199. BUG_ON(extent_map_end(em) <= cur);
  2200. BUG_ON(end < cur);
  2201. iosize = min(extent_map_end(em) - cur, end - cur + 1);
  2202. iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
  2203. sector = (em->block_start + extent_offset) >> 9;
  2204. bdev = em->bdev;
  2205. block_start = em->block_start;
  2206. compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
  2207. free_extent_map(em);
  2208. em = NULL;
  2209. /*
  2210. * compressed and inline extents are written through other
  2211. * paths in the FS
  2212. */
  2213. if (compressed || block_start == EXTENT_MAP_HOLE ||
  2214. block_start == EXTENT_MAP_INLINE) {
  2215. if (!compressed && tree->ops &&
  2216. tree->ops->writepage_end_io_hook)
  2217. tree->ops->writepage_end_io_hook(page, cur,
  2218. cur + iosize - 1,
  2219. NULL, 1);
  2220. else if (compressed) {
  2221. nr++;
  2222. }
  2223. cur += iosize;
  2224. pg_offset += iosize;
  2225. continue;
  2226. }
  2227. if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
  2228. EXTENT_DIRTY, 0, NULL)) {
  2229. cur = cur + iosize;
  2230. pg_offset += iosize;
  2231. continue;
  2232. }
  2233. if (tree->ops && tree->ops->writepage_io_hook) {
  2234. ret = tree->ops->writepage_io_hook(page, cur,
  2235. cur + iosize - 1);
  2236. } else {
  2237. ret = 0;
  2238. }
  2239. if (ret) {
  2240. SetPageError(page);
  2241. } else {
  2242. unsigned long max_nr = end_index + 1;
  2243. set_range_writeback(tree, cur, cur + iosize - 1);
  2244. if (!PageWriteback(page)) {
  2245. printk(KERN_ERR "btrfs warning page %lu not "
  2246. "writeback, cur %llu end %llu\n",
  2247. page->index, (unsigned long long)cur,
  2248. (unsigned long long)end);
  2249. }
  2250. ret = submit_extent_page(write_flags, tree, page,
  2251. sector, iosize, pg_offset,
  2252. bdev, &epd->bio, max_nr,
  2253. end_bio_extent_writepage,
  2254. 0, 0, 0);
  2255. if (ret)
  2256. SetPageError(page);
  2257. }
  2258. cur = cur + iosize;
  2259. pg_offset += iosize;
  2260. nr++;
  2261. }
  2262. done:
  2263. if (nr == 0) {
  2264. set_page_writeback(page);
  2265. end_page_writeback(page);
  2266. }
  2267. unlock_page(page);
  2268. done_unlocked:
  2269. free_extent_state(cached_state);
  2270. return 0;
  2271. }
  2272. static int eb_wait(void *word)
  2273. {
  2274. io_schedule();
  2275. return 0;
  2276. }
  2277. static void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
  2278. {
  2279. wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
  2280. TASK_UNINTERRUPTIBLE);
  2281. }
  2282. static int lock_extent_buffer_for_io(struct extent_buffer *eb,
  2283. struct btrfs_fs_info *fs_info,
  2284. struct extent_page_data *epd)
  2285. {
  2286. unsigned long i, num_pages;
  2287. int flush = 0;
  2288. int ret = 0;
  2289. if (!btrfs_try_tree_write_lock(eb)) {
  2290. flush = 1;
  2291. flush_write_bio(epd);
  2292. btrfs_tree_lock(eb);
  2293. }
  2294. if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
  2295. btrfs_tree_unlock(eb);
  2296. if (!epd->sync_io)
  2297. return 0;
  2298. if (!flush) {
  2299. flush_write_bio(epd);
  2300. flush = 1;
  2301. }
  2302. while (1) {
  2303. wait_on_extent_buffer_writeback(eb);
  2304. btrfs_tree_lock(eb);
  2305. if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
  2306. break;
  2307. btrfs_tree_unlock(eb);
  2308. }
  2309. }
  2310. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
  2311. set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
  2312. btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
  2313. spin_lock(&fs_info->delalloc_lock);
  2314. if (fs_info->dirty_metadata_bytes >= eb->len)
  2315. fs_info->dirty_metadata_bytes -= eb->len;
  2316. else
  2317. WARN_ON(1);
  2318. spin_unlock(&fs_info->delalloc_lock);
  2319. ret = 1;
  2320. }
  2321. btrfs_tree_unlock(eb);
  2322. if (!ret)
  2323. return ret;
  2324. num_pages = num_extent_pages(eb->start, eb->len);
  2325. for (i = 0; i < num_pages; i++) {
  2326. struct page *p = extent_buffer_page(eb, i);
  2327. if (!trylock_page(p)) {
  2328. if (!flush) {
  2329. flush_write_bio(epd);
  2330. flush = 1;
  2331. }
  2332. lock_page(p);
  2333. }
  2334. }
  2335. return ret;
  2336. }
  2337. static void end_extent_buffer_writeback(struct extent_buffer *eb)
  2338. {
  2339. clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
  2340. smp_mb__after_clear_bit();
  2341. wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
  2342. }
  2343. static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
  2344. {
  2345. int uptodate = err == 0;
  2346. struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
  2347. struct extent_buffer *eb;
  2348. int done;
  2349. do {
  2350. struct page *page = bvec->bv_page;
  2351. bvec--;
  2352. eb = (struct extent_buffer *)page->private;
  2353. BUG_ON(!eb);
  2354. done = atomic_dec_and_test(&eb->io_pages);
  2355. if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
  2356. set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
  2357. ClearPageUptodate(page);
  2358. SetPageError(page);
  2359. }
  2360. end_page_writeback(page);
  2361. if (!done)
  2362. continue;
  2363. end_extent_buffer_writeback(eb);
  2364. } while (bvec >= bio->bi_io_vec);
  2365. bio_put(bio);
  2366. }
  2367. static int write_one_eb(struct extent_buffer *eb,
  2368. struct btrfs_fs_info *fs_info,
  2369. struct writeback_control *wbc,
  2370. struct extent_page_data *epd)
  2371. {
  2372. struct block_device *bdev = fs_info->fs_devices->latest_bdev;
  2373. u64 offset = eb->start;
  2374. unsigned long i, num_pages;
  2375. int rw = (epd->sync_io ? WRITE_SYNC : WRITE);
  2376. int ret;
  2377. clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
  2378. num_pages = num_extent_pages(eb->start, eb->len);
  2379. atomic_set(&eb->io_pages, num_pages);
  2380. for (i = 0; i < num_pages; i++) {
  2381. struct page *p = extent_buffer_page(eb, i);
  2382. clear_page_dirty_for_io(p);
  2383. set_page_writeback(p);
  2384. ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
  2385. PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
  2386. -1, end_bio_extent_buffer_writepage,
  2387. 0, 0, 0);
  2388. if (ret) {
  2389. set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
  2390. SetPageError(p);
  2391. if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
  2392. end_extent_buffer_writeback(eb);
  2393. ret = -EIO;
  2394. break;
  2395. }
  2396. offset += PAGE_CACHE_SIZE;
  2397. update_nr_written(p, wbc, 1);
  2398. unlock_page(p);
  2399. }
  2400. if (unlikely(ret)) {
  2401. for (; i < num_pages; i++) {
  2402. struct page *p = extent_buffer_page(eb, i);
  2403. unlock_page(p);
  2404. }
  2405. }
  2406. return ret;
  2407. }
  2408. int btree_write_cache_pages(struct address_space *mapping,
  2409. struct writeback_control *wbc)
  2410. {
  2411. struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
  2412. struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
  2413. struct extent_buffer *eb, *prev_eb = NULL;
  2414. struct extent_page_data epd = {
  2415. .bio = NULL,
  2416. .tree = tree,
  2417. .extent_locked = 0,
  2418. .sync_io = wbc->sync_mode == WB_SYNC_ALL,
  2419. };
  2420. int ret = 0;
  2421. int done = 0;
  2422. int nr_to_write_done = 0;
  2423. struct pagevec pvec;
  2424. int nr_pages;
  2425. pgoff_t index;
  2426. pgoff_t end;
  2427. int scanned = 0;
  2428. int tag;
  2429. pagevec_init(&pvec, 0);
  2430. if (wbc->range_cyclic) {
  2431. index = mapping->writeback_index;
  2432. end = -1;
  2433. } else {
  2434. index = wbc->range_start >> PAGE_CACHE_SHIFT;
  2435. end = wbc->range_end >> PAGE_CACHE_SHIFT;
  2436. scanned = 1;
  2437. }
  2438. if (wbc->sync_mode == WB_SYNC_ALL)
  2439. tag = PAGECACHE_TAG_TOWRITE;
  2440. else
  2441. tag = PAGECACHE_TAG_DIRTY;
  2442. retry:
  2443. if (wbc->sync_mode == WB_SYNC_ALL)
  2444. tag_pages_for_writeback(mapping, index, end);
  2445. while (!done && !nr_to_write_done && (index <= end) &&
  2446. (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
  2447. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
  2448. unsigned i;
  2449. scanned = 1;
  2450. for (i = 0; i < nr_pages; i++) {
  2451. struct page *page = pvec.pages[i];
  2452. if (!PagePrivate(page))
  2453. continue;
  2454. if (!wbc->range_cyclic && page->index > end) {
  2455. done = 1;
  2456. break;
  2457. }
  2458. eb = (struct extent_buffer *)page->private;
  2459. if (!eb) {
  2460. WARN_ON(1);
  2461. continue;
  2462. }
  2463. if (eb == prev_eb)
  2464. continue;
  2465. if (!atomic_inc_not_zero(&eb->refs)) {
  2466. WARN_ON(1);
  2467. continue;
  2468. }
  2469. prev_eb = eb;
  2470. ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
  2471. if (!ret) {
  2472. free_extent_buffer(eb);
  2473. continue;
  2474. }
  2475. ret = write_one_eb(eb, fs_info, wbc, &epd);
  2476. if (ret) {
  2477. done = 1;
  2478. free_extent_buffer(eb);
  2479. break;
  2480. }
  2481. free_extent_buffer(eb);
  2482. nr_to_write_done = wbc->nr_to_write <= 0;
  2483. }
  2484. pagevec_release(&pvec);
  2485. cond_resched();
  2486. }
  2487. if (!scanned && !done) {
  2488. scanned = 1;
  2489. index = 0;
  2490. goto retry;
  2491. }
  2492. flush_write_bio(&epd);
  2493. return ret;
  2494. }
  2495. /**
  2496. * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
  2497. * @mapping: address space structure to write
  2498. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  2499. * @writepage: function called for each page
  2500. * @data: data passed to writepage function
  2501. *
  2502. * If a page is already under I/O, write_cache_pages() skips it, even
  2503. * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
  2504. * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
  2505. * and msync() need to guarantee that all the data which was dirty at the time
  2506. * the call was made get new I/O started against them. If wbc->sync_mode is
  2507. * WB_SYNC_ALL then we were called for data integrity and we must wait for
  2508. * existing IO to complete.
  2509. */
  2510. static int extent_write_cache_pages(struct extent_io_tree *tree,
  2511. struct address_space *mapping,
  2512. struct writeback_control *wbc,
  2513. writepage_t writepage, void *data,
  2514. void (*flush_fn)(void *))
  2515. {
  2516. int ret = 0;
  2517. int done = 0;
  2518. int nr_to_write_done = 0;
  2519. struct pagevec pvec;
  2520. int nr_pages;
  2521. pgoff_t index;
  2522. pgoff_t end;
  2523. int scanned = 0;
  2524. int tag;
  2525. pagevec_init(&pvec, 0);
  2526. if (wbc->range_cyclic) {
  2527. index = mapping->writeback_index;
  2528. end = -1;
  2529. } else {
  2530. index = wbc->range_start >> PAGE_CACHE_SHIFT;
  2531. end = wbc->range_end >> PAGE_CACHE_SHIFT;
  2532. scanned = 1;
  2533. }
  2534. if (wbc->sync_mode == WB_SYNC_ALL)
  2535. tag = PAGECACHE_TAG_TOWRITE;
  2536. else
  2537. tag = PAGECACHE_TAG_DIRTY;
  2538. retry:
  2539. if (wbc->sync_mode == WB_SYNC_ALL)
  2540. tag_pages_for_writeback(mapping, index, end);
  2541. while (!done && !nr_to_write_done && (index <= end) &&
  2542. (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
  2543. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
  2544. unsigned i;
  2545. scanned = 1;
  2546. for (i = 0; i < nr_pages; i++) {
  2547. struct page *page = pvec.pages[i];
  2548. if (tree->ops &&
  2549. tree->ops->write_cache_pages_lock_hook) {
  2550. tree->ops->write_cache_pages_lock_hook(page,
  2551. data, flush_fn);
  2552. } else {
  2553. if (!trylock_page(page)) {
  2554. flush_fn(data);
  2555. lock_page(page);
  2556. }
  2557. }
  2558. if (unlikely(page->mapping != mapping)) {
  2559. unlock_page(page);
  2560. continue;
  2561. }
  2562. if (!wbc->range_cyclic && page->index > end) {
  2563. done = 1;
  2564. unlock_page(page);
  2565. continue;
  2566. }
  2567. if (wbc->sync_mode != WB_SYNC_NONE) {
  2568. if (PageWriteback(page))
  2569. flush_fn(data);
  2570. wait_on_page_writeback(page);
  2571. }
  2572. if (PageWriteback(page) ||
  2573. !clear_page_dirty_for_io(page)) {
  2574. unlock_page(page);
  2575. continue;
  2576. }
  2577. ret = (*writepage)(page, wbc, data);
  2578. if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
  2579. unlock_page(page);
  2580. ret = 0;
  2581. }
  2582. if (ret)
  2583. done = 1;
  2584. nr_to_write_done = wbc->nr_to_write <= 0;
  2585. }
  2586. pagevec_release(&pvec);
  2587. cond_resched();
  2588. }
  2589. if (!scanned && !done) {
  2590. scanned = 1;
  2591. index = 0;
  2592. goto retry;
  2593. }
  2594. return ret;
  2595. }
  2596. static void flush_epd_write_bio(struct extent_page_data *epd)
  2597. {
  2598. if (epd->bio) {
  2599. int rw = WRITE;
  2600. int ret;
  2601. if (epd->sync_io)
  2602. rw = WRITE_SYNC;
  2603. ret = submit_one_bio(rw, epd->bio, 0, 0);
  2604. BUG_ON(ret < 0);
  2605. epd->bio = NULL;
  2606. }
  2607. }
  2608. static noinline void flush_write_bio(void *data)
  2609. {
  2610. struct extent_page_data *epd = data;
  2611. flush_epd_write_bio(epd);
  2612. }
  2613. int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
  2614. get_extent_t *get_extent,
  2615. struct writeback_control *wbc)
  2616. {
  2617. int ret;
  2618. struct extent_page_data epd = {
  2619. .bio = NULL,
  2620. .tree = tree,
  2621. .get_extent = get_extent,
  2622. .extent_locked = 0,
  2623. .sync_io = wbc->sync_mode == WB_SYNC_ALL,
  2624. };
  2625. ret = __extent_writepage(page, wbc, &epd);
  2626. flush_epd_write_bio(&epd);
  2627. return ret;
  2628. }
  2629. int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
  2630. u64 start, u64 end, get_extent_t *get_extent,
  2631. int mode)
  2632. {
  2633. int ret = 0;
  2634. struct address_space *mapping = inode->i_mapping;
  2635. struct page *page;
  2636. unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
  2637. PAGE_CACHE_SHIFT;
  2638. struct extent_page_data epd = {
  2639. .bio = NULL,
  2640. .tree = tree,
  2641. .get_extent = get_extent,
  2642. .extent_locked = 1,
  2643. .sync_io = mode == WB_SYNC_ALL,
  2644. };
  2645. struct writeback_control wbc_writepages = {
  2646. .sync_mode = mode,
  2647. .nr_to_write = nr_pages * 2,
  2648. .range_start = start,
  2649. .range_end = end + 1,
  2650. };
  2651. while (start <= end) {
  2652. page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
  2653. if (clear_page_dirty_for_io(page))
  2654. ret = __extent_writepage(page, &wbc_writepages, &epd);
  2655. else {
  2656. if (tree->ops && tree->ops->writepage_end_io_hook)
  2657. tree->ops->writepage_end_io_hook(page, start,
  2658. start + PAGE_CACHE_SIZE - 1,
  2659. NULL, 1);
  2660. unlock_page(page);
  2661. }
  2662. page_cache_release(page);
  2663. start += PAGE_CACHE_SIZE;
  2664. }
  2665. flush_epd_write_bio(&epd);
  2666. return ret;
  2667. }
  2668. int extent_writepages(struct extent_io_tree *tree,
  2669. struct address_space *mapping,
  2670. get_extent_t *get_extent,
  2671. struct writeback_control *wbc)
  2672. {
  2673. int ret = 0;
  2674. struct extent_page_data epd = {
  2675. .bio = NULL,
  2676. .tree = tree,
  2677. .get_extent = get_extent,
  2678. .extent_locked = 0,
  2679. .sync_io = wbc->sync_mode == WB_SYNC_ALL,
  2680. };
  2681. ret = extent_write_cache_pages(tree, mapping, wbc,
  2682. __extent_writepage, &epd,
  2683. flush_write_bio);
  2684. flush_epd_write_bio(&epd);
  2685. return ret;
  2686. }
  2687. int extent_readpages(struct extent_io_tree *tree,
  2688. struct address_space *mapping,
  2689. struct list_head *pages, unsigned nr_pages,
  2690. get_extent_t get_extent)
  2691. {
  2692. struct bio *bio = NULL;
  2693. unsigned page_idx;
  2694. unsigned long bio_flags = 0;
  2695. for (page_idx = 0; page_idx < nr_pages; page_idx++) {
  2696. struct page *page = list_entry(pages->prev, struct page, lru);
  2697. prefetchw(&page->flags);
  2698. list_del(&page->lru);
  2699. if (!add_to_page_cache_lru(page, mapping,
  2700. page->index, GFP_NOFS)) {
  2701. __extent_read_full_page(tree, page, get_extent,
  2702. &bio, 0, &bio_flags);
  2703. }
  2704. page_cache_release(page);
  2705. }
  2706. BUG_ON(!list_empty(pages));
  2707. if (bio)
  2708. return submit_one_bio(READ, bio, 0, bio_flags);
  2709. return 0;
  2710. }
  2711. int extent_invalidatepage(struct extent_io_tree *tree,
  2712. struct page *page, unsigned long offset)
  2713. {
  2714. struct extent_state *cached_state = NULL;
  2715. u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
  2716. u64 end = start + PAGE_CACHE_SIZE - 1;
  2717. size_t blocksize = page->mapping->host->i_sb->s_blocksize;
  2718. start += (offset + blocksize - 1) & ~(blocksize - 1);
  2719. if (start > end)
  2720. return 0;
  2721. lock_extent_bits(tree, start, end, 0, &cached_state);
  2722. wait_on_page_writeback(page);
  2723. clear_extent_bit(tree, start, end,
  2724. EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
  2725. EXTENT_DO_ACCOUNTING,
  2726. 1, 1, &cached_state, GFP_NOFS);
  2727. return 0;
  2728. }
  2729. int try_release_extent_state(struct extent_map_tree *map,
  2730. struct extent_io_tree *tree, struct page *page,
  2731. gfp_t mask)
  2732. {
  2733. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  2734. u64 end = start + PAGE_CACHE_SIZE - 1;
  2735. int ret = 1;
  2736. if (test_range_bit(tree, start, end,
  2737. EXTENT_IOBITS, 0, NULL))
  2738. ret = 0;
  2739. else {
  2740. if ((mask & GFP_NOFS) == GFP_NOFS)
  2741. mask = GFP_NOFS;
  2742. ret = clear_extent_bit(tree, start, end,
  2743. ~(EXTENT_LOCKED | EXTENT_NODATASUM),
  2744. 0, 0, NULL, mask);
  2745. if (ret < 0)
  2746. ret = 0;
  2747. else
  2748. ret = 1;
  2749. }
  2750. return ret;
  2751. }
  2752. int try_release_extent_mapping(struct extent_map_tree *map,
  2753. struct extent_io_tree *tree, struct page *page,
  2754. gfp_t mask)
  2755. {
  2756. struct extent_map *em;
  2757. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  2758. u64 end = start + PAGE_CACHE_SIZE - 1;
  2759. if ((mask & __GFP_WAIT) &&
  2760. page->mapping->host->i_size > 16 * 1024 * 1024) {
  2761. u64 len;
  2762. while (start <= end) {
  2763. len = end - start + 1;
  2764. write_lock(&map->lock);
  2765. em = lookup_extent_mapping(map, start, len);
  2766. if (!em) {
  2767. write_unlock(&map->lock);
  2768. break;
  2769. }
  2770. if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
  2771. em->start != start) {
  2772. write_unlock(&map->lock);
  2773. free_extent_map(em);
  2774. break;
  2775. }
  2776. if (!test_range_bit(tree, em->start,
  2777. extent_map_end(em) - 1,
  2778. EXTENT_LOCKED | EXTENT_WRITEBACK,
  2779. 0, NULL)) {
  2780. remove_extent_mapping(map, em);
  2781. free_extent_map(em);
  2782. }
  2783. start = extent_map_end(em);
  2784. write_unlock(&map->lock);
  2785. free_extent_map(em);
  2786. }
  2787. }
  2788. return try_release_extent_state(map, tree, page, mask);
  2789. }
  2790. static struct extent_map *get_extent_skip_holes(struct inode *inode,
  2791. u64 offset,
  2792. u64 last,
  2793. get_extent_t *get_extent)
  2794. {
  2795. u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
  2796. struct extent_map *em;
  2797. u64 len;
  2798. if (offset >= last)
  2799. return NULL;
  2800. while(1) {
  2801. len = last - offset;
  2802. if (len == 0)
  2803. break;
  2804. len = (len + sectorsize - 1) & ~(sectorsize - 1);
  2805. em = get_extent(inode, NULL, 0, offset, len, 0);
  2806. if (IS_ERR_OR_NULL(em))
  2807. return em;
  2808. if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
  2809. em->block_start != EXTENT_MAP_HOLE) {
  2810. return em;
  2811. }
  2812. offset = extent_map_end(em);
  2813. free_extent_map(em);
  2814. if (offset >= last)
  2815. break;
  2816. }
  2817. return NULL;
  2818. }
  2819. int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
  2820. __u64 start, __u64 len, get_extent_t *get_extent)
  2821. {
  2822. int ret = 0;
  2823. u64 off = start;
  2824. u64 max = start + len;
  2825. u32 flags = 0;
  2826. u32 found_type;
  2827. u64 last;
  2828. u64 last_for_get_extent = 0;
  2829. u64 disko = 0;
  2830. u64 isize = i_size_read(inode);
  2831. struct btrfs_key found_key;
  2832. struct extent_map *em = NULL;
  2833. struct extent_state *cached_state = NULL;
  2834. struct btrfs_path *path;
  2835. struct btrfs_file_extent_item *item;
  2836. int end = 0;
  2837. u64 em_start = 0;
  2838. u64 em_len = 0;
  2839. u64 em_end = 0;
  2840. unsigned long emflags;
  2841. if (len == 0)
  2842. return -EINVAL;
  2843. path = btrfs_alloc_path();
  2844. if (!path)
  2845. return -ENOMEM;
  2846. path->leave_spinning = 1;
  2847. start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
  2848. len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
  2849. ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
  2850. path, btrfs_ino(inode), -1, 0);
  2851. if (ret < 0) {
  2852. btrfs_free_path(path);
  2853. return ret;
  2854. }
  2855. WARN_ON(!ret);
  2856. path->slots[0]--;
  2857. item = btrfs_item_ptr(path->nodes[0], path->slots[0],
  2858. struct btrfs_file_extent_item);
  2859. btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
  2860. found_type = btrfs_key_type(&found_key);
  2861. if (found_key.objectid != btrfs_ino(inode) ||
  2862. found_type != BTRFS_EXTENT_DATA_KEY) {
  2863. last = (u64)-1;
  2864. last_for_get_extent = isize;
  2865. } else {
  2866. last = found_key.offset;
  2867. last_for_get_extent = last + 1;
  2868. }
  2869. btrfs_free_path(path);
  2870. if (last < isize) {
  2871. last = (u64)-1;
  2872. last_for_get_extent = isize;
  2873. }
  2874. lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
  2875. &cached_state);
  2876. em = get_extent_skip_holes(inode, start, last_for_get_extent,
  2877. get_extent);
  2878. if (!em)
  2879. goto out;
  2880. if (IS_ERR(em)) {
  2881. ret = PTR_ERR(em);
  2882. goto out;
  2883. }
  2884. while (!end) {
  2885. u64 offset_in_extent;
  2886. if (em->start >= max || extent_map_end(em) < off)
  2887. break;
  2888. em_start = max(em->start, off);
  2889. offset_in_extent = em_start - em->start;
  2890. em_end = extent_map_end(em);
  2891. em_len = em_end - em_start;
  2892. emflags = em->flags;
  2893. disko = 0;
  2894. flags = 0;
  2895. off = extent_map_end(em);
  2896. if (off >= max)
  2897. end = 1;
  2898. if (em->block_start == EXTENT_MAP_LAST_BYTE) {
  2899. end = 1;
  2900. flags |= FIEMAP_EXTENT_LAST;
  2901. } else if (em->block_start == EXTENT_MAP_INLINE) {
  2902. flags |= (FIEMAP_EXTENT_DATA_INLINE |
  2903. FIEMAP_EXTENT_NOT_ALIGNED);
  2904. } else if (em->block_start == EXTENT_MAP_DELALLOC) {
  2905. flags |= (FIEMAP_EXTENT_DELALLOC |
  2906. FIEMAP_EXTENT_UNKNOWN);
  2907. } else {
  2908. disko = em->block_start + offset_in_extent;
  2909. }
  2910. if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
  2911. flags |= FIEMAP_EXTENT_ENCODED;
  2912. free_extent_map(em);
  2913. em = NULL;
  2914. if ((em_start >= last) || em_len == (u64)-1 ||
  2915. (last == (u64)-1 && isize <= em_end)) {
  2916. flags |= FIEMAP_EXTENT_LAST;
  2917. end = 1;
  2918. }
  2919. em = get_extent_skip_holes(inode, off, last_for_get_extent,
  2920. get_extent);
  2921. if (IS_ERR(em)) {
  2922. ret = PTR_ERR(em);
  2923. goto out;
  2924. }
  2925. if (!em) {
  2926. flags |= FIEMAP_EXTENT_LAST;
  2927. end = 1;
  2928. }
  2929. ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
  2930. em_len, flags);
  2931. if (ret)
  2932. goto out_free;
  2933. }
  2934. out_free:
  2935. free_extent_map(em);
  2936. out:
  2937. unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
  2938. &cached_state, GFP_NOFS);
  2939. return ret;
  2940. }
  2941. inline struct page *extent_buffer_page(struct extent_buffer *eb,
  2942. unsigned long i)
  2943. {
  2944. return eb->pages[i];
  2945. }
  2946. inline unsigned long num_extent_pages(u64 start, u64 len)
  2947. {
  2948. return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
  2949. (start >> PAGE_CACHE_SHIFT);
  2950. }
  2951. static void __free_extent_buffer(struct extent_buffer *eb)
  2952. {
  2953. #if LEAK_DEBUG
  2954. unsigned long flags;
  2955. spin_lock_irqsave(&leak_lock, flags);
  2956. list_del(&eb->leak_list);
  2957. spin_unlock_irqrestore(&leak_lock, flags);
  2958. #endif
  2959. if (eb->pages && eb->pages != eb->inline_pages)
  2960. kfree(eb->pages);
  2961. kmem_cache_free(extent_buffer_cache, eb);
  2962. }
  2963. static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
  2964. u64 start,
  2965. unsigned long len,
  2966. gfp_t mask)
  2967. {
  2968. struct extent_buffer *eb = NULL;
  2969. #if LEAK_DEBUG
  2970. unsigned long flags;
  2971. #endif
  2972. eb = kmem_cache_zalloc(extent_buffer_cache, mask);
  2973. if (eb == NULL)
  2974. return NULL;
  2975. eb->start = start;
  2976. eb->len = len;
  2977. eb->tree = tree;
  2978. rwlock_init(&eb->lock);
  2979. atomic_set(&eb->write_locks, 0);
  2980. atomic_set(&eb->read_locks, 0);
  2981. atomic_set(&eb->blocking_readers, 0);
  2982. atomic_set(&eb->blocking_writers, 0);
  2983. atomic_set(&eb->spinning_readers, 0);
  2984. atomic_set(&eb->spinning_writers, 0);
  2985. eb->lock_nested = 0;
  2986. init_waitqueue_head(&eb->write_lock_wq);
  2987. init_waitqueue_head(&eb->read_lock_wq);
  2988. #if LEAK_DEBUG
  2989. spin_lock_irqsave(&leak_lock, flags);
  2990. list_add(&eb->leak_list, &buffers);
  2991. spin_unlock_irqrestore(&leak_lock, flags);
  2992. #endif
  2993. spin_lock_init(&eb->refs_lock);
  2994. atomic_set(&eb->refs, 1);
  2995. atomic_set(&eb->io_pages, 0);
  2996. if (len > MAX_INLINE_EXTENT_BUFFER_SIZE) {
  2997. struct page **pages;
  2998. int num_pages = (len + PAGE_CACHE_SIZE - 1) >>
  2999. PAGE_CACHE_SHIFT;
  3000. pages = kzalloc(num_pages, mask);
  3001. if (!pages) {
  3002. __free_extent_buffer(eb);
  3003. return NULL;
  3004. }
  3005. eb->pages = pages;
  3006. } else {
  3007. eb->pages = eb->inline_pages;
  3008. }
  3009. return eb;
  3010. }
  3011. static int extent_buffer_under_io(struct extent_buffer *eb)
  3012. {
  3013. return (atomic_read(&eb->io_pages) ||
  3014. test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
  3015. test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  3016. }
  3017. static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
  3018. unsigned long start_idx)
  3019. {
  3020. unsigned long index;
  3021. struct page *page;
  3022. BUG_ON(extent_buffer_under_io(eb));
  3023. index = num_extent_pages(eb->start, eb->len);
  3024. if (start_idx >= index)
  3025. return;
  3026. do {
  3027. index--;
  3028. page = extent_buffer_page(eb, index);
  3029. if (page) {
  3030. spin_lock(&page->mapping->private_lock);
  3031. if (PagePrivate(page) &&
  3032. page->private == (unsigned long)eb) {
  3033. BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  3034. BUG_ON(PageDirty(page));
  3035. BUG_ON(PageWriteback(page));
  3036. ClearPagePrivate(page);
  3037. set_page_private(page, 0);
  3038. page_cache_release(page);
  3039. }
  3040. spin_unlock(&page->mapping->private_lock);
  3041. page_cache_release(page);
  3042. }
  3043. } while (index != start_idx);
  3044. }
  3045. static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
  3046. {
  3047. btrfs_release_extent_buffer_page(eb, 0);
  3048. __free_extent_buffer(eb);
  3049. }
  3050. static void check_buffer_tree_ref(struct extent_buffer *eb)
  3051. {
  3052. if (!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
  3053. atomic_inc(&eb->refs);
  3054. if (test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
  3055. atomic_dec(&eb->refs);
  3056. }
  3057. }
  3058. static void mark_extent_buffer_accessed(struct extent_buffer *eb)
  3059. {
  3060. unsigned long num_pages, i;
  3061. check_buffer_tree_ref(eb);
  3062. num_pages = num_extent_pages(eb->start, eb->len);
  3063. for (i = 0; i < num_pages; i++) {
  3064. struct page *p = extent_buffer_page(eb, i);
  3065. mark_page_accessed(p);
  3066. }
  3067. }
  3068. struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
  3069. u64 start, unsigned long len)
  3070. {
  3071. unsigned long num_pages = num_extent_pages(start, len);
  3072. unsigned long i;
  3073. unsigned long index = start >> PAGE_CACHE_SHIFT;
  3074. struct extent_buffer *eb;
  3075. struct extent_buffer *exists = NULL;
  3076. struct page *p;
  3077. struct address_space *mapping = tree->mapping;
  3078. int uptodate = 1;
  3079. int ret;
  3080. rcu_read_lock();
  3081. eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
  3082. if (eb && atomic_inc_not_zero(&eb->refs)) {
  3083. rcu_read_unlock();
  3084. mark_extent_buffer_accessed(eb);
  3085. return eb;
  3086. }
  3087. rcu_read_unlock();
  3088. eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
  3089. if (!eb)
  3090. return NULL;
  3091. for (i = 0; i < num_pages; i++, index++) {
  3092. p = find_or_create_page(mapping, index, GFP_NOFS);
  3093. if (!p) {
  3094. WARN_ON(1);
  3095. goto free_eb;
  3096. }
  3097. spin_lock(&mapping->private_lock);
  3098. if (PagePrivate(p)) {
  3099. exists = (struct extent_buffer *)p->private;
  3100. if (atomic_inc_not_zero(&exists->refs)) {
  3101. spin_unlock(&mapping->private_lock);
  3102. unlock_page(p);
  3103. page_cache_release(p);
  3104. mark_extent_buffer_accessed(exists);
  3105. goto free_eb;
  3106. }
  3107. ClearPagePrivate(p);
  3108. WARN_ON(PageDirty(p));
  3109. page_cache_release(p);
  3110. }
  3111. attach_extent_buffer_page(eb, p);
  3112. spin_unlock(&mapping->private_lock);
  3113. WARN_ON(PageDirty(p));
  3114. mark_page_accessed(p);
  3115. eb->pages[i] = p;
  3116. if (!PageUptodate(p))
  3117. uptodate = 0;
  3118. }
  3119. if (uptodate)
  3120. set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
  3121. again:
  3122. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  3123. if (ret)
  3124. goto free_eb;
  3125. spin_lock(&tree->buffer_lock);
  3126. ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
  3127. if (ret == -EEXIST) {
  3128. exists = radix_tree_lookup(&tree->buffer,
  3129. start >> PAGE_CACHE_SHIFT);
  3130. if (!atomic_inc_not_zero(&exists->refs)) {
  3131. spin_unlock(&tree->buffer_lock);
  3132. radix_tree_preload_end();
  3133. exists = NULL;
  3134. goto again;
  3135. }
  3136. spin_unlock(&tree->buffer_lock);
  3137. radix_tree_preload_end();
  3138. mark_extent_buffer_accessed(exists);
  3139. goto free_eb;
  3140. }
  3141. spin_lock(&eb->refs_lock);
  3142. check_buffer_tree_ref(eb);
  3143. spin_unlock(&eb->refs_lock);
  3144. spin_unlock(&tree->buffer_lock);
  3145. radix_tree_preload_end();
  3146. SetPageChecked(eb->pages[0]);
  3147. for (i = 1; i < num_pages; i++) {
  3148. p = extent_buffer_page(eb, i);
  3149. ClearPageChecked(p);
  3150. unlock_page(p);
  3151. }
  3152. unlock_page(eb->pages[0]);
  3153. return eb;
  3154. free_eb:
  3155. for (i = 0; i < num_pages; i++) {
  3156. if (eb->pages[i])
  3157. unlock_page(eb->pages[i]);
  3158. }
  3159. WARN_ON(!atomic_dec_and_test(&eb->refs));
  3160. btrfs_release_extent_buffer(eb);
  3161. return exists;
  3162. }
  3163. struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
  3164. u64 start, unsigned long len)
  3165. {
  3166. struct extent_buffer *eb;
  3167. rcu_read_lock();
  3168. eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
  3169. if (eb && atomic_inc_not_zero(&eb->refs)) {
  3170. rcu_read_unlock();
  3171. mark_extent_buffer_accessed(eb);
  3172. return eb;
  3173. }
  3174. rcu_read_unlock();
  3175. return NULL;
  3176. }
  3177. static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
  3178. {
  3179. struct extent_buffer *eb =
  3180. container_of(head, struct extent_buffer, rcu_head);
  3181. __free_extent_buffer(eb);
  3182. }
  3183. static void release_extent_buffer(struct extent_buffer *eb, gfp_t mask)
  3184. {
  3185. WARN_ON(atomic_read(&eb->refs) == 0);
  3186. if (atomic_dec_and_test(&eb->refs)) {
  3187. struct extent_io_tree *tree = eb->tree;
  3188. spin_unlock(&eb->refs_lock);
  3189. spin_lock(&tree->buffer_lock);
  3190. radix_tree_delete(&tree->buffer,
  3191. eb->start >> PAGE_CACHE_SHIFT);
  3192. spin_unlock(&tree->buffer_lock);
  3193. btrfs_release_extent_buffer_page(eb, 0);
  3194. call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
  3195. return;
  3196. }
  3197. spin_unlock(&eb->refs_lock);
  3198. }
  3199. void free_extent_buffer(struct extent_buffer *eb)
  3200. {
  3201. if (!eb)
  3202. return;
  3203. spin_lock(&eb->refs_lock);
  3204. if (atomic_read(&eb->refs) == 2 &&
  3205. test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
  3206. !extent_buffer_under_io(eb) &&
  3207. test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
  3208. atomic_dec(&eb->refs);
  3209. release_extent_buffer(eb, GFP_ATOMIC);
  3210. }
  3211. void free_extent_buffer_stale(struct extent_buffer *eb)
  3212. {
  3213. if (!eb)
  3214. return;
  3215. spin_lock(&eb->refs_lock);
  3216. set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
  3217. if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
  3218. test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
  3219. atomic_dec(&eb->refs);
  3220. release_extent_buffer(eb, GFP_NOFS);
  3221. }
  3222. void clear_extent_buffer_dirty(struct extent_buffer *eb)
  3223. {
  3224. unsigned long i;
  3225. unsigned long num_pages;
  3226. struct page *page;
  3227. num_pages = num_extent_pages(eb->start, eb->len);
  3228. for (i = 0; i < num_pages; i++) {
  3229. page = extent_buffer_page(eb, i);
  3230. if (!PageDirty(page))
  3231. continue;
  3232. lock_page(page);
  3233. WARN_ON(!PagePrivate(page));
  3234. clear_page_dirty_for_io(page);
  3235. spin_lock_irq(&page->mapping->tree_lock);
  3236. if (!PageDirty(page)) {
  3237. radix_tree_tag_clear(&page->mapping->page_tree,
  3238. page_index(page),
  3239. PAGECACHE_TAG_DIRTY);
  3240. }
  3241. spin_unlock_irq(&page->mapping->tree_lock);
  3242. ClearPageError(page);
  3243. unlock_page(page);
  3244. }
  3245. WARN_ON(atomic_read(&eb->refs) == 0);
  3246. }
  3247. int set_extent_buffer_dirty(struct extent_buffer *eb)
  3248. {
  3249. unsigned long i;
  3250. unsigned long num_pages;
  3251. int was_dirty = 0;
  3252. check_buffer_tree_ref(eb);
  3253. was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
  3254. num_pages = num_extent_pages(eb->start, eb->len);
  3255. WARN_ON(atomic_read(&eb->refs) == 0);
  3256. WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
  3257. for (i = 0; i < num_pages; i++)
  3258. set_page_dirty(extent_buffer_page(eb, i));
  3259. return was_dirty;
  3260. }
  3261. static int range_straddles_pages(u64 start, u64 len)
  3262. {
  3263. if (len < PAGE_CACHE_SIZE)
  3264. return 1;
  3265. if (start & (PAGE_CACHE_SIZE - 1))
  3266. return 1;
  3267. if ((start + len) & (PAGE_CACHE_SIZE - 1))
  3268. return 1;
  3269. return 0;
  3270. }
  3271. int clear_extent_buffer_uptodate(struct extent_buffer *eb)
  3272. {
  3273. unsigned long i;
  3274. struct page *page;
  3275. unsigned long num_pages;
  3276. clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
  3277. num_pages = num_extent_pages(eb->start, eb->len);
  3278. for (i = 0; i < num_pages; i++) {
  3279. page = extent_buffer_page(eb, i);
  3280. if (page)
  3281. ClearPageUptodate(page);
  3282. }
  3283. return 0;
  3284. }
  3285. int set_extent_buffer_uptodate(struct extent_buffer *eb)
  3286. {
  3287. unsigned long i;
  3288. struct page *page;
  3289. unsigned long num_pages;
  3290. set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
  3291. num_pages = num_extent_pages(eb->start, eb->len);
  3292. for (i = 0; i < num_pages; i++) {
  3293. page = extent_buffer_page(eb, i);
  3294. SetPageUptodate(page);
  3295. }
  3296. return 0;
  3297. }
  3298. int extent_range_uptodate(struct extent_io_tree *tree,
  3299. u64 start, u64 end)
  3300. {
  3301. struct page *page;
  3302. int ret;
  3303. int pg_uptodate = 1;
  3304. int uptodate;
  3305. unsigned long index;
  3306. if (range_straddles_pages(start, end - start + 1)) {
  3307. ret = test_range_bit(tree, start, end,
  3308. EXTENT_UPTODATE, 1, NULL);
  3309. if (ret)
  3310. return 1;
  3311. }
  3312. while (start <= end) {
  3313. index = start >> PAGE_CACHE_SHIFT;
  3314. page = find_get_page(tree->mapping, index);
  3315. if (!page)
  3316. return 1;
  3317. uptodate = PageUptodate(page);
  3318. page_cache_release(page);
  3319. if (!uptodate) {
  3320. pg_uptodate = 0;
  3321. break;
  3322. }
  3323. start += PAGE_CACHE_SIZE;
  3324. }
  3325. return pg_uptodate;
  3326. }
  3327. int extent_buffer_uptodate(struct extent_buffer *eb)
  3328. {
  3329. return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
  3330. }
  3331. int read_extent_buffer_pages(struct extent_io_tree *tree,
  3332. struct extent_buffer *eb, u64 start, int wait,
  3333. get_extent_t *get_extent, int mirror_num)
  3334. {
  3335. unsigned long i;
  3336. unsigned long start_i;
  3337. struct page *page;
  3338. int err;
  3339. int ret = 0;
  3340. int locked_pages = 0;
  3341. int all_uptodate = 1;
  3342. unsigned long num_pages;
  3343. unsigned long num_reads = 0;
  3344. struct bio *bio = NULL;
  3345. unsigned long bio_flags = 0;
  3346. if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
  3347. return 0;
  3348. if (start) {
  3349. WARN_ON(start < eb->start);
  3350. start_i = (start >> PAGE_CACHE_SHIFT) -
  3351. (eb->start >> PAGE_CACHE_SHIFT);
  3352. } else {
  3353. start_i = 0;
  3354. }
  3355. num_pages = num_extent_pages(eb->start, eb->len);
  3356. for (i = start_i; i < num_pages; i++) {
  3357. page = extent_buffer_page(eb, i);
  3358. if (wait == WAIT_NONE) {
  3359. if (!trylock_page(page))
  3360. goto unlock_exit;
  3361. } else {
  3362. lock_page(page);
  3363. }
  3364. locked_pages++;
  3365. if (!PageUptodate(page)) {
  3366. num_reads++;
  3367. all_uptodate = 0;
  3368. }
  3369. }
  3370. if (all_uptodate) {
  3371. if (start_i == 0)
  3372. set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
  3373. goto unlock_exit;
  3374. }
  3375. clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
  3376. eb->read_mirror = 0;
  3377. atomic_set(&eb->io_pages, num_reads);
  3378. for (i = start_i; i < num_pages; i++) {
  3379. page = extent_buffer_page(eb, i);
  3380. if (!PageUptodate(page)) {
  3381. ClearPageError(page);
  3382. err = __extent_read_full_page(tree, page,
  3383. get_extent, &bio,
  3384. mirror_num, &bio_flags);
  3385. if (err)
  3386. ret = err;
  3387. } else {
  3388. unlock_page(page);
  3389. }
  3390. }
  3391. if (bio) {
  3392. err = submit_one_bio(READ, bio, mirror_num, bio_flags);
  3393. if (err)
  3394. return err;
  3395. }
  3396. if (ret || wait != WAIT_COMPLETE)
  3397. return ret;
  3398. for (i = start_i; i < num_pages; i++) {
  3399. page = extent_buffer_page(eb, i);
  3400. wait_on_page_locked(page);
  3401. if (!PageUptodate(page))
  3402. ret = -EIO;
  3403. }
  3404. return ret;
  3405. unlock_exit:
  3406. i = start_i;
  3407. while (locked_pages > 0) {
  3408. page = extent_buffer_page(eb, i);
  3409. i++;
  3410. unlock_page(page);
  3411. locked_pages--;
  3412. }
  3413. return ret;
  3414. }
  3415. void read_extent_buffer(struct extent_buffer *eb, void *dstv,
  3416. unsigned long start,
  3417. unsigned long len)
  3418. {
  3419. size_t cur;
  3420. size_t offset;
  3421. struct page *page;
  3422. char *kaddr;
  3423. char *dst = (char *)dstv;
  3424. size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
  3425. unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
  3426. WARN_ON(start > eb->len);
  3427. WARN_ON(start + len > eb->start + eb->len);
  3428. offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
  3429. while (len > 0) {
  3430. page = extent_buffer_page(eb, i);
  3431. cur = min(len, (PAGE_CACHE_SIZE - offset));
  3432. kaddr = page_address(page);
  3433. memcpy(dst, kaddr + offset, cur);
  3434. dst += cur;
  3435. len -= cur;
  3436. offset = 0;
  3437. i++;
  3438. }
  3439. }
  3440. int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
  3441. unsigned long min_len, char **map,
  3442. unsigned long *map_start,
  3443. unsigned long *map_len)
  3444. {
  3445. size_t offset = start & (PAGE_CACHE_SIZE - 1);
  3446. char *kaddr;
  3447. struct page *p;
  3448. size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
  3449. unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
  3450. unsigned long end_i = (start_offset + start + min_len - 1) >>
  3451. PAGE_CACHE_SHIFT;
  3452. if (i != end_i)
  3453. return -EINVAL;
  3454. if (i == 0) {
  3455. offset = start_offset;
  3456. *map_start = 0;
  3457. } else {
  3458. offset = 0;
  3459. *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
  3460. }
  3461. if (start + min_len > eb->len) {
  3462. printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
  3463. "wanted %lu %lu\n", (unsigned long long)eb->start,
  3464. eb->len, start, min_len);
  3465. WARN_ON(1);
  3466. return -EINVAL;
  3467. }
  3468. p = extent_buffer_page(eb, i);
  3469. kaddr = page_address(p);
  3470. *map = kaddr + offset;
  3471. *map_len = PAGE_CACHE_SIZE - offset;
  3472. return 0;
  3473. }
  3474. int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
  3475. unsigned long start,
  3476. unsigned long len)
  3477. {
  3478. size_t cur;
  3479. size_t offset;
  3480. struct page *page;
  3481. char *kaddr;
  3482. char *ptr = (char *)ptrv;
  3483. size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
  3484. unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
  3485. int ret = 0;
  3486. WARN_ON(start > eb->len);
  3487. WARN_ON(start + len > eb->start + eb->len);
  3488. offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
  3489. while (len > 0) {
  3490. page = extent_buffer_page(eb, i);
  3491. cur = min(len, (PAGE_CACHE_SIZE - offset));
  3492. kaddr = page_address(page);
  3493. ret = memcmp(ptr, kaddr + offset, cur);
  3494. if (ret)
  3495. break;
  3496. ptr += cur;
  3497. len -= cur;
  3498. offset = 0;
  3499. i++;
  3500. }
  3501. return ret;
  3502. }
  3503. void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
  3504. unsigned long start, unsigned long len)
  3505. {
  3506. size_t cur;
  3507. size_t offset;
  3508. struct page *page;
  3509. char *kaddr;
  3510. char *src = (char *)srcv;
  3511. size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
  3512. unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
  3513. WARN_ON(start > eb->len);
  3514. WARN_ON(start + len > eb->start + eb->len);
  3515. offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
  3516. while (len > 0) {
  3517. page = extent_buffer_page(eb, i);
  3518. WARN_ON(!PageUptodate(page));
  3519. cur = min(len, PAGE_CACHE_SIZE - offset);
  3520. kaddr = page_address(page);
  3521. memcpy(kaddr + offset, src, cur);
  3522. src += cur;
  3523. len -= cur;
  3524. offset = 0;
  3525. i++;
  3526. }
  3527. }
  3528. void memset_extent_buffer(struct extent_buffer *eb, char c,
  3529. unsigned long start, unsigned long len)
  3530. {
  3531. size_t cur;
  3532. size_t offset;
  3533. struct page *page;
  3534. char *kaddr;
  3535. size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
  3536. unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
  3537. WARN_ON(start > eb->len);
  3538. WARN_ON(start + len > eb->start + eb->len);
  3539. offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
  3540. while (len > 0) {
  3541. page = extent_buffer_page(eb, i);
  3542. WARN_ON(!PageUptodate(page));
  3543. cur = min(len, PAGE_CACHE_SIZE - offset);
  3544. kaddr = page_address(page);
  3545. memset(kaddr + offset, c, cur);
  3546. len -= cur;
  3547. offset = 0;
  3548. i++;
  3549. }
  3550. }
  3551. void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
  3552. unsigned long dst_offset, unsigned long src_offset,
  3553. unsigned long len)
  3554. {
  3555. u64 dst_len = dst->len;
  3556. size_t cur;
  3557. size_t offset;
  3558. struct page *page;
  3559. char *kaddr;
  3560. size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
  3561. unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
  3562. WARN_ON(src->len != dst_len);
  3563. offset = (start_offset + dst_offset) &
  3564. ((unsigned long)PAGE_CACHE_SIZE - 1);
  3565. while (len > 0) {
  3566. page = extent_buffer_page(dst, i);
  3567. WARN_ON(!PageUptodate(page));
  3568. cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
  3569. kaddr = page_address(page);
  3570. read_extent_buffer(src, kaddr + offset, src_offset, cur);
  3571. src_offset += cur;
  3572. len -= cur;
  3573. offset = 0;
  3574. i++;
  3575. }
  3576. }
  3577. static void move_pages(struct page *dst_page, struct page *src_page,
  3578. unsigned long dst_off, unsigned long src_off,
  3579. unsigned long len)
  3580. {
  3581. char *dst_kaddr = page_address(dst_page);
  3582. if (dst_page == src_page) {
  3583. memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
  3584. } else {
  3585. char *src_kaddr = page_address(src_page);
  3586. char *p = dst_kaddr + dst_off + len;
  3587. char *s = src_kaddr + src_off + len;
  3588. while (len--)
  3589. *--p = *--s;
  3590. }
  3591. }
  3592. static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
  3593. {
  3594. unsigned long distance = (src > dst) ? src - dst : dst - src;
  3595. return distance < len;
  3596. }
  3597. static void copy_pages(struct page *dst_page, struct page *src_page,
  3598. unsigned long dst_off, unsigned long src_off,
  3599. unsigned long len)
  3600. {
  3601. char *dst_kaddr = page_address(dst_page);
  3602. char *src_kaddr;
  3603. int must_memmove = 0;
  3604. if (dst_page != src_page) {
  3605. src_kaddr = page_address(src_page);
  3606. } else {
  3607. src_kaddr = dst_kaddr;
  3608. if (areas_overlap(src_off, dst_off, len))
  3609. must_memmove = 1;
  3610. }
  3611. if (must_memmove)
  3612. memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
  3613. else
  3614. memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
  3615. }
  3616. void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
  3617. unsigned long src_offset, unsigned long len)
  3618. {
  3619. size_t cur;
  3620. size_t dst_off_in_page;
  3621. size_t src_off_in_page;
  3622. size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
  3623. unsigned long dst_i;
  3624. unsigned long src_i;
  3625. if (src_offset + len > dst->len) {
  3626. printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
  3627. "len %lu dst len %lu\n", src_offset, len, dst->len);
  3628. BUG_ON(1);
  3629. }
  3630. if (dst_offset + len > dst->len) {
  3631. printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
  3632. "len %lu dst len %lu\n", dst_offset, len, dst->len);
  3633. BUG_ON(1);
  3634. }
  3635. while (len > 0) {
  3636. dst_off_in_page = (start_offset + dst_offset) &
  3637. ((unsigned long)PAGE_CACHE_SIZE - 1);
  3638. src_off_in_page = (start_offset + src_offset) &
  3639. ((unsigned long)PAGE_CACHE_SIZE - 1);
  3640. dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
  3641. src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
  3642. cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
  3643. src_off_in_page));
  3644. cur = min_t(unsigned long, cur,
  3645. (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
  3646. copy_pages(extent_buffer_page(dst, dst_i),
  3647. extent_buffer_page(dst, src_i),
  3648. dst_off_in_page, src_off_in_page, cur);
  3649. src_offset += cur;
  3650. dst_offset += cur;
  3651. len -= cur;
  3652. }
  3653. }
  3654. void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
  3655. unsigned long src_offset, unsigned long len)
  3656. {
  3657. size_t cur;
  3658. size_t dst_off_in_page;
  3659. size_t src_off_in_page;
  3660. unsigned long dst_end = dst_offset + len - 1;
  3661. unsigned long src_end = src_offset + len - 1;
  3662. size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
  3663. unsigned long dst_i;
  3664. unsigned long src_i;
  3665. if (src_offset + len > dst->len) {
  3666. printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
  3667. "len %lu len %lu\n", src_offset, len, dst->len);
  3668. BUG_ON(1);
  3669. }
  3670. if (dst_offset + len > dst->len) {
  3671. printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
  3672. "len %lu len %lu\n", dst_offset, len, dst->len);
  3673. BUG_ON(1);
  3674. }
  3675. if (dst_offset < src_offset) {
  3676. memcpy_extent_buffer(dst, dst_offset, src_offset, len);
  3677. return;
  3678. }
  3679. while (len > 0) {
  3680. dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
  3681. src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
  3682. dst_off_in_page = (start_offset + dst_end) &
  3683. ((unsigned long)PAGE_CACHE_SIZE - 1);
  3684. src_off_in_page = (start_offset + src_end) &
  3685. ((unsigned long)PAGE_CACHE_SIZE - 1);
  3686. cur = min_t(unsigned long, len, src_off_in_page + 1);
  3687. cur = min(cur, dst_off_in_page + 1);
  3688. move_pages(extent_buffer_page(dst, dst_i),
  3689. extent_buffer_page(dst, src_i),
  3690. dst_off_in_page - cur + 1,
  3691. src_off_in_page - cur + 1, cur);
  3692. dst_end -= cur;
  3693. src_end -= cur;
  3694. len -= cur;
  3695. }
  3696. }
  3697. int try_release_extent_buffer(struct page *page, gfp_t mask)
  3698. {
  3699. struct extent_buffer *eb;
  3700. spin_lock(&page->mapping->private_lock);
  3701. if (!PagePrivate(page)) {
  3702. spin_unlock(&page->mapping->private_lock);
  3703. return 1;
  3704. }
  3705. eb = (struct extent_buffer *)page->private;
  3706. BUG_ON(!eb);
  3707. spin_lock(&eb->refs_lock);
  3708. if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
  3709. spin_unlock(&eb->refs_lock);
  3710. spin_unlock(&page->mapping->private_lock);
  3711. return 0;
  3712. }
  3713. spin_unlock(&page->mapping->private_lock);
  3714. if ((mask & GFP_NOFS) == GFP_NOFS)
  3715. mask = GFP_NOFS;
  3716. if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
  3717. spin_unlock(&eb->refs_lock);
  3718. return 0;
  3719. }
  3720. release_extent_buffer(eb, mask);
  3721. return 1;
  3722. }