PageRenderTime 87ms CodeModel.GetById 11ms RepoModel.GetById 0ms app.codeStats 1ms

/lib/test_bpf.c

http://github.com/mirrors/linux-2.6
C | 7056 lines | 6641 code | 213 blank | 202 comment | 118 complexity | 0fd381440d1ca2c149064fdc373bbc55 MD5 | raw file
Possible License(s): LGPL-2.0, AGPL-1.0, GPL-2.0
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Testsuite for BPF interpreter and BPF JIT compiler
  4. *
  5. * Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
  6. */
  7. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8. #include <linux/init.h>
  9. #include <linux/module.h>
  10. #include <linux/filter.h>
  11. #include <linux/bpf.h>
  12. #include <linux/skbuff.h>
  13. #include <linux/netdevice.h>
  14. #include <linux/if_vlan.h>
  15. #include <linux/random.h>
  16. #include <linux/highmem.h>
  17. #include <linux/sched.h>
  18. /* General test specific settings */
  19. #define MAX_SUBTESTS 3
  20. #define MAX_TESTRUNS 1000
  21. #define MAX_DATA 128
  22. #define MAX_INSNS 512
  23. #define MAX_K 0xffffFFFF
  24. /* Few constants used to init test 'skb' */
  25. #define SKB_TYPE 3
  26. #define SKB_MARK 0x1234aaaa
  27. #define SKB_HASH 0x1234aaab
  28. #define SKB_QUEUE_MAP 123
  29. #define SKB_VLAN_TCI 0xffff
  30. #define SKB_VLAN_PRESENT 1
  31. #define SKB_DEV_IFINDEX 577
  32. #define SKB_DEV_TYPE 588
  33. /* Redefine REGs to make tests less verbose */
  34. #define R0 BPF_REG_0
  35. #define R1 BPF_REG_1
  36. #define R2 BPF_REG_2
  37. #define R3 BPF_REG_3
  38. #define R4 BPF_REG_4
  39. #define R5 BPF_REG_5
  40. #define R6 BPF_REG_6
  41. #define R7 BPF_REG_7
  42. #define R8 BPF_REG_8
  43. #define R9 BPF_REG_9
  44. #define R10 BPF_REG_10
  45. /* Flags that can be passed to test cases */
  46. #define FLAG_NO_DATA BIT(0)
  47. #define FLAG_EXPECTED_FAIL BIT(1)
  48. #define FLAG_SKB_FRAG BIT(2)
  49. enum {
  50. CLASSIC = BIT(6), /* Old BPF instructions only. */
  51. INTERNAL = BIT(7), /* Extended instruction set. */
  52. };
  53. #define TEST_TYPE_MASK (CLASSIC | INTERNAL)
  54. struct bpf_test {
  55. const char *descr;
  56. union {
  57. struct sock_filter insns[MAX_INSNS];
  58. struct bpf_insn insns_int[MAX_INSNS];
  59. struct {
  60. void *insns;
  61. unsigned int len;
  62. } ptr;
  63. } u;
  64. __u8 aux;
  65. __u8 data[MAX_DATA];
  66. struct {
  67. int data_size;
  68. __u32 result;
  69. } test[MAX_SUBTESTS];
  70. int (*fill_helper)(struct bpf_test *self);
  71. int expected_errcode; /* used when FLAG_EXPECTED_FAIL is set in the aux */
  72. __u8 frag_data[MAX_DATA];
  73. int stack_depth; /* for eBPF only, since tests don't call verifier */
  74. };
  75. /* Large test cases need separate allocation and fill handler. */
  76. static int bpf_fill_maxinsns1(struct bpf_test *self)
  77. {
  78. unsigned int len = BPF_MAXINSNS;
  79. struct sock_filter *insn;
  80. __u32 k = ~0;
  81. int i;
  82. insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
  83. if (!insn)
  84. return -ENOMEM;
  85. for (i = 0; i < len; i++, k--)
  86. insn[i] = __BPF_STMT(BPF_RET | BPF_K, k);
  87. self->u.ptr.insns = insn;
  88. self->u.ptr.len = len;
  89. return 0;
  90. }
  91. static int bpf_fill_maxinsns2(struct bpf_test *self)
  92. {
  93. unsigned int len = BPF_MAXINSNS;
  94. struct sock_filter *insn;
  95. int i;
  96. insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
  97. if (!insn)
  98. return -ENOMEM;
  99. for (i = 0; i < len; i++)
  100. insn[i] = __BPF_STMT(BPF_RET | BPF_K, 0xfefefefe);
  101. self->u.ptr.insns = insn;
  102. self->u.ptr.len = len;
  103. return 0;
  104. }
  105. static int bpf_fill_maxinsns3(struct bpf_test *self)
  106. {
  107. unsigned int len = BPF_MAXINSNS;
  108. struct sock_filter *insn;
  109. struct rnd_state rnd;
  110. int i;
  111. insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
  112. if (!insn)
  113. return -ENOMEM;
  114. prandom_seed_state(&rnd, 3141592653589793238ULL);
  115. for (i = 0; i < len - 1; i++) {
  116. __u32 k = prandom_u32_state(&rnd);
  117. insn[i] = __BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, k);
  118. }
  119. insn[len - 1] = __BPF_STMT(BPF_RET | BPF_A, 0);
  120. self->u.ptr.insns = insn;
  121. self->u.ptr.len = len;
  122. return 0;
  123. }
  124. static int bpf_fill_maxinsns4(struct bpf_test *self)
  125. {
  126. unsigned int len = BPF_MAXINSNS + 1;
  127. struct sock_filter *insn;
  128. int i;
  129. insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
  130. if (!insn)
  131. return -ENOMEM;
  132. for (i = 0; i < len; i++)
  133. insn[i] = __BPF_STMT(BPF_RET | BPF_K, 0xfefefefe);
  134. self->u.ptr.insns = insn;
  135. self->u.ptr.len = len;
  136. return 0;
  137. }
  138. static int bpf_fill_maxinsns5(struct bpf_test *self)
  139. {
  140. unsigned int len = BPF_MAXINSNS;
  141. struct sock_filter *insn;
  142. int i;
  143. insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
  144. if (!insn)
  145. return -ENOMEM;
  146. insn[0] = __BPF_JUMP(BPF_JMP | BPF_JA, len - 2, 0, 0);
  147. for (i = 1; i < len - 1; i++)
  148. insn[i] = __BPF_STMT(BPF_RET | BPF_K, 0xfefefefe);
  149. insn[len - 1] = __BPF_STMT(BPF_RET | BPF_K, 0xabababab);
  150. self->u.ptr.insns = insn;
  151. self->u.ptr.len = len;
  152. return 0;
  153. }
  154. static int bpf_fill_maxinsns6(struct bpf_test *self)
  155. {
  156. unsigned int len = BPF_MAXINSNS;
  157. struct sock_filter *insn;
  158. int i;
  159. insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
  160. if (!insn)
  161. return -ENOMEM;
  162. for (i = 0; i < len - 1; i++)
  163. insn[i] = __BPF_STMT(BPF_LD | BPF_W | BPF_ABS, SKF_AD_OFF +
  164. SKF_AD_VLAN_TAG_PRESENT);
  165. insn[len - 1] = __BPF_STMT(BPF_RET | BPF_A, 0);
  166. self->u.ptr.insns = insn;
  167. self->u.ptr.len = len;
  168. return 0;
  169. }
  170. static int bpf_fill_maxinsns7(struct bpf_test *self)
  171. {
  172. unsigned int len = BPF_MAXINSNS;
  173. struct sock_filter *insn;
  174. int i;
  175. insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
  176. if (!insn)
  177. return -ENOMEM;
  178. for (i = 0; i < len - 4; i++)
  179. insn[i] = __BPF_STMT(BPF_LD | BPF_W | BPF_ABS, SKF_AD_OFF +
  180. SKF_AD_CPU);
  181. insn[len - 4] = __BPF_STMT(BPF_MISC | BPF_TAX, 0);
  182. insn[len - 3] = __BPF_STMT(BPF_LD | BPF_W | BPF_ABS, SKF_AD_OFF +
  183. SKF_AD_CPU);
  184. insn[len - 2] = __BPF_STMT(BPF_ALU | BPF_SUB | BPF_X, 0);
  185. insn[len - 1] = __BPF_STMT(BPF_RET | BPF_A, 0);
  186. self->u.ptr.insns = insn;
  187. self->u.ptr.len = len;
  188. return 0;
  189. }
  190. static int bpf_fill_maxinsns8(struct bpf_test *self)
  191. {
  192. unsigned int len = BPF_MAXINSNS;
  193. struct sock_filter *insn;
  194. int i, jmp_off = len - 3;
  195. insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
  196. if (!insn)
  197. return -ENOMEM;
  198. insn[0] = __BPF_STMT(BPF_LD | BPF_IMM, 0xffffffff);
  199. for (i = 1; i < len - 1; i++)
  200. insn[i] = __BPF_JUMP(BPF_JMP | BPF_JGT, 0xffffffff, jmp_off--, 0);
  201. insn[len - 1] = __BPF_STMT(BPF_RET | BPF_A, 0);
  202. self->u.ptr.insns = insn;
  203. self->u.ptr.len = len;
  204. return 0;
  205. }
  206. static int bpf_fill_maxinsns9(struct bpf_test *self)
  207. {
  208. unsigned int len = BPF_MAXINSNS;
  209. struct bpf_insn *insn;
  210. int i;
  211. insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
  212. if (!insn)
  213. return -ENOMEM;
  214. insn[0] = BPF_JMP_IMM(BPF_JA, 0, 0, len - 2);
  215. insn[1] = BPF_ALU32_IMM(BPF_MOV, R0, 0xcbababab);
  216. insn[2] = BPF_EXIT_INSN();
  217. for (i = 3; i < len - 2; i++)
  218. insn[i] = BPF_ALU32_IMM(BPF_MOV, R0, 0xfefefefe);
  219. insn[len - 2] = BPF_EXIT_INSN();
  220. insn[len - 1] = BPF_JMP_IMM(BPF_JA, 0, 0, -(len - 1));
  221. self->u.ptr.insns = insn;
  222. self->u.ptr.len = len;
  223. return 0;
  224. }
  225. static int bpf_fill_maxinsns10(struct bpf_test *self)
  226. {
  227. unsigned int len = BPF_MAXINSNS, hlen = len - 2;
  228. struct bpf_insn *insn;
  229. int i;
  230. insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
  231. if (!insn)
  232. return -ENOMEM;
  233. for (i = 0; i < hlen / 2; i++)
  234. insn[i] = BPF_JMP_IMM(BPF_JA, 0, 0, hlen - 2 - 2 * i);
  235. for (i = hlen - 1; i > hlen / 2; i--)
  236. insn[i] = BPF_JMP_IMM(BPF_JA, 0, 0, hlen - 1 - 2 * i);
  237. insn[hlen / 2] = BPF_JMP_IMM(BPF_JA, 0, 0, hlen / 2 - 1);
  238. insn[hlen] = BPF_ALU32_IMM(BPF_MOV, R0, 0xabababac);
  239. insn[hlen + 1] = BPF_EXIT_INSN();
  240. self->u.ptr.insns = insn;
  241. self->u.ptr.len = len;
  242. return 0;
  243. }
  244. static int __bpf_fill_ja(struct bpf_test *self, unsigned int len,
  245. unsigned int plen)
  246. {
  247. struct sock_filter *insn;
  248. unsigned int rlen;
  249. int i, j;
  250. insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
  251. if (!insn)
  252. return -ENOMEM;
  253. rlen = (len % plen) - 1;
  254. for (i = 0; i + plen < len; i += plen)
  255. for (j = 0; j < plen; j++)
  256. insn[i + j] = __BPF_JUMP(BPF_JMP | BPF_JA,
  257. plen - 1 - j, 0, 0);
  258. for (j = 0; j < rlen; j++)
  259. insn[i + j] = __BPF_JUMP(BPF_JMP | BPF_JA, rlen - 1 - j,
  260. 0, 0);
  261. insn[len - 1] = __BPF_STMT(BPF_RET | BPF_K, 0xababcbac);
  262. self->u.ptr.insns = insn;
  263. self->u.ptr.len = len;
  264. return 0;
  265. }
  266. static int bpf_fill_maxinsns11(struct bpf_test *self)
  267. {
  268. /* Hits 70 passes on x86_64, so cannot get JITed there. */
  269. return __bpf_fill_ja(self, BPF_MAXINSNS, 68);
  270. }
  271. static int bpf_fill_maxinsns12(struct bpf_test *self)
  272. {
  273. unsigned int len = BPF_MAXINSNS;
  274. struct sock_filter *insn;
  275. int i = 0;
  276. insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
  277. if (!insn)
  278. return -ENOMEM;
  279. insn[0] = __BPF_JUMP(BPF_JMP | BPF_JA, len - 2, 0, 0);
  280. for (i = 1; i < len - 1; i++)
  281. insn[i] = __BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, 0);
  282. insn[len - 1] = __BPF_STMT(BPF_RET | BPF_K, 0xabababab);
  283. self->u.ptr.insns = insn;
  284. self->u.ptr.len = len;
  285. return 0;
  286. }
  287. static int bpf_fill_maxinsns13(struct bpf_test *self)
  288. {
  289. unsigned int len = BPF_MAXINSNS;
  290. struct sock_filter *insn;
  291. int i = 0;
  292. insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
  293. if (!insn)
  294. return -ENOMEM;
  295. for (i = 0; i < len - 3; i++)
  296. insn[i] = __BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, 0);
  297. insn[len - 3] = __BPF_STMT(BPF_LD | BPF_IMM, 0xabababab);
  298. insn[len - 2] = __BPF_STMT(BPF_ALU | BPF_XOR | BPF_X, 0);
  299. insn[len - 1] = __BPF_STMT(BPF_RET | BPF_A, 0);
  300. self->u.ptr.insns = insn;
  301. self->u.ptr.len = len;
  302. return 0;
  303. }
  304. static int bpf_fill_ja(struct bpf_test *self)
  305. {
  306. /* Hits exactly 11 passes on x86_64 JIT. */
  307. return __bpf_fill_ja(self, 12, 9);
  308. }
  309. static int bpf_fill_ld_abs_get_processor_id(struct bpf_test *self)
  310. {
  311. unsigned int len = BPF_MAXINSNS;
  312. struct sock_filter *insn;
  313. int i;
  314. insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
  315. if (!insn)
  316. return -ENOMEM;
  317. for (i = 0; i < len - 1; i += 2) {
  318. insn[i] = __BPF_STMT(BPF_LD | BPF_B | BPF_ABS, 0);
  319. insn[i + 1] = __BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
  320. SKF_AD_OFF + SKF_AD_CPU);
  321. }
  322. insn[len - 1] = __BPF_STMT(BPF_RET | BPF_K, 0xbee);
  323. self->u.ptr.insns = insn;
  324. self->u.ptr.len = len;
  325. return 0;
  326. }
  327. static int __bpf_fill_stxdw(struct bpf_test *self, int size)
  328. {
  329. unsigned int len = BPF_MAXINSNS;
  330. struct bpf_insn *insn;
  331. int i;
  332. insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
  333. if (!insn)
  334. return -ENOMEM;
  335. insn[0] = BPF_ALU32_IMM(BPF_MOV, R0, 1);
  336. insn[1] = BPF_ST_MEM(size, R10, -40, 42);
  337. for (i = 2; i < len - 2; i++)
  338. insn[i] = BPF_STX_XADD(size, R10, R0, -40);
  339. insn[len - 2] = BPF_LDX_MEM(size, R0, R10, -40);
  340. insn[len - 1] = BPF_EXIT_INSN();
  341. self->u.ptr.insns = insn;
  342. self->u.ptr.len = len;
  343. self->stack_depth = 40;
  344. return 0;
  345. }
  346. static int bpf_fill_stxw(struct bpf_test *self)
  347. {
  348. return __bpf_fill_stxdw(self, BPF_W);
  349. }
  350. static int bpf_fill_stxdw(struct bpf_test *self)
  351. {
  352. return __bpf_fill_stxdw(self, BPF_DW);
  353. }
  354. static struct bpf_test tests[] = {
  355. {
  356. "TAX",
  357. .u.insns = {
  358. BPF_STMT(BPF_LD | BPF_IMM, 1),
  359. BPF_STMT(BPF_MISC | BPF_TAX, 0),
  360. BPF_STMT(BPF_LD | BPF_IMM, 2),
  361. BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
  362. BPF_STMT(BPF_ALU | BPF_NEG, 0), /* A == -3 */
  363. BPF_STMT(BPF_MISC | BPF_TAX, 0),
  364. BPF_STMT(BPF_LD | BPF_LEN, 0),
  365. BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
  366. BPF_STMT(BPF_MISC | BPF_TAX, 0), /* X == len - 3 */
  367. BPF_STMT(BPF_LD | BPF_B | BPF_IND, 1),
  368. BPF_STMT(BPF_RET | BPF_A, 0)
  369. },
  370. CLASSIC,
  371. { 10, 20, 30, 40, 50 },
  372. { { 2, 10 }, { 3, 20 }, { 4, 30 } },
  373. },
  374. {
  375. "TXA",
  376. .u.insns = {
  377. BPF_STMT(BPF_LDX | BPF_LEN, 0),
  378. BPF_STMT(BPF_MISC | BPF_TXA, 0),
  379. BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
  380. BPF_STMT(BPF_RET | BPF_A, 0) /* A == len * 2 */
  381. },
  382. CLASSIC,
  383. { 10, 20, 30, 40, 50 },
  384. { { 1, 2 }, { 3, 6 }, { 4, 8 } },
  385. },
  386. {
  387. "ADD_SUB_MUL_K",
  388. .u.insns = {
  389. BPF_STMT(BPF_LD | BPF_IMM, 1),
  390. BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 2),
  391. BPF_STMT(BPF_LDX | BPF_IMM, 3),
  392. BPF_STMT(BPF_ALU | BPF_SUB | BPF_X, 0),
  393. BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 0xffffffff),
  394. BPF_STMT(BPF_ALU | BPF_MUL | BPF_K, 3),
  395. BPF_STMT(BPF_RET | BPF_A, 0)
  396. },
  397. CLASSIC | FLAG_NO_DATA,
  398. { },
  399. { { 0, 0xfffffffd } }
  400. },
  401. {
  402. "DIV_MOD_KX",
  403. .u.insns = {
  404. BPF_STMT(BPF_LD | BPF_IMM, 8),
  405. BPF_STMT(BPF_ALU | BPF_DIV | BPF_K, 2),
  406. BPF_STMT(BPF_MISC | BPF_TAX, 0),
  407. BPF_STMT(BPF_LD | BPF_IMM, 0xffffffff),
  408. BPF_STMT(BPF_ALU | BPF_DIV | BPF_X, 0),
  409. BPF_STMT(BPF_MISC | BPF_TAX, 0),
  410. BPF_STMT(BPF_LD | BPF_IMM, 0xffffffff),
  411. BPF_STMT(BPF_ALU | BPF_DIV | BPF_K, 0x70000000),
  412. BPF_STMT(BPF_MISC | BPF_TAX, 0),
  413. BPF_STMT(BPF_LD | BPF_IMM, 0xffffffff),
  414. BPF_STMT(BPF_ALU | BPF_MOD | BPF_X, 0),
  415. BPF_STMT(BPF_MISC | BPF_TAX, 0),
  416. BPF_STMT(BPF_LD | BPF_IMM, 0xffffffff),
  417. BPF_STMT(BPF_ALU | BPF_MOD | BPF_K, 0x70000000),
  418. BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
  419. BPF_STMT(BPF_RET | BPF_A, 0)
  420. },
  421. CLASSIC | FLAG_NO_DATA,
  422. { },
  423. { { 0, 0x20000000 } }
  424. },
  425. {
  426. "AND_OR_LSH_K",
  427. .u.insns = {
  428. BPF_STMT(BPF_LD | BPF_IMM, 0xff),
  429. BPF_STMT(BPF_ALU | BPF_AND | BPF_K, 0xf0),
  430. BPF_STMT(BPF_ALU | BPF_LSH | BPF_K, 27),
  431. BPF_STMT(BPF_MISC | BPF_TAX, 0),
  432. BPF_STMT(BPF_LD | BPF_IMM, 0xf),
  433. BPF_STMT(BPF_ALU | BPF_OR | BPF_K, 0xf0),
  434. BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
  435. BPF_STMT(BPF_RET | BPF_A, 0)
  436. },
  437. CLASSIC | FLAG_NO_DATA,
  438. { },
  439. { { 0, 0x800000ff }, { 1, 0x800000ff } },
  440. },
  441. {
  442. "LD_IMM_0",
  443. .u.insns = {
  444. BPF_STMT(BPF_LD | BPF_IMM, 0), /* ld #0 */
  445. BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0, 1, 0),
  446. BPF_STMT(BPF_RET | BPF_K, 0),
  447. BPF_STMT(BPF_RET | BPF_K, 1),
  448. },
  449. CLASSIC,
  450. { },
  451. { { 1, 1 } },
  452. },
  453. {
  454. "LD_IND",
  455. .u.insns = {
  456. BPF_STMT(BPF_LDX | BPF_LEN, 0),
  457. BPF_STMT(BPF_LD | BPF_H | BPF_IND, MAX_K),
  458. BPF_STMT(BPF_RET | BPF_K, 1)
  459. },
  460. CLASSIC,
  461. { },
  462. { { 1, 0 }, { 10, 0 }, { 60, 0 } },
  463. },
  464. {
  465. "LD_ABS",
  466. .u.insns = {
  467. BPF_STMT(BPF_LD | BPF_W | BPF_ABS, 1000),
  468. BPF_STMT(BPF_RET | BPF_K, 1)
  469. },
  470. CLASSIC,
  471. { },
  472. { { 1, 0 }, { 10, 0 }, { 60, 0 } },
  473. },
  474. {
  475. "LD_ABS_LL",
  476. .u.insns = {
  477. BPF_STMT(BPF_LD | BPF_B | BPF_ABS, SKF_LL_OFF),
  478. BPF_STMT(BPF_MISC | BPF_TAX, 0),
  479. BPF_STMT(BPF_LD | BPF_B | BPF_ABS, SKF_LL_OFF + 1),
  480. BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
  481. BPF_STMT(BPF_RET | BPF_A, 0)
  482. },
  483. CLASSIC,
  484. { 1, 2, 3 },
  485. { { 1, 0 }, { 2, 3 } },
  486. },
  487. {
  488. "LD_IND_LL",
  489. .u.insns = {
  490. BPF_STMT(BPF_LD | BPF_IMM, SKF_LL_OFF - 1),
  491. BPF_STMT(BPF_LDX | BPF_LEN, 0),
  492. BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
  493. BPF_STMT(BPF_MISC | BPF_TAX, 0),
  494. BPF_STMT(BPF_LD | BPF_B | BPF_IND, 0),
  495. BPF_STMT(BPF_RET | BPF_A, 0)
  496. },
  497. CLASSIC,
  498. { 1, 2, 3, 0xff },
  499. { { 1, 1 }, { 3, 3 }, { 4, 0xff } },
  500. },
  501. {
  502. "LD_ABS_NET",
  503. .u.insns = {
  504. BPF_STMT(BPF_LD | BPF_B | BPF_ABS, SKF_NET_OFF),
  505. BPF_STMT(BPF_MISC | BPF_TAX, 0),
  506. BPF_STMT(BPF_LD | BPF_B | BPF_ABS, SKF_NET_OFF + 1),
  507. BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
  508. BPF_STMT(BPF_RET | BPF_A, 0)
  509. },
  510. CLASSIC,
  511. { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3 },
  512. { { 15, 0 }, { 16, 3 } },
  513. },
  514. {
  515. "LD_IND_NET",
  516. .u.insns = {
  517. BPF_STMT(BPF_LD | BPF_IMM, SKF_NET_OFF - 15),
  518. BPF_STMT(BPF_LDX | BPF_LEN, 0),
  519. BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
  520. BPF_STMT(BPF_MISC | BPF_TAX, 0),
  521. BPF_STMT(BPF_LD | BPF_B | BPF_IND, 0),
  522. BPF_STMT(BPF_RET | BPF_A, 0)
  523. },
  524. CLASSIC,
  525. { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3 },
  526. { { 14, 0 }, { 15, 1 }, { 17, 3 } },
  527. },
  528. {
  529. "LD_PKTTYPE",
  530. .u.insns = {
  531. BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
  532. SKF_AD_OFF + SKF_AD_PKTTYPE),
  533. BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, SKB_TYPE, 1, 0),
  534. BPF_STMT(BPF_RET | BPF_K, 1),
  535. BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
  536. SKF_AD_OFF + SKF_AD_PKTTYPE),
  537. BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, SKB_TYPE, 1, 0),
  538. BPF_STMT(BPF_RET | BPF_K, 1),
  539. BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
  540. SKF_AD_OFF + SKF_AD_PKTTYPE),
  541. BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, SKB_TYPE, 1, 0),
  542. BPF_STMT(BPF_RET | BPF_K, 1),
  543. BPF_STMT(BPF_RET | BPF_A, 0)
  544. },
  545. CLASSIC,
  546. { },
  547. { { 1, 3 }, { 10, 3 } },
  548. },
  549. {
  550. "LD_MARK",
  551. .u.insns = {
  552. BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
  553. SKF_AD_OFF + SKF_AD_MARK),
  554. BPF_STMT(BPF_RET | BPF_A, 0)
  555. },
  556. CLASSIC,
  557. { },
  558. { { 1, SKB_MARK}, { 10, SKB_MARK} },
  559. },
  560. {
  561. "LD_RXHASH",
  562. .u.insns = {
  563. BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
  564. SKF_AD_OFF + SKF_AD_RXHASH),
  565. BPF_STMT(BPF_RET | BPF_A, 0)
  566. },
  567. CLASSIC,
  568. { },
  569. { { 1, SKB_HASH}, { 10, SKB_HASH} },
  570. },
  571. {
  572. "LD_QUEUE",
  573. .u.insns = {
  574. BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
  575. SKF_AD_OFF + SKF_AD_QUEUE),
  576. BPF_STMT(BPF_RET | BPF_A, 0)
  577. },
  578. CLASSIC,
  579. { },
  580. { { 1, SKB_QUEUE_MAP }, { 10, SKB_QUEUE_MAP } },
  581. },
  582. {
  583. "LD_PROTOCOL",
  584. .u.insns = {
  585. BPF_STMT(BPF_LD | BPF_B | BPF_ABS, 1),
  586. BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 20, 1, 0),
  587. BPF_STMT(BPF_RET | BPF_K, 0),
  588. BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
  589. SKF_AD_OFF + SKF_AD_PROTOCOL),
  590. BPF_STMT(BPF_MISC | BPF_TAX, 0),
  591. BPF_STMT(BPF_LD | BPF_B | BPF_ABS, 2),
  592. BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 30, 1, 0),
  593. BPF_STMT(BPF_RET | BPF_K, 0),
  594. BPF_STMT(BPF_MISC | BPF_TXA, 0),
  595. BPF_STMT(BPF_RET | BPF_A, 0)
  596. },
  597. CLASSIC,
  598. { 10, 20, 30 },
  599. { { 10, ETH_P_IP }, { 100, ETH_P_IP } },
  600. },
  601. {
  602. "LD_VLAN_TAG",
  603. .u.insns = {
  604. BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
  605. SKF_AD_OFF + SKF_AD_VLAN_TAG),
  606. BPF_STMT(BPF_RET | BPF_A, 0)
  607. },
  608. CLASSIC,
  609. { },
  610. {
  611. { 1, SKB_VLAN_TCI },
  612. { 10, SKB_VLAN_TCI }
  613. },
  614. },
  615. {
  616. "LD_VLAN_TAG_PRESENT",
  617. .u.insns = {
  618. BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
  619. SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT),
  620. BPF_STMT(BPF_RET | BPF_A, 0)
  621. },
  622. CLASSIC,
  623. { },
  624. {
  625. { 1, SKB_VLAN_PRESENT },
  626. { 10, SKB_VLAN_PRESENT }
  627. },
  628. },
  629. {
  630. "LD_IFINDEX",
  631. .u.insns = {
  632. BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
  633. SKF_AD_OFF + SKF_AD_IFINDEX),
  634. BPF_STMT(BPF_RET | BPF_A, 0)
  635. },
  636. CLASSIC,
  637. { },
  638. { { 1, SKB_DEV_IFINDEX }, { 10, SKB_DEV_IFINDEX } },
  639. },
  640. {
  641. "LD_HATYPE",
  642. .u.insns = {
  643. BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
  644. SKF_AD_OFF + SKF_AD_HATYPE),
  645. BPF_STMT(BPF_RET | BPF_A, 0)
  646. },
  647. CLASSIC,
  648. { },
  649. { { 1, SKB_DEV_TYPE }, { 10, SKB_DEV_TYPE } },
  650. },
  651. {
  652. "LD_CPU",
  653. .u.insns = {
  654. BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
  655. SKF_AD_OFF + SKF_AD_CPU),
  656. BPF_STMT(BPF_MISC | BPF_TAX, 0),
  657. BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
  658. SKF_AD_OFF + SKF_AD_CPU),
  659. BPF_STMT(BPF_ALU | BPF_SUB | BPF_X, 0),
  660. BPF_STMT(BPF_RET | BPF_A, 0)
  661. },
  662. CLASSIC,
  663. { },
  664. { { 1, 0 }, { 10, 0 } },
  665. },
  666. {
  667. "LD_NLATTR",
  668. .u.insns = {
  669. BPF_STMT(BPF_LDX | BPF_IMM, 2),
  670. BPF_STMT(BPF_MISC | BPF_TXA, 0),
  671. BPF_STMT(BPF_LDX | BPF_IMM, 3),
  672. BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
  673. SKF_AD_OFF + SKF_AD_NLATTR),
  674. BPF_STMT(BPF_RET | BPF_A, 0)
  675. },
  676. CLASSIC,
  677. #ifdef __BIG_ENDIAN
  678. { 0xff, 0xff, 0, 4, 0, 2, 0, 4, 0, 3 },
  679. #else
  680. { 0xff, 0xff, 4, 0, 2, 0, 4, 0, 3, 0 },
  681. #endif
  682. { { 4, 0 }, { 20, 6 } },
  683. },
  684. {
  685. "LD_NLATTR_NEST",
  686. .u.insns = {
  687. BPF_STMT(BPF_LD | BPF_IMM, 2),
  688. BPF_STMT(BPF_LDX | BPF_IMM, 3),
  689. BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
  690. SKF_AD_OFF + SKF_AD_NLATTR_NEST),
  691. BPF_STMT(BPF_LD | BPF_IMM, 2),
  692. BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
  693. SKF_AD_OFF + SKF_AD_NLATTR_NEST),
  694. BPF_STMT(BPF_LD | BPF_IMM, 2),
  695. BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
  696. SKF_AD_OFF + SKF_AD_NLATTR_NEST),
  697. BPF_STMT(BPF_LD | BPF_IMM, 2),
  698. BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
  699. SKF_AD_OFF + SKF_AD_NLATTR_NEST),
  700. BPF_STMT(BPF_LD | BPF_IMM, 2),
  701. BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
  702. SKF_AD_OFF + SKF_AD_NLATTR_NEST),
  703. BPF_STMT(BPF_LD | BPF_IMM, 2),
  704. BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
  705. SKF_AD_OFF + SKF_AD_NLATTR_NEST),
  706. BPF_STMT(BPF_LD | BPF_IMM, 2),
  707. BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
  708. SKF_AD_OFF + SKF_AD_NLATTR_NEST),
  709. BPF_STMT(BPF_LD | BPF_IMM, 2),
  710. BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
  711. SKF_AD_OFF + SKF_AD_NLATTR_NEST),
  712. BPF_STMT(BPF_RET | BPF_A, 0)
  713. },
  714. CLASSIC,
  715. #ifdef __BIG_ENDIAN
  716. { 0xff, 0xff, 0, 12, 0, 1, 0, 4, 0, 2, 0, 4, 0, 3 },
  717. #else
  718. { 0xff, 0xff, 12, 0, 1, 0, 4, 0, 2, 0, 4, 0, 3, 0 },
  719. #endif
  720. { { 4, 0 }, { 20, 10 } },
  721. },
  722. {
  723. "LD_PAYLOAD_OFF",
  724. .u.insns = {
  725. BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
  726. SKF_AD_OFF + SKF_AD_PAY_OFFSET),
  727. BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
  728. SKF_AD_OFF + SKF_AD_PAY_OFFSET),
  729. BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
  730. SKF_AD_OFF + SKF_AD_PAY_OFFSET),
  731. BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
  732. SKF_AD_OFF + SKF_AD_PAY_OFFSET),
  733. BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
  734. SKF_AD_OFF + SKF_AD_PAY_OFFSET),
  735. BPF_STMT(BPF_RET | BPF_A, 0)
  736. },
  737. CLASSIC,
  738. /* 00:00:00:00:00:00 > 00:00:00:00:00:00, ethtype IPv4 (0x0800),
  739. * length 98: 127.0.0.1 > 127.0.0.1: ICMP echo request,
  740. * id 9737, seq 1, length 64
  741. */
  742. { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  743. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  744. 0x08, 0x00,
  745. 0x45, 0x00, 0x00, 0x54, 0xac, 0x8b, 0x40, 0x00, 0x40,
  746. 0x01, 0x90, 0x1b, 0x7f, 0x00, 0x00, 0x01 },
  747. { { 30, 0 }, { 100, 42 } },
  748. },
  749. {
  750. "LD_ANC_XOR",
  751. .u.insns = {
  752. BPF_STMT(BPF_LD | BPF_IMM, 10),
  753. BPF_STMT(BPF_LDX | BPF_IMM, 300),
  754. BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
  755. SKF_AD_OFF + SKF_AD_ALU_XOR_X),
  756. BPF_STMT(BPF_RET | BPF_A, 0)
  757. },
  758. CLASSIC,
  759. { },
  760. { { 4, 0xA ^ 300 }, { 20, 0xA ^ 300 } },
  761. },
  762. {
  763. "SPILL_FILL",
  764. .u.insns = {
  765. BPF_STMT(BPF_LDX | BPF_LEN, 0),
  766. BPF_STMT(BPF_LD | BPF_IMM, 2),
  767. BPF_STMT(BPF_ALU | BPF_RSH, 1),
  768. BPF_STMT(BPF_ALU | BPF_XOR | BPF_X, 0),
  769. BPF_STMT(BPF_ST, 1), /* M1 = 1 ^ len */
  770. BPF_STMT(BPF_ALU | BPF_XOR | BPF_K, 0x80000000),
  771. BPF_STMT(BPF_ST, 2), /* M2 = 1 ^ len ^ 0x80000000 */
  772. BPF_STMT(BPF_STX, 15), /* M3 = len */
  773. BPF_STMT(BPF_LDX | BPF_MEM, 1),
  774. BPF_STMT(BPF_LD | BPF_MEM, 2),
  775. BPF_STMT(BPF_ALU | BPF_XOR | BPF_X, 0),
  776. BPF_STMT(BPF_LDX | BPF_MEM, 15),
  777. BPF_STMT(BPF_ALU | BPF_XOR | BPF_X, 0),
  778. BPF_STMT(BPF_RET | BPF_A, 0)
  779. },
  780. CLASSIC,
  781. { },
  782. { { 1, 0x80000001 }, { 2, 0x80000002 }, { 60, 0x80000000 ^ 60 } }
  783. },
  784. {
  785. "JEQ",
  786. .u.insns = {
  787. BPF_STMT(BPF_LDX | BPF_LEN, 0),
  788. BPF_STMT(BPF_LD | BPF_B | BPF_ABS, 2),
  789. BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_X, 0, 0, 1),
  790. BPF_STMT(BPF_RET | BPF_K, 1),
  791. BPF_STMT(BPF_RET | BPF_K, MAX_K)
  792. },
  793. CLASSIC,
  794. { 3, 3, 3, 3, 3 },
  795. { { 1, 0 }, { 3, 1 }, { 4, MAX_K } },
  796. },
  797. {
  798. "JGT",
  799. .u.insns = {
  800. BPF_STMT(BPF_LDX | BPF_LEN, 0),
  801. BPF_STMT(BPF_LD | BPF_B | BPF_ABS, 2),
  802. BPF_JUMP(BPF_JMP | BPF_JGT | BPF_X, 0, 0, 1),
  803. BPF_STMT(BPF_RET | BPF_K, 1),
  804. BPF_STMT(BPF_RET | BPF_K, MAX_K)
  805. },
  806. CLASSIC,
  807. { 4, 4, 4, 3, 3 },
  808. { { 2, 0 }, { 3, 1 }, { 4, MAX_K } },
  809. },
  810. {
  811. "JGE (jt 0), test 1",
  812. .u.insns = {
  813. BPF_STMT(BPF_LDX | BPF_LEN, 0),
  814. BPF_STMT(BPF_LD | BPF_B | BPF_ABS, 2),
  815. BPF_JUMP(BPF_JMP | BPF_JGE | BPF_X, 0, 0, 1),
  816. BPF_STMT(BPF_RET | BPF_K, 1),
  817. BPF_STMT(BPF_RET | BPF_K, MAX_K)
  818. },
  819. CLASSIC,
  820. { 4, 4, 4, 3, 3 },
  821. { { 2, 0 }, { 3, 1 }, { 4, 1 } },
  822. },
  823. {
  824. "JGE (jt 0), test 2",
  825. .u.insns = {
  826. BPF_STMT(BPF_LDX | BPF_LEN, 0),
  827. BPF_STMT(BPF_LD | BPF_B | BPF_ABS, 2),
  828. BPF_JUMP(BPF_JMP | BPF_JGE | BPF_X, 0, 0, 1),
  829. BPF_STMT(BPF_RET | BPF_K, 1),
  830. BPF_STMT(BPF_RET | BPF_K, MAX_K)
  831. },
  832. CLASSIC,
  833. { 4, 4, 5, 3, 3 },
  834. { { 4, 1 }, { 5, 1 }, { 6, MAX_K } },
  835. },
  836. {
  837. "JGE",
  838. .u.insns = {
  839. BPF_STMT(BPF_LDX | BPF_LEN, 0),
  840. BPF_STMT(BPF_LD | BPF_B | BPF_IND, MAX_K),
  841. BPF_JUMP(BPF_JMP | BPF_JGE | BPF_K, 1, 1, 0),
  842. BPF_STMT(BPF_RET | BPF_K, 10),
  843. BPF_JUMP(BPF_JMP | BPF_JGE | BPF_K, 2, 1, 0),
  844. BPF_STMT(BPF_RET | BPF_K, 20),
  845. BPF_JUMP(BPF_JMP | BPF_JGE | BPF_K, 3, 1, 0),
  846. BPF_STMT(BPF_RET | BPF_K, 30),
  847. BPF_JUMP(BPF_JMP | BPF_JGE | BPF_K, 4, 1, 0),
  848. BPF_STMT(BPF_RET | BPF_K, 40),
  849. BPF_STMT(BPF_RET | BPF_K, MAX_K)
  850. },
  851. CLASSIC,
  852. { 1, 2, 3, 4, 5 },
  853. { { 1, 20 }, { 3, 40 }, { 5, MAX_K } },
  854. },
  855. {
  856. "JSET",
  857. .u.insns = {
  858. BPF_JUMP(BPF_JMP | BPF_JA, 0, 0, 0),
  859. BPF_JUMP(BPF_JMP | BPF_JA, 1, 1, 1),
  860. BPF_JUMP(BPF_JMP | BPF_JA, 0, 0, 0),
  861. BPF_JUMP(BPF_JMP | BPF_JA, 0, 0, 0),
  862. BPF_STMT(BPF_LDX | BPF_LEN, 0),
  863. BPF_STMT(BPF_MISC | BPF_TXA, 0),
  864. BPF_STMT(BPF_ALU | BPF_SUB | BPF_K, 4),
  865. BPF_STMT(BPF_MISC | BPF_TAX, 0),
  866. BPF_STMT(BPF_LD | BPF_W | BPF_IND, 0),
  867. BPF_JUMP(BPF_JMP | BPF_JSET | BPF_K, 1, 0, 1),
  868. BPF_STMT(BPF_RET | BPF_K, 10),
  869. BPF_JUMP(BPF_JMP | BPF_JSET | BPF_K, 0x80000000, 0, 1),
  870. BPF_STMT(BPF_RET | BPF_K, 20),
  871. BPF_JUMP(BPF_JMP | BPF_JSET | BPF_K, 0xffffff, 1, 0),
  872. BPF_STMT(BPF_RET | BPF_K, 30),
  873. BPF_JUMP(BPF_JMP | BPF_JSET | BPF_K, 0xffffff, 1, 0),
  874. BPF_STMT(BPF_RET | BPF_K, 30),
  875. BPF_JUMP(BPF_JMP | BPF_JSET | BPF_K, 0xffffff, 1, 0),
  876. BPF_STMT(BPF_RET | BPF_K, 30),
  877. BPF_JUMP(BPF_JMP | BPF_JSET | BPF_K, 0xffffff, 1, 0),
  878. BPF_STMT(BPF_RET | BPF_K, 30),
  879. BPF_JUMP(BPF_JMP | BPF_JSET | BPF_K, 0xffffff, 1, 0),
  880. BPF_STMT(BPF_RET | BPF_K, 30),
  881. BPF_STMT(BPF_RET | BPF_K, MAX_K)
  882. },
  883. CLASSIC,
  884. { 0, 0xAA, 0x55, 1 },
  885. { { 4, 10 }, { 5, 20 }, { 6, MAX_K } },
  886. },
  887. {
  888. "tcpdump port 22",
  889. .u.insns = {
  890. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 12),
  891. BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x86dd, 0, 8), /* IPv6 */
  892. BPF_STMT(BPF_LD | BPF_B | BPF_ABS, 20),
  893. BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x84, 2, 0),
  894. BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x6, 1, 0),
  895. BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x11, 0, 17),
  896. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 54),
  897. BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 22, 14, 0),
  898. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 56),
  899. BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 22, 12, 13),
  900. BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x0800, 0, 12), /* IPv4 */
  901. BPF_STMT(BPF_LD | BPF_B | BPF_ABS, 23),
  902. BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x84, 2, 0),
  903. BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x6, 1, 0),
  904. BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x11, 0, 8),
  905. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 20),
  906. BPF_JUMP(BPF_JMP | BPF_JSET | BPF_K, 0x1fff, 6, 0),
  907. BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, 14),
  908. BPF_STMT(BPF_LD | BPF_H | BPF_IND, 14),
  909. BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 22, 2, 0),
  910. BPF_STMT(BPF_LD | BPF_H | BPF_IND, 16),
  911. BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 22, 0, 1),
  912. BPF_STMT(BPF_RET | BPF_K, 0xffff),
  913. BPF_STMT(BPF_RET | BPF_K, 0),
  914. },
  915. CLASSIC,
  916. /* 3c:07:54:43:e5:76 > 10:bf:48:d6:43:d6, ethertype IPv4(0x0800)
  917. * length 114: 10.1.1.149.49700 > 10.1.2.10.22: Flags [P.],
  918. * seq 1305692979:1305693027, ack 3650467037, win 65535,
  919. * options [nop,nop,TS val 2502645400 ecr 3971138], length 48
  920. */
  921. { 0x10, 0xbf, 0x48, 0xd6, 0x43, 0xd6,
  922. 0x3c, 0x07, 0x54, 0x43, 0xe5, 0x76,
  923. 0x08, 0x00,
  924. 0x45, 0x10, 0x00, 0x64, 0x75, 0xb5,
  925. 0x40, 0x00, 0x40, 0x06, 0xad, 0x2e, /* IP header */
  926. 0x0a, 0x01, 0x01, 0x95, /* ip src */
  927. 0x0a, 0x01, 0x02, 0x0a, /* ip dst */
  928. 0xc2, 0x24,
  929. 0x00, 0x16 /* dst port */ },
  930. { { 10, 0 }, { 30, 0 }, { 100, 65535 } },
  931. },
  932. {
  933. "tcpdump complex",
  934. .u.insns = {
  935. /* tcpdump -nei eth0 'tcp port 22 and (((ip[2:2] -
  936. * ((ip[0]&0xf)<<2)) - ((tcp[12]&0xf0)>>2)) != 0) and
  937. * (len > 115 or len < 30000000000)' -d
  938. */
  939. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 12),
  940. BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x86dd, 30, 0),
  941. BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x800, 0, 29),
  942. BPF_STMT(BPF_LD | BPF_B | BPF_ABS, 23),
  943. BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x6, 0, 27),
  944. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 20),
  945. BPF_JUMP(BPF_JMP | BPF_JSET | BPF_K, 0x1fff, 25, 0),
  946. BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, 14),
  947. BPF_STMT(BPF_LD | BPF_H | BPF_IND, 14),
  948. BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 22, 2, 0),
  949. BPF_STMT(BPF_LD | BPF_H | BPF_IND, 16),
  950. BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 22, 0, 20),
  951. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 16),
  952. BPF_STMT(BPF_ST, 1),
  953. BPF_STMT(BPF_LD | BPF_B | BPF_ABS, 14),
  954. BPF_STMT(BPF_ALU | BPF_AND | BPF_K, 0xf),
  955. BPF_STMT(BPF_ALU | BPF_LSH | BPF_K, 2),
  956. BPF_STMT(BPF_MISC | BPF_TAX, 0x5), /* libpcap emits K on TAX */
  957. BPF_STMT(BPF_LD | BPF_MEM, 1),
  958. BPF_STMT(BPF_ALU | BPF_SUB | BPF_X, 0),
  959. BPF_STMT(BPF_ST, 5),
  960. BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, 14),
  961. BPF_STMT(BPF_LD | BPF_B | BPF_IND, 26),
  962. BPF_STMT(BPF_ALU | BPF_AND | BPF_K, 0xf0),
  963. BPF_STMT(BPF_ALU | BPF_RSH | BPF_K, 2),
  964. BPF_STMT(BPF_MISC | BPF_TAX, 0x9), /* libpcap emits K on TAX */
  965. BPF_STMT(BPF_LD | BPF_MEM, 5),
  966. BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_X, 0, 4, 0),
  967. BPF_STMT(BPF_LD | BPF_LEN, 0),
  968. BPF_JUMP(BPF_JMP | BPF_JGT | BPF_K, 0x73, 1, 0),
  969. BPF_JUMP(BPF_JMP | BPF_JGE | BPF_K, 0xfc23ac00, 1, 0),
  970. BPF_STMT(BPF_RET | BPF_K, 0xffff),
  971. BPF_STMT(BPF_RET | BPF_K, 0),
  972. },
  973. CLASSIC,
  974. { 0x10, 0xbf, 0x48, 0xd6, 0x43, 0xd6,
  975. 0x3c, 0x07, 0x54, 0x43, 0xe5, 0x76,
  976. 0x08, 0x00,
  977. 0x45, 0x10, 0x00, 0x64, 0x75, 0xb5,
  978. 0x40, 0x00, 0x40, 0x06, 0xad, 0x2e, /* IP header */
  979. 0x0a, 0x01, 0x01, 0x95, /* ip src */
  980. 0x0a, 0x01, 0x02, 0x0a, /* ip dst */
  981. 0xc2, 0x24,
  982. 0x00, 0x16 /* dst port */ },
  983. { { 10, 0 }, { 30, 0 }, { 100, 65535 } },
  984. },
  985. {
  986. "RET_A",
  987. .u.insns = {
  988. /* check that unitialized X and A contain zeros */
  989. BPF_STMT(BPF_MISC | BPF_TXA, 0),
  990. BPF_STMT(BPF_RET | BPF_A, 0)
  991. },
  992. CLASSIC,
  993. { },
  994. { {1, 0}, {2, 0} },
  995. },
  996. {
  997. "INT: ADD trivial",
  998. .u.insns_int = {
  999. BPF_ALU64_IMM(BPF_MOV, R1, 1),
  1000. BPF_ALU64_IMM(BPF_ADD, R1, 2),
  1001. BPF_ALU64_IMM(BPF_MOV, R2, 3),
  1002. BPF_ALU64_REG(BPF_SUB, R1, R2),
  1003. BPF_ALU64_IMM(BPF_ADD, R1, -1),
  1004. BPF_ALU64_IMM(BPF_MUL, R1, 3),
  1005. BPF_ALU64_REG(BPF_MOV, R0, R1),
  1006. BPF_EXIT_INSN(),
  1007. },
  1008. INTERNAL,
  1009. { },
  1010. { { 0, 0xfffffffd } }
  1011. },
  1012. {
  1013. "INT: MUL_X",
  1014. .u.insns_int = {
  1015. BPF_ALU64_IMM(BPF_MOV, R0, -1),
  1016. BPF_ALU64_IMM(BPF_MOV, R1, -1),
  1017. BPF_ALU64_IMM(BPF_MOV, R2, 3),
  1018. BPF_ALU64_REG(BPF_MUL, R1, R2),
  1019. BPF_JMP_IMM(BPF_JEQ, R1, 0xfffffffd, 1),
  1020. BPF_EXIT_INSN(),
  1021. BPF_ALU64_IMM(BPF_MOV, R0, 1),
  1022. BPF_EXIT_INSN(),
  1023. },
  1024. INTERNAL,
  1025. { },
  1026. { { 0, 1 } }
  1027. },
  1028. {
  1029. "INT: MUL_X2",
  1030. .u.insns_int = {
  1031. BPF_ALU32_IMM(BPF_MOV, R0, -1),
  1032. BPF_ALU32_IMM(BPF_MOV, R1, -1),
  1033. BPF_ALU32_IMM(BPF_MOV, R2, 3),
  1034. BPF_ALU64_REG(BPF_MUL, R1, R2),
  1035. BPF_ALU64_IMM(BPF_RSH, R1, 8),
  1036. BPF_JMP_IMM(BPF_JEQ, R1, 0x2ffffff, 1),
  1037. BPF_EXIT_INSN(),
  1038. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  1039. BPF_EXIT_INSN(),
  1040. },
  1041. INTERNAL,
  1042. { },
  1043. { { 0, 1 } }
  1044. },
  1045. {
  1046. "INT: MUL32_X",
  1047. .u.insns_int = {
  1048. BPF_ALU32_IMM(BPF_MOV, R0, -1),
  1049. BPF_ALU64_IMM(BPF_MOV, R1, -1),
  1050. BPF_ALU32_IMM(BPF_MOV, R2, 3),
  1051. BPF_ALU32_REG(BPF_MUL, R1, R2),
  1052. BPF_ALU64_IMM(BPF_RSH, R1, 8),
  1053. BPF_JMP_IMM(BPF_JEQ, R1, 0xffffff, 1),
  1054. BPF_EXIT_INSN(),
  1055. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  1056. BPF_EXIT_INSN(),
  1057. },
  1058. INTERNAL,
  1059. { },
  1060. { { 0, 1 } }
  1061. },
  1062. {
  1063. /* Have to test all register combinations, since
  1064. * JITing of different registers will produce
  1065. * different asm code.
  1066. */
  1067. "INT: ADD 64-bit",
  1068. .u.insns_int = {
  1069. BPF_ALU64_IMM(BPF_MOV, R0, 0),
  1070. BPF_ALU64_IMM(BPF_MOV, R1, 1),
  1071. BPF_ALU64_IMM(BPF_MOV, R2, 2),
  1072. BPF_ALU64_IMM(BPF_MOV, R3, 3),
  1073. BPF_ALU64_IMM(BPF_MOV, R4, 4),
  1074. BPF_ALU64_IMM(BPF_MOV, R5, 5),
  1075. BPF_ALU64_IMM(BPF_MOV, R6, 6),
  1076. BPF_ALU64_IMM(BPF_MOV, R7, 7),
  1077. BPF_ALU64_IMM(BPF_MOV, R8, 8),
  1078. BPF_ALU64_IMM(BPF_MOV, R9, 9),
  1079. BPF_ALU64_IMM(BPF_ADD, R0, 20),
  1080. BPF_ALU64_IMM(BPF_ADD, R1, 20),
  1081. BPF_ALU64_IMM(BPF_ADD, R2, 20),
  1082. BPF_ALU64_IMM(BPF_ADD, R3, 20),
  1083. BPF_ALU64_IMM(BPF_ADD, R4, 20),
  1084. BPF_ALU64_IMM(BPF_ADD, R5, 20),
  1085. BPF_ALU64_IMM(BPF_ADD, R6, 20),
  1086. BPF_ALU64_IMM(BPF_ADD, R7, 20),
  1087. BPF_ALU64_IMM(BPF_ADD, R8, 20),
  1088. BPF_ALU64_IMM(BPF_ADD, R9, 20),
  1089. BPF_ALU64_IMM(BPF_SUB, R0, 10),
  1090. BPF_ALU64_IMM(BPF_SUB, R1, 10),
  1091. BPF_ALU64_IMM(BPF_SUB, R2, 10),
  1092. BPF_ALU64_IMM(BPF_SUB, R3, 10),
  1093. BPF_ALU64_IMM(BPF_SUB, R4, 10),
  1094. BPF_ALU64_IMM(BPF_SUB, R5, 10),
  1095. BPF_ALU64_IMM(BPF_SUB, R6, 10),
  1096. BPF_ALU64_IMM(BPF_SUB, R7, 10),
  1097. BPF_ALU64_IMM(BPF_SUB, R8, 10),
  1098. BPF_ALU64_IMM(BPF_SUB, R9, 10),
  1099. BPF_ALU64_REG(BPF_ADD, R0, R0),
  1100. BPF_ALU64_REG(BPF_ADD, R0, R1),
  1101. BPF_ALU64_REG(BPF_ADD, R0, R2),
  1102. BPF_ALU64_REG(BPF_ADD, R0, R3),
  1103. BPF_ALU64_REG(BPF_ADD, R0, R4),
  1104. BPF_ALU64_REG(BPF_ADD, R0, R5),
  1105. BPF_ALU64_REG(BPF_ADD, R0, R6),
  1106. BPF_ALU64_REG(BPF_ADD, R0, R7),
  1107. BPF_ALU64_REG(BPF_ADD, R0, R8),
  1108. BPF_ALU64_REG(BPF_ADD, R0, R9), /* R0 == 155 */
  1109. BPF_JMP_IMM(BPF_JEQ, R0, 155, 1),
  1110. BPF_EXIT_INSN(),
  1111. BPF_ALU64_REG(BPF_ADD, R1, R0),
  1112. BPF_ALU64_REG(BPF_ADD, R1, R1),
  1113. BPF_ALU64_REG(BPF_ADD, R1, R2),
  1114. BPF_ALU64_REG(BPF_ADD, R1, R3),
  1115. BPF_ALU64_REG(BPF_ADD, R1, R4),
  1116. BPF_ALU64_REG(BPF_ADD, R1, R5),
  1117. BPF_ALU64_REG(BPF_ADD, R1, R6),
  1118. BPF_ALU64_REG(BPF_ADD, R1, R7),
  1119. BPF_ALU64_REG(BPF_ADD, R1, R8),
  1120. BPF_ALU64_REG(BPF_ADD, R1, R9), /* R1 == 456 */
  1121. BPF_JMP_IMM(BPF_JEQ, R1, 456, 1),
  1122. BPF_EXIT_INSN(),
  1123. BPF_ALU64_REG(BPF_ADD, R2, R0),
  1124. BPF_ALU64_REG(BPF_ADD, R2, R1),
  1125. BPF_ALU64_REG(BPF_ADD, R2, R2),
  1126. BPF_ALU64_REG(BPF_ADD, R2, R3),
  1127. BPF_ALU64_REG(BPF_ADD, R2, R4),
  1128. BPF_ALU64_REG(BPF_ADD, R2, R5),
  1129. BPF_ALU64_REG(BPF_ADD, R2, R6),
  1130. BPF_ALU64_REG(BPF_ADD, R2, R7),
  1131. BPF_ALU64_REG(BPF_ADD, R2, R8),
  1132. BPF_ALU64_REG(BPF_ADD, R2, R9), /* R2 == 1358 */
  1133. BPF_JMP_IMM(BPF_JEQ, R2, 1358, 1),
  1134. BPF_EXIT_INSN(),
  1135. BPF_ALU64_REG(BPF_ADD, R3, R0),
  1136. BPF_ALU64_REG(BPF_ADD, R3, R1),
  1137. BPF_ALU64_REG(BPF_ADD, R3, R2),
  1138. BPF_ALU64_REG(BPF_ADD, R3, R3),
  1139. BPF_ALU64_REG(BPF_ADD, R3, R4),
  1140. BPF_ALU64_REG(BPF_ADD, R3, R5),
  1141. BPF_ALU64_REG(BPF_ADD, R3, R6),
  1142. BPF_ALU64_REG(BPF_ADD, R3, R7),
  1143. BPF_ALU64_REG(BPF_ADD, R3, R8),
  1144. BPF_ALU64_REG(BPF_ADD, R3, R9), /* R3 == 4063 */
  1145. BPF_JMP_IMM(BPF_JEQ, R3, 4063, 1),
  1146. BPF_EXIT_INSN(),
  1147. BPF_ALU64_REG(BPF_ADD, R4, R0),
  1148. BPF_ALU64_REG(BPF_ADD, R4, R1),
  1149. BPF_ALU64_REG(BPF_ADD, R4, R2),
  1150. BPF_ALU64_REG(BPF_ADD, R4, R3),
  1151. BPF_ALU64_REG(BPF_ADD, R4, R4),
  1152. BPF_ALU64_REG(BPF_ADD, R4, R5),
  1153. BPF_ALU64_REG(BPF_ADD, R4, R6),
  1154. BPF_ALU64_REG(BPF_ADD, R4, R7),
  1155. BPF_ALU64_REG(BPF_ADD, R4, R8),
  1156. BPF_ALU64_REG(BPF_ADD, R4, R9), /* R4 == 12177 */
  1157. BPF_JMP_IMM(BPF_JEQ, R4, 12177, 1),
  1158. BPF_EXIT_INSN(),
  1159. BPF_ALU64_REG(BPF_ADD, R5, R0),
  1160. BPF_ALU64_REG(BPF_ADD, R5, R1),
  1161. BPF_ALU64_REG(BPF_ADD, R5, R2),
  1162. BPF_ALU64_REG(BPF_ADD, R5, R3),
  1163. BPF_ALU64_REG(BPF_ADD, R5, R4),
  1164. BPF_ALU64_REG(BPF_ADD, R5, R5),
  1165. BPF_ALU64_REG(BPF_ADD, R5, R6),
  1166. BPF_ALU64_REG(BPF_ADD, R5, R7),
  1167. BPF_ALU64_REG(BPF_ADD, R5, R8),
  1168. BPF_ALU64_REG(BPF_ADD, R5, R9), /* R5 == 36518 */
  1169. BPF_JMP_IMM(BPF_JEQ, R5, 36518, 1),
  1170. BPF_EXIT_INSN(),
  1171. BPF_ALU64_REG(BPF_ADD, R6, R0),
  1172. BPF_ALU64_REG(BPF_ADD, R6, R1),
  1173. BPF_ALU64_REG(BPF_ADD, R6, R2),
  1174. BPF_ALU64_REG(BPF_ADD, R6, R3),
  1175. BPF_ALU64_REG(BPF_ADD, R6, R4),
  1176. BPF_ALU64_REG(BPF_ADD, R6, R5),
  1177. BPF_ALU64_REG(BPF_ADD, R6, R6),
  1178. BPF_ALU64_REG(BPF_ADD, R6, R7),
  1179. BPF_ALU64_REG(BPF_ADD, R6, R8),
  1180. BPF_ALU64_REG(BPF_ADD, R6, R9), /* R6 == 109540 */
  1181. BPF_JMP_IMM(BPF_JEQ, R6, 109540, 1),
  1182. BPF_EXIT_INSN(),
  1183. BPF_ALU64_REG(BPF_ADD, R7, R0),
  1184. BPF_ALU64_REG(BPF_ADD, R7, R1),
  1185. BPF_ALU64_REG(BPF_ADD, R7, R2),
  1186. BPF_ALU64_REG(BPF_ADD, R7, R3),
  1187. BPF_ALU64_REG(BPF_ADD, R7, R4),
  1188. BPF_ALU64_REG(BPF_ADD, R7, R5),
  1189. BPF_ALU64_REG(BPF_ADD, R7, R6),
  1190. BPF_ALU64_REG(BPF_ADD, R7, R7),
  1191. BPF_ALU64_REG(BPF_ADD, R7, R8),
  1192. BPF_ALU64_REG(BPF_ADD, R7, R9), /* R7 == 328605 */
  1193. BPF_JMP_IMM(BPF_JEQ, R7, 328605, 1),
  1194. BPF_EXIT_INSN(),
  1195. BPF_ALU64_REG(BPF_ADD, R8, R0),
  1196. BPF_ALU64_REG(BPF_ADD, R8, R1),
  1197. BPF_ALU64_REG(BPF_ADD, R8, R2),
  1198. BPF_ALU64_REG(BPF_ADD, R8, R3),
  1199. BPF_ALU64_REG(BPF_ADD, R8, R4),
  1200. BPF_ALU64_REG(BPF_ADD, R8, R5),
  1201. BPF_ALU64_REG(BPF_ADD, R8, R6),
  1202. BPF_ALU64_REG(BPF_ADD, R8, R7),
  1203. BPF_ALU64_REG(BPF_ADD, R8, R8),
  1204. BPF_ALU64_REG(BPF_ADD, R8, R9), /* R8 == 985799 */
  1205. BPF_JMP_IMM(BPF_JEQ, R8, 985799, 1),
  1206. BPF_EXIT_INSN(),
  1207. BPF_ALU64_REG(BPF_ADD, R9, R0),
  1208. BPF_ALU64_REG(BPF_ADD, R9, R1),
  1209. BPF_ALU64_REG(BPF_ADD, R9, R2),
  1210. BPF_ALU64_REG(BPF_ADD, R9, R3),
  1211. BPF_ALU64_REG(BPF_ADD, R9, R4),
  1212. BPF_ALU64_REG(BPF_ADD, R9, R5),
  1213. BPF_ALU64_REG(BPF_ADD, R9, R6),
  1214. BPF_ALU64_REG(BPF_ADD, R9, R7),
  1215. BPF_ALU64_REG(BPF_ADD, R9, R8),
  1216. BPF_ALU64_REG(BPF_ADD, R9, R9), /* R9 == 2957380 */
  1217. BPF_ALU64_REG(BPF_MOV, R0, R9),
  1218. BPF_EXIT_INSN(),
  1219. },
  1220. INTERNAL,
  1221. { },
  1222. { { 0, 2957380 } }
  1223. },
  1224. {
  1225. "INT: ADD 32-bit",
  1226. .u.insns_int = {
  1227. BPF_ALU32_IMM(BPF_MOV, R0, 20),
  1228. BPF_ALU32_IMM(BPF_MOV, R1, 1),
  1229. BPF_ALU32_IMM(BPF_MOV, R2, 2),
  1230. BPF_ALU32_IMM(BPF_MOV, R3, 3),
  1231. BPF_ALU32_IMM(BPF_MOV, R4, 4),
  1232. BPF_ALU32_IMM(BPF_MOV, R5, 5),
  1233. BPF_ALU32_IMM(BPF_MOV, R6, 6),
  1234. BPF_ALU32_IMM(BPF_MOV, R7, 7),
  1235. BPF_ALU32_IMM(BPF_MOV, R8, 8),
  1236. BPF_ALU32_IMM(BPF_MOV, R9, 9),
  1237. BPF_ALU64_IMM(BPF_ADD, R1, 10),
  1238. BPF_ALU64_IMM(BPF_ADD, R2, 10),
  1239. BPF_ALU64_IMM(BPF_ADD, R3, 10),
  1240. BPF_ALU64_IMM(BPF_ADD, R4, 10),
  1241. BPF_ALU64_IMM(BPF_ADD, R5, 10),
  1242. BPF_ALU64_IMM(BPF_ADD, R6, 10),
  1243. BPF_ALU64_IMM(BPF_ADD, R7, 10),
  1244. BPF_ALU64_IMM(BPF_ADD, R8, 10),
  1245. BPF_ALU64_IMM(BPF_ADD, R9, 10),
  1246. BPF_ALU32_REG(BPF_ADD, R0, R1),
  1247. BPF_ALU32_REG(BPF_ADD, R0, R2),
  1248. BPF_ALU32_REG(BPF_ADD, R0, R3),
  1249. BPF_ALU32_REG(BPF_ADD, R0, R4),
  1250. BPF_ALU32_REG(BPF_ADD, R0, R5),
  1251. BPF_ALU32_REG(BPF_ADD, R0, R6),
  1252. BPF_ALU32_REG(BPF_ADD, R0, R7),
  1253. BPF_ALU32_REG(BPF_ADD, R0, R8),
  1254. BPF_ALU32_REG(BPF_ADD, R0, R9), /* R0 == 155 */
  1255. BPF_JMP_IMM(BPF_JEQ, R0, 155, 1),
  1256. BPF_EXIT_INSN(),
  1257. BPF_ALU32_REG(BPF_ADD, R1, R0),
  1258. BPF_ALU32_REG(BPF_ADD, R1, R1),
  1259. BPF_ALU32_REG(BPF_ADD, R1, R2),
  1260. BPF_ALU32_REG(BPF_ADD, R1, R3),
  1261. BPF_ALU32_REG(BPF_ADD, R1, R4),
  1262. BPF_ALU32_REG(BPF_ADD, R1, R5),
  1263. BPF_ALU32_REG(BPF_ADD, R1, R6),
  1264. BPF_ALU32_REG(BPF_ADD, R1, R7),
  1265. BPF_ALU32_REG(BPF_ADD, R1, R8),
  1266. BPF_ALU32_REG(BPF_ADD, R1, R9), /* R1 == 456 */
  1267. BPF_JMP_IMM(BPF_JEQ, R1, 456, 1),
  1268. BPF_EXIT_INSN(),
  1269. BPF_ALU32_REG(BPF_ADD, R2, R0),
  1270. BPF_ALU32_REG(BPF_ADD, R2, R1),
  1271. BPF_ALU32_REG(BPF_ADD, R2, R2),
  1272. BPF_ALU32_REG(BPF_ADD, R2, R3),
  1273. BPF_ALU32_REG(BPF_ADD, R2, R4),
  1274. BPF_ALU32_REG(BPF_ADD, R2, R5),
  1275. BPF_ALU32_REG(BPF_ADD, R2, R6),
  1276. BPF_ALU32_REG(BPF_ADD, R2, R7),
  1277. BPF_ALU32_REG(BPF_ADD, R2, R8),
  1278. BPF_ALU32_REG(BPF_ADD, R2, R9), /* R2 == 1358 */
  1279. BPF_JMP_IMM(BPF_JEQ, R2, 1358, 1),
  1280. BPF_EXIT_INSN(),
  1281. BPF_ALU32_REG(BPF_ADD, R3, R0),
  1282. BPF_ALU32_REG(BPF_ADD, R3, R1),
  1283. BPF_ALU32_REG(BPF_ADD, R3, R2),
  1284. BPF_ALU32_REG(BPF_ADD, R3, R3),
  1285. BPF_ALU32_REG(BPF_ADD, R3, R4),
  1286. BPF_ALU32_REG(BPF_ADD, R3, R5),
  1287. BPF_ALU32_REG(BPF_ADD, R3, R6),
  1288. BPF_ALU32_REG(BPF_ADD, R3, R7),
  1289. BPF_ALU32_REG(BPF_ADD, R3, R8),
  1290. BPF_ALU32_REG(BPF_ADD, R3, R9), /* R3 == 4063 */
  1291. BPF_JMP_IMM(BPF_JEQ, R3, 4063, 1),
  1292. BPF_EXIT_INSN(),
  1293. BPF_ALU32_REG(BPF_ADD, R4, R0),
  1294. BPF_ALU32_REG(BPF_ADD, R4, R1),
  1295. BPF_ALU32_REG(BPF_ADD, R4, R2),
  1296. BPF_ALU32_REG(BPF_ADD, R4, R3),
  1297. BPF_ALU32_REG(BPF_ADD, R4, R4),
  1298. BPF_ALU32_REG(BPF_ADD, R4, R5),
  1299. BPF_ALU32_REG(BPF_ADD, R4, R6),
  1300. BPF_ALU32_REG(BPF_ADD, R4, R7),
  1301. BPF_ALU32_REG(BPF_ADD, R4, R8),
  1302. BPF_ALU32_REG(BPF_ADD, R4, R9), /* R4 == 12177 */
  1303. BPF_JMP_IMM(BPF_JEQ, R4, 12177, 1),
  1304. BPF_EXIT_INSN(),
  1305. BPF_ALU32_REG(BPF_ADD, R5, R0),
  1306. BPF_ALU32_REG(BPF_ADD, R5, R1),
  1307. BPF_ALU32_REG(BPF_ADD, R5, R2),
  1308. BPF_ALU32_REG(BPF_ADD, R5, R3),
  1309. BPF_ALU32_REG(BPF_ADD, R5, R4),
  1310. BPF_ALU32_REG(BPF_ADD, R5, R5),
  1311. BPF_ALU32_REG(BPF_ADD, R5, R6),
  1312. BPF_ALU32_REG(BPF_ADD, R5, R7),
  1313. BPF_ALU32_REG(BPF_ADD, R5, R8),
  1314. BPF_ALU32_REG(BPF_ADD, R5, R9), /* R5 == 36518 */
  1315. BPF_JMP_IMM(BPF_JEQ, R5, 36518, 1),
  1316. BPF_EXIT_INSN(),
  1317. BPF_ALU32_REG(BPF_ADD, R6, R0),
  1318. BPF_ALU32_REG(BPF_ADD, R6, R1),
  1319. BPF_ALU32_REG(BPF_ADD, R6, R2),
  1320. BPF_ALU32_REG(BPF_ADD, R6, R3),
  1321. BPF_ALU32_REG(BPF_ADD, R6, R4),
  1322. BPF_ALU32_REG(BPF_ADD, R6, R5),
  1323. BPF_ALU32_REG(BPF_ADD, R6, R6),
  1324. BPF_ALU32_REG(BPF_ADD, R6, R7),
  1325. BPF_ALU32_REG(BPF_ADD, R6, R8),
  1326. BPF_ALU32_REG(BPF_ADD, R6, R9), /* R6 == 109540 */
  1327. BPF_JMP_IMM(BPF_JEQ, R6, 109540, 1),
  1328. BPF_EXIT_INSN(),
  1329. BPF_ALU32_REG(BPF_ADD, R7, R0),
  1330. BPF_ALU32_REG(BPF_ADD, R7, R1),
  1331. BPF_ALU32_REG(BPF_ADD, R7, R2),
  1332. BPF_ALU32_REG(BPF_ADD, R7, R3),
  1333. BPF_ALU32_REG(BPF_ADD, R7, R4),
  1334. BPF_ALU32_REG(BPF_ADD, R7, R5),
  1335. BPF_ALU32_REG(BPF_ADD, R7, R6),
  1336. BPF_ALU32_REG(BPF_ADD, R7, R7),
  1337. BPF_ALU32_REG(BPF_ADD, R7, R8),
  1338. BPF_ALU32_REG(BPF_ADD, R7, R9), /* R7 == 328605 */
  1339. BPF_JMP_IMM(BPF_JEQ, R7, 328605, 1),
  1340. BPF_EXIT_INSN(),
  1341. BPF_ALU32_REG(BPF_ADD, R8, R0),
  1342. BPF_ALU32_REG(BPF_ADD, R8, R1),
  1343. BPF_ALU32_REG(BPF_ADD, R8, R2),
  1344. BPF_ALU32_REG(BPF_ADD, R8, R3),
  1345. BPF_ALU32_REG(BPF_ADD, R8, R4),
  1346. BPF_ALU32_REG(BPF_ADD, R8, R5),
  1347. BPF_ALU32_REG(BPF_ADD, R8, R6),
  1348. BPF_ALU32_REG(BPF_ADD, R8, R7),
  1349. BPF_ALU32_REG(BPF_ADD, R8, R8),
  1350. BPF_ALU32_REG(BPF_ADD, R8, R9), /* R8 == 985799 */
  1351. BPF_JMP_IMM(BPF_JEQ, R8, 985799, 1),
  1352. BPF_EXIT_INSN(),
  1353. BPF_ALU32_REG(BPF_ADD, R9, R0),
  1354. BPF_ALU32_REG(BPF_ADD, R9, R1),
  1355. BPF_ALU32_REG(BPF_ADD, R9, R2),
  1356. BPF_ALU32_REG(BPF_ADD, R9, R3),
  1357. BPF_ALU32_REG(BPF_ADD, R9, R4),
  1358. BPF_ALU32_REG(BPF_ADD, R9, R5),
  1359. BPF_ALU32_REG(BPF_ADD, R9, R6),
  1360. BPF_ALU32_REG(BPF_ADD, R9, R7),
  1361. BPF_ALU32_REG(BPF_ADD, R9, R8),
  1362. BPF_ALU32_REG(BPF_ADD, R9, R9), /* R9 == 2957380 */
  1363. BPF_ALU32_REG(BPF_MOV, R0, R9),
  1364. BPF_EXIT_INSN(),
  1365. },
  1366. INTERNAL,
  1367. { },
  1368. { { 0, 2957380 } }
  1369. },
  1370. { /* Mainly checking JIT here. */
  1371. "INT: SUB",
  1372. .u.insns_int = {
  1373. BPF_ALU64_IMM(BPF_MOV, R0, 0),
  1374. BPF_ALU64_IMM(BPF_MOV, R1, 1),
  1375. BPF_ALU64_IMM(BPF_MOV, R2, 2),
  1376. BPF_ALU64_IMM(BPF_MOV, R3, 3),
  1377. BPF_ALU64_IMM(BPF_MOV, R4, 4),
  1378. BPF_ALU64_IMM(BPF_MOV, R5, 5),
  1379. BPF_ALU64_IMM(BPF_MOV, R6, 6),
  1380. BPF_ALU64_IMM(BPF_MOV, R7, 7),
  1381. BPF_ALU64_IMM(BPF_MOV, R8, 8),
  1382. BPF_ALU64_IMM(BPF_MOV, R9, 9),
  1383. BPF_ALU64_REG(BPF_SUB, R0, R0),
  1384. BPF_ALU64_REG(BPF_SUB, R0, R1),
  1385. BPF_ALU64_REG(BPF_SUB, R0, R2),
  1386. BPF_ALU64_REG(BPF_SUB, R0, R3),
  1387. BPF_ALU64_REG(BPF_SUB, R0, R4),
  1388. BPF_ALU64_REG(BPF_SUB, R0, R5),
  1389. BPF_ALU64_REG(BPF_SUB, R0, R6),
  1390. BPF_ALU64_REG(BPF_SUB, R0, R7),
  1391. BPF_ALU64_REG(BPF_SUB, R0, R8),
  1392. BPF_ALU64_REG(BPF_SUB, R0, R9),
  1393. BPF_ALU64_IMM(BPF_SUB, R0, 10),
  1394. BPF_JMP_IMM(BPF_JEQ, R0, -55, 1),
  1395. BPF_EXIT_INSN(),
  1396. BPF_ALU64_REG(BPF_SUB, R1, R0),
  1397. BPF_ALU64_REG(BPF_SUB, R1, R2),
  1398. BPF_ALU64_REG(BPF_SUB, R1, R3),
  1399. BPF_ALU64_REG(BPF_SUB, R1, R4),
  1400. BPF_ALU64_REG(BPF_SUB, R1, R5),
  1401. BPF_ALU64_REG(BPF_SUB, R1, R6),
  1402. BPF_ALU64_REG(BPF_SUB, R1, R7),
  1403. BPF_ALU64_REG(BPF_SUB, R1, R8),
  1404. BPF_ALU64_REG(BPF_SUB, R1, R9),
  1405. BPF_ALU64_IMM(BPF_SUB, R1, 10),
  1406. BPF_ALU64_REG(BPF_SUB, R2, R0),
  1407. BPF_ALU64_REG(BPF_SUB, R2, R1),
  1408. BPF_ALU64_REG(BPF_SUB, R2, R3),
  1409. BPF_ALU64_REG(BPF_SUB, R2, R4),
  1410. BPF_ALU64_REG(BPF_SUB, R2, R5),
  1411. BPF_ALU64_REG(BPF_SUB, R2, R6),
  1412. BPF_ALU64_REG(BPF_SUB, R2, R7),
  1413. BPF_ALU64_REG(BPF_SUB, R2, R8),
  1414. BPF_ALU64_REG(BPF_SUB, R2, R9),
  1415. BPF_ALU64_IMM(BPF_SUB, R2, 10),
  1416. BPF_ALU64_REG(BPF_SUB, R3, R0),
  1417. BPF_ALU64_REG(BPF_SUB, R3, R1),
  1418. BPF_ALU64_REG(BPF_SUB, R3, R2),
  1419. BPF_ALU64_REG(BPF_SUB, R3, R4),
  1420. BPF_ALU64_REG(BPF_SUB, R3, R5),
  1421. BPF_ALU64_REG(BPF_SUB, R3, R6),
  1422. BPF_ALU64_REG(BPF_SUB, R3, R7),
  1423. BPF_ALU64_REG(BPF_SUB, R3, R8),
  1424. BPF_ALU64_REG(BPF_SUB, R3, R9),
  1425. BPF_ALU64_IMM(BPF_SUB, R3, 10),
  1426. BPF_ALU64_REG(BPF_SUB, R4, R0),
  1427. BPF_ALU64_REG(BPF_SUB, R4, R1),
  1428. BPF_ALU64_REG(BPF_SUB, R4, R2),
  1429. BPF_ALU64_REG(BPF_SUB, R4, R3),
  1430. BPF_ALU64_REG(BPF_SUB, R4, R5),
  1431. BPF_ALU64_REG(BPF_SUB, R4, R6),
  1432. BPF_ALU64_REG(BPF_SUB, R4, R7),
  1433. BPF_ALU64_REG(BPF_SUB, R4, R8),
  1434. BPF_ALU64_REG(BPF_SUB, R4, R9),
  1435. BPF_ALU64_IMM(BPF_SUB, R4, 10),
  1436. BPF_ALU64_REG(BPF_SUB, R5, R0),
  1437. BPF_ALU64_REG(BPF_SUB, R5, R1),
  1438. BPF_ALU64_REG(BPF_SUB, R5, R2),
  1439. BPF_ALU64_REG(BPF_SUB, R5, R3),
  1440. BPF_ALU64_REG(BPF_SUB, R5, R4),
  1441. BPF_ALU64_REG(BPF_SUB, R5, R6),
  1442. BPF_ALU64_REG(BPF_SUB, R5, R7),
  1443. BPF_ALU64_REG(BPF_SUB, R5, R8),
  1444. BPF_ALU64_REG(BPF_SUB, R5, R9),
  1445. BPF_ALU64_IMM(BPF_SUB, R5, 10),
  1446. BPF_ALU64_REG(BPF_SUB, R6, R0),
  1447. BPF_ALU64_REG(BPF_SUB, R6, R1),
  1448. BPF_ALU64_REG(BPF_SUB, R6, R2),
  1449. BPF_ALU64_REG(BPF_SUB, R6, R3),
  1450. BPF_ALU64_REG(BPF_SUB, R6, R4),
  1451. BPF_ALU64_REG(BPF_SUB, R6, R5),
  1452. BPF_ALU64_REG(BPF_SUB, R6, R7),
  1453. BPF_ALU64_REG(BPF_SUB, R6, R8),
  1454. BPF_ALU64_REG(BPF_SUB, R6, R9),
  1455. BPF_ALU64_IMM(BPF_SUB, R6, 10),
  1456. BPF_ALU64_REG(BPF_SUB, R7, R0),
  1457. BPF_ALU64_REG(BPF_SUB, R7, R1),
  1458. BPF_ALU64_REG(BPF_SUB, R7, R2),
  1459. BPF_ALU64_REG(BPF_SUB, R7, R3),
  1460. BPF_ALU64_REG(BPF_SUB, R7, R4),
  1461. BPF_ALU64_REG(BPF_SUB, R7, R5),
  1462. BPF_ALU64_REG(BPF_SUB, R7, R6),
  1463. BPF_ALU64_REG(BPF_SUB, R7, R8),
  1464. BPF_ALU64_REG(BPF_SUB, R7, R9),
  1465. BPF_ALU64_IMM(BPF_SUB, R7, 10),
  1466. BPF_ALU64_REG(BPF_SUB, R8, R0),
  1467. BPF_ALU64_REG(BPF_SUB, R8, R1),
  1468. BPF_ALU64_REG(BPF_SUB, R8, R2),
  1469. BPF_ALU64_REG(BPF_SUB, R8, R3),
  1470. BPF_ALU64_REG(BPF_SUB, R8, R4),
  1471. BPF_ALU64_REG(BPF_SUB, R8, R5),
  1472. BPF_ALU64_REG(BPF_SUB, R8, R6),
  1473. BPF_ALU64_REG(BPF_SUB, R8, R7),
  1474. BPF_ALU64_REG(BPF_SUB, R8, R9),
  1475. BPF_ALU64_IMM(BPF_SUB, R8, 10),
  1476. BPF_ALU64_REG(BPF_SUB, R9, R0),
  1477. BPF_ALU64_REG(BPF_SUB, R9, R1),
  1478. BPF_ALU64_REG(BPF_SUB, R9, R2),
  1479. BPF_ALU64_REG(BPF_SUB, R9, R3),
  1480. BPF_ALU64_REG(BPF_SUB, R9, R4),
  1481. BPF_ALU64_REG(BPF_SUB, R9, R5),
  1482. BPF_ALU64_REG(BPF_SUB, R9, R6),
  1483. BPF_ALU64_REG(BPF_SUB, R9, R7),
  1484. BPF_ALU64_REG(BPF_SUB, R9, R8),
  1485. BPF_ALU64_IMM(BPF_SUB, R9, 10),
  1486. BPF_ALU64_IMM(BPF_SUB, R0, 10),
  1487. BPF_ALU64_IMM(BPF_NEG, R0, 0),
  1488. BPF_ALU64_REG(BPF_SUB, R0, R1),
  1489. BPF_ALU64_REG(BPF_SUB, R0, R2),
  1490. BPF_ALU64_REG(BPF_SUB, R0, R3),
  1491. BPF_ALU64_REG(BPF_SUB, R0, R4),
  1492. BPF_ALU64_REG(BPF_SUB, R0, R5),
  1493. BPF_ALU64_REG(BPF_SUB, R0, R6),
  1494. BPF_ALU64_REG(BPF_SUB, R0, R7),
  1495. BPF_ALU64_REG(BPF_SUB, R0, R8),
  1496. BPF_ALU64_REG(BPF_SUB, R0, R9),
  1497. BPF_EXIT_INSN(),
  1498. },
  1499. INTERNAL,
  1500. { },
  1501. { { 0, 11 } }
  1502. },
  1503. { /* Mainly checking JIT here. */
  1504. "INT: XOR",
  1505. .u.insns_int = {
  1506. BPF_ALU64_REG(BPF_SUB, R0, R0),
  1507. BPF_ALU64_REG(BPF_XOR, R1, R1),
  1508. BPF_JMP_REG(BPF_JEQ, R0, R1, 1),
  1509. BPF_EXIT_INSN(),
  1510. BPF_ALU64_IMM(BPF_MOV, R0, 10),
  1511. BPF_ALU64_IMM(BPF_MOV, R1, -1),
  1512. BPF_ALU64_REG(BPF_SUB, R1, R1),
  1513. BPF_ALU64_REG(BPF_XOR, R2, R2),
  1514. BPF_JMP_REG(BPF_JEQ, R1, R2, 1),
  1515. BPF_EXIT_INSN(),
  1516. BPF_ALU64_REG(BPF_SUB, R2, R2),
  1517. BPF_ALU64_REG(BPF_XOR, R3, R3),
  1518. BPF_ALU64_IMM(BPF_MOV, R0, 10),
  1519. BPF_ALU64_IMM(BPF_MOV, R1, -1),
  1520. BPF_JMP_REG(BPF_JEQ, R2, R3, 1),
  1521. BPF_EXIT_INSN(),
  1522. BPF_ALU64_REG(BPF_SUB, R3, R3),
  1523. BPF_ALU64_REG(BPF_XOR, R4, R4),
  1524. BPF_ALU64_IMM(BPF_MOV, R2, 1),
  1525. BPF_ALU64_IMM(BPF_MOV, R5, -1),
  1526. BPF_JMP_REG(BPF_JEQ, R3, R4, 1),
  1527. BPF_EXIT_INSN(),
  1528. BPF_ALU64_REG(BPF_SUB, R4, R4),
  1529. BPF_ALU64_REG(BPF_XOR, R5, R5),
  1530. BPF_ALU64_IMM(BPF_MOV, R3, 1),
  1531. BPF_ALU64_IMM(BPF_MOV, R7, -1),
  1532. BPF_JMP_REG(BPF_JEQ, R5, R4, 1),
  1533. BPF_EXIT_INSN(),
  1534. BPF_ALU64_IMM(BPF_MOV, R5, 1),
  1535. BPF_ALU64_REG(BPF_SUB, R5, R5),
  1536. BPF_ALU64_REG(BPF_XOR, R6, R6),
  1537. BPF_ALU64_IMM(BPF_MOV, R1, 1),
  1538. BPF_ALU64_IMM(BPF_MOV, R8, -1),
  1539. BPF_JMP_REG(BPF_JEQ, R5, R6, 1),
  1540. BPF_EXIT_INSN(),
  1541. BPF_ALU64_REG(BPF_SUB, R6, R6),
  1542. BPF_ALU64_REG(BPF_XOR, R7, R7),
  1543. BPF_JMP_REG(BPF_JEQ, R7, R6, 1),
  1544. BPF_EXIT_INSN(),
  1545. BPF_ALU64_REG(BPF_SUB, R7, R7),
  1546. BPF_ALU64_REG(BPF_XOR, R8, R8),
  1547. BPF_JMP_REG(BPF_JEQ, R7, R8, 1),
  1548. BPF_EXIT_INSN(),
  1549. BPF_ALU64_REG(BPF_SUB, R8, R8),
  1550. BPF_ALU64_REG(BPF_XOR, R9, R9),
  1551. BPF_JMP_REG(BPF_JEQ, R9, R8, 1),
  1552. BPF_EXIT_INSN(),
  1553. BPF_ALU64_REG(BPF_SUB, R9, R9),
  1554. BPF_ALU64_REG(BPF_XOR, R0, R0),
  1555. BPF_JMP_REG(BPF_JEQ, R9, R0, 1),
  1556. BPF_EXIT_INSN(),
  1557. BPF_ALU64_REG(BPF_SUB, R1, R1),
  1558. BPF_ALU64_REG(BPF_XOR, R0, R0),
  1559. BPF_JMP_REG(BPF_JEQ, R9, R0, 2),
  1560. BPF_ALU64_IMM(BPF_MOV, R0, 0),
  1561. BPF_EXIT_INSN(),
  1562. BPF_ALU64_IMM(BPF_MOV, R0, 1),
  1563. BPF_EXIT_INSN(),
  1564. },
  1565. INTERNAL,
  1566. { },
  1567. { { 0, 1 } }
  1568. },
  1569. { /* Mainly checking JIT here. */
  1570. "INT: MUL",
  1571. .u.insns_int = {
  1572. BPF_ALU64_IMM(BPF_MOV, R0, 11),
  1573. BPF_ALU64_IMM(BPF_MOV, R1, 1),
  1574. BPF_ALU64_IMM(BPF_MOV, R2, 2),
  1575. BPF_ALU64_IMM(BPF_MOV, R3, 3),
  1576. BPF_ALU64_IMM(BPF_MOV, R4, 4),
  1577. BPF_ALU64_IMM(BPF_MOV, R5, 5),
  1578. BPF_ALU64_IMM(BPF_MOV, R6, 6),
  1579. BPF_ALU64_IMM(BPF_MOV, R7, 7),
  1580. BPF_ALU64_IMM(BPF_MOV, R8, 8),
  1581. BPF_ALU64_IMM(BPF_MOV, R9, 9),
  1582. BPF_ALU64_REG(BPF_MUL, R0, R0),
  1583. BPF_ALU64_REG(BPF_MUL, R0, R1),
  1584. BPF_ALU64_REG(BPF_MUL, R0, R2),
  1585. BPF_ALU64_REG(BPF_MUL, R0, R3),
  1586. BPF_ALU64_REG(BPF_MUL, R0, R4),
  1587. BPF_ALU64_REG(BPF_MUL, R0, R5),
  1588. BPF_ALU64_REG(BPF_MUL, R0, R6),
  1589. BPF_ALU64_REG(BPF_MUL, R0, R7),
  1590. BPF_ALU64_REG(BPF_MUL, R0, R8),
  1591. BPF_ALU64_REG(BPF_MUL, R0, R9),
  1592. BPF_ALU64_IMM(BPF_MUL, R0, 10),
  1593. BPF_JMP_IMM(BPF_JEQ, R0, 439084800, 1),
  1594. BPF_EXIT_INSN(),
  1595. BPF_ALU64_REG(BPF_MUL, R1, R0),
  1596. BPF_ALU64_REG(BPF_MUL, R1, R2),
  1597. BPF_ALU64_REG(BPF_MUL, R1, R3),
  1598. BPF_ALU64_REG(BPF_MUL, R1, R4),
  1599. BPF_ALU64_REG(BPF_MUL, R1, R5),
  1600. BPF_ALU64_REG(BPF_MUL, R1, R6),
  1601. BPF_ALU64_REG(BPF_MUL, R1, R7),
  1602. BPF_ALU64_REG(BPF_MUL, R1, R8),
  1603. BPF_ALU64_REG(BPF_MUL, R1, R9),
  1604. BPF_ALU64_IMM(BPF_MUL, R1, 10),
  1605. BPF_ALU64_REG(BPF_MOV, R2, R1),
  1606. BPF_ALU64_IMM(BPF_RSH, R2, 32),
  1607. BPF_JMP_IMM(BPF_JEQ, R2, 0x5a924, 1),
  1608. BPF_EXIT_INSN(),
  1609. BPF_ALU64_IMM(BPF_LSH, R1, 32),
  1610. BPF_ALU64_IMM(BPF_ARSH, R1, 32),
  1611. BPF_JMP_IMM(BPF_JEQ, R1, 0xebb90000, 1),
  1612. BPF_EXIT_INSN(),
  1613. BPF_ALU64_REG(BPF_MUL, R2, R0),
  1614. BPF_ALU64_REG(BPF_MUL, R2, R1),
  1615. BPF_ALU64_REG(BPF_MUL, R2, R3),
  1616. BPF_ALU64_REG(BPF_MUL, R2, R4),
  1617. BPF_ALU64_REG(BPF_MUL, R2, R5),
  1618. BPF_ALU64_REG(BPF_MUL, R2, R6),
  1619. BPF_ALU64_REG(BPF_MUL, R2, R7),
  1620. BPF_ALU64_REG(BPF_MUL, R2, R8),
  1621. BPF_ALU64_REG(BPF_MUL, R2, R9),
  1622. BPF_ALU64_IMM(BPF_MUL, R2, 10),
  1623. BPF_ALU64_IMM(BPF_RSH, R2, 32),
  1624. BPF_ALU64_REG(BPF_MOV, R0, R2),
  1625. BPF_EXIT_INSN(),
  1626. },
  1627. INTERNAL,
  1628. { },
  1629. { { 0, 0x35d97ef2 } }
  1630. },
  1631. { /* Mainly checking JIT here. */
  1632. "MOV REG64",
  1633. .u.insns_int = {
  1634. BPF_LD_IMM64(R0, 0xffffffffffffffffLL),
  1635. BPF_MOV64_REG(R1, R0),
  1636. BPF_MOV64_REG(R2, R1),
  1637. BPF_MOV64_REG(R3, R2),
  1638. BPF_MOV64_REG(R4, R3),
  1639. BPF_MOV64_REG(R5, R4),
  1640. BPF_MOV64_REG(R6, R5),
  1641. BPF_MOV64_REG(R7, R6),
  1642. BPF_MOV64_REG(R8, R7),
  1643. BPF_MOV64_REG(R9, R8),
  1644. BPF_ALU64_IMM(BPF_MOV, R0, 0),
  1645. BPF_ALU64_IMM(BPF_MOV, R1, 0),
  1646. BPF_ALU64_IMM(BPF_MOV, R2, 0),
  1647. BPF_ALU64_IMM(BPF_MOV, R3, 0),
  1648. BPF_ALU64_IMM(BPF_MOV, R4, 0),
  1649. BPF_ALU64_IMM(BPF_MOV, R5, 0),
  1650. BPF_ALU64_IMM(BPF_MOV, R6, 0),
  1651. BPF_ALU64_IMM(BPF_MOV, R7, 0),
  1652. BPF_ALU64_IMM(BPF_MOV, R8, 0),
  1653. BPF_ALU64_IMM(BPF_MOV, R9, 0),
  1654. BPF_ALU64_REG(BPF_ADD, R0, R0),
  1655. BPF_ALU64_REG(BPF_ADD, R0, R1),
  1656. BPF_ALU64_REG(BPF_ADD, R0, R2),
  1657. BPF_ALU64_REG(BPF_ADD, R0, R3),
  1658. BPF_ALU64_REG(BPF_ADD, R0, R4),
  1659. BPF_ALU64_REG(BPF_ADD, R0, R5),
  1660. BPF_ALU64_REG(BPF_ADD, R0, R6),
  1661. BPF_ALU64_REG(BPF_ADD, R0, R7),
  1662. BPF_ALU64_REG(BPF_ADD, R0, R8),
  1663. BPF_ALU64_REG(BPF_ADD, R0, R9),
  1664. BPF_ALU64_IMM(BPF_ADD, R0, 0xfefe),
  1665. BPF_EXIT_INSN(),
  1666. },
  1667. INTERNAL,
  1668. { },
  1669. { { 0, 0xfefe } }
  1670. },
  1671. { /* Mainly checking JIT here. */
  1672. "MOV REG32",
  1673. .u.insns_int = {
  1674. BPF_LD_IMM64(R0, 0xffffffffffffffffLL),
  1675. BPF_MOV64_REG(R1, R0),
  1676. BPF_MOV64_REG(R2, R1),
  1677. BPF_MOV64_REG(R3, R2),
  1678. BPF_MOV64_REG(R4, R3),
  1679. BPF_MOV64_REG(R5, R4),
  1680. BPF_MOV64_REG(R6, R5),
  1681. BPF_MOV64_REG(R7, R6),
  1682. BPF_MOV64_REG(R8, R7),
  1683. BPF_MOV64_REG(R9, R8),
  1684. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  1685. BPF_ALU32_IMM(BPF_MOV, R1, 0),
  1686. BPF_ALU32_IMM(BPF_MOV, R2, 0),
  1687. BPF_ALU32_IMM(BPF_MOV, R3, 0),
  1688. BPF_ALU32_IMM(BPF_MOV, R4, 0),
  1689. BPF_ALU32_IMM(BPF_MOV, R5, 0),
  1690. BPF_ALU32_IMM(BPF_MOV, R6, 0),
  1691. BPF_ALU32_IMM(BPF_MOV, R7, 0),
  1692. BPF_ALU32_IMM(BPF_MOV, R8, 0),
  1693. BPF_ALU32_IMM(BPF_MOV, R9, 0),
  1694. BPF_ALU64_REG(BPF_ADD, R0, R0),
  1695. BPF_ALU64_REG(BPF_ADD, R0, R1),
  1696. BPF_ALU64_REG(BPF_ADD, R0, R2),
  1697. BPF_ALU64_REG(BPF_ADD, R0, R3),
  1698. BPF_ALU64_REG(BPF_ADD, R0, R4),
  1699. BPF_ALU64_REG(BPF_ADD, R0, R5),
  1700. BPF_ALU64_REG(BPF_ADD, R0, R6),
  1701. BPF_ALU64_REG(BPF_ADD, R0, R7),
  1702. BPF_ALU64_REG(BPF_ADD, R0, R8),
  1703. BPF_ALU64_REG(BPF_ADD, R0, R9),
  1704. BPF_ALU64_IMM(BPF_ADD, R0, 0xfefe),
  1705. BPF_EXIT_INSN(),
  1706. },
  1707. INTERNAL,
  1708. { },
  1709. { { 0, 0xfefe } }
  1710. },
  1711. { /* Mainly checking JIT here. */
  1712. "LD IMM64",
  1713. .u.insns_int = {
  1714. BPF_LD_IMM64(R0, 0xffffffffffffffffLL),
  1715. BPF_MOV64_REG(R1, R0),
  1716. BPF_MOV64_REG(R2, R1),
  1717. BPF_MOV64_REG(R3, R2),
  1718. BPF_MOV64_REG(R4, R3),
  1719. BPF_MOV64_REG(R5, R4),
  1720. BPF_MOV64_REG(R6, R5),
  1721. BPF_MOV64_REG(R7, R6),
  1722. BPF_MOV64_REG(R8, R7),
  1723. BPF_MOV64_REG(R9, R8),
  1724. BPF_LD_IMM64(R0, 0x0LL),
  1725. BPF_LD_IMM64(R1, 0x0LL),
  1726. BPF_LD_IMM64(R2, 0x0LL),
  1727. BPF_LD_IMM64(R3, 0x0LL),
  1728. BPF_LD_IMM64(R4, 0x0LL),
  1729. BPF_LD_IMM64(R5, 0x0LL),
  1730. BPF_LD_IMM64(R6, 0x0LL),
  1731. BPF_LD_IMM64(R7, 0x0LL),
  1732. BPF_LD_IMM64(R8, 0x0LL),
  1733. BPF_LD_IMM64(R9, 0x0LL),
  1734. BPF_ALU64_REG(BPF_ADD, R0, R0),
  1735. BPF_ALU64_REG(BPF_ADD, R0, R1),
  1736. BPF_ALU64_REG(BPF_ADD, R0, R2),
  1737. BPF_ALU64_REG(BPF_ADD, R0, R3),
  1738. BPF_ALU64_REG(BPF_ADD, R0, R4),
  1739. BPF_ALU64_REG(BPF_ADD, R0, R5),
  1740. BPF_ALU64_REG(BPF_ADD, R0, R6),
  1741. BPF_ALU64_REG(BPF_ADD, R0, R7),
  1742. BPF_ALU64_REG(BPF_ADD, R0, R8),
  1743. BPF_ALU64_REG(BPF_ADD, R0, R9),
  1744. BPF_ALU64_IMM(BPF_ADD, R0, 0xfefe),
  1745. BPF_EXIT_INSN(),
  1746. },
  1747. INTERNAL,
  1748. { },
  1749. { { 0, 0xfefe } }
  1750. },
  1751. {
  1752. "INT: ALU MIX",
  1753. .u.insns_int = {
  1754. BPF_ALU64_IMM(BPF_MOV, R0, 11),
  1755. BPF_ALU64_IMM(BPF_ADD, R0, -1),
  1756. BPF_ALU64_IMM(BPF_MOV, R2, 2),
  1757. BPF_ALU64_IMM(BPF_XOR, R2, 3),
  1758. BPF_ALU64_REG(BPF_DIV, R0, R2),
  1759. BPF_JMP_IMM(BPF_JEQ, R0, 10, 1),
  1760. BPF_EXIT_INSN(),
  1761. BPF_ALU64_IMM(BPF_MOD, R0, 3),
  1762. BPF_JMP_IMM(BPF_JEQ, R0, 1, 1),
  1763. BPF_EXIT_INSN(),
  1764. BPF_ALU64_IMM(BPF_MOV, R0, -1),
  1765. BPF_EXIT_INSN(),
  1766. },
  1767. INTERNAL,
  1768. { },
  1769. { { 0, -1 } }
  1770. },
  1771. {
  1772. "INT: shifts by register",
  1773. .u.insns_int = {
  1774. BPF_MOV64_IMM(R0, -1234),
  1775. BPF_MOV64_IMM(R1, 1),
  1776. BPF_ALU32_REG(BPF_RSH, R0, R1),
  1777. BPF_JMP_IMM(BPF_JEQ, R0, 0x7ffffd97, 1),
  1778. BPF_EXIT_INSN(),
  1779. BPF_MOV64_IMM(R2, 1),
  1780. BPF_ALU64_REG(BPF_LSH, R0, R2),
  1781. BPF_MOV32_IMM(R4, -1234),
  1782. BPF_JMP_REG(BPF_JEQ, R0, R4, 1),
  1783. BPF_EXIT_INSN(),
  1784. BPF_ALU64_IMM(BPF_AND, R4, 63),
  1785. BPF_ALU64_REG(BPF_LSH, R0, R4), /* R0 <= 46 */
  1786. BPF_MOV64_IMM(R3, 47),
  1787. BPF_ALU64_REG(BPF_ARSH, R0, R3),
  1788. BPF_JMP_IMM(BPF_JEQ, R0, -617, 1),
  1789. BPF_EXIT_INSN(),
  1790. BPF_MOV64_IMM(R2, 1),
  1791. BPF_ALU64_REG(BPF_LSH, R4, R2), /* R4 = 46 << 1 */
  1792. BPF_JMP_IMM(BPF_JEQ, R4, 92, 1),
  1793. BPF_EXIT_INSN(),
  1794. BPF_MOV64_IMM(R4, 4),
  1795. BPF_ALU64_REG(BPF_LSH, R4, R4), /* R4 = 4 << 4 */
  1796. BPF_JMP_IMM(BPF_JEQ, R4, 64, 1),
  1797. BPF_EXIT_INSN(),
  1798. BPF_MOV64_IMM(R4, 5),
  1799. BPF_ALU32_REG(BPF_LSH, R4, R4), /* R4 = 5 << 5 */
  1800. BPF_JMP_IMM(BPF_JEQ, R4, 160, 1),
  1801. BPF_EXIT_INSN(),
  1802. BPF_MOV64_IMM(R0, -1),
  1803. BPF_EXIT_INSN(),
  1804. },
  1805. INTERNAL,
  1806. { },
  1807. { { 0, -1 } }
  1808. },
  1809. {
  1810. "check: missing ret",
  1811. .u.insns = {
  1812. BPF_STMT(BPF_LD | BPF_IMM, 1),
  1813. },
  1814. CLASSIC | FLAG_NO_DATA | FLAG_EXPECTED_FAIL,
  1815. { },
  1816. { },
  1817. .fill_helper = NULL,
  1818. .expected_errcode = -EINVAL,
  1819. },
  1820. {
  1821. "check: div_k_0",
  1822. .u.insns = {
  1823. BPF_STMT(BPF_ALU | BPF_DIV | BPF_K, 0),
  1824. BPF_STMT(BPF_RET | BPF_K, 0)
  1825. },
  1826. CLASSIC | FLAG_NO_DATA | FLAG_EXPECTED_FAIL,
  1827. { },
  1828. { },
  1829. .fill_helper = NULL,
  1830. .expected_errcode = -EINVAL,
  1831. },
  1832. {
  1833. "check: unknown insn",
  1834. .u.insns = {
  1835. /* seccomp insn, rejected in socket filter */
  1836. BPF_STMT(BPF_LDX | BPF_W | BPF_ABS, 0),
  1837. BPF_STMT(BPF_RET | BPF_K, 0)
  1838. },
  1839. CLASSIC | FLAG_EXPECTED_FAIL,
  1840. { },
  1841. { },
  1842. .fill_helper = NULL,
  1843. .expected_errcode = -EINVAL,
  1844. },
  1845. {
  1846. "check: out of range spill/fill",
  1847. .u.insns = {
  1848. BPF_STMT(BPF_STX, 16),
  1849. BPF_STMT(BPF_RET | BPF_K, 0)
  1850. },
  1851. CLASSIC | FLAG_NO_DATA | FLAG_EXPECTED_FAIL,
  1852. { },
  1853. { },
  1854. .fill_helper = NULL,
  1855. .expected_errcode = -EINVAL,
  1856. },
  1857. {
  1858. "JUMPS + HOLES",
  1859. .u.insns = {
  1860. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1861. BPF_JUMP(BPF_JMP | BPF_JGE, 0, 13, 15),
  1862. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1863. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1864. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1865. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1866. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1867. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1868. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1869. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1870. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1871. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1872. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1873. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1874. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1875. BPF_JUMP(BPF_JMP | BPF_JEQ, 0x90c2894d, 3, 4),
  1876. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1877. BPF_JUMP(BPF_JMP | BPF_JEQ, 0x90c2894d, 1, 2),
  1878. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1879. BPF_JUMP(BPF_JMP | BPF_JGE, 0, 14, 15),
  1880. BPF_JUMP(BPF_JMP | BPF_JGE, 0, 13, 14),
  1881. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1882. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1883. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1884. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1885. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1886. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1887. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1888. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1889. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1890. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1891. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1892. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1893. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1894. BPF_JUMP(BPF_JMP | BPF_JEQ, 0x2ac28349, 2, 3),
  1895. BPF_JUMP(BPF_JMP | BPF_JEQ, 0x2ac28349, 1, 2),
  1896. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1897. BPF_JUMP(BPF_JMP | BPF_JGE, 0, 14, 15),
  1898. BPF_JUMP(BPF_JMP | BPF_JGE, 0, 13, 14),
  1899. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1900. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1901. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1902. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1903. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1904. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1905. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1906. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1907. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1908. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1909. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1910. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1911. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1912. BPF_JUMP(BPF_JMP | BPF_JEQ, 0x90d2ff41, 2, 3),
  1913. BPF_JUMP(BPF_JMP | BPF_JEQ, 0x90d2ff41, 1, 2),
  1914. BPF_STMT(BPF_LD | BPF_H | BPF_ABS, 0),
  1915. BPF_STMT(BPF_RET | BPF_A, 0),
  1916. BPF_STMT(BPF_RET | BPF_A, 0),
  1917. },
  1918. CLASSIC,
  1919. { 0x00, 0x1b, 0x21, 0x3c, 0x9d, 0xf8,
  1920. 0x90, 0xe2, 0xba, 0x0a, 0x56, 0xb4,
  1921. 0x08, 0x00,
  1922. 0x45, 0x00, 0x00, 0x28, 0x00, 0x00,
  1923. 0x20, 0x00, 0x40, 0x11, 0x00, 0x00, /* IP header */
  1924. 0xc0, 0xa8, 0x33, 0x01,
  1925. 0xc0, 0xa8, 0x33, 0x02,
  1926. 0xbb, 0xb6,
  1927. 0xa9, 0xfa,
  1928. 0x00, 0x14, 0x00, 0x00,
  1929. 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc,
  1930. 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc,
  1931. 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc,
  1932. 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc,
  1933. 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc,
  1934. 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc,
  1935. 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc,
  1936. 0xcc, 0xcc, 0xcc, 0xcc },
  1937. { { 88, 0x001b } }
  1938. },
  1939. {
  1940. "check: RET X",
  1941. .u.insns = {
  1942. BPF_STMT(BPF_RET | BPF_X, 0),
  1943. },
  1944. CLASSIC | FLAG_NO_DATA | FLAG_EXPECTED_FAIL,
  1945. { },
  1946. { },
  1947. .fill_helper = NULL,
  1948. .expected_errcode = -EINVAL,
  1949. },
  1950. {
  1951. "check: LDX + RET X",
  1952. .u.insns = {
  1953. BPF_STMT(BPF_LDX | BPF_IMM, 42),
  1954. BPF_STMT(BPF_RET | BPF_X, 0),
  1955. },
  1956. CLASSIC | FLAG_NO_DATA | FLAG_EXPECTED_FAIL,
  1957. { },
  1958. { },
  1959. .fill_helper = NULL,
  1960. .expected_errcode = -EINVAL,
  1961. },
  1962. { /* Mainly checking JIT here. */
  1963. "M[]: alt STX + LDX",
  1964. .u.insns = {
  1965. BPF_STMT(BPF_LDX | BPF_IMM, 100),
  1966. BPF_STMT(BPF_STX, 0),
  1967. BPF_STMT(BPF_LDX | BPF_MEM, 0),
  1968. BPF_STMT(BPF_MISC | BPF_TXA, 0),
  1969. BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
  1970. BPF_STMT(BPF_MISC | BPF_TAX, 0),
  1971. BPF_STMT(BPF_STX, 1),
  1972. BPF_STMT(BPF_LDX | BPF_MEM, 1),
  1973. BPF_STMT(BPF_MISC | BPF_TXA, 0),
  1974. BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
  1975. BPF_STMT(BPF_MISC | BPF_TAX, 0),
  1976. BPF_STMT(BPF_STX, 2),
  1977. BPF_STMT(BPF_LDX | BPF_MEM, 2),
  1978. BPF_STMT(BPF_MISC | BPF_TXA, 0),
  1979. BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
  1980. BPF_STMT(BPF_MISC | BPF_TAX, 0),
  1981. BPF_STMT(BPF_STX, 3),
  1982. BPF_STMT(BPF_LDX | BPF_MEM, 3),
  1983. BPF_STMT(BPF_MISC | BPF_TXA, 0),
  1984. BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
  1985. BPF_STMT(BPF_MISC | BPF_TAX, 0),
  1986. BPF_STMT(BPF_STX, 4),
  1987. BPF_STMT(BPF_LDX | BPF_MEM, 4),
  1988. BPF_STMT(BPF_MISC | BPF_TXA, 0),
  1989. BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
  1990. BPF_STMT(BPF_MISC | BPF_TAX, 0),
  1991. BPF_STMT(BPF_STX, 5),
  1992. BPF_STMT(BPF_LDX | BPF_MEM, 5),
  1993. BPF_STMT(BPF_MISC | BPF_TXA, 0),
  1994. BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
  1995. BPF_STMT(BPF_MISC | BPF_TAX, 0),
  1996. BPF_STMT(BPF_STX, 6),
  1997. BPF_STMT(BPF_LDX | BPF_MEM, 6),
  1998. BPF_STMT(BPF_MISC | BPF_TXA, 0),
  1999. BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
  2000. BPF_STMT(BPF_MISC | BPF_TAX, 0),
  2001. BPF_STMT(BPF_STX, 7),
  2002. BPF_STMT(BPF_LDX | BPF_MEM, 7),
  2003. BPF_STMT(BPF_MISC | BPF_TXA, 0),
  2004. BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
  2005. BPF_STMT(BPF_MISC | BPF_TAX, 0),
  2006. BPF_STMT(BPF_STX, 8),
  2007. BPF_STMT(BPF_LDX | BPF_MEM, 8),
  2008. BPF_STMT(BPF_MISC | BPF_TXA, 0),
  2009. BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
  2010. BPF_STMT(BPF_MISC | BPF_TAX, 0),
  2011. BPF_STMT(BPF_STX, 9),
  2012. BPF_STMT(BPF_LDX | BPF_MEM, 9),
  2013. BPF_STMT(BPF_MISC | BPF_TXA, 0),
  2014. BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
  2015. BPF_STMT(BPF_MISC | BPF_TAX, 0),
  2016. BPF_STMT(BPF_STX, 10),
  2017. BPF_STMT(BPF_LDX | BPF_MEM, 10),
  2018. BPF_STMT(BPF_MISC | BPF_TXA, 0),
  2019. BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
  2020. BPF_STMT(BPF_MISC | BPF_TAX, 0),
  2021. BPF_STMT(BPF_STX, 11),
  2022. BPF_STMT(BPF_LDX | BPF_MEM, 11),
  2023. BPF_STMT(BPF_MISC | BPF_TXA, 0),
  2024. BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
  2025. BPF_STMT(BPF_MISC | BPF_TAX, 0),
  2026. BPF_STMT(BPF_STX, 12),
  2027. BPF_STMT(BPF_LDX | BPF_MEM, 12),
  2028. BPF_STMT(BPF_MISC | BPF_TXA, 0),
  2029. BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
  2030. BPF_STMT(BPF_MISC | BPF_TAX, 0),
  2031. BPF_STMT(BPF_STX, 13),
  2032. BPF_STMT(BPF_LDX | BPF_MEM, 13),
  2033. BPF_STMT(BPF_MISC | BPF_TXA, 0),
  2034. BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
  2035. BPF_STMT(BPF_MISC | BPF_TAX, 0),
  2036. BPF_STMT(BPF_STX, 14),
  2037. BPF_STMT(BPF_LDX | BPF_MEM, 14),
  2038. BPF_STMT(BPF_MISC | BPF_TXA, 0),
  2039. BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
  2040. BPF_STMT(BPF_MISC | BPF_TAX, 0),
  2041. BPF_STMT(BPF_STX, 15),
  2042. BPF_STMT(BPF_LDX | BPF_MEM, 15),
  2043. BPF_STMT(BPF_MISC | BPF_TXA, 0),
  2044. BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 1),
  2045. BPF_STMT(BPF_MISC | BPF_TAX, 0),
  2046. BPF_STMT(BPF_RET | BPF_A, 0),
  2047. },
  2048. CLASSIC | FLAG_NO_DATA,
  2049. { },
  2050. { { 0, 116 } },
  2051. },
  2052. { /* Mainly checking JIT here. */
  2053. "M[]: full STX + full LDX",
  2054. .u.insns = {
  2055. BPF_STMT(BPF_LDX | BPF_IMM, 0xbadfeedb),
  2056. BPF_STMT(BPF_STX, 0),
  2057. BPF_STMT(BPF_LDX | BPF_IMM, 0xecabedae),
  2058. BPF_STMT(BPF_STX, 1),
  2059. BPF_STMT(BPF_LDX | BPF_IMM, 0xafccfeaf),
  2060. BPF_STMT(BPF_STX, 2),
  2061. BPF_STMT(BPF_LDX | BPF_IMM, 0xbffdcedc),
  2062. BPF_STMT(BPF_STX, 3),
  2063. BPF_STMT(BPF_LDX | BPF_IMM, 0xfbbbdccb),
  2064. BPF_STMT(BPF_STX, 4),
  2065. BPF_STMT(BPF_LDX | BPF_IMM, 0xfbabcbda),
  2066. BPF_STMT(BPF_STX, 5),
  2067. BPF_STMT(BPF_LDX | BPF_IMM, 0xaedecbdb),
  2068. BPF_STMT(BPF_STX, 6),
  2069. BPF_STMT(BPF_LDX | BPF_IMM, 0xadebbade),
  2070. BPF_STMT(BPF_STX, 7),
  2071. BPF_STMT(BPF_LDX | BPF_IMM, 0xfcfcfaec),
  2072. BPF_STMT(BPF_STX, 8),
  2073. BPF_STMT(BPF_LDX | BPF_IMM, 0xbcdddbdc),
  2074. BPF_STMT(BPF_STX, 9),
  2075. BPF_STMT(BPF_LDX | BPF_IMM, 0xfeefdfac),
  2076. BPF_STMT(BPF_STX, 10),
  2077. BPF_STMT(BPF_LDX | BPF_IMM, 0xcddcdeea),
  2078. BPF_STMT(BPF_STX, 11),
  2079. BPF_STMT(BPF_LDX | BPF_IMM, 0xaccfaebb),
  2080. BPF_STMT(BPF_STX, 12),
  2081. BPF_STMT(BPF_LDX | BPF_IMM, 0xbdcccdcf),
  2082. BPF_STMT(BPF_STX, 13),
  2083. BPF_STMT(BPF_LDX | BPF_IMM, 0xaaedecde),
  2084. BPF_STMT(BPF_STX, 14),
  2085. BPF_STMT(BPF_LDX | BPF_IMM, 0xfaeacdad),
  2086. BPF_STMT(BPF_STX, 15),
  2087. BPF_STMT(BPF_LDX | BPF_MEM, 0),
  2088. BPF_STMT(BPF_MISC | BPF_TXA, 0),
  2089. BPF_STMT(BPF_LDX | BPF_MEM, 1),
  2090. BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
  2091. BPF_STMT(BPF_LDX | BPF_MEM, 2),
  2092. BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
  2093. BPF_STMT(BPF_LDX | BPF_MEM, 3),
  2094. BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
  2095. BPF_STMT(BPF_LDX | BPF_MEM, 4),
  2096. BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
  2097. BPF_STMT(BPF_LDX | BPF_MEM, 5),
  2098. BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
  2099. BPF_STMT(BPF_LDX | BPF_MEM, 6),
  2100. BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
  2101. BPF_STMT(BPF_LDX | BPF_MEM, 7),
  2102. BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
  2103. BPF_STMT(BPF_LDX | BPF_MEM, 8),
  2104. BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
  2105. BPF_STMT(BPF_LDX | BPF_MEM, 9),
  2106. BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
  2107. BPF_STMT(BPF_LDX | BPF_MEM, 10),
  2108. BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
  2109. BPF_STMT(BPF_LDX | BPF_MEM, 11),
  2110. BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
  2111. BPF_STMT(BPF_LDX | BPF_MEM, 12),
  2112. BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
  2113. BPF_STMT(BPF_LDX | BPF_MEM, 13),
  2114. BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
  2115. BPF_STMT(BPF_LDX | BPF_MEM, 14),
  2116. BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
  2117. BPF_STMT(BPF_LDX | BPF_MEM, 15),
  2118. BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
  2119. BPF_STMT(BPF_RET | BPF_A, 0),
  2120. },
  2121. CLASSIC | FLAG_NO_DATA,
  2122. { },
  2123. { { 0, 0x2a5a5e5 } },
  2124. },
  2125. {
  2126. "check: SKF_AD_MAX",
  2127. .u.insns = {
  2128. BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
  2129. SKF_AD_OFF + SKF_AD_MAX),
  2130. BPF_STMT(BPF_RET | BPF_A, 0),
  2131. },
  2132. CLASSIC | FLAG_NO_DATA | FLAG_EXPECTED_FAIL,
  2133. { },
  2134. { },
  2135. .fill_helper = NULL,
  2136. .expected_errcode = -EINVAL,
  2137. },
  2138. { /* Passes checker but fails during runtime. */
  2139. "LD [SKF_AD_OFF-1]",
  2140. .u.insns = {
  2141. BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
  2142. SKF_AD_OFF - 1),
  2143. BPF_STMT(BPF_RET | BPF_K, 1),
  2144. },
  2145. CLASSIC,
  2146. { },
  2147. { { 1, 0 } },
  2148. },
  2149. {
  2150. "load 64-bit immediate",
  2151. .u.insns_int = {
  2152. BPF_LD_IMM64(R1, 0x567800001234LL),
  2153. BPF_MOV64_REG(R2, R1),
  2154. BPF_MOV64_REG(R3, R2),
  2155. BPF_ALU64_IMM(BPF_RSH, R2, 32),
  2156. BPF_ALU64_IMM(BPF_LSH, R3, 32),
  2157. BPF_ALU64_IMM(BPF_RSH, R3, 32),
  2158. BPF_ALU64_IMM(BPF_MOV, R0, 0),
  2159. BPF_JMP_IMM(BPF_JEQ, R2, 0x5678, 1),
  2160. BPF_EXIT_INSN(),
  2161. BPF_JMP_IMM(BPF_JEQ, R3, 0x1234, 1),
  2162. BPF_EXIT_INSN(),
  2163. BPF_LD_IMM64(R0, 0x1ffffffffLL),
  2164. BPF_ALU64_IMM(BPF_RSH, R0, 32), /* R0 = 1 */
  2165. BPF_EXIT_INSN(),
  2166. },
  2167. INTERNAL,
  2168. { },
  2169. { { 0, 1 } }
  2170. },
  2171. /* BPF_ALU | BPF_MOV | BPF_X */
  2172. {
  2173. "ALU_MOV_X: dst = 2",
  2174. .u.insns_int = {
  2175. BPF_ALU32_IMM(BPF_MOV, R1, 2),
  2176. BPF_ALU32_REG(BPF_MOV, R0, R1),
  2177. BPF_EXIT_INSN(),
  2178. },
  2179. INTERNAL,
  2180. { },
  2181. { { 0, 2 } },
  2182. },
  2183. {
  2184. "ALU_MOV_X: dst = 4294967295",
  2185. .u.insns_int = {
  2186. BPF_ALU32_IMM(BPF_MOV, R1, 4294967295U),
  2187. BPF_ALU32_REG(BPF_MOV, R0, R1),
  2188. BPF_EXIT_INSN(),
  2189. },
  2190. INTERNAL,
  2191. { },
  2192. { { 0, 4294967295U } },
  2193. },
  2194. {
  2195. "ALU64_MOV_X: dst = 2",
  2196. .u.insns_int = {
  2197. BPF_ALU32_IMM(BPF_MOV, R1, 2),
  2198. BPF_ALU64_REG(BPF_MOV, R0, R1),
  2199. BPF_EXIT_INSN(),
  2200. },
  2201. INTERNAL,
  2202. { },
  2203. { { 0, 2 } },
  2204. },
  2205. {
  2206. "ALU64_MOV_X: dst = 4294967295",
  2207. .u.insns_int = {
  2208. BPF_ALU32_IMM(BPF_MOV, R1, 4294967295U),
  2209. BPF_ALU64_REG(BPF_MOV, R0, R1),
  2210. BPF_EXIT_INSN(),
  2211. },
  2212. INTERNAL,
  2213. { },
  2214. { { 0, 4294967295U } },
  2215. },
  2216. /* BPF_ALU | BPF_MOV | BPF_K */
  2217. {
  2218. "ALU_MOV_K: dst = 2",
  2219. .u.insns_int = {
  2220. BPF_ALU32_IMM(BPF_MOV, R0, 2),
  2221. BPF_EXIT_INSN(),
  2222. },
  2223. INTERNAL,
  2224. { },
  2225. { { 0, 2 } },
  2226. },
  2227. {
  2228. "ALU_MOV_K: dst = 4294967295",
  2229. .u.insns_int = {
  2230. BPF_ALU32_IMM(BPF_MOV, R0, 4294967295U),
  2231. BPF_EXIT_INSN(),
  2232. },
  2233. INTERNAL,
  2234. { },
  2235. { { 0, 4294967295U } },
  2236. },
  2237. {
  2238. "ALU_MOV_K: 0x0000ffffffff0000 = 0x00000000ffffffff",
  2239. .u.insns_int = {
  2240. BPF_LD_IMM64(R2, 0x0000ffffffff0000LL),
  2241. BPF_LD_IMM64(R3, 0x00000000ffffffffLL),
  2242. BPF_ALU32_IMM(BPF_MOV, R2, 0xffffffff),
  2243. BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
  2244. BPF_MOV32_IMM(R0, 2),
  2245. BPF_EXIT_INSN(),
  2246. BPF_MOV32_IMM(R0, 1),
  2247. BPF_EXIT_INSN(),
  2248. },
  2249. INTERNAL,
  2250. { },
  2251. { { 0, 0x1 } },
  2252. },
  2253. {
  2254. "ALU64_MOV_K: dst = 2",
  2255. .u.insns_int = {
  2256. BPF_ALU64_IMM(BPF_MOV, R0, 2),
  2257. BPF_EXIT_INSN(),
  2258. },
  2259. INTERNAL,
  2260. { },
  2261. { { 0, 2 } },
  2262. },
  2263. {
  2264. "ALU64_MOV_K: dst = 2147483647",
  2265. .u.insns_int = {
  2266. BPF_ALU64_IMM(BPF_MOV, R0, 2147483647),
  2267. BPF_EXIT_INSN(),
  2268. },
  2269. INTERNAL,
  2270. { },
  2271. { { 0, 2147483647 } },
  2272. },
  2273. {
  2274. "ALU64_OR_K: dst = 0x0",
  2275. .u.insns_int = {
  2276. BPF_LD_IMM64(R2, 0x0000ffffffff0000LL),
  2277. BPF_LD_IMM64(R3, 0x0),
  2278. BPF_ALU64_IMM(BPF_MOV, R2, 0x0),
  2279. BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
  2280. BPF_MOV32_IMM(R0, 2),
  2281. BPF_EXIT_INSN(),
  2282. BPF_MOV32_IMM(R0, 1),
  2283. BPF_EXIT_INSN(),
  2284. },
  2285. INTERNAL,
  2286. { },
  2287. { { 0, 0x1 } },
  2288. },
  2289. {
  2290. "ALU64_MOV_K: dst = -1",
  2291. .u.insns_int = {
  2292. BPF_LD_IMM64(R2, 0x0000ffffffff0000LL),
  2293. BPF_LD_IMM64(R3, 0xffffffffffffffffLL),
  2294. BPF_ALU64_IMM(BPF_MOV, R2, 0xffffffff),
  2295. BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
  2296. BPF_MOV32_IMM(R0, 2),
  2297. BPF_EXIT_INSN(),
  2298. BPF_MOV32_IMM(R0, 1),
  2299. BPF_EXIT_INSN(),
  2300. },
  2301. INTERNAL,
  2302. { },
  2303. { { 0, 0x1 } },
  2304. },
  2305. /* BPF_ALU | BPF_ADD | BPF_X */
  2306. {
  2307. "ALU_ADD_X: 1 + 2 = 3",
  2308. .u.insns_int = {
  2309. BPF_LD_IMM64(R0, 1),
  2310. BPF_ALU32_IMM(BPF_MOV, R1, 2),
  2311. BPF_ALU32_REG(BPF_ADD, R0, R1),
  2312. BPF_EXIT_INSN(),
  2313. },
  2314. INTERNAL,
  2315. { },
  2316. { { 0, 3 } },
  2317. },
  2318. {
  2319. "ALU_ADD_X: 1 + 4294967294 = 4294967295",
  2320. .u.insns_int = {
  2321. BPF_LD_IMM64(R0, 1),
  2322. BPF_ALU32_IMM(BPF_MOV, R1, 4294967294U),
  2323. BPF_ALU32_REG(BPF_ADD, R0, R1),
  2324. BPF_EXIT_INSN(),
  2325. },
  2326. INTERNAL,
  2327. { },
  2328. { { 0, 4294967295U } },
  2329. },
  2330. {
  2331. "ALU_ADD_X: 2 + 4294967294 = 0",
  2332. .u.insns_int = {
  2333. BPF_LD_IMM64(R0, 2),
  2334. BPF_LD_IMM64(R1, 4294967294U),
  2335. BPF_ALU32_REG(BPF_ADD, R0, R1),
  2336. BPF_JMP_IMM(BPF_JEQ, R0, 0, 2),
  2337. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  2338. BPF_EXIT_INSN(),
  2339. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  2340. BPF_EXIT_INSN(),
  2341. },
  2342. INTERNAL,
  2343. { },
  2344. { { 0, 1 } },
  2345. },
  2346. {
  2347. "ALU64_ADD_X: 1 + 2 = 3",
  2348. .u.insns_int = {
  2349. BPF_LD_IMM64(R0, 1),
  2350. BPF_ALU32_IMM(BPF_MOV, R1, 2),
  2351. BPF_ALU64_REG(BPF_ADD, R0, R1),
  2352. BPF_EXIT_INSN(),
  2353. },
  2354. INTERNAL,
  2355. { },
  2356. { { 0, 3 } },
  2357. },
  2358. {
  2359. "ALU64_ADD_X: 1 + 4294967294 = 4294967295",
  2360. .u.insns_int = {
  2361. BPF_LD_IMM64(R0, 1),
  2362. BPF_ALU32_IMM(BPF_MOV, R1, 4294967294U),
  2363. BPF_ALU64_REG(BPF_ADD, R0, R1),
  2364. BPF_EXIT_INSN(),
  2365. },
  2366. INTERNAL,
  2367. { },
  2368. { { 0, 4294967295U } },
  2369. },
  2370. {
  2371. "ALU64_ADD_X: 2 + 4294967294 = 4294967296",
  2372. .u.insns_int = {
  2373. BPF_LD_IMM64(R0, 2),
  2374. BPF_LD_IMM64(R1, 4294967294U),
  2375. BPF_LD_IMM64(R2, 4294967296ULL),
  2376. BPF_ALU64_REG(BPF_ADD, R0, R1),
  2377. BPF_JMP_REG(BPF_JEQ, R0, R2, 2),
  2378. BPF_MOV32_IMM(R0, 0),
  2379. BPF_EXIT_INSN(),
  2380. BPF_MOV32_IMM(R0, 1),
  2381. BPF_EXIT_INSN(),
  2382. },
  2383. INTERNAL,
  2384. { },
  2385. { { 0, 1 } },
  2386. },
  2387. /* BPF_ALU | BPF_ADD | BPF_K */
  2388. {
  2389. "ALU_ADD_K: 1 + 2 = 3",
  2390. .u.insns_int = {
  2391. BPF_LD_IMM64(R0, 1),
  2392. BPF_ALU32_IMM(BPF_ADD, R0, 2),
  2393. BPF_EXIT_INSN(),
  2394. },
  2395. INTERNAL,
  2396. { },
  2397. { { 0, 3 } },
  2398. },
  2399. {
  2400. "ALU_ADD_K: 3 + 0 = 3",
  2401. .u.insns_int = {
  2402. BPF_LD_IMM64(R0, 3),
  2403. BPF_ALU32_IMM(BPF_ADD, R0, 0),
  2404. BPF_EXIT_INSN(),
  2405. },
  2406. INTERNAL,
  2407. { },
  2408. { { 0, 3 } },
  2409. },
  2410. {
  2411. "ALU_ADD_K: 1 + 4294967294 = 4294967295",
  2412. .u.insns_int = {
  2413. BPF_LD_IMM64(R0, 1),
  2414. BPF_ALU32_IMM(BPF_ADD, R0, 4294967294U),
  2415. BPF_EXIT_INSN(),
  2416. },
  2417. INTERNAL,
  2418. { },
  2419. { { 0, 4294967295U } },
  2420. },
  2421. {
  2422. "ALU_ADD_K: 4294967294 + 2 = 0",
  2423. .u.insns_int = {
  2424. BPF_LD_IMM64(R0, 4294967294U),
  2425. BPF_ALU32_IMM(BPF_ADD, R0, 2),
  2426. BPF_JMP_IMM(BPF_JEQ, R0, 0, 2),
  2427. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  2428. BPF_EXIT_INSN(),
  2429. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  2430. BPF_EXIT_INSN(),
  2431. },
  2432. INTERNAL,
  2433. { },
  2434. { { 0, 1 } },
  2435. },
  2436. {
  2437. "ALU_ADD_K: 0 + (-1) = 0x00000000ffffffff",
  2438. .u.insns_int = {
  2439. BPF_LD_IMM64(R2, 0x0),
  2440. BPF_LD_IMM64(R3, 0x00000000ffffffff),
  2441. BPF_ALU32_IMM(BPF_ADD, R2, 0xffffffff),
  2442. BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
  2443. BPF_MOV32_IMM(R0, 2),
  2444. BPF_EXIT_INSN(),
  2445. BPF_MOV32_IMM(R0, 1),
  2446. BPF_EXIT_INSN(),
  2447. },
  2448. INTERNAL,
  2449. { },
  2450. { { 0, 0x1 } },
  2451. },
  2452. {
  2453. "ALU_ADD_K: 0 + 0xffff = 0xffff",
  2454. .u.insns_int = {
  2455. BPF_LD_IMM64(R2, 0x0),
  2456. BPF_LD_IMM64(R3, 0xffff),
  2457. BPF_ALU32_IMM(BPF_ADD, R2, 0xffff),
  2458. BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
  2459. BPF_MOV32_IMM(R0, 2),
  2460. BPF_EXIT_INSN(),
  2461. BPF_MOV32_IMM(R0, 1),
  2462. BPF_EXIT_INSN(),
  2463. },
  2464. INTERNAL,
  2465. { },
  2466. { { 0, 0x1 } },
  2467. },
  2468. {
  2469. "ALU_ADD_K: 0 + 0x7fffffff = 0x7fffffff",
  2470. .u.insns_int = {
  2471. BPF_LD_IMM64(R2, 0x0),
  2472. BPF_LD_IMM64(R3, 0x7fffffff),
  2473. BPF_ALU32_IMM(BPF_ADD, R2, 0x7fffffff),
  2474. BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
  2475. BPF_MOV32_IMM(R0, 2),
  2476. BPF_EXIT_INSN(),
  2477. BPF_MOV32_IMM(R0, 1),
  2478. BPF_EXIT_INSN(),
  2479. },
  2480. INTERNAL,
  2481. { },
  2482. { { 0, 0x1 } },
  2483. },
  2484. {
  2485. "ALU_ADD_K: 0 + 0x80000000 = 0x80000000",
  2486. .u.insns_int = {
  2487. BPF_LD_IMM64(R2, 0x0),
  2488. BPF_LD_IMM64(R3, 0x80000000),
  2489. BPF_ALU32_IMM(BPF_ADD, R2, 0x80000000),
  2490. BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
  2491. BPF_MOV32_IMM(R0, 2),
  2492. BPF_EXIT_INSN(),
  2493. BPF_MOV32_IMM(R0, 1),
  2494. BPF_EXIT_INSN(),
  2495. },
  2496. INTERNAL,
  2497. { },
  2498. { { 0, 0x1 } },
  2499. },
  2500. {
  2501. "ALU_ADD_K: 0 + 0x80008000 = 0x80008000",
  2502. .u.insns_int = {
  2503. BPF_LD_IMM64(R2, 0x0),
  2504. BPF_LD_IMM64(R3, 0x80008000),
  2505. BPF_ALU32_IMM(BPF_ADD, R2, 0x80008000),
  2506. BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
  2507. BPF_MOV32_IMM(R0, 2),
  2508. BPF_EXIT_INSN(),
  2509. BPF_MOV32_IMM(R0, 1),
  2510. BPF_EXIT_INSN(),
  2511. },
  2512. INTERNAL,
  2513. { },
  2514. { { 0, 0x1 } },
  2515. },
  2516. {
  2517. "ALU64_ADD_K: 1 + 2 = 3",
  2518. .u.insns_int = {
  2519. BPF_LD_IMM64(R0, 1),
  2520. BPF_ALU64_IMM(BPF_ADD, R0, 2),
  2521. BPF_EXIT_INSN(),
  2522. },
  2523. INTERNAL,
  2524. { },
  2525. { { 0, 3 } },
  2526. },
  2527. {
  2528. "ALU64_ADD_K: 3 + 0 = 3",
  2529. .u.insns_int = {
  2530. BPF_LD_IMM64(R0, 3),
  2531. BPF_ALU64_IMM(BPF_ADD, R0, 0),
  2532. BPF_EXIT_INSN(),
  2533. },
  2534. INTERNAL,
  2535. { },
  2536. { { 0, 3 } },
  2537. },
  2538. {
  2539. "ALU64_ADD_K: 1 + 2147483646 = 2147483647",
  2540. .u.insns_int = {
  2541. BPF_LD_IMM64(R0, 1),
  2542. BPF_ALU64_IMM(BPF_ADD, R0, 2147483646),
  2543. BPF_EXIT_INSN(),
  2544. },
  2545. INTERNAL,
  2546. { },
  2547. { { 0, 2147483647 } },
  2548. },
  2549. {
  2550. "ALU64_ADD_K: 4294967294 + 2 = 4294967296",
  2551. .u.insns_int = {
  2552. BPF_LD_IMM64(R0, 4294967294U),
  2553. BPF_LD_IMM64(R1, 4294967296ULL),
  2554. BPF_ALU64_IMM(BPF_ADD, R0, 2),
  2555. BPF_JMP_REG(BPF_JEQ, R0, R1, 2),
  2556. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  2557. BPF_EXIT_INSN(),
  2558. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  2559. BPF_EXIT_INSN(),
  2560. },
  2561. INTERNAL,
  2562. { },
  2563. { { 0, 1 } },
  2564. },
  2565. {
  2566. "ALU64_ADD_K: 2147483646 + -2147483647 = -1",
  2567. .u.insns_int = {
  2568. BPF_LD_IMM64(R0, 2147483646),
  2569. BPF_ALU64_IMM(BPF_ADD, R0, -2147483647),
  2570. BPF_EXIT_INSN(),
  2571. },
  2572. INTERNAL,
  2573. { },
  2574. { { 0, -1 } },
  2575. },
  2576. {
  2577. "ALU64_ADD_K: 1 + 0 = 1",
  2578. .u.insns_int = {
  2579. BPF_LD_IMM64(R2, 0x1),
  2580. BPF_LD_IMM64(R3, 0x1),
  2581. BPF_ALU64_IMM(BPF_ADD, R2, 0x0),
  2582. BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
  2583. BPF_MOV32_IMM(R0, 2),
  2584. BPF_EXIT_INSN(),
  2585. BPF_MOV32_IMM(R0, 1),
  2586. BPF_EXIT_INSN(),
  2587. },
  2588. INTERNAL,
  2589. { },
  2590. { { 0, 0x1 } },
  2591. },
  2592. {
  2593. "ALU64_ADD_K: 0 + (-1) = 0xffffffffffffffff",
  2594. .u.insns_int = {
  2595. BPF_LD_IMM64(R2, 0x0),
  2596. BPF_LD_IMM64(R3, 0xffffffffffffffffLL),
  2597. BPF_ALU64_IMM(BPF_ADD, R2, 0xffffffff),
  2598. BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
  2599. BPF_MOV32_IMM(R0, 2),
  2600. BPF_EXIT_INSN(),
  2601. BPF_MOV32_IMM(R0, 1),
  2602. BPF_EXIT_INSN(),
  2603. },
  2604. INTERNAL,
  2605. { },
  2606. { { 0, 0x1 } },
  2607. },
  2608. {
  2609. "ALU64_ADD_K: 0 + 0xffff = 0xffff",
  2610. .u.insns_int = {
  2611. BPF_LD_IMM64(R2, 0x0),
  2612. BPF_LD_IMM64(R3, 0xffff),
  2613. BPF_ALU64_IMM(BPF_ADD, R2, 0xffff),
  2614. BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
  2615. BPF_MOV32_IMM(R0, 2),
  2616. BPF_EXIT_INSN(),
  2617. BPF_MOV32_IMM(R0, 1),
  2618. BPF_EXIT_INSN(),
  2619. },
  2620. INTERNAL,
  2621. { },
  2622. { { 0, 0x1 } },
  2623. },
  2624. {
  2625. "ALU64_ADD_K: 0 + 0x7fffffff = 0x7fffffff",
  2626. .u.insns_int = {
  2627. BPF_LD_IMM64(R2, 0x0),
  2628. BPF_LD_IMM64(R3, 0x7fffffff),
  2629. BPF_ALU64_IMM(BPF_ADD, R2, 0x7fffffff),
  2630. BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
  2631. BPF_MOV32_IMM(R0, 2),
  2632. BPF_EXIT_INSN(),
  2633. BPF_MOV32_IMM(R0, 1),
  2634. BPF_EXIT_INSN(),
  2635. },
  2636. INTERNAL,
  2637. { },
  2638. { { 0, 0x1 } },
  2639. },
  2640. {
  2641. "ALU64_ADD_K: 0 + 0x80000000 = 0xffffffff80000000",
  2642. .u.insns_int = {
  2643. BPF_LD_IMM64(R2, 0x0),
  2644. BPF_LD_IMM64(R3, 0xffffffff80000000LL),
  2645. BPF_ALU64_IMM(BPF_ADD, R2, 0x80000000),
  2646. BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
  2647. BPF_MOV32_IMM(R0, 2),
  2648. BPF_EXIT_INSN(),
  2649. BPF_MOV32_IMM(R0, 1),
  2650. BPF_EXIT_INSN(),
  2651. },
  2652. INTERNAL,
  2653. { },
  2654. { { 0, 0x1 } },
  2655. },
  2656. {
  2657. "ALU_ADD_K: 0 + 0x80008000 = 0xffffffff80008000",
  2658. .u.insns_int = {
  2659. BPF_LD_IMM64(R2, 0x0),
  2660. BPF_LD_IMM64(R3, 0xffffffff80008000LL),
  2661. BPF_ALU64_IMM(BPF_ADD, R2, 0x80008000),
  2662. BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
  2663. BPF_MOV32_IMM(R0, 2),
  2664. BPF_EXIT_INSN(),
  2665. BPF_MOV32_IMM(R0, 1),
  2666. BPF_EXIT_INSN(),
  2667. },
  2668. INTERNAL,
  2669. { },
  2670. { { 0, 0x1 } },
  2671. },
  2672. /* BPF_ALU | BPF_SUB | BPF_X */
  2673. {
  2674. "ALU_SUB_X: 3 - 1 = 2",
  2675. .u.insns_int = {
  2676. BPF_LD_IMM64(R0, 3),
  2677. BPF_ALU32_IMM(BPF_MOV, R1, 1),
  2678. BPF_ALU32_REG(BPF_SUB, R0, R1),
  2679. BPF_EXIT_INSN(),
  2680. },
  2681. INTERNAL,
  2682. { },
  2683. { { 0, 2 } },
  2684. },
  2685. {
  2686. "ALU_SUB_X: 4294967295 - 4294967294 = 1",
  2687. .u.insns_int = {
  2688. BPF_LD_IMM64(R0, 4294967295U),
  2689. BPF_ALU32_IMM(BPF_MOV, R1, 4294967294U),
  2690. BPF_ALU32_REG(BPF_SUB, R0, R1),
  2691. BPF_EXIT_INSN(),
  2692. },
  2693. INTERNAL,
  2694. { },
  2695. { { 0, 1 } },
  2696. },
  2697. {
  2698. "ALU64_SUB_X: 3 - 1 = 2",
  2699. .u.insns_int = {
  2700. BPF_LD_IMM64(R0, 3),
  2701. BPF_ALU32_IMM(BPF_MOV, R1, 1),
  2702. BPF_ALU64_REG(BPF_SUB, R0, R1),
  2703. BPF_EXIT_INSN(),
  2704. },
  2705. INTERNAL,
  2706. { },
  2707. { { 0, 2 } },
  2708. },
  2709. {
  2710. "ALU64_SUB_X: 4294967295 - 4294967294 = 1",
  2711. .u.insns_int = {
  2712. BPF_LD_IMM64(R0, 4294967295U),
  2713. BPF_ALU32_IMM(BPF_MOV, R1, 4294967294U),
  2714. BPF_ALU64_REG(BPF_SUB, R0, R1),
  2715. BPF_EXIT_INSN(),
  2716. },
  2717. INTERNAL,
  2718. { },
  2719. { { 0, 1 } },
  2720. },
  2721. /* BPF_ALU | BPF_SUB | BPF_K */
  2722. {
  2723. "ALU_SUB_K: 3 - 1 = 2",
  2724. .u.insns_int = {
  2725. BPF_LD_IMM64(R0, 3),
  2726. BPF_ALU32_IMM(BPF_SUB, R0, 1),
  2727. BPF_EXIT_INSN(),
  2728. },
  2729. INTERNAL,
  2730. { },
  2731. { { 0, 2 } },
  2732. },
  2733. {
  2734. "ALU_SUB_K: 3 - 0 = 3",
  2735. .u.insns_int = {
  2736. BPF_LD_IMM64(R0, 3),
  2737. BPF_ALU32_IMM(BPF_SUB, R0, 0),
  2738. BPF_EXIT_INSN(),
  2739. },
  2740. INTERNAL,
  2741. { },
  2742. { { 0, 3 } },
  2743. },
  2744. {
  2745. "ALU_SUB_K: 4294967295 - 4294967294 = 1",
  2746. .u.insns_int = {
  2747. BPF_LD_IMM64(R0, 4294967295U),
  2748. BPF_ALU32_IMM(BPF_SUB, R0, 4294967294U),
  2749. BPF_EXIT_INSN(),
  2750. },
  2751. INTERNAL,
  2752. { },
  2753. { { 0, 1 } },
  2754. },
  2755. {
  2756. "ALU64_SUB_K: 3 - 1 = 2",
  2757. .u.insns_int = {
  2758. BPF_LD_IMM64(R0, 3),
  2759. BPF_ALU64_IMM(BPF_SUB, R0, 1),
  2760. BPF_EXIT_INSN(),
  2761. },
  2762. INTERNAL,
  2763. { },
  2764. { { 0, 2 } },
  2765. },
  2766. {
  2767. "ALU64_SUB_K: 3 - 0 = 3",
  2768. .u.insns_int = {
  2769. BPF_LD_IMM64(R0, 3),
  2770. BPF_ALU64_IMM(BPF_SUB, R0, 0),
  2771. BPF_EXIT_INSN(),
  2772. },
  2773. INTERNAL,
  2774. { },
  2775. { { 0, 3 } },
  2776. },
  2777. {
  2778. "ALU64_SUB_K: 4294967294 - 4294967295 = -1",
  2779. .u.insns_int = {
  2780. BPF_LD_IMM64(R0, 4294967294U),
  2781. BPF_ALU64_IMM(BPF_SUB, R0, 4294967295U),
  2782. BPF_EXIT_INSN(),
  2783. },
  2784. INTERNAL,
  2785. { },
  2786. { { 0, -1 } },
  2787. },
  2788. {
  2789. "ALU64_ADD_K: 2147483646 - 2147483647 = -1",
  2790. .u.insns_int = {
  2791. BPF_LD_IMM64(R0, 2147483646),
  2792. BPF_ALU64_IMM(BPF_SUB, R0, 2147483647),
  2793. BPF_EXIT_INSN(),
  2794. },
  2795. INTERNAL,
  2796. { },
  2797. { { 0, -1 } },
  2798. },
  2799. /* BPF_ALU | BPF_MUL | BPF_X */
  2800. {
  2801. "ALU_MUL_X: 2 * 3 = 6",
  2802. .u.insns_int = {
  2803. BPF_LD_IMM64(R0, 2),
  2804. BPF_ALU32_IMM(BPF_MOV, R1, 3),
  2805. BPF_ALU32_REG(BPF_MUL, R0, R1),
  2806. BPF_EXIT_INSN(),
  2807. },
  2808. INTERNAL,
  2809. { },
  2810. { { 0, 6 } },
  2811. },
  2812. {
  2813. "ALU_MUL_X: 2 * 0x7FFFFFF8 = 0xFFFFFFF0",
  2814. .u.insns_int = {
  2815. BPF_LD_IMM64(R0, 2),
  2816. BPF_ALU32_IMM(BPF_MOV, R1, 0x7FFFFFF8),
  2817. BPF_ALU32_REG(BPF_MUL, R0, R1),
  2818. BPF_EXIT_INSN(),
  2819. },
  2820. INTERNAL,
  2821. { },
  2822. { { 0, 0xFFFFFFF0 } },
  2823. },
  2824. {
  2825. "ALU_MUL_X: -1 * -1 = 1",
  2826. .u.insns_int = {
  2827. BPF_LD_IMM64(R0, -1),
  2828. BPF_ALU32_IMM(BPF_MOV, R1, -1),
  2829. BPF_ALU32_REG(BPF_MUL, R0, R1),
  2830. BPF_EXIT_INSN(),
  2831. },
  2832. INTERNAL,
  2833. { },
  2834. { { 0, 1 } },
  2835. },
  2836. {
  2837. "ALU64_MUL_X: 2 * 3 = 6",
  2838. .u.insns_int = {
  2839. BPF_LD_IMM64(R0, 2),
  2840. BPF_ALU32_IMM(BPF_MOV, R1, 3),
  2841. BPF_ALU64_REG(BPF_MUL, R0, R1),
  2842. BPF_EXIT_INSN(),
  2843. },
  2844. INTERNAL,
  2845. { },
  2846. { { 0, 6 } },
  2847. },
  2848. {
  2849. "ALU64_MUL_X: 1 * 2147483647 = 2147483647",
  2850. .u.insns_int = {
  2851. BPF_LD_IMM64(R0, 1),
  2852. BPF_ALU32_IMM(BPF_MOV, R1, 2147483647),
  2853. BPF_ALU64_REG(BPF_MUL, R0, R1),
  2854. BPF_EXIT_INSN(),
  2855. },
  2856. INTERNAL,
  2857. { },
  2858. { { 0, 2147483647 } },
  2859. },
  2860. /* BPF_ALU | BPF_MUL | BPF_K */
  2861. {
  2862. "ALU_MUL_K: 2 * 3 = 6",
  2863. .u.insns_int = {
  2864. BPF_LD_IMM64(R0, 2),
  2865. BPF_ALU32_IMM(BPF_MUL, R0, 3),
  2866. BPF_EXIT_INSN(),
  2867. },
  2868. INTERNAL,
  2869. { },
  2870. { { 0, 6 } },
  2871. },
  2872. {
  2873. "ALU_MUL_K: 3 * 1 = 3",
  2874. .u.insns_int = {
  2875. BPF_LD_IMM64(R0, 3),
  2876. BPF_ALU32_IMM(BPF_MUL, R0, 1),
  2877. BPF_EXIT_INSN(),
  2878. },
  2879. INTERNAL,
  2880. { },
  2881. { { 0, 3 } },
  2882. },
  2883. {
  2884. "ALU_MUL_K: 2 * 0x7FFFFFF8 = 0xFFFFFFF0",
  2885. .u.insns_int = {
  2886. BPF_LD_IMM64(R0, 2),
  2887. BPF_ALU32_IMM(BPF_MUL, R0, 0x7FFFFFF8),
  2888. BPF_EXIT_INSN(),
  2889. },
  2890. INTERNAL,
  2891. { },
  2892. { { 0, 0xFFFFFFF0 } },
  2893. },
  2894. {
  2895. "ALU_MUL_K: 1 * (-1) = 0x00000000ffffffff",
  2896. .u.insns_int = {
  2897. BPF_LD_IMM64(R2, 0x1),
  2898. BPF_LD_IMM64(R3, 0x00000000ffffffff),
  2899. BPF_ALU32_IMM(BPF_MUL, R2, 0xffffffff),
  2900. BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
  2901. BPF_MOV32_IMM(R0, 2),
  2902. BPF_EXIT_INSN(),
  2903. BPF_MOV32_IMM(R0, 1),
  2904. BPF_EXIT_INSN(),
  2905. },
  2906. INTERNAL,
  2907. { },
  2908. { { 0, 0x1 } },
  2909. },
  2910. {
  2911. "ALU64_MUL_K: 2 * 3 = 6",
  2912. .u.insns_int = {
  2913. BPF_LD_IMM64(R0, 2),
  2914. BPF_ALU64_IMM(BPF_MUL, R0, 3),
  2915. BPF_EXIT_INSN(),
  2916. },
  2917. INTERNAL,
  2918. { },
  2919. { { 0, 6 } },
  2920. },
  2921. {
  2922. "ALU64_MUL_K: 3 * 1 = 3",
  2923. .u.insns_int = {
  2924. BPF_LD_IMM64(R0, 3),
  2925. BPF_ALU64_IMM(BPF_MUL, R0, 1),
  2926. BPF_EXIT_INSN(),
  2927. },
  2928. INTERNAL,
  2929. { },
  2930. { { 0, 3 } },
  2931. },
  2932. {
  2933. "ALU64_MUL_K: 1 * 2147483647 = 2147483647",
  2934. .u.insns_int = {
  2935. BPF_LD_IMM64(R0, 1),
  2936. BPF_ALU64_IMM(BPF_MUL, R0, 2147483647),
  2937. BPF_EXIT_INSN(),
  2938. },
  2939. INTERNAL,
  2940. { },
  2941. { { 0, 2147483647 } },
  2942. },
  2943. {
  2944. "ALU64_MUL_K: 1 * -2147483647 = -2147483647",
  2945. .u.insns_int = {
  2946. BPF_LD_IMM64(R0, 1),
  2947. BPF_ALU64_IMM(BPF_MUL, R0, -2147483647),
  2948. BPF_EXIT_INSN(),
  2949. },
  2950. INTERNAL,
  2951. { },
  2952. { { 0, -2147483647 } },
  2953. },
  2954. {
  2955. "ALU64_MUL_K: 1 * (-1) = 0xffffffffffffffff",
  2956. .u.insns_int = {
  2957. BPF_LD_IMM64(R2, 0x1),
  2958. BPF_LD_IMM64(R3, 0xffffffffffffffffLL),
  2959. BPF_ALU64_IMM(BPF_MUL, R2, 0xffffffff),
  2960. BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
  2961. BPF_MOV32_IMM(R0, 2),
  2962. BPF_EXIT_INSN(),
  2963. BPF_MOV32_IMM(R0, 1),
  2964. BPF_EXIT_INSN(),
  2965. },
  2966. INTERNAL,
  2967. { },
  2968. { { 0, 0x1 } },
  2969. },
  2970. /* BPF_ALU | BPF_DIV | BPF_X */
  2971. {
  2972. "ALU_DIV_X: 6 / 2 = 3",
  2973. .u.insns_int = {
  2974. BPF_LD_IMM64(R0, 6),
  2975. BPF_ALU32_IMM(BPF_MOV, R1, 2),
  2976. BPF_ALU32_REG(BPF_DIV, R0, R1),
  2977. BPF_EXIT_INSN(),
  2978. },
  2979. INTERNAL,
  2980. { },
  2981. { { 0, 3 } },
  2982. },
  2983. {
  2984. "ALU_DIV_X: 4294967295 / 4294967295 = 1",
  2985. .u.insns_int = {
  2986. BPF_LD_IMM64(R0, 4294967295U),
  2987. BPF_ALU32_IMM(BPF_MOV, R1, 4294967295U),
  2988. BPF_ALU32_REG(BPF_DIV, R0, R1),
  2989. BPF_EXIT_INSN(),
  2990. },
  2991. INTERNAL,
  2992. { },
  2993. { { 0, 1 } },
  2994. },
  2995. {
  2996. "ALU64_DIV_X: 6 / 2 = 3",
  2997. .u.insns_int = {
  2998. BPF_LD_IMM64(R0, 6),
  2999. BPF_ALU32_IMM(BPF_MOV, R1, 2),
  3000. BPF_ALU64_REG(BPF_DIV, R0, R1),
  3001. BPF_EXIT_INSN(),
  3002. },
  3003. INTERNAL,
  3004. { },
  3005. { { 0, 3 } },
  3006. },
  3007. {
  3008. "ALU64_DIV_X: 2147483647 / 2147483647 = 1",
  3009. .u.insns_int = {
  3010. BPF_LD_IMM64(R0, 2147483647),
  3011. BPF_ALU32_IMM(BPF_MOV, R1, 2147483647),
  3012. BPF_ALU64_REG(BPF_DIV, R0, R1),
  3013. BPF_EXIT_INSN(),
  3014. },
  3015. INTERNAL,
  3016. { },
  3017. { { 0, 1 } },
  3018. },
  3019. {
  3020. "ALU64_DIV_X: 0xffffffffffffffff / (-1) = 0x0000000000000001",
  3021. .u.insns_int = {
  3022. BPF_LD_IMM64(R2, 0xffffffffffffffffLL),
  3023. BPF_LD_IMM64(R4, 0xffffffffffffffffLL),
  3024. BPF_LD_IMM64(R3, 0x0000000000000001LL),
  3025. BPF_ALU64_REG(BPF_DIV, R2, R4),
  3026. BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
  3027. BPF_MOV32_IMM(R0, 2),
  3028. BPF_EXIT_INSN(),
  3029. BPF_MOV32_IMM(R0, 1),
  3030. BPF_EXIT_INSN(),
  3031. },
  3032. INTERNAL,
  3033. { },
  3034. { { 0, 0x1 } },
  3035. },
  3036. /* BPF_ALU | BPF_DIV | BPF_K */
  3037. {
  3038. "ALU_DIV_K: 6 / 2 = 3",
  3039. .u.insns_int = {
  3040. BPF_LD_IMM64(R0, 6),
  3041. BPF_ALU32_IMM(BPF_DIV, R0, 2),
  3042. BPF_EXIT_INSN(),
  3043. },
  3044. INTERNAL,
  3045. { },
  3046. { { 0, 3 } },
  3047. },
  3048. {
  3049. "ALU_DIV_K: 3 / 1 = 3",
  3050. .u.insns_int = {
  3051. BPF_LD_IMM64(R0, 3),
  3052. BPF_ALU32_IMM(BPF_DIV, R0, 1),
  3053. BPF_EXIT_INSN(),
  3054. },
  3055. INTERNAL,
  3056. { },
  3057. { { 0, 3 } },
  3058. },
  3059. {
  3060. "ALU_DIV_K: 4294967295 / 4294967295 = 1",
  3061. .u.insns_int = {
  3062. BPF_LD_IMM64(R0, 4294967295U),
  3063. BPF_ALU32_IMM(BPF_DIV, R0, 4294967295U),
  3064. BPF_EXIT_INSN(),
  3065. },
  3066. INTERNAL,
  3067. { },
  3068. { { 0, 1 } },
  3069. },
  3070. {
  3071. "ALU_DIV_K: 0xffffffffffffffff / (-1) = 0x1",
  3072. .u.insns_int = {
  3073. BPF_LD_IMM64(R2, 0xffffffffffffffffLL),
  3074. BPF_LD_IMM64(R3, 0x1UL),
  3075. BPF_ALU32_IMM(BPF_DIV, R2, 0xffffffff),
  3076. BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
  3077. BPF_MOV32_IMM(R0, 2),
  3078. BPF_EXIT_INSN(),
  3079. BPF_MOV32_IMM(R0, 1),
  3080. BPF_EXIT_INSN(),
  3081. },
  3082. INTERNAL,
  3083. { },
  3084. { { 0, 0x1 } },
  3085. },
  3086. {
  3087. "ALU64_DIV_K: 6 / 2 = 3",
  3088. .u.insns_int = {
  3089. BPF_LD_IMM64(R0, 6),
  3090. BPF_ALU64_IMM(BPF_DIV, R0, 2),
  3091. BPF_EXIT_INSN(),
  3092. },
  3093. INTERNAL,
  3094. { },
  3095. { { 0, 3 } },
  3096. },
  3097. {
  3098. "ALU64_DIV_K: 3 / 1 = 3",
  3099. .u.insns_int = {
  3100. BPF_LD_IMM64(R0, 3),
  3101. BPF_ALU64_IMM(BPF_DIV, R0, 1),
  3102. BPF_EXIT_INSN(),
  3103. },
  3104. INTERNAL,
  3105. { },
  3106. { { 0, 3 } },
  3107. },
  3108. {
  3109. "ALU64_DIV_K: 2147483647 / 2147483647 = 1",
  3110. .u.insns_int = {
  3111. BPF_LD_IMM64(R0, 2147483647),
  3112. BPF_ALU64_IMM(BPF_DIV, R0, 2147483647),
  3113. BPF_EXIT_INSN(),
  3114. },
  3115. INTERNAL,
  3116. { },
  3117. { { 0, 1 } },
  3118. },
  3119. {
  3120. "ALU64_DIV_K: 0xffffffffffffffff / (-1) = 0x0000000000000001",
  3121. .u.insns_int = {
  3122. BPF_LD_IMM64(R2, 0xffffffffffffffffLL),
  3123. BPF_LD_IMM64(R3, 0x0000000000000001LL),
  3124. BPF_ALU64_IMM(BPF_DIV, R2, 0xffffffff),
  3125. BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
  3126. BPF_MOV32_IMM(R0, 2),
  3127. BPF_EXIT_INSN(),
  3128. BPF_MOV32_IMM(R0, 1),
  3129. BPF_EXIT_INSN(),
  3130. },
  3131. INTERNAL,
  3132. { },
  3133. { { 0, 0x1 } },
  3134. },
  3135. /* BPF_ALU | BPF_MOD | BPF_X */
  3136. {
  3137. "ALU_MOD_X: 3 % 2 = 1",
  3138. .u.insns_int = {
  3139. BPF_LD_IMM64(R0, 3),
  3140. BPF_ALU32_IMM(BPF_MOV, R1, 2),
  3141. BPF_ALU32_REG(BPF_MOD, R0, R1),
  3142. BPF_EXIT_INSN(),
  3143. },
  3144. INTERNAL,
  3145. { },
  3146. { { 0, 1 } },
  3147. },
  3148. {
  3149. "ALU_MOD_X: 4294967295 % 4294967293 = 2",
  3150. .u.insns_int = {
  3151. BPF_LD_IMM64(R0, 4294967295U),
  3152. BPF_ALU32_IMM(BPF_MOV, R1, 4294967293U),
  3153. BPF_ALU32_REG(BPF_MOD, R0, R1),
  3154. BPF_EXIT_INSN(),
  3155. },
  3156. INTERNAL,
  3157. { },
  3158. { { 0, 2 } },
  3159. },
  3160. {
  3161. "ALU64_MOD_X: 3 % 2 = 1",
  3162. .u.insns_int = {
  3163. BPF_LD_IMM64(R0, 3),
  3164. BPF_ALU32_IMM(BPF_MOV, R1, 2),
  3165. BPF_ALU64_REG(BPF_MOD, R0, R1),
  3166. BPF_EXIT_INSN(),
  3167. },
  3168. INTERNAL,
  3169. { },
  3170. { { 0, 1 } },
  3171. },
  3172. {
  3173. "ALU64_MOD_X: 2147483647 % 2147483645 = 2",
  3174. .u.insns_int = {
  3175. BPF_LD_IMM64(R0, 2147483647),
  3176. BPF_ALU32_IMM(BPF_MOV, R1, 2147483645),
  3177. BPF_ALU64_REG(BPF_MOD, R0, R1),
  3178. BPF_EXIT_INSN(),
  3179. },
  3180. INTERNAL,
  3181. { },
  3182. { { 0, 2 } },
  3183. },
  3184. /* BPF_ALU | BPF_MOD | BPF_K */
  3185. {
  3186. "ALU_MOD_K: 3 % 2 = 1",
  3187. .u.insns_int = {
  3188. BPF_LD_IMM64(R0, 3),
  3189. BPF_ALU32_IMM(BPF_MOD, R0, 2),
  3190. BPF_EXIT_INSN(),
  3191. },
  3192. INTERNAL,
  3193. { },
  3194. { { 0, 1 } },
  3195. },
  3196. {
  3197. "ALU_MOD_K: 3 % 1 = 0",
  3198. .u.insns_int = {
  3199. BPF_LD_IMM64(R0, 3),
  3200. BPF_ALU32_IMM(BPF_MOD, R0, 1),
  3201. BPF_EXIT_INSN(),
  3202. },
  3203. INTERNAL,
  3204. { },
  3205. { { 0, 0 } },
  3206. },
  3207. {
  3208. "ALU_MOD_K: 4294967295 % 4294967293 = 2",
  3209. .u.insns_int = {
  3210. BPF_LD_IMM64(R0, 4294967295U),
  3211. BPF_ALU32_IMM(BPF_MOD, R0, 4294967293U),
  3212. BPF_EXIT_INSN(),
  3213. },
  3214. INTERNAL,
  3215. { },
  3216. { { 0, 2 } },
  3217. },
  3218. {
  3219. "ALU64_MOD_K: 3 % 2 = 1",
  3220. .u.insns_int = {
  3221. BPF_LD_IMM64(R0, 3),
  3222. BPF_ALU64_IMM(BPF_MOD, R0, 2),
  3223. BPF_EXIT_INSN(),
  3224. },
  3225. INTERNAL,
  3226. { },
  3227. { { 0, 1 } },
  3228. },
  3229. {
  3230. "ALU64_MOD_K: 3 % 1 = 0",
  3231. .u.insns_int = {
  3232. BPF_LD_IMM64(R0, 3),
  3233. BPF_ALU64_IMM(BPF_MOD, R0, 1),
  3234. BPF_EXIT_INSN(),
  3235. },
  3236. INTERNAL,
  3237. { },
  3238. { { 0, 0 } },
  3239. },
  3240. {
  3241. "ALU64_MOD_K: 2147483647 % 2147483645 = 2",
  3242. .u.insns_int = {
  3243. BPF_LD_IMM64(R0, 2147483647),
  3244. BPF_ALU64_IMM(BPF_MOD, R0, 2147483645),
  3245. BPF_EXIT_INSN(),
  3246. },
  3247. INTERNAL,
  3248. { },
  3249. { { 0, 2 } },
  3250. },
  3251. /* BPF_ALU | BPF_AND | BPF_X */
  3252. {
  3253. "ALU_AND_X: 3 & 2 = 2",
  3254. .u.insns_int = {
  3255. BPF_LD_IMM64(R0, 3),
  3256. BPF_ALU32_IMM(BPF_MOV, R1, 2),
  3257. BPF_ALU32_REG(BPF_AND, R0, R1),
  3258. BPF_EXIT_INSN(),
  3259. },
  3260. INTERNAL,
  3261. { },
  3262. { { 0, 2 } },
  3263. },
  3264. {
  3265. "ALU_AND_X: 0xffffffff & 0xffffffff = 0xffffffff",
  3266. .u.insns_int = {
  3267. BPF_LD_IMM64(R0, 0xffffffff),
  3268. BPF_ALU32_IMM(BPF_MOV, R1, 0xffffffff),
  3269. BPF_ALU32_REG(BPF_AND, R0, R1),
  3270. BPF_EXIT_INSN(),
  3271. },
  3272. INTERNAL,
  3273. { },
  3274. { { 0, 0xffffffff } },
  3275. },
  3276. {
  3277. "ALU64_AND_X: 3 & 2 = 2",
  3278. .u.insns_int = {
  3279. BPF_LD_IMM64(R0, 3),
  3280. BPF_ALU32_IMM(BPF_MOV, R1, 2),
  3281. BPF_ALU64_REG(BPF_AND, R0, R1),
  3282. BPF_EXIT_INSN(),
  3283. },
  3284. INTERNAL,
  3285. { },
  3286. { { 0, 2 } },
  3287. },
  3288. {
  3289. "ALU64_AND_X: 0xffffffff & 0xffffffff = 0xffffffff",
  3290. .u.insns_int = {
  3291. BPF_LD_IMM64(R0, 0xffffffff),
  3292. BPF_ALU32_IMM(BPF_MOV, R1, 0xffffffff),
  3293. BPF_ALU64_REG(BPF_AND, R0, R1),
  3294. BPF_EXIT_INSN(),
  3295. },
  3296. INTERNAL,
  3297. { },
  3298. { { 0, 0xffffffff } },
  3299. },
  3300. /* BPF_ALU | BPF_AND | BPF_K */
  3301. {
  3302. "ALU_AND_K: 3 & 2 = 2",
  3303. .u.insns_int = {
  3304. BPF_LD_IMM64(R0, 3),
  3305. BPF_ALU32_IMM(BPF_AND, R0, 2),
  3306. BPF_EXIT_INSN(),
  3307. },
  3308. INTERNAL,
  3309. { },
  3310. { { 0, 2 } },
  3311. },
  3312. {
  3313. "ALU_AND_K: 0xffffffff & 0xffffffff = 0xffffffff",
  3314. .u.insns_int = {
  3315. BPF_LD_IMM64(R0, 0xffffffff),
  3316. BPF_ALU32_IMM(BPF_AND, R0, 0xffffffff),
  3317. BPF_EXIT_INSN(),
  3318. },
  3319. INTERNAL,
  3320. { },
  3321. { { 0, 0xffffffff } },
  3322. },
  3323. {
  3324. "ALU64_AND_K: 3 & 2 = 2",
  3325. .u.insns_int = {
  3326. BPF_LD_IMM64(R0, 3),
  3327. BPF_ALU64_IMM(BPF_AND, R0, 2),
  3328. BPF_EXIT_INSN(),
  3329. },
  3330. INTERNAL,
  3331. { },
  3332. { { 0, 2 } },
  3333. },
  3334. {
  3335. "ALU64_AND_K: 0xffffffff & 0xffffffff = 0xffffffff",
  3336. .u.insns_int = {
  3337. BPF_LD_IMM64(R0, 0xffffffff),
  3338. BPF_ALU64_IMM(BPF_AND, R0, 0xffffffff),
  3339. BPF_EXIT_INSN(),
  3340. },
  3341. INTERNAL,
  3342. { },
  3343. { { 0, 0xffffffff } },
  3344. },
  3345. {
  3346. "ALU64_AND_K: 0x0000ffffffff0000 & 0x0 = 0x0000ffff00000000",
  3347. .u.insns_int = {
  3348. BPF_LD_IMM64(R2, 0x0000ffffffff0000LL),
  3349. BPF_LD_IMM64(R3, 0x0000000000000000LL),
  3350. BPF_ALU64_IMM(BPF_AND, R2, 0x0),
  3351. BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
  3352. BPF_MOV32_IMM(R0, 2),
  3353. BPF_EXIT_INSN(),
  3354. BPF_MOV32_IMM(R0, 1),
  3355. BPF_EXIT_INSN(),
  3356. },
  3357. INTERNAL,
  3358. { },
  3359. { { 0, 0x1 } },
  3360. },
  3361. {
  3362. "ALU64_AND_K: 0x0000ffffffff0000 & -1 = 0x0000ffffffffffff",
  3363. .u.insns_int = {
  3364. BPF_LD_IMM64(R2, 0x0000ffffffff0000LL),
  3365. BPF_LD_IMM64(R3, 0x0000ffffffff0000LL),
  3366. BPF_ALU64_IMM(BPF_AND, R2, 0xffffffff),
  3367. BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
  3368. BPF_MOV32_IMM(R0, 2),
  3369. BPF_EXIT_INSN(),
  3370. BPF_MOV32_IMM(R0, 1),
  3371. BPF_EXIT_INSN(),
  3372. },
  3373. INTERNAL,
  3374. { },
  3375. { { 0, 0x1 } },
  3376. },
  3377. {
  3378. "ALU64_AND_K: 0xffffffffffffffff & -1 = 0xffffffffffffffff",
  3379. .u.insns_int = {
  3380. BPF_LD_IMM64(R2, 0xffffffffffffffffLL),
  3381. BPF_LD_IMM64(R3, 0xffffffffffffffffLL),
  3382. BPF_ALU64_IMM(BPF_AND, R2, 0xffffffff),
  3383. BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
  3384. BPF_MOV32_IMM(R0, 2),
  3385. BPF_EXIT_INSN(),
  3386. BPF_MOV32_IMM(R0, 1),
  3387. BPF_EXIT_INSN(),
  3388. },
  3389. INTERNAL,
  3390. { },
  3391. { { 0, 0x1 } },
  3392. },
  3393. /* BPF_ALU | BPF_OR | BPF_X */
  3394. {
  3395. "ALU_OR_X: 1 | 2 = 3",
  3396. .u.insns_int = {
  3397. BPF_LD_IMM64(R0, 1),
  3398. BPF_ALU32_IMM(BPF_MOV, R1, 2),
  3399. BPF_ALU32_REG(BPF_OR, R0, R1),
  3400. BPF_EXIT_INSN(),
  3401. },
  3402. INTERNAL,
  3403. { },
  3404. { { 0, 3 } },
  3405. },
  3406. {
  3407. "ALU_OR_X: 0x0 | 0xffffffff = 0xffffffff",
  3408. .u.insns_int = {
  3409. BPF_LD_IMM64(R0, 0),
  3410. BPF_ALU32_IMM(BPF_MOV, R1, 0xffffffff),
  3411. BPF_ALU32_REG(BPF_OR, R0, R1),
  3412. BPF_EXIT_INSN(),
  3413. },
  3414. INTERNAL,
  3415. { },
  3416. { { 0, 0xffffffff } },
  3417. },
  3418. {
  3419. "ALU64_OR_X: 1 | 2 = 3",
  3420. .u.insns_int = {
  3421. BPF_LD_IMM64(R0, 1),
  3422. BPF_ALU32_IMM(BPF_MOV, R1, 2),
  3423. BPF_ALU64_REG(BPF_OR, R0, R1),
  3424. BPF_EXIT_INSN(),
  3425. },
  3426. INTERNAL,
  3427. { },
  3428. { { 0, 3 } },
  3429. },
  3430. {
  3431. "ALU64_OR_X: 0 | 0xffffffff = 0xffffffff",
  3432. .u.insns_int = {
  3433. BPF_LD_IMM64(R0, 0),
  3434. BPF_ALU32_IMM(BPF_MOV, R1, 0xffffffff),
  3435. BPF_ALU64_REG(BPF_OR, R0, R1),
  3436. BPF_EXIT_INSN(),
  3437. },
  3438. INTERNAL,
  3439. { },
  3440. { { 0, 0xffffffff } },
  3441. },
  3442. /* BPF_ALU | BPF_OR | BPF_K */
  3443. {
  3444. "ALU_OR_K: 1 | 2 = 3",
  3445. .u.insns_int = {
  3446. BPF_LD_IMM64(R0, 1),
  3447. BPF_ALU32_IMM(BPF_OR, R0, 2),
  3448. BPF_EXIT_INSN(),
  3449. },
  3450. INTERNAL,
  3451. { },
  3452. { { 0, 3 } },
  3453. },
  3454. {
  3455. "ALU_OR_K: 0 & 0xffffffff = 0xffffffff",
  3456. .u.insns_int = {
  3457. BPF_LD_IMM64(R0, 0),
  3458. BPF_ALU32_IMM(BPF_OR, R0, 0xffffffff),
  3459. BPF_EXIT_INSN(),
  3460. },
  3461. INTERNAL,
  3462. { },
  3463. { { 0, 0xffffffff } },
  3464. },
  3465. {
  3466. "ALU64_OR_K: 1 | 2 = 3",
  3467. .u.insns_int = {
  3468. BPF_LD_IMM64(R0, 1),
  3469. BPF_ALU64_IMM(BPF_OR, R0, 2),
  3470. BPF_EXIT_INSN(),
  3471. },
  3472. INTERNAL,
  3473. { },
  3474. { { 0, 3 } },
  3475. },
  3476. {
  3477. "ALU64_OR_K: 0 & 0xffffffff = 0xffffffff",
  3478. .u.insns_int = {
  3479. BPF_LD_IMM64(R0, 0),
  3480. BPF_ALU64_IMM(BPF_OR, R0, 0xffffffff),
  3481. BPF_EXIT_INSN(),
  3482. },
  3483. INTERNAL,
  3484. { },
  3485. { { 0, 0xffffffff } },
  3486. },
  3487. {
  3488. "ALU64_OR_K: 0x0000ffffffff0000 | 0x0 = 0x0000ffff00000000",
  3489. .u.insns_int = {
  3490. BPF_LD_IMM64(R2, 0x0000ffffffff0000LL),
  3491. BPF_LD_IMM64(R3, 0x0000ffffffff0000LL),
  3492. BPF_ALU64_IMM(BPF_OR, R2, 0x0),
  3493. BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
  3494. BPF_MOV32_IMM(R0, 2),
  3495. BPF_EXIT_INSN(),
  3496. BPF_MOV32_IMM(R0, 1),
  3497. BPF_EXIT_INSN(),
  3498. },
  3499. INTERNAL,
  3500. { },
  3501. { { 0, 0x1 } },
  3502. },
  3503. {
  3504. "ALU64_OR_K: 0x0000ffffffff0000 | -1 = 0xffffffffffffffff",
  3505. .u.insns_int = {
  3506. BPF_LD_IMM64(R2, 0x0000ffffffff0000LL),
  3507. BPF_LD_IMM64(R3, 0xffffffffffffffffLL),
  3508. BPF_ALU64_IMM(BPF_OR, R2, 0xffffffff),
  3509. BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
  3510. BPF_MOV32_IMM(R0, 2),
  3511. BPF_EXIT_INSN(),
  3512. BPF_MOV32_IMM(R0, 1),
  3513. BPF_EXIT_INSN(),
  3514. },
  3515. INTERNAL,
  3516. { },
  3517. { { 0, 0x1 } },
  3518. },
  3519. {
  3520. "ALU64_OR_K: 0x000000000000000 | -1 = 0xffffffffffffffff",
  3521. .u.insns_int = {
  3522. BPF_LD_IMM64(R2, 0x0000000000000000LL),
  3523. BPF_LD_IMM64(R3, 0xffffffffffffffffLL),
  3524. BPF_ALU64_IMM(BPF_OR, R2, 0xffffffff),
  3525. BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
  3526. BPF_MOV32_IMM(R0, 2),
  3527. BPF_EXIT_INSN(),
  3528. BPF_MOV32_IMM(R0, 1),
  3529. BPF_EXIT_INSN(),
  3530. },
  3531. INTERNAL,
  3532. { },
  3533. { { 0, 0x1 } },
  3534. },
  3535. /* BPF_ALU | BPF_XOR | BPF_X */
  3536. {
  3537. "ALU_XOR_X: 5 ^ 6 = 3",
  3538. .u.insns_int = {
  3539. BPF_LD_IMM64(R0, 5),
  3540. BPF_ALU32_IMM(BPF_MOV, R1, 6),
  3541. BPF_ALU32_REG(BPF_XOR, R0, R1),
  3542. BPF_EXIT_INSN(),
  3543. },
  3544. INTERNAL,
  3545. { },
  3546. { { 0, 3 } },
  3547. },
  3548. {
  3549. "ALU_XOR_X: 0x1 ^ 0xffffffff = 0xfffffffe",
  3550. .u.insns_int = {
  3551. BPF_LD_IMM64(R0, 1),
  3552. BPF_ALU32_IMM(BPF_MOV, R1, 0xffffffff),
  3553. BPF_ALU32_REG(BPF_XOR, R0, R1),
  3554. BPF_EXIT_INSN(),
  3555. },
  3556. INTERNAL,
  3557. { },
  3558. { { 0, 0xfffffffe } },
  3559. },
  3560. {
  3561. "ALU64_XOR_X: 5 ^ 6 = 3",
  3562. .u.insns_int = {
  3563. BPF_LD_IMM64(R0, 5),
  3564. BPF_ALU32_IMM(BPF_MOV, R1, 6),
  3565. BPF_ALU64_REG(BPF_XOR, R0, R1),
  3566. BPF_EXIT_INSN(),
  3567. },
  3568. INTERNAL,
  3569. { },
  3570. { { 0, 3 } },
  3571. },
  3572. {
  3573. "ALU64_XOR_X: 1 ^ 0xffffffff = 0xfffffffe",
  3574. .u.insns_int = {
  3575. BPF_LD_IMM64(R0, 1),
  3576. BPF_ALU32_IMM(BPF_MOV, R1, 0xffffffff),
  3577. BPF_ALU64_REG(BPF_XOR, R0, R1),
  3578. BPF_EXIT_INSN(),
  3579. },
  3580. INTERNAL,
  3581. { },
  3582. { { 0, 0xfffffffe } },
  3583. },
  3584. /* BPF_ALU | BPF_XOR | BPF_K */
  3585. {
  3586. "ALU_XOR_K: 5 ^ 6 = 3",
  3587. .u.insns_int = {
  3588. BPF_LD_IMM64(R0, 5),
  3589. BPF_ALU32_IMM(BPF_XOR, R0, 6),
  3590. BPF_EXIT_INSN(),
  3591. },
  3592. INTERNAL,
  3593. { },
  3594. { { 0, 3 } },
  3595. },
  3596. {
  3597. "ALU_XOR_K: 1 ^ 0xffffffff = 0xfffffffe",
  3598. .u.insns_int = {
  3599. BPF_LD_IMM64(R0, 1),
  3600. BPF_ALU32_IMM(BPF_XOR, R0, 0xffffffff),
  3601. BPF_EXIT_INSN(),
  3602. },
  3603. INTERNAL,
  3604. { },
  3605. { { 0, 0xfffffffe } },
  3606. },
  3607. {
  3608. "ALU64_XOR_K: 5 ^ 6 = 3",
  3609. .u.insns_int = {
  3610. BPF_LD_IMM64(R0, 5),
  3611. BPF_ALU64_IMM(BPF_XOR, R0, 6),
  3612. BPF_EXIT_INSN(),
  3613. },
  3614. INTERNAL,
  3615. { },
  3616. { { 0, 3 } },
  3617. },
  3618. {
  3619. "ALU64_XOR_K: 1 & 0xffffffff = 0xfffffffe",
  3620. .u.insns_int = {
  3621. BPF_LD_IMM64(R0, 1),
  3622. BPF_ALU64_IMM(BPF_XOR, R0, 0xffffffff),
  3623. BPF_EXIT_INSN(),
  3624. },
  3625. INTERNAL,
  3626. { },
  3627. { { 0, 0xfffffffe } },
  3628. },
  3629. {
  3630. "ALU64_XOR_K: 0x0000ffffffff0000 ^ 0x0 = 0x0000ffffffff0000",
  3631. .u.insns_int = {
  3632. BPF_LD_IMM64(R2, 0x0000ffffffff0000LL),
  3633. BPF_LD_IMM64(R3, 0x0000ffffffff0000LL),
  3634. BPF_ALU64_IMM(BPF_XOR, R2, 0x0),
  3635. BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
  3636. BPF_MOV32_IMM(R0, 2),
  3637. BPF_EXIT_INSN(),
  3638. BPF_MOV32_IMM(R0, 1),
  3639. BPF_EXIT_INSN(),
  3640. },
  3641. INTERNAL,
  3642. { },
  3643. { { 0, 0x1 } },
  3644. },
  3645. {
  3646. "ALU64_XOR_K: 0x0000ffffffff0000 ^ -1 = 0xffff00000000ffff",
  3647. .u.insns_int = {
  3648. BPF_LD_IMM64(R2, 0x0000ffffffff0000LL),
  3649. BPF_LD_IMM64(R3, 0xffff00000000ffffLL),
  3650. BPF_ALU64_IMM(BPF_XOR, R2, 0xffffffff),
  3651. BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
  3652. BPF_MOV32_IMM(R0, 2),
  3653. BPF_EXIT_INSN(),
  3654. BPF_MOV32_IMM(R0, 1),
  3655. BPF_EXIT_INSN(),
  3656. },
  3657. INTERNAL,
  3658. { },
  3659. { { 0, 0x1 } },
  3660. },
  3661. {
  3662. "ALU64_XOR_K: 0x000000000000000 ^ -1 = 0xffffffffffffffff",
  3663. .u.insns_int = {
  3664. BPF_LD_IMM64(R2, 0x0000000000000000LL),
  3665. BPF_LD_IMM64(R3, 0xffffffffffffffffLL),
  3666. BPF_ALU64_IMM(BPF_XOR, R2, 0xffffffff),
  3667. BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
  3668. BPF_MOV32_IMM(R0, 2),
  3669. BPF_EXIT_INSN(),
  3670. BPF_MOV32_IMM(R0, 1),
  3671. BPF_EXIT_INSN(),
  3672. },
  3673. INTERNAL,
  3674. { },
  3675. { { 0, 0x1 } },
  3676. },
  3677. /* BPF_ALU | BPF_LSH | BPF_X */
  3678. {
  3679. "ALU_LSH_X: 1 << 1 = 2",
  3680. .u.insns_int = {
  3681. BPF_LD_IMM64(R0, 1),
  3682. BPF_ALU32_IMM(BPF_MOV, R1, 1),
  3683. BPF_ALU32_REG(BPF_LSH, R0, R1),
  3684. BPF_EXIT_INSN(),
  3685. },
  3686. INTERNAL,
  3687. { },
  3688. { { 0, 2 } },
  3689. },
  3690. {
  3691. "ALU_LSH_X: 1 << 31 = 0x80000000",
  3692. .u.insns_int = {
  3693. BPF_LD_IMM64(R0, 1),
  3694. BPF_ALU32_IMM(BPF_MOV, R1, 31),
  3695. BPF_ALU32_REG(BPF_LSH, R0, R1),
  3696. BPF_EXIT_INSN(),
  3697. },
  3698. INTERNAL,
  3699. { },
  3700. { { 0, 0x80000000 } },
  3701. },
  3702. {
  3703. "ALU64_LSH_X: 1 << 1 = 2",
  3704. .u.insns_int = {
  3705. BPF_LD_IMM64(R0, 1),
  3706. BPF_ALU32_IMM(BPF_MOV, R1, 1),
  3707. BPF_ALU64_REG(BPF_LSH, R0, R1),
  3708. BPF_EXIT_INSN(),
  3709. },
  3710. INTERNAL,
  3711. { },
  3712. { { 0, 2 } },
  3713. },
  3714. {
  3715. "ALU64_LSH_X: 1 << 31 = 0x80000000",
  3716. .u.insns_int = {
  3717. BPF_LD_IMM64(R0, 1),
  3718. BPF_ALU32_IMM(BPF_MOV, R1, 31),
  3719. BPF_ALU64_REG(BPF_LSH, R0, R1),
  3720. BPF_EXIT_INSN(),
  3721. },
  3722. INTERNAL,
  3723. { },
  3724. { { 0, 0x80000000 } },
  3725. },
  3726. /* BPF_ALU | BPF_LSH | BPF_K */
  3727. {
  3728. "ALU_LSH_K: 1 << 1 = 2",
  3729. .u.insns_int = {
  3730. BPF_LD_IMM64(R0, 1),
  3731. BPF_ALU32_IMM(BPF_LSH, R0, 1),
  3732. BPF_EXIT_INSN(),
  3733. },
  3734. INTERNAL,
  3735. { },
  3736. { { 0, 2 } },
  3737. },
  3738. {
  3739. "ALU_LSH_K: 1 << 31 = 0x80000000",
  3740. .u.insns_int = {
  3741. BPF_LD_IMM64(R0, 1),
  3742. BPF_ALU32_IMM(BPF_LSH, R0, 31),
  3743. BPF_EXIT_INSN(),
  3744. },
  3745. INTERNAL,
  3746. { },
  3747. { { 0, 0x80000000 } },
  3748. },
  3749. {
  3750. "ALU64_LSH_K: 1 << 1 = 2",
  3751. .u.insns_int = {
  3752. BPF_LD_IMM64(R0, 1),
  3753. BPF_ALU64_IMM(BPF_LSH, R0, 1),
  3754. BPF_EXIT_INSN(),
  3755. },
  3756. INTERNAL,
  3757. { },
  3758. { { 0, 2 } },
  3759. },
  3760. {
  3761. "ALU64_LSH_K: 1 << 31 = 0x80000000",
  3762. .u.insns_int = {
  3763. BPF_LD_IMM64(R0, 1),
  3764. BPF_ALU64_IMM(BPF_LSH, R0, 31),
  3765. BPF_EXIT_INSN(),
  3766. },
  3767. INTERNAL,
  3768. { },
  3769. { { 0, 0x80000000 } },
  3770. },
  3771. /* BPF_ALU | BPF_RSH | BPF_X */
  3772. {
  3773. "ALU_RSH_X: 2 >> 1 = 1",
  3774. .u.insns_int = {
  3775. BPF_LD_IMM64(R0, 2),
  3776. BPF_ALU32_IMM(BPF_MOV, R1, 1),
  3777. BPF_ALU32_REG(BPF_RSH, R0, R1),
  3778. BPF_EXIT_INSN(),
  3779. },
  3780. INTERNAL,
  3781. { },
  3782. { { 0, 1 } },
  3783. },
  3784. {
  3785. "ALU_RSH_X: 0x80000000 >> 31 = 1",
  3786. .u.insns_int = {
  3787. BPF_LD_IMM64(R0, 0x80000000),
  3788. BPF_ALU32_IMM(BPF_MOV, R1, 31),
  3789. BPF_ALU32_REG(BPF_RSH, R0, R1),
  3790. BPF_EXIT_INSN(),
  3791. },
  3792. INTERNAL,
  3793. { },
  3794. { { 0, 1 } },
  3795. },
  3796. {
  3797. "ALU64_RSH_X: 2 >> 1 = 1",
  3798. .u.insns_int = {
  3799. BPF_LD_IMM64(R0, 2),
  3800. BPF_ALU32_IMM(BPF_MOV, R1, 1),
  3801. BPF_ALU64_REG(BPF_RSH, R0, R1),
  3802. BPF_EXIT_INSN(),
  3803. },
  3804. INTERNAL,
  3805. { },
  3806. { { 0, 1 } },
  3807. },
  3808. {
  3809. "ALU64_RSH_X: 0x80000000 >> 31 = 1",
  3810. .u.insns_int = {
  3811. BPF_LD_IMM64(R0, 0x80000000),
  3812. BPF_ALU32_IMM(BPF_MOV, R1, 31),
  3813. BPF_ALU64_REG(BPF_RSH, R0, R1),
  3814. BPF_EXIT_INSN(),
  3815. },
  3816. INTERNAL,
  3817. { },
  3818. { { 0, 1 } },
  3819. },
  3820. /* BPF_ALU | BPF_RSH | BPF_K */
  3821. {
  3822. "ALU_RSH_K: 2 >> 1 = 1",
  3823. .u.insns_int = {
  3824. BPF_LD_IMM64(R0, 2),
  3825. BPF_ALU32_IMM(BPF_RSH, R0, 1),
  3826. BPF_EXIT_INSN(),
  3827. },
  3828. INTERNAL,
  3829. { },
  3830. { { 0, 1 } },
  3831. },
  3832. {
  3833. "ALU_RSH_K: 0x80000000 >> 31 = 1",
  3834. .u.insns_int = {
  3835. BPF_LD_IMM64(R0, 0x80000000),
  3836. BPF_ALU32_IMM(BPF_RSH, R0, 31),
  3837. BPF_EXIT_INSN(),
  3838. },
  3839. INTERNAL,
  3840. { },
  3841. { { 0, 1 } },
  3842. },
  3843. {
  3844. "ALU64_RSH_K: 2 >> 1 = 1",
  3845. .u.insns_int = {
  3846. BPF_LD_IMM64(R0, 2),
  3847. BPF_ALU64_IMM(BPF_RSH, R0, 1),
  3848. BPF_EXIT_INSN(),
  3849. },
  3850. INTERNAL,
  3851. { },
  3852. { { 0, 1 } },
  3853. },
  3854. {
  3855. "ALU64_RSH_K: 0x80000000 >> 31 = 1",
  3856. .u.insns_int = {
  3857. BPF_LD_IMM64(R0, 0x80000000),
  3858. BPF_ALU64_IMM(BPF_RSH, R0, 31),
  3859. BPF_EXIT_INSN(),
  3860. },
  3861. INTERNAL,
  3862. { },
  3863. { { 0, 1 } },
  3864. },
  3865. /* BPF_ALU | BPF_ARSH | BPF_X */
  3866. {
  3867. "ALU_ARSH_X: 0xff00ff0000000000 >> 40 = 0xffffffffffff00ff",
  3868. .u.insns_int = {
  3869. BPF_LD_IMM64(R0, 0xff00ff0000000000LL),
  3870. BPF_ALU32_IMM(BPF_MOV, R1, 40),
  3871. BPF_ALU64_REG(BPF_ARSH, R0, R1),
  3872. BPF_EXIT_INSN(),
  3873. },
  3874. INTERNAL,
  3875. { },
  3876. { { 0, 0xffff00ff } },
  3877. },
  3878. /* BPF_ALU | BPF_ARSH | BPF_K */
  3879. {
  3880. "ALU_ARSH_K: 0xff00ff0000000000 >> 40 = 0xffffffffffff00ff",
  3881. .u.insns_int = {
  3882. BPF_LD_IMM64(R0, 0xff00ff0000000000LL),
  3883. BPF_ALU64_IMM(BPF_ARSH, R0, 40),
  3884. BPF_EXIT_INSN(),
  3885. },
  3886. INTERNAL,
  3887. { },
  3888. { { 0, 0xffff00ff } },
  3889. },
  3890. /* BPF_ALU | BPF_NEG */
  3891. {
  3892. "ALU_NEG: -(3) = -3",
  3893. .u.insns_int = {
  3894. BPF_ALU32_IMM(BPF_MOV, R0, 3),
  3895. BPF_ALU32_IMM(BPF_NEG, R0, 0),
  3896. BPF_EXIT_INSN(),
  3897. },
  3898. INTERNAL,
  3899. { },
  3900. { { 0, -3 } },
  3901. },
  3902. {
  3903. "ALU_NEG: -(-3) = 3",
  3904. .u.insns_int = {
  3905. BPF_ALU32_IMM(BPF_MOV, R0, -3),
  3906. BPF_ALU32_IMM(BPF_NEG, R0, 0),
  3907. BPF_EXIT_INSN(),
  3908. },
  3909. INTERNAL,
  3910. { },
  3911. { { 0, 3 } },
  3912. },
  3913. {
  3914. "ALU64_NEG: -(3) = -3",
  3915. .u.insns_int = {
  3916. BPF_LD_IMM64(R0, 3),
  3917. BPF_ALU64_IMM(BPF_NEG, R0, 0),
  3918. BPF_EXIT_INSN(),
  3919. },
  3920. INTERNAL,
  3921. { },
  3922. { { 0, -3 } },
  3923. },
  3924. {
  3925. "ALU64_NEG: -(-3) = 3",
  3926. .u.insns_int = {
  3927. BPF_LD_IMM64(R0, -3),
  3928. BPF_ALU64_IMM(BPF_NEG, R0, 0),
  3929. BPF_EXIT_INSN(),
  3930. },
  3931. INTERNAL,
  3932. { },
  3933. { { 0, 3 } },
  3934. },
  3935. /* BPF_ALU | BPF_END | BPF_FROM_BE */
  3936. {
  3937. "ALU_END_FROM_BE 16: 0x0123456789abcdef -> 0xcdef",
  3938. .u.insns_int = {
  3939. BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
  3940. BPF_ENDIAN(BPF_FROM_BE, R0, 16),
  3941. BPF_EXIT_INSN(),
  3942. },
  3943. INTERNAL,
  3944. { },
  3945. { { 0, cpu_to_be16(0xcdef) } },
  3946. },
  3947. {
  3948. "ALU_END_FROM_BE 32: 0x0123456789abcdef -> 0x89abcdef",
  3949. .u.insns_int = {
  3950. BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
  3951. BPF_ENDIAN(BPF_FROM_BE, R0, 32),
  3952. BPF_ALU64_REG(BPF_MOV, R1, R0),
  3953. BPF_ALU64_IMM(BPF_RSH, R1, 32),
  3954. BPF_ALU32_REG(BPF_ADD, R0, R1), /* R1 = 0 */
  3955. BPF_EXIT_INSN(),
  3956. },
  3957. INTERNAL,
  3958. { },
  3959. { { 0, cpu_to_be32(0x89abcdef) } },
  3960. },
  3961. {
  3962. "ALU_END_FROM_BE 64: 0x0123456789abcdef -> 0x89abcdef",
  3963. .u.insns_int = {
  3964. BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
  3965. BPF_ENDIAN(BPF_FROM_BE, R0, 64),
  3966. BPF_EXIT_INSN(),
  3967. },
  3968. INTERNAL,
  3969. { },
  3970. { { 0, (u32) cpu_to_be64(0x0123456789abcdefLL) } },
  3971. },
  3972. /* BPF_ALU | BPF_END | BPF_FROM_LE */
  3973. {
  3974. "ALU_END_FROM_LE 16: 0x0123456789abcdef -> 0xefcd",
  3975. .u.insns_int = {
  3976. BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
  3977. BPF_ENDIAN(BPF_FROM_LE, R0, 16),
  3978. BPF_EXIT_INSN(),
  3979. },
  3980. INTERNAL,
  3981. { },
  3982. { { 0, cpu_to_le16(0xcdef) } },
  3983. },
  3984. {
  3985. "ALU_END_FROM_LE 32: 0x0123456789abcdef -> 0xefcdab89",
  3986. .u.insns_int = {
  3987. BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
  3988. BPF_ENDIAN(BPF_FROM_LE, R0, 32),
  3989. BPF_ALU64_REG(BPF_MOV, R1, R0),
  3990. BPF_ALU64_IMM(BPF_RSH, R1, 32),
  3991. BPF_ALU32_REG(BPF_ADD, R0, R1), /* R1 = 0 */
  3992. BPF_EXIT_INSN(),
  3993. },
  3994. INTERNAL,
  3995. { },
  3996. { { 0, cpu_to_le32(0x89abcdef) } },
  3997. },
  3998. {
  3999. "ALU_END_FROM_LE 64: 0x0123456789abcdef -> 0x67452301",
  4000. .u.insns_int = {
  4001. BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
  4002. BPF_ENDIAN(BPF_FROM_LE, R0, 64),
  4003. BPF_EXIT_INSN(),
  4004. },
  4005. INTERNAL,
  4006. { },
  4007. { { 0, (u32) cpu_to_le64(0x0123456789abcdefLL) } },
  4008. },
  4009. /* BPF_ST(X) | BPF_MEM | BPF_B/H/W/DW */
  4010. {
  4011. "ST_MEM_B: Store/Load byte: max negative",
  4012. .u.insns_int = {
  4013. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4014. BPF_ST_MEM(BPF_B, R10, -40, 0xff),
  4015. BPF_LDX_MEM(BPF_B, R0, R10, -40),
  4016. BPF_EXIT_INSN(),
  4017. },
  4018. INTERNAL,
  4019. { },
  4020. { { 0, 0xff } },
  4021. .stack_depth = 40,
  4022. },
  4023. {
  4024. "ST_MEM_B: Store/Load byte: max positive",
  4025. .u.insns_int = {
  4026. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4027. BPF_ST_MEM(BPF_H, R10, -40, 0x7f),
  4028. BPF_LDX_MEM(BPF_H, R0, R10, -40),
  4029. BPF_EXIT_INSN(),
  4030. },
  4031. INTERNAL,
  4032. { },
  4033. { { 0, 0x7f } },
  4034. .stack_depth = 40,
  4035. },
  4036. {
  4037. "STX_MEM_B: Store/Load byte: max negative",
  4038. .u.insns_int = {
  4039. BPF_LD_IMM64(R0, 0),
  4040. BPF_LD_IMM64(R1, 0xffLL),
  4041. BPF_STX_MEM(BPF_B, R10, R1, -40),
  4042. BPF_LDX_MEM(BPF_B, R0, R10, -40),
  4043. BPF_EXIT_INSN(),
  4044. },
  4045. INTERNAL,
  4046. { },
  4047. { { 0, 0xff } },
  4048. .stack_depth = 40,
  4049. },
  4050. {
  4051. "ST_MEM_H: Store/Load half word: max negative",
  4052. .u.insns_int = {
  4053. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4054. BPF_ST_MEM(BPF_H, R10, -40, 0xffff),
  4055. BPF_LDX_MEM(BPF_H, R0, R10, -40),
  4056. BPF_EXIT_INSN(),
  4057. },
  4058. INTERNAL,
  4059. { },
  4060. { { 0, 0xffff } },
  4061. .stack_depth = 40,
  4062. },
  4063. {
  4064. "ST_MEM_H: Store/Load half word: max positive",
  4065. .u.insns_int = {
  4066. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4067. BPF_ST_MEM(BPF_H, R10, -40, 0x7fff),
  4068. BPF_LDX_MEM(BPF_H, R0, R10, -40),
  4069. BPF_EXIT_INSN(),
  4070. },
  4071. INTERNAL,
  4072. { },
  4073. { { 0, 0x7fff } },
  4074. .stack_depth = 40,
  4075. },
  4076. {
  4077. "STX_MEM_H: Store/Load half word: max negative",
  4078. .u.insns_int = {
  4079. BPF_LD_IMM64(R0, 0),
  4080. BPF_LD_IMM64(R1, 0xffffLL),
  4081. BPF_STX_MEM(BPF_H, R10, R1, -40),
  4082. BPF_LDX_MEM(BPF_H, R0, R10, -40),
  4083. BPF_EXIT_INSN(),
  4084. },
  4085. INTERNAL,
  4086. { },
  4087. { { 0, 0xffff } },
  4088. .stack_depth = 40,
  4089. },
  4090. {
  4091. "ST_MEM_W: Store/Load word: max negative",
  4092. .u.insns_int = {
  4093. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4094. BPF_ST_MEM(BPF_W, R10, -40, 0xffffffff),
  4095. BPF_LDX_MEM(BPF_W, R0, R10, -40),
  4096. BPF_EXIT_INSN(),
  4097. },
  4098. INTERNAL,
  4099. { },
  4100. { { 0, 0xffffffff } },
  4101. .stack_depth = 40,
  4102. },
  4103. {
  4104. "ST_MEM_W: Store/Load word: max positive",
  4105. .u.insns_int = {
  4106. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4107. BPF_ST_MEM(BPF_W, R10, -40, 0x7fffffff),
  4108. BPF_LDX_MEM(BPF_W, R0, R10, -40),
  4109. BPF_EXIT_INSN(),
  4110. },
  4111. INTERNAL,
  4112. { },
  4113. { { 0, 0x7fffffff } },
  4114. .stack_depth = 40,
  4115. },
  4116. {
  4117. "STX_MEM_W: Store/Load word: max negative",
  4118. .u.insns_int = {
  4119. BPF_LD_IMM64(R0, 0),
  4120. BPF_LD_IMM64(R1, 0xffffffffLL),
  4121. BPF_STX_MEM(BPF_W, R10, R1, -40),
  4122. BPF_LDX_MEM(BPF_W, R0, R10, -40),
  4123. BPF_EXIT_INSN(),
  4124. },
  4125. INTERNAL,
  4126. { },
  4127. { { 0, 0xffffffff } },
  4128. .stack_depth = 40,
  4129. },
  4130. {
  4131. "ST_MEM_DW: Store/Load double word: max negative",
  4132. .u.insns_int = {
  4133. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4134. BPF_ST_MEM(BPF_DW, R10, -40, 0xffffffff),
  4135. BPF_LDX_MEM(BPF_DW, R0, R10, -40),
  4136. BPF_EXIT_INSN(),
  4137. },
  4138. INTERNAL,
  4139. { },
  4140. { { 0, 0xffffffff } },
  4141. .stack_depth = 40,
  4142. },
  4143. {
  4144. "ST_MEM_DW: Store/Load double word: max negative 2",
  4145. .u.insns_int = {
  4146. BPF_LD_IMM64(R2, 0xffff00000000ffffLL),
  4147. BPF_LD_IMM64(R3, 0xffffffffffffffffLL),
  4148. BPF_ST_MEM(BPF_DW, R10, -40, 0xffffffff),
  4149. BPF_LDX_MEM(BPF_DW, R2, R10, -40),
  4150. BPF_JMP_REG(BPF_JEQ, R2, R3, 2),
  4151. BPF_MOV32_IMM(R0, 2),
  4152. BPF_EXIT_INSN(),
  4153. BPF_MOV32_IMM(R0, 1),
  4154. BPF_EXIT_INSN(),
  4155. },
  4156. INTERNAL,
  4157. { },
  4158. { { 0, 0x1 } },
  4159. .stack_depth = 40,
  4160. },
  4161. {
  4162. "ST_MEM_DW: Store/Load double word: max positive",
  4163. .u.insns_int = {
  4164. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4165. BPF_ST_MEM(BPF_DW, R10, -40, 0x7fffffff),
  4166. BPF_LDX_MEM(BPF_DW, R0, R10, -40),
  4167. BPF_EXIT_INSN(),
  4168. },
  4169. INTERNAL,
  4170. { },
  4171. { { 0, 0x7fffffff } },
  4172. .stack_depth = 40,
  4173. },
  4174. {
  4175. "STX_MEM_DW: Store/Load double word: max negative",
  4176. .u.insns_int = {
  4177. BPF_LD_IMM64(R0, 0),
  4178. BPF_LD_IMM64(R1, 0xffffffffffffffffLL),
  4179. BPF_STX_MEM(BPF_W, R10, R1, -40),
  4180. BPF_LDX_MEM(BPF_W, R0, R10, -40),
  4181. BPF_EXIT_INSN(),
  4182. },
  4183. INTERNAL,
  4184. { },
  4185. { { 0, 0xffffffff } },
  4186. .stack_depth = 40,
  4187. },
  4188. /* BPF_STX | BPF_XADD | BPF_W/DW */
  4189. {
  4190. "STX_XADD_W: Test: 0x12 + 0x10 = 0x22",
  4191. .u.insns_int = {
  4192. BPF_ALU32_IMM(BPF_MOV, R0, 0x12),
  4193. BPF_ST_MEM(BPF_W, R10, -40, 0x10),
  4194. BPF_STX_XADD(BPF_W, R10, R0, -40),
  4195. BPF_LDX_MEM(BPF_W, R0, R10, -40),
  4196. BPF_EXIT_INSN(),
  4197. },
  4198. INTERNAL,
  4199. { },
  4200. { { 0, 0x22 } },
  4201. .stack_depth = 40,
  4202. },
  4203. {
  4204. "STX_XADD_W: Test side-effects, r10: 0x12 + 0x10 = 0x22",
  4205. .u.insns_int = {
  4206. BPF_ALU64_REG(BPF_MOV, R1, R10),
  4207. BPF_ALU32_IMM(BPF_MOV, R0, 0x12),
  4208. BPF_ST_MEM(BPF_W, R10, -40, 0x10),
  4209. BPF_STX_XADD(BPF_W, R10, R0, -40),
  4210. BPF_ALU64_REG(BPF_MOV, R0, R10),
  4211. BPF_ALU64_REG(BPF_SUB, R0, R1),
  4212. BPF_EXIT_INSN(),
  4213. },
  4214. INTERNAL,
  4215. { },
  4216. { { 0, 0 } },
  4217. .stack_depth = 40,
  4218. },
  4219. {
  4220. "STX_XADD_W: Test side-effects, r0: 0x12 + 0x10 = 0x22",
  4221. .u.insns_int = {
  4222. BPF_ALU32_IMM(BPF_MOV, R0, 0x12),
  4223. BPF_ST_MEM(BPF_W, R10, -40, 0x10),
  4224. BPF_STX_XADD(BPF_W, R10, R0, -40),
  4225. BPF_EXIT_INSN(),
  4226. },
  4227. INTERNAL,
  4228. { },
  4229. { { 0, 0x12 } },
  4230. .stack_depth = 40,
  4231. },
  4232. {
  4233. "STX_XADD_W: X + 1 + 1 + 1 + ...",
  4234. { },
  4235. INTERNAL,
  4236. { },
  4237. { { 0, 4134 } },
  4238. .fill_helper = bpf_fill_stxw,
  4239. },
  4240. {
  4241. "STX_XADD_DW: Test: 0x12 + 0x10 = 0x22",
  4242. .u.insns_int = {
  4243. BPF_ALU32_IMM(BPF_MOV, R0, 0x12),
  4244. BPF_ST_MEM(BPF_DW, R10, -40, 0x10),
  4245. BPF_STX_XADD(BPF_DW, R10, R0, -40),
  4246. BPF_LDX_MEM(BPF_DW, R0, R10, -40),
  4247. BPF_EXIT_INSN(),
  4248. },
  4249. INTERNAL,
  4250. { },
  4251. { { 0, 0x22 } },
  4252. .stack_depth = 40,
  4253. },
  4254. {
  4255. "STX_XADD_DW: Test side-effects, r10: 0x12 + 0x10 = 0x22",
  4256. .u.insns_int = {
  4257. BPF_ALU64_REG(BPF_MOV, R1, R10),
  4258. BPF_ALU32_IMM(BPF_MOV, R0, 0x12),
  4259. BPF_ST_MEM(BPF_DW, R10, -40, 0x10),
  4260. BPF_STX_XADD(BPF_DW, R10, R0, -40),
  4261. BPF_ALU64_REG(BPF_MOV, R0, R10),
  4262. BPF_ALU64_REG(BPF_SUB, R0, R1),
  4263. BPF_EXIT_INSN(),
  4264. },
  4265. INTERNAL,
  4266. { },
  4267. { { 0, 0 } },
  4268. .stack_depth = 40,
  4269. },
  4270. {
  4271. "STX_XADD_DW: Test side-effects, r0: 0x12 + 0x10 = 0x22",
  4272. .u.insns_int = {
  4273. BPF_ALU32_IMM(BPF_MOV, R0, 0x12),
  4274. BPF_ST_MEM(BPF_DW, R10, -40, 0x10),
  4275. BPF_STX_XADD(BPF_DW, R10, R0, -40),
  4276. BPF_EXIT_INSN(),
  4277. },
  4278. INTERNAL,
  4279. { },
  4280. { { 0, 0x12 } },
  4281. .stack_depth = 40,
  4282. },
  4283. {
  4284. "STX_XADD_DW: X + 1 + 1 + 1 + ...",
  4285. { },
  4286. INTERNAL,
  4287. { },
  4288. { { 0, 4134 } },
  4289. .fill_helper = bpf_fill_stxdw,
  4290. },
  4291. /* BPF_JMP | BPF_EXIT */
  4292. {
  4293. "JMP_EXIT",
  4294. .u.insns_int = {
  4295. BPF_ALU32_IMM(BPF_MOV, R0, 0x4711),
  4296. BPF_EXIT_INSN(),
  4297. BPF_ALU32_IMM(BPF_MOV, R0, 0x4712),
  4298. },
  4299. INTERNAL,
  4300. { },
  4301. { { 0, 0x4711 } },
  4302. },
  4303. /* BPF_JMP | BPF_JA */
  4304. {
  4305. "JMP_JA: Unconditional jump: if (true) return 1",
  4306. .u.insns_int = {
  4307. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  4308. BPF_JMP_IMM(BPF_JA, 0, 0, 1),
  4309. BPF_EXIT_INSN(),
  4310. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4311. BPF_EXIT_INSN(),
  4312. },
  4313. INTERNAL,
  4314. { },
  4315. { { 0, 1 } },
  4316. },
  4317. /* BPF_JMP | BPF_JSLT | BPF_K */
  4318. {
  4319. "JMP_JSLT_K: Signed jump: if (-2 < -1) return 1",
  4320. .u.insns_int = {
  4321. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  4322. BPF_LD_IMM64(R1, 0xfffffffffffffffeLL),
  4323. BPF_JMP_IMM(BPF_JSLT, R1, -1, 1),
  4324. BPF_EXIT_INSN(),
  4325. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4326. BPF_EXIT_INSN(),
  4327. },
  4328. INTERNAL,
  4329. { },
  4330. { { 0, 1 } },
  4331. },
  4332. {
  4333. "JMP_JSLT_K: Signed jump: if (-1 < -1) return 0",
  4334. .u.insns_int = {
  4335. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4336. BPF_LD_IMM64(R1, 0xffffffffffffffffLL),
  4337. BPF_JMP_IMM(BPF_JSLT, R1, -1, 1),
  4338. BPF_EXIT_INSN(),
  4339. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  4340. BPF_EXIT_INSN(),
  4341. },
  4342. INTERNAL,
  4343. { },
  4344. { { 0, 1 } },
  4345. },
  4346. /* BPF_JMP | BPF_JSGT | BPF_K */
  4347. {
  4348. "JMP_JSGT_K: Signed jump: if (-1 > -2) return 1",
  4349. .u.insns_int = {
  4350. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  4351. BPF_LD_IMM64(R1, 0xffffffffffffffffLL),
  4352. BPF_JMP_IMM(BPF_JSGT, R1, -2, 1),
  4353. BPF_EXIT_INSN(),
  4354. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4355. BPF_EXIT_INSN(),
  4356. },
  4357. INTERNAL,
  4358. { },
  4359. { { 0, 1 } },
  4360. },
  4361. {
  4362. "JMP_JSGT_K: Signed jump: if (-1 > -1) return 0",
  4363. .u.insns_int = {
  4364. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4365. BPF_LD_IMM64(R1, 0xffffffffffffffffLL),
  4366. BPF_JMP_IMM(BPF_JSGT, R1, -1, 1),
  4367. BPF_EXIT_INSN(),
  4368. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  4369. BPF_EXIT_INSN(),
  4370. },
  4371. INTERNAL,
  4372. { },
  4373. { { 0, 1 } },
  4374. },
  4375. /* BPF_JMP | BPF_JSLE | BPF_K */
  4376. {
  4377. "JMP_JSLE_K: Signed jump: if (-2 <= -1) return 1",
  4378. .u.insns_int = {
  4379. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  4380. BPF_LD_IMM64(R1, 0xfffffffffffffffeLL),
  4381. BPF_JMP_IMM(BPF_JSLE, R1, -1, 1),
  4382. BPF_EXIT_INSN(),
  4383. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4384. BPF_EXIT_INSN(),
  4385. },
  4386. INTERNAL,
  4387. { },
  4388. { { 0, 1 } },
  4389. },
  4390. {
  4391. "JMP_JSLE_K: Signed jump: if (-1 <= -1) return 1",
  4392. .u.insns_int = {
  4393. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  4394. BPF_LD_IMM64(R1, 0xffffffffffffffffLL),
  4395. BPF_JMP_IMM(BPF_JSLE, R1, -1, 1),
  4396. BPF_EXIT_INSN(),
  4397. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4398. BPF_EXIT_INSN(),
  4399. },
  4400. INTERNAL,
  4401. { },
  4402. { { 0, 1 } },
  4403. },
  4404. {
  4405. "JMP_JSLE_K: Signed jump: value walk 1",
  4406. .u.insns_int = {
  4407. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  4408. BPF_LD_IMM64(R1, 3),
  4409. BPF_JMP_IMM(BPF_JSLE, R1, 0, 6),
  4410. BPF_ALU64_IMM(BPF_SUB, R1, 1),
  4411. BPF_JMP_IMM(BPF_JSLE, R1, 0, 4),
  4412. BPF_ALU64_IMM(BPF_SUB, R1, 1),
  4413. BPF_JMP_IMM(BPF_JSLE, R1, 0, 2),
  4414. BPF_ALU64_IMM(BPF_SUB, R1, 1),
  4415. BPF_JMP_IMM(BPF_JSLE, R1, 0, 1),
  4416. BPF_EXIT_INSN(), /* bad exit */
  4417. BPF_ALU32_IMM(BPF_MOV, R0, 1), /* good exit */
  4418. BPF_EXIT_INSN(),
  4419. },
  4420. INTERNAL,
  4421. { },
  4422. { { 0, 1 } },
  4423. },
  4424. {
  4425. "JMP_JSLE_K: Signed jump: value walk 2",
  4426. .u.insns_int = {
  4427. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  4428. BPF_LD_IMM64(R1, 3),
  4429. BPF_JMP_IMM(BPF_JSLE, R1, 0, 4),
  4430. BPF_ALU64_IMM(BPF_SUB, R1, 2),
  4431. BPF_JMP_IMM(BPF_JSLE, R1, 0, 2),
  4432. BPF_ALU64_IMM(BPF_SUB, R1, 2),
  4433. BPF_JMP_IMM(BPF_JSLE, R1, 0, 1),
  4434. BPF_EXIT_INSN(), /* bad exit */
  4435. BPF_ALU32_IMM(BPF_MOV, R0, 1), /* good exit */
  4436. BPF_EXIT_INSN(),
  4437. },
  4438. INTERNAL,
  4439. { },
  4440. { { 0, 1 } },
  4441. },
  4442. /* BPF_JMP | BPF_JSGE | BPF_K */
  4443. {
  4444. "JMP_JSGE_K: Signed jump: if (-1 >= -2) return 1",
  4445. .u.insns_int = {
  4446. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  4447. BPF_LD_IMM64(R1, 0xffffffffffffffffLL),
  4448. BPF_JMP_IMM(BPF_JSGE, R1, -2, 1),
  4449. BPF_EXIT_INSN(),
  4450. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4451. BPF_EXIT_INSN(),
  4452. },
  4453. INTERNAL,
  4454. { },
  4455. { { 0, 1 } },
  4456. },
  4457. {
  4458. "JMP_JSGE_K: Signed jump: if (-1 >= -1) return 1",
  4459. .u.insns_int = {
  4460. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  4461. BPF_LD_IMM64(R1, 0xffffffffffffffffLL),
  4462. BPF_JMP_IMM(BPF_JSGE, R1, -1, 1),
  4463. BPF_EXIT_INSN(),
  4464. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4465. BPF_EXIT_INSN(),
  4466. },
  4467. INTERNAL,
  4468. { },
  4469. { { 0, 1 } },
  4470. },
  4471. {
  4472. "JMP_JSGE_K: Signed jump: value walk 1",
  4473. .u.insns_int = {
  4474. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  4475. BPF_LD_IMM64(R1, -3),
  4476. BPF_JMP_IMM(BPF_JSGE, R1, 0, 6),
  4477. BPF_ALU64_IMM(BPF_ADD, R1, 1),
  4478. BPF_JMP_IMM(BPF_JSGE, R1, 0, 4),
  4479. BPF_ALU64_IMM(BPF_ADD, R1, 1),
  4480. BPF_JMP_IMM(BPF_JSGE, R1, 0, 2),
  4481. BPF_ALU64_IMM(BPF_ADD, R1, 1),
  4482. BPF_JMP_IMM(BPF_JSGE, R1, 0, 1),
  4483. BPF_EXIT_INSN(), /* bad exit */
  4484. BPF_ALU32_IMM(BPF_MOV, R0, 1), /* good exit */
  4485. BPF_EXIT_INSN(),
  4486. },
  4487. INTERNAL,
  4488. { },
  4489. { { 0, 1 } },
  4490. },
  4491. {
  4492. "JMP_JSGE_K: Signed jump: value walk 2",
  4493. .u.insns_int = {
  4494. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  4495. BPF_LD_IMM64(R1, -3),
  4496. BPF_JMP_IMM(BPF_JSGE, R1, 0, 4),
  4497. BPF_ALU64_IMM(BPF_ADD, R1, 2),
  4498. BPF_JMP_IMM(BPF_JSGE, R1, 0, 2),
  4499. BPF_ALU64_IMM(BPF_ADD, R1, 2),
  4500. BPF_JMP_IMM(BPF_JSGE, R1, 0, 1),
  4501. BPF_EXIT_INSN(), /* bad exit */
  4502. BPF_ALU32_IMM(BPF_MOV, R0, 1), /* good exit */
  4503. BPF_EXIT_INSN(),
  4504. },
  4505. INTERNAL,
  4506. { },
  4507. { { 0, 1 } },
  4508. },
  4509. /* BPF_JMP | BPF_JGT | BPF_K */
  4510. {
  4511. "JMP_JGT_K: if (3 > 2) return 1",
  4512. .u.insns_int = {
  4513. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  4514. BPF_LD_IMM64(R1, 3),
  4515. BPF_JMP_IMM(BPF_JGT, R1, 2, 1),
  4516. BPF_EXIT_INSN(),
  4517. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4518. BPF_EXIT_INSN(),
  4519. },
  4520. INTERNAL,
  4521. { },
  4522. { { 0, 1 } },
  4523. },
  4524. {
  4525. "JMP_JGT_K: Unsigned jump: if (-1 > 1) return 1",
  4526. .u.insns_int = {
  4527. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  4528. BPF_LD_IMM64(R1, -1),
  4529. BPF_JMP_IMM(BPF_JGT, R1, 1, 1),
  4530. BPF_EXIT_INSN(),
  4531. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4532. BPF_EXIT_INSN(),
  4533. },
  4534. INTERNAL,
  4535. { },
  4536. { { 0, 1 } },
  4537. },
  4538. /* BPF_JMP | BPF_JLT | BPF_K */
  4539. {
  4540. "JMP_JLT_K: if (2 < 3) return 1",
  4541. .u.insns_int = {
  4542. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  4543. BPF_LD_IMM64(R1, 2),
  4544. BPF_JMP_IMM(BPF_JLT, R1, 3, 1),
  4545. BPF_EXIT_INSN(),
  4546. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4547. BPF_EXIT_INSN(),
  4548. },
  4549. INTERNAL,
  4550. { },
  4551. { { 0, 1 } },
  4552. },
  4553. {
  4554. "JMP_JGT_K: Unsigned jump: if (1 < -1) return 1",
  4555. .u.insns_int = {
  4556. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  4557. BPF_LD_IMM64(R1, 1),
  4558. BPF_JMP_IMM(BPF_JLT, R1, -1, 1),
  4559. BPF_EXIT_INSN(),
  4560. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4561. BPF_EXIT_INSN(),
  4562. },
  4563. INTERNAL,
  4564. { },
  4565. { { 0, 1 } },
  4566. },
  4567. /* BPF_JMP | BPF_JGE | BPF_K */
  4568. {
  4569. "JMP_JGE_K: if (3 >= 2) return 1",
  4570. .u.insns_int = {
  4571. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  4572. BPF_LD_IMM64(R1, 3),
  4573. BPF_JMP_IMM(BPF_JGE, R1, 2, 1),
  4574. BPF_EXIT_INSN(),
  4575. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4576. BPF_EXIT_INSN(),
  4577. },
  4578. INTERNAL,
  4579. { },
  4580. { { 0, 1 } },
  4581. },
  4582. /* BPF_JMP | BPF_JLE | BPF_K */
  4583. {
  4584. "JMP_JLE_K: if (2 <= 3) return 1",
  4585. .u.insns_int = {
  4586. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  4587. BPF_LD_IMM64(R1, 2),
  4588. BPF_JMP_IMM(BPF_JLE, R1, 3, 1),
  4589. BPF_EXIT_INSN(),
  4590. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4591. BPF_EXIT_INSN(),
  4592. },
  4593. INTERNAL,
  4594. { },
  4595. { { 0, 1 } },
  4596. },
  4597. /* BPF_JMP | BPF_JGT | BPF_K jump backwards */
  4598. {
  4599. "JMP_JGT_K: if (3 > 2) return 1 (jump backwards)",
  4600. .u.insns_int = {
  4601. BPF_JMP_IMM(BPF_JA, 0, 0, 2), /* goto start */
  4602. BPF_ALU32_IMM(BPF_MOV, R0, 1), /* out: */
  4603. BPF_EXIT_INSN(),
  4604. BPF_ALU32_IMM(BPF_MOV, R0, 0), /* start: */
  4605. BPF_LD_IMM64(R1, 3), /* note: this takes 2 insns */
  4606. BPF_JMP_IMM(BPF_JGT, R1, 2, -6), /* goto out */
  4607. BPF_EXIT_INSN(),
  4608. },
  4609. INTERNAL,
  4610. { },
  4611. { { 0, 1 } },
  4612. },
  4613. {
  4614. "JMP_JGE_K: if (3 >= 3) return 1",
  4615. .u.insns_int = {
  4616. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  4617. BPF_LD_IMM64(R1, 3),
  4618. BPF_JMP_IMM(BPF_JGE, R1, 3, 1),
  4619. BPF_EXIT_INSN(),
  4620. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4621. BPF_EXIT_INSN(),
  4622. },
  4623. INTERNAL,
  4624. { },
  4625. { { 0, 1 } },
  4626. },
  4627. /* BPF_JMP | BPF_JLT | BPF_K jump backwards */
  4628. {
  4629. "JMP_JGT_K: if (2 < 3) return 1 (jump backwards)",
  4630. .u.insns_int = {
  4631. BPF_JMP_IMM(BPF_JA, 0, 0, 2), /* goto start */
  4632. BPF_ALU32_IMM(BPF_MOV, R0, 1), /* out: */
  4633. BPF_EXIT_INSN(),
  4634. BPF_ALU32_IMM(BPF_MOV, R0, 0), /* start: */
  4635. BPF_LD_IMM64(R1, 2), /* note: this takes 2 insns */
  4636. BPF_JMP_IMM(BPF_JLT, R1, 3, -6), /* goto out */
  4637. BPF_EXIT_INSN(),
  4638. },
  4639. INTERNAL,
  4640. { },
  4641. { { 0, 1 } },
  4642. },
  4643. {
  4644. "JMP_JLE_K: if (3 <= 3) return 1",
  4645. .u.insns_int = {
  4646. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  4647. BPF_LD_IMM64(R1, 3),
  4648. BPF_JMP_IMM(BPF_JLE, R1, 3, 1),
  4649. BPF_EXIT_INSN(),
  4650. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4651. BPF_EXIT_INSN(),
  4652. },
  4653. INTERNAL,
  4654. { },
  4655. { { 0, 1 } },
  4656. },
  4657. /* BPF_JMP | BPF_JNE | BPF_K */
  4658. {
  4659. "JMP_JNE_K: if (3 != 2) return 1",
  4660. .u.insns_int = {
  4661. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  4662. BPF_LD_IMM64(R1, 3),
  4663. BPF_JMP_IMM(BPF_JNE, R1, 2, 1),
  4664. BPF_EXIT_INSN(),
  4665. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4666. BPF_EXIT_INSN(),
  4667. },
  4668. INTERNAL,
  4669. { },
  4670. { { 0, 1 } },
  4671. },
  4672. /* BPF_JMP | BPF_JEQ | BPF_K */
  4673. {
  4674. "JMP_JEQ_K: if (3 == 3) return 1",
  4675. .u.insns_int = {
  4676. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  4677. BPF_LD_IMM64(R1, 3),
  4678. BPF_JMP_IMM(BPF_JEQ, R1, 3, 1),
  4679. BPF_EXIT_INSN(),
  4680. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4681. BPF_EXIT_INSN(),
  4682. },
  4683. INTERNAL,
  4684. { },
  4685. { { 0, 1 } },
  4686. },
  4687. /* BPF_JMP | BPF_JSET | BPF_K */
  4688. {
  4689. "JMP_JSET_K: if (0x3 & 0x2) return 1",
  4690. .u.insns_int = {
  4691. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  4692. BPF_LD_IMM64(R1, 3),
  4693. BPF_JMP_IMM(BPF_JSET, R1, 2, 1),
  4694. BPF_EXIT_INSN(),
  4695. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4696. BPF_EXIT_INSN(),
  4697. },
  4698. INTERNAL,
  4699. { },
  4700. { { 0, 1 } },
  4701. },
  4702. {
  4703. "JMP_JSET_K: if (0x3 & 0xffffffff) return 1",
  4704. .u.insns_int = {
  4705. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  4706. BPF_LD_IMM64(R1, 3),
  4707. BPF_JMP_IMM(BPF_JSET, R1, 0xffffffff, 1),
  4708. BPF_EXIT_INSN(),
  4709. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4710. BPF_EXIT_INSN(),
  4711. },
  4712. INTERNAL,
  4713. { },
  4714. { { 0, 1 } },
  4715. },
  4716. /* BPF_JMP | BPF_JSGT | BPF_X */
  4717. {
  4718. "JMP_JSGT_X: Signed jump: if (-1 > -2) return 1",
  4719. .u.insns_int = {
  4720. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  4721. BPF_LD_IMM64(R1, -1),
  4722. BPF_LD_IMM64(R2, -2),
  4723. BPF_JMP_REG(BPF_JSGT, R1, R2, 1),
  4724. BPF_EXIT_INSN(),
  4725. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4726. BPF_EXIT_INSN(),
  4727. },
  4728. INTERNAL,
  4729. { },
  4730. { { 0, 1 } },
  4731. },
  4732. {
  4733. "JMP_JSGT_X: Signed jump: if (-1 > -1) return 0",
  4734. .u.insns_int = {
  4735. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4736. BPF_LD_IMM64(R1, -1),
  4737. BPF_LD_IMM64(R2, -1),
  4738. BPF_JMP_REG(BPF_JSGT, R1, R2, 1),
  4739. BPF_EXIT_INSN(),
  4740. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  4741. BPF_EXIT_INSN(),
  4742. },
  4743. INTERNAL,
  4744. { },
  4745. { { 0, 1 } },
  4746. },
  4747. /* BPF_JMP | BPF_JSLT | BPF_X */
  4748. {
  4749. "JMP_JSLT_X: Signed jump: if (-2 < -1) return 1",
  4750. .u.insns_int = {
  4751. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  4752. BPF_LD_IMM64(R1, -1),
  4753. BPF_LD_IMM64(R2, -2),
  4754. BPF_JMP_REG(BPF_JSLT, R2, R1, 1),
  4755. BPF_EXIT_INSN(),
  4756. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4757. BPF_EXIT_INSN(),
  4758. },
  4759. INTERNAL,
  4760. { },
  4761. { { 0, 1 } },
  4762. },
  4763. {
  4764. "JMP_JSLT_X: Signed jump: if (-1 < -1) return 0",
  4765. .u.insns_int = {
  4766. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4767. BPF_LD_IMM64(R1, -1),
  4768. BPF_LD_IMM64(R2, -1),
  4769. BPF_JMP_REG(BPF_JSLT, R1, R2, 1),
  4770. BPF_EXIT_INSN(),
  4771. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  4772. BPF_EXIT_INSN(),
  4773. },
  4774. INTERNAL,
  4775. { },
  4776. { { 0, 1 } },
  4777. },
  4778. /* BPF_JMP | BPF_JSGE | BPF_X */
  4779. {
  4780. "JMP_JSGE_X: Signed jump: if (-1 >= -2) return 1",
  4781. .u.insns_int = {
  4782. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  4783. BPF_LD_IMM64(R1, -1),
  4784. BPF_LD_IMM64(R2, -2),
  4785. BPF_JMP_REG(BPF_JSGE, R1, R2, 1),
  4786. BPF_EXIT_INSN(),
  4787. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4788. BPF_EXIT_INSN(),
  4789. },
  4790. INTERNAL,
  4791. { },
  4792. { { 0, 1 } },
  4793. },
  4794. {
  4795. "JMP_JSGE_X: Signed jump: if (-1 >= -1) return 1",
  4796. .u.insns_int = {
  4797. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  4798. BPF_LD_IMM64(R1, -1),
  4799. BPF_LD_IMM64(R2, -1),
  4800. BPF_JMP_REG(BPF_JSGE, R1, R2, 1),
  4801. BPF_EXIT_INSN(),
  4802. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4803. BPF_EXIT_INSN(),
  4804. },
  4805. INTERNAL,
  4806. { },
  4807. { { 0, 1 } },
  4808. },
  4809. /* BPF_JMP | BPF_JSLE | BPF_X */
  4810. {
  4811. "JMP_JSLE_X: Signed jump: if (-2 <= -1) return 1",
  4812. .u.insns_int = {
  4813. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  4814. BPF_LD_IMM64(R1, -1),
  4815. BPF_LD_IMM64(R2, -2),
  4816. BPF_JMP_REG(BPF_JSLE, R2, R1, 1),
  4817. BPF_EXIT_INSN(),
  4818. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4819. BPF_EXIT_INSN(),
  4820. },
  4821. INTERNAL,
  4822. { },
  4823. { { 0, 1 } },
  4824. },
  4825. {
  4826. "JMP_JSLE_X: Signed jump: if (-1 <= -1) return 1",
  4827. .u.insns_int = {
  4828. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  4829. BPF_LD_IMM64(R1, -1),
  4830. BPF_LD_IMM64(R2, -1),
  4831. BPF_JMP_REG(BPF_JSLE, R1, R2, 1),
  4832. BPF_EXIT_INSN(),
  4833. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4834. BPF_EXIT_INSN(),
  4835. },
  4836. INTERNAL,
  4837. { },
  4838. { { 0, 1 } },
  4839. },
  4840. /* BPF_JMP | BPF_JGT | BPF_X */
  4841. {
  4842. "JMP_JGT_X: if (3 > 2) return 1",
  4843. .u.insns_int = {
  4844. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  4845. BPF_LD_IMM64(R1, 3),
  4846. BPF_LD_IMM64(R2, 2),
  4847. BPF_JMP_REG(BPF_JGT, R1, R2, 1),
  4848. BPF_EXIT_INSN(),
  4849. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4850. BPF_EXIT_INSN(),
  4851. },
  4852. INTERNAL,
  4853. { },
  4854. { { 0, 1 } },
  4855. },
  4856. {
  4857. "JMP_JGT_X: Unsigned jump: if (-1 > 1) return 1",
  4858. .u.insns_int = {
  4859. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  4860. BPF_LD_IMM64(R1, -1),
  4861. BPF_LD_IMM64(R2, 1),
  4862. BPF_JMP_REG(BPF_JGT, R1, R2, 1),
  4863. BPF_EXIT_INSN(),
  4864. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4865. BPF_EXIT_INSN(),
  4866. },
  4867. INTERNAL,
  4868. { },
  4869. { { 0, 1 } },
  4870. },
  4871. /* BPF_JMP | BPF_JLT | BPF_X */
  4872. {
  4873. "JMP_JLT_X: if (2 < 3) return 1",
  4874. .u.insns_int = {
  4875. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  4876. BPF_LD_IMM64(R1, 3),
  4877. BPF_LD_IMM64(R2, 2),
  4878. BPF_JMP_REG(BPF_JLT, R2, R1, 1),
  4879. BPF_EXIT_INSN(),
  4880. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4881. BPF_EXIT_INSN(),
  4882. },
  4883. INTERNAL,
  4884. { },
  4885. { { 0, 1 } },
  4886. },
  4887. {
  4888. "JMP_JLT_X: Unsigned jump: if (1 < -1) return 1",
  4889. .u.insns_int = {
  4890. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  4891. BPF_LD_IMM64(R1, -1),
  4892. BPF_LD_IMM64(R2, 1),
  4893. BPF_JMP_REG(BPF_JLT, R2, R1, 1),
  4894. BPF_EXIT_INSN(),
  4895. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4896. BPF_EXIT_INSN(),
  4897. },
  4898. INTERNAL,
  4899. { },
  4900. { { 0, 1 } },
  4901. },
  4902. /* BPF_JMP | BPF_JGE | BPF_X */
  4903. {
  4904. "JMP_JGE_X: if (3 >= 2) return 1",
  4905. .u.insns_int = {
  4906. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  4907. BPF_LD_IMM64(R1, 3),
  4908. BPF_LD_IMM64(R2, 2),
  4909. BPF_JMP_REG(BPF_JGE, R1, R2, 1),
  4910. BPF_EXIT_INSN(),
  4911. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4912. BPF_EXIT_INSN(),
  4913. },
  4914. INTERNAL,
  4915. { },
  4916. { { 0, 1 } },
  4917. },
  4918. {
  4919. "JMP_JGE_X: if (3 >= 3) return 1",
  4920. .u.insns_int = {
  4921. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  4922. BPF_LD_IMM64(R1, 3),
  4923. BPF_LD_IMM64(R2, 3),
  4924. BPF_JMP_REG(BPF_JGE, R1, R2, 1),
  4925. BPF_EXIT_INSN(),
  4926. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4927. BPF_EXIT_INSN(),
  4928. },
  4929. INTERNAL,
  4930. { },
  4931. { { 0, 1 } },
  4932. },
  4933. /* BPF_JMP | BPF_JLE | BPF_X */
  4934. {
  4935. "JMP_JLE_X: if (2 <= 3) return 1",
  4936. .u.insns_int = {
  4937. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  4938. BPF_LD_IMM64(R1, 3),
  4939. BPF_LD_IMM64(R2, 2),
  4940. BPF_JMP_REG(BPF_JLE, R2, R1, 1),
  4941. BPF_EXIT_INSN(),
  4942. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4943. BPF_EXIT_INSN(),
  4944. },
  4945. INTERNAL,
  4946. { },
  4947. { { 0, 1 } },
  4948. },
  4949. {
  4950. "JMP_JLE_X: if (3 <= 3) return 1",
  4951. .u.insns_int = {
  4952. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  4953. BPF_LD_IMM64(R1, 3),
  4954. BPF_LD_IMM64(R2, 3),
  4955. BPF_JMP_REG(BPF_JLE, R1, R2, 1),
  4956. BPF_EXIT_INSN(),
  4957. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4958. BPF_EXIT_INSN(),
  4959. },
  4960. INTERNAL,
  4961. { },
  4962. { { 0, 1 } },
  4963. },
  4964. {
  4965. /* Mainly testing JIT + imm64 here. */
  4966. "JMP_JGE_X: ldimm64 test 1",
  4967. .u.insns_int = {
  4968. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  4969. BPF_LD_IMM64(R1, 3),
  4970. BPF_LD_IMM64(R2, 2),
  4971. BPF_JMP_REG(BPF_JGE, R1, R2, 2),
  4972. BPF_LD_IMM64(R0, 0xffffffffffffffffULL),
  4973. BPF_LD_IMM64(R0, 0xeeeeeeeeeeeeeeeeULL),
  4974. BPF_EXIT_INSN(),
  4975. },
  4976. INTERNAL,
  4977. { },
  4978. { { 0, 0xeeeeeeeeU } },
  4979. },
  4980. {
  4981. "JMP_JGE_X: ldimm64 test 2",
  4982. .u.insns_int = {
  4983. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  4984. BPF_LD_IMM64(R1, 3),
  4985. BPF_LD_IMM64(R2, 2),
  4986. BPF_JMP_REG(BPF_JGE, R1, R2, 0),
  4987. BPF_LD_IMM64(R0, 0xffffffffffffffffULL),
  4988. BPF_EXIT_INSN(),
  4989. },
  4990. INTERNAL,
  4991. { },
  4992. { { 0, 0xffffffffU } },
  4993. },
  4994. {
  4995. "JMP_JGE_X: ldimm64 test 3",
  4996. .u.insns_int = {
  4997. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  4998. BPF_LD_IMM64(R1, 3),
  4999. BPF_LD_IMM64(R2, 2),
  5000. BPF_JMP_REG(BPF_JGE, R1, R2, 4),
  5001. BPF_LD_IMM64(R0, 0xffffffffffffffffULL),
  5002. BPF_LD_IMM64(R0, 0xeeeeeeeeeeeeeeeeULL),
  5003. BPF_EXIT_INSN(),
  5004. },
  5005. INTERNAL,
  5006. { },
  5007. { { 0, 1 } },
  5008. },
  5009. {
  5010. "JMP_JLE_X: ldimm64 test 1",
  5011. .u.insns_int = {
  5012. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  5013. BPF_LD_IMM64(R1, 3),
  5014. BPF_LD_IMM64(R2, 2),
  5015. BPF_JMP_REG(BPF_JLE, R2, R1, 2),
  5016. BPF_LD_IMM64(R0, 0xffffffffffffffffULL),
  5017. BPF_LD_IMM64(R0, 0xeeeeeeeeeeeeeeeeULL),
  5018. BPF_EXIT_INSN(),
  5019. },
  5020. INTERNAL,
  5021. { },
  5022. { { 0, 0xeeeeeeeeU } },
  5023. },
  5024. {
  5025. "JMP_JLE_X: ldimm64 test 2",
  5026. .u.insns_int = {
  5027. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  5028. BPF_LD_IMM64(R1, 3),
  5029. BPF_LD_IMM64(R2, 2),
  5030. BPF_JMP_REG(BPF_JLE, R2, R1, 0),
  5031. BPF_LD_IMM64(R0, 0xffffffffffffffffULL),
  5032. BPF_EXIT_INSN(),
  5033. },
  5034. INTERNAL,
  5035. { },
  5036. { { 0, 0xffffffffU } },
  5037. },
  5038. {
  5039. "JMP_JLE_X: ldimm64 test 3",
  5040. .u.insns_int = {
  5041. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  5042. BPF_LD_IMM64(R1, 3),
  5043. BPF_LD_IMM64(R2, 2),
  5044. BPF_JMP_REG(BPF_JLE, R2, R1, 4),
  5045. BPF_LD_IMM64(R0, 0xffffffffffffffffULL),
  5046. BPF_LD_IMM64(R0, 0xeeeeeeeeeeeeeeeeULL),
  5047. BPF_EXIT_INSN(),
  5048. },
  5049. INTERNAL,
  5050. { },
  5051. { { 0, 1 } },
  5052. },
  5053. /* BPF_JMP | BPF_JNE | BPF_X */
  5054. {
  5055. "JMP_JNE_X: if (3 != 2) return 1",
  5056. .u.insns_int = {
  5057. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  5058. BPF_LD_IMM64(R1, 3),
  5059. BPF_LD_IMM64(R2, 2),
  5060. BPF_JMP_REG(BPF_JNE, R1, R2, 1),
  5061. BPF_EXIT_INSN(),
  5062. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  5063. BPF_EXIT_INSN(),
  5064. },
  5065. INTERNAL,
  5066. { },
  5067. { { 0, 1 } },
  5068. },
  5069. /* BPF_JMP | BPF_JEQ | BPF_X */
  5070. {
  5071. "JMP_JEQ_X: if (3 == 3) return 1",
  5072. .u.insns_int = {
  5073. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  5074. BPF_LD_IMM64(R1, 3),
  5075. BPF_LD_IMM64(R2, 3),
  5076. BPF_JMP_REG(BPF_JEQ, R1, R2, 1),
  5077. BPF_EXIT_INSN(),
  5078. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  5079. BPF_EXIT_INSN(),
  5080. },
  5081. INTERNAL,
  5082. { },
  5083. { { 0, 1 } },
  5084. },
  5085. /* BPF_JMP | BPF_JSET | BPF_X */
  5086. {
  5087. "JMP_JSET_X: if (0x3 & 0x2) return 1",
  5088. .u.insns_int = {
  5089. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  5090. BPF_LD_IMM64(R1, 3),
  5091. BPF_LD_IMM64(R2, 2),
  5092. BPF_JMP_REG(BPF_JSET, R1, R2, 1),
  5093. BPF_EXIT_INSN(),
  5094. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  5095. BPF_EXIT_INSN(),
  5096. },
  5097. INTERNAL,
  5098. { },
  5099. { { 0, 1 } },
  5100. },
  5101. {
  5102. "JMP_JSET_X: if (0x3 & 0xffffffff) return 1",
  5103. .u.insns_int = {
  5104. BPF_ALU32_IMM(BPF_MOV, R0, 0),
  5105. BPF_LD_IMM64(R1, 3),
  5106. BPF_LD_IMM64(R2, 0xffffffff),
  5107. BPF_JMP_REG(BPF_JSET, R1, R2, 1),
  5108. BPF_EXIT_INSN(),
  5109. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  5110. BPF_EXIT_INSN(),
  5111. },
  5112. INTERNAL,
  5113. { },
  5114. { { 0, 1 } },
  5115. },
  5116. {
  5117. "JMP_JA: Jump, gap, jump, ...",
  5118. { },
  5119. CLASSIC | FLAG_NO_DATA,
  5120. { },
  5121. { { 0, 0xababcbac } },
  5122. .fill_helper = bpf_fill_ja,
  5123. },
  5124. { /* Mainly checking JIT here. */
  5125. "BPF_MAXINSNS: Maximum possible literals",
  5126. { },
  5127. CLASSIC | FLAG_NO_DATA,
  5128. { },
  5129. { { 0, 0xffffffff } },
  5130. .fill_helper = bpf_fill_maxinsns1,
  5131. },
  5132. { /* Mainly checking JIT here. */
  5133. "BPF_MAXINSNS: Single literal",
  5134. { },
  5135. CLASSIC | FLAG_NO_DATA,
  5136. { },
  5137. { { 0, 0xfefefefe } },
  5138. .fill_helper = bpf_fill_maxinsns2,
  5139. },
  5140. { /* Mainly checking JIT here. */
  5141. "BPF_MAXINSNS: Run/add until end",
  5142. { },
  5143. CLASSIC | FLAG_NO_DATA,
  5144. { },
  5145. { { 0, 0x947bf368 } },
  5146. .fill_helper = bpf_fill_maxinsns3,
  5147. },
  5148. {
  5149. "BPF_MAXINSNS: Too many instructions",
  5150. { },
  5151. CLASSIC | FLAG_NO_DATA | FLAG_EXPECTED_FAIL,
  5152. { },
  5153. { },
  5154. .fill_helper = bpf_fill_maxinsns4,
  5155. .expected_errcode = -EINVAL,
  5156. },
  5157. { /* Mainly checking JIT here. */
  5158. "BPF_MAXINSNS: Very long jump",
  5159. { },
  5160. CLASSIC | FLAG_NO_DATA,
  5161. { },
  5162. { { 0, 0xabababab } },
  5163. .fill_helper = bpf_fill_maxinsns5,
  5164. },
  5165. { /* Mainly checking JIT here. */
  5166. "BPF_MAXINSNS: Ctx heavy transformations",
  5167. { },
  5168. #if defined(CONFIG_BPF_JIT_ALWAYS_ON) && defined(CONFIG_S390)
  5169. CLASSIC | FLAG_EXPECTED_FAIL,
  5170. #else
  5171. CLASSIC,
  5172. #endif
  5173. { },
  5174. {
  5175. { 1, SKB_VLAN_PRESENT },
  5176. { 10, SKB_VLAN_PRESENT }
  5177. },
  5178. .fill_helper = bpf_fill_maxinsns6,
  5179. .expected_errcode = -ENOTSUPP,
  5180. },
  5181. { /* Mainly checking JIT here. */
  5182. "BPF_MAXINSNS: Call heavy transformations",
  5183. { },
  5184. #if defined(CONFIG_BPF_JIT_ALWAYS_ON) && defined(CONFIG_S390)
  5185. CLASSIC | FLAG_NO_DATA | FLAG_EXPECTED_FAIL,
  5186. #else
  5187. CLASSIC | FLAG_NO_DATA,
  5188. #endif
  5189. { },
  5190. { { 1, 0 }, { 10, 0 } },
  5191. .fill_helper = bpf_fill_maxinsns7,
  5192. .expected_errcode = -ENOTSUPP,
  5193. },
  5194. { /* Mainly checking JIT here. */
  5195. "BPF_MAXINSNS: Jump heavy test",
  5196. { },
  5197. CLASSIC | FLAG_NO_DATA,
  5198. { },
  5199. { { 0, 0xffffffff } },
  5200. .fill_helper = bpf_fill_maxinsns8,
  5201. },
  5202. { /* Mainly checking JIT here. */
  5203. "BPF_MAXINSNS: Very long jump backwards",
  5204. { },
  5205. INTERNAL | FLAG_NO_DATA,
  5206. { },
  5207. { { 0, 0xcbababab } },
  5208. .fill_helper = bpf_fill_maxinsns9,
  5209. },
  5210. { /* Mainly checking JIT here. */
  5211. "BPF_MAXINSNS: Edge hopping nuthouse",
  5212. { },
  5213. INTERNAL | FLAG_NO_DATA,
  5214. { },
  5215. { { 0, 0xabababac } },
  5216. .fill_helper = bpf_fill_maxinsns10,
  5217. },
  5218. {
  5219. "BPF_MAXINSNS: Jump, gap, jump, ...",
  5220. { },
  5221. #if defined(CONFIG_BPF_JIT_ALWAYS_ON) && defined(CONFIG_X86)
  5222. CLASSIC | FLAG_NO_DATA | FLAG_EXPECTED_FAIL,
  5223. #else
  5224. CLASSIC | FLAG_NO_DATA,
  5225. #endif
  5226. { },
  5227. { { 0, 0xababcbac } },
  5228. .fill_helper = bpf_fill_maxinsns11,
  5229. .expected_errcode = -ENOTSUPP,
  5230. },
  5231. {
  5232. "BPF_MAXINSNS: jump over MSH",
  5233. { },
  5234. CLASSIC | FLAG_EXPECTED_FAIL,
  5235. { 0xfa, 0xfb, 0xfc, 0xfd, },
  5236. { { 4, 0xabababab } },
  5237. .fill_helper = bpf_fill_maxinsns12,
  5238. .expected_errcode = -EINVAL,
  5239. },
  5240. {
  5241. "BPF_MAXINSNS: exec all MSH",
  5242. { },
  5243. #if defined(CONFIG_BPF_JIT_ALWAYS_ON) && defined(CONFIG_S390)
  5244. CLASSIC | FLAG_EXPECTED_FAIL,
  5245. #else
  5246. CLASSIC,
  5247. #endif
  5248. { 0xfa, 0xfb, 0xfc, 0xfd, },
  5249. { { 4, 0xababab83 } },
  5250. .fill_helper = bpf_fill_maxinsns13,
  5251. .expected_errcode = -ENOTSUPP,
  5252. },
  5253. {
  5254. "BPF_MAXINSNS: ld_abs+get_processor_id",
  5255. { },
  5256. #if defined(CONFIG_BPF_JIT_ALWAYS_ON) && defined(CONFIG_S390)
  5257. CLASSIC | FLAG_EXPECTED_FAIL,
  5258. #else
  5259. CLASSIC,
  5260. #endif
  5261. { },
  5262. { { 1, 0xbee } },
  5263. .fill_helper = bpf_fill_ld_abs_get_processor_id,
  5264. .expected_errcode = -ENOTSUPP,
  5265. },
  5266. /*
  5267. * LD_IND / LD_ABS on fragmented SKBs
  5268. */
  5269. {
  5270. "LD_IND byte frag",
  5271. .u.insns = {
  5272. BPF_STMT(BPF_LDX | BPF_IMM, 0x40),
  5273. BPF_STMT(BPF_LD | BPF_IND | BPF_B, 0x0),
  5274. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5275. },
  5276. CLASSIC | FLAG_SKB_FRAG,
  5277. { },
  5278. { {0x40, 0x42} },
  5279. .frag_data = {
  5280. 0x42, 0x00, 0x00, 0x00,
  5281. 0x43, 0x44, 0x00, 0x00,
  5282. 0x21, 0x07, 0x19, 0x83,
  5283. },
  5284. },
  5285. {
  5286. "LD_IND halfword frag",
  5287. .u.insns = {
  5288. BPF_STMT(BPF_LDX | BPF_IMM, 0x40),
  5289. BPF_STMT(BPF_LD | BPF_IND | BPF_H, 0x4),
  5290. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5291. },
  5292. CLASSIC | FLAG_SKB_FRAG,
  5293. { },
  5294. { {0x40, 0x4344} },
  5295. .frag_data = {
  5296. 0x42, 0x00, 0x00, 0x00,
  5297. 0x43, 0x44, 0x00, 0x00,
  5298. 0x21, 0x07, 0x19, 0x83,
  5299. },
  5300. },
  5301. {
  5302. "LD_IND word frag",
  5303. .u.insns = {
  5304. BPF_STMT(BPF_LDX | BPF_IMM, 0x40),
  5305. BPF_STMT(BPF_LD | BPF_IND | BPF_W, 0x8),
  5306. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5307. },
  5308. CLASSIC | FLAG_SKB_FRAG,
  5309. { },
  5310. { {0x40, 0x21071983} },
  5311. .frag_data = {
  5312. 0x42, 0x00, 0x00, 0x00,
  5313. 0x43, 0x44, 0x00, 0x00,
  5314. 0x21, 0x07, 0x19, 0x83,
  5315. },
  5316. },
  5317. {
  5318. "LD_IND halfword mixed head/frag",
  5319. .u.insns = {
  5320. BPF_STMT(BPF_LDX | BPF_IMM, 0x40),
  5321. BPF_STMT(BPF_LD | BPF_IND | BPF_H, -0x1),
  5322. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5323. },
  5324. CLASSIC | FLAG_SKB_FRAG,
  5325. { [0x3e] = 0x25, [0x3f] = 0x05, },
  5326. { {0x40, 0x0519} },
  5327. .frag_data = { 0x19, 0x82 },
  5328. },
  5329. {
  5330. "LD_IND word mixed head/frag",
  5331. .u.insns = {
  5332. BPF_STMT(BPF_LDX | BPF_IMM, 0x40),
  5333. BPF_STMT(BPF_LD | BPF_IND | BPF_W, -0x2),
  5334. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5335. },
  5336. CLASSIC | FLAG_SKB_FRAG,
  5337. { [0x3e] = 0x25, [0x3f] = 0x05, },
  5338. { {0x40, 0x25051982} },
  5339. .frag_data = { 0x19, 0x82 },
  5340. },
  5341. {
  5342. "LD_ABS byte frag",
  5343. .u.insns = {
  5344. BPF_STMT(BPF_LD | BPF_ABS | BPF_B, 0x40),
  5345. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5346. },
  5347. CLASSIC | FLAG_SKB_FRAG,
  5348. { },
  5349. { {0x40, 0x42} },
  5350. .frag_data = {
  5351. 0x42, 0x00, 0x00, 0x00,
  5352. 0x43, 0x44, 0x00, 0x00,
  5353. 0x21, 0x07, 0x19, 0x83,
  5354. },
  5355. },
  5356. {
  5357. "LD_ABS halfword frag",
  5358. .u.insns = {
  5359. BPF_STMT(BPF_LD | BPF_ABS | BPF_H, 0x44),
  5360. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5361. },
  5362. CLASSIC | FLAG_SKB_FRAG,
  5363. { },
  5364. { {0x40, 0x4344} },
  5365. .frag_data = {
  5366. 0x42, 0x00, 0x00, 0x00,
  5367. 0x43, 0x44, 0x00, 0x00,
  5368. 0x21, 0x07, 0x19, 0x83,
  5369. },
  5370. },
  5371. {
  5372. "LD_ABS word frag",
  5373. .u.insns = {
  5374. BPF_STMT(BPF_LD | BPF_ABS | BPF_W, 0x48),
  5375. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5376. },
  5377. CLASSIC | FLAG_SKB_FRAG,
  5378. { },
  5379. { {0x40, 0x21071983} },
  5380. .frag_data = {
  5381. 0x42, 0x00, 0x00, 0x00,
  5382. 0x43, 0x44, 0x00, 0x00,
  5383. 0x21, 0x07, 0x19, 0x83,
  5384. },
  5385. },
  5386. {
  5387. "LD_ABS halfword mixed head/frag",
  5388. .u.insns = {
  5389. BPF_STMT(BPF_LD | BPF_ABS | BPF_H, 0x3f),
  5390. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5391. },
  5392. CLASSIC | FLAG_SKB_FRAG,
  5393. { [0x3e] = 0x25, [0x3f] = 0x05, },
  5394. { {0x40, 0x0519} },
  5395. .frag_data = { 0x19, 0x82 },
  5396. },
  5397. {
  5398. "LD_ABS word mixed head/frag",
  5399. .u.insns = {
  5400. BPF_STMT(BPF_LD | BPF_ABS | BPF_W, 0x3e),
  5401. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5402. },
  5403. CLASSIC | FLAG_SKB_FRAG,
  5404. { [0x3e] = 0x25, [0x3f] = 0x05, },
  5405. { {0x40, 0x25051982} },
  5406. .frag_data = { 0x19, 0x82 },
  5407. },
  5408. /*
  5409. * LD_IND / LD_ABS on non fragmented SKBs
  5410. */
  5411. {
  5412. /*
  5413. * this tests that the JIT/interpreter correctly resets X
  5414. * before using it in an LD_IND instruction.
  5415. */
  5416. "LD_IND byte default X",
  5417. .u.insns = {
  5418. BPF_STMT(BPF_LD | BPF_IND | BPF_B, 0x1),
  5419. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5420. },
  5421. CLASSIC,
  5422. { [0x1] = 0x42 },
  5423. { {0x40, 0x42 } },
  5424. },
  5425. {
  5426. "LD_IND byte positive offset",
  5427. .u.insns = {
  5428. BPF_STMT(BPF_LDX | BPF_IMM, 0x3e),
  5429. BPF_STMT(BPF_LD | BPF_IND | BPF_B, 0x1),
  5430. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5431. },
  5432. CLASSIC,
  5433. { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
  5434. { {0x40, 0x82 } },
  5435. },
  5436. {
  5437. "LD_IND byte negative offset",
  5438. .u.insns = {
  5439. BPF_STMT(BPF_LDX | BPF_IMM, 0x3e),
  5440. BPF_STMT(BPF_LD | BPF_IND | BPF_B, -0x1),
  5441. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5442. },
  5443. CLASSIC,
  5444. { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
  5445. { {0x40, 0x05 } },
  5446. },
  5447. {
  5448. "LD_IND byte positive offset, all ff",
  5449. .u.insns = {
  5450. BPF_STMT(BPF_LDX | BPF_IMM, 0x3e),
  5451. BPF_STMT(BPF_LD | BPF_IND | BPF_B, 0x1),
  5452. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5453. },
  5454. CLASSIC,
  5455. { [0x3c] = 0xff, [0x3d] = 0xff, [0x3e] = 0xff, [0x3f] = 0xff },
  5456. { {0x40, 0xff } },
  5457. },
  5458. {
  5459. "LD_IND byte positive offset, out of bounds",
  5460. .u.insns = {
  5461. BPF_STMT(BPF_LDX | BPF_IMM, 0x3e),
  5462. BPF_STMT(BPF_LD | BPF_IND | BPF_B, 0x1),
  5463. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5464. },
  5465. CLASSIC,
  5466. { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
  5467. { {0x3f, 0 }, },
  5468. },
  5469. {
  5470. "LD_IND byte negative offset, out of bounds",
  5471. .u.insns = {
  5472. BPF_STMT(BPF_LDX | BPF_IMM, 0x3e),
  5473. BPF_STMT(BPF_LD | BPF_IND | BPF_B, -0x3f),
  5474. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5475. },
  5476. CLASSIC,
  5477. { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
  5478. { {0x3f, 0 } },
  5479. },
  5480. {
  5481. "LD_IND byte negative offset, multiple calls",
  5482. .u.insns = {
  5483. BPF_STMT(BPF_LDX | BPF_IMM, 0x3b),
  5484. BPF_STMT(BPF_LD | BPF_IND | BPF_B, SKF_LL_OFF + 1),
  5485. BPF_STMT(BPF_LD | BPF_IND | BPF_B, SKF_LL_OFF + 2),
  5486. BPF_STMT(BPF_LD | BPF_IND | BPF_B, SKF_LL_OFF + 3),
  5487. BPF_STMT(BPF_LD | BPF_IND | BPF_B, SKF_LL_OFF + 4),
  5488. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5489. },
  5490. CLASSIC,
  5491. { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
  5492. { {0x40, 0x82 }, },
  5493. },
  5494. {
  5495. "LD_IND halfword positive offset",
  5496. .u.insns = {
  5497. BPF_STMT(BPF_LDX | BPF_IMM, 0x20),
  5498. BPF_STMT(BPF_LD | BPF_IND | BPF_H, 0x2),
  5499. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5500. },
  5501. CLASSIC,
  5502. {
  5503. [0x1c] = 0xaa, [0x1d] = 0x55,
  5504. [0x1e] = 0xbb, [0x1f] = 0x66,
  5505. [0x20] = 0xcc, [0x21] = 0x77,
  5506. [0x22] = 0xdd, [0x23] = 0x88,
  5507. },
  5508. { {0x40, 0xdd88 } },
  5509. },
  5510. {
  5511. "LD_IND halfword negative offset",
  5512. .u.insns = {
  5513. BPF_STMT(BPF_LDX | BPF_IMM, 0x20),
  5514. BPF_STMT(BPF_LD | BPF_IND | BPF_H, -0x2),
  5515. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5516. },
  5517. CLASSIC,
  5518. {
  5519. [0x1c] = 0xaa, [0x1d] = 0x55,
  5520. [0x1e] = 0xbb, [0x1f] = 0x66,
  5521. [0x20] = 0xcc, [0x21] = 0x77,
  5522. [0x22] = 0xdd, [0x23] = 0x88,
  5523. },
  5524. { {0x40, 0xbb66 } },
  5525. },
  5526. {
  5527. "LD_IND halfword unaligned",
  5528. .u.insns = {
  5529. BPF_STMT(BPF_LDX | BPF_IMM, 0x20),
  5530. BPF_STMT(BPF_LD | BPF_IND | BPF_H, -0x1),
  5531. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5532. },
  5533. CLASSIC,
  5534. {
  5535. [0x1c] = 0xaa, [0x1d] = 0x55,
  5536. [0x1e] = 0xbb, [0x1f] = 0x66,
  5537. [0x20] = 0xcc, [0x21] = 0x77,
  5538. [0x22] = 0xdd, [0x23] = 0x88,
  5539. },
  5540. { {0x40, 0x66cc } },
  5541. },
  5542. {
  5543. "LD_IND halfword positive offset, all ff",
  5544. .u.insns = {
  5545. BPF_STMT(BPF_LDX | BPF_IMM, 0x3d),
  5546. BPF_STMT(BPF_LD | BPF_IND | BPF_H, 0x1),
  5547. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5548. },
  5549. CLASSIC,
  5550. { [0x3c] = 0xff, [0x3d] = 0xff, [0x3e] = 0xff, [0x3f] = 0xff },
  5551. { {0x40, 0xffff } },
  5552. },
  5553. {
  5554. "LD_IND halfword positive offset, out of bounds",
  5555. .u.insns = {
  5556. BPF_STMT(BPF_LDX | BPF_IMM, 0x3e),
  5557. BPF_STMT(BPF_LD | BPF_IND | BPF_H, 0x1),
  5558. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5559. },
  5560. CLASSIC,
  5561. { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
  5562. { {0x3f, 0 }, },
  5563. },
  5564. {
  5565. "LD_IND halfword negative offset, out of bounds",
  5566. .u.insns = {
  5567. BPF_STMT(BPF_LDX | BPF_IMM, 0x3e),
  5568. BPF_STMT(BPF_LD | BPF_IND | BPF_H, -0x3f),
  5569. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5570. },
  5571. CLASSIC,
  5572. { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
  5573. { {0x3f, 0 } },
  5574. },
  5575. {
  5576. "LD_IND word positive offset",
  5577. .u.insns = {
  5578. BPF_STMT(BPF_LDX | BPF_IMM, 0x20),
  5579. BPF_STMT(BPF_LD | BPF_IND | BPF_W, 0x4),
  5580. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5581. },
  5582. CLASSIC,
  5583. {
  5584. [0x1c] = 0xaa, [0x1d] = 0x55,
  5585. [0x1e] = 0xbb, [0x1f] = 0x66,
  5586. [0x20] = 0xcc, [0x21] = 0x77,
  5587. [0x22] = 0xdd, [0x23] = 0x88,
  5588. [0x24] = 0xee, [0x25] = 0x99,
  5589. [0x26] = 0xff, [0x27] = 0xaa,
  5590. },
  5591. { {0x40, 0xee99ffaa } },
  5592. },
  5593. {
  5594. "LD_IND word negative offset",
  5595. .u.insns = {
  5596. BPF_STMT(BPF_LDX | BPF_IMM, 0x20),
  5597. BPF_STMT(BPF_LD | BPF_IND | BPF_W, -0x4),
  5598. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5599. },
  5600. CLASSIC,
  5601. {
  5602. [0x1c] = 0xaa, [0x1d] = 0x55,
  5603. [0x1e] = 0xbb, [0x1f] = 0x66,
  5604. [0x20] = 0xcc, [0x21] = 0x77,
  5605. [0x22] = 0xdd, [0x23] = 0x88,
  5606. [0x24] = 0xee, [0x25] = 0x99,
  5607. [0x26] = 0xff, [0x27] = 0xaa,
  5608. },
  5609. { {0x40, 0xaa55bb66 } },
  5610. },
  5611. {
  5612. "LD_IND word unaligned (addr & 3 == 2)",
  5613. .u.insns = {
  5614. BPF_STMT(BPF_LDX | BPF_IMM, 0x20),
  5615. BPF_STMT(BPF_LD | BPF_IND | BPF_W, -0x2),
  5616. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5617. },
  5618. CLASSIC,
  5619. {
  5620. [0x1c] = 0xaa, [0x1d] = 0x55,
  5621. [0x1e] = 0xbb, [0x1f] = 0x66,
  5622. [0x20] = 0xcc, [0x21] = 0x77,
  5623. [0x22] = 0xdd, [0x23] = 0x88,
  5624. [0x24] = 0xee, [0x25] = 0x99,
  5625. [0x26] = 0xff, [0x27] = 0xaa,
  5626. },
  5627. { {0x40, 0xbb66cc77 } },
  5628. },
  5629. {
  5630. "LD_IND word unaligned (addr & 3 == 1)",
  5631. .u.insns = {
  5632. BPF_STMT(BPF_LDX | BPF_IMM, 0x20),
  5633. BPF_STMT(BPF_LD | BPF_IND | BPF_W, -0x3),
  5634. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5635. },
  5636. CLASSIC,
  5637. {
  5638. [0x1c] = 0xaa, [0x1d] = 0x55,
  5639. [0x1e] = 0xbb, [0x1f] = 0x66,
  5640. [0x20] = 0xcc, [0x21] = 0x77,
  5641. [0x22] = 0xdd, [0x23] = 0x88,
  5642. [0x24] = 0xee, [0x25] = 0x99,
  5643. [0x26] = 0xff, [0x27] = 0xaa,
  5644. },
  5645. { {0x40, 0x55bb66cc } },
  5646. },
  5647. {
  5648. "LD_IND word unaligned (addr & 3 == 3)",
  5649. .u.insns = {
  5650. BPF_STMT(BPF_LDX | BPF_IMM, 0x20),
  5651. BPF_STMT(BPF_LD | BPF_IND | BPF_W, -0x1),
  5652. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5653. },
  5654. CLASSIC,
  5655. {
  5656. [0x1c] = 0xaa, [0x1d] = 0x55,
  5657. [0x1e] = 0xbb, [0x1f] = 0x66,
  5658. [0x20] = 0xcc, [0x21] = 0x77,
  5659. [0x22] = 0xdd, [0x23] = 0x88,
  5660. [0x24] = 0xee, [0x25] = 0x99,
  5661. [0x26] = 0xff, [0x27] = 0xaa,
  5662. },
  5663. { {0x40, 0x66cc77dd } },
  5664. },
  5665. {
  5666. "LD_IND word positive offset, all ff",
  5667. .u.insns = {
  5668. BPF_STMT(BPF_LDX | BPF_IMM, 0x3b),
  5669. BPF_STMT(BPF_LD | BPF_IND | BPF_W, 0x1),
  5670. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5671. },
  5672. CLASSIC,
  5673. { [0x3c] = 0xff, [0x3d] = 0xff, [0x3e] = 0xff, [0x3f] = 0xff },
  5674. { {0x40, 0xffffffff } },
  5675. },
  5676. {
  5677. "LD_IND word positive offset, out of bounds",
  5678. .u.insns = {
  5679. BPF_STMT(BPF_LDX | BPF_IMM, 0x3e),
  5680. BPF_STMT(BPF_LD | BPF_IND | BPF_W, 0x1),
  5681. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5682. },
  5683. CLASSIC,
  5684. { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
  5685. { {0x3f, 0 }, },
  5686. },
  5687. {
  5688. "LD_IND word negative offset, out of bounds",
  5689. .u.insns = {
  5690. BPF_STMT(BPF_LDX | BPF_IMM, 0x3e),
  5691. BPF_STMT(BPF_LD | BPF_IND | BPF_W, -0x3f),
  5692. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5693. },
  5694. CLASSIC,
  5695. { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
  5696. { {0x3f, 0 } },
  5697. },
  5698. {
  5699. "LD_ABS byte",
  5700. .u.insns = {
  5701. BPF_STMT(BPF_LD | BPF_ABS | BPF_B, 0x20),
  5702. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5703. },
  5704. CLASSIC,
  5705. {
  5706. [0x1c] = 0xaa, [0x1d] = 0x55,
  5707. [0x1e] = 0xbb, [0x1f] = 0x66,
  5708. [0x20] = 0xcc, [0x21] = 0x77,
  5709. [0x22] = 0xdd, [0x23] = 0x88,
  5710. [0x24] = 0xee, [0x25] = 0x99,
  5711. [0x26] = 0xff, [0x27] = 0xaa,
  5712. },
  5713. { {0x40, 0xcc } },
  5714. },
  5715. {
  5716. "LD_ABS byte positive offset, all ff",
  5717. .u.insns = {
  5718. BPF_STMT(BPF_LD | BPF_ABS | BPF_B, 0x3f),
  5719. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5720. },
  5721. CLASSIC,
  5722. { [0x3c] = 0xff, [0x3d] = 0xff, [0x3e] = 0xff, [0x3f] = 0xff },
  5723. { {0x40, 0xff } },
  5724. },
  5725. {
  5726. "LD_ABS byte positive offset, out of bounds",
  5727. .u.insns = {
  5728. BPF_STMT(BPF_LD | BPF_ABS | BPF_B, 0x3f),
  5729. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5730. },
  5731. CLASSIC,
  5732. { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
  5733. { {0x3f, 0 }, },
  5734. },
  5735. {
  5736. "LD_ABS byte negative offset, out of bounds load",
  5737. .u.insns = {
  5738. BPF_STMT(BPF_LD | BPF_ABS | BPF_B, -1),
  5739. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5740. },
  5741. CLASSIC | FLAG_EXPECTED_FAIL,
  5742. .expected_errcode = -EINVAL,
  5743. },
  5744. {
  5745. "LD_ABS byte negative offset, in bounds",
  5746. .u.insns = {
  5747. BPF_STMT(BPF_LD | BPF_ABS | BPF_B, SKF_LL_OFF + 0x3f),
  5748. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5749. },
  5750. CLASSIC,
  5751. { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
  5752. { {0x40, 0x82 }, },
  5753. },
  5754. {
  5755. "LD_ABS byte negative offset, out of bounds",
  5756. .u.insns = {
  5757. BPF_STMT(BPF_LD | BPF_ABS | BPF_B, SKF_LL_OFF + 0x3f),
  5758. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5759. },
  5760. CLASSIC,
  5761. { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
  5762. { {0x3f, 0 }, },
  5763. },
  5764. {
  5765. "LD_ABS byte negative offset, multiple calls",
  5766. .u.insns = {
  5767. BPF_STMT(BPF_LD | BPF_ABS | BPF_B, SKF_LL_OFF + 0x3c),
  5768. BPF_STMT(BPF_LD | BPF_ABS | BPF_B, SKF_LL_OFF + 0x3d),
  5769. BPF_STMT(BPF_LD | BPF_ABS | BPF_B, SKF_LL_OFF + 0x3e),
  5770. BPF_STMT(BPF_LD | BPF_ABS | BPF_B, SKF_LL_OFF + 0x3f),
  5771. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5772. },
  5773. CLASSIC,
  5774. { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
  5775. { {0x40, 0x82 }, },
  5776. },
  5777. {
  5778. "LD_ABS halfword",
  5779. .u.insns = {
  5780. BPF_STMT(BPF_LD | BPF_ABS | BPF_H, 0x22),
  5781. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5782. },
  5783. CLASSIC,
  5784. {
  5785. [0x1c] = 0xaa, [0x1d] = 0x55,
  5786. [0x1e] = 0xbb, [0x1f] = 0x66,
  5787. [0x20] = 0xcc, [0x21] = 0x77,
  5788. [0x22] = 0xdd, [0x23] = 0x88,
  5789. [0x24] = 0xee, [0x25] = 0x99,
  5790. [0x26] = 0xff, [0x27] = 0xaa,
  5791. },
  5792. { {0x40, 0xdd88 } },
  5793. },
  5794. {
  5795. "LD_ABS halfword unaligned",
  5796. .u.insns = {
  5797. BPF_STMT(BPF_LD | BPF_ABS | BPF_H, 0x25),
  5798. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5799. },
  5800. CLASSIC,
  5801. {
  5802. [0x1c] = 0xaa, [0x1d] = 0x55,
  5803. [0x1e] = 0xbb, [0x1f] = 0x66,
  5804. [0x20] = 0xcc, [0x21] = 0x77,
  5805. [0x22] = 0xdd, [0x23] = 0x88,
  5806. [0x24] = 0xee, [0x25] = 0x99,
  5807. [0x26] = 0xff, [0x27] = 0xaa,
  5808. },
  5809. { {0x40, 0x99ff } },
  5810. },
  5811. {
  5812. "LD_ABS halfword positive offset, all ff",
  5813. .u.insns = {
  5814. BPF_STMT(BPF_LD | BPF_ABS | BPF_H, 0x3e),
  5815. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5816. },
  5817. CLASSIC,
  5818. { [0x3c] = 0xff, [0x3d] = 0xff, [0x3e] = 0xff, [0x3f] = 0xff },
  5819. { {0x40, 0xffff } },
  5820. },
  5821. {
  5822. "LD_ABS halfword positive offset, out of bounds",
  5823. .u.insns = {
  5824. BPF_STMT(BPF_LD | BPF_ABS | BPF_H, 0x3f),
  5825. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5826. },
  5827. CLASSIC,
  5828. { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
  5829. { {0x3f, 0 }, },
  5830. },
  5831. {
  5832. "LD_ABS halfword negative offset, out of bounds load",
  5833. .u.insns = {
  5834. BPF_STMT(BPF_LD | BPF_ABS | BPF_H, -1),
  5835. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5836. },
  5837. CLASSIC | FLAG_EXPECTED_FAIL,
  5838. .expected_errcode = -EINVAL,
  5839. },
  5840. {
  5841. "LD_ABS halfword negative offset, in bounds",
  5842. .u.insns = {
  5843. BPF_STMT(BPF_LD | BPF_ABS | BPF_H, SKF_LL_OFF + 0x3e),
  5844. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5845. },
  5846. CLASSIC,
  5847. { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
  5848. { {0x40, 0x1982 }, },
  5849. },
  5850. {
  5851. "LD_ABS halfword negative offset, out of bounds",
  5852. .u.insns = {
  5853. BPF_STMT(BPF_LD | BPF_ABS | BPF_H, SKF_LL_OFF + 0x3e),
  5854. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5855. },
  5856. CLASSIC,
  5857. { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
  5858. { {0x3f, 0 }, },
  5859. },
  5860. {
  5861. "LD_ABS word",
  5862. .u.insns = {
  5863. BPF_STMT(BPF_LD | BPF_ABS | BPF_W, 0x1c),
  5864. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5865. },
  5866. CLASSIC,
  5867. {
  5868. [0x1c] = 0xaa, [0x1d] = 0x55,
  5869. [0x1e] = 0xbb, [0x1f] = 0x66,
  5870. [0x20] = 0xcc, [0x21] = 0x77,
  5871. [0x22] = 0xdd, [0x23] = 0x88,
  5872. [0x24] = 0xee, [0x25] = 0x99,
  5873. [0x26] = 0xff, [0x27] = 0xaa,
  5874. },
  5875. { {0x40, 0xaa55bb66 } },
  5876. },
  5877. {
  5878. "LD_ABS word unaligned (addr & 3 == 2)",
  5879. .u.insns = {
  5880. BPF_STMT(BPF_LD | BPF_ABS | BPF_W, 0x22),
  5881. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5882. },
  5883. CLASSIC,
  5884. {
  5885. [0x1c] = 0xaa, [0x1d] = 0x55,
  5886. [0x1e] = 0xbb, [0x1f] = 0x66,
  5887. [0x20] = 0xcc, [0x21] = 0x77,
  5888. [0x22] = 0xdd, [0x23] = 0x88,
  5889. [0x24] = 0xee, [0x25] = 0x99,
  5890. [0x26] = 0xff, [0x27] = 0xaa,
  5891. },
  5892. { {0x40, 0xdd88ee99 } },
  5893. },
  5894. {
  5895. "LD_ABS word unaligned (addr & 3 == 1)",
  5896. .u.insns = {
  5897. BPF_STMT(BPF_LD | BPF_ABS | BPF_W, 0x21),
  5898. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5899. },
  5900. CLASSIC,
  5901. {
  5902. [0x1c] = 0xaa, [0x1d] = 0x55,
  5903. [0x1e] = 0xbb, [0x1f] = 0x66,
  5904. [0x20] = 0xcc, [0x21] = 0x77,
  5905. [0x22] = 0xdd, [0x23] = 0x88,
  5906. [0x24] = 0xee, [0x25] = 0x99,
  5907. [0x26] = 0xff, [0x27] = 0xaa,
  5908. },
  5909. { {0x40, 0x77dd88ee } },
  5910. },
  5911. {
  5912. "LD_ABS word unaligned (addr & 3 == 3)",
  5913. .u.insns = {
  5914. BPF_STMT(BPF_LD | BPF_ABS | BPF_W, 0x23),
  5915. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5916. },
  5917. CLASSIC,
  5918. {
  5919. [0x1c] = 0xaa, [0x1d] = 0x55,
  5920. [0x1e] = 0xbb, [0x1f] = 0x66,
  5921. [0x20] = 0xcc, [0x21] = 0x77,
  5922. [0x22] = 0xdd, [0x23] = 0x88,
  5923. [0x24] = 0xee, [0x25] = 0x99,
  5924. [0x26] = 0xff, [0x27] = 0xaa,
  5925. },
  5926. { {0x40, 0x88ee99ff } },
  5927. },
  5928. {
  5929. "LD_ABS word positive offset, all ff",
  5930. .u.insns = {
  5931. BPF_STMT(BPF_LD | BPF_ABS | BPF_W, 0x3c),
  5932. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5933. },
  5934. CLASSIC,
  5935. { [0x3c] = 0xff, [0x3d] = 0xff, [0x3e] = 0xff, [0x3f] = 0xff },
  5936. { {0x40, 0xffffffff } },
  5937. },
  5938. {
  5939. "LD_ABS word positive offset, out of bounds",
  5940. .u.insns = {
  5941. BPF_STMT(BPF_LD | BPF_ABS | BPF_W, 0x3f),
  5942. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5943. },
  5944. CLASSIC,
  5945. { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
  5946. { {0x3f, 0 }, },
  5947. },
  5948. {
  5949. "LD_ABS word negative offset, out of bounds load",
  5950. .u.insns = {
  5951. BPF_STMT(BPF_LD | BPF_ABS | BPF_W, -1),
  5952. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5953. },
  5954. CLASSIC | FLAG_EXPECTED_FAIL,
  5955. .expected_errcode = -EINVAL,
  5956. },
  5957. {
  5958. "LD_ABS word negative offset, in bounds",
  5959. .u.insns = {
  5960. BPF_STMT(BPF_LD | BPF_ABS | BPF_W, SKF_LL_OFF + 0x3c),
  5961. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5962. },
  5963. CLASSIC,
  5964. { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
  5965. { {0x40, 0x25051982 }, },
  5966. },
  5967. {
  5968. "LD_ABS word negative offset, out of bounds",
  5969. .u.insns = {
  5970. BPF_STMT(BPF_LD | BPF_ABS | BPF_W, SKF_LL_OFF + 0x3c),
  5971. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5972. },
  5973. CLASSIC,
  5974. { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
  5975. { {0x3f, 0 }, },
  5976. },
  5977. {
  5978. "LDX_MSH standalone, preserved A",
  5979. .u.insns = {
  5980. BPF_STMT(BPF_LD | BPF_IMM, 0xffeebbaa),
  5981. BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, 0x3c),
  5982. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5983. },
  5984. CLASSIC,
  5985. { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
  5986. { {0x40, 0xffeebbaa }, },
  5987. },
  5988. {
  5989. "LDX_MSH standalone, preserved A 2",
  5990. .u.insns = {
  5991. BPF_STMT(BPF_LD | BPF_IMM, 0x175e9d63),
  5992. BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, 0x3c),
  5993. BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, 0x3d),
  5994. BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, 0x3e),
  5995. BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, 0x3f),
  5996. BPF_STMT(BPF_RET | BPF_A, 0x0),
  5997. },
  5998. CLASSIC,
  5999. { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
  6000. { {0x40, 0x175e9d63 }, },
  6001. },
  6002. {
  6003. "LDX_MSH standalone, test result 1",
  6004. .u.insns = {
  6005. BPF_STMT(BPF_LD | BPF_IMM, 0xffeebbaa),
  6006. BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, 0x3c),
  6007. BPF_STMT(BPF_MISC | BPF_TXA, 0),
  6008. BPF_STMT(BPF_RET | BPF_A, 0x0),
  6009. },
  6010. CLASSIC,
  6011. { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
  6012. { {0x40, 0x14 }, },
  6013. },
  6014. {
  6015. "LDX_MSH standalone, test result 2",
  6016. .u.insns = {
  6017. BPF_STMT(BPF_LD | BPF_IMM, 0xffeebbaa),
  6018. BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, 0x3e),
  6019. BPF_STMT(BPF_MISC | BPF_TXA, 0),
  6020. BPF_STMT(BPF_RET | BPF_A, 0x0),
  6021. },
  6022. CLASSIC,
  6023. { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
  6024. { {0x40, 0x24 }, },
  6025. },
  6026. {
  6027. "LDX_MSH standalone, negative offset",
  6028. .u.insns = {
  6029. BPF_STMT(BPF_LD | BPF_IMM, 0xffeebbaa),
  6030. BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, -1),
  6031. BPF_STMT(BPF_MISC | BPF_TXA, 0),
  6032. BPF_STMT(BPF_RET | BPF_A, 0x0),
  6033. },
  6034. CLASSIC,
  6035. { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
  6036. { {0x40, 0 }, },
  6037. },
  6038. {
  6039. "LDX_MSH standalone, negative offset 2",
  6040. .u.insns = {
  6041. BPF_STMT(BPF_LD | BPF_IMM, 0xffeebbaa),
  6042. BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, SKF_LL_OFF + 0x3e),
  6043. BPF_STMT(BPF_MISC | BPF_TXA, 0),
  6044. BPF_STMT(BPF_RET | BPF_A, 0x0),
  6045. },
  6046. CLASSIC,
  6047. { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
  6048. { {0x40, 0x24 }, },
  6049. },
  6050. {
  6051. "LDX_MSH standalone, out of bounds",
  6052. .u.insns = {
  6053. BPF_STMT(BPF_LD | BPF_IMM, 0xffeebbaa),
  6054. BPF_STMT(BPF_LDX | BPF_B | BPF_MSH, 0x40),
  6055. BPF_STMT(BPF_MISC | BPF_TXA, 0),
  6056. BPF_STMT(BPF_RET | BPF_A, 0x0),
  6057. },
  6058. CLASSIC,
  6059. { [0x3c] = 0x25, [0x3d] = 0x05, [0x3e] = 0x19, [0x3f] = 0x82 },
  6060. { {0x40, 0 }, },
  6061. },
  6062. /*
  6063. * verify that the interpreter or JIT correctly sets A and X
  6064. * to 0.
  6065. */
  6066. {
  6067. "ADD default X",
  6068. .u.insns = {
  6069. /*
  6070. * A = 0x42
  6071. * A = A + X
  6072. * ret A
  6073. */
  6074. BPF_STMT(BPF_LD | BPF_IMM, 0x42),
  6075. BPF_STMT(BPF_ALU | BPF_ADD | BPF_X, 0),
  6076. BPF_STMT(BPF_RET | BPF_A, 0x0),
  6077. },
  6078. CLASSIC | FLAG_NO_DATA,
  6079. {},
  6080. { {0x1, 0x42 } },
  6081. },
  6082. {
  6083. "ADD default A",
  6084. .u.insns = {
  6085. /*
  6086. * A = A + 0x42
  6087. * ret A
  6088. */
  6089. BPF_STMT(BPF_ALU | BPF_ADD | BPF_K, 0x42),
  6090. BPF_STMT(BPF_RET | BPF_A, 0x0),
  6091. },
  6092. CLASSIC | FLAG_NO_DATA,
  6093. {},
  6094. { {0x1, 0x42 } },
  6095. },
  6096. {
  6097. "SUB default X",
  6098. .u.insns = {
  6099. /*
  6100. * A = 0x66
  6101. * A = A - X
  6102. * ret A
  6103. */
  6104. BPF_STMT(BPF_LD | BPF_IMM, 0x66),
  6105. BPF_STMT(BPF_ALU | BPF_SUB | BPF_X, 0),
  6106. BPF_STMT(BPF_RET | BPF_A, 0x0),
  6107. },
  6108. CLASSIC | FLAG_NO_DATA,
  6109. {},
  6110. { {0x1, 0x66 } },
  6111. },
  6112. {
  6113. "SUB default A",
  6114. .u.insns = {
  6115. /*
  6116. * A = A - -0x66
  6117. * ret A
  6118. */
  6119. BPF_STMT(BPF_ALU | BPF_SUB | BPF_K, -0x66),
  6120. BPF_STMT(BPF_RET | BPF_A, 0x0),
  6121. },
  6122. CLASSIC | FLAG_NO_DATA,
  6123. {},
  6124. { {0x1, 0x66 } },
  6125. },
  6126. {
  6127. "MUL default X",
  6128. .u.insns = {
  6129. /*
  6130. * A = 0x42
  6131. * A = A * X
  6132. * ret A
  6133. */
  6134. BPF_STMT(BPF_LD | BPF_IMM, 0x42),
  6135. BPF_STMT(BPF_ALU | BPF_MUL | BPF_X, 0),
  6136. BPF_STMT(BPF_RET | BPF_A, 0x0),
  6137. },
  6138. CLASSIC | FLAG_NO_DATA,
  6139. {},
  6140. { {0x1, 0x0 } },
  6141. },
  6142. {
  6143. "MUL default A",
  6144. .u.insns = {
  6145. /*
  6146. * A = A * 0x66
  6147. * ret A
  6148. */
  6149. BPF_STMT(BPF_ALU | BPF_MUL | BPF_K, 0x66),
  6150. BPF_STMT(BPF_RET | BPF_A, 0x0),
  6151. },
  6152. CLASSIC | FLAG_NO_DATA,
  6153. {},
  6154. { {0x1, 0x0 } },
  6155. },
  6156. {
  6157. "DIV default X",
  6158. .u.insns = {
  6159. /*
  6160. * A = 0x42
  6161. * A = A / X ; this halt the filter execution if X is 0
  6162. * ret 0x42
  6163. */
  6164. BPF_STMT(BPF_LD | BPF_IMM, 0x42),
  6165. BPF_STMT(BPF_ALU | BPF_DIV | BPF_X, 0),
  6166. BPF_STMT(BPF_RET | BPF_K, 0x42),
  6167. },
  6168. CLASSIC | FLAG_NO_DATA,
  6169. {},
  6170. { {0x1, 0x0 } },
  6171. },
  6172. {
  6173. "DIV default A",
  6174. .u.insns = {
  6175. /*
  6176. * A = A / 1
  6177. * ret A
  6178. */
  6179. BPF_STMT(BPF_ALU | BPF_DIV | BPF_K, 0x1),
  6180. BPF_STMT(BPF_RET | BPF_A, 0x0),
  6181. },
  6182. CLASSIC | FLAG_NO_DATA,
  6183. {},
  6184. { {0x1, 0x0 } },
  6185. },
  6186. {
  6187. "MOD default X",
  6188. .u.insns = {
  6189. /*
  6190. * A = 0x42
  6191. * A = A mod X ; this halt the filter execution if X is 0
  6192. * ret 0x42
  6193. */
  6194. BPF_STMT(BPF_LD | BPF_IMM, 0x42),
  6195. BPF_STMT(BPF_ALU | BPF_MOD | BPF_X, 0),
  6196. BPF_STMT(BPF_RET | BPF_K, 0x42),
  6197. },
  6198. CLASSIC | FLAG_NO_DATA,
  6199. {},
  6200. { {0x1, 0x0 } },
  6201. },
  6202. {
  6203. "MOD default A",
  6204. .u.insns = {
  6205. /*
  6206. * A = A mod 1
  6207. * ret A
  6208. */
  6209. BPF_STMT(BPF_ALU | BPF_MOD | BPF_K, 0x1),
  6210. BPF_STMT(BPF_RET | BPF_A, 0x0),
  6211. },
  6212. CLASSIC | FLAG_NO_DATA,
  6213. {},
  6214. { {0x1, 0x0 } },
  6215. },
  6216. {
  6217. "JMP EQ default A",
  6218. .u.insns = {
  6219. /*
  6220. * cmp A, 0x0, 0, 1
  6221. * ret 0x42
  6222. * ret 0x66
  6223. */
  6224. BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0x0, 0, 1),
  6225. BPF_STMT(BPF_RET | BPF_K, 0x42),
  6226. BPF_STMT(BPF_RET | BPF_K, 0x66),
  6227. },
  6228. CLASSIC | FLAG_NO_DATA,
  6229. {},
  6230. { {0x1, 0x42 } },
  6231. },
  6232. {
  6233. "JMP EQ default X",
  6234. .u.insns = {
  6235. /*
  6236. * A = 0x0
  6237. * cmp A, X, 0, 1
  6238. * ret 0x42
  6239. * ret 0x66
  6240. */
  6241. BPF_STMT(BPF_LD | BPF_IMM, 0x0),
  6242. BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_X, 0x0, 0, 1),
  6243. BPF_STMT(BPF_RET | BPF_K, 0x42),
  6244. BPF_STMT(BPF_RET | BPF_K, 0x66),
  6245. },
  6246. CLASSIC | FLAG_NO_DATA,
  6247. {},
  6248. { {0x1, 0x42 } },
  6249. },
  6250. /* Checking interpreter vs JIT wrt signed extended imms. */
  6251. {
  6252. "JNE signed compare, test 1",
  6253. .u.insns_int = {
  6254. BPF_ALU32_IMM(BPF_MOV, R1, 0xfefbbc12),
  6255. BPF_ALU32_IMM(BPF_MOV, R3, 0xffff0000),
  6256. BPF_MOV64_REG(R2, R1),
  6257. BPF_ALU64_REG(BPF_AND, R2, R3),
  6258. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  6259. BPF_JMP_IMM(BPF_JNE, R2, -17104896, 1),
  6260. BPF_ALU32_IMM(BPF_MOV, R0, 2),
  6261. BPF_EXIT_INSN(),
  6262. },
  6263. INTERNAL,
  6264. { },
  6265. { { 0, 1 } },
  6266. },
  6267. {
  6268. "JNE signed compare, test 2",
  6269. .u.insns_int = {
  6270. BPF_ALU32_IMM(BPF_MOV, R1, 0xfefbbc12),
  6271. BPF_ALU32_IMM(BPF_MOV, R3, 0xffff0000),
  6272. BPF_MOV64_REG(R2, R1),
  6273. BPF_ALU64_REG(BPF_AND, R2, R3),
  6274. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  6275. BPF_JMP_IMM(BPF_JNE, R2, 0xfefb0000, 1),
  6276. BPF_ALU32_IMM(BPF_MOV, R0, 2),
  6277. BPF_EXIT_INSN(),
  6278. },
  6279. INTERNAL,
  6280. { },
  6281. { { 0, 1 } },
  6282. },
  6283. {
  6284. "JNE signed compare, test 3",
  6285. .u.insns_int = {
  6286. BPF_ALU32_IMM(BPF_MOV, R1, 0xfefbbc12),
  6287. BPF_ALU32_IMM(BPF_MOV, R3, 0xffff0000),
  6288. BPF_ALU32_IMM(BPF_MOV, R4, 0xfefb0000),
  6289. BPF_MOV64_REG(R2, R1),
  6290. BPF_ALU64_REG(BPF_AND, R2, R3),
  6291. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  6292. BPF_JMP_REG(BPF_JNE, R2, R4, 1),
  6293. BPF_ALU32_IMM(BPF_MOV, R0, 2),
  6294. BPF_EXIT_INSN(),
  6295. },
  6296. INTERNAL,
  6297. { },
  6298. { { 0, 2 } },
  6299. },
  6300. {
  6301. "JNE signed compare, test 4",
  6302. .u.insns_int = {
  6303. BPF_LD_IMM64(R1, -17104896),
  6304. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  6305. BPF_JMP_IMM(BPF_JNE, R1, -17104896, 1),
  6306. BPF_ALU32_IMM(BPF_MOV, R0, 2),
  6307. BPF_EXIT_INSN(),
  6308. },
  6309. INTERNAL,
  6310. { },
  6311. { { 0, 2 } },
  6312. },
  6313. {
  6314. "JNE signed compare, test 5",
  6315. .u.insns_int = {
  6316. BPF_LD_IMM64(R1, 0xfefb0000),
  6317. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  6318. BPF_JMP_IMM(BPF_JNE, R1, 0xfefb0000, 1),
  6319. BPF_ALU32_IMM(BPF_MOV, R0, 2),
  6320. BPF_EXIT_INSN(),
  6321. },
  6322. INTERNAL,
  6323. { },
  6324. { { 0, 1 } },
  6325. },
  6326. {
  6327. "JNE signed compare, test 6",
  6328. .u.insns_int = {
  6329. BPF_LD_IMM64(R1, 0x7efb0000),
  6330. BPF_ALU32_IMM(BPF_MOV, R0, 1),
  6331. BPF_JMP_IMM(BPF_JNE, R1, 0x7efb0000, 1),
  6332. BPF_ALU32_IMM(BPF_MOV, R0, 2),
  6333. BPF_EXIT_INSN(),
  6334. },
  6335. INTERNAL,
  6336. { },
  6337. { { 0, 2 } },
  6338. },
  6339. {
  6340. "JNE signed compare, test 7",
  6341. .u.insns = {
  6342. BPF_STMT(BPF_LD | BPF_IMM, 0xffff0000),
  6343. BPF_STMT(BPF_MISC | BPF_TAX, 0),
  6344. BPF_STMT(BPF_LD | BPF_IMM, 0xfefbbc12),
  6345. BPF_STMT(BPF_ALU | BPF_AND | BPF_X, 0),
  6346. BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, 0xfefb0000, 1, 0),
  6347. BPF_STMT(BPF_RET | BPF_K, 1),
  6348. BPF_STMT(BPF_RET | BPF_K, 2),
  6349. },
  6350. CLASSIC | FLAG_NO_DATA,
  6351. {},
  6352. { { 0, 2 } },
  6353. },
  6354. };
  6355. static struct net_device dev;
  6356. static struct sk_buff *populate_skb(char *buf, int size)
  6357. {
  6358. struct sk_buff *skb;
  6359. if (size >= MAX_DATA)
  6360. return NULL;
  6361. skb = alloc_skb(MAX_DATA, GFP_KERNEL);
  6362. if (!skb)
  6363. return NULL;
  6364. __skb_put_data(skb, buf, size);
  6365. /* Initialize a fake skb with test pattern. */
  6366. skb_reset_mac_header(skb);
  6367. skb->protocol = htons(ETH_P_IP);
  6368. skb->pkt_type = SKB_TYPE;
  6369. skb->mark = SKB_MARK;
  6370. skb->hash = SKB_HASH;
  6371. skb->queue_mapping = SKB_QUEUE_MAP;
  6372. skb->vlan_tci = SKB_VLAN_TCI;
  6373. skb->vlan_present = SKB_VLAN_PRESENT;
  6374. skb->vlan_proto = htons(ETH_P_IP);
  6375. dev_net_set(&dev, &init_net);
  6376. skb->dev = &dev;
  6377. skb->dev->ifindex = SKB_DEV_IFINDEX;
  6378. skb->dev->type = SKB_DEV_TYPE;
  6379. skb_set_network_header(skb, min(size, ETH_HLEN));
  6380. return skb;
  6381. }
  6382. static void *generate_test_data(struct bpf_test *test, int sub)
  6383. {
  6384. struct sk_buff *skb;
  6385. struct page *page;
  6386. if (test->aux & FLAG_NO_DATA)
  6387. return NULL;
  6388. /* Test case expects an skb, so populate one. Various
  6389. * subtests generate skbs of different sizes based on
  6390. * the same data.
  6391. */
  6392. skb = populate_skb(test->data, test->test[sub].data_size);
  6393. if (!skb)
  6394. return NULL;
  6395. if (test->aux & FLAG_SKB_FRAG) {
  6396. /*
  6397. * when the test requires a fragmented skb, add a
  6398. * single fragment to the skb, filled with
  6399. * test->frag_data.
  6400. */
  6401. void *ptr;
  6402. page = alloc_page(GFP_KERNEL);
  6403. if (!page)
  6404. goto err_kfree_skb;
  6405. ptr = kmap(page);
  6406. if (!ptr)
  6407. goto err_free_page;
  6408. memcpy(ptr, test->frag_data, MAX_DATA);
  6409. kunmap(page);
  6410. skb_add_rx_frag(skb, 0, page, 0, MAX_DATA, MAX_DATA);
  6411. }
  6412. return skb;
  6413. err_free_page:
  6414. __free_page(page);
  6415. err_kfree_skb:
  6416. kfree_skb(skb);
  6417. return NULL;
  6418. }
  6419. static void release_test_data(const struct bpf_test *test, void *data)
  6420. {
  6421. if (test->aux & FLAG_NO_DATA)
  6422. return;
  6423. kfree_skb(data);
  6424. }
  6425. static int filter_length(int which)
  6426. {
  6427. struct sock_filter *fp;
  6428. int len;
  6429. if (tests[which].fill_helper)
  6430. return tests[which].u.ptr.len;
  6431. fp = tests[which].u.insns;
  6432. for (len = MAX_INSNS - 1; len > 0; --len)
  6433. if (fp[len].code != 0 || fp[len].k != 0)
  6434. break;
  6435. return len + 1;
  6436. }
  6437. static void *filter_pointer(int which)
  6438. {
  6439. if (tests[which].fill_helper)
  6440. return tests[which].u.ptr.insns;
  6441. else
  6442. return tests[which].u.insns;
  6443. }
  6444. static struct bpf_prog *generate_filter(int which, int *err)
  6445. {
  6446. __u8 test_type = tests[which].aux & TEST_TYPE_MASK;
  6447. unsigned int flen = filter_length(which);
  6448. void *fptr = filter_pointer(which);
  6449. struct sock_fprog_kern fprog;
  6450. struct bpf_prog *fp;
  6451. switch (test_type) {
  6452. case CLASSIC:
  6453. fprog.filter = fptr;
  6454. fprog.len = flen;
  6455. *err = bpf_prog_create(&fp, &fprog);
  6456. if (tests[which].aux & FLAG_EXPECTED_FAIL) {
  6457. if (*err == tests[which].expected_errcode) {
  6458. pr_cont("PASS\n");
  6459. /* Verifier rejected filter as expected. */
  6460. *err = 0;
  6461. return NULL;
  6462. } else {
  6463. pr_cont("UNEXPECTED_PASS\n");
  6464. /* Verifier didn't reject the test that's
  6465. * bad enough, just return!
  6466. */
  6467. *err = -EINVAL;
  6468. return NULL;
  6469. }
  6470. }
  6471. if (*err) {
  6472. pr_cont("FAIL to prog_create err=%d len=%d\n",
  6473. *err, fprog.len);
  6474. return NULL;
  6475. }
  6476. break;
  6477. case INTERNAL:
  6478. fp = bpf_prog_alloc(bpf_prog_size(flen), 0);
  6479. if (fp == NULL) {
  6480. pr_cont("UNEXPECTED_FAIL no memory left\n");
  6481. *err = -ENOMEM;
  6482. return NULL;
  6483. }
  6484. fp->len = flen;
  6485. /* Type doesn't really matter here as long as it's not unspec. */
  6486. fp->type = BPF_PROG_TYPE_SOCKET_FILTER;
  6487. memcpy(fp->insnsi, fptr, fp->len * sizeof(struct bpf_insn));
  6488. fp->aux->stack_depth = tests[which].stack_depth;
  6489. /* We cannot error here as we don't need type compatibility
  6490. * checks.
  6491. */
  6492. fp = bpf_prog_select_runtime(fp, err);
  6493. if (*err) {
  6494. pr_cont("FAIL to select_runtime err=%d\n", *err);
  6495. return NULL;
  6496. }
  6497. break;
  6498. }
  6499. *err = 0;
  6500. return fp;
  6501. }
  6502. static void release_filter(struct bpf_prog *fp, int which)
  6503. {
  6504. __u8 test_type = tests[which].aux & TEST_TYPE_MASK;
  6505. switch (test_type) {
  6506. case CLASSIC:
  6507. bpf_prog_destroy(fp);
  6508. break;
  6509. case INTERNAL:
  6510. bpf_prog_free(fp);
  6511. break;
  6512. }
  6513. }
  6514. static int __run_one(const struct bpf_prog *fp, const void *data,
  6515. int runs, u64 *duration)
  6516. {
  6517. u64 start, finish;
  6518. int ret = 0, i;
  6519. migrate_disable();
  6520. start = ktime_get_ns();
  6521. for (i = 0; i < runs; i++)
  6522. ret = BPF_PROG_RUN(fp, data);
  6523. finish = ktime_get_ns();
  6524. migrate_enable();
  6525. *duration = finish - start;
  6526. do_div(*duration, runs);
  6527. return ret;
  6528. }
  6529. static int run_one(const struct bpf_prog *fp, struct bpf_test *test)
  6530. {
  6531. int err_cnt = 0, i, runs = MAX_TESTRUNS;
  6532. for (i = 0; i < MAX_SUBTESTS; i++) {
  6533. void *data;
  6534. u64 duration;
  6535. u32 ret;
  6536. if (test->test[i].data_size == 0 &&
  6537. test->test[i].result == 0)
  6538. break;
  6539. data = generate_test_data(test, i);
  6540. if (!data && !(test->aux & FLAG_NO_DATA)) {
  6541. pr_cont("data generation failed ");
  6542. err_cnt++;
  6543. break;
  6544. }
  6545. ret = __run_one(fp, data, runs, &duration);
  6546. release_test_data(test, data);
  6547. if (ret == test->test[i].result) {
  6548. pr_cont("%lld ", duration);
  6549. } else {
  6550. pr_cont("ret %d != %d ", ret,
  6551. test->test[i].result);
  6552. err_cnt++;
  6553. }
  6554. }
  6555. return err_cnt;
  6556. }
  6557. static char test_name[64];
  6558. module_param_string(test_name, test_name, sizeof(test_name), 0);
  6559. static int test_id = -1;
  6560. module_param(test_id, int, 0);
  6561. static int test_range[2] = { 0, ARRAY_SIZE(tests) - 1 };
  6562. module_param_array(test_range, int, NULL, 0);
  6563. static __init int find_test_index(const char *test_name)
  6564. {
  6565. int i;
  6566. for (i = 0; i < ARRAY_SIZE(tests); i++) {
  6567. if (!strcmp(tests[i].descr, test_name))
  6568. return i;
  6569. }
  6570. return -1;
  6571. }
  6572. static __init int prepare_bpf_tests(void)
  6573. {
  6574. int i;
  6575. if (test_id >= 0) {
  6576. /*
  6577. * if a test_id was specified, use test_range to
  6578. * cover only that test.
  6579. */
  6580. if (test_id >= ARRAY_SIZE(tests)) {
  6581. pr_err("test_bpf: invalid test_id specified.\n");
  6582. return -EINVAL;
  6583. }
  6584. test_range[0] = test_id;
  6585. test_range[1] = test_id;
  6586. } else if (*test_name) {
  6587. /*
  6588. * if a test_name was specified, find it and setup
  6589. * test_range to cover only that test.
  6590. */
  6591. int idx = find_test_index(test_name);
  6592. if (idx < 0) {
  6593. pr_err("test_bpf: no test named '%s' found.\n",
  6594. test_name);
  6595. return -EINVAL;
  6596. }
  6597. test_range[0] = idx;
  6598. test_range[1] = idx;
  6599. } else {
  6600. /*
  6601. * check that the supplied test_range is valid.
  6602. */
  6603. if (test_range[0] >= ARRAY_SIZE(tests) ||
  6604. test_range[1] >= ARRAY_SIZE(tests) ||
  6605. test_range[0] < 0 || test_range[1] < 0) {
  6606. pr_err("test_bpf: test_range is out of bound.\n");
  6607. return -EINVAL;
  6608. }
  6609. if (test_range[1] < test_range[0]) {
  6610. pr_err("test_bpf: test_range is ending before it starts.\n");
  6611. return -EINVAL;
  6612. }
  6613. }
  6614. for (i = 0; i < ARRAY_SIZE(tests); i++) {
  6615. if (tests[i].fill_helper &&
  6616. tests[i].fill_helper(&tests[i]) < 0)
  6617. return -ENOMEM;
  6618. }
  6619. return 0;
  6620. }
  6621. static __init void destroy_bpf_tests(void)
  6622. {
  6623. int i;
  6624. for (i = 0; i < ARRAY_SIZE(tests); i++) {
  6625. if (tests[i].fill_helper)
  6626. kfree(tests[i].u.ptr.insns);
  6627. }
  6628. }
  6629. static bool exclude_test(int test_id)
  6630. {
  6631. return test_id < test_range[0] || test_id > test_range[1];
  6632. }
  6633. static __init struct sk_buff *build_test_skb(void)
  6634. {
  6635. u32 headroom = NET_SKB_PAD + NET_IP_ALIGN + ETH_HLEN;
  6636. struct sk_buff *skb[2];
  6637. struct page *page[2];
  6638. int i, data_size = 8;
  6639. for (i = 0; i < 2; i++) {
  6640. page[i] = alloc_page(GFP_KERNEL);
  6641. if (!page[i]) {
  6642. if (i == 0)
  6643. goto err_page0;
  6644. else
  6645. goto err_page1;
  6646. }
  6647. /* this will set skb[i]->head_frag */
  6648. skb[i] = dev_alloc_skb(headroom + data_size);
  6649. if (!skb[i]) {
  6650. if (i == 0)
  6651. goto err_skb0;
  6652. else
  6653. goto err_skb1;
  6654. }
  6655. skb_reserve(skb[i], headroom);
  6656. skb_put(skb[i], data_size);
  6657. skb[i]->protocol = htons(ETH_P_IP);
  6658. skb_reset_network_header(skb[i]);
  6659. skb_set_mac_header(skb[i], -ETH_HLEN);
  6660. skb_add_rx_frag(skb[i], 0, page[i], 0, 64, 64);
  6661. // skb_headlen(skb[i]): 8, skb[i]->head_frag = 1
  6662. }
  6663. /* setup shinfo */
  6664. skb_shinfo(skb[0])->gso_size = 1448;
  6665. skb_shinfo(skb[0])->gso_type = SKB_GSO_TCPV4;
  6666. skb_shinfo(skb[0])->gso_type |= SKB_GSO_DODGY;
  6667. skb_shinfo(skb[0])->gso_segs = 0;
  6668. skb_shinfo(skb[0])->frag_list = skb[1];
  6669. /* adjust skb[0]'s len */
  6670. skb[0]->len += skb[1]->len;
  6671. skb[0]->data_len += skb[1]->data_len;
  6672. skb[0]->truesize += skb[1]->truesize;
  6673. return skb[0];
  6674. err_skb1:
  6675. __free_page(page[1]);
  6676. err_page1:
  6677. kfree_skb(skb[0]);
  6678. err_skb0:
  6679. __free_page(page[0]);
  6680. err_page0:
  6681. return NULL;
  6682. }
  6683. static __init struct sk_buff *build_test_skb_linear_no_head_frag(void)
  6684. {
  6685. unsigned int alloc_size = 2000;
  6686. unsigned int headroom = 102, doffset = 72, data_size = 1308;
  6687. struct sk_buff *skb[2];
  6688. int i;
  6689. /* skbs linked in a frag_list, both with linear data, with head_frag=0
  6690. * (data allocated by kmalloc), both have tcp data of 1308 bytes
  6691. * (total payload is 2616 bytes).
  6692. * Data offset is 72 bytes (40 ipv6 hdr, 32 tcp hdr). Some headroom.
  6693. */
  6694. for (i = 0; i < 2; i++) {
  6695. skb[i] = alloc_skb(alloc_size, GFP_KERNEL);
  6696. if (!skb[i]) {
  6697. if (i == 0)
  6698. goto err_skb0;
  6699. else
  6700. goto err_skb1;
  6701. }
  6702. skb[i]->protocol = htons(ETH_P_IPV6);
  6703. skb_reserve(skb[i], headroom);
  6704. skb_put(skb[i], doffset + data_size);
  6705. skb_reset_network_header(skb[i]);
  6706. if (i == 0)
  6707. skb_reset_mac_header(skb[i]);
  6708. else
  6709. skb_set_mac_header(skb[i], -ETH_HLEN);
  6710. __skb_pull(skb[i], doffset);
  6711. }
  6712. /* setup shinfo.
  6713. * mimic bpf_skb_proto_4_to_6, which resets gso_segs and assigns a
  6714. * reduced gso_size.
  6715. */
  6716. skb_shinfo(skb[0])->gso_size = 1288;
  6717. skb_shinfo(skb[0])->gso_type = SKB_GSO_TCPV6 | SKB_GSO_DODGY;
  6718. skb_shinfo(skb[0])->gso_segs = 0;
  6719. skb_shinfo(skb[0])->frag_list = skb[1];
  6720. /* adjust skb[0]'s len */
  6721. skb[0]->len += skb[1]->len;
  6722. skb[0]->data_len += skb[1]->len;
  6723. skb[0]->truesize += skb[1]->truesize;
  6724. return skb[0];
  6725. err_skb1:
  6726. kfree_skb(skb[0]);
  6727. err_skb0:
  6728. return NULL;
  6729. }
  6730. struct skb_segment_test {
  6731. const char *descr;
  6732. struct sk_buff *(*build_skb)(void);
  6733. netdev_features_t features;
  6734. };
  6735. static struct skb_segment_test skb_segment_tests[] __initconst = {
  6736. {
  6737. .descr = "gso_with_rx_frags",
  6738. .build_skb = build_test_skb,
  6739. .features = NETIF_F_SG | NETIF_F_GSO_PARTIAL | NETIF_F_IP_CSUM |
  6740. NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM
  6741. },
  6742. {
  6743. .descr = "gso_linear_no_head_frag",
  6744. .build_skb = build_test_skb_linear_no_head_frag,
  6745. .features = NETIF_F_SG | NETIF_F_FRAGLIST |
  6746. NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_GSO |
  6747. NETIF_F_LLTX_BIT | NETIF_F_GRO |
  6748. NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
  6749. NETIF_F_HW_VLAN_STAG_TX_BIT
  6750. }
  6751. };
  6752. static __init int test_skb_segment_single(const struct skb_segment_test *test)
  6753. {
  6754. struct sk_buff *skb, *segs;
  6755. int ret = -1;
  6756. skb = test->build_skb();
  6757. if (!skb) {
  6758. pr_info("%s: failed to build_test_skb", __func__);
  6759. goto done;
  6760. }
  6761. segs = skb_segment(skb, test->features);
  6762. if (!IS_ERR(segs)) {
  6763. kfree_skb_list(segs);
  6764. ret = 0;
  6765. }
  6766. kfree_skb(skb);
  6767. done:
  6768. return ret;
  6769. }
  6770. static __init int test_skb_segment(void)
  6771. {
  6772. int i, err_cnt = 0, pass_cnt = 0;
  6773. for (i = 0; i < ARRAY_SIZE(skb_segment_tests); i++) {
  6774. const struct skb_segment_test *test = &skb_segment_tests[i];
  6775. pr_info("#%d %s ", i, test->descr);
  6776. if (test_skb_segment_single(test)) {
  6777. pr_cont("FAIL\n");
  6778. err_cnt++;
  6779. } else {
  6780. pr_cont("PASS\n");
  6781. pass_cnt++;
  6782. }
  6783. }
  6784. pr_info("%s: Summary: %d PASSED, %d FAILED\n", __func__,
  6785. pass_cnt, err_cnt);
  6786. return err_cnt ? -EINVAL : 0;
  6787. }
  6788. static __init int test_bpf(void)
  6789. {
  6790. int i, err_cnt = 0, pass_cnt = 0;
  6791. int jit_cnt = 0, run_cnt = 0;
  6792. for (i = 0; i < ARRAY_SIZE(tests); i++) {
  6793. struct bpf_prog *fp;
  6794. int err;
  6795. cond_resched();
  6796. if (exclude_test(i))
  6797. continue;
  6798. pr_info("#%d %s ", i, tests[i].descr);
  6799. fp = generate_filter(i, &err);
  6800. if (fp == NULL) {
  6801. if (err == 0) {
  6802. pass_cnt++;
  6803. continue;
  6804. }
  6805. err_cnt++;
  6806. continue;
  6807. }
  6808. pr_cont("jited:%u ", fp->jited);
  6809. run_cnt++;
  6810. if (fp->jited)
  6811. jit_cnt++;
  6812. err = run_one(fp, &tests[i]);
  6813. release_filter(fp, i);
  6814. if (err) {
  6815. pr_cont("FAIL (%d times)\n", err);
  6816. err_cnt++;
  6817. } else {
  6818. pr_cont("PASS\n");
  6819. pass_cnt++;
  6820. }
  6821. }
  6822. pr_info("Summary: %d PASSED, %d FAILED, [%d/%d JIT'ed]\n",
  6823. pass_cnt, err_cnt, jit_cnt, run_cnt);
  6824. return err_cnt ? -EINVAL : 0;
  6825. }
  6826. static int __init test_bpf_init(void)
  6827. {
  6828. int ret;
  6829. ret = prepare_bpf_tests();
  6830. if (ret < 0)
  6831. return ret;
  6832. ret = test_bpf();
  6833. destroy_bpf_tests();
  6834. if (ret)
  6835. return ret;
  6836. return test_skb_segment();
  6837. }
  6838. static void __exit test_bpf_exit(void)
  6839. {
  6840. }
  6841. module_init(test_bpf_init);
  6842. module_exit(test_bpf_exit);
  6843. MODULE_LICENSE("GPL");