PageRenderTime 35ms CodeModel.GetById 28ms RepoModel.GetById 0ms app.codeStats 1ms

/atlas/src/lapack-lite-3.1.1/TESTING/EIG/dchkee.f

http://github.com/numpy/vendor
FORTRAN Legacy | 2357 lines | 969 code | 0 blank | 1388 comment | 0 complexity | 648bca0481b4526c609031d9151aaea9 MD5 | raw file
Possible License(s): BSD-3-Clause
  1. PROGRAM DCHKEE
  2. *
  3. * -- LAPACK test routine (version 3.1.1) --
  4. * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
  5. * January 2007
  6. *
  7. * Purpose
  8. * =======
  9. *
  10. * DCHKEE tests the DOUBLE PRECISION LAPACK subroutines for the matrix
  11. * eigenvalue problem. The test paths in this version are
  12. *
  13. * NEP (Nonsymmetric Eigenvalue Problem):
  14. * Test DGEHRD, DORGHR, DHSEQR, DTREVC, DHSEIN, and DORMHR
  15. *
  16. * SEP (Symmetric Eigenvalue Problem):
  17. * Test DSYTRD, DORGTR, DSTEQR, DSTERF, DSTEIN, DSTEDC,
  18. * and drivers DSYEV(X), DSBEV(X), DSPEV(X), DSTEV(X),
  19. * DSYEVD, DSBEVD, DSPEVD, DSTEVD
  20. *
  21. * SVD (Singular Value Decomposition):
  22. * Test DGEBRD, DORGBR, DBDSQR, DBDSDC
  23. * and the drivers DGESVD, DGESDD
  24. *
  25. * DEV (Nonsymmetric Eigenvalue/eigenvector Driver):
  26. * Test DGEEV
  27. *
  28. * DES (Nonsymmetric Schur form Driver):
  29. * Test DGEES
  30. *
  31. * DVX (Nonsymmetric Eigenvalue/eigenvector Expert Driver):
  32. * Test DGEEVX
  33. *
  34. * DSX (Nonsymmetric Schur form Expert Driver):
  35. * Test DGEESX
  36. *
  37. * DGG (Generalized Nonsymmetric Eigenvalue Problem):
  38. * Test DGGHRD, DGGBAL, DGGBAK, DHGEQZ, and DTGEVC
  39. * and the driver routines DGEGS and DGEGV
  40. *
  41. * DGS (Generalized Nonsymmetric Schur form Driver):
  42. * Test DGGES
  43. *
  44. * DGV (Generalized Nonsymmetric Eigenvalue/eigenvector Driver):
  45. * Test DGGEV
  46. *
  47. * DGX (Generalized Nonsymmetric Schur form Expert Driver):
  48. * Test DGGESX
  49. *
  50. * DXV (Generalized Nonsymmetric Eigenvalue/eigenvector Expert Driver):
  51. * Test DGGEVX
  52. *
  53. * DSG (Symmetric Generalized Eigenvalue Problem):
  54. * Test DSYGST, DSYGV, DSYGVD, DSYGVX, DSPGST, DSPGV, DSPGVD,
  55. * DSPGVX, DSBGST, DSBGV, DSBGVD, and DSBGVX
  56. *
  57. * DSB (Symmetric Band Eigenvalue Problem):
  58. * Test DSBTRD
  59. *
  60. * DBB (Band Singular Value Decomposition):
  61. * Test DGBBRD
  62. *
  63. * DEC (Eigencondition estimation):
  64. * Test DLALN2, DLASY2, DLAEQU, DLAEXC, DTRSYL, DTREXC, DTRSNA,
  65. * DTRSEN, and DLAQTR
  66. *
  67. * DBL (Balancing a general matrix)
  68. * Test DGEBAL
  69. *
  70. * DBK (Back transformation on a balanced matrix)
  71. * Test DGEBAK
  72. *
  73. * DGL (Balancing a matrix pair)
  74. * Test DGGBAL
  75. *
  76. * DGK (Back transformation on a matrix pair)
  77. * Test DGGBAK
  78. *
  79. * GLM (Generalized Linear Regression Model):
  80. * Tests DGGGLM
  81. *
  82. * GQR (Generalized QR and RQ factorizations):
  83. * Tests DGGQRF and DGGRQF
  84. *
  85. * GSV (Generalized Singular Value Decomposition):
  86. * Tests DGGSVD, DGGSVP, DTGSJA, DLAGS2, DLAPLL, and DLAPMT
  87. *
  88. * LSE (Constrained Linear Least Squares):
  89. * Tests DGGLSE
  90. *
  91. * Each test path has a different set of inputs, but the data sets for
  92. * the driver routines xEV, xES, xVX, and xSX can be concatenated in a
  93. * single input file. The first line of input should contain one of the
  94. * 3-character path names in columns 1-3. The number of remaining lines
  95. * depends on what is found on the first line.
  96. *
  97. * The number of matrix types used in testing is often controllable from
  98. * the input file. The number of matrix types for each path, and the
  99. * test routine that describes them, is as follows:
  100. *
  101. * Path name(s) Types Test routine
  102. *
  103. * DHS or NEP 21 DCHKHS
  104. * DST or SEP 21 DCHKST (routines)
  105. * 18 DDRVST (drivers)
  106. * DBD or SVD 16 DCHKBD (routines)
  107. * 5 DDRVBD (drivers)
  108. * DEV 21 DDRVEV
  109. * DES 21 DDRVES
  110. * DVX 21 DDRVVX
  111. * DSX 21 DDRVSX
  112. * DGG 26 DCHKGG (routines)
  113. * 26 DDRVGG (drivers)
  114. * DGS 26 DDRGES
  115. * DGX 5 DDRGSX
  116. * DGV 26 DDRGEV
  117. * DXV 2 DDRGVX
  118. * DSG 21 DDRVSG
  119. * DSB 15 DCHKSB
  120. * DBB 15 DCHKBB
  121. * DEC - DCHKEC
  122. * DBL - DCHKBL
  123. * DBK - DCHKBK
  124. * DGL - DCHKGL
  125. * DGK - DCHKGK
  126. * GLM 8 DCKGLM
  127. * GQR 8 DCKGQR
  128. * GSV 8 DCKGSV
  129. * LSE 8 DCKLSE
  130. *
  131. *-----------------------------------------------------------------------
  132. *
  133. * NEP input file:
  134. *
  135. * line 2: NN, INTEGER
  136. * Number of values of N.
  137. *
  138. * line 3: NVAL, INTEGER array, dimension (NN)
  139. * The values for the matrix dimension N.
  140. *
  141. * line 4: NPARMS, INTEGER
  142. * Number of values of the parameters NB, NBMIN, NX, NS, and
  143. * MAXB.
  144. *
  145. * line 5: NBVAL, INTEGER array, dimension (NPARMS)
  146. * The values for the blocksize NB.
  147. *
  148. * line 6: NBMIN, INTEGER array, dimension (NPARMS)
  149. * The values for the minimum blocksize NBMIN.
  150. *
  151. * line 7: NXVAL, INTEGER array, dimension (NPARMS)
  152. * The values for the crossover point NX.
  153. *
  154. * line 8: INMIN, INTEGER array, dimension (NPARMS)
  155. * LAHQR vs TTQRE crossover point, >= 11
  156. *
  157. * line 9: INWIN, INTEGER array, dimension (NPARMS)
  158. * recommended deflation window size
  159. *
  160. * line 10: INIBL, INTEGER array, dimension (NPARMS)
  161. * nibble crossover point
  162. *
  163. * line 11: ISHFTS, INTEGER array, dimension (NPARMS)
  164. * number of simultaneous shifts)
  165. *
  166. * line 12: IACC22, INTEGER array, dimension (NPARMS)
  167. * select structured matrix multiply: 0, 1 or 2)
  168. *
  169. * line 13: THRESH
  170. * Threshold value for the test ratios. Information will be
  171. * printed about each test for which the test ratio is greater
  172. * than or equal to the threshold. To have all of the test
  173. * ratios printed, use THRESH = 0.0 .
  174. *
  175. * line 14: NEWSD, INTEGER
  176. * A code indicating how to set the random number seed.
  177. * = 0: Set the seed to a default value before each run
  178. * = 1: Initialize the seed to a default value only before the
  179. * first run
  180. * = 2: Like 1, but use the seed values on the next line
  181. *
  182. * If line 14 was 2:
  183. *
  184. * line 15: INTEGER array, dimension (4)
  185. * Four integer values for the random number seed.
  186. *
  187. * lines 15-EOF: The remaining lines occur in sets of 1 or 2 and allow
  188. * the user to specify the matrix types. Each line contains
  189. * a 3-character path name in columns 1-3, and the number
  190. * of matrix types must be the first nonblank item in columns
  191. * 4-80. If the number of matrix types is at least 1 but is
  192. * less than the maximum number of possible types, a second
  193. * line will be read to get the numbers of the matrix types to
  194. * be used. For example,
  195. * NEP 21
  196. * requests all of the matrix types for the nonsymmetric
  197. * eigenvalue problem, while
  198. * NEP 4
  199. * 9 10 11 12
  200. * requests only matrices of type 9, 10, 11, and 12.
  201. *
  202. * The valid 3-character path names are 'NEP' or 'SHS' for the
  203. * nonsymmetric eigenvalue routines.
  204. *
  205. *-----------------------------------------------------------------------
  206. *
  207. * SEP or DSG input file:
  208. *
  209. * line 2: NN, INTEGER
  210. * Number of values of N.
  211. *
  212. * line 3: NVAL, INTEGER array, dimension (NN)
  213. * The values for the matrix dimension N.
  214. *
  215. * line 4: NPARMS, INTEGER
  216. * Number of values of the parameters NB, NBMIN, and NX.
  217. *
  218. * line 5: NBVAL, INTEGER array, dimension (NPARMS)
  219. * The values for the blocksize NB.
  220. *
  221. * line 6: NBMIN, INTEGER array, dimension (NPARMS)
  222. * The values for the minimum blocksize NBMIN.
  223. *
  224. * line 7: NXVAL, INTEGER array, dimension (NPARMS)
  225. * The values for the crossover point NX.
  226. *
  227. * line 8: THRESH
  228. * Threshold value for the test ratios. Information will be
  229. * printed about each test for which the test ratio is greater
  230. * than or equal to the threshold.
  231. *
  232. * line 9: TSTCHK, LOGICAL
  233. * Flag indicating whether or not to test the LAPACK routines.
  234. *
  235. * line 10: TSTDRV, LOGICAL
  236. * Flag indicating whether or not to test the driver routines.
  237. *
  238. * line 11: TSTERR, LOGICAL
  239. * Flag indicating whether or not to test the error exits for
  240. * the LAPACK routines and driver routines.
  241. *
  242. * line 12: NEWSD, INTEGER
  243. * A code indicating how to set the random number seed.
  244. * = 0: Set the seed to a default value before each run
  245. * = 1: Initialize the seed to a default value only before the
  246. * first run
  247. * = 2: Like 1, but use the seed values on the next line
  248. *
  249. * If line 12 was 2:
  250. *
  251. * line 13: INTEGER array, dimension (4)
  252. * Four integer values for the random number seed.
  253. *
  254. * lines 13-EOF: Lines specifying matrix types, as for NEP.
  255. * The 3-character path names are 'SEP' or 'SST' for the
  256. * symmetric eigenvalue routines and driver routines, and
  257. * 'DSG' for the routines for the symmetric generalized
  258. * eigenvalue problem.
  259. *
  260. *-----------------------------------------------------------------------
  261. *
  262. * SVD input file:
  263. *
  264. * line 2: NN, INTEGER
  265. * Number of values of M and N.
  266. *
  267. * line 3: MVAL, INTEGER array, dimension (NN)
  268. * The values for the matrix row dimension M.
  269. *
  270. * line 4: NVAL, INTEGER array, dimension (NN)
  271. * The values for the matrix column dimension N.
  272. *
  273. * line 5: NPARMS, INTEGER
  274. * Number of values of the parameter NB, NBMIN, NX, and NRHS.
  275. *
  276. * line 6: NBVAL, INTEGER array, dimension (NPARMS)
  277. * The values for the blocksize NB.
  278. *
  279. * line 7: NBMIN, INTEGER array, dimension (NPARMS)
  280. * The values for the minimum blocksize NBMIN.
  281. *
  282. * line 8: NXVAL, INTEGER array, dimension (NPARMS)
  283. * The values for the crossover point NX.
  284. *
  285. * line 9: NSVAL, INTEGER array, dimension (NPARMS)
  286. * The values for the number of right hand sides NRHS.
  287. *
  288. * line 10: THRESH
  289. * Threshold value for the test ratios. Information will be
  290. * printed about each test for which the test ratio is greater
  291. * than or equal to the threshold.
  292. *
  293. * line 11: TSTCHK, LOGICAL
  294. * Flag indicating whether or not to test the LAPACK routines.
  295. *
  296. * line 12: TSTDRV, LOGICAL
  297. * Flag indicating whether or not to test the driver routines.
  298. *
  299. * line 13: TSTERR, LOGICAL
  300. * Flag indicating whether or not to test the error exits for
  301. * the LAPACK routines and driver routines.
  302. *
  303. * line 14: NEWSD, INTEGER
  304. * A code indicating how to set the random number seed.
  305. * = 0: Set the seed to a default value before each run
  306. * = 1: Initialize the seed to a default value only before the
  307. * first run
  308. * = 2: Like 1, but use the seed values on the next line
  309. *
  310. * If line 14 was 2:
  311. *
  312. * line 15: INTEGER array, dimension (4)
  313. * Four integer values for the random number seed.
  314. *
  315. * lines 15-EOF: Lines specifying matrix types, as for NEP.
  316. * The 3-character path names are 'SVD' or 'SBD' for both the
  317. * SVD routines and the SVD driver routines.
  318. *
  319. *-----------------------------------------------------------------------
  320. *
  321. * DEV and DES data files:
  322. *
  323. * line 1: 'DEV' or 'DES' in columns 1 to 3.
  324. *
  325. * line 2: NSIZES, INTEGER
  326. * Number of sizes of matrices to use. Should be at least 0
  327. * and at most 20. If NSIZES = 0, no testing is done
  328. * (although the remaining 3 lines are still read).
  329. *
  330. * line 3: NN, INTEGER array, dimension(NSIZES)
  331. * Dimensions of matrices to be tested.
  332. *
  333. * line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs
  334. * These integer parameters determine how blocking is done
  335. * (see ILAENV for details)
  336. * NB : block size
  337. * NBMIN : minimum block size
  338. * NX : minimum dimension for blocking
  339. * NS : number of shifts in xHSEQR
  340. * NBCOL : minimum column dimension for blocking
  341. *
  342. * line 5: THRESH, REAL
  343. * The test threshold against which computed residuals are
  344. * compared. Should generally be in the range from 10. to 20.
  345. * If it is 0., all test case data will be printed.
  346. *
  347. * line 6: TSTERR, LOGICAL
  348. * Flag indicating whether or not to test the error exits.
  349. *
  350. * line 7: NEWSD, INTEGER
  351. * A code indicating how to set the random number seed.
  352. * = 0: Set the seed to a default value before each run
  353. * = 1: Initialize the seed to a default value only before the
  354. * first run
  355. * = 2: Like 1, but use the seed values on the next line
  356. *
  357. * If line 7 was 2:
  358. *
  359. * line 8: INTEGER array, dimension (4)
  360. * Four integer values for the random number seed.
  361. *
  362. * lines 9 and following: Lines specifying matrix types, as for NEP.
  363. * The 3-character path name is 'DEV' to test SGEEV, or
  364. * 'DES' to test SGEES.
  365. *
  366. *-----------------------------------------------------------------------
  367. *
  368. * The DVX data has two parts. The first part is identical to DEV,
  369. * and the second part consists of test matrices with precomputed
  370. * solutions.
  371. *
  372. * line 1: 'DVX' in columns 1-3.
  373. *
  374. * line 2: NSIZES, INTEGER
  375. * If NSIZES = 0, no testing of randomly generated examples
  376. * is done, but any precomputed examples are tested.
  377. *
  378. * line 3: NN, INTEGER array, dimension(NSIZES)
  379. *
  380. * line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs
  381. *
  382. * line 5: THRESH, REAL
  383. *
  384. * line 6: TSTERR, LOGICAL
  385. *
  386. * line 7: NEWSD, INTEGER
  387. *
  388. * If line 7 was 2:
  389. *
  390. * line 8: INTEGER array, dimension (4)
  391. *
  392. * lines 9 and following: The first line contains 'DVX' in columns 1-3
  393. * followed by the number of matrix types, possibly with
  394. * a second line to specify certain matrix types.
  395. * If the number of matrix types = 0, no testing of randomly
  396. * generated examples is done, but any precomputed examples
  397. * are tested.
  398. *
  399. * remaining lines : Each matrix is stored on 1+2*N lines, where N is
  400. * its dimension. The first line contains the dimension (a
  401. * single integer). The next N lines contain the matrix, one
  402. * row per line. The last N lines correspond to each
  403. * eigenvalue. Each of these last N lines contains 4 real
  404. * values: the real part of the eigenvalue, the imaginary
  405. * part of the eigenvalue, the reciprocal condition number of
  406. * the eigenvalues, and the reciprocal condition number of the
  407. * eigenvector. The end of data is indicated by dimension N=0.
  408. * Even if no data is to be tested, there must be at least one
  409. * line containing N=0.
  410. *
  411. *-----------------------------------------------------------------------
  412. *
  413. * The DSX data is like DVX. The first part is identical to DEV, and the
  414. * second part consists of test matrices with precomputed solutions.
  415. *
  416. * line 1: 'DSX' in columns 1-3.
  417. *
  418. * line 2: NSIZES, INTEGER
  419. * If NSIZES = 0, no testing of randomly generated examples
  420. * is done, but any precomputed examples are tested.
  421. *
  422. * line 3: NN, INTEGER array, dimension(NSIZES)
  423. *
  424. * line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs
  425. *
  426. * line 5: THRESH, REAL
  427. *
  428. * line 6: TSTERR, LOGICAL
  429. *
  430. * line 7: NEWSD, INTEGER
  431. *
  432. * If line 7 was 2:
  433. *
  434. * line 8: INTEGER array, dimension (4)
  435. *
  436. * lines 9 and following: The first line contains 'DSX' in columns 1-3
  437. * followed by the number of matrix types, possibly with
  438. * a second line to specify certain matrix types.
  439. * If the number of matrix types = 0, no testing of randomly
  440. * generated examples is done, but any precomputed examples
  441. * are tested.
  442. *
  443. * remaining lines : Each matrix is stored on 3+N lines, where N is its
  444. * dimension. The first line contains the dimension N and the
  445. * dimension M of an invariant subspace. The second line
  446. * contains M integers, identifying the eigenvalues in the
  447. * invariant subspace (by their position in a list of
  448. * eigenvalues ordered by increasing real part). The next N
  449. * lines contain the matrix. The last line contains the
  450. * reciprocal condition number for the average of the selected
  451. * eigenvalues, and the reciprocal condition number for the
  452. * corresponding right invariant subspace. The end of data is
  453. * indicated by a line containing N=0 and M=0. Even if no data
  454. * is to be tested, there must be at least one line containing
  455. * N=0 and M=0.
  456. *
  457. *-----------------------------------------------------------------------
  458. *
  459. * DGG input file:
  460. *
  461. * line 2: NN, INTEGER
  462. * Number of values of N.
  463. *
  464. * line 3: NVAL, INTEGER array, dimension (NN)
  465. * The values for the matrix dimension N.
  466. *
  467. * line 4: NPARMS, INTEGER
  468. * Number of values of the parameters NB, NBMIN, NS, MAXB, and
  469. * NBCOL.
  470. *
  471. * line 5: NBVAL, INTEGER array, dimension (NPARMS)
  472. * The values for the blocksize NB.
  473. *
  474. * line 6: NBMIN, INTEGER array, dimension (NPARMS)
  475. * The values for NBMIN, the minimum row dimension for blocks.
  476. *
  477. * line 7: NSVAL, INTEGER array, dimension (NPARMS)
  478. * The values for the number of shifts.
  479. *
  480. * line 8: MXBVAL, INTEGER array, dimension (NPARMS)
  481. * The values for MAXB, used in determining minimum blocksize.
  482. *
  483. * line 9: NBCOL, INTEGER array, dimension (NPARMS)
  484. * The values for NBCOL, the minimum column dimension for
  485. * blocks.
  486. *
  487. * line 10: THRESH
  488. * Threshold value for the test ratios. Information will be
  489. * printed about each test for which the test ratio is greater
  490. * than or equal to the threshold.
  491. *
  492. * line 11: TSTCHK, LOGICAL
  493. * Flag indicating whether or not to test the LAPACK routines.
  494. *
  495. * line 12: TSTDRV, LOGICAL
  496. * Flag indicating whether or not to test the driver routines.
  497. *
  498. * line 13: TSTERR, LOGICAL
  499. * Flag indicating whether or not to test the error exits for
  500. * the LAPACK routines and driver routines.
  501. *
  502. * line 14: NEWSD, INTEGER
  503. * A code indicating how to set the random number seed.
  504. * = 0: Set the seed to a default value before each run
  505. * = 1: Initialize the seed to a default value only before the
  506. * first run
  507. * = 2: Like 1, but use the seed values on the next line
  508. *
  509. * If line 14 was 2:
  510. *
  511. * line 15: INTEGER array, dimension (4)
  512. * Four integer values for the random number seed.
  513. *
  514. * lines 15-EOF: Lines specifying matrix types, as for NEP.
  515. * The 3-character path name is 'DGG' for the generalized
  516. * eigenvalue problem routines and driver routines.
  517. *
  518. *-----------------------------------------------------------------------
  519. *
  520. * DGS and DGV input files:
  521. *
  522. * line 1: 'DGS' or 'DGV' in columns 1 to 3.
  523. *
  524. * line 2: NN, INTEGER
  525. * Number of values of N.
  526. *
  527. * line 3: NVAL, INTEGER array, dimension(NN)
  528. * Dimensions of matrices to be tested.
  529. *
  530. * line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs
  531. * These integer parameters determine how blocking is done
  532. * (see ILAENV for details)
  533. * NB : block size
  534. * NBMIN : minimum block size
  535. * NX : minimum dimension for blocking
  536. * NS : number of shifts in xHGEQR
  537. * NBCOL : minimum column dimension for blocking
  538. *
  539. * line 5: THRESH, REAL
  540. * The test threshold against which computed residuals are
  541. * compared. Should generally be in the range from 10. to 20.
  542. * If it is 0., all test case data will be printed.
  543. *
  544. * line 6: TSTERR, LOGICAL
  545. * Flag indicating whether or not to test the error exits.
  546. *
  547. * line 7: NEWSD, INTEGER
  548. * A code indicating how to set the random number seed.
  549. * = 0: Set the seed to a default value before each run
  550. * = 1: Initialize the seed to a default value only before the
  551. * first run
  552. * = 2: Like 1, but use the seed values on the next line
  553. *
  554. * If line 17 was 2:
  555. *
  556. * line 7: INTEGER array, dimension (4)
  557. * Four integer values for the random number seed.
  558. *
  559. * lines 7-EOF: Lines specifying matrix types, as for NEP.
  560. * The 3-character path name is 'DGS' for the generalized
  561. * eigenvalue problem routines and driver routines.
  562. *
  563. *-----------------------------------------------------------------------
  564. *
  565. * DXV input files:
  566. *
  567. * line 1: 'DXV' in columns 1 to 3.
  568. *
  569. * line 2: N, INTEGER
  570. * Value of N.
  571. *
  572. * line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs
  573. * These integer parameters determine how blocking is done
  574. * (see ILAENV for details)
  575. * NB : block size
  576. * NBMIN : minimum block size
  577. * NX : minimum dimension for blocking
  578. * NS : number of shifts in xHGEQR
  579. * NBCOL : minimum column dimension for blocking
  580. *
  581. * line 4: THRESH, REAL
  582. * The test threshold against which computed residuals are
  583. * compared. Should generally be in the range from 10. to 20.
  584. * Information will be printed about each test for which the
  585. * test ratio is greater than or equal to the threshold.
  586. *
  587. * line 5: TSTERR, LOGICAL
  588. * Flag indicating whether or not to test the error exits for
  589. * the LAPACK routines and driver routines.
  590. *
  591. * line 6: NEWSD, INTEGER
  592. * A code indicating how to set the random number seed.
  593. * = 0: Set the seed to a default value before each run
  594. * = 1: Initialize the seed to a default value only before the
  595. * first run
  596. * = 2: Like 1, but use the seed values on the next line
  597. *
  598. * If line 6 was 2:
  599. *
  600. * line 7: INTEGER array, dimension (4)
  601. * Four integer values for the random number seed.
  602. *
  603. * If line 2 was 0:
  604. *
  605. * line 7-EOF: Precomputed examples are tested.
  606. *
  607. * remaining lines : Each example is stored on 3+2*N lines, where N is
  608. * its dimension. The first line contains the dimension (a
  609. * single integer). The next N lines contain the matrix A, one
  610. * row per line. The next N lines contain the matrix B. The
  611. * next line contains the reciprocals of the eigenvalue
  612. * condition numbers. The last line contains the reciprocals of
  613. * the eigenvector condition numbers. The end of data is
  614. * indicated by dimension N=0. Even if no data is to be tested,
  615. * there must be at least one line containing N=0.
  616. *
  617. *-----------------------------------------------------------------------
  618. *
  619. * DGX input files:
  620. *
  621. * line 1: 'DGX' in columns 1 to 3.
  622. *
  623. * line 2: N, INTEGER
  624. * Value of N.
  625. *
  626. * line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs
  627. * These integer parameters determine how blocking is done
  628. * (see ILAENV for details)
  629. * NB : block size
  630. * NBMIN : minimum block size
  631. * NX : minimum dimension for blocking
  632. * NS : number of shifts in xHGEQR
  633. * NBCOL : minimum column dimension for blocking
  634. *
  635. * line 4: THRESH, REAL
  636. * The test threshold against which computed residuals are
  637. * compared. Should generally be in the range from 10. to 20.
  638. * Information will be printed about each test for which the
  639. * test ratio is greater than or equal to the threshold.
  640. *
  641. * line 5: TSTERR, LOGICAL
  642. * Flag indicating whether or not to test the error exits for
  643. * the LAPACK routines and driver routines.
  644. *
  645. * line 6: NEWSD, INTEGER
  646. * A code indicating how to set the random number seed.
  647. * = 0: Set the seed to a default value before each run
  648. * = 1: Initialize the seed to a default value only before the
  649. * first run
  650. * = 2: Like 1, but use the seed values on the next line
  651. *
  652. * If line 6 was 2:
  653. *
  654. * line 7: INTEGER array, dimension (4)
  655. * Four integer values for the random number seed.
  656. *
  657. * If line 2 was 0:
  658. *
  659. * line 7-EOF: Precomputed examples are tested.
  660. *
  661. * remaining lines : Each example is stored on 3+2*N lines, where N is
  662. * its dimension. The first line contains the dimension (a
  663. * single integer). The next line contains an integer k such
  664. * that only the last k eigenvalues will be selected and appear
  665. * in the leading diagonal blocks of $A$ and $B$. The next N
  666. * lines contain the matrix A, one row per line. The next N
  667. * lines contain the matrix B. The last line contains the
  668. * reciprocal of the eigenvalue cluster condition number and the
  669. * reciprocal of the deflating subspace (associated with the
  670. * selected eigencluster) condition number. The end of data is
  671. * indicated by dimension N=0. Even if no data is to be tested,
  672. * there must be at least one line containing N=0.
  673. *
  674. *-----------------------------------------------------------------------
  675. *
  676. * DSB input file:
  677. *
  678. * line 2: NN, INTEGER
  679. * Number of values of N.
  680. *
  681. * line 3: NVAL, INTEGER array, dimension (NN)
  682. * The values for the matrix dimension N.
  683. *
  684. * line 4: NK, INTEGER
  685. * Number of values of K.
  686. *
  687. * line 5: KVAL, INTEGER array, dimension (NK)
  688. * The values for the matrix dimension K.
  689. *
  690. * line 6: THRESH
  691. * Threshold value for the test ratios. Information will be
  692. * printed about each test for which the test ratio is greater
  693. * than or equal to the threshold.
  694. *
  695. * line 7: NEWSD, INTEGER
  696. * A code indicating how to set the random number seed.
  697. * = 0: Set the seed to a default value before each run
  698. * = 1: Initialize the seed to a default value only before the
  699. * first run
  700. * = 2: Like 1, but use the seed values on the next line
  701. *
  702. * If line 7 was 2:
  703. *
  704. * line 8: INTEGER array, dimension (4)
  705. * Four integer values for the random number seed.
  706. *
  707. * lines 8-EOF: Lines specifying matrix types, as for NEP.
  708. * The 3-character path name is 'DSB'.
  709. *
  710. *-----------------------------------------------------------------------
  711. *
  712. * DBB input file:
  713. *
  714. * line 2: NN, INTEGER
  715. * Number of values of M and N.
  716. *
  717. * line 3: MVAL, INTEGER array, dimension (NN)
  718. * The values for the matrix row dimension M.
  719. *
  720. * line 4: NVAL, INTEGER array, dimension (NN)
  721. * The values for the matrix column dimension N.
  722. *
  723. * line 4: NK, INTEGER
  724. * Number of values of K.
  725. *
  726. * line 5: KVAL, INTEGER array, dimension (NK)
  727. * The values for the matrix bandwidth K.
  728. *
  729. * line 6: NPARMS, INTEGER
  730. * Number of values of the parameter NRHS
  731. *
  732. * line 7: NSVAL, INTEGER array, dimension (NPARMS)
  733. * The values for the number of right hand sides NRHS.
  734. *
  735. * line 8: THRESH
  736. * Threshold value for the test ratios. Information will be
  737. * printed about each test for which the test ratio is greater
  738. * than or equal to the threshold.
  739. *
  740. * line 9: NEWSD, INTEGER
  741. * A code indicating how to set the random number seed.
  742. * = 0: Set the seed to a default value before each run
  743. * = 1: Initialize the seed to a default value only before the
  744. * first run
  745. * = 2: Like 1, but use the seed values on the next line
  746. *
  747. * If line 9 was 2:
  748. *
  749. * line 10: INTEGER array, dimension (4)
  750. * Four integer values for the random number seed.
  751. *
  752. * lines 10-EOF: Lines specifying matrix types, as for SVD.
  753. * The 3-character path name is 'DBB'.
  754. *
  755. *-----------------------------------------------------------------------
  756. *
  757. * DEC input file:
  758. *
  759. * line 2: THRESH, REAL
  760. * Threshold value for the test ratios. Information will be
  761. * printed about each test for which the test ratio is greater
  762. * than or equal to the threshold.
  763. *
  764. * lines 3-EOF:
  765. *
  766. * Input for testing the eigencondition routines consists of a set of
  767. * specially constructed test cases and their solutions. The data
  768. * format is not intended to be modified by the user.
  769. *
  770. *-----------------------------------------------------------------------
  771. *
  772. * DBL and DBK input files:
  773. *
  774. * line 1: 'DBL' in columns 1-3 to test SGEBAL, or 'DBK' in
  775. * columns 1-3 to test SGEBAK.
  776. *
  777. * The remaining lines consist of specially constructed test cases.
  778. *
  779. *-----------------------------------------------------------------------
  780. *
  781. * DGL and DGK input files:
  782. *
  783. * line 1: 'DGL' in columns 1-3 to test DGGBAL, or 'DGK' in
  784. * columns 1-3 to test DGGBAK.
  785. *
  786. * The remaining lines consist of specially constructed test cases.
  787. *
  788. *-----------------------------------------------------------------------
  789. *
  790. * GLM data file:
  791. *
  792. * line 1: 'GLM' in columns 1 to 3.
  793. *
  794. * line 2: NN, INTEGER
  795. * Number of values of M, P, and N.
  796. *
  797. * line 3: MVAL, INTEGER array, dimension(NN)
  798. * Values of M (row dimension).
  799. *
  800. * line 4: PVAL, INTEGER array, dimension(NN)
  801. * Values of P (row dimension).
  802. *
  803. * line 5: NVAL, INTEGER array, dimension(NN)
  804. * Values of N (column dimension), note M <= N <= M+P.
  805. *
  806. * line 6: THRESH, REAL
  807. * Threshold value for the test ratios. Information will be
  808. * printed about each test for which the test ratio is greater
  809. * than or equal to the threshold.
  810. *
  811. * line 7: TSTERR, LOGICAL
  812. * Flag indicating whether or not to test the error exits for
  813. * the LAPACK routines and driver routines.
  814. *
  815. * line 8: NEWSD, INTEGER
  816. * A code indicating how to set the random number seed.
  817. * = 0: Set the seed to a default value before each run
  818. * = 1: Initialize the seed to a default value only before the
  819. * first run
  820. * = 2: Like 1, but use the seed values on the next line
  821. *
  822. * If line 8 was 2:
  823. *
  824. * line 9: INTEGER array, dimension (4)
  825. * Four integer values for the random number seed.
  826. *
  827. * lines 9-EOF: Lines specifying matrix types, as for NEP.
  828. * The 3-character path name is 'GLM' for the generalized
  829. * linear regression model routines.
  830. *
  831. *-----------------------------------------------------------------------
  832. *
  833. * GQR data file:
  834. *
  835. * line 1: 'GQR' in columns 1 to 3.
  836. *
  837. * line 2: NN, INTEGER
  838. * Number of values of M, P, and N.
  839. *
  840. * line 3: MVAL, INTEGER array, dimension(NN)
  841. * Values of M.
  842. *
  843. * line 4: PVAL, INTEGER array, dimension(NN)
  844. * Values of P.
  845. *
  846. * line 5: NVAL, INTEGER array, dimension(NN)
  847. * Values of N.
  848. *
  849. * line 6: THRESH, REAL
  850. * Threshold value for the test ratios. Information will be
  851. * printed about each test for which the test ratio is greater
  852. * than or equal to the threshold.
  853. *
  854. * line 7: TSTERR, LOGICAL
  855. * Flag indicating whether or not to test the error exits for
  856. * the LAPACK routines and driver routines.
  857. *
  858. * line 8: NEWSD, INTEGER
  859. * A code indicating how to set the random number seed.
  860. * = 0: Set the seed to a default value before each run
  861. * = 1: Initialize the seed to a default value only before the
  862. * first run
  863. * = 2: Like 1, but use the seed values on the next line
  864. *
  865. * If line 8 was 2:
  866. *
  867. * line 9: INTEGER array, dimension (4)
  868. * Four integer values for the random number seed.
  869. *
  870. * lines 9-EOF: Lines specifying matrix types, as for NEP.
  871. * The 3-character path name is 'GQR' for the generalized
  872. * QR and RQ routines.
  873. *
  874. *-----------------------------------------------------------------------
  875. *
  876. * GSV data file:
  877. *
  878. * line 1: 'GSV' in columns 1 to 3.
  879. *
  880. * line 2: NN, INTEGER
  881. * Number of values of M, P, and N.
  882. *
  883. * line 3: MVAL, INTEGER array, dimension(NN)
  884. * Values of M (row dimension).
  885. *
  886. * line 4: PVAL, INTEGER array, dimension(NN)
  887. * Values of P (row dimension).
  888. *
  889. * line 5: NVAL, INTEGER array, dimension(NN)
  890. * Values of N (column dimension).
  891. *
  892. * line 6: THRESH, REAL
  893. * Threshold value for the test ratios. Information will be
  894. * printed about each test for which the test ratio is greater
  895. * than or equal to the threshold.
  896. *
  897. * line 7: TSTERR, LOGICAL
  898. * Flag indicating whether or not to test the error exits for
  899. * the LAPACK routines and driver routines.
  900. *
  901. * line 8: NEWSD, INTEGER
  902. * A code indicating how to set the random number seed.
  903. * = 0: Set the seed to a default value before each run
  904. * = 1: Initialize the seed to a default value only before the
  905. * first run
  906. * = 2: Like 1, but use the seed values on the next line
  907. *
  908. * If line 8 was 2:
  909. *
  910. * line 9: INTEGER array, dimension (4)
  911. * Four integer values for the random number seed.
  912. *
  913. * lines 9-EOF: Lines specifying matrix types, as for NEP.
  914. * The 3-character path name is 'GSV' for the generalized
  915. * SVD routines.
  916. *
  917. *-----------------------------------------------------------------------
  918. *
  919. * LSE data file:
  920. *
  921. * line 1: 'LSE' in columns 1 to 3.
  922. *
  923. * line 2: NN, INTEGER
  924. * Number of values of M, P, and N.
  925. *
  926. * line 3: MVAL, INTEGER array, dimension(NN)
  927. * Values of M.
  928. *
  929. * line 4: PVAL, INTEGER array, dimension(NN)
  930. * Values of P.
  931. *
  932. * line 5: NVAL, INTEGER array, dimension(NN)
  933. * Values of N, note P <= N <= P+M.
  934. *
  935. * line 6: THRESH, REAL
  936. * Threshold value for the test ratios. Information will be
  937. * printed about each test for which the test ratio is greater
  938. * than or equal to the threshold.
  939. *
  940. * line 7: TSTERR, LOGICAL
  941. * Flag indicating whether or not to test the error exits for
  942. * the LAPACK routines and driver routines.
  943. *
  944. * line 8: NEWSD, INTEGER
  945. * A code indicating how to set the random number seed.
  946. * = 0: Set the seed to a default value before each run
  947. * = 1: Initialize the seed to a default value only before the
  948. * first run
  949. * = 2: Like 1, but use the seed values on the next line
  950. *
  951. * If line 8 was 2:
  952. *
  953. * line 9: INTEGER array, dimension (4)
  954. * Four integer values for the random number seed.
  955. *
  956. * lines 9-EOF: Lines specifying matrix types, as for NEP.
  957. * The 3-character path name is 'GSV' for the generalized
  958. * SVD routines.
  959. *
  960. *-----------------------------------------------------------------------
  961. *
  962. * NMAX is currently set to 132 and must be at least 12 for some of the
  963. * precomputed examples, and LWORK = NMAX*(5*NMAX+5)+1 in the parameter
  964. * statements below. For SVD, we assume NRHS may be as big as N. The
  965. * parameter NEED is set to 14 to allow for 14 N-by-N matrices for DGG.
  966. *
  967. * =====================================================================
  968. *
  969. * .. Parameters ..
  970. INTEGER NMAX
  971. PARAMETER ( NMAX = 132 )
  972. INTEGER NCMAX
  973. PARAMETER ( NCMAX = 20 )
  974. INTEGER NEED
  975. PARAMETER ( NEED = 14 )
  976. INTEGER LWORK
  977. PARAMETER ( LWORK = NMAX*( 5*NMAX+5 )+1 )
  978. INTEGER LIWORK
  979. PARAMETER ( LIWORK = NMAX*( 5*NMAX+20 ) )
  980. INTEGER MAXIN
  981. PARAMETER ( MAXIN = 20 )
  982. INTEGER MAXT
  983. PARAMETER ( MAXT = 30 )
  984. INTEGER NIN, NOUT
  985. PARAMETER ( NIN = 5, NOUT = 6 )
  986. * ..
  987. * .. Local Scalars ..
  988. LOGICAL DBB, DGG, DSB, FATAL, GLM, GQR, GSV, LSE, NEP,
  989. $ DBK, DBL, SEP, DES, DEV, DGK, DGL, DGS, DGV,
  990. $ DGX, DSX, SVD, DVX, DXV, TSTCHK, TSTDIF,
  991. $ TSTDRV, TSTERR
  992. CHARACTER C1
  993. CHARACTER*3 C3, PATH
  994. CHARACTER*6 VNAME
  995. CHARACTER*10 INTSTR
  996. CHARACTER*80 LINE
  997. INTEGER I, I1, IC, INFO, ITMP, K, LENP, MAXTYP, NEWSD,
  998. $ NK, NN, NPARMS, NRHS, NTYPES,
  999. $ VERS_MAJOR, VERS_MINOR, VERS_PATCH
  1000. DOUBLE PRECISION EPS, S1, S2, THRESH, THRSHN
  1001. * ..
  1002. * .. Local Arrays ..
  1003. LOGICAL DOTYPE( MAXT ), LOGWRK( NMAX )
  1004. INTEGER IOLDSD( 4 ), ISEED( 4 ), IWORK( LIWORK ),
  1005. $ KVAL( MAXIN ), MVAL( MAXIN ), MXBVAL( MAXIN ),
  1006. $ NBCOL( MAXIN ), NBMIN( MAXIN ), NBVAL( MAXIN ),
  1007. $ NSVAL( MAXIN ), NVAL( MAXIN ), NXVAL( MAXIN ),
  1008. $ PVAL( MAXIN )
  1009. INTEGER INMIN( MAXIN ), INWIN( MAXIN ), INIBL( MAXIN ),
  1010. $ ISHFTS( MAXIN ), IACC22( MAXIN )
  1011. DOUBLE PRECISION A( NMAX*NMAX, NEED ), B( NMAX*NMAX, 5 ),
  1012. $ C( NCMAX*NCMAX, NCMAX*NCMAX ), D( NMAX, 12 ),
  1013. $ RESULT( 500 ), TAUA( NMAX ), TAUB( NMAX ),
  1014. $ WORK( LWORK ), X( 5*NMAX )
  1015. * ..
  1016. * .. External Functions ..
  1017. LOGICAL LSAMEN
  1018. DOUBLE PRECISION DLAMCH, DSECND
  1019. EXTERNAL LSAMEN, DLAMCH, DSECND
  1020. * ..
  1021. * .. External Subroutines ..
  1022. EXTERNAL ALAREQ, DCHKBB, DCHKBD, DCHKBK, DCHKBL, DCHKEC,
  1023. $ DCHKGG, DCHKGK, DCHKGL, DCHKHS, DCHKSB, DCHKST,
  1024. $ DCKGLM, DCKGQR, DCKGSV, DCKLSE, DDRGES, DDRGEV,
  1025. $ DDRGSX, DDRGVX, DDRVBD, DDRVES, DDRVEV, DDRVGG,
  1026. $ DDRVSG, DDRVST, DDRVSX, DDRVVX, DERRBD, DERRED,
  1027. $ DERRGG, DERRHS, DERRST, ILAVER, XLAENV
  1028. * ..
  1029. * .. Intrinsic Functions ..
  1030. INTRINSIC LEN, MIN
  1031. * ..
  1032. * .. Scalars in Common ..
  1033. LOGICAL LERR, OK
  1034. CHARACTER*6 SRNAMT
  1035. INTEGER INFOT, MAXB, NPROC, NSHIFT, NUNIT, SELDIM,
  1036. $ SELOPT
  1037. * ..
  1038. * .. Arrays in Common ..
  1039. LOGICAL SELVAL( 20 )
  1040. INTEGER IPARMS( 100 )
  1041. DOUBLE PRECISION SELWI( 20 ), SELWR( 20 )
  1042. * ..
  1043. * .. Common blocks ..
  1044. COMMON / CENVIR / NPROC, NSHIFT, MAXB
  1045. COMMON / INFOC / INFOT, NUNIT, OK, LERR
  1046. COMMON / SRNAMC / SRNAMT
  1047. COMMON / SSLCT / SELOPT, SELDIM, SELVAL, SELWR, SELWI
  1048. COMMON / ZLAENV / IPARMS
  1049. * ..
  1050. * .. Data statements ..
  1051. DATA INTSTR / '0123456789' /
  1052. DATA IOLDSD / 0, 0, 0, 1 /
  1053. * ..
  1054. * .. Executable Statements ..
  1055. *
  1056. S1 = DSECND( )
  1057. FATAL = .FALSE.
  1058. NUNIT = NOUT
  1059. *
  1060. * Return to here to read multiple sets of data
  1061. *
  1062. 10 CONTINUE
  1063. *
  1064. * Read the first line and set the 3-character test path
  1065. *
  1066. READ( NIN, FMT = '(A80)', END = 380 )LINE
  1067. PATH = LINE( 1: 3 )
  1068. NEP = LSAMEN( 3, PATH, 'NEP' ) .OR. LSAMEN( 3, PATH, 'DHS' )
  1069. SEP = LSAMEN( 3, PATH, 'SEP' ) .OR. LSAMEN( 3, PATH, 'DST' ) .OR.
  1070. $ LSAMEN( 3, PATH, 'DSG' )
  1071. SVD = LSAMEN( 3, PATH, 'SVD' ) .OR. LSAMEN( 3, PATH, 'DBD' )
  1072. DEV = LSAMEN( 3, PATH, 'DEV' )
  1073. DES = LSAMEN( 3, PATH, 'DES' )
  1074. DVX = LSAMEN( 3, PATH, 'DVX' )
  1075. DSX = LSAMEN( 3, PATH, 'DSX' )
  1076. DGG = LSAMEN( 3, PATH, 'DGG' )
  1077. DGS = LSAMEN( 3, PATH, 'DGS' )
  1078. DGX = LSAMEN( 3, PATH, 'DGX' )
  1079. DGV = LSAMEN( 3, PATH, 'DGV' )
  1080. DXV = LSAMEN( 3, PATH, 'DXV' )
  1081. DSB = LSAMEN( 3, PATH, 'DSB' )
  1082. DBB = LSAMEN( 3, PATH, 'DBB' )
  1083. GLM = LSAMEN( 3, PATH, 'GLM' )
  1084. GQR = LSAMEN( 3, PATH, 'GQR' ) .OR. LSAMEN( 3, PATH, 'GRQ' )
  1085. GSV = LSAMEN( 3, PATH, 'GSV' )
  1086. LSE = LSAMEN( 3, PATH, 'LSE' )
  1087. DBL = LSAMEN( 3, PATH, 'DBL' )
  1088. DBK = LSAMEN( 3, PATH, 'DBK' )
  1089. DGL = LSAMEN( 3, PATH, 'DGL' )
  1090. DGK = LSAMEN( 3, PATH, 'DGK' )
  1091. *
  1092. * Report values of parameters.
  1093. *
  1094. IF( PATH.EQ.' ' ) THEN
  1095. GO TO 10
  1096. ELSE IF( NEP ) THEN
  1097. WRITE( NOUT, FMT = 9987 )
  1098. ELSE IF( SEP ) THEN
  1099. WRITE( NOUT, FMT = 9986 )
  1100. ELSE IF( SVD ) THEN
  1101. WRITE( NOUT, FMT = 9985 )
  1102. ELSE IF( DEV ) THEN
  1103. WRITE( NOUT, FMT = 9979 )
  1104. ELSE IF( DES ) THEN
  1105. WRITE( NOUT, FMT = 9978 )
  1106. ELSE IF( DVX ) THEN
  1107. WRITE( NOUT, FMT = 9977 )
  1108. ELSE IF( DSX ) THEN
  1109. WRITE( NOUT, FMT = 9976 )
  1110. ELSE IF( DGG ) THEN
  1111. WRITE( NOUT, FMT = 9975 )
  1112. ELSE IF( DGS ) THEN
  1113. WRITE( NOUT, FMT = 9964 )
  1114. ELSE IF( DGX ) THEN
  1115. WRITE( NOUT, FMT = 9965 )
  1116. ELSE IF( DGV ) THEN
  1117. WRITE( NOUT, FMT = 9963 )
  1118. ELSE IF( DXV ) THEN
  1119. WRITE( NOUT, FMT = 9962 )
  1120. ELSE IF( DSB ) THEN
  1121. WRITE( NOUT, FMT = 9974 )
  1122. ELSE IF( DBB ) THEN
  1123. WRITE( NOUT, FMT = 9967 )
  1124. ELSE IF( GLM ) THEN
  1125. WRITE( NOUT, FMT = 9971 )
  1126. ELSE IF( GQR ) THEN
  1127. WRITE( NOUT, FMT = 9970 )
  1128. ELSE IF( GSV ) THEN
  1129. WRITE( NOUT, FMT = 9969 )
  1130. ELSE IF( LSE ) THEN
  1131. WRITE( NOUT, FMT = 9968 )
  1132. ELSE IF( DBL ) THEN
  1133. *
  1134. * DGEBAL: Balancing
  1135. *
  1136. CALL DCHKBL( NIN, NOUT )
  1137. GO TO 10
  1138. ELSE IF( DBK ) THEN
  1139. *
  1140. * DGEBAK: Back transformation
  1141. *
  1142. CALL DCHKBK( NIN, NOUT )
  1143. GO TO 10
  1144. ELSE IF( DGL ) THEN
  1145. *
  1146. * DGGBAL: Balancing
  1147. *
  1148. CALL DCHKGL( NIN, NOUT )
  1149. GO TO 10
  1150. ELSE IF( DGK ) THEN
  1151. *
  1152. * DGGBAK: Back transformation
  1153. *
  1154. CALL DCHKGK( NIN, NOUT )
  1155. GO TO 10
  1156. ELSE IF( LSAMEN( 3, PATH, 'DEC' ) ) THEN
  1157. *
  1158. * DEC: Eigencondition estimation
  1159. *
  1160. READ( NIN, FMT = * )THRESH
  1161. CALL XLAENV( 1, 1 )
  1162. CALL XLAENV( 12, 11 )
  1163. CALL XLAENV( 13, 2 )
  1164. CALL XLAENV( 14, 0 )
  1165. CALL XLAENV( 15, 2 )
  1166. CALL XLAENV( 16, 2 )
  1167. TSTERR = .TRUE.
  1168. CALL DCHKEC( THRESH, TSTERR, NIN, NOUT )
  1169. GO TO 10
  1170. ELSE
  1171. WRITE( NOUT, FMT = 9992 )PATH
  1172. GO TO 10
  1173. END IF
  1174. CALL ILAVER( VERS_MAJOR, VERS_MINOR, VERS_PATCH )
  1175. WRITE( NOUT, FMT = 9972 ) VERS_MAJOR, VERS_MINOR, VERS_PATCH
  1176. WRITE( NOUT, FMT = 9984 )
  1177. *
  1178. * Read the number of values of M, P, and N.
  1179. *
  1180. READ( NIN, FMT = * )NN
  1181. IF( NN.LT.0 ) THEN
  1182. WRITE( NOUT, FMT = 9989 )' NN ', NN, 1
  1183. NN = 0
  1184. FATAL = .TRUE.
  1185. ELSE IF( NN.GT.MAXIN ) THEN
  1186. WRITE( NOUT, FMT = 9988 )' NN ', NN, MAXIN
  1187. NN = 0
  1188. FATAL = .TRUE.
  1189. END IF
  1190. *
  1191. * Read the values of M
  1192. *
  1193. IF( .NOT.( DGX .OR. DXV ) ) THEN
  1194. READ( NIN, FMT = * )( MVAL( I ), I = 1, NN )
  1195. IF( SVD ) THEN
  1196. VNAME = ' M '
  1197. ELSE
  1198. VNAME = ' N '
  1199. END IF
  1200. DO 20 I = 1, NN
  1201. IF( MVAL( I ).LT.0 ) THEN
  1202. WRITE( NOUT, FMT = 9989 )VNAME, MVAL( I ), 0
  1203. FATAL = .TRUE.
  1204. ELSE IF( MVAL( I ).GT.NMAX ) THEN
  1205. WRITE( NOUT, FMT = 9988 )VNAME, MVAL( I ), NMAX
  1206. FATAL = .TRUE.
  1207. END IF
  1208. 20 CONTINUE
  1209. WRITE( NOUT, FMT = 9983 )'M: ', ( MVAL( I ), I = 1, NN )
  1210. END IF
  1211. *
  1212. * Read the values of P
  1213. *
  1214. IF( GLM .OR. GQR .OR. GSV .OR. LSE ) THEN
  1215. READ( NIN, FMT = * )( PVAL( I ), I = 1, NN )
  1216. DO 30 I = 1, NN
  1217. IF( PVAL( I ).LT.0 ) THEN
  1218. WRITE( NOUT, FMT = 9989 )' P ', PVAL( I ), 0
  1219. FATAL = .TRUE.
  1220. ELSE IF( PVAL( I ).GT.NMAX ) THEN
  1221. WRITE( NOUT, FMT = 9988 )' P ', PVAL( I ), NMAX
  1222. FATAL = .TRUE.
  1223. END IF
  1224. 30 CONTINUE
  1225. WRITE( NOUT, FMT = 9983 )'P: ', ( PVAL( I ), I = 1, NN )
  1226. END IF
  1227. *
  1228. * Read the values of N
  1229. *
  1230. IF( SVD .OR. DBB .OR. GLM .OR. GQR .OR. GSV .OR. LSE ) THEN
  1231. READ( NIN, FMT = * )( NVAL( I ), I = 1, NN )
  1232. DO 40 I = 1, NN
  1233. IF( NVAL( I ).LT.0 ) THEN
  1234. WRITE( NOUT, FMT = 9989 )' N ', NVAL( I ), 0
  1235. FATAL = .TRUE.
  1236. ELSE IF( NVAL( I ).GT.NMAX ) THEN
  1237. WRITE( NOUT, FMT = 9988 )' N ', NVAL( I ), NMAX
  1238. FATAL = .TRUE.
  1239. END IF
  1240. 40 CONTINUE
  1241. ELSE
  1242. DO 50 I = 1, NN
  1243. NVAL( I ) = MVAL( I )
  1244. 50 CONTINUE
  1245. END IF
  1246. IF( .NOT.( DGX .OR. DXV ) ) THEN
  1247. WRITE( NOUT, FMT = 9983 )'N: ', ( NVAL( I ), I = 1, NN )
  1248. ELSE
  1249. WRITE( NOUT, FMT = 9983 )'N: ', NN
  1250. END IF
  1251. *
  1252. * Read the number of values of K, followed by the values of K
  1253. *
  1254. IF( DSB .OR. DBB ) THEN
  1255. READ( NIN, FMT = * )NK
  1256. READ( NIN, FMT = * )( KVAL( I ), I = 1, NK )
  1257. DO 60 I = 1, NK
  1258. IF( KVAL( I ).LT.0 ) THEN
  1259. WRITE( NOUT, FMT = 9989 )' K ', KVAL( I ), 0
  1260. FATAL = .TRUE.
  1261. ELSE IF( KVAL( I ).GT.NMAX ) THEN
  1262. WRITE( NOUT, FMT = 9988 )' K ', KVAL( I ), NMAX
  1263. FATAL = .TRUE.
  1264. END IF
  1265. 60 CONTINUE
  1266. WRITE( NOUT, FMT = 9983 )'K: ', ( KVAL( I ), I = 1, NK )
  1267. END IF
  1268. *
  1269. IF( DEV .OR. DES .OR. DVX .OR. DSX ) THEN
  1270. *
  1271. * For the nonsymmetric QR driver routines, only one set of
  1272. * parameters is allowed.
  1273. *
  1274. READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ),
  1275. $ INMIN( 1 ), INWIN( 1 ), INIBL(1), ISHFTS(1), IACC22(1)
  1276. IF( NBVAL( 1 ).LT.1 ) THEN
  1277. WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1
  1278. FATAL = .TRUE.
  1279. ELSE IF( NBMIN( 1 ).LT.1 ) THEN
  1280. WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1
  1281. FATAL = .TRUE.
  1282. ELSE IF( NXVAL( 1 ).LT.1 ) THEN
  1283. WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1
  1284. FATAL = .TRUE.
  1285. ELSE IF( INMIN( 1 ).LT.1 ) THEN
  1286. WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( 1 ), 1
  1287. FATAL = .TRUE.
  1288. ELSE IF( INWIN( 1 ).LT.1 ) THEN
  1289. WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( 1 ), 1
  1290. FATAL = .TRUE.
  1291. ELSE IF( INIBL( 1 ).LT.1 ) THEN
  1292. WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( 1 ), 1
  1293. FATAL = .TRUE.
  1294. ELSE IF( ISHFTS( 1 ).LT.1 ) THEN
  1295. WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( 1 ), 1
  1296. FATAL = .TRUE.
  1297. ELSE IF( IACC22( 1 ).LT.0 ) THEN
  1298. WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( 1 ), 0
  1299. FATAL = .TRUE.
  1300. END IF
  1301. CALL XLAENV( 1, NBVAL( 1 ) )
  1302. CALL XLAENV( 2, NBMIN( 1 ) )
  1303. CALL XLAENV( 3, NXVAL( 1 ) )
  1304. CALL XLAENV(12, MAX( 11, INMIN( 1 ) ) )
  1305. CALL XLAENV(13, INWIN( 1 ) )
  1306. CALL XLAENV(14, INIBL( 1 ) )
  1307. CALL XLAENV(15, ISHFTS( 1 ) )
  1308. CALL XLAENV(16, IACC22( 1 ) )
  1309. WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 )
  1310. WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 )
  1311. WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 )
  1312. WRITE( NOUT, FMT = 9983 )'INMIN: ', INMIN( 1 )
  1313. WRITE( NOUT, FMT = 9983 )'INWIN: ', INWIN( 1 )
  1314. WRITE( NOUT, FMT = 9983 )'INIBL: ', INIBL( 1 )
  1315. WRITE( NOUT, FMT = 9983 )'ISHFTS: ', ISHFTS( 1 )
  1316. WRITE( NOUT, FMT = 9983 )'IACC22: ', IACC22( 1 )
  1317. *
  1318. ELSEIF( DGS .OR. DGX .OR. DGV .OR. DXV ) THEN
  1319. *
  1320. * For the nonsymmetric generalized driver routines, only one set
  1321. * of parameters is allowed.
  1322. *
  1323. READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ),
  1324. $ NSVAL( 1 ), MXBVAL( 1 )
  1325. IF( NBVAL( 1 ).LT.1 ) THEN
  1326. WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1
  1327. FATAL = .TRUE.
  1328. ELSE IF( NBMIN( 1 ).LT.1 ) THEN
  1329. WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1
  1330. FATAL = .TRUE.
  1331. ELSE IF( NXVAL( 1 ).LT.1 ) THEN
  1332. WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1
  1333. FATAL = .TRUE.
  1334. ELSE IF( NSVAL( 1 ).LT.2 ) THEN
  1335. WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( 1 ), 2
  1336. FATAL = .TRUE.
  1337. ELSE IF( MXBVAL( 1 ).LT.1 ) THEN
  1338. WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( 1 ), 1
  1339. FATAL = .TRUE.
  1340. END IF
  1341. CALL XLAENV( 1, NBVAL( 1 ) )
  1342. CALL XLAENV( 2, NBMIN( 1 ) )
  1343. CALL XLAENV( 3, NXVAL( 1 ) )
  1344. CALL XLAENV( 4, NSVAL( 1 ) )
  1345. CALL XLAENV( 8, MXBVAL( 1 ) )
  1346. WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 )
  1347. WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 )
  1348. WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 )
  1349. WRITE( NOUT, FMT = 9983 )'NS: ', NSVAL( 1 )
  1350. WRITE( NOUT, FMT = 9983 )'MAXB: ', MXBVAL( 1 )
  1351. *
  1352. ELSE IF( .NOT.DSB .AND. .NOT.GLM .AND. .NOT.GQR .AND. .NOT.
  1353. $ GSV .AND. .NOT.LSE ) THEN
  1354. *
  1355. * For the other paths, the number of parameters can be varied
  1356. * from the input file. Read the number of parameter values.
  1357. *
  1358. READ( NIN, FMT = * )NPARMS
  1359. IF( NPARMS.LT.1 ) THEN
  1360. WRITE( NOUT, FMT = 9989 )'NPARMS', NPARMS, 1
  1361. NPARMS = 0
  1362. FATAL = .TRUE.
  1363. ELSE IF( NPARMS.GT.MAXIN ) THEN
  1364. WRITE( NOUT, FMT = 9988 )'NPARMS', NPARMS, MAXIN
  1365. NPARMS = 0
  1366. FATAL = .TRUE.
  1367. END IF
  1368. *
  1369. * Read the values of NB
  1370. *
  1371. IF( .NOT.DBB ) THEN
  1372. READ( NIN, FMT = * )( NBVAL( I ), I = 1, NPARMS )
  1373. DO 70 I = 1, NPARMS
  1374. IF( NBVAL( I ).LT.0 ) THEN
  1375. WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( I ), 0
  1376. FATAL = .TRUE.
  1377. ELSE IF( NBVAL( I ).GT.NMAX ) THEN
  1378. WRITE( NOUT, FMT = 9988 )' NB ', NBVAL( I ), NMAX
  1379. FATAL = .TRUE.
  1380. END IF
  1381. 70 CONTINUE
  1382. WRITE( NOUT, FMT = 9983 )'NB: ',
  1383. $ ( NBVAL( I ), I = 1, NPARMS )
  1384. END IF
  1385. *
  1386. * Read the values of NBMIN
  1387. *
  1388. IF( NEP .OR. SEP .OR. SVD .OR. DGG ) THEN
  1389. READ( NIN, FMT = * )( NBMIN( I ), I = 1, NPARMS )
  1390. DO 80 I = 1, NPARMS
  1391. IF( NBMIN( I ).LT.0 ) THEN
  1392. WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( I ), 0
  1393. FATAL = .TRUE.
  1394. ELSE IF( NBMIN( I ).GT.NMAX ) THEN
  1395. WRITE( NOUT, FMT = 9988 )'NBMIN ', NBMIN( I ), NMAX
  1396. FATAL = .TRUE.
  1397. END IF
  1398. 80 CONTINUE
  1399. WRITE( NOUT, FMT = 9983 )'NBMIN:',
  1400. $ ( NBMIN( I ), I = 1, NPARMS )
  1401. ELSE
  1402. DO 90 I = 1, NPARMS
  1403. NBMIN( I ) = 1
  1404. 90 CONTINUE
  1405. END IF
  1406. *
  1407. * Read the values of NX
  1408. *
  1409. IF( NEP .OR. SEP .OR. SVD ) THEN
  1410. READ( NIN, FMT = * )( NXVAL( I ), I = 1, NPARMS )
  1411. DO 100 I = 1, NPARMS
  1412. IF( NXVAL( I ).LT.0 ) THEN
  1413. WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( I ), 0
  1414. FATAL = .TRUE.
  1415. ELSE IF( NXVAL( I ).GT.NMAX ) THEN
  1416. WRITE( NOUT, FMT = 9988 )' NX ', NXVAL( I ), NMAX
  1417. FATAL = .TRUE.
  1418. END IF
  1419. 100 CONTINUE
  1420. WRITE( NOUT, FMT = 9983 )'NX: ',
  1421. $ ( NXVAL( I ), I = 1, NPARMS )
  1422. ELSE
  1423. DO 110 I = 1, NPARMS
  1424. NXVAL( I ) = 1
  1425. 110 CONTINUE
  1426. END IF
  1427. *
  1428. * Read the values of NSHIFT (if DGG) or NRHS (if SVD
  1429. * or DBB).
  1430. *
  1431. IF( SVD .OR. DBB .OR. DGG ) THEN
  1432. READ( NIN, FMT = * )( NSVAL( I ), I = 1, NPARMS )
  1433. DO 120 I = 1, NPARMS
  1434. IF( NSVAL( I ).LT.0 ) THEN
  1435. WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( I ), 0
  1436. FATAL = .TRUE.
  1437. ELSE IF( NSVAL( I ).GT.NMAX ) THEN
  1438. WRITE( NOUT, FMT = 9988 )' NS ', NSVAL( I ), NMAX
  1439. FATAL = .TRUE.
  1440. END IF
  1441. 120 CONTINUE
  1442. WRITE( NOUT, FMT = 9983 )'NS: ',
  1443. $ ( NSVAL( I ), I = 1, NPARMS )
  1444. ELSE
  1445. DO 130 I = 1, NPARMS
  1446. NSVAL( I ) = 1
  1447. 130 CONTINUE
  1448. END IF
  1449. *
  1450. * Read the values for MAXB.
  1451. *
  1452. IF( DGG ) THEN
  1453. READ( NIN, FMT = * )( MXBVAL( I ), I = 1, NPARMS )
  1454. DO 140 I = 1, NPARMS
  1455. IF( MXBVAL( I ).LT.0 ) THEN
  1456. WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( I ), 0
  1457. FATAL = .TRUE.
  1458. ELSE IF( MXBVAL( I ).GT.NMAX ) THEN
  1459. WRITE( NOUT, FMT = 9988 )' MAXB ', MXBVAL( I ), NMAX
  1460. FATAL = .TRUE.
  1461. END IF
  1462. 140 CONTINUE
  1463. WRITE( NOUT, FMT = 9983 )'MAXB: ',
  1464. $ ( MXBVAL( I ), I = 1, NPARMS )
  1465. ELSE
  1466. DO 150 I = 1, NPARMS
  1467. MXBVAL( I ) = 1
  1468. 150 CONTINUE
  1469. END IF
  1470. *
  1471. * Read the values for INMIN.
  1472. *
  1473. IF( NEP ) THEN
  1474. READ( NIN, FMT = * )( INMIN( I ), I = 1, NPARMS )
  1475. DO 540 I = 1, NPARMS
  1476. IF( INMIN( I ).LT.0 ) THEN
  1477. WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( I ), 0
  1478. FATAL = .TRUE.
  1479. END IF
  1480. 540 CONTINUE
  1481. WRITE( NOUT, FMT = 9983 )'INMIN: ',
  1482. $ ( INMIN( I ), I = 1, NPARMS )
  1483. ELSE
  1484. DO 550 I = 1, NPARMS
  1485. INMIN( I ) = 1
  1486. 550 CONTINUE
  1487. END IF
  1488. *
  1489. * Read the values for INWIN.
  1490. *
  1491. IF( NEP ) THEN
  1492. READ( NIN, FMT = * )( INWIN( I ), I = 1, NPARMS )
  1493. DO 560 I = 1, NPARMS
  1494. IF( INWIN( I ).LT.0 ) THEN
  1495. WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( I ), 0
  1496. FATAL = .TRUE.
  1497. END IF
  1498. 560 CONTINUE
  1499. WRITE( NOUT, FMT = 9983 )'INWIN: ',
  1500. $ ( INWIN( I ), I = 1, NPARMS )
  1501. ELSE
  1502. DO 570 I = 1, NPARMS
  1503. INWIN( I ) = 1
  1504. 570 CONTINUE
  1505. END IF
  1506. *
  1507. * Read the values for INIBL.
  1508. *
  1509. IF( NEP ) THEN
  1510. READ( NIN, FMT = * )( INIBL( I ), I = 1, NPARMS )
  1511. DO 580 I = 1, NPARMS
  1512. IF( INIBL( I ).LT.0 ) THEN
  1513. WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( I ), 0
  1514. FATAL = .TRUE.
  1515. END IF
  1516. 580 CONTINUE
  1517. WRITE( NOUT, FMT = 9983 )'INIBL: ',
  1518. $ ( INIBL( I ), I = 1, NPARMS )
  1519. ELSE
  1520. DO 590 I = 1, NPARMS
  1521. INIBL( I ) = 1
  1522. 590 CONTINUE
  1523. END IF
  1524. *
  1525. * Read the values for ISHFTS.
  1526. *
  1527. IF( NEP ) THEN
  1528. READ( NIN, FMT = * )( ISHFTS( I ), I = 1, NPARMS )
  1529. DO 600 I = 1, NPARMS
  1530. IF( ISHFTS( I ).LT.0 ) THEN
  1531. WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( I ), 0
  1532. FATAL = .TRUE.
  1533. END IF
  1534. 600 CONTINUE
  1535. WRITE( NOUT, FMT = 9983 )'ISHFTS: ',
  1536. $ ( ISHFTS( I ), I = 1, NPARMS )
  1537. ELSE
  1538. DO 610 I = 1, NPARMS
  1539. ISHFTS( I ) = 1
  1540. 610 CONTINUE
  1541. END IF
  1542. *
  1543. * Read the values for IACC22.
  1544. *
  1545. IF( NEP ) THEN
  1546. READ( NIN, FMT = * )( IACC22( I ), I = 1, NPARMS )
  1547. DO 620 I = 1, NPARMS
  1548. IF( IACC22( I ).LT.0 ) THEN
  1549. WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( I ), 0
  1550. FATAL = .TRUE.
  1551. END IF
  1552. 620 CONTINUE
  1553. WRITE( NOUT, FMT = 9983 )'IACC22: ',
  1554. $ ( IACC22( I ), I = 1, NPARMS )
  1555. ELSE
  1556. DO 630 I = 1, NPARMS
  1557. IACC22( I ) = 1
  1558. 630 CONTINUE
  1559. END IF
  1560. *
  1561. * Read the values for NBCOL.
  1562. *
  1563. IF( DGG ) THEN
  1564. READ( NIN, FMT = * )( NBCOL( I ), I = 1, NPARMS )
  1565. DO 160 I = 1, NPARMS
  1566. IF( NBCOL( I ).LT.0 ) THEN
  1567. WRITE( NOUT, FMT = 9989 )'NBCOL ', NBCOL( I ), 0
  1568. FATAL = .TRUE.
  1569. ELSE IF( NBCOL( I ).GT.NMAX ) THEN
  1570. WRITE( NOUT, FMT = 9988 )'NBCOL ', NBCOL( I ), NMAX
  1571. FATAL = .TRUE.
  1572. END IF
  1573. 160 CONTINUE
  1574. WRITE( NOUT, FMT = 9983 )'NBCOL:',
  1575. $ ( NBCOL( I ), I = 1, NPARMS )
  1576. ELSE
  1577. DO 170 I = 1, NPARMS
  1578. NBCOL( I ) = 1
  1579. 170 CONTINUE
  1580. END IF
  1581. END IF
  1582. *
  1583. * Calculate and print the machine dependent constants.
  1584. *
  1585. WRITE( NOUT, FMT = * )
  1586. EPS = DLAMCH( 'Underflow threshold' )
  1587. WRITE( NOUT, FMT = 9981 )'underflow', EPS
  1588. EPS = DLAMCH( 'Overflow threshold' )
  1589. WRITE( NOUT, FMT = 9981 )'overflow ', EPS
  1590. EPS = DLAMCH( 'Epsilon' )
  1591. WRITE( NOUT, FMT = 9981 )'precision', EPS
  1592. *
  1593. * Read the threshold value for the test ratios.
  1594. *
  1595. READ( NIN, FMT = * )THRESH
  1596. WRITE( NOUT, FMT = 9982 )THRESH
  1597. IF( SEP .OR. SVD .OR. DGG ) THEN
  1598. *
  1599. * Read the flag that indicates whether to test LAPACK routines.
  1600. *
  1601. READ( NIN, FMT = * )TSTCHK
  1602. *
  1603. * Read the flag that indicates whether to test driver routines.
  1604. *
  1605. READ( NIN, FMT = * )TSTDRV
  1606. END IF
  1607. *
  1608. * Read the flag that indicates whether to test the error exits.
  1609. *
  1610. READ( NIN, FMT = * )TSTERR
  1611. *
  1612. * Read the code describing how to set the random number seed.
  1613. *
  1614. READ( NIN, FMT = * )NEWSD
  1615. *
  1616. * If NEWSD = 2, read another line with 4 integers for the seed.
  1617. *
  1618. IF( NEWSD.EQ.2 )
  1619. $ READ( NIN, FMT = * )( IOLDSD( I ), I = 1, 4 )
  1620. *
  1621. DO 180 I = 1, 4
  1622. ISEED( I ) = IOLDSD( I )
  1623. 180 CONTINUE
  1624. *
  1625. IF( FATAL ) THEN
  1626. WRITE( NOUT, FMT = 9999 )
  1627. STOP
  1628. END IF
  1629. *
  1630. * Read the input lines indicating the test path and its parameters.
  1631. * The first three characters indicate the test path, and the number
  1632. * of test matrix types must be the first nonblank item in columns
  1633. * 4-80.
  1634. *
  1635. 190 CONTINUE
  1636. *
  1637. IF( .NOT.( DGX .OR. DXV ) ) THEN
  1638. *
  1639. 200 CONTINUE
  1640. READ( NIN, FMT = '(A80)', END = 380 )LINE
  1641. C3 = LINE( 1: 3 )
  1642. LENP = LEN( LINE )
  1643. I = 3
  1644. ITMP = 0
  1645. I1 = 0
  1646. 210 CONTINUE
  1647. I = I + 1
  1648. IF( I.GT.LENP ) THEN
  1649. IF( I1.GT.0 ) THEN
  1650. GO TO 240
  1651. ELSE
  1652. NTYPES = MAXT
  1653. GO TO 240
  1654. END IF
  1655. END IF
  1656. IF( LINE( I: I ).NE.' ' .AND. LINE( I: I ).NE.',' ) THEN
  1657. I1 = I
  1658. C1 = LINE( I1: I1 )
  1659. *
  1660. * Check that a valid integer was read
  1661. *
  1662. DO 220 K = 1, 10
  1663. IF( C1.EQ.INTSTR( K: K ) ) THEN
  1664. IC = K - 1
  1665. GO TO 230
  1666. END IF
  1667. 220 CONTINUE
  1668. WRITE( NOUT, FMT = 9991 )I, LINE
  1669. GO TO 200
  1670. 230 CONTINUE
  1671. ITMP = 10*ITMP + IC
  1672. GO TO 210
  1673. ELSE IF( I1.GT.0 ) THEN
  1674. GO TO 240
  1675. ELSE
  1676. GO TO 210
  1677. END IF
  1678. 240 CONTINUE
  1679. NTYPES = ITMP
  1680. *
  1681. * Skip the tests if NTYPES is <= 0.
  1682. *
  1683. IF( .NOT.( DEV .OR. DES .OR. DVX .OR. DSX .OR. DGV .OR.
  1684. $ DGS ) .AND. NTYPES.LE.0 ) THEN
  1685. WRITE( NOUT, FMT = 9990 )C3
  1686. GO TO 200
  1687. END IF
  1688. *
  1689. ELSE
  1690. IF( DXV )
  1691. $ C3 = 'DXV'
  1692. IF( DGX )
  1693. $ C3 = 'DGX'
  1694. END IF
  1695. *
  1696. * Reset the random number seed.
  1697. *
  1698. IF( NEWSD.EQ.0 ) THEN
  1699. DO 250 K = 1, 4
  1700. ISEED( K ) = IOLDSD( K )
  1701. 250 CONTINUE
  1702. END IF
  1703. *
  1704. IF( LSAMEN( 3, C3, 'DHS' ) .OR. LSAMEN( 3, C3, 'NEP' ) ) THEN
  1705. *
  1706. * -------------------------------------
  1707. * NEP: Nonsymmetric Eigenvalue Problem
  1708. * -------------------------------------
  1709. * Vary the parameters
  1710. * NB = block size
  1711. * NBMIN = minimum block size
  1712. * NX = crossover point
  1713. * NS = number of shifts
  1714. * MAXB = minimum submatrix size
  1715. *
  1716. MAXTYP = 21
  1717. NTYPES = MIN( MAXTYP, NTYPES )
  1718. CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
  1719. CALL XLAENV( 1, 1 )
  1720. IF( TSTERR )
  1721. $ CALL DERRHS( 'DHSEQR', NOUT )
  1722. DO 270 I = 1, NPARMS
  1723. CALL XLAENV( 1, NBVAL( I ) )
  1724. CALL XLAENV( 2, NBMIN( I ) )
  1725. CALL XLAENV( 3, NXVAL( I ) )
  1726. CALL XLAENV(12, MAX( 11, INMIN( I ) ) )
  1727. CALL XLAENV(13, INWIN( I ) )
  1728. CALL XLAENV(14, INIBL( I ) )
  1729. CALL XLAENV(15, ISHFTS( I ) )
  1730. CALL XLAENV(16, IACC22( I ) )
  1731. *
  1732. IF( NEWSD.EQ.0 ) THEN
  1733. DO 260 K = 1, 4
  1734. ISEED( K ) = IOLDSD( K )
  1735. 260 CONTINUE
  1736. END IF
  1737. WRITE( NOUT, FMT = 9961 )C3, NBVAL( I ), NBMIN( I ),
  1738. $ NXVAL( I ), MAX( 11, INMIN(I)),
  1739. $ INWIN( I ), INIBL( I ), ISHFTS( I ), IACC22( I )
  1740. CALL DCHKHS( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT,
  1741. $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
  1742. $ A( 1, 4 ), A( 1, 5 ), NMAX, A( 1, 6 ),
  1743. $ A( 1, 7 ), D( 1, 1 ), D( 1, 2 ), D( 1, 3 ),
  1744. $ D( 1, 4 ), A( 1, 8 ), A( 1, 9 ), A( 1, 10 ),
  1745. $ A( 1, 11 ), A( 1, 12 ), D( 1, 5 ), WORK, LWORK,
  1746. $ IWORK, LOGWRK, RESULT, INFO )
  1747. IF( INFO.NE.0 )
  1748. $ WRITE( NOUT, FMT = 9980 )'DCHKHS', INFO
  1749. 270 CONTINUE
  1750. *
  1751. ELSE IF( LSAMEN( 3, C3, 'DST' ) .OR. LSAMEN( 3, C3, 'SEP' ) ) THEN
  1752. *
  1753. * ----------------------------------
  1754. * SEP: Symmetric Eigenvalue Problem
  1755. * ----------------------------------
  1756. * Vary the parameters
  1757. * NB = block size
  1758. * NBMIN = minimum block size
  1759. * NX = crossover point
  1760. *
  1761. MAXTYP = 21
  1762. NTYPES = MIN( MAXTYP, NTYPES )
  1763. CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
  1764. CALL XLAENV( 1, 1 )
  1765. CALL XLAENV( 9, 25 )
  1766. IF( TSTERR )
  1767. $ CALL DERRST( 'DST', NOUT )
  1768. DO 290 I = 1, NPARMS
  1769. CALL XLAENV( 1, NBVAL( I ) )
  1770. CALL XLAENV( 2, NBMIN( I ) )
  1771. CALL XLAENV( 3, NXVAL( I ) )
  1772. *
  1773. IF( NEWSD.EQ.0 ) THEN
  1774. DO 280 K = 1, 4
  1775. ISEED( K ) = IOLDSD( K )
  1776. 280 CONTINUE
  1777. END IF
  1778. WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ),
  1779. $ NXVAL( I )
  1780. IF( TSTCHK ) THEN
  1781. CALL DCHKST( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
  1782. $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ),
  1783. $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), D( 1, 5 ),
  1784. $ D( 1, 6 ), D( 1, 7 ), D( 1, 8 ), D( 1, 9 ),
  1785. $ D( 1, 10 ), D( 1, 11 ), A( 1, 3 ), NMAX,
  1786. $ A( 1, 4 ), A( 1, 5 ), D( 1, 12 ), A( 1, 6 ),
  1787. $ WORK, LWORK, IWORK, LIWORK, RESULT, INFO )
  1788. IF( INFO.NE.0 )
  1789. $ WRITE( NOUT, FMT = 9980 )'DCHKST', INFO
  1790. END IF
  1791. IF( TSTDRV ) THEN
  1792. CALL DDRVST( NN, NVAL, 18, DOTYPE, ISEED, THRESH, NOUT,
  1793. $ A( 1, 1 ), NMAX, D( 1, 3 ), D( 1, 4 ),
  1794. $ D( 1, 5 ), D( 1, 6 ), D( 1, 8 ), D( 1, 9 ),
  1795. $ D( 1, 10 ), D( 1, 11 ), A( 1, 2 ), NMAX,
  1796. $ A( 1, 3 ), D( 1, 12 ), A( 1, 4 ), WORK,
  1797. $ LWORK, IWORK, LIWORK, RESULT, INFO )
  1798. IF( INFO.NE.0 )
  1799. $ WRITE( NOUT, FMT = 9980 )'DDRVST', INFO
  1800. END IF
  1801. 290 CONTINUE
  1802. *
  1803. ELSE IF( LSAMEN( 3, C3, 'DSG' ) ) THEN
  1804. *
  1805. * ----------------------------------------------
  1806. * DSG: Symmetric Generalized Eigenvalue Problem
  1807. * ----------------------------------------------
  1808. * Vary the parameters
  1809. * NB = block size
  1810. * NBMIN = minimum block size
  1811. * NX = crossover point
  1812. *
  1813. MAXTYP = 21
  1814. NTYPES = MIN( MAXTYP, NTYPES )
  1815. CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
  1816. CALL XLAENV( 9, 25 )
  1817. DO 310 I = 1, NPARMS
  1818. CALL XLAENV( 1, NBVAL( I ) )
  1819. CALL XLAENV( 2, NBMIN( I ) )
  1820. CALL XLAENV( 3, NXVAL( I ) )
  1821. *
  1822. IF( NEWSD.EQ.0 ) THEN
  1823. DO 300 K = 1, 4
  1824. ISEED( K ) = IOLDSD( K )
  1825. 300 CONTINUE
  1826. END IF
  1827. WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ),
  1828. $ NXVAL( I )
  1829. IF( TSTCHK ) THEN
  1830. CALL DDRVSG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
  1831. $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX,
  1832. $ D( 1, 3 ), A( 1, 3 ), NMAX, A( 1, 4 ),
  1833. $ A( 1, 5 ), A( 1, 6 ), A( 1, 7 ), WORK,
  1834. $ LWORK, IWORK, LIWORK, RESULT, INFO )
  1835. IF( INFO.NE.0 )
  1836. $ WRITE( NOUT, FMT = 9980 )'DDRVSG', INFO
  1837. END IF
  1838. 310 CONTINUE
  1839. *
  1840. ELSE IF( LSAMEN( 3, C3, 'DBD' ) .OR. LSAMEN( 3, C3, 'SVD' ) ) THEN
  1841. *
  1842. * ----------------------------------
  1843. * SVD: Singular Value Decomposition
  1844. * ----------------------------------
  1845. * Vary the parameters
  1846. * NB = block size
  1847. * NBMIN = minimum block size
  1848. * NX = crossover point
  1849. * NRHS = number of right hand sides
  1850. *
  1851. MAXTYP = 16
  1852. NTYPES = MIN( MAXTYP, NTYPES )
  1853. CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
  1854. CALL XLAENV( 1, 1 )
  1855. CALL XLAENV( 9, 25 )
  1856. *
  1857. * Test the error exits
  1858. *
  1859. IF( TSTERR .AND. TSTCHK )
  1860. $ CALL DERRBD( 'DBD', NOUT )
  1861. IF( TSTERR .AND. TSTDRV )
  1862. $ CALL DERRED( 'DBD', NOUT )
  1863. *
  1864. DO 330 I = 1, NPARMS
  1865. NRHS = NSVAL( I )
  1866. CALL XLAENV( 1, NBVAL( I ) )
  1867. CALL XLAENV( 2, NBMIN( I ) )
  1868. CALL XLAENV( 3, NXVAL( I ) )
  1869. IF( NEWSD.EQ.0 ) THEN
  1870. DO 320 K = 1, 4
  1871. ISEED( K ) = IOLDSD( K )
  1872. 320 CONTINUE
  1873. END IF
  1874. WRITE( NOUT, FMT = 9995 )C3, NBVAL( I ), NBMIN( I ),
  1875. $ NXVAL( I ), NRHS
  1876. IF( TSTCHK ) THEN
  1877. CALL DCHKBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, NRHS, ISEED,
  1878. $ THRESH, A( 1, 1 ), NMAX, D( 1, 1 ),
  1879. $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), A( 1, 2 ),
  1880. $ NMAX, A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), NMAX,
  1881. $ A( 1, 6 ), NMAX, A( 1, 7 ), A( 1, 8 ), WORK,
  1882. $ LWORK, IWORK, NOUT, INFO )
  1883. IF( INFO.NE.0 )
  1884. $ WRITE( NOUT, FMT = 9980 )'DCHKBD', INFO
  1885. END IF
  1886. IF( TSTDRV )
  1887. $ CALL DDRVBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, ISEED,
  1888. $ THRESH, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX,
  1889. $ A( 1, 3 ), NMAX, A( 1, 4 ), A( 1, 5 ),
  1890. $ A( 1, 6 ), D( 1, 1 ), D( 1, 2 ), D( 1, 3 ),
  1891. $ WORK, LWORK, IWORK, NOUT, INFO )
  1892. 330 CONTINUE
  1893. *
  1894. ELSE IF( LSAMEN( 3, C3, 'DEV' ) ) THEN
  1895. *
  1896. * --------------------------------------------
  1897. * DEV: Nonsymmetric Eigenvalue Problem Driver
  1898. * DGEEV (eigenvalues and eigenvectors)
  1899. * --------------------------------------------
  1900. *
  1901. MAXTYP = 21
  1902. NTYPES = MIN( MAXTYP, NTYPES )
  1903. IF( NTYPES.LE.0 ) THEN
  1904. WRITE( NOUT, FMT = 9990 )C3
  1905. ELSE
  1906. IF( TSTERR )
  1907. $ CALL DERRED( C3, NOUT )
  1908. CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
  1909. CALL DDRVEV( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT,
  1910. $ A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ),
  1911. $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), A( 1, 3 ),
  1912. $ NMAX, A( 1, 4 ), NMAX, A( 1, 5 ), NMAX, RESULT,
  1913. $ WORK, LWORK, IWORK, INFO )
  1914. IF( INFO.NE.0 )
  1915. $ WRITE( NOUT, FMT = 9980 )'DGEEV', INFO
  1916. END IF
  1917. WRITE( NOUT, FMT = 9973 )
  1918. GO TO 10
  1919. *
  1920. ELSE IF( LSAMEN( 3, C3, 'DES' ) ) THEN
  1921. *
  1922. * --------------------------------------------
  1923. * DES: Nonsymmetric Eigenvalue Problem Driver
  1924. * DGEES (Schur form)
  1925. * --------------------------------------------
  1926. *
  1927. MAXTYP = 21
  1928. NTYPES = MIN( MAXTYP, NTYPES )
  1929. IF( NTYPES.LE.0 ) THEN
  1930. WRITE( NOUT, FMT = 9990 )C3
  1931. ELSE
  1932. IF( TSTERR )
  1933. $ CALL DERRED( C3, NOUT )
  1934. CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
  1935. CALL DDRVES( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT,
  1936. $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
  1937. $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), D( 1, 4 ),
  1938. $ A( 1, 4 ), NMAX, RESULT, WORK, LWORK, IWORK,
  1939. $ LOGWRK, INFO )
  1940. IF( INFO.NE.0 )
  1941. $ WRITE( NOUT, FMT = 9980 )'DGEES', INFO
  1942. END IF
  1943. WRITE( NOUT, FMT = 9973 )
  1944. GO TO 10
  1945. *
  1946. ELSE IF( LSAMEN( 3, C3, 'DVX' ) ) THEN
  1947. *
  1948. * --------------------------------------------------------------
  1949. * DVX: Nonsymmetric Eigenvalue Problem Expert Driver
  1950. * DGEEVX (eigenvalues, eigenvectors and condition numbers)
  1951. * --------------------------------------------------------------
  1952. *
  1953. MAXTYP = 21
  1954. NTYPES = MIN( MAXTYP, NTYPES )
  1955. IF( NTYPES.LT.0 ) THEN
  1956. WRITE( NOUT, FMT = 9990 )C3
  1957. ELSE
  1958. IF( TSTERR )
  1959. $ CALL DERRED( C3, NOUT )
  1960. CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
  1961. CALL DDRVVX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN,
  1962. $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ),
  1963. $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), A( 1, 3 ),
  1964. $ NMAX, A( 1, 4 ), NMAX, A( 1, 5 ), NMAX,
  1965. $ D( 1, 5 ), D( 1, 6 ), D( 1, 7 ), D( 1, 8 ),
  1966. $ D( 1, 9 ), D( 1, 10 ), D( 1, 11 ), D( 1, 12 ),
  1967. $ RESULT, WORK, LWORK, IWORK, INFO )
  1968. IF( INFO.NE.0 )
  1969. $ WRITE( NOUT, FMT = 9980 )'DGEEVX', INFO
  1970. END IF
  1971. WRITE( NOUT, FMT = 9973 )
  1972. GO TO 10
  1973. *
  1974. ELSE IF( LSAMEN( 3, C3, 'DSX' ) ) THEN
  1975. *
  1976. * ---------------------------------------------------
  1977. * DSX: Nonsymmetric Eigenvalue Problem Expert Driver
  1978. * DGEESX (Schur form and condition numbers)
  1979. * ---------------------------------------------------
  1980. *
  1981. MAXTYP = 21
  1982. NTYPES = MIN( MAXTYP, NTYPES )
  1983. IF( NTYPES.LT.0 ) THEN
  1984. WRITE( NOUT, FMT = 9990 )C3
  1985. ELSE
  1986. IF( TSTERR )
  1987. $ CALL DERRED( C3, NOUT )
  1988. CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
  1989. CALL DDRVSX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN,
  1990. $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
  1991. $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), D( 1, 4 ),
  1992. $ D( 1, 5 ), D( 1, 6 ), A( 1, 4 ), NMAX,
  1993. $ A( 1, 5 ), RESULT, WORK, LWORK, IWORK, LOGWRK,
  1994. $ INFO )
  1995. IF( INFO.NE.0 )
  1996. $ WRITE( NOUT, FMT = 9980 )'DGEESX', INFO
  1997. END IF
  1998. WRITE( NOUT, FMT = 9973 )
  1999. GO TO 10
  2000. *
  2001. ELSE IF( LSAMEN( 3, C3, 'DGG' ) ) THEN
  2002. *
  2003. * -------------------------------------------------
  2004. * DGG: Generalized Nonsymmetric Eigenvalue Problem
  2005. * -------------------------------------------------
  2006. * Vary the parameters
  2007. * NB = block size
  2008. * NBMIN = minimum block size
  2009. * NS = number of shifts
  2010. * MAXB = minimum submatrix size
  2011. * NBCOL = minimum column dimension for blocks
  2012. *
  2013. MAXTYP = 26
  2014. NTYPES = MIN( MAXTYP, NTYPES )
  2015. CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
  2016. IF( TSTCHK .AND. TSTERR )
  2017. $ CALL DERRGG( C3, NOUT )
  2018. DO 350 I = 1, NPARMS
  2019. CALL XLAENV( 1, NBVAL( I ) )
  2020. CALL XLAENV( 2, NBMIN( I ) )
  2021. CALL XLAENV( 4, NSVAL( I ) )
  2022. CALL XLAENV( 8, MXBVAL( I ) )
  2023. CALL XLAENV( 5, NBCOL( I ) )
  2024. *
  2025. IF( NEWSD.EQ.0 ) THEN
  2026. DO 340 K = 1, 4
  2027. ISEED( K ) = IOLDSD( K )
  2028. 340 CONTINUE
  2029. END IF
  2030. WRITE( NOUT, FMT = 9996 )C3, NBVAL( I ), NBMIN( I ),
  2031. $ NSVAL( I ), MXBVAL( I ), NBCOL( I )
  2032. TSTDIF = .FALSE.
  2033. THRSHN = 10.D0
  2034. IF( TSTCHK ) THEN
  2035. CALL DCHKGG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
  2036. $ TSTDIF, THRSHN, NOUT, A( 1, 1 ), NMAX,
  2037. $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ),
  2038. $ A( 1, 6 ), A( 1, 7 ), A( 1, 8 ), A( 1, 9 ),
  2039. $ NMAX, A( 1, 10 ), A( 1, 11 ), A( 1, 12 ),
  2040. $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), D( 1, 4 ),
  2041. $ D( 1, 5 ), D( 1, 6 ), A( 1, 13 ),
  2042. $ A( 1, 14 ), WORK, LWORK, LOGWRK, RESULT,
  2043. $ INFO )
  2044. IF( INFO.NE.0 )
  2045. $ WRITE( NOUT, FMT = 9980 )'DCHKGG', INFO
  2046. END IF
  2047. CALL XLAENV( 1, 1 )
  2048. IF( TSTDRV ) THEN
  2049. CALL DDRVGG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
  2050. $ THRSHN, NOUT, A( 1, 1 ), NMAX, A( 1, 2 ),
  2051. $ A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), A( 1, 6 ),
  2052. $ A( 1, 7 ), NMAX, A( 1, 8 ), D( 1, 1 ),
  2053. $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), D( 1, 5 ),
  2054. $ D( 1, 6 ), A( 1, 13 ), A( 1, 14 ), WORK,
  2055. $ LWORK, RESULT, INFO )
  2056. IF( INFO.NE.0 )
  2057. $ WRITE( NOUT, FMT = 9980 )'DDRVGG', INFO
  2058. END IF
  2059. 350 CONTINUE
  2060. *
  2061. ELSE IF( LSAMEN( 3, C3, 'DGS' ) ) THEN
  2062. *
  2063. * -------------------------------------------------
  2064. * DGS: Generalized Nonsymmetric Eigenvalue Problem
  2065. * DGGES (Schur form)
  2066. * -------------------------------------------------
  2067. *
  2068. MAXTYP = 26
  2069. NTYPES = MIN( MAXTYP, NTYPES )
  2070. IF( NTYPES.LE.0 ) THEN
  2071. WRITE( NOUT, FMT = 9990 )C3
  2072. ELSE
  2073. IF( TSTERR )
  2074. $ CALL DERRGG( C3, NOUT )
  2075. CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
  2076. CALL DDRGES( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT,
  2077. $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
  2078. $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ),
  2079. $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), WORK, LWORK,
  2080. $ RESULT, LOGWRK, INFO )
  2081. *
  2082. IF( INFO.NE.0 )
  2083. $ WRITE( NOUT, FMT = 9980 )'DDRGES', INFO
  2084. END IF
  2085. WRITE( NOUT, FMT = 9973 )
  2086. GO TO 10
  2087. *
  2088. ELSE IF( DGX ) THEN
  2089. *
  2090. * -------------------------------------------------
  2091. * DGX: Generalized Nonsymmetric Eigenvalue Problem
  2092. * DGGESX (Schur form and condition numbers)
  2093. * -------------------------------------------------
  2094. *
  2095. MAXTYP = 5
  2096. NTYPES = MAXTYP
  2097. IF( NN.LT.0 ) THEN
  2098. WRITE( NOUT, FMT = 9990 )C3
  2099. ELSE
  2100. IF( TSTERR )
  2101. $ CALL DERRGG( C3, NOUT )
  2102. CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
  2103. CALL XLAENV( 5, 2 )
  2104. CALL DDRGSX( NN, NCMAX, THRESH, NIN, NOUT, A( 1, 1 ), NMAX,
  2105. $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ),
  2106. $ A( 1, 6 ), D( 1, 1 ), D( 1, 2 ), D( 1, 3 ),
  2107. $ C( 1, 1 ), NCMAX*NCMAX, A( 1, 12 ), WORK,
  2108. $ LWORK, IWORK, LIWORK, LOGWRK, INFO )
  2109. IF( INFO.NE.0 )
  2110. $ WRITE( NOUT, FMT = 9980 )'DDRGSX', INFO
  2111. END IF
  2112. WRITE( NOUT, FMT = 9973 )
  2113. GO TO 10
  2114. *
  2115. ELSE IF( LSAMEN( 3, C3, 'DGV' ) ) THEN
  2116. *
  2117. * -------------------------------------------------
  2118. * DGV: Generalized Nonsymmetric Eigenvalue Problem
  2119. * DGGEV (Eigenvalue/vector form)
  2120. * -------------------------------------------------
  2121. *
  2122. MAXTYP = 26
  2123. NTYPES = MIN( MAXTYP, NTYPES )
  2124. IF( NTYPES.LE.0 ) THEN
  2125. WRITE( NOUT, FMT = 9990 )C3
  2126. ELSE
  2127. IF( TSTERR )
  2128. $ CALL DERRGG( C3, NOUT )
  2129. CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
  2130. CALL DDRGEV( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT,
  2131. $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
  2132. $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ),
  2133. $ A( 1, 9 ), NMAX, D( 1, 1 ), D( 1, 2 ),
  2134. $ D( 1, 3 ), D( 1, 4 ), D( 1, 5 ), D( 1, 6 ),
  2135. $ WORK, LWORK, RESULT, INFO )
  2136. IF( INFO.NE.0 )
  2137. $ WRITE( NOUT, FMT = 9980 )'DDRGEV', INFO
  2138. END IF
  2139. WRITE( NOUT, FMT = 9973 )
  2140. GO TO 10
  2141. *
  2142. ELSE IF( DXV ) THEN
  2143. *
  2144. * -------------------------------------------------
  2145. * DXV: Generalized Nonsymmetric Eigenvalue Problem
  2146. * DGGEVX (eigenvalue/vector with condition numbers)
  2147. * -------------------------------------------------
  2148. *
  2149. MAXTYP = 2
  2150. NTYPES = MAXTYP
  2151. IF( NN.LT.0 ) THEN
  2152. WRITE( NOUT, FMT = 9990 )C3
  2153. ELSE
  2154. IF( TSTERR )
  2155. $ CALL DERRGG( C3, NOUT )
  2156. CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
  2157. CALL DDRGVX( NN, THRESH, NIN, NOUT, A( 1, 1 ), NMAX,
  2158. $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), D( 1, 1 ),
  2159. $ D( 1, 2 ), D( 1, 3 ), A( 1, 5 ), A( 1, 6 ),
  2160. $ IWORK( 1 ), IWORK( 2 ), D( 1, 4 ), D( 1, 5 ),
  2161. $ D( 1, 6 ), D( 1, 7 ), D( 1, 8 ), D( 1, 9 ),
  2162. $ WORK, LWORK, IWORK( 3 ), LIWORK-2, RESULT,
  2163. $ LOGWRK, INFO )
  2164. *
  2165. IF( INFO.NE.0 )
  2166. $ WRITE( NOUT, FMT = 9980 )'DDRGVX', INFO
  2167. END IF
  2168. WRITE( NOUT, FMT = 9973 )
  2169. GO TO 10
  2170. *
  2171. ELSE IF( LSAMEN( 3, C3, 'DSB' ) ) THEN
  2172. *
  2173. * ------------------------------
  2174. * DSB: Symmetric Band Reduction
  2175. * ------------------------------
  2176. *
  2177. MAXTYP = 15
  2178. NTYPES = MIN( MAXTYP, NTYPES )
  2179. CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
  2180. IF( TSTERR )
  2181. $ CALL DERRST( 'DSB', NOUT )
  2182. CALL DCHKSB( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED, THRESH,
  2183. $ NOUT, A( 1, 1 ), NMAX, D( 1, 1 ), D( 1, 2 ),
  2184. $ A( 1, 2 ), NMAX, WORK, LWORK, RESULT, INFO )
  2185. IF( INFO.NE.0 )
  2186. $ WRITE( NOUT, FMT = 9980 )'DCHKSB', INFO
  2187. *
  2188. ELSE IF( LSAMEN( 3, C3, 'DBB' ) ) THEN
  2189. *
  2190. * ------------------------------
  2191. * DBB: General Band Reduction
  2192. * ------------------------------
  2193. *
  2194. MAXTYP = 15
  2195. NTYPES = MIN( MAXTYP, NTYPES )
  2196. CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
  2197. DO 370 I = 1, NPARMS
  2198. NRHS = NSVAL( I )
  2199. *
  2200. IF( NEWSD.EQ.0 ) THEN
  2201. DO 360 K = 1, 4
  2202. ISEED( K ) = IOLDSD( K )
  2203. 360 CONTINUE
  2204. END IF
  2205. WRITE( NOUT, FMT = 9966 )C3, NRHS
  2206. CALL DCHKBB( NN, MVAL, NVAL, NK, KVAL, MAXTYP, DOTYPE, NRHS,
  2207. $ ISEED, THRESH, NOUT, A( 1, 1 ), NMAX,
  2208. $ A( 1, 2 ), 2*NMAX, D( 1, 1 ), D( 1, 2 ),
  2209. $ A( 1, 4 ), NMAX, A( 1, 5 ), NMAX, A( 1, 6 ),
  2210. $ NMAX, A( 1, 7 ), WORK, LWORK, RESULT, INFO )
  2211. IF( INFO.NE.0 )
  2212. $ WRITE( NOUT, FMT = 9980 )'DCHKBB', INFO
  2213. 370 CONTINUE
  2214. *
  2215. ELSE IF( LSAMEN( 3, C3, 'GLM' ) ) THEN
  2216. *
  2217. * -----------------------------------------
  2218. * GLM: Generalized Linear Regression Model
  2219. * -----------------------------------------
  2220. *
  2221. CALL XLAENV( 1, 1 )
  2222. IF( TSTERR )
  2223. $ CALL DERRGG( 'GLM', NOUT )
  2224. CALL DCKGLM( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX,
  2225. $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X,
  2226. $ WORK, D( 1, 1 ), NIN, NOUT, INFO )
  2227. IF( INFO.NE.0 )
  2228. $ WRITE( NOUT, FMT = 9980 )'DCKGLM', INFO
  2229. *
  2230. ELSE IF( LSAMEN( 3, C3, 'GQR' ) ) THEN
  2231. *
  2232. * ------------------------------------------
  2233. * GQR: Generalized QR and RQ factorizations
  2234. * ------------------------------------------
  2235. *
  2236. CALL XLAENV( 1, 1 )
  2237. IF( TSTERR )
  2238. $ CALL DERRGG( 'GQR', NOUT )
  2239. CALL DCKGQR( NN, MVAL, NN, PVAL, NN, NVAL, NTYPES, ISEED,
  2240. $ THRESH, NMAX, A( 1, 1 ), A( 1, 2 ), A( 1, 3 ),
  2241. $ A( 1, 4 ), TAUA, B( 1, 1 ), B( 1, 2 ), B( 1, 3 ),
  2242. $ B( 1, 4 ), B( 1, 5 ), TAUB, WORK, D( 1, 1 ), NIN,
  2243. $ NOUT, INFO )
  2244. IF( INFO.NE.0 )
  2245. $ WRITE( NOUT, FMT = 9980 )'DCKGQR', INFO
  2246. *
  2247. ELSE IF( LSAMEN( 3, C3, 'GSV' ) ) THEN
  2248. *
  2249. * ----------------------------------------------
  2250. * GSV: Generalized Singular Value Decomposition
  2251. * ----------------------------------------------
  2252. *
  2253. IF( TSTERR )
  2254. $ CALL DERRGG( 'GSV', NOUT )
  2255. CALL DCKGSV( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX,
  2256. $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ),
  2257. $ A( 1, 3 ), B( 1, 3 ), A( 1, 4 ), TAUA, TAUB,
  2258. $ B( 1, 4 ), IWORK, WORK, D( 1, 1 ), NIN, NOUT,
  2259. $ INFO )
  2260. IF( INFO.NE.0 )
  2261. $ WRITE( NOUT, FMT = 9980 )'DCKGSV', INFO
  2262. *
  2263. ELSE IF( LSAMEN( 3, C3, 'LSE' ) ) THEN
  2264. *
  2265. * --------------------------------------
  2266. * LSE: Constrained Linear Least Squares
  2267. * --------------------------------------
  2268. *
  2269. CALL XLAENV( 1, 1 )
  2270. IF( TSTERR )
  2271. $ CALL DERRGG( 'LSE', NOUT )
  2272. CALL DCKLSE( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX,
  2273. $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X,
  2274. $ WORK, D( 1, 1 ), NIN, NOUT, INFO )
  2275. IF( INFO.NE.0 )
  2276. $ WRITE( NOUT, FMT = 9980 )'DCKLSE', INFO
  2277. *
  2278. ELSE
  2279. WRITE( NOUT, FMT = * )
  2280. WRITE( NOUT, FMT = * )
  2281. WRITE( NOUT, FMT = 9992 )C3
  2282. END IF
  2283. IF( .NOT.( DGX .OR. DXV ) )
  2284. $ GO TO 190
  2285. 380 CONTINUE
  2286. WRITE( NOUT, FMT = 9994 )
  2287. S2 = DSECND( )
  2288. WRITE( NOUT, FMT = 9993 )S2 - S1
  2289. *
  2290. 9999 FORMAT( / ' Execution not attempted due to input errors' )
  2291. 9998 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4,
  2292. $ ', NS =', I4, ', MAXB =', I4 )
  2293. 9997 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4 )
  2294. 9996 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NS =', I4,
  2295. $ ', MAXB =', I4, ', NBCOL =', I4 )
  2296. 9995 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4,
  2297. $ ', NRHS =', I4 )
  2298. 9994 FORMAT( / / ' End of tests' )
  2299. 9993 FORMAT( ' Total time used = ', F12.2, ' seconds', / )
  2300. 9992 FORMAT( 1X, A3, ': Unrecognized path name' )
  2301. 9991 FORMAT( / / ' *** Invalid integer value in column ', I2,
  2302. $ ' of input', ' line:', / A79 )
  2303. 9990 FORMAT( / / 1X, A3, ' routines were not tested' )
  2304. 9989 FORMAT( ' Invalid input value: ', A6, '=', I6, '; must be >=',
  2305. $ I6 )
  2306. 9988 FORMAT( ' Invalid input value: ', A6, '=', I6, '; must be <=',
  2307. $ I6 )
  2308. 9987 FORMAT( ' Tests of the Nonsymmetric Eigenvalue Problem routines' )
  2309. 9986 FORMAT( ' Tests of the Symmetric Eigenvalue Problem routines' )
  2310. 9985 FORMAT( ' Tests of the Singular Value Decomposition routines' )
  2311. 9984 FORMAT( / ' The following parameter values will be used:' )
  2312. 9983 FORMAT( 4X, A6, 10I6, / 10X, 10I6 )
  2313. 9982 FORMAT( / ' Routines pass computational tests if test ratio is ',
  2314. $ 'less than', F8.2, / )
  2315. 9981 FORMAT( ' Relative machine ', A, ' is taken to be', D16.6 )
  2316. 9980 FORMAT( ' *** Error code from ', A6, ' = ', I4 )
  2317. 9979 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver',
  2318. $ / ' DGEEV (eigenvalues and eigevectors)' )
  2319. 9978 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver',
  2320. $ / ' DGEES (Schur form)' )
  2321. 9977 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert',
  2322. $ ' Driver', / ' DGEEVX (eigenvalues, eigenvectors and',
  2323. $ ' condition numbers)' )
  2324. 9976 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert',
  2325. $ ' Driver', / ' DGEESX (Schur form and condition',
  2326. $ ' numbers)' )
  2327. 9975 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
  2328. $ 'Problem routines' )
  2329. 9974 FORMAT( ' Tests of DSBTRD', / ' (reduction of a symmetric band ',
  2330. $ 'matrix to tridiagonal form)' )
  2331. 9973 FORMAT( / 1X, 71( '-' ) )
  2332. 9972 FORMAT( / ' LAPACK VERSION ', I1, '.', I1, '.', I1 )
  2333. 9971 FORMAT( / ' Tests of the Generalized Linear Regression Model ',
  2334. $ 'routines' )
  2335. 9970 FORMAT( / ' Tests of the Generalized QR and RQ routines' )
  2336. 9969 FORMAT( / ' Tests of the Generalized Singular Value',
  2337. $ ' Decomposition routines' )
  2338. 9968 FORMAT( / ' Tests of the Linear Least Squares routines' )
  2339. 9967 FORMAT( ' Tests of DGBBRD', / ' (reduction of a general band ',
  2340. $ 'matrix to real bidiagonal form)' )
  2341. 9966 FORMAT( / / 1X, A3, ': NRHS =', I4 )
  2342. 9965 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
  2343. $ 'Problem Expert Driver DGGESX' )
  2344. 9964 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
  2345. $ 'Problem Driver DGGES' )
  2346. 9963 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
  2347. $ 'Problem Driver DGGEV' )
  2348. 9962 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
  2349. $ 'Problem Expert Driver DGGEVX' )
  2350. 9961 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4,
  2351. $ ', INMIN=', I4,
  2352. $ ', INWIN =', I4, ', INIBL =', I4, ', ISHFTS =', I4,
  2353. $ ', IACC22 =', I4)
  2354. *
  2355. * End of DCHKEE
  2356. *
  2357. END