/src/os/linux/vm/os_linux.cpp
https://bitbucket.org/hamishm/haiku-jdk-hotspot · C++ · 5362 lines · 3346 code · 781 blank · 1235 comment · 937 complexity · f341bdabb9233bf267f12d43c7348b66 MD5 · raw file
- /*
- * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- *
- */
- # define __STDC_FORMAT_MACROS
- // no precompiled headers
- #include "classfile/classLoader.hpp"
- #include "classfile/systemDictionary.hpp"
- #include "classfile/vmSymbols.hpp"
- #include "code/icBuffer.hpp"
- #include "code/vtableStubs.hpp"
- #include "compiler/compileBroker.hpp"
- #include "interpreter/interpreter.hpp"
- #include "jvm_linux.h"
- #include "memory/allocation.inline.hpp"
- #include "memory/filemap.hpp"
- #include "mutex_linux.inline.hpp"
- #include "oops/oop.inline.hpp"
- #include "os_share_linux.hpp"
- #include "prims/jniFastGetField.hpp"
- #include "prims/jvm.h"
- #include "prims/jvm_misc.hpp"
- #include "runtime/arguments.hpp"
- #include "runtime/extendedPC.hpp"
- #include "runtime/globals.hpp"
- #include "runtime/interfaceSupport.hpp"
- #include "runtime/java.hpp"
- #include "runtime/javaCalls.hpp"
- #include "runtime/mutexLocker.hpp"
- #include "runtime/objectMonitor.hpp"
- #include "runtime/osThread.hpp"
- #include "runtime/perfMemory.hpp"
- #include "runtime/sharedRuntime.hpp"
- #include "runtime/statSampler.hpp"
- #include "runtime/stubRoutines.hpp"
- #include "runtime/threadCritical.hpp"
- #include "runtime/timer.hpp"
- #include "services/attachListener.hpp"
- #include "services/runtimeService.hpp"
- #include "thread_linux.inline.hpp"
- #include "utilities/decoder.hpp"
- #include "utilities/defaultStream.hpp"
- #include "utilities/events.hpp"
- #include "utilities/growableArray.hpp"
- #include "utilities/vmError.hpp"
- #ifdef TARGET_ARCH_x86
- # include "assembler_x86.inline.hpp"
- # include "nativeInst_x86.hpp"
- #endif
- #ifdef TARGET_ARCH_sparc
- # include "assembler_sparc.inline.hpp"
- # include "nativeInst_sparc.hpp"
- #endif
- #ifdef TARGET_ARCH_zero
- # include "assembler_zero.inline.hpp"
- # include "nativeInst_zero.hpp"
- #endif
- #ifdef TARGET_ARCH_arm
- # include "assembler_arm.inline.hpp"
- # include "nativeInst_arm.hpp"
- #endif
- #ifdef TARGET_ARCH_ppc
- # include "assembler_ppc.inline.hpp"
- # include "nativeInst_ppc.hpp"
- #endif
- #ifdef COMPILER1
- #include "c1/c1_Runtime1.hpp"
- #endif
- #ifdef COMPILER2
- #include "opto/runtime.hpp"
- #endif
- // put OS-includes here
- # include <sys/types.h>
- # include <sys/mman.h>
- # include <sys/stat.h>
- # include <sys/select.h>
- # include <pthread.h>
- # include <signal.h>
- # include <errno.h>
- # include <dlfcn.h>
- # include <stdio.h>
- # include <unistd.h>
- # include <sys/resource.h>
- # include <pthread.h>
- # include <sys/stat.h>
- # include <sys/time.h>
- # include <sys/times.h>
- # include <sys/utsname.h>
- # include <sys/socket.h>
- # include <sys/wait.h>
- # include <pwd.h>
- # include <poll.h>
- # include <semaphore.h>
- # include <fcntl.h>
- # include <string.h>
- # include <syscall.h>
- # include <sys/sysinfo.h>
- # include <gnu/libc-version.h>
- # include <sys/ipc.h>
- # include <sys/shm.h>
- # include <link.h>
- # include <stdint.h>
- # include <inttypes.h>
- # include <sys/ioctl.h>
- #define MAX_PATH (2 * K)
- // for timer info max values which include all bits
- #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
- #define SEC_IN_NANOSECS 1000000000LL
- #define LARGEPAGES_BIT (1 << 6)
- ////////////////////////////////////////////////////////////////////////////////
- // global variables
- julong os::Linux::_physical_memory = 0;
- address os::Linux::_initial_thread_stack_bottom = NULL;
- uintptr_t os::Linux::_initial_thread_stack_size = 0;
- int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
- int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
- Mutex* os::Linux::_createThread_lock = NULL;
- pthread_t os::Linux::_main_thread;
- int os::Linux::_page_size = -1;
- bool os::Linux::_is_floating_stack = false;
- bool os::Linux::_is_NPTL = false;
- bool os::Linux::_supports_fast_thread_cpu_time = false;
- const char * os::Linux::_glibc_version = NULL;
- const char * os::Linux::_libpthread_version = NULL;
- static jlong initial_time_count=0;
- static int clock_tics_per_sec = 100;
- // For diagnostics to print a message once. see run_periodic_checks
- static sigset_t check_signal_done;
- static bool check_signals = true;;
- static pid_t _initial_pid = 0;
- /* Signal number used to suspend/resume a thread */
- /* do not use any signal number less than SIGSEGV, see 4355769 */
- static int SR_signum = SIGUSR2;
- sigset_t SR_sigset;
- /* Used to protect dlsym() calls */
- static pthread_mutex_t dl_mutex;
- ////////////////////////////////////////////////////////////////////////////////
- // utility functions
- static int SR_initialize();
- static int SR_finalize();
- julong os::available_memory() {
- return Linux::available_memory();
- }
- julong os::Linux::available_memory() {
- // values in struct sysinfo are "unsigned long"
- struct sysinfo si;
- sysinfo(&si);
- return (julong)si.freeram * si.mem_unit;
- }
- julong os::physical_memory() {
- return Linux::physical_memory();
- }
- julong os::allocatable_physical_memory(julong size) {
- #ifdef _LP64
- return size;
- #else
- julong result = MIN2(size, (julong)3800*M);
- if (!is_allocatable(result)) {
- // See comments under solaris for alignment considerations
- julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
- result = MIN2(size, reasonable_size);
- }
- return result;
- #endif // _LP64
- }
- ////////////////////////////////////////////////////////////////////////////////
- // environment support
- bool os::getenv(const char* name, char* buf, int len) {
- const char* val = ::getenv(name);
- if (val != NULL && strlen(val) < (size_t)len) {
- strcpy(buf, val);
- return true;
- }
- if (len > 0) buf[0] = 0; // return a null string
- return false;
- }
- // Return true if user is running as root.
- bool os::have_special_privileges() {
- static bool init = false;
- static bool privileges = false;
- if (!init) {
- privileges = (getuid() != geteuid()) || (getgid() != getegid());
- init = true;
- }
- return privileges;
- }
- #ifndef SYS_gettid
- // i386: 224, ia64: 1105, amd64: 186, sparc 143
- #ifdef __ia64__
- #define SYS_gettid 1105
- #elif __i386__
- #define SYS_gettid 224
- #elif __amd64__
- #define SYS_gettid 186
- #elif __sparc__
- #define SYS_gettid 143
- #else
- #error define gettid for the arch
- #endif
- #endif
- // Cpu architecture string
- #if defined(ZERO)
- static char cpu_arch[] = ZERO_LIBARCH;
- #elif defined(IA64)
- static char cpu_arch[] = "ia64";
- #elif defined(IA32)
- static char cpu_arch[] = "i386";
- #elif defined(AMD64)
- static char cpu_arch[] = "amd64";
- #elif defined(ARM)
- static char cpu_arch[] = "arm";
- #elif defined(PPC)
- static char cpu_arch[] = "ppc";
- #elif defined(SPARC)
- # ifdef _LP64
- static char cpu_arch[] = "sparcv9";
- # else
- static char cpu_arch[] = "sparc";
- # endif
- #else
- #error Add appropriate cpu_arch setting
- #endif
- // pid_t gettid()
- //
- // Returns the kernel thread id of the currently running thread. Kernel
- // thread id is used to access /proc.
- //
- // (Note that getpid() on LinuxThreads returns kernel thread id too; but
- // on NPTL, it returns the same pid for all threads, as required by POSIX.)
- //
- pid_t os::Linux::gettid() {
- int rslt = syscall(SYS_gettid);
- if (rslt == -1) {
- // old kernel, no NPTL support
- return getpid();
- } else {
- return (pid_t)rslt;
- }
- }
- // Most versions of linux have a bug where the number of processors are
- // determined by looking at the /proc file system. In a chroot environment,
- // the system call returns 1. This causes the VM to act as if it is
- // a single processor and elide locking (see is_MP() call).
- static bool unsafe_chroot_detected = false;
- static const char *unstable_chroot_error = "/proc file system not found.\n"
- "Java may be unstable running multithreaded in a chroot "
- "environment on Linux when /proc filesystem is not mounted.";
- void os::Linux::initialize_system_info() {
- set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
- if (processor_count() == 1) {
- pid_t pid = os::Linux::gettid();
- char fname[32];
- jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
- FILE *fp = fopen(fname, "r");
- if (fp == NULL) {
- unsafe_chroot_detected = true;
- } else {
- fclose(fp);
- }
- }
- _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
- assert(processor_count() > 0, "linux error");
- }
- void os::init_system_properties_values() {
- // char arch[12];
- // sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
- // The next steps are taken in the product version:
- //
- // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
- // This library should be located at:
- // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
- //
- // If "/jre/lib/" appears at the right place in the path, then we
- // assume libjvm[_g].so is installed in a JDK and we use this path.
- //
- // Otherwise exit with message: "Could not create the Java virtual machine."
- //
- // The following extra steps are taken in the debugging version:
- //
- // If "/jre/lib/" does NOT appear at the right place in the path
- // instead of exit check for $JAVA_HOME environment variable.
- //
- // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
- // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
- // it looks like libjvm[_g].so is installed there
- // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
- //
- // Otherwise exit.
- //
- // Important note: if the location of libjvm.so changes this
- // code needs to be changed accordingly.
- // The next few definitions allow the code to be verbatim:
- #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
- #define getenv(n) ::getenv(n)
- /*
- * See ld(1):
- * The linker uses the following search paths to locate required
- * shared libraries:
- * 1: ...
- * ...
- * 7: The default directories, normally /lib and /usr/lib.
- */
- #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
- #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
- #else
- #define DEFAULT_LIBPATH "/lib:/usr/lib"
- #endif
- #define EXTENSIONS_DIR "/lib/ext"
- #define ENDORSED_DIR "/lib/endorsed"
- #define REG_DIR "/usr/java/packages"
- {
- /* sysclasspath, java_home, dll_dir */
- {
- char *home_path;
- char *dll_path;
- char *pslash;
- char buf[MAXPATHLEN];
- os::jvm_path(buf, sizeof(buf));
- // Found the full path to libjvm.so.
- // Now cut the path to <java_home>/jre if we can.
- *(strrchr(buf, '/')) = '\0'; /* get rid of /libjvm.so */
- pslash = strrchr(buf, '/');
- if (pslash != NULL)
- *pslash = '\0'; /* get rid of /{client|server|hotspot} */
- dll_path = malloc(strlen(buf) + 1);
- if (dll_path == NULL)
- return;
- strcpy(dll_path, buf);
- Arguments::set_dll_dir(dll_path);
- if (pslash != NULL) {
- pslash = strrchr(buf, '/');
- if (pslash != NULL) {
- *pslash = '\0'; /* get rid of /<arch> */
- pslash = strrchr(buf, '/');
- if (pslash != NULL)
- *pslash = '\0'; /* get rid of /lib */
- }
- }
- home_path = malloc(strlen(buf) + 1);
- if (home_path == NULL)
- return;
- strcpy(home_path, buf);
- Arguments::set_java_home(home_path);
- if (!set_boot_path('/', ':'))
- return;
- }
- /*
- * Where to look for native libraries
- *
- * Note: Due to a legacy implementation, most of the library path
- * is set in the launcher. This was to accomodate linking restrictions
- * on legacy Linux implementations (which are no longer supported).
- * Eventually, all the library path setting will be done here.
- *
- * However, to prevent the proliferation of improperly built native
- * libraries, the new path component /usr/java/packages is added here.
- * Eventually, all the library path setting will be done here.
- */
- {
- char *ld_library_path;
- /*
- * Construct the invariant part of ld_library_path. Note that the
- * space for the colon and the trailing null are provided by the
- * nulls included by the sizeof operator (so actually we allocate
- * a byte more than necessary).
- */
- ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
- strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
- sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
- /*
- * Get the user setting of LD_LIBRARY_PATH, and prepended it. It
- * should always exist (until the legacy problem cited above is
- * addressed).
- */
- char *v = getenv("LD_LIBRARY_PATH");
- if (v != NULL) {
- char *t = ld_library_path;
- /* That's +1 for the colon and +1 for the trailing '\0' */
- ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
- sprintf(ld_library_path, "%s:%s", v, t);
- }
- Arguments::set_library_path(ld_library_path);
- }
- /*
- * Extensions directories.
- *
- * Note that the space for the colon and the trailing null are provided
- * by the nulls included by the sizeof operator (so actually one byte more
- * than necessary is allocated).
- */
- {
- char *buf = malloc(strlen(Arguments::get_java_home()) +
- sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
- sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
- Arguments::get_java_home());
- Arguments::set_ext_dirs(buf);
- }
- /* Endorsed standards default directory. */
- {
- char * buf;
- buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
- sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
- Arguments::set_endorsed_dirs(buf);
- }
- }
- #undef malloc
- #undef getenv
- #undef EXTENSIONS_DIR
- #undef ENDORSED_DIR
- // Done
- return;
- }
- ////////////////////////////////////////////////////////////////////////////////
- // breakpoint support
- void os::breakpoint() {
- BREAKPOINT;
- }
- extern "C" void breakpoint() {
- // use debugger to set breakpoint here
- }
- ////////////////////////////////////////////////////////////////////////////////
- // signal support
- debug_only(static bool signal_sets_initialized = false);
- static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
- bool os::Linux::is_sig_ignored(int sig) {
- struct sigaction oact;
- sigaction(sig, (struct sigaction*)NULL, &oact);
- void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*, oact.sa_sigaction)
- : CAST_FROM_FN_PTR(void*, oact.sa_handler);
- if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
- return true;
- else
- return false;
- }
- void os::Linux::signal_sets_init() {
- // Should also have an assertion stating we are still single-threaded.
- assert(!signal_sets_initialized, "Already initialized");
- // Fill in signals that are necessarily unblocked for all threads in
- // the VM. Currently, we unblock the following signals:
- // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
- // by -Xrs (=ReduceSignalUsage));
- // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
- // other threads. The "ReduceSignalUsage" boolean tells us not to alter
- // the dispositions or masks wrt these signals.
- // Programs embedding the VM that want to use the above signals for their
- // own purposes must, at this time, use the "-Xrs" option to prevent
- // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
- // (See bug 4345157, and other related bugs).
- // In reality, though, unblocking these signals is really a nop, since
- // these signals are not blocked by default.
- sigemptyset(&unblocked_sigs);
- sigemptyset(&allowdebug_blocked_sigs);
- sigaddset(&unblocked_sigs, SIGILL);
- sigaddset(&unblocked_sigs, SIGSEGV);
- sigaddset(&unblocked_sigs, SIGBUS);
- sigaddset(&unblocked_sigs, SIGFPE);
- sigaddset(&unblocked_sigs, SR_signum);
- if (!ReduceSignalUsage) {
- if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
- sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
- sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
- }
- if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
- sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
- sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
- }
- if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
- sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
- sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
- }
- }
- // Fill in signals that are blocked by all but the VM thread.
- sigemptyset(&vm_sigs);
- if (!ReduceSignalUsage)
- sigaddset(&vm_sigs, BREAK_SIGNAL);
- debug_only(signal_sets_initialized = true);
- }
- // These are signals that are unblocked while a thread is running Java.
- // (For some reason, they get blocked by default.)
- sigset_t* os::Linux::unblocked_signals() {
- assert(signal_sets_initialized, "Not initialized");
- return &unblocked_sigs;
- }
- // These are the signals that are blocked while a (non-VM) thread is
- // running Java. Only the VM thread handles these signals.
- sigset_t* os::Linux::vm_signals() {
- assert(signal_sets_initialized, "Not initialized");
- return &vm_sigs;
- }
- // These are signals that are blocked during cond_wait to allow debugger in
- sigset_t* os::Linux::allowdebug_blocked_signals() {
- assert(signal_sets_initialized, "Not initialized");
- return &allowdebug_blocked_sigs;
- }
- void os::Linux::hotspot_sigmask(Thread* thread) {
- //Save caller's signal mask before setting VM signal mask
- sigset_t caller_sigmask;
- pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
- OSThread* osthread = thread->osthread();
- osthread->set_caller_sigmask(caller_sigmask);
- pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
- if (!ReduceSignalUsage) {
- if (thread->is_VM_thread()) {
- // Only the VM thread handles BREAK_SIGNAL ...
- pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
- } else {
- // ... all other threads block BREAK_SIGNAL
- pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
- }
- }
- }
- //////////////////////////////////////////////////////////////////////////////
- // detecting pthread library
- void os::Linux::libpthread_init() {
- // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
- // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
- // generic name for earlier versions.
- // Define macros here so we can build HotSpot on old systems.
- # ifndef _CS_GNU_LIBC_VERSION
- # define _CS_GNU_LIBC_VERSION 2
- # endif
- # ifndef _CS_GNU_LIBPTHREAD_VERSION
- # define _CS_GNU_LIBPTHREAD_VERSION 3
- # endif
- size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
- if (n > 0) {
- char *str = (char *)malloc(n);
- confstr(_CS_GNU_LIBC_VERSION, str, n);
- os::Linux::set_glibc_version(str);
- } else {
- // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
- static char _gnu_libc_version[32];
- jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
- "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
- os::Linux::set_glibc_version(_gnu_libc_version);
- }
- n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
- if (n > 0) {
- char *str = (char *)malloc(n);
- confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
- // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
- // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
- // is the case. LinuxThreads has a hard limit on max number of threads.
- // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
- // On the other hand, NPTL does not have such a limit, sysconf()
- // will return -1 and errno is not changed. Check if it is really NPTL.
- if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
- strstr(str, "NPTL") &&
- sysconf(_SC_THREAD_THREADS_MAX) > 0) {
- free(str);
- os::Linux::set_libpthread_version("linuxthreads");
- } else {
- os::Linux::set_libpthread_version(str);
- }
- } else {
- // glibc before 2.3.2 only has LinuxThreads.
- os::Linux::set_libpthread_version("linuxthreads");
- }
- if (strstr(libpthread_version(), "NPTL")) {
- os::Linux::set_is_NPTL();
- } else {
- os::Linux::set_is_LinuxThreads();
- }
- // LinuxThreads have two flavors: floating-stack mode, which allows variable
- // stack size; and fixed-stack mode. NPTL is always floating-stack.
- if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
- os::Linux::set_is_floating_stack();
- }
- }
- /////////////////////////////////////////////////////////////////////////////
- // thread stack
- // Force Linux kernel to expand current thread stack. If "bottom" is close
- // to the stack guard, caller should block all signals.
- //
- // MAP_GROWSDOWN:
- // A special mmap() flag that is used to implement thread stacks. It tells
- // kernel that the memory region should extend downwards when needed. This
- // allows early versions of LinuxThreads to only mmap the first few pages
- // when creating a new thread. Linux kernel will automatically expand thread
- // stack as needed (on page faults).
- //
- // However, because the memory region of a MAP_GROWSDOWN stack can grow on
- // demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
- // region, it's hard to tell if the fault is due to a legitimate stack
- // access or because of reading/writing non-exist memory (e.g. buffer
- // overrun). As a rule, if the fault happens below current stack pointer,
- // Linux kernel does not expand stack, instead a SIGSEGV is sent to the
- // application (see Linux kernel fault.c).
- //
- // This Linux feature can cause SIGSEGV when VM bangs thread stack for
- // stack overflow detection.
- //
- // Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
- // not use this flag. However, the stack of initial thread is not created
- // by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
- // unlikely) that user code can create a thread with MAP_GROWSDOWN stack
- // and then attach the thread to JVM.
- //
- // To get around the problem and allow stack banging on Linux, we need to
- // manually expand thread stack after receiving the SIGSEGV.
- //
- // There are two ways to expand thread stack to address "bottom", we used
- // both of them in JVM before 1.5:
- // 1. adjust stack pointer first so that it is below "bottom", and then
- // touch "bottom"
- // 2. mmap() the page in question
- //
- // Now alternate signal stack is gone, it's harder to use 2. For instance,
- // if current sp is already near the lower end of page 101, and we need to
- // call mmap() to map page 100, it is possible that part of the mmap() frame
- // will be placed in page 100. When page 100 is mapped, it is zero-filled.
- // That will destroy the mmap() frame and cause VM to crash.
- //
- // The following code works by adjusting sp first, then accessing the "bottom"
- // page to force a page fault. Linux kernel will then automatically expand the
- // stack mapping.
- //
- // _expand_stack_to() assumes its frame size is less than page size, which
- // should always be true if the function is not inlined.
- #if __GNUC__ < 3 // gcc 2.x does not support noinline attribute
- #define NOINLINE
- #else
- #define NOINLINE __attribute__ ((noinline))
- #endif
- static void _expand_stack_to(address bottom) NOINLINE;
- static void _expand_stack_to(address bottom) {
- address sp;
- size_t size;
- volatile char *p;
- // Adjust bottom to point to the largest address within the same page, it
- // gives us a one-page buffer if alloca() allocates slightly more memory.
- bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
- bottom += os::Linux::page_size() - 1;
- // sp might be slightly above current stack pointer; if that's the case, we
- // will alloca() a little more space than necessary, which is OK. Don't use
- // os::current_stack_pointer(), as its result can be slightly below current
- // stack pointer, causing us to not alloca enough to reach "bottom".
- sp = (address)&sp;
- if (sp > bottom) {
- size = sp - bottom;
- p = (volatile char *)alloca(size);
- assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
- p[0] = '\0';
- }
- }
- bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
- assert(t!=NULL, "just checking");
- assert(t->osthread()->expanding_stack(), "expand should be set");
- assert(t->stack_base() != NULL, "stack_base was not initialized");
- if (addr < t->stack_base() && addr >= t->stack_yellow_zone_base()) {
- sigset_t mask_all, old_sigset;
- sigfillset(&mask_all);
- pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
- _expand_stack_to(addr);
- pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
- return true;
- }
- return false;
- }
- //////////////////////////////////////////////////////////////////////////////
- // create new thread
- static address highest_vm_reserved_address();
- // check if it's safe to start a new thread
- static bool _thread_safety_check(Thread* thread) {
- if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
- // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
- // Heap is mmap'ed at lower end of memory space. Thread stacks are
- // allocated (MAP_FIXED) from high address space. Every thread stack
- // occupies a fixed size slot (usually 2Mbytes, but user can change
- // it to other values if they rebuild LinuxThreads).
- //
- // Problem with MAP_FIXED is that mmap() can still succeed even part of
- // the memory region has already been mmap'ed. That means if we have too
- // many threads and/or very large heap, eventually thread stack will
- // collide with heap.
- //
- // Here we try to prevent heap/stack collision by comparing current
- // stack bottom with the highest address that has been mmap'ed by JVM
- // plus a safety margin for memory maps created by native code.
- //
- // This feature can be disabled by setting ThreadSafetyMargin to 0
- //
- if (ThreadSafetyMargin > 0) {
- address stack_bottom = os::current_stack_base() - os::current_stack_size();
- // not safe if our stack extends below the safety margin
- return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
- } else {
- return true;
- }
- } else {
- // Floating stack LinuxThreads or NPTL:
- // Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
- // there's not enough space left, pthread_create() will fail. If we come
- // here, that means enough space has been reserved for stack.
- return true;
- }
- }
- // Thread start routine for all newly created threads
- static void *java_start(Thread *thread) {
- // Try to randomize the cache line index of hot stack frames.
- // This helps when threads of the same stack traces evict each other's
- // cache lines. The threads can be either from the same JVM instance, or
- // from different JVM instances. The benefit is especially true for
- // processors with hyperthreading technology.
- static int counter = 0;
- int pid = os::current_process_id();
- alloca(((pid ^ counter++) & 7) * 128);
- ThreadLocalStorage::set_thread(thread);
- OSThread* osthread = thread->osthread();
- Monitor* sync = osthread->startThread_lock();
- // non floating stack LinuxThreads needs extra check, see above
- if (!_thread_safety_check(thread)) {
- // notify parent thread
- MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
- osthread->set_state(ZOMBIE);
- sync->notify_all();
- return NULL;
- }
- // thread_id is kernel thread id (similar to Solaris LWP id)
- osthread->set_thread_id(os::Linux::gettid());
- if (UseNUMA) {
- int lgrp_id = os::numa_get_group_id();
- if (lgrp_id != -1) {
- thread->set_lgrp_id(lgrp_id);
- }
- }
- // initialize signal mask for this thread
- os::Linux::hotspot_sigmask(thread);
- // initialize floating point control register
- os::Linux::init_thread_fpu_state();
- // handshaking with parent thread
- {
- MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
- // notify parent thread
- osthread->set_state(INITIALIZED);
- sync->notify_all();
- // wait until os::start_thread()
- while (osthread->get_state() == INITIALIZED) {
- sync->wait(Mutex::_no_safepoint_check_flag);
- }
- }
- // call one more level start routine
- thread->run();
- return 0;
- }
- bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
- assert(thread->osthread() == NULL, "caller responsible");
- // Allocate the OSThread object
- OSThread* osthread = new OSThread(NULL, NULL);
- if (osthread == NULL) {
- return false;
- }
- // set the correct thread state
- osthread->set_thread_type(thr_type);
- // Initial state is ALLOCATED but not INITIALIZED
- osthread->set_state(ALLOCATED);
- thread->set_osthread(osthread);
- // init thread attributes
- pthread_attr_t attr;
- pthread_attr_init(&attr);
- pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
- // stack size
- if (os::Linux::supports_variable_stack_size()) {
- // calculate stack size if it's not specified by caller
- if (stack_size == 0) {
- stack_size = os::Linux::default_stack_size(thr_type);
- switch (thr_type) {
- case os::java_thread:
- // Java threads use ThreadStackSize which default value can be
- // changed with the flag -Xss
- assert (JavaThread::stack_size_at_create() > 0, "this should be set");
- stack_size = JavaThread::stack_size_at_create();
- break;
- case os::compiler_thread:
- if (CompilerThreadStackSize > 0) {
- stack_size = (size_t)(CompilerThreadStackSize * K);
- break;
- } // else fall through:
- // use VMThreadStackSize if CompilerThreadStackSize is not defined
- case os::vm_thread:
- case os::pgc_thread:
- case os::cgc_thread:
- case os::watcher_thread:
- if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
- break;
- }
- }
- stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
- pthread_attr_setstacksize(&attr, stack_size);
- } else {
- // let pthread_create() pick the default value.
- }
- // glibc guard page
- pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
- ThreadState state;
- {
- // Serialize thread creation if we are running with fixed stack LinuxThreads
- bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
- if (lock) {
- os::Linux::createThread_lock()->lock_without_safepoint_check();
- }
- pthread_t tid;
- int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
- pthread_attr_destroy(&attr);
- if (ret != 0) {
- if (PrintMiscellaneous && (Verbose || WizardMode)) {
- perror("pthread_create()");
- }
- // Need to clean up stuff we've allocated so far
- thread->set_osthread(NULL);
- delete osthread;
- if (lock) os::Linux::createThread_lock()->unlock();
- return false;
- }
- // Store pthread info into the OSThread
- osthread->set_pthread_id(tid);
- // Wait until child thread is either initialized or aborted
- {
- Monitor* sync_with_child = osthread->startThread_lock();
- MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
- while ((state = osthread->get_state()) == ALLOCATED) {
- sync_with_child->wait(Mutex::_no_safepoint_check_flag);
- }
- }
- if (lock) {
- os::Linux::createThread_lock()->unlock();
- }
- }
- // Aborted due to thread limit being reached
- if (state == ZOMBIE) {
- thread->set_osthread(NULL);
- delete osthread;
- return false;
- }
- // The thread is returned suspended (in state INITIALIZED),
- // and is started higher up in the call chain
- assert(state == INITIALIZED, "race condition");
- return true;
- }
- /////////////////////////////////////////////////////////////////////////////
- // attach existing thread
- // bootstrap the main thread
- bool os::create_main_thread(JavaThread* thread) {
- assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
- return create_attached_thread(thread);
- }
- bool os::create_attached_thread(JavaThread* thread) {
- #ifdef ASSERT
- thread->verify_not_published();
- #endif
- // Allocate the OSThread object
- OSThread* osthread = new OSThread(NULL, NULL);
- if (osthread == NULL) {
- return false;
- }
- // Store pthread info into the OSThread
- osthread->set_thread_id(os::Linux::gettid());
- osthread->set_pthread_id(::pthread_self());
- // initialize floating point control register
- os::Linux::init_thread_fpu_state();
- // Initial thread state is RUNNABLE
- osthread->set_state(RUNNABLE);
- thread->set_osthread(osthread);
- if (UseNUMA) {
- int lgrp_id = os::numa_get_group_id();
- if (lgrp_id != -1) {
- thread->set_lgrp_id(lgrp_id);
- }
- }
- if (os::Linux::is_initial_thread()) {
- // If current thread is initial thread, its stack is mapped on demand,
- // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
- // the entire stack region to avoid SEGV in stack banging.
- // It is also useful to get around the heap-stack-gap problem on SuSE
- // kernel (see 4821821 for details). We first expand stack to the top
- // of yellow zone, then enable stack yellow zone (order is significant,
- // enabling yellow zone first will crash JVM on SuSE Linux), so there
- // is no gap between the last two virtual memory regions.
- JavaThread *jt = (JavaThread *)thread;
- address addr = jt->stack_yellow_zone_base();
- assert(addr != NULL, "initialization problem?");
- assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
- osthread->set_expanding_stack();
- os::Linux::manually_expand_stack(jt, addr);
- osthread->clear_expanding_stack();
- }
- // initialize signal mask for this thread
- // and save the caller's signal mask
- os::Linux::hotspot_sigmask(thread);
- return true;
- }
- void os::pd_start_thread(Thread* thread) {
- OSThread * osthread = thread->osthread();
- assert(osthread->get_state() != INITIALIZED, "just checking");
- Monitor* sync_with_child = osthread->startThread_lock();
- MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
- sync_with_child->notify();
- }
- // Free Linux resources related to the OSThread
- void os::free_thread(OSThread* osthread) {
- assert(osthread != NULL, "osthread not set");
- if (Thread::current()->osthread() == osthread) {
- // Restore caller's signal mask
- sigset_t sigmask = osthread->caller_sigmask();
- pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
- }
- delete osthread;
- }
- //////////////////////////////////////////////////////////////////////////////
- // thread local storage
- int os::allocate_thread_local_storage() {
- pthread_key_t key;
- int rslt = pthread_key_create(&key, NULL);
- assert(rslt == 0, "cannot allocate thread local storage");
- return (int)key;
- }
- // Note: This is currently not used by VM, as we don't destroy TLS key
- // on VM exit.
- void os::free_thread_local_storage(int index) {
- int rslt = pthread_key_delete((pthread_key_t)index);
- assert(rslt == 0, "invalid index");
- }
- void os::thread_local_storage_at_put(int index, void* value) {
- int rslt = pthread_setspecific((pthread_key_t)index, value);
- assert(rslt == 0, "pthread_setspecific failed");
- }
- extern "C" Thread* get_thread() {
- return ThreadLocalStorage::thread();
- }
- //////////////////////////////////////////////////////////////////////////////
- // initial thread
- // Check if current thread is the initial thread, similar to Solaris thr_main.
- bool os::Linux::is_initial_thread(void) {
- char dummy;
- // If called before init complete, thread stack bottom will be null.
- // Can be called if fatal error occurs before initialization.
- if (initial_thread_stack_bottom() == NULL) return false;
- assert(initial_thread_stack_bottom() != NULL &&
- initial_thread_stack_size() != 0,
- "os::init did not locate initial thread's stack region");
- if ((address)&dummy >= initial_thread_stack_bottom() &&
- (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
- return true;
- else return false;
- }
- // Find the virtual memory area that contains addr
- static bool find_vma(address addr, address* vma_low, address* vma_high) {
- FILE *fp = fopen("/proc/self/maps", "r");
- if (fp) {
- address low, high;
- while (!feof(fp)) {
- if (fscanf(fp, "%p-%p", &low, &high) == 2) {
- if (low <= addr && addr < high) {
- if (vma_low) *vma_low = low;
- if (vma_high) *vma_high = high;
- fclose (fp);
- return true;
- }
- }
- for (;;) {
- int ch = fgetc(fp);
- if (ch == EOF || ch == (int)'\n') break;
- }
- }
- fclose(fp);
- }
- return false;
- }
- // Locate initial thread stack. This special handling of initial thread stack
- // is needed because pthread_getattr_np() on most (all?) Linux distros returns
- // bogus value for initial thread.
- void os::Linux::capture_initial_stack(size_t max_size) {
- // stack size is the easy part, get it from RLIMIT_STACK
- size_t stack_size;
- struct rlimit rlim;
- getrlimit(RLIMIT_STACK, &rlim);
- stack_size = rlim.rlim_cur;
- // 6308388: a bug in ld.so will relocate its own .data section to the
- // lower end of primordial stack; reduce ulimit -s value a little bit
- // so we won't install guard page on ld.so's data section.
- stack_size -= 2 * page_size();
- // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
- // 7.1, in both cases we will get 2G in return value.
- // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
- // SuSE 7.2, Debian) can not handle alternate signal stack correctly
- // for initial thread if its stack size exceeds 6M. Cap it at 2M,
- // in case other parts in glibc still assumes 2M max stack size.
- // FIXME: alt signal stack is gone, maybe we can relax this constraint?
- #ifndef IA64
- if (stack_size > 2 * K * K) stack_size = 2 * K * K;
- #else
- // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
- if (stack_size > 4 * K * K) stack_size = 4 * K * K;
- #endif
- // Try to figure out where the stack base (top) is. This is harder.
- //
- // When an application is started, glibc saves the initial stack pointer in
- // a global variable "__libc_stack_end", which is then used by system
- // libraries. __libc_stack_end should be pretty close to stack top. The
- // variable is available since the very early days. However, because it is
- // a private interface, it could disappear in the future.
- //
- // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
- // to __libc_stack_end, it is very close to stack top, but isn't the real
- // stack top. Note that /proc may not exist if VM is running as a chroot
- // program, so reading /proc/<pid>/stat could fail. Also the contents of
- // /proc/<pid>/stat could change in the future (though unlikely).
- //
- // We try __libc_stack_end first. If that doesn't work, look for
- // /proc/<pid>/stat. If neither of them works, we use current stack pointer
- // as a hint, which should work well in most cases.
- uintptr_t stack_start;
- // try __libc_stack_end first
- uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
- if (p && *p) {
- stack_start = *p;
- } else {
- // see if we can get the start_stack field from /proc/self/stat
- FILE *fp;
- int pid;
- char state;
- int ppid;
- int pgrp;
- int session;
- int nr;
- int tpgrp;
- unsigned long flags;
- unsigned long minflt;
- unsigned long cminflt;
- unsigned long majflt;
- unsigned long cmajflt;
- unsigned long utime;
- unsigned long stime;
- long cutime;
- long cstime;
- long prio;
- long nice;
- long junk;
- long it_real;
- uintptr_t start;
- uintptr_t vsize;
- intptr_t rss;
- uintptr_t rsslim;
- uintptr_t scodes;
- uintptr_t ecode;
- int i;
- // Figure what the primordial thread stack base is. Code is inspired
- // by email from Hans Boehm. /proc/self/stat begins with current pid,
- // followed by command name surrounded by parentheses, state, etc.
- char stat[2048];
- int statlen;
- fp = fopen("/proc/self/stat", "r");
- if (fp) {
- statlen = fread(stat, 1, 2047, fp);
- stat[statlen] = '\0';
- fclose(fp);
- // Skip pid and the command string. Note that we could be dealing with
- // weird command names, e.g. user could decide to rename java launcher
- // to "java 1.4.2 :)", then the stat file would look like
- // 1234 (java 1.4.2 :)) R ... ...
- // We don't really need to know the command string, just find the last
- // occurrence of ")" and then start parsing from there. See bug 4726580.
- char * s = strrchr(stat, ')');
- i = 0;
- if (s) {
- // Skip blank chars
- do s++; while (isspace(*s));
- #define _UFM UINTX_FORMAT
- #define _DFM INTX_FORMAT
- /* 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 */
- /* 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 */
- i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
- &state, /* 3 %c */
- &ppid, /* 4 %d */
- &pgrp, /* 5 %d */
- &session, /* 6 %d */
- &nr, /* 7 %d */
- &tpgrp, /* 8 %d */
- &flags, /* 9 %lu */
- &minflt, /* 10 %lu */
- &cminflt, /* 11 %lu */
- &majflt, /* 12 %lu */
- &cmajflt, /* 13 %lu */
- &utime, /* 14 %lu */
- &stime, /* 15 %lu */
- &cutime, /* 16 %ld */
- &cstime, /* 17 %ld */
- &prio, /* 18 %ld */
- &nice, /* 19 %ld */
- &junk, /* 20 %ld */
- &it_real, /* 21 %ld */
- &start, /* 22 UINTX_FORMAT */
- &vsize, /* 23 UINTX_FORMAT */
- &rss, /* 24 INTX_FORMAT */
- &rsslim, /* 25 UINTX_FORMAT */
- &scodes, /* 26 UINTX_FORMAT */
- &ecode, /* 27 UINTX_FORMAT */
- &stack_start); /* 28 UINTX_FORMAT */
- }
- #undef _UFM
- #undef _DFM
- if (i != 28 - 2) {
- assert(false, "Bad conversion from /proc/self/stat");
- // product mode - assume we are the initial thread, good luck in the
- // embedded case.
- warning("Can't detect initial thread stack location - bad conversion");
- stack_start = (uintptr_t) &rlim;
- }
- } else {
- // For some reason we can't open /proc/self/stat (for example, running on
- // FreeBSD with a Linux emulator, or inside chroot), this should work for
- // most cases, so don't abort:
- warning("Can't detect initial thread stack location - no /proc/self/stat");
- stack_start = (uintptr_t) &rlim;
- }
- }
- // Now we have a pointer (stack_start) very close to the stack top, the
- // next thing to do is to figure out the exact location of stack top. We
- // can find out the virtual memory area that contains stack_start by
- // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
- // and its upper limit is the real stack top. (again, this would fail if
- // running inside chroot, because /proc may not exist.)
- uintptr_t stack_top;
- address low, high;
- if (find_vma((address)stack_start, &low, &high)) {
- // success, "high" is the true stack top. (ignore "low", because initial
- // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
- stack_top = (uintptr_t)high;
- } else {
- // failed, likely because /proc/self/maps does not exist
- warning("Can't detect initial thread stack location - find_vma failed");
- // best effort: stack_start is normally within a few pages below the real
- // stack top, use it as stack top, and reduce stack size so we won't put
- // guard page outside stack.
- stack_top = stack_start;
- stack_size -= 16 * page_size();
- }
- // stack_top could be partially down the page so align it
- stack_top = align_size_up(stack_top, page_size());
- if (max_size && stack_size > max_size) {
- _initial_thread_stack_size = max_size;
- } else {
- _initial_thread_stack_size = stack_size;
- }
- _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
- _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
- }
- ////////////////////////////////////////////////////////////////////////////////
- // time support
- // Time since start-up in seconds to a fine granularity.
- // Used by VMSelfDestructTimer and the MemProfiler.
- double os::elapsedTime() {
- return (double)(os::elapsed_counter()) * 0.000001;
- }
- jlong os::elapsed_counter() {
- timeval time;
- int status = gettimeofday(&time, NULL);
- return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
- }
- jlong os::elapsed_frequency() {
- return (1000 * 1000);
- }
- // For now, we say that linux does not support vtime. I have no idea
- // whether it can actually be made to (DLD, 9/13/05).
- bool os::supports_vtime() { return false; }
- bool os::enable_vtime() { return false; }
- bool os::vtime_enabled() { return false; }
- double os::elapsedVTime() {
- // better than nothing, but not much
- return elapsedTime();
- }
- jlong os::javaTimeMillis() {
- timeval time;
- int status = gettimeofday(&time, NULL);
- assert(status != -1, "linux error");
- return jlong(time.tv_sec) * 1000 + jlong(time.tv_usec / 1000);
- }
- #ifndef CLOCK_MONOTONIC
- #define CLOCK_MONOTONIC (1)
- #endif
- void os::Linux::clock_init() {
- // we do dlopen's in this particular order due to bug in linux
- // dynamical loader (see 6348968) leading to crash on exit
- void* handle = dlopen("librt.so.1", RTLD_LAZY);
- if (handle == NULL) {
- handle = dlopen("librt.so", RTLD_LAZY);
- }
- if (handle) {
- int (*clock_getres_func)(clockid_t, struct timespec*) =
- (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
- int (*clock_gettime_func)(clockid_t, struct timespec*) =
- (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
- if (clock_getres_func && clock_gettime_func) {
- // See if monotonic clock is supported by the kernel. Note that some
- // early implementations simply return kernel jiffies (updated every
- // 1/100 or 1/1000 second). It would be bad to use such a low res clock
- // for nano time (though the monotonic property is still nice to have).
- // It's fixed in newer kernels, however clock_getres() still returns
- // 1/HZ. We check if clock_getres() works, but will ignore its reported
- // resolution for now. Hopefully as people move to new kernels, this
- // won't be a problem.
- struct timespec res;
- struct timespec tp;
- if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
- clock_gettime_func(CLOCK_MONOTONIC, &tp) == 0) {
- // yes, monotonic clock is supported
- _clock_gettime = clock_gettime_func;
- } else {
- // close librt if there is no monotonic clock
- dlclose(handle);
- }
- }
- }
- }
- #ifndef SYS_clock_getres
- #if defined(IA32) || defined(AMD64)
- #define SYS_clock_getres IA32_ONLY(266) AMD64_ONLY(229)
- #define sys_clock_getres(x,y) ::syscall(SYS_clock_getres, x, y)
- #else
- #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
- #define sys_clock_getres(x,y) -1
- #endif
- #else
- #define sys_clock_getres(x,y) ::syscall(SYS_clock_getres, x, y)
- #endif
- void os::Linux::fast_thread_clock_init() {
- if (!UseLinuxPosixThreadCPUClocks) {
- return;
- }
- clockid_t clockid;
- struct timespec tp;
- int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
- (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
- // Switch to using fast clocks for thread cpu time if
- // the sys_clock_getres() returns 0 error code.
- // Note, that some kernels may support the current thread
- // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
- // returned by the pthread_getcpuclockid().
- // If the fast Posix clocks are supported then the sys_clock_getres()
- // must return at least tp.tv_sec == 0 which means a resolution
- // better than 1 sec. This is extra check for reliability.
- if(pthread_getcpuclockid_func &&
- pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
- sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
- _supports_fast_thread_cpu_time = true;
- _pthread_getcpuclockid = pthread_getcpuclockid_func;
- }
- }
- jlong os::javaTimeNanos() {
- if (Linux::supports_monotonic_clock()) {
- struct timespec tp;
- int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
- assert(status == 0, "gettime error");
- jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
- return result;
- } else {
- timeval time;
- int status = gettimeofday(&time, NULL);
- assert(status != -1, "linux error");
- jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
- return 1000 * usecs;
- }
- }
- void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
- if (Linux::supports_monotonic_clock()) {
- info_ptr->max_value = ALL_64_BITS;
- // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
- info_ptr->may_skip_backward = false; // not subject to resetting or drifting
- info_ptr->may_skip_forward = false; // not subject to resetting or drifting
- } else {
- // gettimeofday - based on time in seconds since the Epoch thus does not wrap
- info_ptr->max_value = ALL_64_BITS;
- // gettimeofday is a real time clock so it skips
- info_ptr->may_skip_backward = true;
- info_ptr->may_skip_forward = true;
- }
- info_ptr->kind = JVMTI_TIMER_ELAPSED; // elapsed not CPU time
- }
- // Return the real, user, and system times in seconds from an
- // arbitrary fixed point in the past.
- bool os::getTimesSecs(double* process_real_time,
- double* process_user_time,
- double* process_system_time) {
- struct tms ticks;
- clock_t real_ticks = times(&ticks);
- if (real_ticks == (clock_t) (-1)) {
- return false;
- } else {
- double ticks_per_second = (double) clock_tics_per_sec;
- *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
- *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
- *process_real_time = ((double) real_ticks) / ticks_per_second;
- return true;
- }
- }
- char * os::local_time_string(char *buf, size_t buflen) {
- struct tm t;
- time_t long_time;
- time(&long_time);
- localtime_r(&long_time, &t);
- jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
- t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
- t.tm_hour, t.tm_min, t.tm_sec);
- return buf;
- }
- struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
- return localtime_r(clock, res);
- }
- ////////////////////////////////////////////////////////////////////////////////
- // runtime exit support
- // Note: os::shutdown() might be called very early during initialization, or
- // called from signal handler. Before adding something to os::shutdown(), make
- // sure it is async-safe and can handle partially initialized VM.
- void os::shutdown() {
- // allow PerfMemory to attempt cleanup of any persistent resources
- perfMemory_exit();
- // needs to remove object in file system
- AttachListener::abort();
- // flush buffered output, finish log files
- ostream_abort();
- // Check for abort hook
- abort_hook_t abort_hook = Arguments::abort_hook();
- if (abort_hook != NULL) {
- abort_hook();
- }
- }
- // Note: os::abort() might be called very early during initialization, or
- // called from signal handler. Before adding something to os::abort(), make
- // sure it is async-safe and can handle partially initialized VM.
- void os::abort(bool dump_core) {
- os::shutdown();
- if (dump_core) {
- #ifndef PRODUCT
- fdStream out(defaultStream::output_fd());
- out.print_raw("Current thread is ");
- char buf[16];
- jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
- out.print_raw_cr(buf);
- out.print_raw_cr("Dumping core ...");
- #endif
- ::abort(); // dump core
- }
- ::exit(1);
- }
- // Die immediately, no exit hook, no abort hook, no cleanup.
- void os::die() {
- // _exit() on LinuxThreads only kills current thread
- ::abort();
- }
- // unused on linux for now.
- void os::set_error_file(const char *logfile) {}
- // This method is a copy of JDK's sysGetLastErrorString
- // from src/solaris/hpi/src/system_md.c
- size_t os::lasterror(char *buf, size_t len) {
- if (errno == 0) return 0;
- const char *s = ::strerror(errno);
- size_t n = ::strlen(s);
- if (n >= len) {
- n = len - 1;
- }
- ::strncpy(buf, s, n);
- buf[n] = '\0';
- return n;
- }
- intx os::current_thread_id() { return (intx)pthread_self(); }
- int os::current_process_id() {
- // Under the old linux thread library, linux gives each thread
- // its own process id. Because of this each thread will return
- // a different pid if this method were to return the result
- // of getpid(2). Linux provides no api that returns the pid
- // of the launcher thread for the vm. This implementation
- // returns a unique pid, the pid of the launcher thread
- // that starts the vm 'process'.
- // Under the NPTL, getpid() returns the same pid as the
- // launcher thread rather than a unique pid per thread.
- // Use gettid() if you want the old pre NPTL behaviour.
- // if you are looking for the result of a call to getpid() that
- // returns a unique pid for the calling thread, then look at the
- // OSThread::thread_id() method in osThread_linux.hpp file
- return (int)(_initial_pid ? _initial_pid : getpid());
- }
- // DLL functions
- const char* os::dll_file_extension() { return ".so"; }
- // This must be hard coded because it's the system's temporary
- // directory not the java application's temp directory, ala java.io.tmpdir.
- const char* os::get_temp_directory() { return "/tmp"; }
- static bool file_exists(const char* filename) {
- struct stat statbuf;
- if (filename == NULL || strlen(filename) == 0) {
- return false;
- }
- return os::stat(filename, &statbuf) == 0;
- }
- void os::dll_build_name(char* buffer, size_t buflen,
- const char* pname, const char* fname) {
- // Copied from libhpi
- const size_t pnamelen = pname ? strlen(pname) : 0;
- // Quietly truncate on buffer overflow. Should be an error.
- if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
- *buffer = '\0';
- return;
- }
- if (pnamelen == 0) {
- snprintf(buffer, buflen, "lib%s.so", fname);
- } else if (strchr(pname, *os::path_separator()) != NULL) {
- int n;
- char** pelements = split_path(pname, &n);
- for (int i = 0 ; i < n ; i++) {
- // Really shouldn't be NULL, but check can't hurt
- if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
- continue; // skip the empty path values
- }
- snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
- if (file_exists(buffer)) {
- break;
- }
- }
- // release the storage
- for (int i = 0 ; i < n ; i++) {
- if (pelements[i] != NULL) {
- FREE_C_HEAP_ARRAY(char, pelements[i]);
- }
- }
- if (pelements != NULL) {
- FREE_C_HEAP_ARRAY(char*, pelements);
- }
- } else {
- snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
- }
- }
- const char* os::get_current_directory(char *buf, int buflen) {
- return getcwd(buf, buflen);
- }
- // check if addr is inside libjvm[_g].so
- bool os::address_is_in_vm(address addr) {
- static address libjvm_base_addr;
- Dl_info dlinfo;
- if (libjvm_base_addr == NULL) {
- dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
- libjvm_base_addr = (address)dlinfo.dli_fbase;
- assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
- }
- if (dladdr((void *)addr, &dlinfo)) {
- if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
- }
- return false;
- }
- bool os::dll_address_to_function_name(address addr, char *buf,
- int buflen, int *offset) {
- Dl_info dlinfo;
- if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
- if (buf != NULL) {
- if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
- jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
- }
- }
- if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
- return true;
- } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
- if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
- dlinfo.dli_fname, buf, buflen, offset) == Decoder::no_error) {
- return true;
- }
- }
- if (buf != NULL) buf[0] = '\0';
- if (offset != NULL) *offset = -1;
- return false;
- }
- struct _address_to_library_name {
- address addr; // input : memory address
- size_t buflen; // size of fname
- char* fname; // output: library name
- address base; // library base addr
- };
- static int address_to_library_name_callback(struct dl_phdr_info *info,
- size_t size, void *data) {
- int i;
- bool found = false;
- address libbase = NULL;
- struct _address_to_library_name * d = (struct _address_to_library_name *)data;
- // iterate through all loadable segments
- for (i = 0; i < info->dlpi_phnum; i++) {
- address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
- if (info->dlpi_phdr[i].p_type == PT_LOAD) {
- // base address of a library is the lowest address of its loaded
- // segments.
- if (libbase == NULL || libbase > segbase) {
- libbase = segbase;
- }
- // see if 'addr' is within current segment
- if (segbase <= d->addr &&
- d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
- found = true;
- }
- }
- }
- // dlpi_name is NULL or empty if the ELF file is executable, return 0
- // so dll_address_to_library_name() can fall through to use dladdr() which
- // can figure out executable name from argv[0].
- if (found && info->dlpi_name && info->dlpi_name[0]) {
- d->base = libbase;
- if (d->fname) {
- jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
- }
- return 1;
- }
- return 0;
- }
- bool os::dll_address_to_library_name(address addr, char* buf,
- int buflen, int* offset) {
- Dl_info dlinfo;
- struct _address_to_library_name data;
- // There is a bug in old glibc dladdr() implementation that it could resolve
- // to wrong library name if the .so file has a base address != NULL. Here
- // we iterate through the program headers of all loaded libraries to find
- // out which library 'addr' really belongs to. This workaround can be
- // removed once the minimum requirement for glibc is moved to 2.3.x.
- data.addr = addr;
- data.fname = buf;
- data.buflen = buflen;
- data.base = NULL;
- int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
- if (rslt) {
- // buf already contains library name
- if (offset) *offset = addr - data.base;
- return true;
- } else if (dladdr((void*)addr, &dlinfo)){
- if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
- if (offset) *offset = addr - (address)dlinfo.dli_fbase;
- return true;
- } else {
- if (buf) buf[0] = '\0';
- if (offset) *offset = -1;
- return false;
- }
- }
- // Loads .dll/.so and
- // in case of error it checks if .dll/.so was built for the
- // same architecture as Hotspot is running on
- void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
- {
- void * result= ::dlopen(filename, RTLD_LAZY);
- if (result != NULL) {
- // Successful loading
- return result;
- }
- Elf32_Ehdr elf_head;
- // Read system error message into ebuf
- // It may or may not be overwritten below
- ::strncpy(ebuf, ::dlerror(), ebuflen-1);
- ebuf[ebuflen-1]='\0';
- int diag_msg_max_length=ebuflen-strlen(ebuf);
- char* diag_msg_buf=ebuf+strlen(ebuf);
- if (diag_msg_max_length==0) {
- // No more space in ebuf for additional diagnostics message
- return NULL;
- }
- int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
- if (file_descriptor < 0) {
- // Can't open library, report dlerror() message
- return NULL;
- }
- bool failed_to_read_elf_head=
- (sizeof(elf_head)!=
- (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
- ::close(file_descriptor);
- if (failed_to_read_elf_head) {
- // file i/o error - report dlerror() msg
- return NULL;
- }
- typedef struct {
- Elf32_Half code; // Actual value as defined in elf.h
- Elf32_Half compat_class; // Compatibility of archs at VM's sense
- char elf_class; // 32 or 64 bit
- char endianess; // MSB or LSB
- char* name; // String representation
- } arch_t;
- #ifndef EM_486
- #define EM_486 6 /* Intel 80486 */
- #endif
- static const arch_t arch_array[]={
- {EM_386, EM_386, ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
- {EM_486, EM_386, ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
- {EM_IA_64, EM_IA_64, ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
- {EM_X86_64, EM_X86_64, ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
- {EM_SPARC, EM_SPARC, ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
- {EM_SPARC32PLUS, EM_SPARC, ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
- {EM_SPARCV9, EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
- {EM_PPC, EM_PPC, ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
- {EM_PPC64, EM_PPC64, ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
- {EM_ARM, EM_ARM, ELFCLASS32, ELFDATA2LSB, (char*)"ARM"},
- {EM_S390, EM_S390, ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
- {EM_ALPHA, EM_ALPHA, ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
- {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
- {EM_MIPS, EM_MIPS, ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
- {EM_PARISC, EM_PARISC, ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
- {EM_68K, EM_68K, ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
- };
- #if (defined IA32)
- static Elf32_Half running_arch_code=EM_386;
- #elif (defined AMD64)
- static Elf32_Half running_arch_code=EM_X86_64;
- #elif (defined IA64)
- static Elf32_Half running_arch_code=EM_IA_64;
- #elif (defined __sparc) && (defined _LP64)
- static Elf32_Half running_arch_code=EM_SPARCV9;
- #elif (defined __sparc) && (!defined _LP64)
- static Elf32_Half running_arch_code=EM_SPARC;
- #elif (defined __powerpc64__)
- static Elf32_Half running_arch_code=EM_PPC64;
- #elif (defined __powerpc__)
- static Elf32_Half running_arch_code=EM_PPC;
- #elif (defined ARM)
- static Elf32_Half running_arch_code=EM_ARM;
- #elif (defined S390)
- static Elf32_Half running_arch_code=EM_S390;
- #elif (defined ALPHA)
- static Elf32_Half running_arch_code=EM_ALPHA;
- #elif (defined MIPSEL)
- static Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
- #elif (defined PARISC)
- static Elf32_Half running_arch_code=EM_PARISC;
- #elif (defined MIPS)
- static Elf32_Half running_arch_code=EM_MIPS;
- #elif (defined M68K)
- static Elf32_Half running_arch_code=EM_68K;
- #else
- #error Method os::dll_load requires that one of following is defined:\
- IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
- #endif
- // Identify compatability class for VM's architecture and library's architecture
- // Obtain string descriptions for architectures
- arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
- int running_arch_index=-1;
- for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
- if (running_arch_code == arch_array[i].code) {
- running_arch_index = i;
- }
- if (lib_arch.code == arch_array[i].code) {
- lib_arch.compat_class = arch_array[i].compat_class;
- lib_arch.name = arch_array[i].name;
- }
- }
- assert(running_arch_index != -1,
- "Didn't find running architecture code (running_arch_code) in arch_array");
- if (running_arch_index == -1) {
- // Even though running architecture detection failed
- // we may still continue with reporting dlerror() message
- return NULL;
- }
- if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
- ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
- return NULL;
- }
- #ifndef S390
- if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
- ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
- return NULL;
- }
- #endif // !S390
- if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
- if ( lib_arch.name!=NULL ) {
- ::snprintf(diag_msg_buf, diag_msg_max_length-1,
- " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
- lib_arch.name, arch_array[running_arch_index].name);
- } else {
- ::snprintf(diag_msg_buf, diag_msg_max_length-1,
- " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
- lib_arch.code,
- arch_array[running_arch_index].name);
- }
- }
- return NULL;
- }
- /*
- * glibc-2.0 libdl is not MT safe. If you are building with any glibc,
- * chances are you might want to run the generated bits against glibc-2.0
- * libdl.so, so always use locking for any version of glibc.
- */
- void* os::dll_lookup(void* handle, const char* name) {
- pthread_mutex_lock(&dl_mutex);
- void* res = dlsym(handle, name);
- pthread_mutex_unlock(&dl_mutex);
- return res;
- }
- static bool _print_ascii_file(const char* filename, outputStream* st) {
- int fd = ::open(filename, O_RDONLY);
- if (fd == -1) {
- return false;
- }
- char buf[32];
- int bytes;
- while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
- st->print_raw(buf, bytes);
- }
- ::close(fd);
- return true;
- }
- void os::print_dll_info(outputStream *st) {
- st->print_cr("Dynamic libraries:");
- char fname[32];
- pid_t pid = os::Linux::gettid();
- jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
- if (!_print_ascii_file(fname, st)) {
- st->print("Can not get library information for pid = %d\n", pid);
- }
- }
- void os::print_os_info(outputStream* st) {
- st->print("OS:");
- // Try to identify popular distros.
- // Most Linux distributions have /etc/XXX-release file, which contains
- // the OS version string. Some have more than one /etc/XXX-release file
- // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
- // so the order is important.
- if (!_print_ascii_file("/etc/mandrake-release", st) &&
- !_print_ascii_file("/etc/sun-release", st) &&
- !_print_ascii_file("/etc/redhat-release", st) &&
- !_print_ascii_file("/etc/SuSE-release", st) &&
- !_print_ascii_file("/etc/turbolinux-release", st) &&
- !_print_ascii_file("/etc/gentoo-release", st) &&
- !_print_ascii_file("/etc/debian_version", st) &&
- !_print_ascii_file("/etc/ltib-release", st) &&
- !_print_ascii_file("/etc/angstrom-version", st)) {
- st->print("Linux");
- }
- st->cr();
- // kernel
- st->print("uname:");
- struct utsname name;
- uname(&name);
- st->print(name.sysname); st->print(" ");
- st->print(name.release); st->print(" ");
- st->print(name.version); st->print(" ");
- st->print(name.machine);
- st->cr();
- // Print warning if unsafe chroot environment detected
- if (unsafe_chroot_detected) {
- st->print("WARNING!! ");
- st->print_cr(unstable_chroot_error);
- }
- // libc, pthread
- st->print("libc:");
- st->print(os::Linux::glibc_version()); st->print(" ");
- st->print(os::Linux::libpthread_version()); st->print(" ");
- if (os::Linux::is_LinuxThreads()) {
- st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
- }
- st->cr();
- // rlimit
- st->print("rlimit:");
- struct rlimit rlim;
- st->print(" STACK ");
- getrlimit(RLIMIT_STACK, &rlim);
- if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
- else st->print("%uk", rlim.rlim_cur >> 10);
- st->print(", CORE ");
- getrlimit(RLIMIT_CORE, &rlim);
- if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
- else st->print("%uk", rlim.rlim_cur >> 10);
- st->print(", NPROC ");
- getrlimit(RLIMIT_NPROC, &rlim);
- if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
- else st->print("%d", rlim.rlim_cur);
- st->print(", NOFILE ");
- getrlimit(RLIMIT_NOFILE, &rlim);
- if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
- else st->print("%d", rlim.rlim_cur);
- st->print(", AS ");
- getrlimit(RLIMIT_AS, &rlim);
- if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
- else st->print("%uk", rlim.rlim_cur >> 10);
- st->cr();
- // load average
- st->print("load average:");
- double loadavg[3];
- os::loadavg(loadavg, 3);
- st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
- st->cr();
- // meminfo
- st->print("\n/proc/meminfo:\n");
- _print_ascii_file("/proc/meminfo", st);
- st->cr();
- }
- void os::print_memory_info(outputStream* st) {
- st->print("Memory:");
- st->print(" %dk page", os::vm_page_size()>>10);
- // values in struct sysinfo are "unsigned long"
- struct sysinfo si;
- sysinfo(&si);
- st->print(", physical " UINT64_FORMAT "k",
- os::physical_memory() >> 10);
- st->print("(" UINT64_FORMAT "k free)",
- os::available_memory() >> 10);
- st->print(", swap " UINT64_FORMAT "k",
- ((jlong)si.totalswap * si.mem_unit) >> 10);
- st->print("(" UINT64_FORMAT "k free)",
- ((jlong)si.freeswap * si.mem_unit) >> 10);
- st->cr();
- }
- // Taken from /usr/include/bits/siginfo.h Supposed to be architecture specific
- // but they're the same for all the linux arch that we support
- // and they're the same for solaris but there's no common place to put this.
- const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
- "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
- "ILL_COPROC", "ILL_BADSTK" };
- const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
- "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
- "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
- const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
- const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
- void os::print_siginfo(outputStream* st, void* siginfo) {
- st->print("siginfo:");
- const int buflen = 100;
- char buf[buflen];
- siginfo_t *si = (siginfo_t*)siginfo;
- st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
- if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
- st->print("si_errno=%s", buf);
- } else {
- st->print("si_errno=%d", si->si_errno);
- }
- const int c = si->si_code;
- assert(c > 0, "unexpected si_code");
- switch (si->si_signo) {
- case SIGILL:
- st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
- st->print(", si_addr=" PTR_FORMAT, si->si_addr);
- break;
- case SIGFPE:
- st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
- st->print(", si_addr=" PTR_FORMAT, si->si_addr);
- break;
- case SIGSEGV:
- st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
- st->print(", si_addr=" PTR_FORMAT, si->si_addr);
- break;
- case SIGBUS:
- st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
- st->print(", si_addr=" PTR_FORMAT, si->si_addr);
- break;
- default:
- st->print(", si_code=%d", si->si_code);
- // no si_addr
- }
- if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
- UseSharedSpaces) {
- FileMapInfo* mapinfo = FileMapInfo::current_info();
- if (mapinfo->is_in_shared_space(si->si_addr)) {
- st->print("\n\nError accessing class data sharing archive." \
- " Mapped file inaccessible during execution, " \
- " possible disk/network problem.");
- }
- }
- st->cr();
- }
- static void print_signal_handler(outputStream* st, int sig,
- char* buf, size_t buflen);
- void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
- st->print_cr("Signal Handlers:");
- print_signal_handler(st, SIGSEGV, buf, buflen);
- print_signal_handler(st, SIGBUS , buf, buflen);
- print_signal_handler(st, SIGFPE , buf, buflen);
- print_signal_handler(st, SIGPIPE, buf, buflen);
- print_signal_handler(st, SIGXFSZ, buf, buflen);
- print_signal_handler(st, SIGILL , buf, buflen);
- print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
- print_signal_handler(st, SR_signum, buf, buflen);
- print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
- print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
- print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
- print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
- }
- static char saved_jvm_path[MAXPATHLEN] = {0};
- // Find the full path to the current module, libjvm.so or libjvm_g.so
- void os::jvm_path(char *buf, jint buflen) {
- // Error checking.
- if (buflen < MAXPATHLEN) {
- assert(false, "must use a large-enough buffer");
- buf[0] = '\0';
- return;
- }
- // Lazy resolve the path to current module.
- if (saved_jvm_path[0] != 0) {
- strcpy(buf, saved_jvm_path);
- return;
- }
- char dli_fname[MAXPATHLEN];
- bool ret = dll_address_to_library_name(
- CAST_FROM_FN_PTR(address, os::jvm_path),
- dli_fname, sizeof(dli_fname), NULL);
- assert(ret != 0, "cannot locate libjvm");
- char *rp = realpath(dli_fname, buf);
- if (rp == NULL)
- return;
- if (Arguments::created_by_gamma_launcher()) {
- // Support for the gamma launcher. Typical value for buf is
- // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so". If "/jre/lib/" appears at
- // the right place in the string, then assume we are installed in a JDK and
- // we're done. Otherwise, check for a JAVA_HOME environment variable and fix
- // up the path so it looks like libjvm.so is installed there (append a
- // fake suffix hotspot/libjvm.so).
- const char *p = buf + strlen(buf) - 1;
- for (int count = 0; p > buf && count < 5; ++count) {
- for (--p; p > buf && *p != '/'; --p)
- /* empty */ ;
- }
- if (strncmp(p, "/jre/lib/", 9) != 0) {
- // Look for JAVA_HOME in the environment.
- char* java_home_var = ::getenv("JAVA_HOME");
- if (java_home_var != NULL && java_home_var[0] != 0) {
- char* jrelib_p;
- int len;
- // Check the current module name "libjvm.so" or "libjvm_g.so".
- p = strrchr(buf, '/');
- assert(strstr(p, "/libjvm") == p, "invalid library name");
- p = strstr(p, "_g") ? "_g" : "";
- rp = realpath(java_home_var, buf);
- if (rp == NULL)
- return;
- // determine if this is a legacy image or modules image
- // modules image doesn't have "jre" subdirectory
- len = strlen(buf);
- jrelib_p = buf + len;
- snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
- if (0 != access(buf, F_OK)) {
- snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
- }
- if (0 == access(buf, F_OK)) {
- // Use current module name "libjvm[_g].so" instead of
- // "libjvm"debug_only("_g")".so" since for fastdebug version
- // we should have "libjvm.so" but debug_only("_g") adds "_g"!
- len = strlen(buf);
- snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
- } else {
- // Go back to path of .so
- rp = realpath(dli_fname, buf);
- if (rp == NULL)
- return;
- }
- }
- }
- }
- strcpy(saved_jvm_path, buf);
- }
- void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
- // no prefix required, not even "_"
- }
- void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
- // no suffix required
- }
- ////////////////////////////////////////////////////////////////////////////////
- // sun.misc.Signal support
- static volatile jint sigint_count = 0;
- static void
- UserHandler(int sig, void *siginfo, void *context) {
- // 4511530 - sem_post is serialized and handled by the manager thread. When
- // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
- // don't want to flood the manager thread with sem_post requests.
- if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
- return;
- // Ctrl-C is pressed during error reporting, likely because the error
- // handler fails to abort. Let VM die immediately.
- if (sig == SIGINT && is_error_reported()) {
- os::die();
- }
- os::signal_notify(sig);
- }
- void* os::user_handler() {
- return CAST_FROM_FN_PTR(void*, UserHandler);
- }
- extern "C" {
- typedef void (*sa_handler_t)(int);
- typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
- }
- void* os::signal(int signal_number, void* handler) {
- struct sigaction sigAct, oldSigAct;
- sigfillset(&(sigAct.sa_mask));
- sigAct.sa_flags = SA_RESTART|SA_SIGINFO;
- sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
- if (sigaction(signal_number, &sigAct, &oldSigAct)) {
- // -1 means registration failed
- return (void *)-1;
- }
- return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
- }
- void os::signal_raise(int signal_number) {
- ::raise(signal_number);
- }
- /*
- * The following code is moved from os.cpp for making this
- * code platform specific, which it is by its very nature.
- */
- // Will be modified when max signal is changed to be dynamic
- int os::sigexitnum_pd() {
- return NSIG;
- }
- // a counter for each possible signal value
- static volatile jint pending_signals[NSIG+1] = { 0 };
- // Linux(POSIX) specific hand shaking semaphore.
- static sem_t sig_sem;
- void os::signal_init_pd() {
- // Initialize signal structures
- ::memset((void*)pending_signals, 0, sizeof(pending_signals));
- // Initialize signal semaphore
- ::sem_init(&sig_sem, 0, 0);
- }
- void os::signal_notify(int sig) {
- Atomic::inc(&pending_signals[sig]);
- ::sem_post(&sig_sem);
- }
- static int check_pending_signals(bool wait) {
- Atomic::store(0, &sigint_count);
- for (;;) {
- for (int i = 0; i < NSIG + 1; i++) {
- jint n = pending_signals[i];
- if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
- return i;
- }
- }
- if (!wait) {
- return -1;
- }
- JavaThread *thread = JavaThread::current();
- ThreadBlockInVM tbivm(thread);
- bool threadIsSuspended;
- do {
- thread->set_suspend_equivalent();
- // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
- ::sem_wait(&sig_sem);
- // were we externally suspended while we were waiting?
- threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
- if (threadIsSuspended) {
- //
- // The semaphore has been incremented, but while we were waiting
- // another thread suspended us. We don't want to continue running
- // while suspended because that would surprise the thread that
- // suspended us.
- //
- ::sem_post(&sig_sem);
- thread->java_suspend_self();
- }
- } while (threadIsSuspended);
- }
- }
- int os::signal_lookup() {
- return check_pending_signals(false);
- }
- int os::signal_wait() {
- return check_pending_signals(true);
- }
- ////////////////////////////////////////////////////////////////////////////////
- // Virtual Memory
- int os::vm_page_size() {
- // Seems redundant as all get out
- assert(os::Linux::page_size() != -1, "must call os::init");
- return os::Linux::page_size();
- }
- // Solaris allocates memory by pages.
- int os::vm_allocation_granularity() {
- assert(os::Linux::page_size() != -1, "must call os::init");
- return os::Linux::page_size();
- }
- // Rationale behind this function:
- // current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
- // mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
- // samples for JITted code. Here we create private executable mapping over the code cache
- // and then we can use standard (well, almost, as mapping can change) way to provide
- // info for the reporting script by storing timestamp and location of symbol
- void linux_wrap_code(char* base, size_t size) {
- static volatile jint cnt = 0;
- if (!UseOprofile) {
- return;
- }
- char buf[PATH_MAX+1];
- int num = Atomic::add(1, &cnt);
- snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
- os::get_temp_directory(), os::current_process_id(), num);
- unlink(buf);
- int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
- if (fd != -1) {
- off_t rv = ::lseek(fd, size-2, SEEK_SET);
- if (rv != (off_t)-1) {
- if (::write(fd, "", 1) == 1) {
- mmap(base, size,
- PROT_READ|PROT_WRITE|PROT_EXEC,
- MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
- }
- }
- ::close(fd);
- unlink(buf);
- }
- }
- // NOTE: Linux kernel does not really reserve the pages for us.
- // All it does is to check if there are enough free pages
- // left at the time of mmap(). This could be a potential
- // problem.
- bool os::commit_memory(char* addr, size_t size, bool exec) {
- int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
- uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
- MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
- return res != (uintptr_t) MAP_FAILED;
- }
- // Define MAP_HUGETLB here so we can build HotSpot on old systems.
- #ifndef MAP_HUGETLB
- #define MAP_HUGETLB 0x40000
- #endif
- // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
- #ifndef MADV_HUGEPAGE
- #define MADV_HUGEPAGE 14
- #endif
- bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
- bool exec) {
- if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
- int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
- uintptr_t res =
- (uintptr_t) ::mmap(addr, size, prot,
- MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
- -1, 0);
- return res != (uintptr_t) MAP_FAILED;
- }
- return commit_memory(addr, size, exec);
- }
- void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
- if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
- // We don't check the return value: madvise(MADV_HUGEPAGE) may not
- // be supported or the memory may already be backed by huge pages.
- ::madvise(addr, bytes, MADV_HUGEPAGE);
- }
- }
- void os::free_memory(char *addr, size_t bytes) {
- ::madvise(addr, bytes, MADV_DONTNEED);
- }
- void os::numa_make_global(char *addr, size_t bytes) {
- Linux::numa_interleave_memory(addr, bytes);
- }
- void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
- Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
- }
- bool os::numa_topology_changed() { return false; }
- size_t os::numa_get_groups_num() {
- int max_node = Linux::numa_max_node();
- return max_node > 0 ? max_node + 1 : 1;
- }
- int os::numa_get_group_id() {
- int cpu_id = Linux::sched_getcpu();
- if (cpu_id != -1) {
- int lgrp_id = Linux::get_node_by_cpu(cpu_id);
- if (lgrp_id != -1) {
- return lgrp_id;
- }
- }
- return 0;
- }
- size_t os::numa_get_leaf_groups(int *ids, size_t size) {
- for (size_t i = 0; i < size; i++) {
- ids[i] = i;
- }
- return size;
- }
- bool os::get_page_info(char *start, page_info* info) {
- return false;
- }
- char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
- return end;
- }
- // Something to do with the numa-aware allocator needs these symbols
- extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
- extern "C" JNIEXPORT void numa_error(char *where) { }
- extern "C" JNIEXPORT int fork1() { return fork(); }
- // If we are running with libnuma version > 2, then we should
- // be trying to use symbols with versions 1.1
- // If we are running with earlier version, which did not have symbol versions,
- // we should use the base version.
- void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
- void *f = dlvsym(handle, name, "libnuma_1.1");
- if (f == NULL) {
- f = dlsym(handle, name);
- }
- return f;
- }
- bool os::Linux::libnuma_init() {
- // sched_getcpu() should be in libc.
- set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
- dlsym(RTLD_DEFAULT, "sched_getcpu")));
- if (sched_getcpu() != -1) { // Does it work?
- void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
- if (handle != NULL) {
- set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
- libnuma_dlsym(handle, "numa_node_to_cpus")));
- set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
- libnuma_dlsym(handle, "numa_max_node")));
- set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
- libnuma_dlsym(handle, "numa_available")));
- set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
- libnuma_dlsym(handle, "numa_tonode_memory")));
- set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
- libnuma_dlsym(handle, "numa_interleave_memory")));
- if (numa_available() != -1) {
- set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
- // Create a cpu -> node mapping
- _cpu_to_node = new (ResourceObj::C_HEAP) GrowableArray<int>(0, true);
- rebuild_cpu_to_node_map();
- return true;
- }
- }
- }
- return false;
- }
- // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
- // The table is later used in get_node_by_cpu().
- void os::Linux::rebuild_cpu_to_node_map() {
- const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
- // in libnuma (possible values are starting from 16,
- // and continuing up with every other power of 2, but less
- // than the maximum number of CPUs supported by kernel), and
- // is a subject to change (in libnuma version 2 the requirements
- // are more reasonable) we'll just hardcode the number they use
- // in the library.
- const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
- size_t cpu_num = os::active_processor_count();
- size_t cpu_map_size = NCPUS / BitsPerCLong;
- size_t cpu_map_valid_size =
- MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
- cpu_to_node()->clear();
- cpu_to_node()->at_grow(cpu_num - 1);
- size_t node_num = numa_get_groups_num();
- unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size);
- for (size_t i = 0; i < node_num; i++) {
- if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
- for (size_t j = 0; j < cpu_map_valid_size; j++) {
- if (cpu_map[j] != 0) {
- for (size_t k = 0; k < BitsPerCLong; k++) {
- if (cpu_map[j] & (1UL << k)) {
- cpu_to_node()->at_put(j * BitsPerCLong + k, i);
- }
- }
- }
- }
- }
- }
- FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
- }
- int os::Linux::get_node_by_cpu(int cpu_id) {
- if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
- return cpu_to_node()->at(cpu_id);
- }
- return -1;
- }
- GrowableArray<int>* os::Linux::_cpu_to_node;
- os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
- os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
- os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
- os::Linux::numa_available_func_t os::Linux::_numa_available;
- os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
- os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
- unsigned long* os::Linux::_numa_all_nodes;
- bool os::uncommit_memory(char* addr, size_t size) {
- uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
- MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
- return res != (uintptr_t) MAP_FAILED;
- }
- // Linux uses a growable mapping for the stack, and if the mapping for
- // the stack guard pages is not removed when we detach a thread the
- // stack cannot grow beyond the pages where the stack guard was
- // mapped. If at some point later in the process the stack expands to
- // that point, the Linux kernel cannot expand the stack any further
- // because the guard pages are in the way, and a segfault occurs.
- //
- // However, it's essential not to split the stack region by unmapping
- // a region (leaving a hole) that's already part of the stack mapping,
- // so if the stack mapping has already grown beyond the guard pages at
- // the time we create them, we have to truncate the stack mapping.
- // So, we need to know the extent of the stack mapping when
- // create_stack_guard_pages() is called.
- // Find the bounds of the stack mapping. Return true for success.
- //
- // We only need this for stacks that are growable: at the time of
- // writing thread stacks don't use growable mappings (i.e. those
- // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
- // only applies to the main thread.
- static
- bool get_stack_bounds(uintptr_t *bottom, uintptr_t *top) {
- char buf[128];
- int fd, sz;
- if ((fd = ::open("/proc/self/maps", O_RDONLY)) < 0) {
- return false;
- }
- const char kw[] = "[stack]";
- const int kwlen = sizeof(kw)-1;
- // Address part of /proc/self/maps couldn't be more than 128 bytes
- while ((sz = os::get_line_chars(fd, buf, sizeof(buf))) > 0) {
- if (sz > kwlen && ::memcmp(buf+sz-kwlen, kw, kwlen) == 0) {
- // Extract addresses
- if (sscanf(buf, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
- uintptr_t sp = (uintptr_t) __builtin_frame_address(0);
- if (sp >= *bottom && sp <= *top) {
- ::close(fd);
- return true;
- }
- }
- }
- }
- ::close(fd);
- return false;
- }
- // If the (growable) stack mapping already extends beyond the point
- // where we're going to put our guard pages, truncate the mapping at
- // that point by munmap()ping it. This ensures that when we later
- // munmap() the guard pages we don't leave a hole in the stack
- // mapping. This only affects the main/initial thread, but guard
- // against future OS changes
- bool os::create_stack_guard_pages(char* addr, size_t size) {
- uintptr_t stack_extent, stack_base;
- bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
- if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
- assert(os::Linux::is_initial_thread(),
- "growable stack in non-initial thread");
- if (stack_extent < (uintptr_t)addr)
- ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
- }
- return os::commit_memory(addr, size);
- }
- // If this is a growable mapping, remove the guard pages entirely by
- // munmap()ping them. If not, just call uncommit_memory(). This only
- // affects the main/initial thread, but guard against future OS changes
- bool os::remove_stack_guard_pages(char* addr, size_t size) {
- uintptr_t stack_extent, stack_base;
- bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
- if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
- assert(os::Linux::is_initial_thread(),
- "growable stack in non-initial thread");
- return ::munmap(addr, size) == 0;
- }
- return os::uncommit_memory(addr, size);
- }
- static address _highest_vm_reserved_address = NULL;
- // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
- // at 'requested_addr'. If there are existing memory mappings at the same
- // location, however, they will be overwritten. If 'fixed' is false,
- // 'requested_addr' is only treated as a hint, the return value may or
- // may not start from the requested address. Unlike Linux mmap(), this
- // function returns NULL to indicate failure.
- static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
- char * addr;
- int flags;
- flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
- if (fixed) {
- assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
- flags |= MAP_FIXED;
- }
- // Map uncommitted pages PROT_READ and PROT_WRITE, change access
- // to PROT_EXEC if executable when we commit the page.
- addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
- flags, -1, 0);
- if (addr != MAP_FAILED) {
- // anon_mmap() should only get called during VM initialization,
- // don't need lock (actually we can skip locking even it can be called
- // from multiple threads, because _highest_vm_reserved_address is just a
- // hint about the upper limit of non-stack memory regions.)
- if ((address)addr + bytes > _highest_vm_reserved_address) {
- _highest_vm_reserved_address = (address)addr + bytes;
- }
- }
- return addr == MAP_FAILED ? NULL : addr;
- }
- // Don't update _highest_vm_reserved_address, because there might be memory
- // regions above addr + size. If so, releasing a memory region only creates
- // a hole in the address space, it doesn't help prevent heap-stack collision.
- //
- static int anon_munmap(char * addr, size_t size) {
- return ::munmap(addr, size) == 0;
- }
- char* os::reserve_memory(size_t bytes, char* requested_addr,
- size_t alignment_hint) {
- return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
- }
- bool os::release_memory(char* addr, size_t size) {
- return anon_munmap(addr, size);
- }
- static address highest_vm_reserved_address() {
- return _highest_vm_reserved_address;
- }
- static bool linux_mprotect(char* addr, size_t size, int prot) {
- // Linux wants the mprotect address argument to be page aligned.
- char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
- // According to SUSv3, mprotect() should only be used with mappings
- // established by mmap(), and mmap() always maps whole pages. Unaligned
- // 'addr' likely indicates problem in the VM (e.g. trying to change
- // protection of malloc'ed or statically allocated memory). Check the
- // caller if you hit this assert.
- assert(addr == bottom, "sanity check");
- size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
- return ::mprotect(bottom, size, prot) == 0;
- }
- // Set protections specified
- bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
- bool is_committed) {
- unsigned int p = 0;
- switch (prot) {
- case MEM_PROT_NONE: p = PROT_NONE; break;
- case MEM_PROT_READ: p = PROT_READ; break;
- case MEM_PROT_RW: p = PROT_READ|PROT_WRITE; break;
- case MEM_PROT_RWX: p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
- default:
- ShouldNotReachHere();
- }
- // is_committed is unused.
- return linux_mprotect(addr, bytes, p);
- }
- bool os::guard_memory(char* addr, size_t size) {
- return linux_mprotect(addr, size, PROT_NONE);
- }
- bool os::unguard_memory(char* addr, size_t size) {
- return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
- }
- bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
- bool result = false;
- void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE,
- MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
- -1, 0);
- if (p != (void *) -1) {
- // We don't know if this really is a huge page or not.
- FILE *fp = fopen("/proc/self/maps", "r");
- if (fp) {
- while (!feof(fp)) {
- char chars[257];
- long x = 0;
- if (fgets(chars, sizeof(chars), fp)) {
- if (sscanf(chars, "%lx-%*x", &x) == 1
- && x == (long)p) {
- if (strstr (chars, "hugepage")) {
- result = true;
- break;
- }
- }
- }
- }
- fclose(fp);
- }
- munmap (p, page_size);
- if (result)
- return true;
- }
- if (warn) {
- warning("HugeTLBFS is not supported by the operating system.");
- }
- return result;
- }
- /*
- * Set the coredump_filter bits to include largepages in core dump (bit 6)
- *
- * From the coredump_filter documentation:
- *
- * - (bit 0) anonymous private memory
- * - (bit 1) anonymous shared memory
- * - (bit 2) file-backed private memory
- * - (bit 3) file-backed shared memory
- * - (bit 4) ELF header pages in file-backed private memory areas (it is
- * effective only if the bit 2 is cleared)
- * - (bit 5) hugetlb private memory
- * - (bit 6) hugetlb shared memory
- */
- static void set_coredump_filter(void) {
- FILE *f;
- long cdm;
- if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
- return;
- }
- if (fscanf(f, "%lx", &cdm) != 1) {
- fclose(f);
- return;
- }
- rewind(f);
- if ((cdm & LARGEPAGES_BIT) == 0) {
- cdm |= LARGEPAGES_BIT;
- fprintf(f, "%#lx", cdm);
- }
- fclose(f);
- }
- // Large page support
- static size_t _large_page_size = 0;
- void os::large_page_init() {
- if (!UseLargePages) {
- UseHugeTLBFS = false;
- UseSHM = false;
- return;
- }
- if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) {
- // If UseLargePages is specified on the command line try both methods,
- // if it's default, then try only HugeTLBFS.
- if (FLAG_IS_DEFAULT(UseLargePages)) {
- UseHugeTLBFS = true;
- } else {
- UseHugeTLBFS = UseSHM = true;
- }
- }
- if (LargePageSizeInBytes) {
- _large_page_size = LargePageSizeInBytes;
- } else {
- // large_page_size on Linux is used to round up heap size. x86 uses either
- // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
- // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
- // page as large as 256M.
- //
- // Here we try to figure out page size by parsing /proc/meminfo and looking
- // for a line with the following format:
- // Hugepagesize: 2048 kB
- //
- // If we can't determine the value (e.g. /proc is not mounted, or the text
- // format has been changed), we'll use the largest page size supported by
- // the processor.
- #ifndef ZERO
- _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
- ARM_ONLY(2 * M) PPC_ONLY(4 * M);
- #endif // ZERO
- FILE *fp = fopen("/proc/meminfo", "r");
- if (fp) {
- while (!feof(fp)) {
- int x = 0;
- char buf[16];
- if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
- if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
- _large_page_size = x * K;
- break;
- }
- } else {
- // skip to next line
- for (;;) {
- int ch = fgetc(fp);
- if (ch == EOF || ch == (int)'\n') break;
- }
- }
- }
- fclose(fp);
- }
- }
- // print a warning if any large page related flag is specified on command line
- bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
- const size_t default_page_size = (size_t)Linux::page_size();
- if (_large_page_size > default_page_size) {
- _page_sizes[0] = _large_page_size;
- _page_sizes[1] = default_page_size;
- _page_sizes[2] = 0;
- }
- UseHugeTLBFS = UseHugeTLBFS &&
- Linux::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);
- if (UseHugeTLBFS)
- UseSHM = false;
- UseLargePages = UseHugeTLBFS || UseSHM;
- set_coredump_filter();
- }
- #ifndef SHM_HUGETLB
- #define SHM_HUGETLB 04000
- #endif
- char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
- // "exec" is passed in but not used. Creating the shared image for
- // the code cache doesn't have an SHM_X executable permission to check.
- assert(UseLargePages && UseSHM, "only for SHM large pages");
- key_t key = IPC_PRIVATE;
- char *addr;
- bool warn_on_failure = UseLargePages &&
- (!FLAG_IS_DEFAULT(UseLargePages) ||
- !FLAG_IS_DEFAULT(LargePageSizeInBytes)
- );
- char msg[128];
- // Create a large shared memory region to attach to based on size.
- // Currently, size is the total size of the heap
- int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
- if (shmid == -1) {
- // Possible reasons for shmget failure:
- // 1. shmmax is too small for Java heap.
- // > check shmmax value: cat /proc/sys/kernel/shmmax
- // > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
- // 2. not enough large page memory.
- // > check available large pages: cat /proc/meminfo
- // > increase amount of large pages:
- // echo new_value > /proc/sys/vm/nr_hugepages
- // Note 1: different Linux may use different name for this property,
- // e.g. on Redhat AS-3 it is "hugetlb_pool".
- // Note 2: it's possible there's enough physical memory available but
- // they are so fragmented after a long run that they can't
- // coalesce into large pages. Try to reserve large pages when
- // the system is still "fresh".
- if (warn_on_failure) {
- jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
- warning(msg);
- }
- return NULL;
- }
- // attach to the region
- addr = (char*)shmat(shmid, req_addr, 0);
- int err = errno;
- // Remove shmid. If shmat() is successful, the actual shared memory segment
- // will be deleted when it's detached by shmdt() or when the process
- // terminates. If shmat() is not successful this will remove the shared
- // segment immediately.
- shmctl(shmid, IPC_RMID, NULL);
- if ((intptr_t)addr == -1) {
- if (warn_on_failure) {
- jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
- warning(msg);
- }
- return NULL;
- }
- return addr;
- }
- bool os::release_memory_special(char* base, size_t bytes) {
- // detaching the SHM segment will also delete it, see reserve_memory_special()
- int rslt = shmdt(base);
- return rslt == 0;
- }
- size_t os::large_page_size() {
- return _large_page_size;
- }
- // HugeTLBFS allows application to commit large page memory on demand;
- // with SysV SHM the entire memory region must be allocated as shared
- // memory.
- bool os::can_commit_large_page_memory() {
- return UseHugeTLBFS;
- }
- bool os::can_execute_large_page_memory() {
- return UseHugeTLBFS;
- }
- // Reserve memory at an arbitrary address, only if that area is
- // available (and not reserved for something else).
- char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
- const int max_tries = 10;
- char* base[max_tries];
- size_t size[max_tries];
- const size_t gap = 0x000000;
- // Assert only that the size is a multiple of the page size, since
- // that's all that mmap requires, and since that's all we really know
- // about at this low abstraction level. If we need higher alignment,
- // we can either pass an alignment to this method or verify alignment
- // in one of the methods further up the call chain. See bug 5044738.
- assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
- // Repeatedly allocate blocks until the block is allocated at the
- // right spot. Give up after max_tries. Note that reserve_memory() will
- // automatically update _highest_vm_reserved_address if the call is
- // successful. The variable tracks the highest memory address every reserved
- // by JVM. It is used to detect heap-stack collision if running with
- // fixed-stack LinuxThreads. Because here we may attempt to reserve more
- // space than needed, it could confuse the collision detecting code. To
- // solve the problem, save current _highest_vm_reserved_address and
- // calculate the correct value before return.
- address old_highest = _highest_vm_reserved_address;
- // Linux mmap allows caller to pass an address as hint; give it a try first,
- // if kernel honors the hint then we can return immediately.
- char * addr = anon_mmap(requested_addr, bytes, false);
- if (addr == requested_addr) {
- return requested_addr;
- }
- if (addr != NULL) {
- // mmap() is successful but it fails to reserve at the requested address
- anon_munmap(addr, bytes);
- }
- int i;
- for (i = 0; i < max_tries; ++i) {
- base[i] = reserve_memory(bytes);
- if (base[i] != NULL) {
- // Is this the block we wanted?
- if (base[i] == requested_addr) {
- size[i] = bytes;
- break;
- }
- // Does this overlap the block we wanted? Give back the overlapped
- // parts and try again.
- size_t top_overlap = requested_addr + (bytes + gap) - base[i];
- if (top_overlap >= 0 && top_overlap < bytes) {
- unmap_memory(base[i], top_overlap);
- base[i] += top_overlap;
- size[i] = bytes - top_overlap;
- } else {
- size_t bottom_overlap = base[i] + bytes - requested_addr;
- if (bottom_overlap >= 0 && bottom_overlap < bytes) {
- unmap_memory(requested_addr, bottom_overlap);
- size[i] = bytes - bottom_overlap;
- } else {
- size[i] = bytes;
- }
- }
- }
- }
- // Give back the unused reserved pieces.
- for (int j = 0; j < i; ++j) {
- if (base[j] != NULL) {
- unmap_memory(base[j], size[j]);
- }
- }
- if (i < max_tries) {
- _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
- return requested_addr;
- } else {
- _highest_vm_reserved_address = old_highest;
- return NULL;
- }
- }
- size_t os::read(int fd, void *buf, unsigned int nBytes) {
- return ::read(fd, buf, nBytes);
- }
- // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
- // Solaris uses poll(), linux uses park().
- // Poll() is likely a better choice, assuming that Thread.interrupt()
- // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
- // SIGSEGV, see 4355769.
- const int NANOSECS_PER_MILLISECS = 1000000;
- int os::sleep(Thread* thread, jlong millis, bool interruptible) {
- assert(thread == Thread::current(), "thread consistency check");
- ParkEvent * const slp = thread->_SleepEvent ;
- slp->reset() ;
- OrderAccess::fence() ;
- if (interruptible) {
- jlong prevtime = javaTimeNanos();
- for (;;) {
- if (os::is_interrupted(thread, true)) {
- return OS_INTRPT;
- }
- jlong newtime = javaTimeNanos();
- if (newtime - prevtime < 0) {
- // time moving backwards, should only happen if no monotonic clock
- // not a guarantee() because JVM should not abort on kernel/glibc bugs
- assert(!Linux::supports_monotonic_clock(), "time moving backwards");
- } else {
- millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
- }
- if(millis <= 0) {
- return OS_OK;
- }
- prevtime = newtime;
- {
- assert(thread->is_Java_thread(), "sanity check");
- JavaThread *jt = (JavaThread *) thread;
- ThreadBlockInVM tbivm(jt);
- OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
- jt->set_suspend_equivalent();
- // cleared by handle_special_suspend_equivalent_condition() or
- // java_suspend_self() via check_and_wait_while_suspended()
- slp->park(millis);
- // were we externally suspended while we were waiting?
- jt->check_and_wait_while_suspended();
- }
- }
- } else {
- OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
- jlong prevtime = javaTimeNanos();
- for (;;) {
- // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
- // the 1st iteration ...
- jlong newtime = javaTimeNanos();
- if (newtime - prevtime < 0) {
- // time moving backwards, should only happen if no monotonic clock
- // not a guarantee() because JVM should not abort on kernel/glibc bugs
- assert(!Linux::supports_monotonic_clock(), "time moving backwards");
- } else {
- millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
- }
- if(millis <= 0) break ;
- prevtime = newtime;
- slp->park(millis);
- }
- return OS_OK ;
- }
- }
- int os::naked_sleep() {
- // %% make the sleep time an integer flag. for now use 1 millisec.
- return os::sleep(Thread::current(), 1, false);
- }
- // Sleep forever; naked call to OS-specific sleep; use with CAUTION
- void os::infinite_sleep() {
- while (true) { // sleep forever ...
- ::sleep(100); // ... 100 seconds at a time
- }
- }
- // Used to convert frequent JVM_Yield() to nops
- bool os::dont_yield() {
- return DontYieldALot;
- }
- void os::yield() {
- sched_yield();
- }
- os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
- void os::yield_all(int attempts) {
- // Yields to all threads, including threads with lower priorities
- // Threads on Linux are all with same priority. The Solaris style
- // os::yield_all() with nanosleep(1ms) is not necessary.
- sched_yield();
- }
- // Called from the tight loops to possibly influence time-sharing heuristics
- void os::loop_breaker(int attempts) {
- os::yield_all(attempts);
- }
- ////////////////////////////////////////////////////////////////////////////////
- // thread priority support
- // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
- // only supports dynamic priority, static priority must be zero. For real-time
- // applications, Linux supports SCHED_RR which allows static priority (1-99).
- // However, for large multi-threaded applications, SCHED_RR is not only slower
- // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
- // of 5 runs - Sep 2005).
- //
- // The following code actually changes the niceness of kernel-thread/LWP. It
- // has an assumption that setpriority() only modifies one kernel-thread/LWP,
- // not the entire user process, and user level threads are 1:1 mapped to kernel
- // threads. It has always been the case, but could change in the future. For
- // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
- // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
- int os::java_to_os_priority[MaxPriority + 1] = {
- 19, // 0 Entry should never be used
- 4, // 1 MinPriority
- 3, // 2
- 2, // 3
- 1, // 4
- 0, // 5 NormPriority
- -1, // 6
- -2, // 7
- -3, // 8
- -4, // 9 NearMaxPriority
- -5 // 10 MaxPriority
- };
- static int prio_init() {
- if (ThreadPriorityPolicy == 1) {
- // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
- // if effective uid is not root. Perhaps, a more elegant way of doing
- // this is to test CAP_SYS_NICE capability, but that will require libcap.so
- if (geteuid() != 0) {
- if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
- warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
- }
- ThreadPriorityPolicy = 0;
- }
- }
- return 0;
- }
- OSReturn os::set_native_priority(Thread* thread, int newpri) {
- if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
- int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
- return (ret == 0) ? OS_OK : OS_ERR;
- }
- OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
- if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
- *priority_ptr = java_to_os_priority[NormPriority];
- return OS_OK;
- }
- errno = 0;
- *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
- return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
- }
- // Hint to the underlying OS that a task switch would not be good.
- // Void return because it's a hint and can fail.
- void os::hint_no_preempt() {}
- ////////////////////////////////////////////////////////////////////////////////
- // suspend/resume support
- // the low-level signal-based suspend/resume support is a remnant from the
- // old VM-suspension that used to be for java-suspension, safepoints etc,
- // within hotspot. Now there is a single use-case for this:
- // - calling get_thread_pc() on the VMThread by the flat-profiler task
- // that runs in the watcher thread.
- // The remaining code is greatly simplified from the more general suspension
- // code that used to be used.
- //
- // The protocol is quite simple:
- // - suspend:
- // - sends a signal to the target thread
- // - polls the suspend state of the osthread using a yield loop
- // - target thread signal handler (SR_handler) sets suspend state
- // and blocks in sigsuspend until continued
- // - resume:
- // - sets target osthread state to continue
- // - sends signal to end the sigsuspend loop in the SR_handler
- //
- // Note that the SR_lock plays no role in this suspend/resume protocol.
- //
- static void resume_clear_context(OSThread *osthread) {
- osthread->set_ucontext(NULL);
- osthread->set_siginfo(NULL);
- // notify the suspend action is completed, we have now resumed
- osthread->sr.clear_suspended();
- }
- static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
- osthread->set_ucontext(context);
- osthread->set_siginfo(siginfo);
- }
- //
- // Handler function invoked when a thread's execution is suspended or
- // resumed. We have to be careful that only async-safe functions are
- // called here (Note: most pthread functions are not async safe and
- // should be avoided.)
- //
- // Note: sigwait() is a more natural fit than sigsuspend() from an
- // interface point of view, but sigwait() prevents the signal hander
- // from being run. libpthread would get very confused by not having
- // its signal handlers run and prevents sigwait()'s use with the
- // mutex granting granting signal.
- //
- // Currently only ever called on the VMThread
- //
- static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
- // Save and restore errno to avoid confusing native code with EINTR
- // after sigsuspend.
- int old_errno = errno;
- Thread* thread = Thread::current();
- OSThread* osthread = thread->osthread();
- assert(thread->is_VM_thread(), "Must be VMThread");
- // read current suspend action
- int action = osthread->sr.suspend_action();
- if (action == SR_SUSPEND) {
- suspend_save_context(osthread, siginfo, context);
- // Notify the suspend action is about to be completed. do_suspend()
- // waits until SR_SUSPENDED is set and then returns. We will wait
- // here for a resume signal and that completes the suspend-other
- // action. do_suspend/do_resume is always called as a pair from
- // the same thread - so there are no races
- // notify the caller
- osthread->sr.set_suspended();
- sigset_t suspend_set; // signals for sigsuspend()
- // get current set of blocked signals and unblock resume signal
- pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
- sigdelset(&suspend_set, SR_signum);
- // wait here until we are resumed
- do {
- sigsuspend(&suspend_set);
- // ignore all returns until we get a resume signal
- } while (osthread->sr.suspend_action() != SR_CONTINUE);
- resume_clear_context(osthread);
- } else {
- assert(action == SR_CONTINUE, "unexpected sr action");
- // nothing special to do - just leave the handler
- }
- errno = old_errno;
- }
- static int SR_initialize() {
- struct sigaction act;
- char *s;
- /* Get signal number to use for suspend/resume */
- if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
- int sig = ::strtol(s, 0, 10);
- if (sig > 0 || sig < _NSIG) {
- SR_signum = sig;
- }
- }
- assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
- "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
- sigemptyset(&SR_sigset);
- sigaddset(&SR_sigset, SR_signum);
- /* Set up signal handler for suspend/resume */
- act.sa_flags = SA_RESTART|SA_SIGINFO;
- act.sa_handler = (void (*)(int)) SR_handler;
- // SR_signum is blocked by default.
- // 4528190 - We also need to block pthread restart signal (32 on all
- // supported Linux platforms). Note that LinuxThreads need to block
- // this signal for all threads to work properly. So we don't have
- // to use hard-coded signal number when setting up the mask.
- pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
- if (sigaction(SR_signum, &act, 0) == -1) {
- return -1;
- }
- // Save signal flag
- os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
- return 0;
- }
- static int SR_finalize() {
- return 0;
- }
- // returns true on success and false on error - really an error is fatal
- // but this seems the normal response to library errors
- static bool do_suspend(OSThread* osthread) {
- // mark as suspended and send signal
- osthread->sr.set_suspend_action(SR_SUSPEND);
- int status = pthread_kill(osthread->pthread_id(), SR_signum);
- assert_status(status == 0, status, "pthread_kill");
- // check status and wait until notified of suspension
- if (status == 0) {
- for (int i = 0; !osthread->sr.is_suspended(); i++) {
- os::yield_all(i);
- }
- osthread->sr.set_suspend_action(SR_NONE);
- return true;
- }
- else {
- osthread->sr.set_suspend_action(SR_NONE);
- return false;
- }
- }
- static void do_resume(OSThread* osthread) {
- assert(osthread->sr.is_suspended(), "thread should be suspended");
- osthread->sr.set_suspend_action(SR_CONTINUE);
- int status = pthread_kill(osthread->pthread_id(), SR_signum);
- assert_status(status == 0, status, "pthread_kill");
- // check status and wait unit notified of resumption
- if (status == 0) {
- for (int i = 0; osthread->sr.is_suspended(); i++) {
- os::yield_all(i);
- }
- }
- osthread->sr.set_suspend_action(SR_NONE);
- }
- ////////////////////////////////////////////////////////////////////////////////
- // interrupt support
- void os::interrupt(Thread* thread) {
- assert(Thread::current() == thread || Threads_lock->owned_by_self(),
- "possibility of dangling Thread pointer");
- OSThread* osthread = thread->osthread();
- if (!osthread->interrupted()) {
- osthread->set_interrupted(true);
- // More than one thread can get here with the same value of osthread,
- // resulting in multiple notifications. We do, however, want the store
- // to interrupted() to be visible to other threads before we execute unpark().
- OrderAccess::fence();
- ParkEvent * const slp = thread->_SleepEvent ;
- if (slp != NULL) slp->unpark() ;
- }
- // For JSR166. Unpark even if interrupt status already was set
- if (thread->is_Java_thread())
- ((JavaThread*)thread)->parker()->unpark();
- ParkEvent * ev = thread->_ParkEvent ;
- if (ev != NULL) ev->unpark() ;
- }
- bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
- assert(Thread::current() == thread || Threads_lock->owned_by_self(),
- "possibility of dangling Thread pointer");
- OSThread* osthread = thread->osthread();
- bool interrupted = osthread->interrupted();
- if (interrupted && clear_interrupted) {
- osthread->set_interrupted(false);
- // consider thread->_SleepEvent->reset() ... optional optimization
- }
- return interrupted;
- }
- ///////////////////////////////////////////////////////////////////////////////////
- // signal handling (except suspend/resume)
- // This routine may be used by user applications as a "hook" to catch signals.
- // The user-defined signal handler must pass unrecognized signals to this
- // routine, and if it returns true (non-zero), then the signal handler must
- // return immediately. If the flag "abort_if_unrecognized" is true, then this
- // routine will never retun false (zero), but instead will execute a VM panic
- // routine kill the process.
- //
- // If this routine returns false, it is OK to call it again. This allows
- // the user-defined signal handler to perform checks either before or after
- // the VM performs its own checks. Naturally, the user code would be making
- // a serious error if it tried to handle an exception (such as a null check
- // or breakpoint) that the VM was generating for its own correct operation.
- //
- // This routine may recognize any of the following kinds of signals:
- // SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
- // It should be consulted by handlers for any of those signals.
- //
- // The caller of this routine must pass in the three arguments supplied
- // to the function referred to in the "sa_sigaction" (not the "sa_handler")
- // field of the structure passed to sigaction(). This routine assumes that
- // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
- //
- // Note that the VM will print warnings if it detects conflicting signal
- // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
- //
- extern "C" JNIEXPORT int
- JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
- void* ucontext, int abort_if_unrecognized);
- void signalHandler(int sig, siginfo_t* info, void* uc) {
- assert(info != NULL && uc != NULL, "it must be old kernel");
- JVM_handle_linux_signal(sig, info, uc, true);
- }
- // This boolean allows users to forward their own non-matching signals
- // to JVM_handle_linux_signal, harmlessly.
- bool os::Linux::signal_handlers_are_installed = false;
- // For signal-chaining
- struct sigaction os::Linux::sigact[MAXSIGNUM];
- unsigned int os::Linux::sigs = 0;
- bool os::Linux::libjsig_is_loaded = false;
- typedef struct sigaction *(*get_signal_t)(int);
- get_signal_t os::Linux::get_signal_action = NULL;
- struct sigaction* os::Linux::get_chained_signal_action(int sig) {
- struct sigaction *actp = NULL;
- if (libjsig_is_loaded) {
- // Retrieve the old signal handler from libjsig
- actp = (*get_signal_action)(sig);
- }
- if (actp == NULL) {
- // Retrieve the preinstalled signal handler from jvm
- actp = get_preinstalled_handler(sig);
- }
- return actp;
- }
- static bool call_chained_handler(struct sigaction *actp, int sig,
- siginfo_t *siginfo, void *context) {
- // Call the old signal handler
- if (actp->sa_handler == SIG_DFL) {
- // It's more reasonable to let jvm treat it as an unexpected exception
- // instead of taking the default action.
- return false;
- } else if (actp->sa_handler != SIG_IGN) {
- if ((actp->sa_flags & SA_NODEFER) == 0) {
- // automaticlly block the signal
- sigaddset(&(actp->sa_mask), sig);
- }
- sa_handler_t hand;
- sa_sigaction_t sa;
- bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
- // retrieve the chained handler
- if (siginfo_flag_set) {
- sa = actp->sa_sigaction;
- } else {
- hand = actp->sa_handler;
- }
- if ((actp->sa_flags & SA_RESETHAND) != 0) {
- actp->sa_handler = SIG_DFL;
- }
- // try to honor the signal mask
- sigset_t oset;
- pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
- // call into the chained handler
- if (siginfo_flag_set) {
- (*sa)(sig, siginfo, context);
- } else {
- (*hand)(sig);
- }
- // restore the signal mask
- pthread_sigmask(SIG_SETMASK, &oset, 0);
- }
- // Tell jvm's signal handler the signal is taken care of.
- return true;
- }
- bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
- bool chained = false;
- // signal-chaining
- if (UseSignalChaining) {
- struct sigaction *actp = get_chained_signal_action(sig);
- if (actp != NULL) {
- chained = call_chained_handler(actp, sig, siginfo, context);
- }
- }
- return chained;
- }
- struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
- if ((( (unsigned int)1 << sig ) & sigs) != 0) {
- return &sigact[sig];
- }
- return NULL;
- }
- void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
- assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
- sigact[sig] = oldAct;
- sigs |= (unsigned int)1 << sig;
- }
- // for diagnostic
- int os::Linux::sigflags[MAXSIGNUM];
- int os::Linux::get_our_sigflags(int sig) {
- assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
- return sigflags[sig];
- }
- void os::Linux::set_our_sigflags(int sig, int flags) {
- assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
- sigflags[sig] = flags;
- }
- void os::Linux::set_signal_handler(int sig, bool set_installed) {
- // Check for overwrite.
- struct sigaction oldAct;
- sigaction(sig, (struct sigaction*)NULL, &oldAct);
- void* oldhand = oldAct.sa_sigaction
- ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
- : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
- if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
- oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
- oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
- if (AllowUserSignalHandlers || !set_installed) {
- // Do not overwrite; user takes responsibility to forward to us.
- return;
- } else if (UseSignalChaining) {
- // save the old handler in jvm
- save_preinstalled_handler(sig, oldAct);
- // libjsig also interposes the sigaction() call below and saves the
- // old sigaction on it own.
- } else {
- fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
- "%#lx for signal %d.", (long)oldhand, sig));
- }
- }
- struct sigaction sigAct;
- sigfillset(&(sigAct.sa_mask));
- sigAct.sa_handler = SIG_DFL;
- if (!set_installed) {
- sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
- } else {
- sigAct.sa_sigaction = signalHandler;
- sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
- }
- // Save flags, which are set by ours
- assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
- sigflags[sig] = sigAct.sa_flags;
- int ret = sigaction(sig, &sigAct, &oldAct);
- assert(ret == 0, "check");
- void* oldhand2 = oldAct.sa_sigaction
- ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
- : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
- assert(oldhand2 == oldhand, "no concurrent signal handler installation");
- }
- // install signal handlers for signals that HotSpot needs to
- // handle in order to support Java-level exception handling.
- void os::Linux::install_signal_handlers() {
- if (!signal_handlers_are_installed) {
- signal_handlers_are_installed = true;
- // signal-chaining
- typedef void (*signal_setting_t)();
- signal_setting_t begin_signal_setting = NULL;
- signal_setting_t end_signal_setting = NULL;
- begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
- dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
- if (begin_signal_setting != NULL) {
- end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
- dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
- get_signal_action = CAST_TO_FN_PTR(get_signal_t,
- dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
- libjsig_is_loaded = true;
- assert(UseSignalChaining, "should enable signal-chaining");
- }
- if (libjsig_is_loaded) {
- // Tell libjsig jvm is setting signal handlers
- (*begin_signal_setting)();
- }
- set_signal_handler(SIGSEGV, true);
- set_signal_handler(SIGPIPE, true);
- set_signal_handler(SIGBUS, true);
- set_signal_handler(SIGILL, true);
- set_signal_handler(SIGFPE, true);
- set_signal_handler(SIGXFSZ, true);
- if (libjsig_is_loaded) {
- // Tell libjsig jvm finishes setting signal handlers
- (*end_signal_setting)();
- }
- // We don't activate signal checker if libjsig is in place, we trust ourselves
- // and if UserSignalHandler is installed all bets are off
- if (CheckJNICalls) {
- if (libjsig_is_loaded) {
- tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
- check_signals = false;
- }
- if (AllowUserSignalHandlers) {
- tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
- check_signals = false;
- }
- }
- }
- }
- // This is the fastest way to get thread cpu time on Linux.
- // Returns cpu time (user+sys) for any thread, not only for current.
- // POSIX compliant clocks are implemented in the kernels 2.6.16+.
- // It might work on 2.6.10+ with a special kernel/glibc patch.
- // For reference, please, see IEEE Std 1003.1-2004:
- // http://www.unix.org/single_unix_specification
- jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
- struct timespec tp;
- int rc = os::Linux::clock_gettime(clockid, &tp);
- assert(rc == 0, "clock_gettime is expected to return 0 code");
- return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
- }
- /////
- // glibc on Linux platform uses non-documented flag
- // to indicate, that some special sort of signal
- // trampoline is used.
- // We will never set this flag, and we should
- // ignore this flag in our diagnostic
- #ifdef SIGNIFICANT_SIGNAL_MASK
- #undef SIGNIFICANT_SIGNAL_MASK
- #endif
- #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
- static const char* get_signal_handler_name(address handler,
- char* buf, int buflen) {
- int offset;
- bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
- if (found) {
- // skip directory names
- const char *p1, *p2;
- p1 = buf;
- size_t len = strlen(os::file_separator());
- while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
- jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
- } else {
- jio_snprintf(buf, buflen, PTR_FORMAT, handler);
- }
- return buf;
- }
- static void print_signal_handler(outputStream* st, int sig,
- char* buf, size_t buflen) {
- struct sigaction sa;
- sigaction(sig, NULL, &sa);
- // See comment for SIGNIFICANT_SIGNAL_MASK define
- sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
- st->print("%s: ", os::exception_name(sig, buf, buflen));
- address handler = (sa.sa_flags & SA_SIGINFO)
- ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
- : CAST_FROM_FN_PTR(address, sa.sa_handler);
- if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
- st->print("SIG_DFL");
- } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
- st->print("SIG_IGN");
- } else {
- st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
- }
- st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
- address rh = VMError::get_resetted_sighandler(sig);
- // May be, handler was resetted by VMError?
- if(rh != NULL) {
- handler = rh;
- sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
- }
- st->print(", sa_flags=" PTR32_FORMAT, sa.sa_flags);
- // Check: is it our handler?
- if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
- handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
- // It is our signal handler
- // check for flags, reset system-used one!
- if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
- st->print(
- ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
- os::Linux::get_our_sigflags(sig));
- }
- }
- st->cr();
- }
- #define DO_SIGNAL_CHECK(sig) \
- if (!sigismember(&check_signal_done, sig)) \
- os::Linux::check_signal_handler(sig)
- // This method is a periodic task to check for misbehaving JNI applications
- // under CheckJNI, we can add any periodic checks here
- void os::run_periodic_checks() {
- if (check_signals == false) return;
- // SEGV and BUS if overridden could potentially prevent
- // generation of hs*.log in the event of a crash, debugging
- // such a case can be very challenging, so we absolutely
- // check the following for a good measure:
- DO_SIGNAL_CHECK(SIGSEGV);
- DO_SIGNAL_CHECK(SIGILL);
- DO_SIGNAL_CHECK(SIGFPE);
- DO_SIGNAL_CHECK(SIGBUS);
- DO_SIGNAL_CHECK(SIGPIPE);
- DO_SIGNAL_CHECK(SIGXFSZ);
- // ReduceSignalUsage allows the user to override these handlers
- // see comments at the very top and jvm_solaris.h
- if (!ReduceSignalUsage) {
- DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
- DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
- DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
- DO_SIGNAL_CHECK(BREAK_SIGNAL);
- }
- DO_SIGNAL_CHECK(SR_signum);
- DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
- }
- typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
- static os_sigaction_t os_sigaction = NULL;
- void os::Linux::check_signal_handler(int sig) {
- char buf[O_BUFLEN];
- address jvmHandler = NULL;
- struct sigaction act;
- if (os_sigaction == NULL) {
- // only trust the default sigaction, in case it has been interposed
- os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
- if (os_sigaction == NULL) return;
- }
- os_sigaction(sig, (struct sigaction*)NULL, &act);
- act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
- address thisHandler = (act.sa_flags & SA_SIGINFO)
- ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
- : CAST_FROM_FN_PTR(address, act.sa_handler) ;
- switch(sig) {
- case SIGSEGV:
- case SIGBUS:
- case SIGFPE:
- case SIGPIPE:
- case SIGILL:
- case SIGXFSZ:
- jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
- break;
- case SHUTDOWN1_SIGNAL:
- case SHUTDOWN2_SIGNAL:
- case SHUTDOWN3_SIGNAL:
- case BREAK_SIGNAL:
- jvmHandler = (address)user_handler();
- break;
- case INTERRUPT_SIGNAL:
- jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
- break;
- default:
- if (sig == SR_signum) {
- jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
- } else {
- return;
- }
- break;
- }
- if (thisHandler != jvmHandler) {
- tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
- tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
- tty->print_cr(" found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
- // No need to check this sig any longer
- sigaddset(&check_signal_done, sig);
- } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
- tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
- tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
- tty->print_cr(" found:" PTR32_FORMAT, act.sa_flags);
- // No need to check this sig any longer
- sigaddset(&check_signal_done, sig);
- }
- // Dump all the signal
- if (sigismember(&check_signal_done, sig)) {
- print_signal_handlers(tty, buf, O_BUFLEN);
- }
- }
- extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
- extern bool signal_name(int signo, char* buf, size_t len);
- const char* os::exception_name(int exception_code, char* buf, size_t size) {
- if (0 < exception_code && exception_code <= SIGRTMAX) {
- // signal
- if (!signal_name(exception_code, buf, size)) {
- jio_snprintf(buf, size, "SIG%d", exception_code);
- }
- return buf;
- } else {
- return NULL;
- }
- }
- // this is called _before_ the most of global arguments have been parsed
- void os::init(void) {
- char dummy; /* used to get a guess on initial stack address */
- // first_hrtime = gethrtime();
- // With LinuxThreads the JavaMain thread pid (primordial thread)
- // is different than the pid of the java launcher thread.
- // So, on Linux, the launcher thread pid is passed to the VM
- // via the sun.java.launcher.pid property.
- // Use this property instead of getpid() if it was correctly passed.
- // See bug 6351349.
- pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
- _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
- clock_tics_per_sec = sysconf(_SC_CLK_TCK);
- init_random(1234567);
- ThreadCritical::initialize();
- Linux::set_page_size(sysconf(_SC_PAGESIZE));
- if (Linux::page_size() == -1) {
- fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
- strerror(errno)));
- }
- init_page_sizes((size_t) Linux::page_size());
- Linux::initialize_system_info();
- // main_thread points to the aboriginal thread
- Linux::_main_thread = pthread_self();
- Linux::clock_init();
- initial_time_count = os::elapsed_counter();
- pthread_mutex_init(&dl_mutex, NULL);
- }
- // To install functions for atexit system call
- extern "C" {
- static void perfMemory_exit_helper() {
- perfMemory_exit();
- }
- }
- // this is called _after_ the global arguments have been parsed
- jint os::init_2(void)
- {
- Linux::fast_thread_clock_init();
- // Allocate a single page and mark it as readable for safepoint polling
- address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
- guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
- os::set_polling_page( polling_page );
- #ifndef PRODUCT
- if(Verbose && PrintMiscellaneous)
- tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
- #endif
- if (!UseMembar) {
- address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
- guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
- os::set_memory_serialize_page( mem_serialize_page );
- #ifndef PRODUCT
- if(Verbose && PrintMiscellaneous)
- tty->print("[Memory Serialize Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
- #endif
- }
- os::large_page_init();
- // initialize suspend/resume support - must do this before signal_sets_init()
- if (SR_initialize() != 0) {
- perror("SR_initialize failed");
- return JNI_ERR;
- }
- Linux::signal_sets_init();
- Linux::install_signal_handlers();
- // Check minimum allowable stack size for thread creation and to initialize
- // the java system classes, including StackOverflowError - depends on page
- // size. Add a page for compiler2 recursion in main thread.
- // Add in 2*BytesPerWord times page size to account for VM stack during
- // class initialization depending on 32 or 64 bit VM.
- os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
- (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
- 2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::page_size());
- size_t threadStackSizeInBytes = ThreadStackSize * K;
- if (threadStackSizeInBytes != 0 &&
- threadStackSizeInBytes < os::Linux::min_stack_allowed) {
- tty->print_cr("\nThe stack size specified is too small, "
- "Specify at least %dk",
- os::Linux::min_stack_allowed/ K);
- return JNI_ERR;
- }
- // Make the stack size a multiple of the page size so that
- // the yellow/red zones can be guarded.
- JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
- vm_page_size()));
- Linux::capture_initial_stack(JavaThread::stack_size_at_create());
- Linux::libpthread_init();
- if (PrintMiscellaneous && (Verbose || WizardMode)) {
- tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
- Linux::glibc_version(), Linux::libpthread_version(),
- Linux::is_floating_stack() ? "floating stack" : "fixed stack");
- }
- if (UseNUMA) {
- if (!Linux::libnuma_init()) {
- UseNUMA = false;
- } else {
- if ((Linux::numa_max_node() < 1)) {
- // There's only one node(they start from 0), disable NUMA.
- UseNUMA = false;
- }
- }
- // With SHM large pages we cannot uncommit a page, so there's not way
- // we can make the adaptive lgrp chunk resizing work. If the user specified
- // both UseNUMA and UseLargePages (or UseSHM) on the command line - warn and
- // disable adaptive resizing.
- if (UseNUMA && UseLargePages && UseSHM) {
- if (!FLAG_IS_DEFAULT(UseNUMA)) {
- if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseSHM)) {
- UseLargePages = false;
- } else {
- warning("UseNUMA is not fully compatible with SHM large pages, disabling adaptive resizing");
- UseAdaptiveSizePolicy = false;
- UseAdaptiveNUMAChunkSizing = false;
- }
- } else {
- UseNUMA = false;
- }
- }
- if (!UseNUMA && ForceNUMA) {
- UseNUMA = true;
- }
- }
- if (MaxFDLimit) {
- // set the number of file descriptors to max. print out error
- // if getrlimit/setrlimit fails but continue regardless.
- struct rlimit nbr_files;
- int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
- if (status != 0) {
- if (PrintMiscellaneous && (Verbose || WizardMode))
- perror("os::init_2 getrlimit failed");
- } else {
- nbr_files.rlim_cur = nbr_files.rlim_max;
- status = setrlimit(RLIMIT_NOFILE, &nbr_files);
- if (status != 0) {
- if (PrintMiscellaneous && (Verbose || WizardMode))
- perror("os::init_2 setrlimit failed");
- }
- }
- }
- // Initialize lock used to serialize thread creation (see os::create_thread)
- Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
- // at-exit methods are called in the reverse order of their registration.
- // atexit functions are called on return from main or as a result of a
- // call to exit(3C). There can be only 32 of these functions registered
- // and atexit() does not set errno.
- if (PerfAllowAtExitRegistration) {
- // only register atexit functions if PerfAllowAtExitRegistration is set.
- // atexit functions can be delayed until process exit time, which
- // can be problematic for embedded VM situations. Embedded VMs should
- // call DestroyJavaVM() to assure that VM resources are released.
- // note: perfMemory_exit_helper atexit function may be removed in
- // the future if the appropriate cleanup code can be added to the
- // VM_Exit VMOperation's doit method.
- if (atexit(perfMemory_exit_helper) != 0) {
- warning("os::init2 atexit(perfMemory_exit_helper) failed");
- }
- }
- // initialize thread priority policy
- prio_init();
- return JNI_OK;
- }
- // this is called at the end of vm_initialization
- void os::init_3(void) { }
- // Mark the polling page as unreadable
- void os::make_polling_page_unreadable(void) {
- if( !guard_memory((char*)_polling_page, Linux::page_size()) )
- fatal("Could not disable polling page");
- };
- // Mark the polling page as readable
- void os::make_polling_page_readable(void) {
- if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
- fatal("Could not enable polling page");
- }
- };
- int os::active_processor_count() {
- // Linux doesn't yet have a (official) notion of processor sets,
- // so just return the number of online processors.
- int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
- assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
- return online_cpus;
- }
- bool os::distribute_processes(uint length, uint* distribution) {
- // Not yet implemented.
- return false;
- }
- bool os::bind_to_processor(uint processor_id) {
- // Not yet implemented.
- return false;
- }
- ///
- // Suspends the target using the signal mechanism and then grabs the PC before
- // resuming the target. Used by the flat-profiler only
- ExtendedPC os::get_thread_pc(Thread* thread) {
- // Make sure that it is called by the watcher for the VMThread
- assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
- assert(thread->is_VM_thread(), "Can only be called for VMThread");
- ExtendedPC epc;
- OSThread* osthread = thread->osthread();
- if (do_suspend(osthread)) {
- if (osthread->ucontext() != NULL) {
- epc = os::Linux::ucontext_get_pc(osthread->ucontext());
- } else {
- // NULL context is unexpected, double-check this is the VMThread
- guarantee(thread->is_VM_thread(), "can only be called for VMThread");
- }
- do_resume(osthread);
- }
- // failure means pthread_kill failed for some reason - arguably this is
- // a fatal problem, but such problems are ignored elsewhere
- return epc;
- }
- int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
- {
- if (is_NPTL()) {
- return pthread_cond_timedwait(_cond, _mutex, _abstime);
- } else {
- #ifndef IA64
- // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
- // word back to default 64bit precision if condvar is signaled. Java
- // wants 53bit precision. Save and restore current value.
- int fpu = get_fpu_control_word();
- #endif // IA64
- int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
- #ifndef IA64
- set_fpu_control_word(fpu);
- #endif // IA64
- return status;
- }
- }
- ////////////////////////////////////////////////////////////////////////////////
- // debug support
- static address same_page(address x, address y) {
- int page_bits = -os::vm_page_size();
- if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
- return x;
- else if (x > y)
- return (address)(intptr_t(y) | ~page_bits) + 1;
- else
- return (address)(intptr_t(y) & page_bits);
- }
- bool os::find(address addr, outputStream* st) {
- Dl_info dlinfo;
- memset(&dlinfo, 0, sizeof(dlinfo));
- if (dladdr(addr, &dlinfo)) {
- st->print(PTR_FORMAT ": ", addr);
- if (dlinfo.dli_sname != NULL) {
- st->print("%s+%#x", dlinfo.dli_sname,
- addr - (intptr_t)dlinfo.dli_saddr);
- } else if (dlinfo.dli_fname) {
- st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
- } else {
- st->print("<absolute address>");
- }
- if (dlinfo.dli_fname) {
- st->print(" in %s", dlinfo.dli_fname);
- }
- if (dlinfo.dli_fbase) {
- st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
- }
- st->cr();
- if (Verbose) {
- // decode some bytes around the PC
- address begin = same_page(addr-40, addr);
- address end = same_page(addr+40, addr);
- address lowest = (address) dlinfo.dli_sname;
- if (!lowest) lowest = (address) dlinfo.dli_fbase;
- if (begin < lowest) begin = lowest;
- Dl_info dlinfo2;
- if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
- && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
- end = (address) dlinfo2.dli_saddr;
- Disassembler::decode(begin, end, st);
- }
- return true;
- }
- return false;
- }
- ////////////////////////////////////////////////////////////////////////////////
- // misc
- // This does not do anything on Linux. This is basically a hook for being
- // able to use structured exception handling (thread-local exception filters)
- // on, e.g., Win32.
- void
- os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
- JavaCallArguments* args, Thread* thread) {
- f(value, method, args, thread);
- }
- void os::print_statistics() {
- }
- int os::message_box(const char* title, const char* message) {
- int i;
- fdStream err(defaultStream::error_fd());
- for (i = 0; i < 78; i++) err.print_raw("=");
- err.cr();
- err.print_raw_cr(title);
- for (i = 0; i < 78; i++) err.print_raw("-");
- err.cr();
- err.print_raw_cr(message);
- for (i = 0; i < 78; i++) err.print_raw("=");
- err.cr();
- char buf[16];
- // Prevent process from exiting upon "read error" without consuming all CPU
- while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
- return buf[0] == 'y' || buf[0] == 'Y';
- }
- int os::stat(const char *path, struct stat *sbuf) {
- char pathbuf[MAX_PATH];
- if (strlen(path) > MAX_PATH - 1) {
- errno = ENAMETOOLONG;
- return -1;
- }
- os::native_path(strcpy(pathbuf, path));
- return ::stat(pathbuf, sbuf);
- }
- bool os::check_heap(bool force) {
- return true;
- }
- int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
- return ::vsnprintf(buf, count, format, args);
- }
- // Is a (classpath) directory empty?
- bool os::dir_is_empty(const char* path) {
- DIR *dir = NULL;
- struct dirent *ptr;
- dir = opendir(path);
- if (dir == NULL) return true;
- /* Scan the directory */
- bool result = true;
- char buf[sizeof(struct dirent) + MAX_PATH];
- while (result && (ptr = ::readdir(dir)) != NULL) {
- if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
- result = false;
- }
- }
- closedir(dir);
- return result;
- }
- // This code originates from JDK's sysOpen and open64_w
- // from src/solaris/hpi/src/system_md.c
- #ifndef O_DELETE
- #define O_DELETE 0x10000
- #endif
- // Open a file. Unlink the file immediately after open returns
- // if the specified oflag has the O_DELETE flag set.
- // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
- int os::open(const char *path, int oflag, int mode) {
- if (strlen(path) > MAX_PATH - 1) {
- errno = ENAMETOOLONG;
- return -1;
- }
- int fd;
- int o_delete = (oflag & O_DELETE);
- oflag = oflag & ~O_DELETE;
- fd = ::open64(path, oflag, mode);
- if (fd == -1) return -1;
- //If the open succeeded, the file might still be a directory
- {
- struct stat64 buf64;
- int ret = ::fstat64(fd, &buf64);
- int st_mode = buf64.st_mode;
- if (ret != -1) {
- if ((st_mode & S_IFMT) == S_IFDIR) {
- errno = EISDIR;
- ::close(fd);
- return -1;
- }
- } else {
- ::close(fd);
- return -1;
- }
- }
- /*
- * All file descriptors that are opened in the JVM and not
- * specifically destined for a subprocess should have the
- * close-on-exec flag set. If we don't set it, then careless 3rd
- * party native code might fork and exec without closing all
- * appropriate file descriptors (e.g. as we do in closeDescriptors in
- * UNIXProcess.c), and this in turn might:
- *
- * - cause end-of-file to fail to be detected on some file
- * descriptors, resulting in mysterious hangs, or
- *
- * - might cause an fopen in the subprocess to fail on a system
- * suffering from bug 1085341.
- *
- * (Yes, the default setting of the close-on-exec flag is a Unix
- * design flaw)
- *
- * See:
- * 1085341: 32-bit stdio routines should support file descriptors >255
- * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
- * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
- */
- #ifdef FD_CLOEXEC
- {
- int flags = ::fcntl(fd, F_GETFD);
- if (flags != -1)
- ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
- }
- #endif
- if (o_delete != 0) {
- ::unlink(path);
- }
- return fd;
- }
- // create binary file, rewriting existing file if required
- int os::create_binary_file(const char* path, bool rewrite_existing) {
- int oflags = O_WRONLY | O_CREAT;
- if (!rewrite_existing) {
- oflags |= O_EXCL;
- }
- return ::open64(path, oflags, S_IREAD | S_IWRITE);
- }
- // return current position of file pointer
- jlong os::current_file_offset(int fd) {
- return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
- }
- // move file pointer to the specified offset
- jlong os::seek_to_file_offset(int fd, jlong offset) {
- return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
- }
- // This code originates from JDK's sysAvailable
- // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
- int os::available(int fd, jlong *bytes) {
- jlong cur, end;
- int mode;
- struct stat64 buf64;
- if (::fstat64(fd, &buf64) >= 0) {
- mode = buf64.st_mode;
- if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
- /*
- * XXX: is the following call interruptible? If so, this might
- * need to go through the INTERRUPT_IO() wrapper as for other
- * blocking, interruptible calls in this file.
- */
- int n;
- if (::ioctl(fd, FIONREAD, &n) >= 0) {
- *bytes = n;
- return 1;
- }
- }
- }
- if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
- return 0;
- } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
- return 0;
- } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
- return 0;
- }
- *bytes = end - cur;
- return 1;
- }
- int os::socket_available(int fd, jint *pbytes) {
- // Linux doc says EINTR not returned, unlike Solaris
- int ret = ::ioctl(fd, FIONREAD, pbytes);
- //%% note ioctl can return 0 when successful, JVM_SocketAvailable
- // is expected to return 0 on failure and 1 on success to the jdk.
- return (ret < 0) ? 0 : 1;
- }
- // Map a block of memory.
- char* os::map_memory(int fd, const char* file_name, size_t file_offset,
- char *addr, size_t bytes, bool read_only,
- bool allow_exec) {
- int prot;
- int flags;
- if (read_only) {
- prot = PROT_READ;
- flags = MAP_SHARED;
- } else {
- prot = PROT_READ | PROT_WRITE;
- flags = MAP_PRIVATE;
- }
- if (allow_exec) {
- prot |= PROT_EXEC;
- }
- if (addr != NULL) {
- flags |= MAP_FIXED;
- }
- char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
- fd, file_offset);
- if (mapped_address == MAP_FAILED) {
- return NULL;
- }
- return mapped_address;
- }
- // Remap a block of memory.
- char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
- char *addr, size_t bytes, bool read_only,
- bool allow_exec) {
- // same as map_memory() on this OS
- return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
- allow_exec);
- }
- // Unmap a block of memory.
- bool os::unmap_memory(char* addr, size_t bytes) {
- return munmap(addr, bytes) == 0;
- }
- static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
- static clockid_t thread_cpu_clockid(Thread* thread) {
- pthread_t tid = thread->osthread()->pthread_id();
- clockid_t clockid;
- // Get thread clockid
- int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
- assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
- return clockid;
- }
- // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
- // are used by JVM M&M and JVMTI to get user+sys or user CPU time
- // of a thread.
- //
- // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
- // the fast estimate available on the platform.
- jlong os::current_thread_cpu_time() {
- if (os::Linux::supports_fast_thread_cpu_time()) {
- return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
- } else {
- // return user + sys since the cost is the same
- return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
- }
- }
- jlong os::thread_cpu_time(Thread* thread) {
- // consistent with what current_thread_cpu_time() returns
- if (os::Linux::supports_fast_thread_cpu_time()) {
- return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
- } else {
- return slow_thread_cpu_time(thread, true /* user + sys */);
- }
- }
- jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
- if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
- return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
- } else {
- return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
- }
- }
- jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
- if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
- return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
- } else {
- return slow_thread_cpu_time(thread, user_sys_cpu_time);
- }
- }
- //
- // -1 on error.
- //
- static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
- static bool proc_pid_cpu_avail = true;
- static bool proc_task_unchecked = true;
- static const char *proc_stat_path = "/proc/%d/stat";
- pid_t tid = thread->osthread()->thread_id();
- int i;
- char *s;
- char stat[2048];
- int statlen;
- char proc_name[64];
- int count;
- long sys_time, user_time;
- char string[64];
- char cdummy;
- int idummy;
- long ldummy;
- FILE *fp;
- // We first try accessing /proc/<pid>/cpu since this is faster to
- // process. If this file is not present (linux kernels 2.5 and above)
- // then we open /proc/<pid>/stat.
- if ( proc_pid_cpu_avail ) {
- sprintf(proc_name, "/proc/%d/cpu", tid);
- fp = fopen(proc_name, "r");
- if ( fp != NULL ) {
- count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
- fclose(fp);
- if ( count != 3 ) return -1;
- if (user_sys_cpu_time) {
- return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
- } else {
- return (jlong)user_time * (1000000000 / clock_tics_per_sec);
- }
- }
- else proc_pid_cpu_avail = false;
- }
- // The /proc/<tid>/stat aggregates per-process usage on
- // new Linux kernels 2.6+ where NPTL is supported.
- // The /proc/self/task/<tid>/stat still has the per-thread usage.
- // See bug 6328462.
- // There can be no directory /proc/self/task on kernels 2.4 with NPTL
- // and possibly in some other cases, so we check its availability.
- if (proc_task_unchecked && os::Linux::is_NPTL()) {
- // This is executed only once
- proc_task_unchecked = false;
- fp = fopen("/proc/self/task", "r");
- if (fp != NULL) {
- proc_stat_path = "/proc/self/task/%d/stat";
- fclose(fp);
- }
- }
- sprintf(proc_name, proc_stat_path, tid);
- fp = fopen(proc_name, "r");
- if ( fp == NULL ) return -1;
- statlen = fread(stat, 1, 2047, fp);
- stat[statlen] = '\0';
- fclose(fp);
- // Skip pid and the command string. Note that we could be dealing with
- // weird command names, e.g. user could decide to rename java launcher
- // to "java 1.4.2 :)", then the stat file would look like
- // 1234 (java 1.4.2 :)) R ... ...
- // We don't really need to know the command string, just find the last
- // occurrence of ")" and then start parsing from there. See bug 4726580.
- s = strrchr(stat, ')');
- i = 0;
- if (s == NULL ) return -1;
- // Skip blank chars
- do s++; while (isspace(*s));
- count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
- &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
- &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
- &user_time, &sys_time);
- if ( count != 13 ) return -1;
- if (user_sys_cpu_time) {
- return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
- } else {
- return (jlong)user_time * (1000000000 / clock_tics_per_sec);
- }
- }
- void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
- info_ptr->max_value = ALL_64_BITS; // will not wrap in less than 64 bits
- info_ptr->may_skip_backward = false; // elapsed time not wall time
- info_ptr->may_skip_forward = false; // elapsed time not wall time
- info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
- }
- void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
- info_ptr->max_value = ALL_64_BITS; // will not wrap in less than 64 bits
- info_ptr->may_skip_backward = false; // elapsed time not wall time
- info_ptr->may_skip_forward = false; // elapsed time not wall time
- info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
- }
- bool os::is_thread_cpu_time_supported() {
- return true;
- }
- // System loadavg support. Returns -1 if load average cannot be obtained.
- // Linux doesn't yet have a (official) notion of processor sets,
- // so just return the system wide load average.
- int os::loadavg(double loadavg[], int nelem) {
- return ::getloadavg(loadavg, nelem);
- }
- void os::pause() {
- char filename[MAX_PATH];
- if (PauseAtStartupFile && PauseAtStartupFile[0]) {
- jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
- } else {
- jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
- }
- int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
- if (fd != -1) {
- struct stat buf;
- ::close(fd);
- while (::stat(filename, &buf) == 0) {
- (void)::poll(NULL, 0, 100);
- }
- } else {
- jio_fprintf(stderr,
- "Could not open pause file '%s', continuing immediately.\n", filename);
- }
- }
- // Refer to the comments in os_solaris.cpp park-unpark.
- //
- // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
- // hang indefinitely. For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
- // For specifics regarding the bug see GLIBC BUGID 261237 :
- // http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
- // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
- // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
- // is used. (The simple C test-case provided in the GLIBC bug report manifests the
- // hang). The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
- // and monitorenter when we're using 1-0 locking. All those operations may result in
- // calls to pthread_cond_timedwait(). Using LD_ASSUME_KERNEL to use an older version
- // of libpthread avoids the problem, but isn't practical.
- //
- // Possible remedies:
- //
- // 1. Establish a minimum relative wait time. 50 to 100 msecs seems to work.
- // This is palliative and probabilistic, however. If the thread is preempted
- // between the call to compute_abstime() and pthread_cond_timedwait(), more
- // than the minimum period may have passed, and the abstime may be stale (in the
- // past) resultin in a hang. Using this technique reduces the odds of a hang
- // but the JVM is still vulnerable, particularly on heavily loaded systems.
- //
- // 2. Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
- // of the usual flag-condvar-mutex idiom. The write side of the pipe is set
- // NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
- // reduces to poll()+read(). This works well, but consumes 2 FDs per extant
- // thread.
- //
- // 3. Embargo pthread_cond_timedwait() and implement a native "chron" thread
- // that manages timeouts. We'd emulate pthread_cond_timedwait() by enqueuing
- // a timeout request to the chron thread and then blocking via pthread_cond_wait().
- // This also works well. In fact it avoids kernel-level scalability impediments
- // on certain platforms that don't handle lots of active pthread_cond_timedwait()
- // timers in a graceful fashion.
- //
- // 4. When the abstime value is in the past it appears that control returns
- // correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
- // Subsequent timedwait/wait calls may hang indefinitely. Given that, we
- // can avoid the problem by reinitializing the condvar -- by cond_destroy()
- // followed by cond_init() -- after all calls to pthread_cond_timedwait().
- // It may be possible to avoid reinitialization by checking the return
- // value from pthread_cond_timedwait(). In addition to reinitializing the
- // condvar we must establish the invariant that cond_signal() is only called
- // within critical sections protected by the adjunct mutex. This prevents
- // cond_signal() from "seeing" a condvar that's in the midst of being
- // reinitialized or that is corrupt. Sadly, this invariant obviates the
- // desirable signal-after-unlock optimization that avoids futile context switching.
- //
- // I'm also concerned that some versions of NTPL might allocate an auxilliary
- // structure when a condvar is used or initialized. cond_destroy() would
- // release the helper structure. Our reinitialize-after-timedwait fix
- // put excessive stress on malloc/free and locks protecting the c-heap.
- //
- // We currently use (4). See the WorkAroundNTPLTimedWaitHang flag.
- // It may be possible to refine (4) by checking the kernel and NTPL verisons
- // and only enabling the work-around for vulnerable environments.
- // utility to compute the abstime argument to timedwait:
- // millis is the relative timeout time
- // abstime will be the absolute timeout time
- // TODO: replace compute_abstime() with unpackTime()
- static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
- if (millis < 0) millis = 0;
- struct timeval now;
- int status = gettimeofday(&now, NULL);
- assert(status == 0, "gettimeofday");
- jlong seconds = millis / 1000;
- millis %= 1000;
- if (seconds > 50000000) { // see man cond_timedwait(3T)
- seconds = 50000000;
- }
- abstime->tv_sec = now.tv_sec + seconds;
- long usec = now.tv_usec + millis * 1000;
- if (usec >= 1000000) {
- abstime->tv_sec += 1;
- usec -= 1000000;
- }
- abstime->tv_nsec = usec * 1000;
- return abstime;
- }
- // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
- // Conceptually TryPark() should be equivalent to park(0).
- int os::PlatformEvent::TryPark() {
- for (;;) {
- const int v = _Event ;
- guarantee ((v == 0) || (v == 1), "invariant") ;
- if (Atomic::cmpxchg (0, &_Event, v) == v) return v ;
- }
- }
- void os::PlatformEvent::park() { // AKA "down()"
- // Invariant: Only the thread associated with the Event/PlatformEvent
- // may call park().
- // TODO: assert that _Assoc != NULL or _Assoc == Self
- int v ;
- for (;;) {
- v = _Event ;
- if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
- }
- guarantee (v >= 0, "invariant") ;
- if (v == 0) {
- // Do this the hard way by blocking ...
- int status = pthread_mutex_lock(_mutex);
- assert_status(status == 0, status, "mutex_lock");
- guarantee (_nParked == 0, "invariant") ;
- ++ _nParked ;
- while (_Event < 0) {
- status = pthread_cond_wait(_cond, _mutex);
- // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
- // Treat this the same as if the wait was interrupted
- if (status == ETIME) { status = EINTR; }
- assert_status(status == 0 || status == EINTR, status, "cond_wait");
- }
- -- _nParked ;
- // In theory we could move the ST of 0 into _Event past the unlock(),
- // but then we'd need a MEMBAR after the ST.
- _Event = 0 ;
- status = pthread_mutex_unlock(_mutex);
- assert_status(status == 0, status, "mutex_unlock");
- }
- guarantee (_Event >= 0, "invariant") ;
- }
- int os::PlatformEvent::park(jlong millis) {
- guarantee (_nParked == 0, "invariant") ;
- int v ;
- for (;;) {
- v = _Event ;
- if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
- }
- guarantee (v >= 0, "invariant") ;
- if (v != 0) return OS_OK ;
- // We do this the hard way, by blocking the thread.
- // Consider enforcing a minimum timeout value.
- struct timespec abst;
- compute_abstime(&abst, millis);
- int ret = OS_TIMEOUT;
- int status = pthread_mutex_lock(_mutex);
- assert_status(status == 0, status, "mutex_lock");
- guarantee (_nParked == 0, "invariant") ;
- ++_nParked ;
- // Object.wait(timo) will return because of
- // (a) notification
- // (b) timeout
- // (c) thread.interrupt
- //
- // Thread.interrupt and object.notify{All} both call Event::set.
- // That is, we treat thread.interrupt as a special case of notification.
- // The underlying Solaris implementation, cond_timedwait, admits
- // spurious/premature wakeups, but the JLS/JVM spec prevents the
- // JVM from making those visible to Java code. As such, we must
- // filter out spurious wakeups. We assume all ETIME returns are valid.
- //
- // TODO: properly differentiate simultaneous notify+interrupt.
- // In that case, we should propagate the notify to another waiter.
- while (_Event < 0) {
- status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
- if (status != 0 && WorkAroundNPTLTimedWaitHang) {
- pthread_cond_destroy (_cond);
- pthread_cond_init (_cond, NULL) ;
- }
- assert_status(status == 0 || status == EINTR ||
- status == ETIME || status == ETIMEDOUT,
- status, "cond_timedwait");
- if (!FilterSpuriousWakeups) break ; // previous semantics
- if (status == ETIME || status == ETIMEDOUT) break ;
- // We consume and ignore EINTR and spurious wakeups.
- }
- --_nParked ;
- if (_Event >= 0) {
- ret = OS_OK;
- }
- _Event = 0 ;
- status = pthread_mutex_unlock(_mutex);
- assert_status(status == 0, status, "mutex_unlock");
- assert (_nParked == 0, "invariant") ;
- return ret;
- }
- void os::PlatformEvent::unpark() {
- int v, AnyWaiters ;
- for (;;) {
- v = _Event ;
- if (v > 0) {
- // The LD of _Event could have reordered or be satisfied
- // by a read-aside from this processor's write buffer.
- // To avoid problems execute a barrier and then
- // ratify the value.
- OrderAccess::fence() ;
- if (_Event == v) return ;
- continue ;
- }
- if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
- }
- if (v < 0) {
- // Wait for the thread associated with the event to vacate
- int status = pthread_mutex_lock(_mutex);
- assert_status(status == 0, status, "mutex_lock");
- AnyWaiters = _nParked ;
- assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
- if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
- AnyWaiters = 0 ;
- pthread_cond_signal (_cond);
- }
- status = pthread_mutex_unlock(_mutex);
- assert_status(status == 0, status, "mutex_unlock");
- if (AnyWaiters != 0) {
- status = pthread_cond_signal(_cond);
- assert_status(status == 0, status, "cond_signal");
- }
- }
- // Note that we signal() _after dropping the lock for "immortal" Events.
- // This is safe and avoids a common class of futile wakeups. In rare
- // circumstances this can cause a thread to return prematurely from
- // cond_{timed}wait() but the spurious wakeup is benign and the victim will
- // simply re-test the condition and re-park itself.
- }
- // JSR166
- // -------------------------------------------------------
- /*
- * The solaris and linux implementations of park/unpark are fairly
- * conservative for now, but can be improved. They currently use a
- * mutex/condvar pair, plus a a count.
- * Park decrements count if > 0, else does a condvar wait. Unpark
- * sets count to 1 and signals condvar. Only one thread ever waits
- * on the condvar. Contention seen when trying to park implies that someone
- * is unparking you, so don't wait. And spurious returns are fine, so there
- * is no need to track notifications.
- */
- #define NANOSECS_PER_SEC 1000000000
- #define NANOSECS_PER_MILLISEC 1000000
- #define MAX_SECS 100000000
- /*
- * This code is common to linux and solaris and will be moved to a
- * common place in dolphin.
- *
- * The passed in time value is either a relative time in nanoseconds
- * or an absolute time in milliseconds. Either way it has to be unpacked
- * into suitable seconds and nanoseconds components and stored in the
- * given timespec structure.
- * Given time is a 64-bit value and the time_t used in the timespec is only
- * a signed-32-bit value (except on 64-bit Linux) we have to watch for
- * overflow if times way in the future are given. Further on Solaris versions
- * prior to 10 there is a restriction (see cond_timedwait) that the specified
- * number of seconds, in abstime, is less than current_time + 100,000,000.
- * As it will be 28 years before "now + 100000000" will overflow we can
- * ignore overflow and just impose a hard-limit on seconds using the value
- * of "now + 100,000,000". This places a limit on the timeout of about 3.17
- * years from "now".
- */
- static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
- assert (time > 0, "convertTime");
- struct timeval now;
- int status = gettimeofday(&now, NULL);
- assert(status == 0, "gettimeofday");
- time_t max_secs = now.tv_sec + MAX_SECS;
- if (isAbsolute) {
- jlong secs = time / 1000;
- if (secs > max_secs) {
- absTime->tv_sec = max_secs;
- }
- else {
- absTime->tv_sec = secs;
- }
- absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
- }
- else {
- jlong secs = time / NANOSECS_PER_SEC;
- if (secs >= MAX_SECS) {
- absTime->tv_sec = max_secs;
- absTime->tv_nsec = 0;
- }
- else {
- absTime->tv_sec = now.tv_sec + secs;
- absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
- if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
- absTime->tv_nsec -= NANOSECS_PER_SEC;
- ++absTime->tv_sec; // note: this must be <= max_secs
- }
- }
- }
- assert(absTime->tv_sec >= 0, "tv_sec < 0");
- assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
- assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
- assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
- }
- void Parker::park(bool isAbsolute, jlong time) {
- // Optional fast-path check:
- // Return immediately if a permit is available.
- if (_counter > 0) {
- _counter = 0 ;
- OrderAccess::fence();
- return ;
- }
- Thread* thread = Thread::current();
- assert(thread->is_Java_thread(), "Must be JavaThread");
- JavaThread *jt = (JavaThread *)thread;
- // Optional optimization -- avoid state transitions if there's an interrupt pending.
- // Check interrupt before trying to wait
- if (Thread::is_interrupted(thread, false)) {
- return;
- }
- // Next, demultiplex/decode time arguments
- timespec absTime;
- if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
- return;
- }
- if (time > 0) {
- unpackTime(&absTime, isAbsolute, time);
- }
- // Enter safepoint region
- // Beware of deadlocks such as 6317397.
- // The per-thread Parker:: mutex is a classic leaf-lock.
- // In particular a thread must never block on the Threads_lock while
- // holding the Parker:: mutex. If safepoints are pending both the
- // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
- ThreadBlockInVM tbivm(jt);
- // Don't wait if cannot get lock since interference arises from
- // unblocking. Also. check interrupt before trying wait
- if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
- return;
- }
- int status ;
- if (_counter > 0) { // no wait needed
- _counter = 0;
- status = pthread_mutex_unlock(_mutex);
- assert (status == 0, "invariant") ;
- OrderAccess::fence();
- return;
- }
- #ifdef ASSERT
- // Don't catch signals while blocked; let the running threads have the signals.
- // (This allows a debugger to break into the running thread.)
- sigset_t oldsigs;
- sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
- pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
- #endif
- OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
- jt->set_suspend_equivalent();
- // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
- if (time == 0) {
- status = pthread_cond_wait (_cond, _mutex) ;
- } else {
- status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
- if (status != 0 && WorkAroundNPTLTimedWaitHang) {
- pthread_cond_destroy (_cond) ;
- pthread_cond_init (_cond, NULL);
- }
- }
- assert_status(status == 0 || status == EINTR ||
- status == ETIME || status == ETIMEDOUT,
- status, "cond_timedwait");
- #ifdef ASSERT
- pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
- #endif
- _counter = 0 ;
- status = pthread_mutex_unlock(_mutex) ;
- assert_status(status == 0, status, "invariant") ;
- // If externally suspended while waiting, re-suspend
- if (jt->handle_special_suspend_equivalent_condition()) {
- jt->java_suspend_self();
- }
- OrderAccess::fence();
- }
- void Parker::unpark() {
- int s, status ;
- status = pthread_mutex_lock(_mutex);
- assert (status == 0, "invariant") ;
- s = _counter;
- _counter = 1;
- if (s < 1) {
- if (WorkAroundNPTLTimedWaitHang) {
- status = pthread_cond_signal (_cond) ;
- assert (status == 0, "invariant") ;
- status = pthread_mutex_unlock(_mutex);
- assert (status == 0, "invariant") ;
- } else {
- status = pthread_mutex_unlock(_mutex);
- assert (status == 0, "invariant") ;
- status = pthread_cond_signal (_cond) ;
- assert (status == 0, "invariant") ;
- }
- } else {
- pthread_mutex_unlock(_mutex);
- assert (status == 0, "invariant") ;
- }
- }
- extern char** environ;
- #ifndef __NR_fork
- #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
- #endif
- #ifndef __NR_execve
- #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
- #endif
- // Run the specified command in a separate process. Return its exit value,
- // or -1 on failure (e.g. can't fork a new process).
- // Unlike system(), this function can be called from signal handler. It
- // doesn't block SIGINT et al.
- int os::fork_and_exec(char* cmd) {
- const char * argv[4] = {"sh", "-c", cmd, NULL};
- // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
- // pthread_atfork handlers and reset pthread library. All we need is a
- // separate process to execve. Make a direct syscall to fork process.
- // On IA64 there's no fork syscall, we have to use fork() and hope for
- // the best...
- pid_t pid = NOT_IA64(syscall(__NR_fork);)
- IA64_ONLY(fork();)
- if (pid < 0) {
- // fork failed
- return -1;
- } else if (pid == 0) {
- // child process
- // execve() in LinuxThreads will call pthread_kill_other_threads_np()
- // first to kill every thread on the thread list. Because this list is
- // not reset by fork() (see notes above), execve() will instead kill
- // every thread in the parent process. We know this is the only thread
- // in the new process, so make a system call directly.
- // IA64 should use normal execve() from glibc to match the glibc fork()
- // above.
- NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
- IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
- // execve failed
- _exit(-1);
- } else {
- // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
- // care about the actual exit code, for now.
- int status;
- // Wait for the child process to exit. This returns immediately if
- // the child has already exited. */
- while (waitpid(pid, &status, 0) < 0) {
- switch (errno) {
- case ECHILD: return 0;
- case EINTR: break;
- default: return -1;
- }
- }
- if (WIFEXITED(status)) {
- // The child exited normally; get its exit code.
- return WEXITSTATUS(status);
- } else if (WIFSIGNALED(status)) {
- // The child exited because of a signal
- // The best value to return is 0x80 + signal number,
- // because that is what all Unix shells do, and because
- // it allows callers to distinguish between process exit and
- // process death by signal.
- return 0x80 + WTERMSIG(status);
- } else {
- // Unknown exit code; pass it through
- return status;
- }
- }
- }
- // is_headless_jre()
- //
- // Test for the existence of libmawt in motif21 or xawt directories
- // in order to report if we are running in a headless jre
- //
- bool os::is_headless_jre() {
- struct stat statbuf;
- char buf[MAXPATHLEN];
- char libmawtpath[MAXPATHLEN];
- const char *xawtstr = "/xawt/libmawt.so";
- const char *motifstr = "/motif21/libmawt.so";
- char *p;
- // Get path to libjvm.so
- os::jvm_path(buf, sizeof(buf));
- // Get rid of libjvm.so
- p = strrchr(buf, '/');
- if (p == NULL) return false;
- else *p = '\0';
- // Get rid of client or server
- p = strrchr(buf, '/');
- if (p == NULL) return false;
- else *p = '\0';
- // check xawt/libmawt.so
- strcpy(libmawtpath, buf);
- strcat(libmawtpath, xawtstr);
- if (::stat(libmawtpath, &statbuf) == 0) return false;
- // check motif21/libmawt.so
- strcpy(libmawtpath, buf);
- strcat(libmawtpath, motifstr);
- if (::stat(libmawtpath, &statbuf) == 0) return false;
- return true;
- }