/kern_oII/arch/m68k/ifpsp060/src/pfpsp.S
http://omnia2droid.googlecode.com/ · Assembly · 14745 lines · 13546 code · 1193 blank · 6 comment · 323 complexity · e3acf523978f068fa9c0039c051d6211 MD5 · raw file
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
- M68000 Hi-Performance Microprocessor Division
- M68060 Software Package
- Production Release P1.00 -- October 10, 1994
- M68060 Software Package Copyright  1993, 1994 Motorola Inc. All rights reserved.
- THE SOFTWARE is provided on an "AS IS" basis and without warranty.
- To the maximum extent permitted by applicable law,
- MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
- INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE
- and any warranty against infringement with regard to the SOFTWARE
- (INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials.
- To the maximum extent permitted by applicable law,
- IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
- (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,
- BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS)
- ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE.
- Motorola assumes no responsibility for the maintenance and support of the SOFTWARE.
- You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE
- so long as this entire notice is retained without alteration in any modified and/or
- redistributed versions, and that such modified versions are clearly identified as such.
- No licenses are granted by implication, estoppel or otherwise under any patents
- or trademarks of Motorola, Inc.
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- # freal.s:
- # This file is appended to the top of the 060FPSP package
- # and contains the entry points into the package. The user, in
- # effect, branches to one of the branch table entries located
- # after _060FPSP_TABLE.
- # Also, subroutine stubs exist in this file (_fpsp_done for
- # example) that are referenced by the FPSP package itself in order
- # to call a given routine. The stub routine actually performs the
- # callout. The FPSP code does a "bsr" to the stub routine. This
- # extra layer of hierarchy adds a slight performance penalty but
- # it makes the FPSP code easier to read and more mainatinable.
- #
- set _off_bsun, 0x00
- set _off_snan, 0x04
- set _off_operr, 0x08
- set _off_ovfl, 0x0c
- set _off_unfl, 0x10
- set _off_dz, 0x14
- set _off_inex, 0x18
- set _off_fline, 0x1c
- set _off_fpu_dis, 0x20
- set _off_trap, 0x24
- set _off_trace, 0x28
- set _off_access, 0x2c
- set _off_done, 0x30
- set _off_imr, 0x40
- set _off_dmr, 0x44
- set _off_dmw, 0x48
- set _off_irw, 0x4c
- set _off_irl, 0x50
- set _off_drb, 0x54
- set _off_drw, 0x58
- set _off_drl, 0x5c
- set _off_dwb, 0x60
- set _off_dww, 0x64
- set _off_dwl, 0x68
- _060FPSP_TABLE:
- ###############################################################
- # Here's the table of ENTRY POINTS for those linking the package.
- bra.l _fpsp_snan
- short 0x0000
- bra.l _fpsp_operr
- short 0x0000
- bra.l _fpsp_ovfl
- short 0x0000
- bra.l _fpsp_unfl
- short 0x0000
- bra.l _fpsp_dz
- short 0x0000
- bra.l _fpsp_inex
- short 0x0000
- bra.l _fpsp_fline
- short 0x0000
- bra.l _fpsp_unsupp
- short 0x0000
- bra.l _fpsp_effadd
- short 0x0000
- space 56
- ###############################################################
- global _fpsp_done
- _fpsp_done:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_done,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
- global _real_ovfl
- _real_ovfl:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_ovfl,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
- global _real_unfl
- _real_unfl:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_unfl,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
- global _real_inex
- _real_inex:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_inex,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
- global _real_bsun
- _real_bsun:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_bsun,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
- global _real_operr
- _real_operr:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_operr,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
- global _real_snan
- _real_snan:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_snan,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
- global _real_dz
- _real_dz:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_dz,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
- global _real_fline
- _real_fline:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_fline,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
- global _real_fpu_disabled
- _real_fpu_disabled:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_fpu_dis,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
- global _real_trap
- _real_trap:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_trap,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
- global _real_trace
- _real_trace:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_trace,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
- global _real_access
- _real_access:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_access,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
- #######################################
- global _imem_read
- _imem_read:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_imr,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
- global _dmem_read
- _dmem_read:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_dmr,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
- global _dmem_write
- _dmem_write:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_dmw,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
- global _imem_read_word
- _imem_read_word:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_irw,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
- global _imem_read_long
- _imem_read_long:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_irl,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
- global _dmem_read_byte
- _dmem_read_byte:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_drb,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
- global _dmem_read_word
- _dmem_read_word:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_drw,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
- global _dmem_read_long
- _dmem_read_long:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_drl,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
- global _dmem_write_byte
- _dmem_write_byte:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_dwb,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
- global _dmem_write_word
- _dmem_write_word:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_dww,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
- global _dmem_write_long
- _dmem_write_long:
- mov.l %d0,-(%sp)
- mov.l (_060FPSP_TABLE-0x80+_off_dwl,%pc),%d0
- pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
- mov.l 0x4(%sp),%d0
- rtd &0x4
- #
- # This file contains a set of define statements for constants
- # in order to promote readability within the corecode itself.
- #
- set LOCAL_SIZE, 192 # stack frame size(bytes)
- set LV, -LOCAL_SIZE # stack offset
- set EXC_SR, 0x4 # stack status register
- set EXC_PC, 0x6 # stack pc
- set EXC_VOFF, 0xa # stacked vector offset
- set EXC_EA, 0xc # stacked <ea>
- set EXC_FP, 0x0 # frame pointer
- set EXC_AREGS, -68 # offset of all address regs
- set EXC_DREGS, -100 # offset of all data regs
- set EXC_FPREGS, -36 # offset of all fp regs
- set EXC_A7, EXC_AREGS+(7*4) # offset of saved a7
- set OLD_A7, EXC_AREGS+(6*4) # extra copy of saved a7
- set EXC_A6, EXC_AREGS+(6*4) # offset of saved a6
- set EXC_A5, EXC_AREGS+(5*4)
- set EXC_A4, EXC_AREGS+(4*4)
- set EXC_A3, EXC_AREGS+(3*4)
- set EXC_A2, EXC_AREGS+(2*4)
- set EXC_A1, EXC_AREGS+(1*4)
- set EXC_A0, EXC_AREGS+(0*4)
- set EXC_D7, EXC_DREGS+(7*4)
- set EXC_D6, EXC_DREGS+(6*4)
- set EXC_D5, EXC_DREGS+(5*4)
- set EXC_D4, EXC_DREGS+(4*4)
- set EXC_D3, EXC_DREGS+(3*4)
- set EXC_D2, EXC_DREGS+(2*4)
- set EXC_D1, EXC_DREGS+(1*4)
- set EXC_D0, EXC_DREGS+(0*4)
- set EXC_FP0, EXC_FPREGS+(0*12) # offset of saved fp0
- set EXC_FP1, EXC_FPREGS+(1*12) # offset of saved fp1
- set EXC_FP2, EXC_FPREGS+(2*12) # offset of saved fp2 (not used)
- set FP_SCR1, LV+80 # fp scratch 1
- set FP_SCR1_EX, FP_SCR1+0
- set FP_SCR1_SGN, FP_SCR1+2
- set FP_SCR1_HI, FP_SCR1+4
- set FP_SCR1_LO, FP_SCR1+8
- set FP_SCR0, LV+68 # fp scratch 0
- set FP_SCR0_EX, FP_SCR0+0
- set FP_SCR0_SGN, FP_SCR0+2
- set FP_SCR0_HI, FP_SCR0+4
- set FP_SCR0_LO, FP_SCR0+8
- set FP_DST, LV+56 # fp destination operand
- set FP_DST_EX, FP_DST+0
- set FP_DST_SGN, FP_DST+2
- set FP_DST_HI, FP_DST+4
- set FP_DST_LO, FP_DST+8
- set FP_SRC, LV+44 # fp source operand
- set FP_SRC_EX, FP_SRC+0
- set FP_SRC_SGN, FP_SRC+2
- set FP_SRC_HI, FP_SRC+4
- set FP_SRC_LO, FP_SRC+8
- set USER_FPIAR, LV+40 # FP instr address register
- set USER_FPSR, LV+36 # FP status register
- set FPSR_CC, USER_FPSR+0 # FPSR condition codes
- set FPSR_QBYTE, USER_FPSR+1 # FPSR qoutient byte
- set FPSR_EXCEPT, USER_FPSR+2 # FPSR exception status byte
- set FPSR_AEXCEPT, USER_FPSR+3 # FPSR accrued exception byte
- set USER_FPCR, LV+32 # FP control register
- set FPCR_ENABLE, USER_FPCR+2 # FPCR exception enable
- set FPCR_MODE, USER_FPCR+3 # FPCR rounding mode control
- set L_SCR3, LV+28 # integer scratch 3
- set L_SCR2, LV+24 # integer scratch 2
- set L_SCR1, LV+20 # integer scratch 1
- set STORE_FLG, LV+19 # flag: operand store (ie. not fcmp/ftst)
- set EXC_TEMP2, LV+24 # temporary space
- set EXC_TEMP, LV+16 # temporary space
- set DTAG, LV+15 # destination operand type
- set STAG, LV+14 # source operand type
- set SPCOND_FLG, LV+10 # flag: special case (see below)
- set EXC_CC, LV+8 # saved condition codes
- set EXC_EXTWPTR, LV+4 # saved current PC (active)
- set EXC_EXTWORD, LV+2 # saved extension word
- set EXC_CMDREG, LV+2 # saved extension word
- set EXC_OPWORD, LV+0 # saved operation word
- ################################
- # Helpful macros
- set FTEMP, 0 # offsets within an
- set FTEMP_EX, 0 # extended precision
- set FTEMP_SGN, 2 # value saved in memory.
- set FTEMP_HI, 4
- set FTEMP_LO, 8
- set FTEMP_GRS, 12
- set LOCAL, 0 # offsets within an
- set LOCAL_EX, 0 # extended precision
- set LOCAL_SGN, 2 # value saved in memory.
- set LOCAL_HI, 4
- set LOCAL_LO, 8
- set LOCAL_GRS, 12
- set DST, 0 # offsets within an
- set DST_EX, 0 # extended precision
- set DST_HI, 4 # value saved in memory.
- set DST_LO, 8
- set SRC, 0 # offsets within an
- set SRC_EX, 0 # extended precision
- set SRC_HI, 4 # value saved in memory.
- set SRC_LO, 8
- set SGL_LO, 0x3f81 # min sgl prec exponent
- set SGL_HI, 0x407e # max sgl prec exponent
- set DBL_LO, 0x3c01 # min dbl prec exponent
- set DBL_HI, 0x43fe # max dbl prec exponent
- set EXT_LO, 0x0 # min ext prec exponent
- set EXT_HI, 0x7ffe # max ext prec exponent
- set EXT_BIAS, 0x3fff # extended precision bias
- set SGL_BIAS, 0x007f # single precision bias
- set DBL_BIAS, 0x03ff # double precision bias
- set NORM, 0x00 # operand type for STAG/DTAG
- set ZERO, 0x01 # operand type for STAG/DTAG
- set INF, 0x02 # operand type for STAG/DTAG
- set QNAN, 0x03 # operand type for STAG/DTAG
- set DENORM, 0x04 # operand type for STAG/DTAG
- set SNAN, 0x05 # operand type for STAG/DTAG
- set UNNORM, 0x06 # operand type for STAG/DTAG
- ##################
- # FPSR/FPCR bits #
- ##################
- set neg_bit, 0x3 # negative result
- set z_bit, 0x2 # zero result
- set inf_bit, 0x1 # infinite result
- set nan_bit, 0x0 # NAN result
- set q_sn_bit, 0x7 # sign bit of quotient byte
- set bsun_bit, 7 # branch on unordered
- set snan_bit, 6 # signalling NAN
- set operr_bit, 5 # operand error
- set ovfl_bit, 4 # overflow
- set unfl_bit, 3 # underflow
- set dz_bit, 2 # divide by zero
- set inex2_bit, 1 # inexact result 2
- set inex1_bit, 0 # inexact result 1
- set aiop_bit, 7 # accrued inexact operation bit
- set aovfl_bit, 6 # accrued overflow bit
- set aunfl_bit, 5 # accrued underflow bit
- set adz_bit, 4 # accrued dz bit
- set ainex_bit, 3 # accrued inexact bit
- #############################
- # FPSR individual bit masks #
- #############################
- set neg_mask, 0x08000000 # negative bit mask (lw)
- set inf_mask, 0x02000000 # infinity bit mask (lw)
- set z_mask, 0x04000000 # zero bit mask (lw)
- set nan_mask, 0x01000000 # nan bit mask (lw)
- set neg_bmask, 0x08 # negative bit mask (byte)
- set inf_bmask, 0x02 # infinity bit mask (byte)
- set z_bmask, 0x04 # zero bit mask (byte)
- set nan_bmask, 0x01 # nan bit mask (byte)
- set bsun_mask, 0x00008000 # bsun exception mask
- set snan_mask, 0x00004000 # snan exception mask
- set operr_mask, 0x00002000 # operr exception mask
- set ovfl_mask, 0x00001000 # overflow exception mask
- set unfl_mask, 0x00000800 # underflow exception mask
- set dz_mask, 0x00000400 # dz exception mask
- set inex2_mask, 0x00000200 # inex2 exception mask
- set inex1_mask, 0x00000100 # inex1 exception mask
- set aiop_mask, 0x00000080 # accrued illegal operation
- set aovfl_mask, 0x00000040 # accrued overflow
- set aunfl_mask, 0x00000020 # accrued underflow
- set adz_mask, 0x00000010 # accrued divide by zero
- set ainex_mask, 0x00000008 # accrued inexact
- ######################################
- # FPSR combinations used in the FPSP #
- ######################################
- set dzinf_mask, inf_mask+dz_mask+adz_mask
- set opnan_mask, nan_mask+operr_mask+aiop_mask
- set nzi_mask, 0x01ffffff #clears N, Z, and I
- set unfinx_mask, unfl_mask+inex2_mask+aunfl_mask+ainex_mask
- set unf2inx_mask, unfl_mask+inex2_mask+ainex_mask
- set ovfinx_mask, ovfl_mask+inex2_mask+aovfl_mask+ainex_mask
- set inx1a_mask, inex1_mask+ainex_mask
- set inx2a_mask, inex2_mask+ainex_mask
- set snaniop_mask, nan_mask+snan_mask+aiop_mask
- set snaniop2_mask, snan_mask+aiop_mask
- set naniop_mask, nan_mask+aiop_mask
- set neginf_mask, neg_mask+inf_mask
- set infaiop_mask, inf_mask+aiop_mask
- set negz_mask, neg_mask+z_mask
- set opaop_mask, operr_mask+aiop_mask
- set unfl_inx_mask, unfl_mask+aunfl_mask+ainex_mask
- set ovfl_inx_mask, ovfl_mask+aovfl_mask+ainex_mask
- #########
- # misc. #
- #########
- set rnd_stky_bit, 29 # stky bit pos in longword
- set sign_bit, 0x7 # sign bit
- set signan_bit, 0x6 # signalling nan bit
- set sgl_thresh, 0x3f81 # minimum sgl exponent
- set dbl_thresh, 0x3c01 # minimum dbl exponent
- set x_mode, 0x0 # extended precision
- set s_mode, 0x4 # single precision
- set d_mode, 0x8 # double precision
- set rn_mode, 0x0 # round-to-nearest
- set rz_mode, 0x1 # round-to-zero
- set rm_mode, 0x2 # round-tp-minus-infinity
- set rp_mode, 0x3 # round-to-plus-infinity
- set mantissalen, 64 # length of mantissa in bits
- set BYTE, 1 # len(byte) == 1 byte
- set WORD, 2 # len(word) == 2 bytes
- set LONG, 4 # len(longword) == 2 bytes
- set BSUN_VEC, 0xc0 # bsun vector offset
- set INEX_VEC, 0xc4 # inexact vector offset
- set DZ_VEC, 0xc8 # dz vector offset
- set UNFL_VEC, 0xcc # unfl vector offset
- set OPERR_VEC, 0xd0 # operr vector offset
- set OVFL_VEC, 0xd4 # ovfl vector offset
- set SNAN_VEC, 0xd8 # snan vector offset
- ###########################
- # SPecial CONDition FLaGs #
- ###########################
- set ftrapcc_flg, 0x01 # flag bit: ftrapcc exception
- set fbsun_flg, 0x02 # flag bit: bsun exception
- set mia7_flg, 0x04 # flag bit: (a7)+ <ea>
- set mda7_flg, 0x08 # flag bit: -(a7) <ea>
- set fmovm_flg, 0x40 # flag bit: fmovm instruction
- set immed_flg, 0x80 # flag bit: &<data> <ea>
- set ftrapcc_bit, 0x0
- set fbsun_bit, 0x1
- set mia7_bit, 0x2
- set mda7_bit, 0x3
- set immed_bit, 0x7
- ##################################
- # TRANSCENDENTAL "LAST-OP" FLAGS #
- ##################################
- set FMUL_OP, 0x0 # fmul instr performed last
- set FDIV_OP, 0x1 # fdiv performed last
- set FADD_OP, 0x2 # fadd performed last
- set FMOV_OP, 0x3 # fmov performed last
- #############
- # CONSTANTS #
- #############
- T1: long 0x40C62D38,0xD3D64634 # 16381 LOG2 LEAD
- T2: long 0x3D6F90AE,0xB1E75CC7 # 16381 LOG2 TRAIL
- PI: long 0x40000000,0xC90FDAA2,0x2168C235,0x00000000
- PIBY2: long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000
- TWOBYPI:
- long 0x3FE45F30,0x6DC9C883
- #########################################################################
- # XDEF **************************************************************** #
- # _fpsp_ovfl(): 060FPSP entry point for FP Overflow exception. #
- # #
- # This handler should be the first code executed upon taking the #
- # FP Overflow exception in an operating system. #
- # #
- # XREF **************************************************************** #
- # _imem_read_long() - read instruction longword #
- # fix_skewed_ops() - adjust src operand in fsave frame #
- # set_tag_x() - determine optype of src/dst operands #
- # store_fpreg() - store opclass 0 or 2 result to FP regfile #
- # unnorm_fix() - change UNNORM operands to NORM or ZERO #
- # load_fpn2() - load dst operand from FP regfile #
- # fout() - emulate an opclass 3 instruction #
- # tbl_unsupp - add of table of emulation routines for opclass 0,2 #
- # _fpsp_done() - "callout" for 060FPSP exit (all work done!) #
- # _real_ovfl() - "callout" for Overflow exception enabled code #
- # _real_inex() - "callout" for Inexact exception enabled code #
- # _real_trace() - "callout" for Trace exception code #
- # #
- # INPUT *************************************************************** #
- # - The system stack contains the FP Ovfl exception stack frame #
- # - The fsave frame contains the source operand #
- # #
- # OUTPUT ************************************************************** #
- # Overflow Exception enabled: #
- # - The system stack is unchanged #
- # - The fsave frame contains the adjusted src op for opclass 0,2 #
- # Overflow Exception disabled: #
- # - The system stack is unchanged #
- # - The "exception present" flag in the fsave frame is cleared #
- # #
- # ALGORITHM *********************************************************** #
- # On the 060, if an FP overflow is present as the result of any #
- # instruction, the 060 will take an overflow exception whether the #
- # exception is enabled or disabled in the FPCR. For the disabled case, #
- # This handler emulates the instruction to determine what the correct #
- # default result should be for the operation. This default result is #
- # then stored in either the FP regfile, data regfile, or memory. #
- # Finally, the handler exits through the "callout" _fpsp_done() #
- # denoting that no exceptional conditions exist within the machine. #
- # If the exception is enabled, then this handler must create the #
- # exceptional operand and plave it in the fsave state frame, and store #
- # the default result (only if the instruction is opclass 3). For #
- # exceptions enabled, this handler must exit through the "callout" #
- # _real_ovfl() so that the operating system enabled overflow handler #
- # can handle this case. #
- # Two other conditions exist. First, if overflow was disabled #
- # but the inexact exception was enabled, this handler must exit #
- # through the "callout" _real_inex() regardless of whether the result #
- # was inexact. #
- # Also, in the case of an opclass three instruction where #
- # overflow was disabled and the trace exception was enabled, this #
- # handler must exit through the "callout" _real_trace(). #
- # #
- #########################################################################
- global _fpsp_ovfl
- _fpsp_ovfl:
- #$# sub.l &24,%sp # make room for src/dst
- link.w %a6,&-LOCAL_SIZE # init stack frame
- fsave FP_SRC(%a6) # grab the "busy" frame
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack
- # the FPIAR holds the "current PC" of the faulting instruction
- mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch the instruction words
- mov.l %d0,EXC_OPWORD(%a6)
- ##############################################################################
- btst &0x5,EXC_CMDREG(%a6) # is instr an fmove out?
- bne.w fovfl_out
- lea FP_SRC(%a6),%a0 # pass: ptr to src op
- bsr.l fix_skewed_ops # fix src op
- # since, I believe, only NORMs and DENORMs can come through here,
- # maybe we can avoid the subroutine call.
- lea FP_SRC(%a6),%a0 # pass: ptr to src op
- bsr.l set_tag_x # tag the operand type
- mov.b %d0,STAG(%a6) # maybe NORM,DENORM
- # bit five of the fp extension word separates the monadic and dyadic operations
- # that can pass through fpsp_ovfl(). remember that fcmp, ftst, and fsincos
- # will never take this exception.
- btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic?
- beq.b fovfl_extract # monadic
- bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg
- bsr.l load_fpn2 # load dst into FP_DST
- lea FP_DST(%a6),%a0 # pass: ptr to dst op
- bsr.l set_tag_x # tag the operand type
- cmpi.b %d0,&UNNORM # is operand an UNNORM?
- bne.b fovfl_op2_done # no
- bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO
- fovfl_op2_done:
- mov.b %d0,DTAG(%a6) # save dst optype tag
- fovfl_extract:
- #$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6)
- #$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6)
- #$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6)
- #$# mov.l FP_DST_EX(%a6),TRAP_DSTOP_EX(%a6)
- #$# mov.l FP_DST_HI(%a6),TRAP_DSTOP_HI(%a6)
- #$# mov.l FP_DST_LO(%a6),TRAP_DSTOP_LO(%a6)
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode
- mov.b 1+EXC_CMDREG(%a6),%d1
- andi.w &0x007f,%d1 # extract extension
- andi.l &0x00ff01ff,USER_FPSR(%a6) # zero all but accured field
- fmov.l &0x0,%fpcr # zero current control regs
- fmov.l &0x0,%fpsr
- lea FP_SRC(%a6),%a0
- lea FP_DST(%a6),%a1
- # maybe we can make these entry points ONLY the OVFL entry points of each routine.
- mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr
- jsr (tbl_unsupp.l,%pc,%d1.l*1)
- # the operation has been emulated. the result is in fp0.
- # the EXOP, if an exception occurred, is in fp1.
- # we must save the default result regardless of whether
- # traps are enabled or disabled.
- bfextu EXC_CMDREG(%a6){&6:&3},%d0
- bsr.l store_fpreg
- # the exceptional possibilities we have left ourselves with are ONLY overflow
- # and inexact. and, the inexact is such that overflow occurred and was disabled
- # but inexact was enabled.
- btst &ovfl_bit,FPCR_ENABLE(%a6)
- bne.b fovfl_ovfl_on
- btst &inex2_bit,FPCR_ENABLE(%a6)
- bne.b fovfl_inex_on
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- unlk %a6
- #$# add.l &24,%sp
- bra.l _fpsp_done
- # overflow is enabled AND overflow, of course, occurred. so, we have the EXOP
- # in fp1. now, simply jump to _real_ovfl()!
- fovfl_ovfl_on:
- fmovm.x &0x40,FP_SRC(%a6) # save EXOP (fp1) to stack
- mov.w &0xe005,2+FP_SRC(%a6) # save exc status
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- frestore FP_SRC(%a6) # do this after fmovm,other f<op>s!
- unlk %a6
- bra.l _real_ovfl
- # overflow occurred but is disabled. meanwhile, inexact is enabled. therefore,
- # we must jump to real_inex().
- fovfl_inex_on:
- fmovm.x &0x40,FP_SRC(%a6) # save EXOP (fp1) to stack
- mov.b &0xc4,1+EXC_VOFF(%a6) # vector offset = 0xc4
- mov.w &0xe001,2+FP_SRC(%a6) # save exc status
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- frestore FP_SRC(%a6) # do this after fmovm,other f<op>s!
- unlk %a6
- bra.l _real_inex
- ########################################################################
- fovfl_out:
- #$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6)
- #$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6)
- #$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6)
- # the src operand is definitely a NORM(!), so tag it as such
- mov.b &NORM,STAG(%a6) # set src optype tag
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode
- and.l &0xffff00ff,USER_FPSR(%a6) # zero all but accured field
- fmov.l &0x0,%fpcr # zero current control regs
- fmov.l &0x0,%fpsr
- lea FP_SRC(%a6),%a0 # pass ptr to src operand
- bsr.l fout
- btst &ovfl_bit,FPCR_ENABLE(%a6)
- bne.w fovfl_ovfl_on
- btst &inex2_bit,FPCR_ENABLE(%a6)
- bne.w fovfl_inex_on
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- unlk %a6
- #$# add.l &24,%sp
- btst &0x7,(%sp) # is trace on?
- beq.l _fpsp_done # no
- fmov.l %fpiar,0x8(%sp) # "Current PC" is in FPIAR
- mov.w &0x2024,0x6(%sp) # stk fmt = 0x2; voff = 0x024
- bra.l _real_trace
- #########################################################################
- # XDEF **************************************************************** #
- # _fpsp_unfl(): 060FPSP entry point for FP Underflow exception. #
- # #
- # This handler should be the first code executed upon taking the #
- # FP Underflow exception in an operating system. #
- # #
- # XREF **************************************************************** #
- # _imem_read_long() - read instruction longword #
- # fix_skewed_ops() - adjust src operand in fsave frame #
- # set_tag_x() - determine optype of src/dst operands #
- # store_fpreg() - store opclass 0 or 2 result to FP regfile #
- # unnorm_fix() - change UNNORM operands to NORM or ZERO #
- # load_fpn2() - load dst operand from FP regfile #
- # fout() - emulate an opclass 3 instruction #
- # tbl_unsupp - add of table of emulation routines for opclass 0,2 #
- # _fpsp_done() - "callout" for 060FPSP exit (all work done!) #
- # _real_ovfl() - "callout" for Overflow exception enabled code #
- # _real_inex() - "callout" for Inexact exception enabled code #
- # _real_trace() - "callout" for Trace exception code #
- # #
- # INPUT *************************************************************** #
- # - The system stack contains the FP Unfl exception stack frame #
- # - The fsave frame contains the source operand #
- # #
- # OUTPUT ************************************************************** #
- # Underflow Exception enabled: #
- # - The system stack is unchanged #
- # - The fsave frame contains the adjusted src op for opclass 0,2 #
- # Underflow Exception disabled: #
- # - The system stack is unchanged #
- # - The "exception present" flag in the fsave frame is cleared #
- # #
- # ALGORITHM *********************************************************** #
- # On the 060, if an FP underflow is present as the result of any #
- # instruction, the 060 will take an underflow exception whether the #
- # exception is enabled or disabled in the FPCR. For the disabled case, #
- # This handler emulates the instruction to determine what the correct #
- # default result should be for the operation. This default result is #
- # then stored in either the FP regfile, data regfile, or memory. #
- # Finally, the handler exits through the "callout" _fpsp_done() #
- # denoting that no exceptional conditions exist within the machine. #
- # If the exception is enabled, then this handler must create the #
- # exceptional operand and plave it in the fsave state frame, and store #
- # the default result (only if the instruction is opclass 3). For #
- # exceptions enabled, this handler must exit through the "callout" #
- # _real_unfl() so that the operating system enabled overflow handler #
- # can handle this case. #
- # Two other conditions exist. First, if underflow was disabled #
- # but the inexact exception was enabled and the result was inexact, #
- # this handler must exit through the "callout" _real_inex(). #
- # was inexact. #
- # Also, in the case of an opclass three instruction where #
- # underflow was disabled and the trace exception was enabled, this #
- # handler must exit through the "callout" _real_trace(). #
- # #
- #########################################################################
- global _fpsp_unfl
- _fpsp_unfl:
- #$# sub.l &24,%sp # make room for src/dst
- link.w %a6,&-LOCAL_SIZE # init stack frame
- fsave FP_SRC(%a6) # grab the "busy" frame
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack
- # the FPIAR holds the "current PC" of the faulting instruction
- mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch the instruction words
- mov.l %d0,EXC_OPWORD(%a6)
- ##############################################################################
- btst &0x5,EXC_CMDREG(%a6) # is instr an fmove out?
- bne.w funfl_out
- lea FP_SRC(%a6),%a0 # pass: ptr to src op
- bsr.l fix_skewed_ops # fix src op
- lea FP_SRC(%a6),%a0 # pass: ptr to src op
- bsr.l set_tag_x # tag the operand type
- mov.b %d0,STAG(%a6) # maybe NORM,DENORM
- # bit five of the fp ext word separates the monadic and dyadic operations
- # that can pass through fpsp_unfl(). remember that fcmp, and ftst
- # will never take this exception.
- btst &0x5,1+EXC_CMDREG(%a6) # is op monadic or dyadic?
- beq.b funfl_extract # monadic
- # now, what's left that's not dyadic is fsincos. we can distinguish it
- # from all dyadics by the '0110xxx pattern
- btst &0x4,1+EXC_CMDREG(%a6) # is op an fsincos?
- bne.b funfl_extract # yes
- bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg
- bsr.l load_fpn2 # load dst into FP_DST
- lea FP_DST(%a6),%a0 # pass: ptr to dst op
- bsr.l set_tag_x # tag the operand type
- cmpi.b %d0,&UNNORM # is operand an UNNORM?
- bne.b funfl_op2_done # no
- bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO
- funfl_op2_done:
- mov.b %d0,DTAG(%a6) # save dst optype tag
- funfl_extract:
- #$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6)
- #$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6)
- #$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6)
- #$# mov.l FP_DST_EX(%a6),TRAP_DSTOP_EX(%a6)
- #$# mov.l FP_DST_HI(%a6),TRAP_DSTOP_HI(%a6)
- #$# mov.l FP_DST_LO(%a6),TRAP_DSTOP_LO(%a6)
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode
- mov.b 1+EXC_CMDREG(%a6),%d1
- andi.w &0x007f,%d1 # extract extension
- andi.l &0x00ff01ff,USER_FPSR(%a6)
- fmov.l &0x0,%fpcr # zero current control regs
- fmov.l &0x0,%fpsr
- lea FP_SRC(%a6),%a0
- lea FP_DST(%a6),%a1
- # maybe we can make these entry points ONLY the OVFL entry points of each routine.
- mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr
- jsr (tbl_unsupp.l,%pc,%d1.l*1)
- bfextu EXC_CMDREG(%a6){&6:&3},%d0
- bsr.l store_fpreg
- # The `060 FPU multiplier hardware is such that if the result of a
- # multiply operation is the smallest possible normalized number
- # (0x00000000_80000000_00000000), then the machine will take an
- # underflow exception. Since this is incorrect, we need to check
- # if our emulation, after re-doing the operation, decided that
- # no underflow was called for. We do these checks only in
- # funfl_{unfl,inex}_on() because w/ both exceptions disabled, this
- # special case will simply exit gracefully with the correct result.
- # the exceptional possibilities we have left ourselves with are ONLY overflow
- # and inexact. and, the inexact is such that overflow occurred and was disabled
- # but inexact was enabled.
- btst &unfl_bit,FPCR_ENABLE(%a6)
- bne.b funfl_unfl_on
- funfl_chkinex:
- btst &inex2_bit,FPCR_ENABLE(%a6)
- bne.b funfl_inex_on
- funfl_exit:
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- unlk %a6
- #$# add.l &24,%sp
- bra.l _fpsp_done
- # overflow is enabled AND overflow, of course, occurred. so, we have the EXOP
- # in fp1 (don't forget to save fp0). what to do now?
- # well, we simply have to get to go to _real_unfl()!
- funfl_unfl_on:
- # The `060 FPU multiplier hardware is such that if the result of a
- # multiply operation is the smallest possible normalized number
- # (0x00000000_80000000_00000000), then the machine will take an
- # underflow exception. Since this is incorrect, we check here to see
- # if our emulation, after re-doing the operation, decided that
- # no underflow was called for.
- btst &unfl_bit,FPSR_EXCEPT(%a6)
- beq.w funfl_chkinex
- funfl_unfl_on2:
- fmovm.x &0x40,FP_SRC(%a6) # save EXOP (fp1) to stack
- mov.w &0xe003,2+FP_SRC(%a6) # save exc status
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- frestore FP_SRC(%a6) # do this after fmovm,other f<op>s!
- unlk %a6
- bra.l _real_unfl
- # undeflow occurred but is disabled. meanwhile, inexact is enabled. therefore,
- # we must jump to real_inex().
- funfl_inex_on:
- # The `060 FPU multiplier hardware is such that if the result of a
- # multiply operation is the smallest possible normalized number
- # (0x00000000_80000000_00000000), then the machine will take an
- # underflow exception.
- # But, whether bogus or not, if inexact is enabled AND it occurred,
- # then we have to branch to real_inex.
- btst &inex2_bit,FPSR_EXCEPT(%a6)
- beq.w funfl_exit
- funfl_inex_on2:
- fmovm.x &0x40,FP_SRC(%a6) # save EXOP to stack
- mov.b &0xc4,1+EXC_VOFF(%a6) # vector offset = 0xc4
- mov.w &0xe001,2+FP_SRC(%a6) # save exc status
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- frestore FP_SRC(%a6) # do this after fmovm,other f<op>s!
- unlk %a6
- bra.l _real_inex
- #######################################################################
- funfl_out:
- #$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6)
- #$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6)
- #$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6)
- # the src operand is definitely a NORM(!), so tag it as such
- mov.b &NORM,STAG(%a6) # set src optype tag
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode
- and.l &0xffff00ff,USER_FPSR(%a6) # zero all but accured field
- fmov.l &0x0,%fpcr # zero current control regs
- fmov.l &0x0,%fpsr
- lea FP_SRC(%a6),%a0 # pass ptr to src operand
- bsr.l fout
- btst &unfl_bit,FPCR_ENABLE(%a6)
- bne.w funfl_unfl_on2
- btst &inex2_bit,FPCR_ENABLE(%a6)
- bne.w funfl_inex_on2
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- unlk %a6
- #$# add.l &24,%sp
- btst &0x7,(%sp) # is trace on?
- beq.l _fpsp_done # no
- fmov.l %fpiar,0x8(%sp) # "Current PC" is in FPIAR
- mov.w &0x2024,0x6(%sp) # stk fmt = 0x2; voff = 0x024
- bra.l _real_trace
- #########################################################################
- # XDEF **************************************************************** #
- # _fpsp_unsupp(): 060FPSP entry point for FP "Unimplemented #
- # Data Type" exception. #
- # #
- # This handler should be the first code executed upon taking the #
- # FP Unimplemented Data Type exception in an operating system. #
- # #
- # XREF **************************************************************** #
- # _imem_read_{word,long}() - read instruction word/longword #
- # fix_skewed_ops() - adjust src operand in fsave frame #
- # set_tag_x() - determine optype of src/dst operands #
- # store_fpreg() - store opclass 0 or 2 result to FP regfile #
- # unnorm_fix() - change UNNORM operands to NORM or ZERO #
- # load_fpn2() - load dst operand from FP regfile #
- # load_fpn1() - load src operand from FP regfile #
- # fout() - emulate an opclass 3 instruction #
- # tbl_unsupp - add of table of emulation routines for opclass 0,2 #
- # _real_inex() - "callout" to operating system inexact handler #
- # _fpsp_done() - "callout" for exit; work all done #
- # _real_trace() - "callout" for Trace enabled exception #
- # funimp_skew() - adjust fsave src ops to "incorrect" value #
- # _real_snan() - "callout" for SNAN exception #
- # _real_operr() - "callout" for OPERR exception #
- # _real_ovfl() - "callout" for OVFL exception #
- # _real_unfl() - "callout" for UNFL exception #
- # get_packed() - fetch packed operand from memory #
- # #
- # INPUT *************************************************************** #
- # - The system stack contains the "Unimp Data Type" stk frame #
- # - The fsave frame contains the ssrc op (for UNNORM/DENORM) #
- # #
- # OUTPUT ************************************************************** #
- # If Inexact exception (opclass 3): #
- # - The system stack is changed to an Inexact exception stk frame #
- # If SNAN exception (opclass 3): #
- # - The system stack is changed to an SNAN exception stk frame #
- # If OPERR exception (opclass 3): #
- # - The system stack is changed to an OPERR exception stk frame #
- # If OVFL exception (opclass 3): #
- # - The system stack is changed to an OVFL exception stk frame #
- # If UNFL exception (opclass 3): #
- # - The system stack is changed to an UNFL exception stack frame #
- # If Trace exception enabled: #
- # - The system stack is changed to a Trace exception stack frame #
- # Else: (normal case) #
- # - Correct result has been stored as appropriate #
- # #
- # ALGORITHM *********************************************************** #
- # Two main instruction types can enter here: (1) DENORM or UNNORM #
- # unimplemented data types. These can be either opclass 0,2 or 3 #
- # instructions, and (2) PACKED unimplemented data format instructions #
- # also of opclasses 0,2, or 3. #
- # For UNNORM/DENORM opclass 0 and 2, the handler fetches the src #
- # operand from the fsave state frame and the dst operand (if dyadic) #
- # from the FP register file. The instruction is then emulated by #
- # choosing an emulation routine from a table of routines indexed by #
- # instruction type. Once the instruction has been emulated and result #
- # saved, then we check to see if any enabled exceptions resulted from #
- # instruction emulation. If none, then we exit through the "callout" #
- # _fpsp_done(). If there is an enabled FP exception, then we insert #
- # this exception into the FPU in the fsave state frame and then exit #
- # through _fpsp_done(). #
- # PACKED opclass 0 and 2 is similar in how the instruction is #
- # emulated and exceptions handled. The differences occur in how the #
- # handler loads the packed op (by calling get_packed() routine) and #
- # by the fact that a Trace exception could be pending for PACKED ops. #
- # If a Trace exception is pending, then the current exception stack #
- # frame is changed to a Trace exception stack frame and an exit is #
- # made through _real_trace(). #
- # For UNNORM/DENORM opclass 3, the actual move out to memory is #
- # performed by calling the routine fout(). If no exception should occur #
- # as the result of emulation, then an exit either occurs through #
- # _fpsp_done() or through _real_trace() if a Trace exception is pending #
- # (a Trace stack frame must be created here, too). If an FP exception #
- # should occur, then we must create an exception stack frame of that #
- # type and jump to either _real_snan(), _real_operr(), _real_inex(), #
- # _real_unfl(), or _real_ovfl() as appropriate. PACKED opclass 3 #
- # emulation is performed in a similar manner. #
- # #
- #########################################################################
- #
- # (1) DENORM and UNNORM (unimplemented) data types:
- #
- # post-instruction
- # *****************
- # * EA *
- # pre-instruction * *
- # ***************** *****************
- # * 0x0 * 0x0dc * * 0x3 * 0x0dc *
- # ***************** *****************
- # * Next * * Next *
- # * PC * * PC *
- # ***************** *****************
- # * SR * * SR *
- # ***************** *****************
- #
- # (2) PACKED format (unsupported) opclasses two and three:
- # *****************
- # * EA *
- # * *
- # *****************
- # * 0x2 * 0x0dc *
- # *****************
- # * Next *
- # * PC *
- # *****************
- # * SR *
- # *****************
- #
- global _fpsp_unsupp
- _fpsp_unsupp:
- link.w %a6,&-LOCAL_SIZE # init stack frame
- fsave FP_SRC(%a6) # save fp state
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack
- btst &0x5,EXC_SR(%a6) # user or supervisor mode?
- bne.b fu_s
- fu_u:
- mov.l %usp,%a0 # fetch user stack pointer
- mov.l %a0,EXC_A7(%a6) # save on stack
- bra.b fu_cont
- # if the exception is an opclass zero or two unimplemented data type
- # exception, then the a7' calculated here is wrong since it doesn't
- # stack an ea. however, we don't need an a7' for this case anyways.
- fu_s:
- lea 0x4+EXC_EA(%a6),%a0 # load old a7'
- mov.l %a0,EXC_A7(%a6) # save on stack
- fu_cont:
- # the FPIAR holds the "current PC" of the faulting instruction
- # the FPIAR should be set correctly for ALL exceptions passing through
- # this point.
- mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch the instruction words
- mov.l %d0,EXC_OPWORD(%a6) # store OPWORD and EXTWORD
- ############################
- clr.b SPCOND_FLG(%a6) # clear special condition flag
- # Separate opclass three (fpn-to-mem) ops since they have a different
- # stack frame and protocol.
- btst &0x5,EXC_CMDREG(%a6) # is it an fmove out?
- bne.w fu_out # yes
- # Separate packed opclass two instructions.
- bfextu EXC_CMDREG(%a6){&0:&6},%d0
- cmpi.b %d0,&0x13
- beq.w fu_in_pack
- # I'm not sure at this point what FPSR bits are valid for this instruction.
- # so, since the emulation routines re-create them anyways, zero exception field
- andi.l &0x00ff00ff,USER_FPSR(%a6) # zero exception field
- fmov.l &0x0,%fpcr # zero current control regs
- fmov.l &0x0,%fpsr
- # Opclass two w/ memory-to-fpn operation will have an incorrect extended
- # precision format if the src format was single or double and the
- # source data type was an INF, NAN, DENORM, or UNNORM
- lea FP_SRC(%a6),%a0 # pass ptr to input
- bsr.l fix_skewed_ops
- # we don't know whether the src operand or the dst operand (or both) is the
- # UNNORM or DENORM. call the function that tags the operand type. if the
- # input is an UNNORM, then convert it to a NORM, DENORM, or ZERO.
- lea FP_SRC(%a6),%a0 # pass: ptr to src op
- bsr.l set_tag_x # tag the operand type
- cmpi.b %d0,&UNNORM # is operand an UNNORM?
- bne.b fu_op2 # no
- bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO
- fu_op2:
- mov.b %d0,STAG(%a6) # save src optype tag
- bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg
- # bit five of the fp extension word separates the monadic and dyadic operations
- # at this point
- btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic?
- beq.b fu_extract # monadic
- cmpi.b 1+EXC_CMDREG(%a6),&0x3a # is operation an ftst?
- beq.b fu_extract # yes, so it's monadic, too
- bsr.l load_fpn2 # load dst into FP_DST
- lea FP_DST(%a6),%a0 # pass: ptr to dst op
- bsr.l set_tag_x # tag the operand type
- cmpi.b %d0,&UNNORM # is operand an UNNORM?
- bne.b fu_op2_done # no
- bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO
- fu_op2_done:
- mov.b %d0,DTAG(%a6) # save dst optype tag
- fu_extract:
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec
- bfextu 1+EXC_CMDREG(%a6){&1:&7},%d1 # extract extension
- lea FP_SRC(%a6),%a0
- lea FP_DST(%a6),%a1
- mov.l (tbl_unsupp.l,%pc,%d1.l*4),%d1 # fetch routine addr
- jsr (tbl_unsupp.l,%pc,%d1.l*1)
- #
- # Exceptions in order of precedence:
- # BSUN : none
- # SNAN : all dyadic ops
- # OPERR : fsqrt(-NORM)
- # OVFL : all except ftst,fcmp
- # UNFL : all except ftst,fcmp
- # DZ : fdiv
- # INEX2 : all except ftst,fcmp
- # INEX1 : none (packed doesn't go through here)
- #
- # we determine the highest priority exception(if any) set by the
- # emulation routine that has also been enabled by the user.
- mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions set
- bne.b fu_in_ena # some are enabled
- fu_in_cont:
- # fcmp and ftst do not store any result.
- mov.b 1+EXC_CMDREG(%a6),%d0 # fetch extension
- andi.b &0x38,%d0 # extract bits 3-5
- cmpi.b %d0,&0x38 # is instr fcmp or ftst?
- beq.b fu_in_exit # yes
- bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg
- bsr.l store_fpreg # store the result
- fu_in_exit:
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- unlk %a6
- bra.l _fpsp_done
- fu_in_ena:
- and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled
- bfffo %d0{&24:&8},%d0 # find highest priority exception
- bne.b fu_in_exc # there is at least one set
- #
- # No exceptions occurred that were also enabled. Now:
- #
- # if (OVFL && ovfl_disabled && inexact_enabled) {
- # branch to _real_inex() (even if the result was exact!);
- # } else {
- # save the result in the proper fp reg (unless the op is fcmp or ftst);
- # return;
- # }
- #
- btst &ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set?
- beq.b fu_in_cont # no
- fu_in_ovflchk:
- btst &inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled?
- beq.b fu_in_cont # no
- bra.w fu_in_exc_ovfl # go insert overflow frame
- #
- # An exception occurred and that exception was enabled:
- #
- # shift enabled exception field into lo byte of d0;
- # if (((INEX2 || INEX1) && inex_enabled && OVFL && ovfl_disabled) ||
- # ((INEX2 || INEX1) && inex_enabled && UNFL && unfl_disabled)) {
- # /*
- # * this is the case where we must call _real_inex() now or else
- # * there will be no other way to pass it the exceptional operand
- # */
- # call _real_inex();
- # } else {
- # restore exc state (SNAN||OPERR||OVFL||UNFL||DZ||INEX) into the FPU;
- # }
- #
- fu_in_exc:
- subi.l &24,%d0 # fix offset to be 0-8
- cmpi.b %d0,&0x6 # is exception INEX? (6)
- bne.b fu_in_exc_exit # no
- # the enabled exception was inexact
- btst &unfl_bit,FPSR_EXCEPT(%a6) # did disabled underflow occur?
- bne.w fu_in_exc_unfl # yes
- btst &ovfl_bit,FPSR_EXCEPT(%a6) # did disabled overflow occur?
- bne.w fu_in_exc_ovfl # yes
- # here, we insert the correct fsave status value into the fsave frame for the
- # corresponding exception. the operand in the fsave frame should be the original
- # src operand.
- fu_in_exc_exit:
- mov.l %d0,-(%sp) # save d0
- bsr.l funimp_skew # skew sgl or dbl inputs
- mov.l (%sp)+,%d0 # restore d0
- mov.w (tbl_except.b,%pc,%d0.w*2),2+FP_SRC(%a6) # create exc status
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- frestore FP_SRC(%a6) # restore src op
- unlk %a6
- bra.l _fpsp_done
- tbl_except:
- short 0xe000,0xe006,0xe004,0xe005
- short 0xe003,0xe002,0xe001,0xe001
- fu_in_exc_unfl:
- mov.w &0x4,%d0
- bra.b fu_in_exc_exit
- fu_in_exc_ovfl:
- mov.w &0x03,%d0
- bra.b fu_in_exc_exit
- # If the input operand to this operation was opclass two and a single
- # or double precision denorm, inf, or nan, the operand needs to be
- # "corrected" in order to have the proper equivalent extended precision
- # number.
- global fix_skewed_ops
- fix_skewed_ops:
- bfextu EXC_CMDREG(%a6){&0:&6},%d0 # extract opclass,src fmt
- cmpi.b %d0,&0x11 # is class = 2 & fmt = sgl?
- beq.b fso_sgl # yes
- cmpi.b %d0,&0x15 # is class = 2 & fmt = dbl?
- beq.b fso_dbl # yes
- rts # no
- fso_sgl:
- mov.w LOCAL_EX(%a0),%d0 # fetch src exponent
- andi.w &0x7fff,%d0 # strip sign
- cmpi.w %d0,&0x3f80 # is |exp| == $3f80?
- beq.b fso_sgl_dnrm_zero # yes
- cmpi.w %d0,&0x407f # no; is |exp| == $407f?
- beq.b fso_infnan # yes
- rts # no
- fso_sgl_dnrm_zero:
- andi.l &0x7fffffff,LOCAL_HI(%a0) # clear j-bit
- beq.b fso_zero # it's a skewed zero
- fso_sgl_dnrm:
- # here, we count on norm not to alter a0...
- bsr.l norm # normalize mantissa
- neg.w %d0 # -shft amt
- addi.w &0x3f81,%d0 # adjust new exponent
- andi.w &0x8000,LOCAL_EX(%a0) # clear old exponent
- or.w %d0,LOCAL_EX(%a0) # insert new exponent
- rts
- fso_zero:
- andi.w &0x8000,LOCAL_EX(%a0) # clear bogus exponent
- rts
- fso_infnan:
- andi.b &0x7f,LOCAL_HI(%a0) # clear j-bit
- ori.w &0x7fff,LOCAL_EX(%a0) # make exponent = $7fff
- rts
- fso_dbl:
- mov.w LOCAL_EX(%a0),%d0 # fetch src exponent
- andi.w &0x7fff,%d0 # strip sign
- cmpi.w %d0,&0x3c00 # is |exp| == $3c00?
- beq.b fso_dbl_dnrm_zero # yes
- cmpi.w %d0,&0x43ff # no; is |exp| == $43ff?
- beq.b fso_infnan # yes
- rts # no
- fso_dbl_dnrm_zero:
- andi.l &0x7fffffff,LOCAL_HI(%a0) # clear j-bit
- bne.b fso_dbl_dnrm # it's a skewed denorm
- tst.l LOCAL_LO(%a0) # is it a zero?
- beq.b fso_zero # yes
- fso_dbl_dnrm:
- # here, we count on norm not to alter a0...
- bsr.l norm # normalize mantissa
- neg.w %d0 # -shft amt
- addi.w &0x3c01,%d0 # adjust new exponent
- andi.w &0x8000,LOCAL_EX(%a0) # clear old exponent
- or.w %d0,LOCAL_EX(%a0) # insert new exponent
- rts
- #################################################################
- # fmove out took an unimplemented data type exception.
- # the src operand is in FP_SRC. Call _fout() to write out the result and
- # to determine which exceptions, if any, to take.
- fu_out:
- # Separate packed move outs from the UNNORM and DENORM move outs.
- bfextu EXC_CMDREG(%a6){&3:&3},%d0
- cmpi.b %d0,&0x3
- beq.w fu_out_pack
- cmpi.b %d0,&0x7
- beq.w fu_out_pack
- # I'm not sure at this point what FPSR bits are valid for this instruction.
- # so, since the emulation routines re-create them anyways, zero exception field.
- # fmove out doesn't affect ccodes.
- and.l &0xffff00ff,USER_FPSR(%a6) # zero exception field
- fmov.l &0x0,%fpcr # zero current control regs
- fmov.l &0x0,%fpsr
- # the src can ONLY be a DENORM or an UNNORM! so, don't make any big subroutine
- # call here. just figure out what it is...
- mov.w FP_SRC_EX(%a6),%d0 # get exponent
- andi.w &0x7fff,%d0 # strip sign
- beq.b fu_out_denorm # it's a DENORM
- lea FP_SRC(%a6),%a0
- bsr.l unnorm_fix # yes; fix it
- mov.b %d0,STAG(%a6)
- bra.b fu_out_cont
- fu_out_denorm:
- mov.b &DENORM,STAG(%a6)
- fu_out_cont:
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec
- lea FP_SRC(%a6),%a0 # pass ptr to src operand
- mov.l (%a6),EXC_A6(%a6) # in case a6 changes
- bsr.l fout # call fmove out routine
- # Exceptions in order of precedence:
- # BSUN : none
- # SNAN : none
- # OPERR : fmove.{b,w,l} out of large UNNORM
- # OVFL : fmove.{s,d}
- # UNFL : fmove.{s,d,x}
- # DZ : none
- # INEX2 : all
- # INEX1 : none (packed doesn't travel through here)
- # determine the highest priority exception(if any) set by the
- # emulation routine that has also been enabled by the user.
- mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled
- bne.w fu_out_ena # some are enabled
- fu_out_done:
- mov.l EXC_A6(%a6),(%a6) # in case a6 changed
- # on extended precision opclass three instructions using pre-decrement or
- # post-increment addressing mode, the address register is not updated. is the
- # address register was the stack pointer used from user mode, then let's update
- # it here. if it was used from supervisor mode, then we have to handle this
- # as a special case.
- btst &0x5,EXC_SR(%a6)
- bne.b fu_out_done_s
- mov.l EXC_A7(%a6),%a0 # restore a7
- mov.l %a0,%usp
- fu_out_done_cont:
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- unlk %a6
- btst &0x7,(%sp) # is trace on?
- bne.b fu_out_trace # yes
- bra.l _fpsp_done
- # is the ea mode pre-decrement of the stack pointer from supervisor mode?
- # ("fmov.x fpm,-(a7)") if so,
- fu_out_done_s:
- cmpi.b SPCOND_FLG(%a6),&mda7_flg
- bne.b fu_out_done_cont
- # the extended precision result is still in fp0. but, we need to save it
- # somewhere on the stack until we can copy it to its final resting place.
- # here, we're counting on the top of the stack to be the old place-holders
- # for fp0/fp1 which have already been restored. that way, we can write
- # over those destinations with the shifted stack frame.
- fmovm.x &0x80,FP_SRC(%a6) # put answer on stack
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- mov.l (%a6),%a6 # restore frame pointer
- mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp)
- mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp)
- # now, copy the result to the proper place on the stack
- mov.l LOCAL_SIZE+FP_SRC_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp)
- mov.l LOCAL_SIZE+FP_SRC_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp)
- mov.l LOCAL_SIZE+FP_SRC_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp)
- add.l &LOCAL_SIZE-0x8,%sp
- btst &0x7,(%sp)
- bne.b fu_out_trace
- bra.l _fpsp_done
- fu_out_ena:
- and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled
- bfffo %d0{&24:&8},%d0 # find highest priority exception
- bne.b fu_out_exc # there is at least one set
- # no exceptions were set.
- # if a disabled overflow occurred and inexact was enabled but the result
- # was exact, then a branch to _real_inex() is made.
- btst &ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set?
- beq.w fu_out_done # no
- fu_out_ovflchk:
- btst &inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled?
- beq.w fu_out_done # no
- bra.w fu_inex # yes
- #
- # The fp move out that took the "Unimplemented Data Type" exception was
- # being traced. Since the stack frames are similar, get the "current" PC
- # from FPIAR and put it in the trace stack frame then jump to _real_trace().
- #
- # UNSUPP FRAME TRACE FRAME
- # ***************** *****************
- # * EA * * Current *
- # * * * PC *
- # ***************** *****************
- # * 0x3 * 0x0dc * * 0x2 * 0x024 *
- # ***************** *****************
- # * Next * * Next *
- # * PC * * PC *
- # ***************** *****************
- # * SR * * SR *
- # ***************** *****************
- #
- fu_out_trace:
- mov.w &0x2024,0x6(%sp)
- fmov.l %fpiar,0x8(%sp)
- bra.l _real_trace
- # an exception occurred and that exception was enabled.
- fu_out_exc:
- subi.l &24,%d0 # fix offset to be 0-8
- # we don't mess with the existing fsave frame. just re-insert it and
- # jump to the "_real_{}()" handler...
- mov.w (tbl_fu_out.b,%pc,%d0.w*2),%d0
- jmp (tbl_fu_out.b,%pc,%d0.w*1)
- swbeg &0x8
- tbl_fu_out:
- short tbl_fu_out - tbl_fu_out # BSUN can't happen
- short tbl_fu_out - tbl_fu_out # SNAN can't happen
- short fu_operr - tbl_fu_out # OPERR
- short fu_ovfl - tbl_fu_out # OVFL
- short fu_unfl - tbl_fu_out # UNFL
- short tbl_fu_out - tbl_fu_out # DZ can't happen
- short fu_inex - tbl_fu_out # INEX2
- short tbl_fu_out - tbl_fu_out # INEX1 won't make it here
- # for snan,operr,ovfl,unfl, src op is still in FP_SRC so just
- # frestore it.
- fu_snan:
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- mov.w &0x30d8,EXC_VOFF(%a6) # vector offset = 0xd8
- mov.w &0xe006,2+FP_SRC(%a6)
- frestore FP_SRC(%a6)
- unlk %a6
- bra.l _real_snan
- fu_operr:
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- mov.w &0x30d0,EXC_VOFF(%a6) # vector offset = 0xd0
- mov.w &0xe004,2+FP_SRC(%a6)
- frestore FP_SRC(%a6)
- unlk %a6
- bra.l _real_operr
- fu_ovfl:
- fmovm.x &0x40,FP_SRC(%a6) # save EXOP to the stack
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- mov.w &0x30d4,EXC_VOFF(%a6) # vector offset = 0xd4
- mov.w &0xe005,2+FP_SRC(%a6)
- frestore FP_SRC(%a6) # restore EXOP
- unlk %a6
- bra.l _real_ovfl
- # underflow can happen for extended precision. extended precision opclass
- # three instruction exceptions don't update the stack pointer. so, if the
- # exception occurred from user mode, then simply update a7 and exit normally.
- # if the exception occurred from supervisor mode, check if
- fu_unfl:
- mov.l EXC_A6(%a6),(%a6) # restore a6
- btst &0x5,EXC_SR(%a6)
- bne.w fu_unfl_s
- mov.l EXC_A7(%a6),%a0 # restore a7 whether we need
- mov.l %a0,%usp # to or not...
- fu_unfl_cont:
- fmovm.x &0x40,FP_SRC(%a6) # save EXOP to the stack
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- mov.w &0x30cc,EXC_VOFF(%a6) # vector offset = 0xcc
- mov.w &0xe003,2+FP_SRC(%a6)
- frestore FP_SRC(%a6) # restore EXOP
- unlk %a6
- bra.l _real_unfl
- fu_unfl_s:
- cmpi.b SPCOND_FLG(%a6),&mda7_flg # was the <ea> mode -(sp)?
- bne.b fu_unfl_cont
- # the extended precision result is still in fp0. but, we need to save it
- # somewhere on the stack until we can copy it to its final resting place
- # (where the exc frame is currently). make sure it's not at the top of the
- # frame or it will get overwritten when the exc stack frame is shifted "down".
- fmovm.x &0x80,FP_SRC(%a6) # put answer on stack
- fmovm.x &0x40,FP_DST(%a6) # put EXOP on stack
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- mov.w &0x30cc,EXC_VOFF(%a6) # vector offset = 0xcc
- mov.w &0xe003,2+FP_DST(%a6)
- frestore FP_DST(%a6) # restore EXOP
- mov.l (%a6),%a6 # restore frame pointer
- mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp)
- mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp)
- mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp)
- # now, copy the result to the proper place on the stack
- mov.l LOCAL_SIZE+FP_SRC_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp)
- mov.l LOCAL_SIZE+FP_SRC_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp)
- mov.l LOCAL_SIZE+FP_SRC_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp)
- add.l &LOCAL_SIZE-0x8,%sp
- bra.l _real_unfl
- # fmove in and out enter here.
- fu_inex:
- fmovm.x &0x40,FP_SRC(%a6) # save EXOP to the stack
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- mov.w &0x30c4,EXC_VOFF(%a6) # vector offset = 0xc4
- mov.w &0xe001,2+FP_SRC(%a6)
- frestore FP_SRC(%a6) # restore EXOP
- unlk %a6
- bra.l _real_inex
- #########################################################################
- #########################################################################
- fu_in_pack:
- # I'm not sure at this point what FPSR bits are valid for this instruction.
- # so, since the emulation routines re-create them anyways, zero exception field
- andi.l &0x0ff00ff,USER_FPSR(%a6) # zero exception field
- fmov.l &0x0,%fpcr # zero current control regs
- fmov.l &0x0,%fpsr
- bsr.l get_packed # fetch packed src operand
- lea FP_SRC(%a6),%a0 # pass ptr to src
- bsr.l set_tag_x # set src optype tag
- mov.b %d0,STAG(%a6) # save src optype tag
- bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg
- # bit five of the fp extension word separates the monadic and dyadic operations
- # at this point
- btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic?
- beq.b fu_extract_p # monadic
- cmpi.b 1+EXC_CMDREG(%a6),&0x3a # is operation an ftst?
- beq.b fu_extract_p # yes, so it's monadic, too
- bsr.l load_fpn2 # load dst into FP_DST
- lea FP_DST(%a6),%a0 # pass: ptr to dst op
- bsr.l set_tag_x # tag the operand type
- cmpi.b %d0,&UNNORM # is operand an UNNORM?
- bne.b fu_op2_done_p # no
- bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO
- fu_op2_done_p:
- mov.b %d0,DTAG(%a6) # save dst optype tag
- fu_extract_p:
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec
- bfextu 1+EXC_CMDREG(%a6){&1:&7},%d1 # extract extension
- lea FP_SRC(%a6),%a0
- lea FP_DST(%a6),%a1
- mov.l (tbl_unsupp.l,%pc,%d1.l*4),%d1 # fetch routine addr
- jsr (tbl_unsupp.l,%pc,%d1.l*1)
- #
- # Exceptions in order of precedence:
- # BSUN : none
- # SNAN : all dyadic ops
- # OPERR : fsqrt(-NORM)
- # OVFL : all except ftst,fcmp
- # UNFL : all except ftst,fcmp
- # DZ : fdiv
- # INEX2 : all except ftst,fcmp
- # INEX1 : all
- #
- # we determine the highest priority exception(if any) set by the
- # emulation routine that has also been enabled by the user.
- mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled
- bne.w fu_in_ena_p # some are enabled
- fu_in_cont_p:
- # fcmp and ftst do not store any result.
- mov.b 1+EXC_CMDREG(%a6),%d0 # fetch extension
- andi.b &0x38,%d0 # extract bits 3-5
- cmpi.b %d0,&0x38 # is instr fcmp or ftst?
- beq.b fu_in_exit_p # yes
- bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg
- bsr.l store_fpreg # store the result
- fu_in_exit_p:
- btst &0x5,EXC_SR(%a6) # user or supervisor?
- bne.w fu_in_exit_s_p # supervisor
- mov.l EXC_A7(%a6),%a0 # update user a7
- mov.l %a0,%usp
- fu_in_exit_cont_p:
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- unlk %a6 # unravel stack frame
- btst &0x7,(%sp) # is trace on?
- bne.w fu_trace_p # yes
- bra.l _fpsp_done # exit to os
- # the exception occurred in supervisor mode. check to see if the
- # addressing mode was (a7)+. if so, we'll need to shift the
- # stack frame "up".
- fu_in_exit_s_p:
- btst &mia7_bit,SPCOND_FLG(%a6) # was ea mode (a7)+
- beq.b fu_in_exit_cont_p # no
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- unlk %a6 # unravel stack frame
- # shift the stack frame "up". we don't really care about the <ea> field.
- mov.l 0x4(%sp),0x10(%sp)
- mov.l 0x0(%sp),0xc(%sp)
- add.l &0xc,%sp
- btst &0x7,(%sp) # is trace on?
- bne.w fu_trace_p # yes
- bra.l _fpsp_done # exit to os
- fu_in_ena_p:
- and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled & set
- bfffo %d0{&24:&8},%d0 # find highest priority exception
- bne.b fu_in_exc_p # at least one was set
- #
- # No exceptions occurred that were also enabled. Now:
- #
- # if (OVFL && ovfl_disabled && inexact_enabled) {
- # branch to _real_inex() (even if the result was exact!);
- # } else {
- # save the result in the proper fp reg (unless the op is fcmp or ftst);
- # return;
- # }
- #
- btst &ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set?
- beq.w fu_in_cont_p # no
- fu_in_ovflchk_p:
- btst &inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled?
- beq.w fu_in_cont_p # no
- bra.w fu_in_exc_ovfl_p # do _real_inex() now
- #
- # An exception occurred and that exception was enabled:
- #
- # shift enabled exception field into lo byte of d0;
- # if (((INEX2 || INEX1) && inex_enabled && OVFL && ovfl_disabled) ||
- # ((INEX2 || INEX1) && inex_enabled && UNFL && unfl_disabled)) {
- # /*
- # * this is the case where we must call _real_inex() now or else
- # * there will be no other way to pass it the exceptional operand
- # */
- # call _real_inex();
- # } else {
- # restore exc state (SNAN||OPERR||OVFL||UNFL||DZ||INEX) into the FPU;
- # }
- #
- fu_in_exc_p:
- subi.l &24,%d0 # fix offset to be 0-8
- cmpi.b %d0,&0x6 # is exception INEX? (6 or 7)
- blt.b fu_in_exc_exit_p # no
- # the enabled exception was inexact
- btst &unfl_bit,FPSR_EXCEPT(%a6) # did disabled underflow occur?
- bne.w fu_in_exc_unfl_p # yes
- btst &ovfl_bit,FPSR_EXCEPT(%a6) # did disabled overflow occur?
- bne.w fu_in_exc_ovfl_p # yes
- # here, we insert the correct fsave status value into the fsave frame for the
- # corresponding exception. the operand in the fsave frame should be the original
- # src operand.
- # as a reminder for future predicted pain and agony, we are passing in fsave the
- # "non-skewed" operand for cases of sgl and dbl src INFs,NANs, and DENORMs.
- # this is INCORRECT for enabled SNAN which would give to the user the skewed SNAN!!!
- fu_in_exc_exit_p:
- btst &0x5,EXC_SR(%a6) # user or supervisor?
- bne.w fu_in_exc_exit_s_p # supervisor
- mov.l EXC_A7(%a6),%a0 # update user a7
- mov.l %a0,%usp
- fu_in_exc_exit_cont_p:
- mov.w (tbl_except_p.b,%pc,%d0.w*2),2+FP_SRC(%a6)
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- frestore FP_SRC(%a6) # restore src op
- unlk %a6
- btst &0x7,(%sp) # is trace enabled?
- bne.w fu_trace_p # yes
- bra.l _fpsp_done
- tbl_except_p:
- short 0xe000,0xe006,0xe004,0xe005
- short 0xe003,0xe002,0xe001,0xe001
- fu_in_exc_ovfl_p:
- mov.w &0x3,%d0
- bra.w fu_in_exc_exit_p
- fu_in_exc_unfl_p:
- mov.w &0x4,%d0
- bra.w fu_in_exc_exit_p
- fu_in_exc_exit_s_p:
- btst &mia7_bit,SPCOND_FLG(%a6)
- beq.b fu_in_exc_exit_cont_p
- mov.w (tbl_except_p.b,%pc,%d0.w*2),2+FP_SRC(%a6)
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- frestore FP_SRC(%a6) # restore src op
- unlk %a6 # unravel stack frame
- # shift stack frame "up". who cares about <ea> field.
- mov.l 0x4(%sp),0x10(%sp)
- mov.l 0x0(%sp),0xc(%sp)
- add.l &0xc,%sp
- btst &0x7,(%sp) # is trace on?
- bne.b fu_trace_p # yes
- bra.l _fpsp_done # exit to os
- #
- # The opclass two PACKED instruction that took an "Unimplemented Data Type"
- # exception was being traced. Make the "current" PC the FPIAR and put it in the
- # trace stack frame then jump to _real_trace().
- #
- # UNSUPP FRAME TRACE FRAME
- # ***************** *****************
- # * EA * * Current *
- # * * * PC *
- # ***************** *****************
- # * 0x2 * 0x0dc * * 0x2 * 0x024 *
- # ***************** *****************
- # * Next * * Next *
- # * PC * * PC *
- # ***************** *****************
- # * SR * * SR *
- # ***************** *****************
- fu_trace_p:
- mov.w &0x2024,0x6(%sp)
- fmov.l %fpiar,0x8(%sp)
- bra.l _real_trace
- #########################################################
- #########################################################
- fu_out_pack:
- # I'm not sure at this point what FPSR bits are valid for this instruction.
- # so, since the emulation routines re-create them anyways, zero exception field.
- # fmove out doesn't affect ccodes.
- and.l &0xffff00ff,USER_FPSR(%a6) # zero exception field
- fmov.l &0x0,%fpcr # zero current control regs
- fmov.l &0x0,%fpsr
- bfextu EXC_CMDREG(%a6){&6:&3},%d0
- bsr.l load_fpn1
- # unlike other opclass 3, unimplemented data type exceptions, packed must be
- # able to detect all operand types.
- lea FP_SRC(%a6),%a0
- bsr.l set_tag_x # tag the operand type
- cmpi.b %d0,&UNNORM # is operand an UNNORM?
- bne.b fu_op2_p # no
- bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO
- fu_op2_p:
- mov.b %d0,STAG(%a6) # save src optype tag
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec
- lea FP_SRC(%a6),%a0 # pass ptr to src operand
- mov.l (%a6),EXC_A6(%a6) # in case a6 changes
- bsr.l fout # call fmove out routine
- # Exceptions in order of precedence:
- # BSUN : no
- # SNAN : yes
- # OPERR : if ((k_factor > +17) || (dec. exp exceeds 3 digits))
- # OVFL : no
- # UNFL : no
- # DZ : no
- # INEX2 : yes
- # INEX1 : no
- # determine the highest priority exception(if any) set by the
- # emulation routine that has also been enabled by the user.
- mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled
- bne.w fu_out_ena_p # some are enabled
- fu_out_exit_p:
- mov.l EXC_A6(%a6),(%a6) # restore a6
- btst &0x5,EXC_SR(%a6) # user or supervisor?
- bne.b fu_out_exit_s_p # supervisor
- mov.l EXC_A7(%a6),%a0 # update user a7
- mov.l %a0,%usp
- fu_out_exit_cont_p:
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- unlk %a6 # unravel stack frame
- btst &0x7,(%sp) # is trace on?
- bne.w fu_trace_p # yes
- bra.l _fpsp_done # exit to os
- # the exception occurred in supervisor mode. check to see if the
- # addressing mode was -(a7). if so, we'll need to shift the
- # stack frame "down".
- fu_out_exit_s_p:
- btst &mda7_bit,SPCOND_FLG(%a6) # was ea mode -(a7)
- beq.b fu_out_exit_cont_p # no
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- mov.l (%a6),%a6 # restore frame pointer
- mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp)
- mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp)
- # now, copy the result to the proper place on the stack
- mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp)
- mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp)
- mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp)
- add.l &LOCAL_SIZE-0x8,%sp
- btst &0x7,(%sp)
- bne.w fu_trace_p
- bra.l _fpsp_done
- fu_out_ena_p:
- and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled
- bfffo %d0{&24:&8},%d0 # find highest priority exception
- beq.w fu_out_exit_p
- mov.l EXC_A6(%a6),(%a6) # restore a6
- # an exception occurred and that exception was enabled.
- # the only exception possible on packed move out are INEX, OPERR, and SNAN.
- fu_out_exc_p:
- cmpi.b %d0,&0x1a
- bgt.w fu_inex_p2
- beq.w fu_operr_p
- fu_snan_p:
- btst &0x5,EXC_SR(%a6)
- bne.b fu_snan_s_p
- mov.l EXC_A7(%a6),%a0
- mov.l %a0,%usp
- bra.w fu_snan
- fu_snan_s_p:
- cmpi.b SPCOND_FLG(%a6),&mda7_flg
- bne.w fu_snan
- # the instruction was "fmove.p fpn,-(a7)" from supervisor mode.
- # the strategy is to move the exception frame "down" 12 bytes. then, we
- # can store the default result where the exception frame was.
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- mov.w &0x30d8,EXC_VOFF(%a6) # vector offset = 0xd0
- mov.w &0xe006,2+FP_SRC(%a6) # set fsave status
- frestore FP_SRC(%a6) # restore src operand
- mov.l (%a6),%a6 # restore frame pointer
- mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp)
- mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp)
- mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp)
- # now, we copy the default result to its proper location
- mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp)
- mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp)
- mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp)
- add.l &LOCAL_SIZE-0x8,%sp
- bra.l _real_snan
- fu_operr_p:
- btst &0x5,EXC_SR(%a6)
- bne.w fu_operr_p_s
- mov.l EXC_A7(%a6),%a0
- mov.l %a0,%usp
- bra.w fu_operr
- fu_operr_p_s:
- cmpi.b SPCOND_FLG(%a6),&mda7_flg
- bne.w fu_operr
- # the instruction was "fmove.p fpn,-(a7)" from supervisor mode.
- # the strategy is to move the exception frame "down" 12 bytes. then, we
- # can store the default result where the exception frame was.
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- mov.w &0x30d0,EXC_VOFF(%a6) # vector offset = 0xd0
- mov.w &0xe004,2+FP_SRC(%a6) # set fsave status
- frestore FP_SRC(%a6) # restore src operand
- mov.l (%a6),%a6 # restore frame pointer
- mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp)
- mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp)
- mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp)
- # now, we copy the default result to its proper location
- mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp)
- mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp)
- mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp)
- add.l &LOCAL_SIZE-0x8,%sp
- bra.l _real_operr
- fu_inex_p2:
- btst &0x5,EXC_SR(%a6)
- bne.w fu_inex_s_p2
- mov.l EXC_A7(%a6),%a0
- mov.l %a0,%usp
- bra.w fu_inex
- fu_inex_s_p2:
- cmpi.b SPCOND_FLG(%a6),&mda7_flg
- bne.w fu_inex
- # the instruction was "fmove.p fpn,-(a7)" from supervisor mode.
- # the strategy is to move the exception frame "down" 12 bytes. then, we
- # can store the default result where the exception frame was.
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- mov.w &0x30c4,EXC_VOFF(%a6) # vector offset = 0xc4
- mov.w &0xe001,2+FP_SRC(%a6) # set fsave status
- frestore FP_SRC(%a6) # restore src operand
- mov.l (%a6),%a6 # restore frame pointer
- mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp)
- mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp)
- mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp)
- # now, we copy the default result to its proper location
- mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp)
- mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp)
- mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp)
- add.l &LOCAL_SIZE-0x8,%sp
- bra.l _real_inex
- #########################################################################
- #
- # if we're stuffing a source operand back into an fsave frame then we
- # have to make sure that for single or double source operands that the
- # format stuffed is as weird as the hardware usually makes it.
- #
- global funimp_skew
- funimp_skew:
- bfextu EXC_EXTWORD(%a6){&3:&3},%d0 # extract src specifier
- cmpi.b %d0,&0x1 # was src sgl?
- beq.b funimp_skew_sgl # yes
- cmpi.b %d0,&0x5 # was src dbl?
- beq.b funimp_skew_dbl # yes
- rts
- funimp_skew_sgl:
- mov.w FP_SRC_EX(%a6),%d0 # fetch DENORM exponent
- andi.w &0x7fff,%d0 # strip sign
- beq.b funimp_skew_sgl_not
- cmpi.w %d0,&0x3f80
- bgt.b funimp_skew_sgl_not
- neg.w %d0 # make exponent negative
- addi.w &0x3f81,%d0 # find amt to shift
- mov.l FP_SRC_HI(%a6),%d1 # fetch DENORM hi(man)
- lsr.l %d0,%d1 # shift it
- bset &31,%d1 # set j-bit
- mov.l %d1,FP_SRC_HI(%a6) # insert new hi(man)
- andi.w &0x8000,FP_SRC_EX(%a6) # clear old exponent
- ori.w &0x3f80,FP_SRC_EX(%a6) # insert new "skewed" exponent
- funimp_skew_sgl_not:
- rts
- funimp_skew_dbl:
- mov.w FP_SRC_EX(%a6),%d0 # fetch DENORM exponent
- andi.w &0x7fff,%d0 # strip sign
- beq.b funimp_skew_dbl_not
- cmpi.w %d0,&0x3c00
- bgt.b funimp_skew_dbl_not
- tst.b FP_SRC_EX(%a6) # make "internal format"
- smi.b 0x2+FP_SRC(%a6)
- mov.w %d0,FP_SRC_EX(%a6) # insert exponent with cleared sign
- clr.l %d0 # clear g,r,s
- lea FP_SRC(%a6),%a0 # pass ptr to src op
- mov.w &0x3c01,%d1 # pass denorm threshold
- bsr.l dnrm_lp # denorm it
- mov.w &0x3c00,%d0 # new exponent
- tst.b 0x2+FP_SRC(%a6) # is sign set?
- beq.b fss_dbl_denorm_done # no
- bset &15,%d0 # set sign
- fss_dbl_denorm_done:
- bset &0x7,FP_SRC_HI(%a6) # set j-bit
- mov.w %d0,FP_SRC_EX(%a6) # insert new exponent
- funimp_skew_dbl_not:
- rts
- #########################################################################
- global _mem_write2
- _mem_write2:
- btst &0x5,EXC_SR(%a6)
- beq.l _dmem_write
- mov.l 0x0(%a0),FP_DST_EX(%a6)
- mov.l 0x4(%a0),FP_DST_HI(%a6)
- mov.l 0x8(%a0),FP_DST_LO(%a6)
- clr.l %d1
- rts
- #########################################################################
- # XDEF **************************************************************** #
- # _fpsp_effadd(): 060FPSP entry point for FP "Unimplemented #
- # effective address" exception. #
- # #
- # This handler should be the first code executed upon taking the #
- # FP Unimplemented Effective Address exception in an operating #
- # system. #
- # #
- # XREF **************************************************************** #
- # _imem_read_long() - read instruction longword #
- # fix_skewed_ops() - adjust src operand in fsave frame #
- # set_tag_x() - determine optype of src/dst operands #
- # store_fpreg() - store opclass 0 or 2 result to FP regfile #
- # unnorm_fix() - change UNNORM operands to NORM or ZERO #
- # load_fpn2() - load dst operand from FP regfile #
- # tbl_unsupp - add of table of emulation routines for opclass 0,2 #
- # decbin() - convert packed data to FP binary data #
- # _real_fpu_disabled() - "callout" for "FPU disabled" exception #
- # _real_access() - "callout" for access error exception #
- # _mem_read() - read extended immediate operand from memory #
- # _fpsp_done() - "callout" for exit; work all done #
- # _real_trace() - "callout" for Trace enabled exception #
- # fmovm_dynamic() - emulate dynamic fmovm instruction #
- # fmovm_ctrl() - emulate fmovm control instruction #
- # #
- # INPUT *************************************************************** #
- # - The system stack contains the "Unimplemented <ea>" stk frame #
- # #
- # OUTPUT ************************************************************** #
- # If access error: #
- # - The system stack is changed to an access error stack frame #
- # If FPU disabled: #
- # - The system stack is changed to an FPU disabled stack frame #
- # If Trace exception enabled: #
- # - The system stack is changed to a Trace exception stack frame #
- # Else: (normal case) #
- # - None (correct result has been stored as appropriate) #
- # #
- # ALGORITHM *********************************************************** #
- # This exception handles 3 types of operations: #
- # (1) FP Instructions using extended precision or packed immediate #
- # addressing mode. #
- # (2) The "fmovm.x" instruction w/ dynamic register specification. #
- # (3) The "fmovm.l" instruction w/ 2 or 3 control registers. #
- # #
- # For immediate data operations, the data is read in w/ a #
- # _mem_read() "callout", converted to FP binary (if packed), and used #
- # as the source operand to the instruction specified by the instruction #
- # word. If no FP exception should be reported ads a result of the #
- # emulation, then the result is stored to the destination register and #
- # the handler exits through _fpsp_done(). If an enabled exc has been #
- # signalled as a result of emulation, then an fsave state frame #
- # corresponding to the FP exception type must be entered into the 060 #
- # FPU before exiting. In either the enabled or disabled cases, we #
- # must also check if a Trace exception is pending, in which case, we #
- # must create a Trace exception stack frame from the current exception #
- # stack frame. If no Trace is pending, we simply exit through #
- # _fpsp_done(). #
- # For "fmovm.x", call the routine fmovm_dynamic() which will #
- # decode and emulate the instruction. No FP exceptions can be pending #
- # as a result of this operation emulation. A Trace exception can be #
- # pending, though, which means the current stack frame must be changed #
- # to a Trace stack frame and an exit made through _real_trace(). #
- # For the case of "fmovm.x Dn,-(a7)", where the offending instruction #
- # was executed from supervisor mode, this handler must store the FP #
- # register file values to the system stack by itself since #
- # fmovm_dynamic() can't handle this. A normal exit is made through #
- # fpsp_done(). #
- # For "fmovm.l", fmovm_ctrl() is used to emulate the instruction. #
- # Again, a Trace exception may be pending and an exit made through #
- # _real_trace(). Else, a normal exit is made through _fpsp_done(). #
- # #
- # Before any of the above is attempted, it must be checked to #
- # see if the FPU is disabled. Since the "Unimp <ea>" exception is taken #
- # before the "FPU disabled" exception, but the "FPU disabled" exception #
- # has higher priority, we check the disabled bit in the PCR. If set, #
- # then we must create an 8 word "FPU disabled" exception stack frame #
- # from the current 4 word exception stack frame. This includes #
- # reproducing the effective address of the instruction to put on the #
- # new stack frame. #
- # #
- # In the process of all emulation work, if a _mem_read() #
- # "callout" returns a failing result indicating an access error, then #
- # we must create an access error stack frame from the current stack #
- # frame. This information includes a faulting address and a fault- #
- # status-longword. These are created within this handler. #
- # #
- #########################################################################
- global _fpsp_effadd
- _fpsp_effadd:
- # This exception type takes priority over the "Line F Emulator"
- # exception. Therefore, the FPU could be disabled when entering here.
- # So, we must check to see if it's disabled and handle that case separately.
- mov.l %d0,-(%sp) # save d0
- movc %pcr,%d0 # load proc cr
- btst &0x1,%d0 # is FPU disabled?
- bne.w iea_disabled # yes
- mov.l (%sp)+,%d0 # restore d0
- link %a6,&-LOCAL_SIZE # init stack frame
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack
- # PC of instruction that took the exception is the PC in the frame
- mov.l EXC_PC(%a6),EXC_EXTWPTR(%a6)
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch the instruction words
- mov.l %d0,EXC_OPWORD(%a6) # store OPWORD and EXTWORD
- #########################################################################
- tst.w %d0 # is operation fmovem?
- bmi.w iea_fmovm # yes
- #
- # here, we will have:
- # fabs fdabs fsabs facos fmod
- # fadd fdadd fsadd fasin frem
- # fcmp fatan fscale
- # fdiv fddiv fsdiv fatanh fsin
- # fint fcos fsincos
- # fintrz fcosh fsinh
- # fmove fdmove fsmove fetox ftan
- # fmul fdmul fsmul fetoxm1 ftanh
- # fneg fdneg fsneg fgetexp ftentox
- # fsgldiv fgetman ftwotox
- # fsglmul flog10
- # fsqrt flog2
- # fsub fdsub fssub flogn
- # ftst flognp1
- # which can all use f<op>.{x,p}
- # so, now it's immediate data extended precision AND PACKED FORMAT!
- #
- iea_op:
- andi.l &0x00ff00ff,USER_FPSR(%a6)
- btst &0xa,%d0 # is src fmt x or p?
- bne.b iea_op_pack # packed
- mov.l EXC_EXTWPTR(%a6),%a0 # pass: ptr to #<data>
- lea FP_SRC(%a6),%a1 # pass: ptr to super addr
- mov.l &0xc,%d0 # pass: 12 bytes
- bsr.l _imem_read # read extended immediate
- tst.l %d1 # did ifetch fail?
- bne.w iea_iacc # yes
- bra.b iea_op_setsrc
- iea_op_pack:
- mov.l EXC_EXTWPTR(%a6),%a0 # pass: ptr to #<data>
- lea FP_SRC(%a6),%a1 # pass: ptr to super dst
- mov.l &0xc,%d0 # pass: 12 bytes
- bsr.l _imem_read # read packed operand
- tst.l %d1 # did ifetch fail?
- bne.w iea_iacc # yes
- # The packed operand is an INF or a NAN if the exponent field is all ones.
- bfextu FP_SRC(%a6){&1:&15},%d0 # get exp
- cmpi.w %d0,&0x7fff # INF or NAN?
- beq.b iea_op_setsrc # operand is an INF or NAN
- # The packed operand is a zero if the mantissa is all zero, else it's
- # a normal packed op.
- mov.b 3+FP_SRC(%a6),%d0 # get byte 4
- andi.b &0x0f,%d0 # clear all but last nybble
- bne.b iea_op_gp_not_spec # not a zero
- tst.l FP_SRC_HI(%a6) # is lw 2 zero?
- bne.b iea_op_gp_not_spec # not a zero
- tst.l FP_SRC_LO(%a6) # is lw 3 zero?
- beq.b iea_op_setsrc # operand is a ZERO
- iea_op_gp_not_spec:
- lea FP_SRC(%a6),%a0 # pass: ptr to packed op
- bsr.l decbin # convert to extended
- fmovm.x &0x80,FP_SRC(%a6) # make this the srcop
- iea_op_setsrc:
- addi.l &0xc,EXC_EXTWPTR(%a6) # update extension word pointer
- # FP_SRC now holds the src operand.
- lea FP_SRC(%a6),%a0 # pass: ptr to src op
- bsr.l set_tag_x # tag the operand type
- mov.b %d0,STAG(%a6) # could be ANYTHING!!!
- cmpi.b %d0,&UNNORM # is operand an UNNORM?
- bne.b iea_op_getdst # no
- bsr.l unnorm_fix # yes; convert to NORM/DENORM/ZERO
- mov.b %d0,STAG(%a6) # set new optype tag
- iea_op_getdst:
- clr.b STORE_FLG(%a6) # clear "store result" boolean
- btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic?
- beq.b iea_op_extract # monadic
- btst &0x4,1+EXC_CMDREG(%a6) # is operation fsincos,ftst,fcmp?
- bne.b iea_op_spec # yes
- iea_op_loaddst:
- bfextu EXC_CMDREG(%a6){&6:&3},%d0 # fetch dst regno
- bsr.l load_fpn2 # load dst operand
- lea FP_DST(%a6),%a0 # pass: ptr to dst op
- bsr.l set_tag_x # tag the operand type
- mov.b %d0,DTAG(%a6) # could be ANYTHING!!!
- cmpi.b %d0,&UNNORM # is operand an UNNORM?
- bne.b iea_op_extract # no
- bsr.l unnorm_fix # yes; convert to NORM/DENORM/ZERO
- mov.b %d0,DTAG(%a6) # set new optype tag
- bra.b iea_op_extract
- # the operation is fsincos, ftst, or fcmp. only fcmp is dyadic
- iea_op_spec:
- btst &0x3,1+EXC_CMDREG(%a6) # is operation fsincos?
- beq.b iea_op_extract # yes
- # now, we're left with ftst and fcmp. so, first let's tag them so that they don't
- # store a result. then, only fcmp will branch back and pick up a dst operand.
- st STORE_FLG(%a6) # don't store a final result
- btst &0x1,1+EXC_CMDREG(%a6) # is operation fcmp?
- beq.b iea_op_loaddst # yes
- iea_op_extract:
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass: rnd mode,prec
- mov.b 1+EXC_CMDREG(%a6),%d1
- andi.w &0x007f,%d1 # extract extension
- fmov.l &0x0,%fpcr
- fmov.l &0x0,%fpsr
- lea FP_SRC(%a6),%a0
- lea FP_DST(%a6),%a1
- mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr
- jsr (tbl_unsupp.l,%pc,%d1.l*1)
- #
- # Exceptions in order of precedence:
- # BSUN : none
- # SNAN : all operations
- # OPERR : all reg-reg or mem-reg operations that can normally operr
- # OVFL : same as OPERR
- # UNFL : same as OPERR
- # DZ : same as OPERR
- # INEX2 : same as OPERR
- # INEX1 : all packed immediate operations
- #
- # we determine the highest priority exception(if any) set by the
- # emulation routine that has also been enabled by the user.
- mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled
- bne.b iea_op_ena # some are enabled
- # now, we save the result, unless, of course, the operation was ftst or fcmp.
- # these don't save results.
- iea_op_save:
- tst.b STORE_FLG(%a6) # does this op store a result?
- bne.b iea_op_exit1 # exit with no frestore
- iea_op_store:
- bfextu EXC_CMDREG(%a6){&6:&3},%d0 # fetch dst regno
- bsr.l store_fpreg # store the result
- iea_op_exit1:
- mov.l EXC_PC(%a6),USER_FPIAR(%a6) # set FPIAR to "Current PC"
- mov.l EXC_EXTWPTR(%a6),EXC_PC(%a6) # set "Next PC" in exc frame
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- unlk %a6 # unravel the frame
- btst &0x7,(%sp) # is trace on?
- bne.w iea_op_trace # yes
- bra.l _fpsp_done # exit to os
- iea_op_ena:
- and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enable and set
- bfffo %d0{&24:&8},%d0 # find highest priority exception
- bne.b iea_op_exc # at least one was set
- # no exception occurred. now, did a disabled, exact overflow occur with inexact
- # enabled? if so, then we have to stuff an overflow frame into the FPU.
- btst &ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur?
- beq.b iea_op_save
- iea_op_ovfl:
- btst &inex2_bit,FPCR_ENABLE(%a6) # is inexact enabled?
- beq.b iea_op_store # no
- bra.b iea_op_exc_ovfl # yes
- # an enabled exception occurred. we have to insert the exception type back into
- # the machine.
- iea_op_exc:
- subi.l &24,%d0 # fix offset to be 0-8
- cmpi.b %d0,&0x6 # is exception INEX?
- bne.b iea_op_exc_force # no
- # the enabled exception was inexact. so, if it occurs with an overflow
- # or underflow that was disabled, then we have to force an overflow or
- # underflow frame.
- btst &ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur?
- bne.b iea_op_exc_ovfl # yes
- btst &unfl_bit,FPSR_EXCEPT(%a6) # did underflow occur?
- bne.b iea_op_exc_unfl # yes
- iea_op_exc_force:
- mov.w (tbl_iea_except.b,%pc,%d0.w*2),2+FP_SRC(%a6)
- bra.b iea_op_exit2 # exit with frestore
- tbl_iea_except:
- short 0xe002, 0xe006, 0xe004, 0xe005
- short 0xe003, 0xe002, 0xe001, 0xe001
- iea_op_exc_ovfl:
- mov.w &0xe005,2+FP_SRC(%a6)
- bra.b iea_op_exit2
- iea_op_exc_unfl:
- mov.w &0xe003,2+FP_SRC(%a6)
- iea_op_exit2:
- mov.l EXC_PC(%a6),USER_FPIAR(%a6) # set FPIAR to "Current PC"
- mov.l EXC_EXTWPTR(%a6),EXC_PC(%a6) # set "Next PC" in exc frame
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- frestore FP_SRC(%a6) # restore exceptional state
- unlk %a6 # unravel the frame
- btst &0x7,(%sp) # is trace on?
- bne.b iea_op_trace # yes
- bra.l _fpsp_done # exit to os
- #
- # The opclass two instruction that took an "Unimplemented Effective Address"
- # exception was being traced. Make the "current" PC the FPIAR and put it in
- # the trace stack frame then jump to _real_trace().
- #
- # UNIMP EA FRAME TRACE FRAME
- # ***************** *****************
- # * 0x0 * 0x0f0 * * Current *
- # ***************** * PC *
- # * Current * *****************
- # * PC * * 0x2 * 0x024 *
- # ***************** *****************
- # * SR * * Next *
- # ***************** * PC *
- # *****************
- # * SR *
- # *****************
- iea_op_trace:
- mov.l (%sp),-(%sp) # shift stack frame "down"
- mov.w 0x8(%sp),0x4(%sp)
- mov.w &0x2024,0x6(%sp) # stk fmt = 0x2; voff = 0x024
- fmov.l %fpiar,0x8(%sp) # "Current PC" is in FPIAR
- bra.l _real_trace
- #########################################################################
- iea_fmovm:
- btst &14,%d0 # ctrl or data reg
- beq.w iea_fmovm_ctrl
- iea_fmovm_data:
- btst &0x5,EXC_SR(%a6) # user or supervisor mode
- bne.b iea_fmovm_data_s
- iea_fmovm_data_u:
- mov.l %usp,%a0
- mov.l %a0,EXC_A7(%a6) # store current a7
- bsr.l fmovm_dynamic # do dynamic fmovm
- mov.l EXC_A7(%a6),%a0 # load possibly new a7
- mov.l %a0,%usp # update usp
- bra.w iea_fmovm_exit
- iea_fmovm_data_s:
- clr.b SPCOND_FLG(%a6)
- lea 0x2+EXC_VOFF(%a6),%a0
- mov.l %a0,EXC_A7(%a6)
- bsr.l fmovm_dynamic # do dynamic fmovm
- cmpi.b SPCOND_FLG(%a6),&mda7_flg
- beq.w iea_fmovm_data_predec
- cmpi.b SPCOND_FLG(%a6),&mia7_flg
- bne.w iea_fmovm_exit
- # right now, d0 = the size.
- # the data has been fetched from the supervisor stack, but we have not
- # incremented the stack pointer by the appropriate number of bytes.
- # do it here.
- iea_fmovm_data_postinc:
- btst &0x7,EXC_SR(%a6)
- bne.b iea_fmovm_data_pi_trace
- mov.w EXC_SR(%a6),(EXC_SR,%a6,%d0)
- mov.l EXC_EXTWPTR(%a6),(EXC_PC,%a6,%d0)
- mov.w &0x00f0,(EXC_VOFF,%a6,%d0)
- lea (EXC_SR,%a6,%d0),%a0
- mov.l %a0,EXC_SR(%a6)
- fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- unlk %a6
- mov.l (%sp)+,%sp
- bra.l _fpsp_done
- iea_fmovm_data_pi_trace:
- mov.w EXC_SR(%a6),(EXC_SR-0x4,%a6,%d0)
- mov.l EXC_EXTWPTR(%a6),(EXC_PC-0x4,%a6,%d0)
- mov.w &0x2024,(EXC_VOFF-0x4,%a6,%d0)
- mov.l EXC_PC(%a6),(EXC_VOFF+0x2-0x4,%a6,%d0)
- lea (EXC_SR-0x4,%a6,%d0),%a0
- mov.l %a0,EXC_SR(%a6)
- fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- unlk %a6
- mov.l (%sp)+,%sp
- bra.l _real_trace
- # right now, d1 = size and d0 = the strg.
- iea_fmovm_data_predec:
- mov.b %d1,EXC_VOFF(%a6) # store strg
- mov.b %d0,0x1+EXC_VOFF(%a6) # store size
- fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- mov.l (%a6),-(%sp) # make a copy of a6
- mov.l %d0,-(%sp) # save d0
- mov.l %d1,-(%sp) # save d1
- mov.l EXC_EXTWPTR(%a6),-(%sp) # make a copy of Next PC
- clr.l %d0
- mov.b 0x1+EXC_VOFF(%a6),%d0 # fetch size
- neg.l %d0 # get negative of size
- btst &0x7,EXC_SR(%a6) # is trace enabled?
- beq.b iea_fmovm_data_p2
- mov.w EXC_SR(%a6),(EXC_SR-0x4,%a6,%d0)
- mov.l EXC_PC(%a6),(EXC_VOFF-0x2,%a6,%d0)
- mov.l (%sp)+,(EXC_PC-0x4,%a6,%d0)
- mov.w &0x2024,(EXC_VOFF-0x4,%a6,%d0)
- pea (%a6,%d0) # create final sp
- bra.b iea_fmovm_data_p3
- iea_fmovm_data_p2:
- mov.w EXC_SR(%a6),(EXC_SR,%a6,%d0)
- mov.l (%sp)+,(EXC_PC,%a6,%d0)
- mov.w &0x00f0,(EXC_VOFF,%a6,%d0)
- pea (0x4,%a6,%d0) # create final sp
- iea_fmovm_data_p3:
- clr.l %d1
- mov.b EXC_VOFF(%a6),%d1 # fetch strg
- tst.b %d1
- bpl.b fm_1
- fmovm.x &0x80,(0x4+0x8,%a6,%d0)
- addi.l &0xc,%d0
- fm_1:
- lsl.b &0x1,%d1
- bpl.b fm_2
- fmovm.x &0x40,(0x4+0x8,%a6,%d0)
- addi.l &0xc,%d0
- fm_2:
- lsl.b &0x1,%d1
- bpl.b fm_3
- fmovm.x &0x20,(0x4+0x8,%a6,%d0)
- addi.l &0xc,%d0
- fm_3:
- lsl.b &0x1,%d1
- bpl.b fm_4
- fmovm.x &0x10,(0x4+0x8,%a6,%d0)
- addi.l &0xc,%d0
- fm_4:
- lsl.b &0x1,%d1
- bpl.b fm_5
- fmovm.x &0x08,(0x4+0x8,%a6,%d0)
- addi.l &0xc,%d0
- fm_5:
- lsl.b &0x1,%d1
- bpl.b fm_6
- fmovm.x &0x04,(0x4+0x8,%a6,%d0)
- addi.l &0xc,%d0
- fm_6:
- lsl.b &0x1,%d1
- bpl.b fm_7
- fmovm.x &0x02,(0x4+0x8,%a6,%d0)
- addi.l &0xc,%d0
- fm_7:
- lsl.b &0x1,%d1
- bpl.b fm_end
- fmovm.x &0x01,(0x4+0x8,%a6,%d0)
- fm_end:
- mov.l 0x4(%sp),%d1
- mov.l 0x8(%sp),%d0
- mov.l 0xc(%sp),%a6
- mov.l (%sp)+,%sp
- btst &0x7,(%sp) # is trace enabled?
- beq.l _fpsp_done
- bra.l _real_trace
- #########################################################################
- iea_fmovm_ctrl:
- bsr.l fmovm_ctrl # load ctrl regs
- iea_fmovm_exit:
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- btst &0x7,EXC_SR(%a6) # is trace on?
- bne.b iea_fmovm_trace # yes
- mov.l EXC_EXTWPTR(%a6),EXC_PC(%a6) # set Next PC
- unlk %a6 # unravel the frame
- bra.l _fpsp_done # exit to os
- #
- # The control reg instruction that took an "Unimplemented Effective Address"
- # exception was being traced. The "Current PC" for the trace frame is the
- # PC stacked for Unimp EA. The "Next PC" is in EXC_EXTWPTR.
- # After fixing the stack frame, jump to _real_trace().
- #
- # UNIMP EA FRAME TRACE FRAME
- # ***************** *****************
- # * 0x0 * 0x0f0 * * Current *
- # ***************** * PC *
- # * Current * *****************
- # * PC * * 0x2 * 0x024 *
- # ***************** *****************
- # * SR * * Next *
- # ***************** * PC *
- # *****************
- # * SR *
- # *****************
- # this ain't a pretty solution, but it works:
- # -restore a6 (not with unlk)
- # -shift stack frame down over where old a6 used to be
- # -add LOCAL_SIZE to stack pointer
- iea_fmovm_trace:
- mov.l (%a6),%a6 # restore frame pointer
- mov.w EXC_SR+LOCAL_SIZE(%sp),0x0+LOCAL_SIZE(%sp)
- mov.l EXC_PC+LOCAL_SIZE(%sp),0x8+LOCAL_SIZE(%sp)
- mov.l EXC_EXTWPTR+LOCAL_SIZE(%sp),0x2+LOCAL_SIZE(%sp)
- mov.w &0x2024,0x6+LOCAL_SIZE(%sp) # stk fmt = 0x2; voff = 0x024
- add.l &LOCAL_SIZE,%sp # clear stack frame
- bra.l _real_trace
- #########################################################################
- # The FPU is disabled and so we should really have taken the "Line
- # F Emulator" exception. So, here we create an 8-word stack frame
- # from our 4-word stack frame. This means we must calculate the length
- # the faulting instruction to get the "next PC". This is trivial for
- # immediate operands but requires some extra work for fmovm dynamic
- # which can use most addressing modes.
- iea_disabled:
- mov.l (%sp)+,%d0 # restore d0
- link %a6,&-LOCAL_SIZE # init stack frame
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- # PC of instruction that took the exception is the PC in the frame
- mov.l EXC_PC(%a6),EXC_EXTWPTR(%a6)
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch the instruction words
- mov.l %d0,EXC_OPWORD(%a6) # store OPWORD and EXTWORD
- tst.w %d0 # is instr fmovm?
- bmi.b iea_dis_fmovm # yes
- # instruction is using an extended precision immediate operand. therefore,
- # the total instruction length is 16 bytes.
- iea_dis_immed:
- mov.l &0x10,%d0 # 16 bytes of instruction
- bra.b iea_dis_cont
- iea_dis_fmovm:
- btst &0xe,%d0 # is instr fmovm ctrl
- bne.b iea_dis_fmovm_data # no
- # the instruction is a fmovm.l with 2 or 3 registers.
- bfextu %d0{&19:&3},%d1
- mov.l &0xc,%d0
- cmpi.b %d1,&0x7 # move all regs?
- bne.b iea_dis_cont
- addq.l &0x4,%d0
- bra.b iea_dis_cont
- # the instruction is an fmovm.x dynamic which can use many addressing
- # modes and thus can have several different total instruction lengths.
- # call fmovm_calc_ea which will go through the ea calc process and,
- # as a by-product, will tell us how long the instruction is.
- iea_dis_fmovm_data:
- clr.l %d0
- bsr.l fmovm_calc_ea
- mov.l EXC_EXTWPTR(%a6),%d0
- sub.l EXC_PC(%a6),%d0
- iea_dis_cont:
- mov.w %d0,EXC_VOFF(%a6) # store stack shift value
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- unlk %a6
- # here, we actually create the 8-word frame from the 4-word frame,
- # with the "next PC" as additional info.
- # the <ea> field is let as undefined.
- subq.l &0x8,%sp # make room for new stack
- mov.l %d0,-(%sp) # save d0
- mov.w 0xc(%sp),0x4(%sp) # move SR
- mov.l 0xe(%sp),0x6(%sp) # move Current PC
- clr.l %d0
- mov.w 0x12(%sp),%d0
- mov.l 0x6(%sp),0x10(%sp) # move Current PC
- add.l %d0,0x6(%sp) # make Next PC
- mov.w &0x402c,0xa(%sp) # insert offset,frame format
- mov.l (%sp)+,%d0 # restore d0
- bra.l _real_fpu_disabled
- ##########
- iea_iacc:
- movc %pcr,%d0
- btst &0x1,%d0
- bne.b iea_iacc_cont
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 on stack
- iea_iacc_cont:
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- unlk %a6
- subq.w &0x8,%sp # make stack frame bigger
- mov.l 0x8(%sp),(%sp) # store SR,hi(PC)
- mov.w 0xc(%sp),0x4(%sp) # store lo(PC)
- mov.w &0x4008,0x6(%sp) # store voff
- mov.l 0x2(%sp),0x8(%sp) # store ea
- mov.l &0x09428001,0xc(%sp) # store fslw
- iea_acc_done:
- btst &0x5,(%sp) # user or supervisor mode?
- beq.b iea_acc_done2 # user
- bset &0x2,0xd(%sp) # set supervisor TM bit
- iea_acc_done2:
- bra.l _real_access
- iea_dacc:
- lea -LOCAL_SIZE(%a6),%sp
- movc %pcr,%d1
- btst &0x1,%d1
- bne.b iea_dacc_cont
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 on stack
- fmovm.l LOCAL_SIZE+USER_FPCR(%sp),%fpcr,%fpsr,%fpiar # restore ctrl regs
- iea_dacc_cont:
- mov.l (%a6),%a6
- mov.l 0x4+LOCAL_SIZE(%sp),-0x8+0x4+LOCAL_SIZE(%sp)
- mov.w 0x8+LOCAL_SIZE(%sp),-0x8+0x8+LOCAL_SIZE(%sp)
- mov.w &0x4008,-0x8+0xa+LOCAL_SIZE(%sp)
- mov.l %a0,-0x8+0xc+LOCAL_SIZE(%sp)
- mov.w %d0,-0x8+0x10+LOCAL_SIZE(%sp)
- mov.w &0x0001,-0x8+0x12+LOCAL_SIZE(%sp)
- movm.l LOCAL_SIZE+EXC_DREGS(%sp),&0x0303 # restore d0-d1/a0-a1
- add.w &LOCAL_SIZE-0x4,%sp
- bra.b iea_acc_done
- #########################################################################
- # XDEF **************************************************************** #
- # _fpsp_operr(): 060FPSP entry point for FP Operr exception. #
- # #
- # This handler should be the first code executed upon taking the #
- # FP Operand Error exception in an operating system. #
- # #
- # XREF **************************************************************** #
- # _imem_read_long() - read instruction longword #
- # fix_skewed_ops() - adjust src operand in fsave frame #
- # _real_operr() - "callout" to operating system operr handler #
- # _dmem_write_{byte,word,long}() - store data to mem (opclass 3) #
- # store_dreg_{b,w,l}() - store data to data regfile (opclass 3) #
- # facc_out_{b,w,l}() - store to memory took access error (opcl 3) #
- # #
- # INPUT *************************************************************** #
- # - The system stack contains the FP Operr exception frame #
- # - The fsave frame contains the source operand #
- # #
- # OUTPUT ************************************************************** #
- # No access error: #
- # - The system stack is unchanged #
- # - The fsave frame contains the adjusted src op for opclass 0,2 #
- # #
- # ALGORITHM *********************************************************** #
- # In a system where the FP Operr exception is enabled, the goal #
- # is to get to the handler specified at _real_operr(). But, on the 060, #
- # for opclass zero and two instruction taking this exception, the #
- # input operand in the fsave frame may be incorrect for some cases #
- # and needs to be corrected. This handler calls fix_skewed_ops() to #
- # do just this and then exits through _real_operr(). #
- # For opclass 3 instructions, the 060 doesn't store the default #
- # operr result out to memory or data register file as it should. #
- # This code must emulate the move out before finally exiting through #
- # _real_inex(). The move out, if to memory, is performed using #
- # _mem_write() "callout" routines that may return a failing result. #
- # In this special case, the handler must exit through facc_out() #
- # which creates an access error stack frame from the current operr #
- # stack frame. #
- # #
- #########################################################################
- global _fpsp_operr
- _fpsp_operr:
- link.w %a6,&-LOCAL_SIZE # init stack frame
- fsave FP_SRC(%a6) # grab the "busy" frame
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack
- # the FPIAR holds the "current PC" of the faulting instruction
- mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch the instruction words
- mov.l %d0,EXC_OPWORD(%a6)
- ##############################################################################
- btst &13,%d0 # is instr an fmove out?
- bne.b foperr_out # fmove out
- # here, we simply see if the operand in the fsave frame needs to be "unskewed".
- # this would be the case for opclass two operations with a source infinity or
- # denorm operand in the sgl or dbl format. NANs also become skewed, but can't
- # cause an operr so we don't need to check for them here.
- lea FP_SRC(%a6),%a0 # pass: ptr to src op
- bsr.l fix_skewed_ops # fix src op
- foperr_exit:
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- frestore FP_SRC(%a6)
- unlk %a6
- bra.l _real_operr
- ########################################################################
- #
- # the hardware does not save the default result to memory on enabled
- # operand error exceptions. we do this here before passing control to
- # the user operand error handler.
- #
- # byte, word, and long destination format operations can pass
- # through here. we simply need to test the sign of the src
- # operand and save the appropriate minimum or maximum integer value
- # to the effective address as pointed to by the stacked effective address.
- #
- # although packed opclass three operations can take operand error
- # exceptions, they won't pass through here since they are caught
- # first by the unsupported data format exception handler. that handler
- # sends them directly to _real_operr() if necessary.
- #
- foperr_out:
- mov.w FP_SRC_EX(%a6),%d1 # fetch exponent
- andi.w &0x7fff,%d1
- cmpi.w %d1,&0x7fff
- bne.b foperr_out_not_qnan
- # the operand is either an infinity or a QNAN.
- tst.l FP_SRC_LO(%a6)
- bne.b foperr_out_qnan
- mov.l FP_SRC_HI(%a6),%d1
- andi.l &0x7fffffff,%d1
- beq.b foperr_out_not_qnan
- foperr_out_qnan:
- mov.l FP_SRC_HI(%a6),L_SCR1(%a6)
- bra.b foperr_out_jmp
- foperr_out_not_qnan:
- mov.l &0x7fffffff,%d1
- tst.b FP_SRC_EX(%a6)
- bpl.b foperr_out_not_qnan2
- addq.l &0x1,%d1
- foperr_out_not_qnan2:
- mov.l %d1,L_SCR1(%a6)
- foperr_out_jmp:
- bfextu %d0{&19:&3},%d0 # extract dst format field
- mov.b 1+EXC_OPWORD(%a6),%d1 # extract <ea> mode,reg
- mov.w (tbl_operr.b,%pc,%d0.w*2),%a0
- jmp (tbl_operr.b,%pc,%a0)
- tbl_operr:
- short foperr_out_l - tbl_operr # long word integer
- short tbl_operr - tbl_operr # sgl prec shouldn't happen
- short tbl_operr - tbl_operr # ext prec shouldn't happen
- short foperr_exit - tbl_operr # packed won't enter here
- short foperr_out_w - tbl_operr # word integer
- short tbl_operr - tbl_operr # dbl prec shouldn't happen
- short foperr_out_b - tbl_operr # byte integer
- short tbl_operr - tbl_operr # packed won't enter here
- foperr_out_b:
- mov.b L_SCR1(%a6),%d0 # load positive default result
- cmpi.b %d1,&0x7 # is <ea> mode a data reg?
- ble.b foperr_out_b_save_dn # yes
- mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result
- bsr.l _dmem_write_byte # write the default result
- tst.l %d1 # did dstore fail?
- bne.l facc_out_b # yes
- bra.w foperr_exit
- foperr_out_b_save_dn:
- andi.w &0x0007,%d1
- bsr.l store_dreg_b # store result to regfile
- bra.w foperr_exit
- foperr_out_w:
- mov.w L_SCR1(%a6),%d0 # load positive default result
- cmpi.b %d1,&0x7 # is <ea> mode a data reg?
- ble.b foperr_out_w_save_dn # yes
- mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result
- bsr.l _dmem_write_word # write the default result
- tst.l %d1 # did dstore fail?
- bne.l facc_out_w # yes
- bra.w foperr_exit
- foperr_out_w_save_dn:
- andi.w &0x0007,%d1
- bsr.l store_dreg_w # store result to regfile
- bra.w foperr_exit
- foperr_out_l:
- mov.l L_SCR1(%a6),%d0 # load positive default result
- cmpi.b %d1,&0x7 # is <ea> mode a data reg?
- ble.b foperr_out_l_save_dn # yes
- mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result
- bsr.l _dmem_write_long # write the default result
- tst.l %d1 # did dstore fail?
- bne.l facc_out_l # yes
- bra.w foperr_exit
- foperr_out_l_save_dn:
- andi.w &0x0007,%d1
- bsr.l store_dreg_l # store result to regfile
- bra.w foperr_exit
- #########################################################################
- # XDEF **************************************************************** #
- # _fpsp_snan(): 060FPSP entry point for FP SNAN exception. #
- # #
- # This handler should be the first code executed upon taking the #
- # FP Signalling NAN exception in an operating system. #
- # #
- # XREF **************************************************************** #
- # _imem_read_long() - read instruction longword #
- # fix_skewed_ops() - adjust src operand in fsave frame #
- # _real_snan() - "callout" to operating system SNAN handler #
- # _dmem_write_{byte,word,long}() - store data to mem (opclass 3) #
- # store_dreg_{b,w,l}() - store data to data regfile (opclass 3) #
- # facc_out_{b,w,l,d,x}() - store to mem took acc error (opcl 3) #
- # _calc_ea_fout() - fix An if <ea> is -() or ()+; also get <ea> #
- # #
- # INPUT *************************************************************** #
- # - The system stack contains the FP SNAN exception frame #
- # - The fsave frame contains the source operand #
- # #
- # OUTPUT ************************************************************** #
- # No access error: #
- # - The system stack is unchanged #
- # - The fsave frame contains the adjusted src op for opclass 0,2 #
- # #
- # ALGORITHM *********************************************************** #
- # In a system where the FP SNAN exception is enabled, the goal #
- # is to get to the handler specified at _real_snan(). But, on the 060, #
- # for opclass zero and two instructions taking this exception, the #
- # input operand in the fsave frame may be incorrect for some cases #
- # and needs to be corrected. This handler calls fix_skewed_ops() to #
- # do just this and then exits through _real_snan(). #
- # For opclass 3 instructions, the 060 doesn't store the default #
- # SNAN result out to memory or data register file as it should. #
- # This code must emulate the move out before finally exiting through #
- # _real_snan(). The move out, if to memory, is performed using #
- # _mem_write() "callout" routines that may return a failing result. #
- # In this special case, the handler must exit through facc_out() #
- # which creates an access error stack frame from the current SNAN #
- # stack frame. #
- # For the case of an extended precision opclass 3 instruction, #
- # if the effective addressing mode was -() or ()+, then the address #
- # register must get updated by calling _calc_ea_fout(). If the <ea> #
- # was -(a7) from supervisor mode, then the exception frame currently #
- # on the system stack must be carefully moved "down" to make room #
- # for the operand being moved. #
- # #
- #########################################################################
- global _fpsp_snan
- _fpsp_snan:
- link.w %a6,&-LOCAL_SIZE # init stack frame
- fsave FP_SRC(%a6) # grab the "busy" frame
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack
- # the FPIAR holds the "current PC" of the faulting instruction
- mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch the instruction words
- mov.l %d0,EXC_OPWORD(%a6)
- ##############################################################################
- btst &13,%d0 # is instr an fmove out?
- bne.w fsnan_out # fmove out
- # here, we simply see if the operand in the fsave frame needs to be "unskewed".
- # this would be the case for opclass two operations with a source infinity or
- # denorm operand in the sgl or dbl format. NANs also become skewed and must be
- # fixed here.
- lea FP_SRC(%a6),%a0 # pass: ptr to src op
- bsr.l fix_skewed_ops # fix src op
- fsnan_exit:
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- frestore FP_SRC(%a6)
- unlk %a6
- bra.l _real_snan
- ########################################################################
- #
- # the hardware does not save the default result to memory on enabled
- # snan exceptions. we do this here before passing control to
- # the user snan handler.
- #
- # byte, word, long, and packed destination format operations can pass
- # through here. since packed format operations already were handled by
- # fpsp_unsupp(), then we need to do nothing else for them here.
- # for byte, word, and long, we simply need to test the sign of the src
- # operand and save the appropriate minimum or maximum integer value
- # to the effective address as pointed to by the stacked effective address.
- #
- fsnan_out:
- bfextu %d0{&19:&3},%d0 # extract dst format field
- mov.b 1+EXC_OPWORD(%a6),%d1 # extract <ea> mode,reg
- mov.w (tbl_snan.b,%pc,%d0.w*2),%a0
- jmp (tbl_snan.b,%pc,%a0)
- tbl_snan:
- short fsnan_out_l - tbl_snan # long word integer
- short fsnan_out_s - tbl_snan # sgl prec shouldn't happen
- short fsnan_out_x - tbl_snan # ext prec shouldn't happen
- short tbl_snan - tbl_snan # packed needs no help
- short fsnan_out_w - tbl_snan # word integer
- short fsnan_out_d - tbl_snan # dbl prec shouldn't happen
- short fsnan_out_b - tbl_snan # byte integer
- short tbl_snan - tbl_snan # packed needs no help
- fsnan_out_b:
- mov.b FP_SRC_HI(%a6),%d0 # load upper byte of SNAN
- bset &6,%d0 # set SNAN bit
- cmpi.b %d1,&0x7 # is <ea> mode a data reg?
- ble.b fsnan_out_b_dn # yes
- mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result
- bsr.l _dmem_write_byte # write the default result
- tst.l %d1 # did dstore fail?
- bne.l facc_out_b # yes
- bra.w fsnan_exit
- fsnan_out_b_dn:
- andi.w &0x0007,%d1
- bsr.l store_dreg_b # store result to regfile
- bra.w fsnan_exit
- fsnan_out_w:
- mov.w FP_SRC_HI(%a6),%d0 # load upper word of SNAN
- bset &14,%d0 # set SNAN bit
- cmpi.b %d1,&0x7 # is <ea> mode a data reg?
- ble.b fsnan_out_w_dn # yes
- mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result
- bsr.l _dmem_write_word # write the default result
- tst.l %d1 # did dstore fail?
- bne.l facc_out_w # yes
- bra.w fsnan_exit
- fsnan_out_w_dn:
- andi.w &0x0007,%d1
- bsr.l store_dreg_w # store result to regfile
- bra.w fsnan_exit
- fsnan_out_l:
- mov.l FP_SRC_HI(%a6),%d0 # load upper longword of SNAN
- bset &30,%d0 # set SNAN bit
- cmpi.b %d1,&0x7 # is <ea> mode a data reg?
- ble.b fsnan_out_l_dn # yes
- mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result
- bsr.l _dmem_write_long # write the default result
- tst.l %d1 # did dstore fail?
- bne.l facc_out_l # yes
- bra.w fsnan_exit
- fsnan_out_l_dn:
- andi.w &0x0007,%d1
- bsr.l store_dreg_l # store result to regfile
- bra.w fsnan_exit
- fsnan_out_s:
- cmpi.b %d1,&0x7 # is <ea> mode a data reg?
- ble.b fsnan_out_d_dn # yes
- mov.l FP_SRC_EX(%a6),%d0 # fetch SNAN sign
- andi.l &0x80000000,%d0 # keep sign
- ori.l &0x7fc00000,%d0 # insert new exponent,SNAN bit
- mov.l FP_SRC_HI(%a6),%d1 # load mantissa
- lsr.l &0x8,%d1 # shift mantissa for sgl
- or.l %d1,%d0 # create sgl SNAN
- mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result
- bsr.l _dmem_write_long # write the default result
- tst.l %d1 # did dstore fail?
- bne.l facc_out_l # yes
- bra.w fsnan_exit
- fsnan_out_d_dn:
- mov.l FP_SRC_EX(%a6),%d0 # fetch SNAN sign
- andi.l &0x80000000,%d0 # keep sign
- ori.l &0x7fc00000,%d0 # insert new exponent,SNAN bit
- mov.l %d1,-(%sp)
- mov.l FP_SRC_HI(%a6),%d1 # load mantissa
- lsr.l &0x8,%d1 # shift mantissa for sgl
- or.l %d1,%d0 # create sgl SNAN
- mov.l (%sp)+,%d1
- andi.w &0x0007,%d1
- bsr.l store_dreg_l # store result to regfile
- bra.w fsnan_exit
- fsnan_out_d:
- mov.l FP_SRC_EX(%a6),%d0 # fetch SNAN sign
- andi.l &0x80000000,%d0 # keep sign
- ori.l &0x7ff80000,%d0 # insert new exponent,SNAN bit
- mov.l FP_SRC_HI(%a6),%d1 # load hi mantissa
- mov.l %d0,FP_SCR0_EX(%a6) # store to temp space
- mov.l &11,%d0 # load shift amt
- lsr.l %d0,%d1
- or.l %d1,FP_SCR0_EX(%a6) # create dbl hi
- mov.l FP_SRC_HI(%a6),%d1 # load hi mantissa
- andi.l &0x000007ff,%d1
- ror.l %d0,%d1
- mov.l %d1,FP_SCR0_HI(%a6) # store to temp space
- mov.l FP_SRC_LO(%a6),%d1 # load lo mantissa
- lsr.l %d0,%d1
- or.l %d1,FP_SCR0_HI(%a6) # create dbl lo
- lea FP_SCR0(%a6),%a0 # pass: ptr to operand
- mov.l EXC_EA(%a6),%a1 # pass: dst addr
- movq.l &0x8,%d0 # pass: size of 8 bytes
- bsr.l _dmem_write # write the default result
- tst.l %d1 # did dstore fail?
- bne.l facc_out_d # yes
- bra.w fsnan_exit
- # for extended precision, if the addressing mode is pre-decrement or
- # post-increment, then the address register did not get updated.
- # in addition, for pre-decrement, the stacked <ea> is incorrect.
- fsnan_out_x:
- clr.b SPCOND_FLG(%a6) # clear special case flag
- mov.w FP_SRC_EX(%a6),FP_SCR0_EX(%a6)
- clr.w 2+FP_SCR0(%a6)
- mov.l FP_SRC_HI(%a6),%d0
- bset &30,%d0
- mov.l %d0,FP_SCR0_HI(%a6)
- mov.l FP_SRC_LO(%a6),FP_SCR0_LO(%a6)
- btst &0x5,EXC_SR(%a6) # supervisor mode exception?
- bne.b fsnan_out_x_s # yes
- mov.l %usp,%a0 # fetch user stack pointer
- mov.l %a0,EXC_A7(%a6) # save on stack for calc_ea()
- mov.l (%a6),EXC_A6(%a6)
- bsr.l _calc_ea_fout # find the correct ea,update An
- mov.l %a0,%a1
- mov.l %a0,EXC_EA(%a6) # stack correct <ea>
- mov.l EXC_A7(%a6),%a0
- mov.l %a0,%usp # restore user stack pointer
- mov.l EXC_A6(%a6),(%a6)
- fsnan_out_x_save:
- lea FP_SCR0(%a6),%a0 # pass: ptr to operand
- movq.l &0xc,%d0 # pass: size of extended
- bsr.l _dmem_write # write the default result
- tst.l %d1 # did dstore fail?
- bne.l facc_out_x # yes
- bra.w fsnan_exit
- fsnan_out_x_s:
- mov.l (%a6),EXC_A6(%a6)
- bsr.l _calc_ea_fout # find the correct ea,update An
- mov.l %a0,%a1
- mov.l %a0,EXC_EA(%a6) # stack correct <ea>
- mov.l EXC_A6(%a6),(%a6)
- cmpi.b SPCOND_FLG(%a6),&mda7_flg # is <ea> mode -(a7)?
- bne.b fsnan_out_x_save # no
- # the operation was "fmove.x SNAN,-(a7)" from supervisor mode.
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- frestore FP_SRC(%a6)
- mov.l EXC_A6(%a6),%a6 # restore frame pointer
- mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp)
- mov.l LOCAL_SIZE+EXC_PC+0x2(%sp),LOCAL_SIZE+EXC_PC+0x2-0xc(%sp)
- mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp)
- mov.l LOCAL_SIZE+FP_SCR0_EX(%sp),LOCAL_SIZE+EXC_SR(%sp)
- mov.l LOCAL_SIZE+FP_SCR0_HI(%sp),LOCAL_SIZE+EXC_PC+0x2(%sp)
- mov.l LOCAL_SIZE+FP_SCR0_LO(%sp),LOCAL_SIZE+EXC_EA(%sp)
- add.l &LOCAL_SIZE-0x8,%sp
- bra.l _real_snan
- #########################################################################
- # XDEF **************************************************************** #
- # _fpsp_inex(): 060FPSP entry point for FP Inexact exception. #
- # #
- # This handler should be the first code executed upon taking the #
- # FP Inexact exception in an operating system. #
- # #
- # XREF **************************************************************** #
- # _imem_read_long() - read instruction longword #
- # fix_skewed_ops() - adjust src operand in fsave frame #
- # set_tag_x() - determine optype of src/dst operands #
- # store_fpreg() - store opclass 0 or 2 result to FP regfile #
- # unnorm_fix() - change UNNORM operands to NORM or ZERO #
- # load_fpn2() - load dst operand from FP regfile #
- # smovcr() - emulate an "fmovcr" instruction #
- # fout() - emulate an opclass 3 instruction #
- # tbl_unsupp - add of table of emulation routines for opclass 0,2 #
- # _real_inex() - "callout" to operating system inexact handler #
- # #
- # INPUT *************************************************************** #
- # - The system stack contains the FP Inexact exception frame #
- # - The fsave frame contains the source operand #
- # #
- # OUTPUT ************************************************************** #
- # - The system stack is unchanged #
- # - The fsave frame contains the adjusted src op for opclass 0,2 #
- # #
- # ALGORITHM *********************************************************** #
- # In a system where the FP Inexact exception is enabled, the goal #
- # is to get to the handler specified at _real_inex(). But, on the 060, #
- # for opclass zero and two instruction taking this exception, the #
- # hardware doesn't store the correct result to the destination FP #
- # register as did the '040 and '881/2. This handler must emulate the #
- # instruction in order to get this value and then store it to the #
- # correct register before calling _real_inex(). #
- # For opclass 3 instructions, the 060 doesn't store the default #
- # inexact result out to memory or data register file as it should. #
- # This code must emulate the move out by calling fout() before finally #
- # exiting through _real_inex(). #
- # #
- #########################################################################
- global _fpsp_inex
- _fpsp_inex:
- link.w %a6,&-LOCAL_SIZE # init stack frame
- fsave FP_SRC(%a6) # grab the "busy" frame
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack
- # the FPIAR holds the "current PC" of the faulting instruction
- mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch the instruction words
- mov.l %d0,EXC_OPWORD(%a6)
- ##############################################################################
- btst &13,%d0 # is instr an fmove out?
- bne.w finex_out # fmove out
- # the hardware, for "fabs" and "fneg" w/ a long source format, puts the
- # longword integer directly into the upper longword of the mantissa along
- # w/ an exponent value of 0x401e. we convert this to extended precision here.
- bfextu %d0{&19:&3},%d0 # fetch instr size
- bne.b finex_cont # instr size is not long
- cmpi.w FP_SRC_EX(%a6),&0x401e # is exponent 0x401e?
- bne.b finex_cont # no
- fmov.l &0x0,%fpcr
- fmov.l FP_SRC_HI(%a6),%fp0 # load integer src
- fmov.x %fp0,FP_SRC(%a6) # store integer as extended precision
- mov.w &0xe001,0x2+FP_SRC(%a6)
- finex_cont:
- lea FP_SRC(%a6),%a0 # pass: ptr to src op
- bsr.l fix_skewed_ops # fix src op
- # Here, we zero the ccode and exception byte field since we're going to
- # emulate the whole instruction. Notice, though, that we don't kill the
- # INEX1 bit. This is because a packed op has long since been converted
- # to extended before arriving here. Therefore, we need to retain the
- # INEX1 bit from when the operand was first converted.
- andi.l &0x00ff01ff,USER_FPSR(%a6) # zero all but accured field
- fmov.l &0x0,%fpcr # zero current control regs
- fmov.l &0x0,%fpsr
- bfextu EXC_EXTWORD(%a6){&0:&6},%d1 # extract upper 6 of cmdreg
- cmpi.b %d1,&0x17 # is op an fmovecr?
- beq.w finex_fmovcr # yes
- lea FP_SRC(%a6),%a0 # pass: ptr to src op
- bsr.l set_tag_x # tag the operand type
- mov.b %d0,STAG(%a6) # maybe NORM,DENORM
- # bits four and five of the fp extension word separate the monadic and dyadic
- # operations that can pass through fpsp_inex(). remember that fcmp and ftst
- # will never take this exception, but fsincos will.
- btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic?
- beq.b finex_extract # monadic
- btst &0x4,1+EXC_CMDREG(%a6) # is operation an fsincos?
- bne.b finex_extract # yes
- bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg
- bsr.l load_fpn2 # load dst into FP_DST
- lea FP_DST(%a6),%a0 # pass: ptr to dst op
- bsr.l set_tag_x # tag the operand type
- cmpi.b %d0,&UNNORM # is operand an UNNORM?
- bne.b finex_op2_done # no
- bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO
- finex_op2_done:
- mov.b %d0,DTAG(%a6) # save dst optype tag
- finex_extract:
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode
- mov.b 1+EXC_CMDREG(%a6),%d1
- andi.w &0x007f,%d1 # extract extension
- lea FP_SRC(%a6),%a0
- lea FP_DST(%a6),%a1
- mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr
- jsr (tbl_unsupp.l,%pc,%d1.l*1)
- # the operation has been emulated. the result is in fp0.
- finex_save:
- bfextu EXC_CMDREG(%a6){&6:&3},%d0
- bsr.l store_fpreg
- finex_exit:
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- frestore FP_SRC(%a6)
- unlk %a6
- bra.l _real_inex
- finex_fmovcr:
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd prec,mode
- mov.b 1+EXC_CMDREG(%a6),%d1
- andi.l &0x0000007f,%d1 # pass rom offset
- bsr.l smovcr
- bra.b finex_save
- ########################################################################
- #
- # the hardware does not save the default result to memory on enabled
- # inexact exceptions. we do this here before passing control to
- # the user inexact handler.
- #
- # byte, word, and long destination format operations can pass
- # through here. so can double and single precision.
- # although packed opclass three operations can take inexact
- # exceptions, they won't pass through here since they are caught
- # first by the unsupported data format exception handler. that handler
- # sends them directly to _real_inex() if necessary.
- #
- finex_out:
- mov.b &NORM,STAG(%a6) # src is a NORM
- clr.l %d0
- mov.b FPCR_MODE(%a6),%d0 # pass rnd prec,mode
- andi.l &0xffff00ff,USER_FPSR(%a6) # zero exception field
- lea FP_SRC(%a6),%a0 # pass ptr to src operand
- bsr.l fout # store the default result
- bra.b finex_exit
- #########################################################################
- # XDEF **************************************************************** #
- # _fpsp_dz(): 060FPSP entry point for FP DZ exception. #
- # #
- # This handler should be the first code executed upon taking #
- # the FP DZ exception in an operating system. #
- # #
- # XREF **************************************************************** #
- # _imem_read_long() - read instruction longword from memory #
- # fix_skewed_ops() - adjust fsave operand #
- # _real_dz() - "callout" exit point from FP DZ handler #
- # #
- # INPUT *************************************************************** #
- # - The system stack contains the FP DZ exception stack. #
- # - The fsave frame contains the source operand. #
- # #
- # OUTPUT ************************************************************** #
- # - The system stack contains the FP DZ exception stack. #
- # - The fsave frame contains the adjusted source operand. #
- # #
- # ALGORITHM *********************************************************** #
- # In a system where the DZ exception is enabled, the goal is to #
- # get to the handler specified at _real_dz(). But, on the 060, when the #
- # exception is taken, the input operand in the fsave state frame may #
- # be incorrect for some cases and need to be adjusted. So, this package #
- # adjusts the operand using fix_skewed_ops() and then branches to #
- # _real_dz(). #
- # #
- #########################################################################
- global _fpsp_dz
- _fpsp_dz:
- link.w %a6,&-LOCAL_SIZE # init stack frame
- fsave FP_SRC(%a6) # grab the "busy" frame
- movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
- fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
- fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack
- # the FPIAR holds the "current PC" of the faulting instruction
- mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch the instruction words
- mov.l %d0,EXC_OPWORD(%a6)
- ##############################################################################
- # here, we simply see if the operand in the fsave frame needs to be "unskewed".
- # this would be the case for opclass two operations with a source zero
- # in the sgl or dbl format.
- lea FP_SRC(%a6),%a0 # pass: ptr to src op
- bsr.l fix_skewed_ops # fix src op
- fdz_exit:
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- frestore FP_SRC(%a6)
- unlk %a6
- bra.l _real_dz
- #########################################################################
- # XDEF **************************************************************** #
- # _fpsp_fline(): 060FPSP entry point for "Line F emulator" #
- # exception when the "reduced" version of the #
- # FPSP is implemented that does not emulate #
- # FP unimplemented instructions. #
- # #
- # This handler should be the first code executed upon taking a #
- # "Line F Emulator" exception in an operating system integrating #
- # the reduced version of 060FPSP. #
- # #
- # XREF **************************************************************** #
- # _real_fpu_disabled() - Handle "FPU disabled" exceptions #
- # _real_fline() - Handle all other cases (treated equally) #
- # #
- # INPUT *************************************************************** #
- # - The system stack contains a "Line F Emulator" exception #
- # stack frame. #
- # #
- # OUTPUT ************************************************************** #
- # - The system stack is unchanged. #
- # #
- # ALGORITHM *********************************************************** #
- # When a "Line F Emulator" exception occurs in a system where #
- # "FPU Unimplemented" instructions will not be emulated, the exception #
- # can occur because then FPU is disabled or the instruction is to be #
- # classifed as "Line F". This module determines which case exists and #
- # calls the appropriate "callout". #
- # #
- #########################################################################
- global _fpsp_fline
- _fpsp_fline:
- # check to see if the FPU is disabled. if so, jump to the OS entry
- # point for that condition.
- cmpi.w 0x6(%sp),&0x402c
- beq.l _real_fpu_disabled
- bra.l _real_fline
- #########################################################################
- # XDEF **************************************************************** #
- # _dcalc_ea(): calc correct <ea> from <ea> stacked on exception #
- # #
- # XREF **************************************************************** #
- # inc_areg() - increment an address register #
- # dec_areg() - decrement an address register #
- # #
- # INPUT *************************************************************** #
- # d0 = number of bytes to adjust <ea> by #
- # #
- # OUTPUT ************************************************************** #
- # None #
- # #
- # ALGORITHM *********************************************************** #
- # "Dummy" CALCulate Effective Address: #
- # The stacked <ea> for FP unimplemented instructions and opclass #
- # two packed instructions is correct with the exception of... #
- # #
- # 1) -(An) : The register is not updated regardless of size. #
- # Also, for extended precision and packed, the #
- # stacked <ea> value is 8 bytes too big #
- # 2) (An)+ : The register is not updated. #
- # 3) #<data> : The upper longword of the immediate operand is #
- # stacked b,w,l and s sizes are completely stacked. #
- # d,x, and p are not. #
- # #
- #########################################################################
- global _dcalc_ea
- _dcalc_ea:
- mov.l %d0, %a0 # move # bytes to %a0
- mov.b 1+EXC_OPWORD(%a6), %d0 # fetch opcode word
- mov.l %d0, %d1 # make a copy
- andi.w &0x38, %d0 # extract mode field
- andi.l &0x7, %d1 # extract reg field
- cmpi.b %d0,&0x18 # is mode (An)+ ?
- beq.b dcea_pi # yes
- cmpi.b %d0,&0x20 # is mode -(An) ?
- beq.b dcea_pd # yes
- or.w %d1,%d0 # concat mode,reg
- cmpi.b %d0,&0x3c # is mode #<data>?
- beq.b dcea_imm # yes
- mov.l EXC_EA(%a6),%a0 # return <ea>
- rts
- # need to set immediate data flag here since we'll need to do
- # an imem_read to fetch this later.
- dcea_imm:
- mov.b &immed_flg,SPCOND_FLG(%a6)
- lea ([USER_FPIAR,%a6],0x4),%a0 # no; return <ea>
- rts
- # here, the <ea> is stacked correctly. however, we must update the
- # address register...
- dcea_pi:
- mov.l %a0,%d0 # pass amt to inc by
- bsr.l inc_areg # inc addr register
- mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct
- rts
- # the <ea> is stacked correctly for all but extended and packed which
- # the <ea>s are 8 bytes too large.
- # it would make no sense to have a pre-decrement to a7 in supervisor
- # mode so we don't even worry about this tricky case here : )
- dcea_pd:
- mov.l %a0,%d0 # pass amt to dec by
- bsr.l dec_areg # dec addr register
- mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct
- cmpi.b %d0,&0xc # is opsize ext or packed?
- beq.b dcea_pd2 # yes
- rts
- dcea_pd2:
- sub.l &0x8,%a0 # correct <ea>
- mov.l %a0,EXC_EA(%a6) # put correct <ea> on stack
- rts
- #########################################################################
- # XDEF **************************************************************** #
- # _calc_ea_fout(): calculate correct stacked <ea> for extended #
- # and packed data opclass 3 operations. #
- # #
- # XREF **************************************************************** #
- # None #
- # #
- # INPUT *************************************************************** #
- # None #
- # #
- # OUTPUT ************************************************************** #
- # a0 = return correct effective address #
- # #
- # ALGORITHM *********************************************************** #
- # For opclass 3 extended and packed data operations, the <ea> #
- # stacked for the exception is incorrect for -(an) and (an)+ addressing #
- # modes. Also, while we're at it, the index register itself must get #
- # updated. #
- # So, for -(an), we must subtract 8 off of the stacked <ea> value #
- # and return that value as the correct <ea> and store that value in An. #
- # For (an)+, the stacked <ea> is correct but we must adjust An by +12. #
- # #
- #########################################################################
- # This calc_ea is currently used to retrieve the correct <ea>
- # for fmove outs of type extended and packed.
- global _calc_ea_fout
- _calc_ea_fout:
- mov.b 1+EXC_OPWORD(%a6),%d0 # fetch opcode word
- mov.l %d0,%d1 # make a copy
- andi.w &0x38,%d0 # extract mode field
- andi.l &0x7,%d1 # extract reg field
- cmpi.b %d0,&0x18 # is mode (An)+ ?
- beq.b ceaf_pi # yes
- cmpi.b %d0,&0x20 # is mode -(An) ?
- beq.w ceaf_pd # yes
- mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct
- rts
- # (An)+ : extended and packed fmove out
- # : stacked <ea> is correct
- # : "An" not updated
- ceaf_pi:
- mov.w (tbl_ceaf_pi.b,%pc,%d1.w*2),%d1
- mov.l EXC_EA(%a6),%a0
- jmp (tbl_ceaf_pi.b,%pc,%d1.w*1)
- swbeg &0x8
- tbl_ceaf_pi:
- short ceaf_pi0 - tbl_ceaf_pi
- short ceaf_pi1 - tbl_ceaf_pi
- short ceaf_pi2 - tbl_ceaf_pi
- short ceaf_pi3 - tbl_ceaf_pi
- short ceaf_pi4 - tbl_ceaf_pi
- short ceaf_pi5 - tbl_ceaf_pi
- short ceaf_pi6 - tbl_ceaf_pi
- short ceaf_pi7 - tbl_ceaf_pi
- ceaf_pi0:
- addi.l &0xc,EXC_DREGS+0x8(%a6)
- rts
- ceaf_pi1:
- addi.l &0xc,EXC_DREGS+0xc(%a6)
- rts
- ceaf_pi2:
- add.l &0xc,%a2
- rts
- ceaf_pi3:
- add.l &0xc,%a3
- rts
- ceaf_pi4:
- add.l &0xc,%a4
- rts
- ceaf_pi5:
- add.l &0xc,%a5
- rts
- ceaf_pi6:
- addi.l &0xc,EXC_A6(%a6)
- rts
- ceaf_pi7:
- mov.b &mia7_flg,SPCOND_FLG(%a6)
- addi.l &0xc,EXC_A7(%a6)
- rts
- # -(An) : extended and packed fmove out
- # : stacked <ea> = actual <ea> + 8
- # : "An" not updated
- ceaf_pd:
- mov.w (tbl_ceaf_pd.b,%pc,%d1.w*2),%d1
- mov.l EXC_EA(%a6),%a0
- sub.l &0x8,%a0
- sub.l &0x8,EXC_EA(%a6)
- jmp (tbl_ceaf_pd.b,%pc,%d1.w*1)
- swbeg &0x8
- tbl_ceaf_pd:
- short ceaf_pd0 - tbl_ceaf_pd
- short ceaf_pd1 - tbl_ceaf_pd
- short ceaf_pd2 - tbl_ceaf_pd
- short ceaf_pd3 - tbl_ceaf_pd
- short ceaf_pd4 - tbl_ceaf_pd
- short ceaf_pd5 - tbl_ceaf_pd
- short ceaf_pd6 - tbl_ceaf_pd
- short ceaf_pd7 - tbl_ceaf_pd
- ceaf_pd0:
- mov.l %a0,EXC_DREGS+0x8(%a6)
- rts
- ceaf_pd1:
- mov.l %a0,EXC_DREGS+0xc(%a6)
- rts
- ceaf_pd2:
- mov.l %a0,%a2
- rts
- ceaf_pd3:
- mov.l %a0,%a3
- rts
- ceaf_pd4:
- mov.l %a0,%a4
- rts
- ceaf_pd5:
- mov.l %a0,%a5
- rts
- ceaf_pd6:
- mov.l %a0,EXC_A6(%a6)
- rts
- ceaf_pd7:
- mov.l %a0,EXC_A7(%a6)
- mov.b &mda7_flg,SPCOND_FLG(%a6)
- rts
- #
- # This table holds the offsets of the emulation routines for each individual
- # math operation relative to the address of this table. Included are
- # routines like fadd/fmul/fabs. The transcendentals ARE NOT. This is because
- # this table is for the version if the 060FPSP without transcendentals.
- # The location within the table is determined by the extension bits of the
- # operation longword.
- #
- swbeg &109
- tbl_unsupp:
- long fin - tbl_unsupp # 00: fmove
- long fint - tbl_unsupp # 01: fint
- long tbl_unsupp - tbl_unsupp # 02: fsinh
- long fintrz - tbl_unsupp # 03: fintrz
- long fsqrt - tbl_unsupp # 04: fsqrt
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp # 06: flognp1
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp # 08: fetoxm1
- long tbl_unsupp - tbl_unsupp # 09: ftanh
- long tbl_unsupp - tbl_unsupp # 0a: fatan
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp # 0c: fasin
- long tbl_unsupp - tbl_unsupp # 0d: fatanh
- long tbl_unsupp - tbl_unsupp # 0e: fsin
- long tbl_unsupp - tbl_unsupp # 0f: ftan
- long tbl_unsupp - tbl_unsupp # 10: fetox
- long tbl_unsupp - tbl_unsupp # 11: ftwotox
- long tbl_unsupp - tbl_unsupp # 12: ftentox
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp # 14: flogn
- long tbl_unsupp - tbl_unsupp # 15: flog10
- long tbl_unsupp - tbl_unsupp # 16: flog2
- long tbl_unsupp - tbl_unsupp
- long fabs - tbl_unsupp # 18: fabs
- long tbl_unsupp - tbl_unsupp # 19: fcosh
- long fneg - tbl_unsupp # 1a: fneg
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp # 1c: facos
- long tbl_unsupp - tbl_unsupp # 1d: fcos
- long tbl_unsupp - tbl_unsupp # 1e: fgetexp
- long tbl_unsupp - tbl_unsupp # 1f: fgetman
- long fdiv - tbl_unsupp # 20: fdiv
- long tbl_unsupp - tbl_unsupp # 21: fmod
- long fadd - tbl_unsupp # 22: fadd
- long fmul - tbl_unsupp # 23: fmul
- long fsgldiv - tbl_unsupp # 24: fsgldiv
- long tbl_unsupp - tbl_unsupp # 25: frem
- long tbl_unsupp - tbl_unsupp # 26: fscale
- long fsglmul - tbl_unsupp # 27: fsglmul
- long fsub - tbl_unsupp # 28: fsub
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp # 30: fsincos
- long tbl_unsupp - tbl_unsupp # 31: fsincos
- long tbl_unsupp - tbl_unsupp # 32: fsincos
- long tbl_unsupp - tbl_unsupp # 33: fsincos
- long tbl_unsupp - tbl_unsupp # 34: fsincos
- long tbl_unsupp - tbl_unsupp # 35: fsincos
- long tbl_unsupp - tbl_unsupp # 36: fsincos
- long tbl_unsupp - tbl_unsupp # 37: fsincos
- long fcmp - tbl_unsupp # 38: fcmp
- long tbl_unsupp - tbl_unsupp
- long ftst - tbl_unsupp # 3a: ftst
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long fsin - tbl_unsupp # 40: fsmove
- long fssqrt - tbl_unsupp # 41: fssqrt
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long fdin - tbl_unsupp # 44: fdmove
- long fdsqrt - tbl_unsupp # 45: fdsqrt
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long fsabs - tbl_unsupp # 58: fsabs
- long tbl_unsupp - tbl_unsupp
- long fsneg - tbl_unsupp # 5a: fsneg
- long tbl_unsupp - tbl_unsupp
- long fdabs - tbl_unsupp # 5c: fdabs
- long tbl_unsupp - tbl_unsupp
- long fdneg - tbl_unsupp # 5e: fdneg
- long tbl_unsupp - tbl_unsupp
- long fsdiv - tbl_unsupp # 60: fsdiv
- long tbl_unsupp - tbl_unsupp
- long fsadd - tbl_unsupp # 62: fsadd
- long fsmul - tbl_unsupp # 63: fsmul
- long fddiv - tbl_unsupp # 64: fddiv
- long tbl_unsupp - tbl_unsupp
- long fdadd - tbl_unsupp # 66: fdadd
- long fdmul - tbl_unsupp # 67: fdmul
- long fssub - tbl_unsupp # 68: fssub
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long tbl_unsupp - tbl_unsupp
- long fdsub - tbl_unsupp # 6c: fdsub
- #################################################
- # Add this here so non-fp modules can compile.
- # (smovcr is called from fpsp_inex.)
- global smovcr
- smovcr:
- bra.b smovcr
- #########################################################################
- # XDEF **************************************************************** #
- # fmovm_dynamic(): emulate "fmovm" dynamic instruction #
- # #
- # XREF **************************************************************** #
- # fetch_dreg() - fetch data register #
- # {i,d,}mem_read() - fetch data from memory #
- # _mem_write() - write data to memory #
- # iea_iacc() - instruction memory access error occurred #
- # iea_dacc() - data memory access error occurred #
- # restore() - restore An index regs if access error occurred #
- # #
- # INPUT *************************************************************** #
- # None #
- # #
- # OUTPUT ************************************************************** #
- # If instr is "fmovm Dn,-(A7)" from supervisor mode, #
- # d0 = size of dump #
- # d1 = Dn #
- # Else if instruction access error, #
- # d0 = FSLW #
- # Else if data access error, #
- # d0 = FSLW #
- # a0 = address of fault #
- # Else #
- # none. #
- # #
- # ALGORITHM *********************************************************** #
- # The effective address must be calculated since this is entered #
- # from an "Unimplemented Effective Address" exception handler. So, we #
- # have our own fcalc_ea() routine here. If an access error is flagged #
- # by a _{i,d,}mem_read() call, we must exit through the special #
- # handler. #
- # The data register is determined and its value loaded to get the #
- # string of FP registers affected. This value is used as an index into #
- # a lookup table such that we can determine the number of bytes #
- # involved. #
- # If the instruction is "fmovm.x <ea>,Dn", a _mem_read() is used #
- # to read in all FP values. Again, _mem_read() may fail and require a #
- # special exit. #
- # If the instruction is "fmovm.x DN,<ea>", a _mem_write() is used #
- # to write all FP values. _mem_write() may also fail. #
- # If the instruction is "fmovm.x DN,-(a7)" from supervisor mode, #
- # then we return the size of the dump and the string to the caller #
- # so that the move can occur outside of this routine. This special #
- # case is required so that moves to the system stack are handled #
- # correctly. #
- # #
- # DYNAMIC: #
- # fmovm.x dn, <ea> #
- # fmovm.x <ea>, dn #
- # #
- # <WORD 1> <WORD2> #
- # 1111 0010 00 |<ea>| 11@& 1000 0$$$ 0000 #
- # #
- # & = (0): predecrement addressing mode #
- # (1): postincrement or control addressing mode #
- # @ = (0): move listed regs from memory to the FPU #
- # (1): move listed regs from the FPU to memory #
- # $$$ : index of data register holding reg select mask #
- # #
- # NOTES: #
- # If the data register holds a zero, then the #
- # instruction is a nop. #
- # #
- #########################################################################
- global fmovm_dynamic
- fmovm_dynamic:
- # extract the data register in which the bit string resides...
- mov.b 1+EXC_EXTWORD(%a6),%d1 # fetch extword
- andi.w &0x70,%d1 # extract reg bits
- lsr.b &0x4,%d1 # shift into lo bits
- # fetch the bit string into d0...
- bsr.l fetch_dreg # fetch reg string
- andi.l &0x000000ff,%d0 # keep only lo byte
- mov.l %d0,-(%sp) # save strg
- mov.b (tbl_fmovm_size.w,%pc,%d0),%d0
- mov.l %d0,-(%sp) # save size
- bsr.l fmovm_calc_ea # calculate <ea>
- mov.l (%sp)+,%d0 # restore size
- mov.l (%sp)+,%d1 # restore strg
- # if the bit string is a zero, then the operation is a no-op
- # but, make sure that we've calculated ea and advanced the opword pointer
- beq.w fmovm_data_done
- # separate move ins from move outs...
- btst &0x5,EXC_EXTWORD(%a6) # is it a move in or out?
- beq.w fmovm_data_in # it's a move out
- #############
- # MOVE OUT: #
- #############
- fmovm_data_out:
- btst &0x4,EXC_EXTWORD(%a6) # control or predecrement?
- bne.w fmovm_out_ctrl # control
- ############################
- fmovm_out_predec:
- # for predecrement mode, the bit string is the opposite of both control
- # operations and postincrement mode. (bit7 = FP7 ... bit0 = FP0)
- # here, we convert it to be just like the others...
- mov.b (tbl_fmovm_convert.w,%pc,%d1.w*1),%d1
- btst &0x5,EXC_SR(%a6) # user or supervisor mode?
- beq.b fmovm_out_ctrl # user
- fmovm_out_predec_s:
- cmpi.b SPCOND_FLG(%a6),&mda7_flg # is <ea> mode -(a7)?
- bne.b fmovm_out_ctrl
- # the operation was unfortunately an: fmovm.x dn,-(sp)
- # called from supervisor mode.
- # we're also passing "size" and "strg" back to the calling routine
- rts
- ############################
- fmovm_out_ctrl:
- mov.l %a0,%a1 # move <ea> to a1
- sub.l %d0,%sp # subtract size of dump
- lea (%sp),%a0
- tst.b %d1 # should FP0 be moved?
- bpl.b fmovm_out_ctrl_fp1 # no
- mov.l 0x0+EXC_FP0(%a6),(%a0)+ # yes
- mov.l 0x4+EXC_FP0(%a6),(%a0)+
- mov.l 0x8+EXC_FP0(%a6),(%a0)+
- fmovm_out_ctrl_fp1:
- lsl.b &0x1,%d1 # should FP1 be moved?
- bpl.b fmovm_out_ctrl_fp2 # no
- mov.l 0x0+EXC_FP1(%a6),(%a0)+ # yes
- mov.l 0x4+EXC_FP1(%a6),(%a0)+
- mov.l 0x8+EXC_FP1(%a6),(%a0)+
- fmovm_out_ctrl_fp2:
- lsl.b &0x1,%d1 # should FP2 be moved?
- bpl.b fmovm_out_ctrl_fp3 # no
- fmovm.x &0x20,(%a0) # yes
- add.l &0xc,%a0
- fmovm_out_ctrl_fp3:
- lsl.b &0x1,%d1 # should FP3 be moved?
- bpl.b fmovm_out_ctrl_fp4 # no
- fmovm.x &0x10,(%a0) # yes
- add.l &0xc,%a0
- fmovm_out_ctrl_fp4:
- lsl.b &0x1,%d1 # should FP4 be moved?
- bpl.b fmovm_out_ctrl_fp5 # no
- fmovm.x &0x08,(%a0) # yes
- add.l &0xc,%a0
- fmovm_out_ctrl_fp5:
- lsl.b &0x1,%d1 # should FP5 be moved?
- bpl.b fmovm_out_ctrl_fp6 # no
- fmovm.x &0x04,(%a0) # yes
- add.l &0xc,%a0
- fmovm_out_ctrl_fp6:
- lsl.b &0x1,%d1 # should FP6 be moved?
- bpl.b fmovm_out_ctrl_fp7 # no
- fmovm.x &0x02,(%a0) # yes
- add.l &0xc,%a0
- fmovm_out_ctrl_fp7:
- lsl.b &0x1,%d1 # should FP7 be moved?
- bpl.b fmovm_out_ctrl_done # no
- fmovm.x &0x01,(%a0) # yes
- add.l &0xc,%a0
- fmovm_out_ctrl_done:
- mov.l %a1,L_SCR1(%a6)
- lea (%sp),%a0 # pass: supervisor src
- mov.l %d0,-(%sp) # save size
- bsr.l _dmem_write # copy data to user mem
- mov.l (%sp)+,%d0
- add.l %d0,%sp # clear fpreg data from stack
- tst.l %d1 # did dstore err?
- bne.w fmovm_out_err # yes
- rts
- ############
- # MOVE IN: #
- ############
- fmovm_data_in:
- mov.l %a0,L_SCR1(%a6)
- sub.l %d0,%sp # make room for fpregs
- lea (%sp),%a1
- mov.l %d1,-(%sp) # save bit string for later
- mov.l %d0,-(%sp) # save # of bytes
- bsr.l _dmem_read # copy data from user mem
- mov.l (%sp)+,%d0 # retrieve # of bytes
- tst.l %d1 # did dfetch fail?
- bne.w fmovm_in_err # yes
- mov.l (%sp)+,%d1 # load bit string
- lea (%sp),%a0 # addr of stack
- tst.b %d1 # should FP0 be moved?
- bpl.b fmovm_data_in_fp1 # no
- mov.l (%a0)+,0x0+EXC_FP0(%a6) # yes
- mov.l (%a0)+,0x4+EXC_FP0(%a6)
- mov.l (%a0)+,0x8+EXC_FP0(%a6)
- fmovm_data_in_fp1:
- lsl.b &0x1,%d1 # should FP1 be moved?
- bpl.b fmovm_data_in_fp2 # no
- mov.l (%a0)+,0x0+EXC_FP1(%a6) # yes
- mov.l (%a0)+,0x4+EXC_FP1(%a6)
- mov.l (%a0)+,0x8+EXC_FP1(%a6)
- fmovm_data_in_fp2:
- lsl.b &0x1,%d1 # should FP2 be moved?
- bpl.b fmovm_data_in_fp3 # no
- fmovm.x (%a0)+,&0x20 # yes
- fmovm_data_in_fp3:
- lsl.b &0x1,%d1 # should FP3 be moved?
- bpl.b fmovm_data_in_fp4 # no
- fmovm.x (%a0)+,&0x10 # yes
- fmovm_data_in_fp4:
- lsl.b &0x1,%d1 # should FP4 be moved?
- bpl.b fmovm_data_in_fp5 # no
- fmovm.x (%a0)+,&0x08 # yes
- fmovm_data_in_fp5:
- lsl.b &0x1,%d1 # should FP5 be moved?
- bpl.b fmovm_data_in_fp6 # no
- fmovm.x (%a0)+,&0x04 # yes
- fmovm_data_in_fp6:
- lsl.b &0x1,%d1 # should FP6 be moved?
- bpl.b fmovm_data_in_fp7 # no
- fmovm.x (%a0)+,&0x02 # yes
- fmovm_data_in_fp7:
- lsl.b &0x1,%d1 # should FP7 be moved?
- bpl.b fmovm_data_in_done # no
- fmovm.x (%a0)+,&0x01 # yes
- fmovm_data_in_done:
- add.l %d0,%sp # remove fpregs from stack
- rts
- #####################################
- fmovm_data_done:
- rts
- ##############################################################################
- #
- # table indexed by the operation's bit string that gives the number
- # of bytes that will be moved.
- #
- # number of bytes = (# of 1's in bit string) * 12(bytes/fpreg)
- #
- tbl_fmovm_size:
- byte 0x00,0x0c,0x0c,0x18,0x0c,0x18,0x18,0x24
- byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30
- byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30
- byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
- byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30
- byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
- byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
- byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
- byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30
- byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
- byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
- byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
- byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
- byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
- byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
- byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54
- byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30
- byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
- byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
- byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
- byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
- byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
- byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
- byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54
- byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
- byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
- byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
- byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54
- byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
- byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54
- byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54
- byte 0x3c,0x48,0x48,0x54,0x48,0x54,0x54,0x60
- #
- # table to convert a pre-decrement bit string into a post-increment
- # or control bit string.
- # ex: 0x00 ==> 0x00
- # 0x01 ==> 0x80
- # 0x02 ==> 0x40
- # .
- # .
- # 0xfd ==> 0xbf
- # 0xfe ==> 0x7f
- # 0xff ==> 0xff
- #
- tbl_fmovm_convert:
- byte 0x00,0x80,0x40,0xc0,0x20,0xa0,0x60,0xe0
- byte 0x10,0x90,0x50,0xd0,0x30,0xb0,0x70,0xf0
- byte 0x08,0x88,0x48,0xc8,0x28,0xa8,0x68,0xe8
- byte 0x18,0x98,0x58,0xd8,0x38,0xb8,0x78,0xf8
- byte 0x04,0x84,0x44,0xc4,0x24,0xa4,0x64,0xe4
- byte 0x14,0x94,0x54,0xd4,0x34,0xb4,0x74,0xf4
- byte 0x0c,0x8c,0x4c,0xcc,0x2c,0xac,0x6c,0xec
- byte 0x1c,0x9c,0x5c,0xdc,0x3c,0xbc,0x7c,0xfc
- byte 0x02,0x82,0x42,0xc2,0x22,0xa2,0x62,0xe2
- byte 0x12,0x92,0x52,0xd2,0x32,0xb2,0x72,0xf2
- byte 0x0a,0x8a,0x4a,0xca,0x2a,0xaa,0x6a,0xea
- byte 0x1a,0x9a,0x5a,0xda,0x3a,0xba,0x7a,0xfa
- byte 0x06,0x86,0x46,0xc6,0x26,0xa6,0x66,0xe6
- byte 0x16,0x96,0x56,0xd6,0x36,0xb6,0x76,0xf6
- byte 0x0e,0x8e,0x4e,0xce,0x2e,0xae,0x6e,0xee
- byte 0x1e,0x9e,0x5e,0xde,0x3e,0xbe,0x7e,0xfe
- byte 0x01,0x81,0x41,0xc1,0x21,0xa1,0x61,0xe1
- byte 0x11,0x91,0x51,0xd1,0x31,0xb1,0x71,0xf1
- byte 0x09,0x89,0x49,0xc9,0x29,0xa9,0x69,0xe9
- byte 0x19,0x99,0x59,0xd9,0x39,0xb9,0x79,0xf9
- byte 0x05,0x85,0x45,0xc5,0x25,0xa5,0x65,0xe5
- byte 0x15,0x95,0x55,0xd5,0x35,0xb5,0x75,0xf5
- byte 0x0d,0x8d,0x4d,0xcd,0x2d,0xad,0x6d,0xed
- byte 0x1d,0x9d,0x5d,0xdd,0x3d,0xbd,0x7d,0xfd
- byte 0x03,0x83,0x43,0xc3,0x23,0xa3,0x63,0xe3
- byte 0x13,0x93,0x53,0xd3,0x33,0xb3,0x73,0xf3
- byte 0x0b,0x8b,0x4b,0xcb,0x2b,0xab,0x6b,0xeb
- byte 0x1b,0x9b,0x5b,0xdb,0x3b,0xbb,0x7b,0xfb
- byte 0x07,0x87,0x47,0xc7,0x27,0xa7,0x67,0xe7
- byte 0x17,0x97,0x57,0xd7,0x37,0xb7,0x77,0xf7
- byte 0x0f,0x8f,0x4f,0xcf,0x2f,0xaf,0x6f,0xef
- byte 0x1f,0x9f,0x5f,0xdf,0x3f,0xbf,0x7f,0xff
- global fmovm_calc_ea
- ###############################################
- # _fmovm_calc_ea: calculate effective address #
- ###############################################
- fmovm_calc_ea:
- mov.l %d0,%a0 # move # bytes to a0
- # currently, MODE and REG are taken from the EXC_OPWORD. this could be
- # easily changed if they were inputs passed in registers.
- mov.w EXC_OPWORD(%a6),%d0 # fetch opcode word
- mov.w %d0,%d1 # make a copy
- andi.w &0x3f,%d0 # extract mode field
- andi.l &0x7,%d1 # extract reg field
- # jump to the corresponding function for each {MODE,REG} pair.
- mov.w (tbl_fea_mode.b,%pc,%d0.w*2),%d0 # fetch jmp distance
- jmp (tbl_fea_mode.b,%pc,%d0.w*1) # jmp to correct ea mode
- swbeg &64
- tbl_fea_mode:
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short faddr_ind_a0 - tbl_fea_mode
- short faddr_ind_a1 - tbl_fea_mode
- short faddr_ind_a2 - tbl_fea_mode
- short faddr_ind_a3 - tbl_fea_mode
- short faddr_ind_a4 - tbl_fea_mode
- short faddr_ind_a5 - tbl_fea_mode
- short faddr_ind_a6 - tbl_fea_mode
- short faddr_ind_a7 - tbl_fea_mode
- short faddr_ind_p_a0 - tbl_fea_mode
- short faddr_ind_p_a1 - tbl_fea_mode
- short faddr_ind_p_a2 - tbl_fea_mode
- short faddr_ind_p_a3 - tbl_fea_mode
- short faddr_ind_p_a4 - tbl_fea_mode
- short faddr_ind_p_a5 - tbl_fea_mode
- short faddr_ind_p_a6 - tbl_fea_mode
- short faddr_ind_p_a7 - tbl_fea_mode
- short faddr_ind_m_a0 - tbl_fea_mode
- short faddr_ind_m_a1 - tbl_fea_mode
- short faddr_ind_m_a2 - tbl_fea_mode
- short faddr_ind_m_a3 - tbl_fea_mode
- short faddr_ind_m_a4 - tbl_fea_mode
- short faddr_ind_m_a5 - tbl_fea_mode
- short faddr_ind_m_a6 - tbl_fea_mode
- short faddr_ind_m_a7 - tbl_fea_mode
- short faddr_ind_disp_a0 - tbl_fea_mode
- short faddr_ind_disp_a1 - tbl_fea_mode
- short faddr_ind_disp_a2 - tbl_fea_mode
- short faddr_ind_disp_a3 - tbl_fea_mode
- short faddr_ind_disp_a4 - tbl_fea_mode
- short faddr_ind_disp_a5 - tbl_fea_mode
- short faddr_ind_disp_a6 - tbl_fea_mode
- short faddr_ind_disp_a7 - tbl_fea_mode
- short faddr_ind_ext - tbl_fea_mode
- short faddr_ind_ext - tbl_fea_mode
- short faddr_ind_ext - tbl_fea_mode
- short faddr_ind_ext - tbl_fea_mode
- short faddr_ind_ext - tbl_fea_mode
- short faddr_ind_ext - tbl_fea_mode
- short faddr_ind_ext - tbl_fea_mode
- short faddr_ind_ext - tbl_fea_mode
- short fabs_short - tbl_fea_mode
- short fabs_long - tbl_fea_mode
- short fpc_ind - tbl_fea_mode
- short fpc_ind_ext - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- short tbl_fea_mode - tbl_fea_mode
- ###################################
- # Address register indirect: (An) #
- ###################################
- faddr_ind_a0:
- mov.l EXC_DREGS+0x8(%a6),%a0 # Get current a0
- rts
- faddr_ind_a1:
- mov.l EXC_DREGS+0xc(%a6),%a0 # Get current a1
- rts
- faddr_ind_a2:
- mov.l %a2,%a0 # Get current a2
- rts
- faddr_ind_a3:
- mov.l %a3,%a0 # Get current a3
- rts
- faddr_ind_a4:
- mov.l %a4,%a0 # Get current a4
- rts
- faddr_ind_a5:
- mov.l %a5,%a0 # Get current a5
- rts
- faddr_ind_a6:
- mov.l (%a6),%a0 # Get current a6
- rts
- faddr_ind_a7:
- mov.l EXC_A7(%a6),%a0 # Get current a7
- rts
- #####################################################
- # Address register indirect w/ postincrement: (An)+ #
- #####################################################
- faddr_ind_p_a0:
- mov.l EXC_DREGS+0x8(%a6),%d0 # Get current a0
- mov.l %d0,%d1
- add.l %a0,%d1 # Increment
- mov.l %d1,EXC_DREGS+0x8(%a6) # Save incr value
- mov.l %d0,%a0
- rts
- faddr_ind_p_a1:
- mov.l EXC_DREGS+0xc(%a6),%d0 # Get current a1
- mov.l %d0,%d1
- add.l %a0,%d1 # Increment
- mov.l %d1,EXC_DREGS+0xc(%a6) # Save incr value
- mov.l %d0,%a0
- rts
- faddr_ind_p_a2:
- mov.l %a2,%d0 # Get current a2
- mov.l %d0,%d1
- add.l %a0,%d1 # Increment
- mov.l %d1,%a2 # Save incr value
- mov.l %d0,%a0
- rts
- faddr_ind_p_a3:
- mov.l %a3,%d0 # Get current a3
- mov.l %d0,%d1
- add.l %a0,%d1 # Increment
- mov.l %d1,%a3 # Save incr value
- mov.l %d0,%a0
- rts
- faddr_ind_p_a4:
- mov.l %a4,%d0 # Get current a4
- mov.l %d0,%d1
- add.l %a0,%d1 # Increment
- mov.l %d1,%a4 # Save incr value
- mov.l %d0,%a0
- rts
- faddr_ind_p_a5:
- mov.l %a5,%d0 # Get current a5
- mov.l %d0,%d1
- add.l %a0,%d1 # Increment
- mov.l %d1,%a5 # Save incr value
- mov.l %d0,%a0
- rts
- faddr_ind_p_a6:
- mov.l (%a6),%d0 # Get current a6
- mov.l %d0,%d1
- add.l %a0,%d1 # Increment
- mov.l %d1,(%a6) # Save incr value
- mov.l %d0,%a0
- rts
- faddr_ind_p_a7:
- mov.b &mia7_flg,SPCOND_FLG(%a6) # set "special case" flag
- mov.l EXC_A7(%a6),%d0 # Get current a7
- mov.l %d0,%d1
- add.l %a0,%d1 # Increment
- mov.l %d1,EXC_A7(%a6) # Save incr value
- mov.l %d0,%a0
- rts
- ####################################################
- # Address register indirect w/ predecrement: -(An) #
- ####################################################
- faddr_ind_m_a0:
- mov.l EXC_DREGS+0x8(%a6),%d0 # Get current a0
- sub.l %a0,%d0 # Decrement
- mov.l %d0,EXC_DREGS+0x8(%a6) # Save decr value
- mov.l %d0,%a0
- rts
- faddr_ind_m_a1:
- mov.l EXC_DREGS+0xc(%a6),%d0 # Get current a1
- sub.l %a0,%d0 # Decrement
- mov.l %d0,EXC_DREGS+0xc(%a6) # Save decr value
- mov.l %d0,%a0
- rts
- faddr_ind_m_a2:
- mov.l %a2,%d0 # Get current a2
- sub.l %a0,%d0 # Decrement
- mov.l %d0,%a2 # Save decr value
- mov.l %d0,%a0
- rts
- faddr_ind_m_a3:
- mov.l %a3,%d0 # Get current a3
- sub.l %a0,%d0 # Decrement
- mov.l %d0,%a3 # Save decr value
- mov.l %d0,%a0
- rts
- faddr_ind_m_a4:
- mov.l %a4,%d0 # Get current a4
- sub.l %a0,%d0 # Decrement
- mov.l %d0,%a4 # Save decr value
- mov.l %d0,%a0
- rts
- faddr_ind_m_a5:
- mov.l %a5,%d0 # Get current a5
- sub.l %a0,%d0 # Decrement
- mov.l %d0,%a5 # Save decr value
- mov.l %d0,%a0
- rts
- faddr_ind_m_a6:
- mov.l (%a6),%d0 # Get current a6
- sub.l %a0,%d0 # Decrement
- mov.l %d0,(%a6) # Save decr value
- mov.l %d0,%a0
- rts
- faddr_ind_m_a7:
- mov.b &mda7_flg,SPCOND_FLG(%a6) # set "special case" flag
- mov.l EXC_A7(%a6),%d0 # Get current a7
- sub.l %a0,%d0 # Decrement
- mov.l %d0,EXC_A7(%a6) # Save decr value
- mov.l %d0,%a0
- rts
- ########################################################
- # Address register indirect w/ displacement: (d16, An) #
- ########################################################
- faddr_ind_disp_a0:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
- mov.w %d0,%a0 # sign extend displacement
- add.l EXC_DREGS+0x8(%a6),%a0 # a0 + d16
- rts
- faddr_ind_disp_a1:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
- mov.w %d0,%a0 # sign extend displacement
- add.l EXC_DREGS+0xc(%a6),%a0 # a1 + d16
- rts
- faddr_ind_disp_a2:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
- mov.w %d0,%a0 # sign extend displacement
- add.l %a2,%a0 # a2 + d16
- rts
- faddr_ind_disp_a3:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
- mov.w %d0,%a0 # sign extend displacement
- add.l %a3,%a0 # a3 + d16
- rts
- faddr_ind_disp_a4:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
- mov.w %d0,%a0 # sign extend displacement
- add.l %a4,%a0 # a4 + d16
- rts
- faddr_ind_disp_a5:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
- mov.w %d0,%a0 # sign extend displacement
- add.l %a5,%a0 # a5 + d16
- rts
- faddr_ind_disp_a6:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
- mov.w %d0,%a0 # sign extend displacement
- add.l (%a6),%a0 # a6 + d16
- rts
- faddr_ind_disp_a7:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
- mov.w %d0,%a0 # sign extend displacement
- add.l EXC_A7(%a6),%a0 # a7 + d16
- rts
- ########################################################################
- # Address register indirect w/ index(8-bit displacement): (d8, An, Xn) #
- # " " " w/ " (base displacement): (bd, An, Xn) #
- # Memory indirect postindexed: ([bd, An], Xn, od) #
- # Memory indirect preindexed: ([bd, An, Xn], od) #
- ########################################################################
- faddr_ind_ext:
- addq.l &0x8,%d1
- bsr.l fetch_dreg # fetch base areg
- mov.l %d0,-(%sp)
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word # fetch extword in d0
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
- mov.l (%sp)+,%a0
- btst &0x8,%d0
- bne.w fcalc_mem_ind
- mov.l %d0,L_SCR1(%a6) # hold opword
- mov.l %d0,%d1
- rol.w &0x4,%d1
- andi.w &0xf,%d1 # extract index regno
- # count on fetch_dreg() not to alter a0...
- bsr.l fetch_dreg # fetch index
- mov.l %d2,-(%sp) # save d2
- mov.l L_SCR1(%a6),%d2 # fetch opword
- btst &0xb,%d2 # is it word or long?
- bne.b faii8_long
- ext.l %d0 # sign extend word index
- faii8_long:
- mov.l %d2,%d1
- rol.w &0x7,%d1
- andi.l &0x3,%d1 # extract scale value
- lsl.l %d1,%d0 # shift index by scale
- extb.l %d2 # sign extend displacement
- add.l %d2,%d0 # index + disp
- add.l %d0,%a0 # An + (index + disp)
- mov.l (%sp)+,%d2 # restore old d2
- rts
- ###########################
- # Absolute short: (XXX).W #
- ###########################
- fabs_short:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word # fetch short address
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
- mov.w %d0,%a0 # return <ea> in a0
- rts
- ##########################
- # Absolute long: (XXX).L #
- ##########################
- fabs_long:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch long address
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
- mov.l %d0,%a0 # return <ea> in a0
- rts
- #######################################################
- # Program counter indirect w/ displacement: (d16, PC) #
- #######################################################
- fpc_ind:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word # fetch word displacement
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
- mov.w %d0,%a0 # sign extend displacement
- add.l EXC_EXTWPTR(%a6),%a0 # pc + d16
- # _imem_read_word() increased the extwptr by 2. need to adjust here.
- subq.l &0x2,%a0 # adjust <ea>
- rts
- ##########################################################
- # PC indirect w/ index(8-bit displacement): (d8, PC, An) #
- # " " w/ " (base displacement): (bd, PC, An) #
- # PC memory indirect postindexed: ([bd, PC], Xn, od) #
- # PC memory indirect preindexed: ([bd, PC, Xn], od) #
- ##########################################################
- fpc_ind_ext:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word # fetch ext word
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
- mov.l EXC_EXTWPTR(%a6),%a0 # put base in a0
- subq.l &0x2,%a0 # adjust base
- btst &0x8,%d0 # is disp only 8 bits?
- bne.w fcalc_mem_ind # calc memory indirect
- mov.l %d0,L_SCR1(%a6) # store opword
- mov.l %d0,%d1 # make extword copy
- rol.w &0x4,%d1 # rotate reg num into place
- andi.w &0xf,%d1 # extract register number
- # count on fetch_dreg() not to alter a0...
- bsr.l fetch_dreg # fetch index
- mov.l %d2,-(%sp) # save d2
- mov.l L_SCR1(%a6),%d2 # fetch opword
- btst &0xb,%d2 # is index word or long?
- bne.b fpii8_long # long
- ext.l %d0 # sign extend word index
- fpii8_long:
- mov.l %d2,%d1
- rol.w &0x7,%d1 # rotate scale value into place
- andi.l &0x3,%d1 # extract scale value
- lsl.l %d1,%d0 # shift index by scale
- extb.l %d2 # sign extend displacement
- add.l %d2,%d0 # disp + index
- add.l %d0,%a0 # An + (index + disp)
- mov.l (%sp)+,%d2 # restore temp register
- rts
- # d2 = index
- # d3 = base
- # d4 = od
- # d5 = extword
- fcalc_mem_ind:
- btst &0x6,%d0 # is the index suppressed?
- beq.b fcalc_index
- movm.l &0x3c00,-(%sp) # save d2-d5
- mov.l %d0,%d5 # put extword in d5
- mov.l %a0,%d3 # put base in d3
- clr.l %d2 # yes, so index = 0
- bra.b fbase_supp_ck
- # index:
- fcalc_index:
- mov.l %d0,L_SCR1(%a6) # save d0 (opword)
- bfextu %d0{&16:&4},%d1 # fetch dreg index
- bsr.l fetch_dreg
- movm.l &0x3c00,-(%sp) # save d2-d5
- mov.l %d0,%d2 # put index in d2
- mov.l L_SCR1(%a6),%d5
- mov.l %a0,%d3
- btst &0xb,%d5 # is index word or long?
- bne.b fno_ext
- ext.l %d2
- fno_ext:
- bfextu %d5{&21:&2},%d0
- lsl.l %d0,%d2
- # base address (passed as parameter in d3):
- # we clear the value here if it should actually be suppressed.
- fbase_supp_ck:
- btst &0x7,%d5 # is the bd suppressed?
- beq.b fno_base_sup
- clr.l %d3
- # base displacement:
- fno_base_sup:
- bfextu %d5{&26:&2},%d0 # get bd size
- # beq.l fmovm_error # if (size == 0) it's reserved
- cmpi.b %d0,&0x2
- blt.b fno_bd
- beq.b fget_word_bd
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long
- tst.l %d1 # did ifetch fail?
- bne.l fcea_iacc # yes
- bra.b fchk_ind
- fget_word_bd:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
- tst.l %d1 # did ifetch fail?
- bne.l fcea_iacc # yes
- ext.l %d0 # sign extend bd
- fchk_ind:
- add.l %d0,%d3 # base += bd
- # outer displacement:
- fno_bd:
- bfextu %d5{&30:&2},%d0 # is od suppressed?
- beq.w faii_bd
- cmpi.b %d0,&0x2
- blt.b fnull_od
- beq.b fword_od
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long
- tst.l %d1 # did ifetch fail?
- bne.l fcea_iacc # yes
- bra.b fadd_them
- fword_od:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_word
- tst.l %d1 # did ifetch fail?
- bne.l fcea_iacc # yes
- ext.l %d0 # sign extend od
- bra.b fadd_them
- fnull_od:
- clr.l %d0
- fadd_them:
- mov.l %d0,%d4
- btst &0x2,%d5 # pre or post indexing?
- beq.b fpre_indexed
- mov.l %d3,%a0
- bsr.l _dmem_read_long
- tst.l %d1 # did dfetch fail?
- bne.w fcea_err # yes
- add.l %d2,%d0 # <ea> += index
- add.l %d4,%d0 # <ea> += od
- bra.b fdone_ea
- fpre_indexed:
- add.l %d2,%d3 # preindexing
- mov.l %d3,%a0
- bsr.l _dmem_read_long
- tst.l %d1 # did dfetch fail?
- bne.w fcea_err # yes
- add.l %d4,%d0 # ea += od
- bra.b fdone_ea
- faii_bd:
- add.l %d2,%d3 # ea = (base + bd) + index
- mov.l %d3,%d0
- fdone_ea:
- mov.l %d0,%a0
- movm.l (%sp)+,&0x003c # restore d2-d5
- rts
- #########################################################
- fcea_err:
- mov.l %d3,%a0
- movm.l (%sp)+,&0x003c # restore d2-d5
- mov.w &0x0101,%d0
- bra.l iea_dacc
- fcea_iacc:
- movm.l (%sp)+,&0x003c # restore d2-d5
- bra.l iea_iacc
- fmovm_out_err:
- bsr.l restore
- mov.w &0x00e1,%d0
- bra.b fmovm_err
- fmovm_in_err:
- bsr.l restore
- mov.w &0x0161,%d0
- fmovm_err:
- mov.l L_SCR1(%a6),%a0
- bra.l iea_dacc
- #########################################################################
- # XDEF **************************************************************** #
- # fmovm_ctrl(): emulate fmovm.l of control registers instr #
- # #
- # XREF **************************************************************** #
- # _imem_read_long() - read longword from memory #
- # iea_iacc() - _imem_read_long() failed; error recovery #
- # #
- # INPUT *************************************************************** #
- # None #
- # #
- # OUTPUT ************************************************************** #
- # If _imem_read_long() doesn't fail: #
- # USER_FPCR(a6) = new FPCR value #
- # USER_FPSR(a6) = new FPSR value #
- # USER_FPIAR(a6) = new FPIAR value #
- # #
- # ALGORITHM *********************************************************** #
- # Decode the instruction type by looking at the extension word #
- # in order to see how many control registers to fetch from memory. #
- # Fetch them using _imem_read_long(). If this fetch fails, exit through #
- # the special access error exit handler iea_iacc(). #
- # #
- # Instruction word decoding: #
- # #
- # fmovem.l #<data>, {FPIAR&|FPCR&|FPSR} #
- # #
- # WORD1 WORD2 #
- # 1111 0010 00 111100 100$ $$00 0000 0000 #
- # #
- # $$$ (100): FPCR #
- # (010): FPSR #
- # (001): FPIAR #
- # (000): FPIAR #
- # #
- #########################################################################
- global fmovm_ctrl
- fmovm_ctrl:
- mov.b EXC_EXTWORD(%a6),%d0 # fetch reg select bits
- cmpi.b %d0,&0x9c # fpcr & fpsr & fpiar ?
- beq.w fctrl_in_7 # yes
- cmpi.b %d0,&0x98 # fpcr & fpsr ?
- beq.w fctrl_in_6 # yes
- cmpi.b %d0,&0x94 # fpcr & fpiar ?
- beq.b fctrl_in_5 # yes
- # fmovem.l #<data>, fpsr/fpiar
- fctrl_in_3:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch FPSR from mem
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
- mov.l %d0,USER_FPSR(%a6) # store new FPSR to stack
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch FPIAR from mem
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
- mov.l %d0,USER_FPIAR(%a6) # store new FPIAR to stack
- rts
- # fmovem.l #<data>, fpcr/fpiar
- fctrl_in_5:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch FPCR from mem
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
- mov.l %d0,USER_FPCR(%a6) # store new FPCR to stack
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch FPIAR from mem
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
- mov.l %d0,USER_FPIAR(%a6) # store new FPIAR to stack
- rts
- # fmovem.l #<data>, fpcr/fpsr
- fctrl_in_6:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch FPCR from mem
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
- mov.l %d0,USER_FPCR(%a6) # store new FPCR to mem
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch FPSR from mem
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
- mov.l %d0,USER_FPSR(%a6) # store new FPSR to mem
- rts
- # fmovem.l #<data>, fpcr/fpsr/fpiar
- fctrl_in_7:
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch FPCR from mem
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
- mov.l %d0,USER_FPCR(%a6) # store new FPCR to mem
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch FPSR from mem
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
- mov.l %d0,USER_FPSR(%a6) # store new FPSR to mem
- mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
- addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
- bsr.l _imem_read_long # fetch FPIAR from mem
- tst.l %d1 # did ifetch fail?
- bne.l iea_iacc # yes
- mov.l %d0,USER_FPIAR(%a6) # store new FPIAR to mem
- rts
- ##########################################################################
- #########################################################################
- # XDEF **************************************************************** #
- # addsub_scaler2(): scale inputs to fadd/fsub such that no #
- # OVFL/UNFL exceptions will result #
- # #
- # XREF **************************************************************** #
- # norm() - normalize mantissa after adjusting exponent #
- # #
- # INPUT *************************************************************** #
- # FP_SRC(a6) = fp op1(src) #
- # FP_DST(a6) = fp op2(dst) #
- # #
- # OUTPUT ************************************************************** #
- # FP_SRC(a6) = fp op1 scaled(src) #
- # FP_DST(a6) = fp op2 scaled(dst) #
- # d0 = scale amount #
- # #
- # ALGORITHM *********************************************************** #
- # If the DST exponent is > the SRC exponent, set the DST exponent #
- # equal to 0x3fff and scale the SRC exponent by the value that the #
- # DST exponent was scaled by. If the SRC exponent is greater or equal, #
- # do the opposite. Return this scale factor in d0. #
- # If the two exponents differ by > the number of mantissa bits #
- # plus two, then set the smallest exponent to a very small value as a #
- # quick shortcut. #
- # #
- #########################################################################
- global addsub_scaler2
- addsub_scaler2:
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l DST_HI(%a1),FP_SCR1_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- mov.l DST_LO(%a1),FP_SCR1_LO(%a6)
- mov.w SRC_EX(%a0),%d0
- mov.w DST_EX(%a1),%d1
- mov.w %d0,FP_SCR0_EX(%a6)
- mov.w %d1,FP_SCR1_EX(%a6)
- andi.w &0x7fff,%d0
- andi.w &0x7fff,%d1
- mov.w %d0,L_SCR1(%a6) # store src exponent
- mov.w %d1,2+L_SCR1(%a6) # store dst exponent
- cmp.w %d0, %d1 # is src exp >= dst exp?
- bge.l src_exp_ge2
- # dst exp is > src exp; scale dst to exp = 0x3fff
- dst_exp_gt2:
- bsr.l scale_to_zero_dst
- mov.l %d0,-(%sp) # save scale factor
- cmpi.b STAG(%a6),&DENORM # is dst denormalized?
- bne.b cmpexp12
- lea FP_SCR0(%a6),%a0
- bsr.l norm # normalize the denorm; result is new exp
- neg.w %d0 # new exp = -(shft val)
- mov.w %d0,L_SCR1(%a6) # inset new exp
- cmpexp12:
- mov.w 2+L_SCR1(%a6),%d0
- subi.w &mantissalen+2,%d0 # subtract mantissalen+2 from larger exp
- cmp.w %d0,L_SCR1(%a6) # is difference >= len(mantissa)+2?
- bge.b quick_scale12
- mov.w L_SCR1(%a6),%d0
- add.w 0x2(%sp),%d0 # scale src exponent by scale factor
- mov.w FP_SCR0_EX(%a6),%d1
- and.w &0x8000,%d1
- or.w %d1,%d0 # concat {sgn,new exp}
- mov.w %d0,FP_SCR0_EX(%a6) # insert new dst exponent
- mov.l (%sp)+,%d0 # return SCALE factor
- rts
- quick_scale12:
- andi.w &0x8000,FP_SCR0_EX(%a6) # zero src exponent
- bset &0x0,1+FP_SCR0_EX(%a6) # set exp = 1
- mov.l (%sp)+,%d0 # return SCALE factor
- rts
- # src exp is >= dst exp; scale src to exp = 0x3fff
- src_exp_ge2:
- bsr.l scale_to_zero_src
- mov.l %d0,-(%sp) # save scale factor
- cmpi.b DTAG(%a6),&DENORM # is dst denormalized?
- bne.b cmpexp22
- lea FP_SCR1(%a6),%a0
- bsr.l norm # normalize the denorm; result is new exp
- neg.w %d0 # new exp = -(shft val)
- mov.w %d0,2+L_SCR1(%a6) # inset new exp
- cmpexp22:
- mov.w L_SCR1(%a6),%d0
- subi.w &mantissalen+2,%d0 # subtract mantissalen+2 from larger exp
- cmp.w %d0,2+L_SCR1(%a6) # is difference >= len(mantissa)+2?
- bge.b quick_scale22
- mov.w 2+L_SCR1(%a6),%d0
- add.w 0x2(%sp),%d0 # scale dst exponent by scale factor
- mov.w FP_SCR1_EX(%a6),%d1
- andi.w &0x8000,%d1
- or.w %d1,%d0 # concat {sgn,new exp}
- mov.w %d0,FP_SCR1_EX(%a6) # insert new dst exponent
- mov.l (%sp)+,%d0 # return SCALE factor
- rts
- quick_scale22:
- andi.w &0x8000,FP_SCR1_EX(%a6) # zero dst exponent
- bset &0x0,1+FP_SCR1_EX(%a6) # set exp = 1
- mov.l (%sp)+,%d0 # return SCALE factor
- rts
- ##########################################################################
- #########################################################################
- # XDEF **************************************************************** #
- # scale_to_zero_src(): scale the exponent of extended precision #
- # value at FP_SCR0(a6). #
- # #
- # XREF **************************************************************** #
- # norm() - normalize the mantissa if the operand was a DENORM #
- # #
- # INPUT *************************************************************** #
- # FP_SCR0(a6) = extended precision operand to be scaled #
- # #
- # OUTPUT ************************************************************** #
- # FP_SCR0(a6) = scaled extended precision operand #
- # d0 = scale value #
- # #
- # ALGORITHM *********************************************************** #
- # Set the exponent of the input operand to 0x3fff. Save the value #
- # of the difference between the original and new exponent. Then, #
- # normalize the operand if it was a DENORM. Add this normalization #
- # value to the previous value. Return the result. #
- # #
- #########################################################################
- global scale_to_zero_src
- scale_to_zero_src:
- mov.w FP_SCR0_EX(%a6),%d1 # extract operand's {sgn,exp}
- mov.w %d1,%d0 # make a copy
- andi.l &0x7fff,%d1 # extract operand's exponent
- andi.w &0x8000,%d0 # extract operand's sgn
- or.w &0x3fff,%d0 # insert new operand's exponent(=0)
- mov.w %d0,FP_SCR0_EX(%a6) # insert biased exponent
- cmpi.b STAG(%a6),&DENORM # is operand normalized?
- beq.b stzs_denorm # normalize the DENORM
- stzs_norm:
- mov.l &0x3fff,%d0
- sub.l %d1,%d0 # scale = BIAS + (-exp)
- rts
- stzs_denorm:
- lea FP_SCR0(%a6),%a0 # pass ptr to src op
- bsr.l norm # normalize denorm
- neg.l %d0 # new exponent = -(shft val)
- mov.l %d0,%d1 # prepare for op_norm call
- bra.b stzs_norm # finish scaling
- ###
- #########################################################################
- # XDEF **************************************************************** #
- # scale_sqrt(): scale the input operand exponent so a subsequent #
- # fsqrt operation won't take an exception. #
- # #
- # XREF **************************************************************** #
- # norm() - normalize the mantissa if the operand was a DENORM #
- # #
- # INPUT *************************************************************** #
- # FP_SCR0(a6) = extended precision operand to be scaled #
- # #
- # OUTPUT ************************************************************** #
- # FP_SCR0(a6) = scaled extended precision operand #
- # d0 = scale value #
- # #
- # ALGORITHM *********************************************************** #
- # If the input operand is a DENORM, normalize it. #
- # If the exponent of the input operand is even, set the exponent #
- # to 0x3ffe and return a scale factor of "(exp-0x3ffe)/2". If the #
- # exponent of the input operand is off, set the exponent to ox3fff and #
- # return a scale factor of "(exp-0x3fff)/2". #
- # #
- #########################################################################
- global scale_sqrt
- scale_sqrt:
- cmpi.b STAG(%a6),&DENORM # is operand normalized?
- beq.b ss_denorm # normalize the DENORM
- mov.w FP_SCR0_EX(%a6),%d1 # extract operand's {sgn,exp}
- andi.l &0x7fff,%d1 # extract operand's exponent
- andi.w &0x8000,FP_SCR0_EX(%a6) # extract operand's sgn
- btst &0x0,%d1 # is exp even or odd?
- beq.b ss_norm_even
- ori.w &0x3fff,FP_SCR0_EX(%a6) # insert new operand's exponent(=0)
- mov.l &0x3fff,%d0
- sub.l %d1,%d0 # scale = BIAS + (-exp)
- asr.l &0x1,%d0 # divide scale factor by 2
- rts
- ss_norm_even:
- ori.w &0x3ffe,FP_SCR0_EX(%a6) # insert new operand's exponent(=0)
- mov.l &0x3ffe,%d0
- sub.l %d1,%d0 # scale = BIAS + (-exp)
- asr.l &0x1,%d0 # divide scale factor by 2
- rts
- ss_denorm:
- lea FP_SCR0(%a6),%a0 # pass ptr to src op
- bsr.l norm # normalize denorm
- btst &0x0,%d0 # is exp even or odd?
- beq.b ss_denorm_even
- ori.w &0x3fff,FP_SCR0_EX(%a6) # insert new operand's exponent(=0)
- add.l &0x3fff,%d0
- asr.l &0x1,%d0 # divide scale factor by 2
- rts
- ss_denorm_even:
- ori.w &0x3ffe,FP_SCR0_EX(%a6) # insert new operand's exponent(=0)
- add.l &0x3ffe,%d0
- asr.l &0x1,%d0 # divide scale factor by 2
- rts
- ###
- #########################################################################
- # XDEF **************************************************************** #
- # scale_to_zero_dst(): scale the exponent of extended precision #
- # value at FP_SCR1(a6). #
- # #
- # XREF **************************************************************** #
- # norm() - normalize the mantissa if the operand was a DENORM #
- # #
- # INPUT *************************************************************** #
- # FP_SCR1(a6) = extended precision operand to be scaled #
- # #
- # OUTPUT ************************************************************** #
- # FP_SCR1(a6) = scaled extended precision operand #
- # d0 = scale value #
- # #
- # ALGORITHM *********************************************************** #
- # Set the exponent of the input operand to 0x3fff. Save the value #
- # of the difference between the original and new exponent. Then, #
- # normalize the operand if it was a DENORM. Add this normalization #
- # value to the previous value. Return the result. #
- # #
- #########################################################################
- global scale_to_zero_dst
- scale_to_zero_dst:
- mov.w FP_SCR1_EX(%a6),%d1 # extract operand's {sgn,exp}
- mov.w %d1,%d0 # make a copy
- andi.l &0x7fff,%d1 # extract operand's exponent
- andi.w &0x8000,%d0 # extract operand's sgn
- or.w &0x3fff,%d0 # insert new operand's exponent(=0)
- mov.w %d0,FP_SCR1_EX(%a6) # insert biased exponent
- cmpi.b DTAG(%a6),&DENORM # is operand normalized?
- beq.b stzd_denorm # normalize the DENORM
- stzd_norm:
- mov.l &0x3fff,%d0
- sub.l %d1,%d0 # scale = BIAS + (-exp)
- rts
- stzd_denorm:
- lea FP_SCR1(%a6),%a0 # pass ptr to dst op
- bsr.l norm # normalize denorm
- neg.l %d0 # new exponent = -(shft val)
- mov.l %d0,%d1 # prepare for op_norm call
- bra.b stzd_norm # finish scaling
- ##########################################################################
- #########################################################################
- # XDEF **************************************************************** #
- # res_qnan(): return default result w/ QNAN operand for dyadic #
- # res_snan(): return default result w/ SNAN operand for dyadic #
- # res_qnan_1op(): return dflt result w/ QNAN operand for monadic #
- # res_snan_1op(): return dflt result w/ SNAN operand for monadic #
- # #
- # XREF **************************************************************** #
- # None #
- # #
- # INPUT *************************************************************** #
- # FP_SRC(a6) = pointer to extended precision src operand #
- # FP_DST(a6) = pointer to extended precision dst operand #
- # #
- # OUTPUT ************************************************************** #
- # fp0 = default result #
- # #
- # ALGORITHM *********************************************************** #
- # If either operand (but not both operands) of an operation is a #
- # nonsignalling NAN, then that NAN is returned as the result. If both #
- # operands are nonsignalling NANs, then the destination operand #
- # nonsignalling NAN is returned as the result. #
- # If either operand to an operation is a signalling NAN (SNAN), #
- # then, the SNAN bit is set in the FPSR EXC byte. If the SNAN trap #
- # enable bit is set in the FPCR, then the trap is taken and the #
- # destination is not modified. If the SNAN trap enable bit is not set, #
- # then the SNAN is converted to a nonsignalling NAN (by setting the #
- # SNAN bit in the operand to one), and the operation continues as #
- # described in the preceding paragraph, for nonsignalling NANs. #
- # Make sure the appropriate FPSR bits are set before exiting. #
- # #
- #########################################################################
- global res_qnan
- global res_snan
- res_qnan:
- res_snan:
- cmp.b DTAG(%a6), &SNAN # is the dst an SNAN?
- beq.b dst_snan2
- cmp.b DTAG(%a6), &QNAN # is the dst a QNAN?
- beq.b dst_qnan2
- src_nan:
- cmp.b STAG(%a6), &QNAN
- beq.b src_qnan2
- global res_snan_1op
- res_snan_1op:
- src_snan2:
- bset &0x6, FP_SRC_HI(%a6) # set SNAN bit
- or.l &nan_mask+aiop_mask+snan_mask, USER_FPSR(%a6)
- lea FP_SRC(%a6), %a0
- bra.b nan_comp
- global res_qnan_1op
- res_qnan_1op:
- src_qnan2:
- or.l &nan_mask, USER_FPSR(%a6)
- lea FP_SRC(%a6), %a0
- bra.b nan_comp
- dst_snan2:
- or.l &nan_mask+aiop_mask+snan_mask, USER_FPSR(%a6)
- bset &0x6, FP_DST_HI(%a6) # set SNAN bit
- lea FP_DST(%a6), %a0
- bra.b nan_comp
- dst_qnan2:
- lea FP_DST(%a6), %a0
- cmp.b STAG(%a6), &SNAN
- bne nan_done
- or.l &aiop_mask+snan_mask, USER_FPSR(%a6)
- nan_done:
- or.l &nan_mask, USER_FPSR(%a6)
- nan_comp:
- btst &0x7, FTEMP_EX(%a0) # is NAN neg?
- beq.b nan_not_neg
- or.l &neg_mask, USER_FPSR(%a6)
- nan_not_neg:
- fmovm.x (%a0), &0x80
- rts
- #########################################################################
- # XDEF **************************************************************** #
- # res_operr(): return default result during operand error #
- # #
- # XREF **************************************************************** #
- # None #
- # #
- # INPUT *************************************************************** #
- # None #
- # #
- # OUTPUT ************************************************************** #
- # fp0 = default operand error result #
- # #
- # ALGORITHM *********************************************************** #
- # An nonsignalling NAN is returned as the default result when #
- # an operand error occurs for the following cases: #
- # #
- # Multiply: (Infinity x Zero) #
- # Divide : (Zero / Zero) || (Infinity / Infinity) #
- # #
- #########################################################################
- global res_operr
- res_operr:
- or.l &nan_mask+operr_mask+aiop_mask, USER_FPSR(%a6)
- fmovm.x nan_return(%pc), &0x80
- rts
- nan_return:
- long 0x7fff0000, 0xffffffff, 0xffffffff
- #########################################################################
- # XDEF **************************************************************** #
- # _denorm(): denormalize an intermediate result #
- # #
- # XREF **************************************************************** #
- # None #
- # #
- # INPUT *************************************************************** #
- # a0 = points to the operand to be denormalized #
- # (in the internal extended format) #
- # #
- # d0 = rounding precision #
- # #
- # OUTPUT ************************************************************** #
- # a0 = pointer to the denormalized result #
- # (in the internal extended format) #
- # #
- # d0 = guard,round,sticky #
- # #
- # ALGORITHM *********************************************************** #
- # According to the exponent underflow threshold for the given #
- # precision, shift the mantissa bits to the right in order raise the #
- # exponent of the operand to the threshold value. While shifting the #
- # mantissa bits right, maintain the value of the guard, round, and #
- # sticky bits. #
- # other notes: #
- # (1) _denorm() is called by the underflow routines #
- # (2) _denorm() does NOT affect the status register #
- # #
- #########################################################################
- #
- # table of exponent threshold values for each precision
- #
- tbl_thresh:
- short 0x0
- short sgl_thresh
- short dbl_thresh
- global _denorm
- _denorm:
- #
- # Load the exponent threshold for the precision selected and check
- # to see if (threshold - exponent) is > 65 in which case we can
- # simply calculate the sticky bit and zero the mantissa. otherwise
- # we have to call the denormalization routine.
- #
- lsr.b &0x2, %d0 # shift prec to lo bits
- mov.w (tbl_thresh.b,%pc,%d0.w*2), %d1 # load prec threshold
- mov.w %d1, %d0 # copy d1 into d0
- sub.w FTEMP_EX(%a0), %d0 # diff = threshold - exp
- cmpi.w %d0, &66 # is diff > 65? (mant + g,r bits)
- bpl.b denorm_set_stky # yes; just calc sticky
- clr.l %d0 # clear g,r,s
- btst &inex2_bit, FPSR_EXCEPT(%a6) # yes; was INEX2 set?
- beq.b denorm_call # no; don't change anything
- bset &29, %d0 # yes; set sticky bit
- denorm_call:
- bsr.l dnrm_lp # denormalize the number
- rts
- #
- # all bit would have been shifted off during the denorm so simply
- # calculate if the sticky should be set and clear the entire mantissa.
- #
- denorm_set_stky:
- mov.l &0x20000000, %d0 # set sticky bit in return value
- mov.w %d1, FTEMP_EX(%a0) # load exp with threshold
- clr.l FTEMP_HI(%a0) # set d1 = 0 (ms mantissa)
- clr.l FTEMP_LO(%a0) # set d2 = 0 (ms mantissa)
- rts
- # #
- # dnrm_lp(): normalize exponent/mantissa to specified threshhold #
- # #
- # INPUT: #
- # %a0 : points to the operand to be denormalized #
- # %d0{31:29} : initial guard,round,sticky #
- # %d1{15:0} : denormalization threshold #
- # OUTPUT: #
- # %a0 : points to the denormalized operand #
- # %d0{31:29} : final guard,round,sticky #
- # #
- # *** Local Equates *** #
- set GRS, L_SCR2 # g,r,s temp storage
- set FTEMP_LO2, L_SCR1 # FTEMP_LO copy
- global dnrm_lp
- dnrm_lp:
- #
- # make a copy of FTEMP_LO and place the g,r,s bits directly after it
- # in memory so as to make the bitfield extraction for denormalization easier.
- #
- mov.l FTEMP_LO(%a0), FTEMP_LO2(%a6) # make FTEMP_LO copy
- mov.l %d0, GRS(%a6) # place g,r,s after it
- #
- # check to see how much less than the underflow threshold the operand
- # exponent is.
- #
- mov.l %d1, %d0 # copy the denorm threshold
- sub.w FTEMP_EX(%a0), %d1 # d1 = threshold - uns exponent
- ble.b dnrm_no_lp # d1 <= 0
- cmpi.w %d1, &0x20 # is ( 0 <= d1 < 32) ?
- blt.b case_1 # yes
- cmpi.w %d1, &0x40 # is (32 <= d1 < 64) ?
- blt.b case_2 # yes
- bra.w case_3 # (d1 >= 64)
- #
- # No normalization necessary
- #
- dnrm_no_lp:
- mov.l GRS(%a6), %d0 # restore original g,r,s
- rts
- #
- # case (0<d1<32)
- #
- # %d0 = denorm threshold
- # %d1 = "n" = amt to shift
- #
- # ---------------------------------------------------------
- # | FTEMP_HI | FTEMP_LO |grs000.........000|
- # ---------------------------------------------------------
- # <-(32 - n)-><-(n)-><-(32 - n)-><-(n)-><-(32 - n)-><-(n)->
- # \ \ \ \
- # \ \ \ \
- # \ \ \ \
- # \ \ \ \
- # \ \ \ \
- # \ \ \ \
- # \ \ \ \
- # \ \ \ \
- # <-(n)-><-(32 - n)-><------(32)-------><------(32)------->
- # ---------------------------------------------------------
- # |0.....0| NEW_HI | NEW_FTEMP_LO |grs |
- # ---------------------------------------------------------
- #
- case_1:
- mov.l %d2, -(%sp) # create temp storage
- mov.w %d0, FTEMP_EX(%a0) # exponent = denorm threshold
- mov.l &32, %d0
- sub.w %d1, %d0 # %d0 = 32 - %d1
- cmpi.w %d1, &29 # is shft amt >= 29
- blt.b case1_extract # no; no fix needed
- mov.b GRS(%a6), %d2
- or.b %d2, 3+FTEMP_LO2(%a6)
- case1_extract:
- bfextu FTEMP_HI(%a0){&0:%d0}, %d2 # %d2 = new FTEMP_HI
- bfextu FTEMP_HI(%a0){%d0:&32}, %d1 # %d1 = new FTEMP_LO
- bfextu FTEMP_LO2(%a6){%d0:&32}, %d0 # %d0 = new G,R,S
- mov.l %d2, FTEMP_HI(%a0) # store new FTEMP_HI
- mov.l %d1, FTEMP_LO(%a0) # store new FTEMP_LO
- bftst %d0{&2:&30} # were bits shifted off?
- beq.b case1_sticky_clear # no; go finish
- bset &rnd_stky_bit, %d0 # yes; set sticky bit
- case1_sticky_clear:
- and.l &0xe0000000, %d0 # clear all but G,R,S
- mov.l (%sp)+, %d2 # restore temp register
- rts
- #
- # case (32<=d1<64)
- #
- # %d0 = denorm threshold
- # %d1 = "n" = amt to shift
- #
- # ---------------------------------------------------------
- # | FTEMP_HI | FTEMP_LO |grs000.........000|
- # ---------------------------------------------------------
- # <-(32 - n)-><-(n)-><-(32 - n)-><-(n)-><-(32 - n)-><-(n)->
- # \ \ \
- # \ \ \
- # \ \ -------------------
- # \ -------------------- \
- # ------------------- \ \
- # \ \ \
- # \ \ \
- # \ \ \
- # <-------(32)------><-(n)-><-(32 - n)-><------(32)------->
- # ---------------------------------------------------------
- # |0...............0|0....0| NEW_LO |grs |
- # ---------------------------------------------------------
- #
- case_2:
- mov.l %d2, -(%sp) # create temp storage
- mov.w %d0, FTEMP_EX(%a0) # exponent = denorm threshold
- subi.w &0x20, %d1 # %d1 now between 0 and 32
- mov.l &0x20, %d0
- sub.w %d1, %d0 # %d0 = 32 - %d1
- # subtle step here; or in the g,r,s at the bottom of FTEMP_LO to minimize
- # the number of bits to check for the sticky detect.
- # it only plays a role in shift amounts of 61-63.
- mov.b GRS(%a6), %d2
- or.b %d2, 3+FTEMP_LO2(%a6)
- bfextu FTEMP_HI(%a0){&0:%d0}, %d2 # %d2 = new FTEMP_LO
- bfextu FTEMP_HI(%a0){%d0:&32}, %d1 # %d1 = new G,R,S
- bftst %d1{&2:&30} # were any bits shifted off?
- bne.b case2_set_sticky # yes; set sticky bit
- bftst FTEMP_LO2(%a6){%d0:&31} # were any bits shifted off?
- bne.b case2_set_sticky # yes; set sticky bit
- mov.l %d1, %d0 # move new G,R,S to %d0
- bra.b case2_end
- case2_set_sticky:
- mov.l %d1, %d0 # move new G,R,S to %d0
- bset &rnd_stky_bit, %d0 # set sticky bit
- case2_end:
- clr.l FTEMP_HI(%a0) # store FTEMP_HI = 0
- mov.l %d2, FTEMP_LO(%a0) # store FTEMP_LO
- and.l &0xe0000000, %d0 # clear all but G,R,S
- mov.l (%sp)+,%d2 # restore temp register
- rts
- #
- # case (d1>=64)
- #
- # %d0 = denorm threshold
- # %d1 = amt to shift
- #
- case_3:
- mov.w %d0, FTEMP_EX(%a0) # insert denorm threshold
- cmpi.w %d1, &65 # is shift amt > 65?
- blt.b case3_64 # no; it's == 64
- beq.b case3_65 # no; it's == 65
- #
- # case (d1>65)
- #
- # Shift value is > 65 and out of range. All bits are shifted off.
- # Return a zero mantissa with the sticky bit set
- #
- clr.l FTEMP_HI(%a0) # clear hi(mantissa)
- clr.l FTEMP_LO(%a0) # clear lo(mantissa)
- mov.l &0x20000000, %d0 # set sticky bit
- rts
- #
- # case (d1 == 64)
- #
- # ---------------------------------------------------------
- # | FTEMP_HI | FTEMP_LO |grs000.........000|
- # ---------------------------------------------------------
- # <-------(32)------>
- # \ \
- # \ \
- # \ \
- # \ ------------------------------
- # ------------------------------- \
- # \ \
- # \ \
- # \ \
- # <-------(32)------>
- # ---------------------------------------------------------
- # |0...............0|0................0|grs |
- # ---------------------------------------------------------
- #
- case3_64:
- mov.l FTEMP_HI(%a0), %d0 # fetch hi(mantissa)
- mov.l %d0, %d1 # make a copy
- and.l &0xc0000000, %d0 # extract G,R
- and.l &0x3fffffff, %d1 # extract other bits
- bra.b case3_complete
- #
- # case (d1 == 65)
- #
- # ---------------------------------------------------------
- # | FTEMP_HI | FTEMP_LO |grs000.........000|
- # ---------------------------------------------------------
- # <-------(32)------>
- # \ \
- # \ \
- # \ \
- # \ ------------------------------
- # -------------------------------- \
- # \ \
- # \ \
- # \ \
- # <-------(31)----->
- # ---------------------------------------------------------
- # |0...............0|0................0|0rs |
- # ---------------------------------------------------------
- #
- case3_65:
- mov.l FTEMP_HI(%a0), %d0 # fetch hi(mantissa)
- and.l &0x80000000, %d0 # extract R bit
- lsr.l &0x1, %d0 # shift high bit into R bit
- and.l &0x7fffffff, %d1 # extract other bits
- case3_complete:
- # last operation done was an "and" of the bits shifted off so the condition
- # codes are already set so branch accordingly.
- bne.b case3_set_sticky # yes; go set new sticky
- tst.l FTEMP_LO(%a0) # were any bits shifted off?
- bne.b case3_set_sticky # yes; go set new sticky
- tst.b GRS(%a6) # were any bits shifted off?
- bne.b case3_set_sticky # yes; go set new sticky
- #
- # no bits were shifted off so don't set the sticky bit.
- # the guard and
- # the entire mantissa is zero.
- #
- clr.l FTEMP_HI(%a0) # clear hi(mantissa)
- clr.l FTEMP_LO(%a0) # clear lo(mantissa)
- rts
- #
- # some bits were shifted off so set the sticky bit.
- # the entire mantissa is zero.
- #
- case3_set_sticky:
- bset &rnd_stky_bit,%d0 # set new sticky bit
- clr.l FTEMP_HI(%a0) # clear hi(mantissa)
- clr.l FTEMP_LO(%a0) # clear lo(mantissa)
- rts
- #########################################################################
- # XDEF **************************************************************** #
- # _round(): round result according to precision/mode #
- # #
- # XREF **************************************************************** #
- # None #
- # #
- # INPUT *************************************************************** #
- # a0 = ptr to input operand in internal extended format #
- # d1(hi) = contains rounding precision: #
- # ext = $0000xxxx #
- # sgl = $0004xxxx #
- # dbl = $0008xxxx #
- # d1(lo) = contains rounding mode: #
- # RN = $xxxx0000 #
- # RZ = $xxxx0001 #
- # RM = $xxxx0002 #
- # RP = $xxxx0003 #
- # d0{31:29} = contains the g,r,s bits (extended) #
- # #
- # OUTPUT ************************************************************** #
- # a0 = pointer to rounded result #
- # #
- # ALGORITHM *********************************************************** #
- # On return the value pointed to by a0 is correctly rounded, #
- # a0 is preserved and the g-r-s bits in d0 are cleared. #
- # The result is not typed - the tag field is invalid. The #
- # result is still in the internal extended format. #
- # #
- # The INEX bit of USER_FPSR will be set if the rounded result was #
- # inexact (i.e. if any of the g-r-s bits were set). #
- # #
- #########################################################################
- global _round
- _round:
- #
- # ext_grs() looks at the rounding precision and sets the appropriate
- # G,R,S bits.
- # If (G,R,S == 0) then result is exact and round is done, else set
- # the inex flag in status reg and continue.
- #
- bsr.l ext_grs # extract G,R,S
- tst.l %d0 # are G,R,S zero?
- beq.w truncate # yes; round is complete
- or.w &inx2a_mask, 2+USER_FPSR(%a6) # set inex2/ainex
- #
- # Use rounding mode as an index into a jump table for these modes.
- # All of the following assumes grs != 0.
- #
- mov.w (tbl_mode.b,%pc,%d1.w*2), %a1 # load jump offset
- jmp (tbl_mode.b,%pc,%a1) # jmp to rnd mode handler
- tbl_mode:
- short rnd_near - tbl_mode
- short truncate - tbl_mode # RZ always truncates
- short rnd_mnus - tbl_mode
- short rnd_plus - tbl_mode
- #################################################################
- # ROUND PLUS INFINITY #
- # #
- # If sign of fp number = 0 (positive), then add 1 to l. #
- #################################################################
- rnd_plus:
- tst.b FTEMP_SGN(%a0) # check for sign
- bmi.w truncate # if positive then truncate
- mov.l &0xffffffff, %d0 # force g,r,s to be all f's
- swap %d1 # set up d1 for round prec.
- cmpi.b %d1, &s_mode # is prec = sgl?
- beq.w add_sgl # yes
- bgt.w add_dbl # no; it's dbl
- bra.w add_ext # no; it's ext
- #################################################################
- # ROUND MINUS INFINITY #
- # #
- # If sign of fp number = 1 (negative), then add 1 to l. #
- #################################################################
- rnd_mnus:
- tst.b FTEMP_SGN(%a0) # check for sign
- bpl.w truncate # if negative then truncate
- mov.l &0xffffffff, %d0 # force g,r,s to be all f's
- swap %d1 # set up d1 for round prec.
- cmpi.b %d1, &s_mode # is prec = sgl?
- beq.w add_sgl # yes
- bgt.w add_dbl # no; it's dbl
- bra.w add_ext # no; it's ext
- #################################################################
- # ROUND NEAREST #
- # #
- # If (g=1), then add 1 to l and if (r=s=0), then clear l #
- # Note that this will round to even in case of a tie. #
- #################################################################
- rnd_near:
- asl.l &0x1, %d0 # shift g-bit to c-bit
- bcc.w truncate # if (g=1) then
- swap %d1 # set up d1 for round prec.
- cmpi.b %d1, &s_mode # is prec = sgl?
- beq.w add_sgl # yes
- bgt.w add_dbl # no; it's dbl
- bra.w add_ext # no; it's ext
- # *** LOCAL EQUATES ***
- set ad_1_sgl, 0x00000100 # constant to add 1 to l-bit in sgl prec
- set ad_1_dbl, 0x00000800 # constant to add 1 to l-bit in dbl prec
- #########################
- # ADD SINGLE #
- #########################
- add_sgl:
- add.l &ad_1_sgl, FTEMP_HI(%a0)
- bcc.b scc_clr # no mantissa overflow
- roxr.w FTEMP_HI(%a0) # shift v-bit back in
- roxr.w FTEMP_HI+2(%a0) # shift v-bit back in
- add.w &0x1, FTEMP_EX(%a0) # and incr exponent
- scc_clr:
- tst.l %d0 # test for rs = 0
- bne.b sgl_done
- and.w &0xfe00, FTEMP_HI+2(%a0) # clear the l-bit
- sgl_done:
- and.l &0xffffff00, FTEMP_HI(%a0) # truncate bits beyond sgl limit
- clr.l FTEMP_LO(%a0) # clear d2
- rts
- #########################
- # ADD EXTENDED #
- #########################
- add_ext:
- addq.l &1,FTEMP_LO(%a0) # add 1 to l-bit
- bcc.b xcc_clr # test for carry out
- addq.l &1,FTEMP_HI(%a0) # propagate carry
- bcc.b xcc_clr
- roxr.w FTEMP_HI(%a0) # mant is 0 so restore v-bit
- roxr.w FTEMP_HI+2(%a0) # mant is 0 so restore v-bit
- roxr.w FTEMP_LO(%a0)
- roxr.w FTEMP_LO+2(%a0)
- add.w &0x1,FTEMP_EX(%a0) # and inc exp
- xcc_clr:
- tst.l %d0 # test rs = 0
- bne.b add_ext_done
- and.b &0xfe,FTEMP_LO+3(%a0) # clear the l bit
- add_ext_done:
- rts
- #########################
- # ADD DOUBLE #
- #########################
- add_dbl:
- add.l &ad_1_dbl, FTEMP_LO(%a0) # add 1 to lsb
- bcc.b dcc_clr # no carry
- addq.l &0x1, FTEMP_HI(%a0) # propagate carry
- bcc.b dcc_clr # no carry
- roxr.w FTEMP_HI(%a0) # mant is 0 so restore v-bit
- roxr.w FTEMP_HI+2(%a0) # mant is 0 so restore v-bit
- roxr.w FTEMP_LO(%a0)
- roxr.w FTEMP_LO+2(%a0)
- addq.w &0x1, FTEMP_EX(%a0) # incr exponent
- dcc_clr:
- tst.l %d0 # test for rs = 0
- bne.b dbl_done
- and.w &0xf000, FTEMP_LO+2(%a0) # clear the l-bit
- dbl_done:
- and.l &0xfffff800,FTEMP_LO(%a0) # truncate bits beyond dbl limit
- rts
- ###########################
- # Truncate all other bits #
- ###########################
- truncate:
- swap %d1 # select rnd prec
- cmpi.b %d1, &s_mode # is prec sgl?
- beq.w sgl_done # yes
- bgt.b dbl_done # no; it's dbl
- rts # no; it's ext
- #
- # ext_grs(): extract guard, round and sticky bits according to
- # rounding precision.
- #
- # INPUT
- # d0 = extended precision g,r,s (in d0{31:29})
- # d1 = {PREC,ROUND}
- # OUTPUT
- # d0{31:29} = guard, round, sticky
- #
- # The ext_grs extract the guard/round/sticky bits according to the
- # selected rounding precision. It is called by the round subroutine
- # only. All registers except d0 are kept intact. d0 becomes an
- # updated guard,round,sticky in d0{31:29}
- #
- # Notes: the ext_grs uses the round PREC, and therefore has to swap d1
- # prior to usage, and needs to restore d1 to original. this
- # routine is tightly tied to the round routine and not meant to
- # uphold standard subroutine calling practices.
- #
- ext_grs:
- swap %d1 # have d1.w point to round precision
- tst.b %d1 # is rnd prec = extended?
- bne.b ext_grs_not_ext # no; go handle sgl or dbl
- #
- # %d0 actually already hold g,r,s since _round() had it before calling
- # this function. so, as long as we don't disturb it, we are "returning" it.
- #
- ext_grs_ext:
- swap %d1 # yes; return to correct positions
- rts
- ext_grs_not_ext:
- movm.l &0x3000, -(%sp) # make some temp registers {d2/d3}
- cmpi.b %d1, &s_mode # is rnd prec = sgl?
- bne.b ext_grs_dbl # no; go handle dbl
- #
- # sgl:
- # 96 64 40 32 0
- # -----------------------------------------------------
- # | EXP |XXXXXXX| |xx | |grs|
- # -----------------------------------------------------
- # <--(24)--->nn\ /
- # ee ---------------------
- # ww |
- # v
- # gr new sticky
- #
- ext_grs_sgl:
- bfextu FTEMP_HI(%a0){&24:&2}, %d3 # sgl prec. g-r are 2 bits right
- mov.l &30, %d2 # of the sgl prec. limits
- lsl.l %d2, %d3 # shift g-r bits to MSB of d3
- mov.l FTEMP_HI(%a0), %d2 # get word 2 for s-bit test
- and.l &0x0000003f, %d2 # s bit is the or of all other
- bne.b ext_grs_st_stky # bits to the right of g-r
- tst.l FTEMP_LO(%a0) # test lower mantissa
- bne.b ext_grs_st_stky # if any are set, set sticky
- tst.l %d0 # test original g,r,s
- bne.b ext_grs_st_stky # if any are set, set sticky
- bra.b ext_grs_end_sd # if words 3 and 4 are clr, exit
- #
- # dbl:
- # 96 64 32 11 0
- # -----------------------------------------------------
- # | EXP |XXXXXXX| | |xx |grs|
- # -----------------------------------------------------
- # nn\ /
- # ee -------
- # ww |
- # v
- # gr new sticky
- #
- ext_grs_dbl:
- bfextu FTEMP_LO(%a0){&21:&2}, %d3 # dbl-prec. g-r are 2 bits right
- mov.l &30, %d2 # of the dbl prec. limits
- lsl.l %d2, %d3 # shift g-r bits to the MSB of d3
- mov.l FTEMP_LO(%a0), %d2 # get lower mantissa for s-bit test
- and.l &0x000001ff, %d2 # s bit is the or-ing of all
- bne.b ext_grs_st_stky # other bits to the right of g-r
- tst.l %d0 # test word original g,r,s
- bne.b ext_grs_st_stky # if any are set, set sticky
- bra.b ext_grs_end_sd # if clear, exit
- ext_grs_st_stky:
- bset &rnd_stky_bit, %d3 # set sticky bit
- ext_grs_end_sd:
- mov.l %d3, %d0 # return grs to d0
- movm.l (%sp)+, &0xc # restore scratch registers {d2/d3}
- swap %d1 # restore d1 to original
- rts
- #########################################################################
- # norm(): normalize the mantissa of an extended precision input. the #
- # input operand should not be normalized already. #
- # #
- # XDEF **************************************************************** #
- # norm() #
- # #
- # XREF **************************************************************** #
- # none #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer fp extended precision operand to normalize #
- # #
- # OUTPUT ************************************************************** #
- # d0 = number of bit positions the mantissa was shifted #
- # a0 = the input operand's mantissa is normalized; the exponent #
- # is unchanged. #
- # #
- #########################################################################
- global norm
- norm:
- mov.l %d2, -(%sp) # create some temp regs
- mov.l %d3, -(%sp)
- mov.l FTEMP_HI(%a0), %d0 # load hi(mantissa)
- mov.l FTEMP_LO(%a0), %d1 # load lo(mantissa)
- bfffo %d0{&0:&32}, %d2 # how many places to shift?
- beq.b norm_lo # hi(man) is all zeroes!
- norm_hi:
- lsl.l %d2, %d0 # left shift hi(man)
- bfextu %d1{&0:%d2}, %d3 # extract lo bits
- or.l %d3, %d0 # create hi(man)
- lsl.l %d2, %d1 # create lo(man)
- mov.l %d0, FTEMP_HI(%a0) # store new hi(man)
- mov.l %d1, FTEMP_LO(%a0) # store new lo(man)
- mov.l %d2, %d0 # return shift amount
- mov.l (%sp)+, %d3 # restore temp regs
- mov.l (%sp)+, %d2
- rts
- norm_lo:
- bfffo %d1{&0:&32}, %d2 # how many places to shift?
- lsl.l %d2, %d1 # shift lo(man)
- add.l &32, %d2 # add 32 to shft amount
- mov.l %d1, FTEMP_HI(%a0) # store hi(man)
- clr.l FTEMP_LO(%a0) # lo(man) is now zero
- mov.l %d2, %d0 # return shift amount
- mov.l (%sp)+, %d3 # restore temp regs
- mov.l (%sp)+, %d2
- rts
- #########################################################################
- # unnorm_fix(): - changes an UNNORM to one of NORM, DENORM, or ZERO #
- # - returns corresponding optype tag #
- # #
- # XDEF **************************************************************** #
- # unnorm_fix() #
- # #
- # XREF **************************************************************** #
- # norm() - normalize the mantissa #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to unnormalized extended precision number #
- # #
- # OUTPUT ************************************************************** #
- # d0 = optype tag - is corrected to one of NORM, DENORM, or ZERO #
- # a0 = input operand has been converted to a norm, denorm, or #
- # zero; both the exponent and mantissa are changed. #
- # #
- #########################################################################
- global unnorm_fix
- unnorm_fix:
- bfffo FTEMP_HI(%a0){&0:&32}, %d0 # how many shifts are needed?
- bne.b unnorm_shift # hi(man) is not all zeroes
- #
- # hi(man) is all zeroes so see if any bits in lo(man) are set
- #
- unnorm_chk_lo:
- bfffo FTEMP_LO(%a0){&0:&32}, %d0 # is operand really a zero?
- beq.w unnorm_zero # yes
- add.w &32, %d0 # no; fix shift distance
- #
- # d0 = # shifts needed for complete normalization
- #
- unnorm_shift:
- clr.l %d1 # clear top word
- mov.w FTEMP_EX(%a0), %d1 # extract exponent
- and.w &0x7fff, %d1 # strip off sgn
- cmp.w %d0, %d1 # will denorm push exp < 0?
- bgt.b unnorm_nrm_zero # yes; denorm only until exp = 0
- #
- # exponent would not go < 0. therefore, number stays normalized
- #
- sub.w %d0, %d1 # shift exponent value
- mov.w FTEMP_EX(%a0), %d0 # load old exponent
- and.w &0x8000, %d0 # save old sign
- or.w %d0, %d1 # {sgn,new exp}
- mov.w %d1, FTEMP_EX(%a0) # insert new exponent
- bsr.l norm # normalize UNNORM
- mov.b &NORM, %d0 # return new optype tag
- rts
- #
- # exponent would go < 0, so only denormalize until exp = 0
- #
- unnorm_nrm_zero:
- cmp.b %d1, &32 # is exp <= 32?
- bgt.b unnorm_nrm_zero_lrg # no; go handle large exponent
- bfextu FTEMP_HI(%a0){%d1:&32}, %d0 # extract new hi(man)
- mov.l %d0, FTEMP_HI(%a0) # save new hi(man)
- mov.l FTEMP_LO(%a0), %d0 # fetch old lo(man)
- lsl.l %d1, %d0 # extract new lo(man)
- mov.l %d0, FTEMP_LO(%a0) # save new lo(man)
- and.w &0x8000, FTEMP_EX(%a0) # set exp = 0
- mov.b &DENORM, %d0 # return new optype tag
- rts
- #
- # only mantissa bits set are in lo(man)
- #
- unnorm_nrm_zero_lrg:
- sub.w &32, %d1 # adjust shft amt by 32
- mov.l FTEMP_LO(%a0), %d0 # fetch old lo(man)
- lsl.l %d1, %d0 # left shift lo(man)
- mov.l %d0, FTEMP_HI(%a0) # store new hi(man)
- clr.l FTEMP_LO(%a0) # lo(man) = 0
- and.w &0x8000, FTEMP_EX(%a0) # set exp = 0
- mov.b &DENORM, %d0 # return new optype tag
- rts
- #
- # whole mantissa is zero so this UNNORM is actually a zero
- #
- unnorm_zero:
- and.w &0x8000, FTEMP_EX(%a0) # force exponent to zero
- mov.b &ZERO, %d0 # fix optype tag
- rts
- #########################################################################
- # XDEF **************************************************************** #
- # set_tag_x(): return the optype of the input ext fp number #
- # #
- # XREF **************************************************************** #
- # None #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to extended precision operand #
- # #
- # OUTPUT ************************************************************** #
- # d0 = value of type tag #
- # one of: NORM, INF, QNAN, SNAN, DENORM, UNNORM, ZERO #
- # #
- # ALGORITHM *********************************************************** #
- # Simply test the exponent, j-bit, and mantissa values to #
- # determine the type of operand. #
- # If it's an unnormalized zero, alter the operand and force it #
- # to be a normal zero. #
- # #
- #########################################################################
- global set_tag_x
- set_tag_x:
- mov.w FTEMP_EX(%a0), %d0 # extract exponent
- andi.w &0x7fff, %d0 # strip off sign
- cmpi.w %d0, &0x7fff # is (EXP == MAX)?
- beq.b inf_or_nan_x
- not_inf_or_nan_x:
- btst &0x7,FTEMP_HI(%a0)
- beq.b not_norm_x
- is_norm_x:
- mov.b &NORM, %d0
- rts
- not_norm_x:
- tst.w %d0 # is exponent = 0?
- bne.b is_unnorm_x
- not_unnorm_x:
- tst.l FTEMP_HI(%a0)
- bne.b is_denorm_x
- tst.l FTEMP_LO(%a0)
- bne.b is_denorm_x
- is_zero_x:
- mov.b &ZERO, %d0
- rts
- is_denorm_x:
- mov.b &DENORM, %d0
- rts
- # must distinguish now "Unnormalized zeroes" which we
- # must convert to zero.
- is_unnorm_x:
- tst.l FTEMP_HI(%a0)
- bne.b is_unnorm_reg_x
- tst.l FTEMP_LO(%a0)
- bne.b is_unnorm_reg_x
- # it's an "unnormalized zero". let's convert it to an actual zero...
- andi.w &0x8000,FTEMP_EX(%a0) # clear exponent
- mov.b &ZERO, %d0
- rts
- is_unnorm_reg_x:
- mov.b &UNNORM, %d0
- rts
- inf_or_nan_x:
- tst.l FTEMP_LO(%a0)
- bne.b is_nan_x
- mov.l FTEMP_HI(%a0), %d0
- and.l &0x7fffffff, %d0 # msb is a don't care!
- bne.b is_nan_x
- is_inf_x:
- mov.b &INF, %d0
- rts
- is_nan_x:
- btst &0x6, FTEMP_HI(%a0)
- beq.b is_snan_x
- mov.b &QNAN, %d0
- rts
- is_snan_x:
- mov.b &SNAN, %d0
- rts
- #########################################################################
- # XDEF **************************************************************** #
- # set_tag_d(): return the optype of the input dbl fp number #
- # #
- # XREF **************************************************************** #
- # None #
- # #
- # INPUT *************************************************************** #
- # a0 = points to double precision operand #
- # #
- # OUTPUT ************************************************************** #
- # d0 = value of type tag #
- # one of: NORM, INF, QNAN, SNAN, DENORM, ZERO #
- # #
- # ALGORITHM *********************************************************** #
- # Simply test the exponent, j-bit, and mantissa values to #
- # determine the type of operand. #
- # #
- #########################################################################
- global set_tag_d
- set_tag_d:
- mov.l FTEMP(%a0), %d0
- mov.l %d0, %d1
- andi.l &0x7ff00000, %d0
- beq.b zero_or_denorm_d
- cmpi.l %d0, &0x7ff00000
- beq.b inf_or_nan_d
- is_norm_d:
- mov.b &NORM, %d0
- rts
- zero_or_denorm_d:
- and.l &0x000fffff, %d1
- bne is_denorm_d
- tst.l 4+FTEMP(%a0)
- bne is_denorm_d
- is_zero_d:
- mov.b &ZERO, %d0
- rts
- is_denorm_d:
- mov.b &DENORM, %d0
- rts
- inf_or_nan_d:
- and.l &0x000fffff, %d1
- bne is_nan_d
- tst.l 4+FTEMP(%a0)
- bne is_nan_d
- is_inf_d:
- mov.b &INF, %d0
- rts
- is_nan_d:
- btst &19, %d1
- bne is_qnan_d
- is_snan_d:
- mov.b &SNAN, %d0
- rts
- is_qnan_d:
- mov.b &QNAN, %d0
- rts
- #########################################################################
- # XDEF **************************************************************** #
- # set_tag_s(): return the optype of the input sgl fp number #
- # #
- # XREF **************************************************************** #
- # None #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to single precision operand #
- # #
- # OUTPUT ************************************************************** #
- # d0 = value of type tag #
- # one of: NORM, INF, QNAN, SNAN, DENORM, ZERO #
- # #
- # ALGORITHM *********************************************************** #
- # Simply test the exponent, j-bit, and mantissa values to #
- # determine the type of operand. #
- # #
- #########################################################################
- global set_tag_s
- set_tag_s:
- mov.l FTEMP(%a0), %d0
- mov.l %d0, %d1
- andi.l &0x7f800000, %d0
- beq.b zero_or_denorm_s
- cmpi.l %d0, &0x7f800000
- beq.b inf_or_nan_s
- is_norm_s:
- mov.b &NORM, %d0
- rts
- zero_or_denorm_s:
- and.l &0x007fffff, %d1
- bne is_denorm_s
- is_zero_s:
- mov.b &ZERO, %d0
- rts
- is_denorm_s:
- mov.b &DENORM, %d0
- rts
- inf_or_nan_s:
- and.l &0x007fffff, %d1
- bne is_nan_s
- is_inf_s:
- mov.b &INF, %d0
- rts
- is_nan_s:
- btst &22, %d1
- bne is_qnan_s
- is_snan_s:
- mov.b &SNAN, %d0
- rts
- is_qnan_s:
- mov.b &QNAN, %d0
- rts
- #########################################################################
- # XDEF **************************************************************** #
- # unf_res(): routine to produce default underflow result of a #
- # scaled extended precision number; this is used by #
- # fadd/fdiv/fmul/etc. emulation routines. #
- # unf_res4(): same as above but for fsglmul/fsgldiv which use #
- # single round prec and extended prec mode. #
- # #
- # XREF **************************************************************** #
- # _denorm() - denormalize according to scale factor #
- # _round() - round denormalized number according to rnd prec #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to extended precison operand #
- # d0 = scale factor #
- # d1 = rounding precision/mode #
- # #
- # OUTPUT ************************************************************** #
- # a0 = pointer to default underflow result in extended precision #
- # d0.b = result FPSR_cc which caller may or may not want to save #
- # #
- # ALGORITHM *********************************************************** #
- # Convert the input operand to "internal format" which means the #
- # exponent is extended to 16 bits and the sign is stored in the unused #
- # portion of the extended precison operand. Denormalize the number #
- # according to the scale factor passed in d0. Then, round the #
- # denormalized result. #
- # Set the FPSR_exc bits as appropriate but return the cc bits in #
- # d0 in case the caller doesn't want to save them (as is the case for #
- # fmove out). #
- # unf_res4() for fsglmul/fsgldiv forces the denorm to extended #
- # precision and the rounding mode to single. #
- # #
- #########################################################################
- global unf_res
- unf_res:
- mov.l %d1, -(%sp) # save rnd prec,mode on stack
- btst &0x7, FTEMP_EX(%a0) # make "internal" format
- sne FTEMP_SGN(%a0)
- mov.w FTEMP_EX(%a0), %d1 # extract exponent
- and.w &0x7fff, %d1
- sub.w %d0, %d1
- mov.w %d1, FTEMP_EX(%a0) # insert 16 bit exponent
- mov.l %a0, -(%sp) # save operand ptr during calls
- mov.l 0x4(%sp),%d0 # pass rnd prec.
- andi.w &0x00c0,%d0
- lsr.w &0x4,%d0
- bsr.l _denorm # denorm result
- mov.l (%sp),%a0
- mov.w 0x6(%sp),%d1 # load prec:mode into %d1
- andi.w &0xc0,%d1 # extract rnd prec
- lsr.w &0x4,%d1
- swap %d1
- mov.w 0x6(%sp),%d1
- andi.w &0x30,%d1
- lsr.w &0x4,%d1
- bsr.l _round # round the denorm
- mov.l (%sp)+, %a0
- # result is now rounded properly. convert back to normal format
- bclr &0x7, FTEMP_EX(%a0) # clear sgn first; may have residue
- tst.b FTEMP_SGN(%a0) # is "internal result" sign set?
- beq.b unf_res_chkifzero # no; result is positive
- bset &0x7, FTEMP_EX(%a0) # set result sgn
- clr.b FTEMP_SGN(%a0) # clear temp sign
- # the number may have become zero after rounding. set ccodes accordingly.
- unf_res_chkifzero:
- clr.l %d0
- tst.l FTEMP_HI(%a0) # is value now a zero?
- bne.b unf_res_cont # no
- tst.l FTEMP_LO(%a0)
- bne.b unf_res_cont # no
- # bset &z_bit, FPSR_CC(%a6) # yes; set zero ccode bit
- bset &z_bit, %d0 # yes; set zero ccode bit
- unf_res_cont:
- #
- # can inex1 also be set along with unfl and inex2???
- #
- # we know that underflow has occurred. aunfl should be set if INEX2 is also set.
- #
- btst &inex2_bit, FPSR_EXCEPT(%a6) # is INEX2 set?
- beq.b unf_res_end # no
- bset &aunfl_bit, FPSR_AEXCEPT(%a6) # yes; set aunfl
- unf_res_end:
- add.l &0x4, %sp # clear stack
- rts
- # unf_res() for fsglmul() and fsgldiv().
- global unf_res4
- unf_res4:
- mov.l %d1,-(%sp) # save rnd prec,mode on stack
- btst &0x7,FTEMP_EX(%a0) # make "internal" format
- sne FTEMP_SGN(%a0)
- mov.w FTEMP_EX(%a0),%d1 # extract exponent
- and.w &0x7fff,%d1
- sub.w %d0,%d1
- mov.w %d1,FTEMP_EX(%a0) # insert 16 bit exponent
- mov.l %a0,-(%sp) # save operand ptr during calls
- clr.l %d0 # force rnd prec = ext
- bsr.l _denorm # denorm result
- mov.l (%sp),%a0
- mov.w &s_mode,%d1 # force rnd prec = sgl
- swap %d1
- mov.w 0x6(%sp),%d1 # load rnd mode
- andi.w &0x30,%d1 # extract rnd prec
- lsr.w &0x4,%d1
- bsr.l _round # round the denorm
- mov.l (%sp)+,%a0
- # result is now rounded properly. convert back to normal format
- bclr &0x7,FTEMP_EX(%a0) # clear sgn first; may have residue
- tst.b FTEMP_SGN(%a0) # is "internal result" sign set?
- beq.b unf_res4_chkifzero # no; result is positive
- bset &0x7,FTEMP_EX(%a0) # set result sgn
- clr.b FTEMP_SGN(%a0) # clear temp sign
- # the number may have become zero after rounding. set ccodes accordingly.
- unf_res4_chkifzero:
- clr.l %d0
- tst.l FTEMP_HI(%a0) # is value now a zero?
- bne.b unf_res4_cont # no
- tst.l FTEMP_LO(%a0)
- bne.b unf_res4_cont # no
- # bset &z_bit,FPSR_CC(%a6) # yes; set zero ccode bit
- bset &z_bit,%d0 # yes; set zero ccode bit
- unf_res4_cont:
- #
- # can inex1 also be set along with unfl and inex2???
- #
- # we know that underflow has occurred. aunfl should be set if INEX2 is also set.
- #
- btst &inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set?
- beq.b unf_res4_end # no
- bset &aunfl_bit,FPSR_AEXCEPT(%a6) # yes; set aunfl
- unf_res4_end:
- add.l &0x4,%sp # clear stack
- rts
- #########################################################################
- # XDEF **************************************************************** #
- # ovf_res(): routine to produce the default overflow result of #
- # an overflowing number. #
- # ovf_res2(): same as above but the rnd mode/prec are passed #
- # differently. #
- # #
- # XREF **************************************************************** #
- # none #
- # #
- # INPUT *************************************************************** #
- # d1.b = '-1' => (-); '0' => (+) #
- # ovf_res(): #
- # d0 = rnd mode/prec #
- # ovf_res2(): #
- # hi(d0) = rnd prec #
- # lo(d0) = rnd mode #
- # #
- # OUTPUT ************************************************************** #
- # a0 = points to extended precision result #
- # d0.b = condition code bits #
- # #
- # ALGORITHM *********************************************************** #
- # The default overflow result can be determined by the sign of #
- # the result and the rounding mode/prec in effect. These bits are #
- # concatenated together to create an index into the default result #
- # table. A pointer to the correct result is returned in a0. The #
- # resulting condition codes are returned in d0 in case the caller #
- # doesn't want FPSR_cc altered (as is the case for fmove out). #
- # #
- #########################################################################
- global ovf_res
- ovf_res:
- andi.w &0x10,%d1 # keep result sign
- lsr.b &0x4,%d0 # shift prec/mode
- or.b %d0,%d1 # concat the two
- mov.w %d1,%d0 # make a copy
- lsl.b &0x1,%d1 # multiply d1 by 2
- bra.b ovf_res_load
- global ovf_res2
- ovf_res2:
- and.w &0x10, %d1 # keep result sign
- or.b %d0, %d1 # insert rnd mode
- swap %d0
- or.b %d0, %d1 # insert rnd prec
- mov.w %d1, %d0 # make a copy
- lsl.b &0x1, %d1 # shift left by 1
- #
- # use the rounding mode, precision, and result sign as in index into the
- # two tables below to fetch the default result and the result ccodes.
- #
- ovf_res_load:
- mov.b (tbl_ovfl_cc.b,%pc,%d0.w*1), %d0 # fetch result ccodes
- lea (tbl_ovfl_result.b,%pc,%d1.w*8), %a0 # return result ptr
- rts
- tbl_ovfl_cc:
- byte 0x2, 0x0, 0x0, 0x2
- byte 0x2, 0x0, 0x0, 0x2
- byte 0x2, 0x0, 0x0, 0x2
- byte 0x0, 0x0, 0x0, 0x0
- byte 0x2+0x8, 0x8, 0x2+0x8, 0x8
- byte 0x2+0x8, 0x8, 0x2+0x8, 0x8
- byte 0x2+0x8, 0x8, 0x2+0x8, 0x8
- tbl_ovfl_result:
- long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN
- long 0x7ffe0000,0xffffffff,0xffffffff,0x00000000 # +EXT; RZ
- long 0x7ffe0000,0xffffffff,0xffffffff,0x00000000 # +EXT; RM
- long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP
- long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN
- long 0x407e0000,0xffffff00,0x00000000,0x00000000 # +SGL; RZ
- long 0x407e0000,0xffffff00,0x00000000,0x00000000 # +SGL; RM
- long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP
- long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN
- long 0x43fe0000,0xffffffff,0xfffff800,0x00000000 # +DBL; RZ
- long 0x43fe0000,0xffffffff,0xfffff800,0x00000000 # +DBL; RM
- long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP
- long 0x00000000,0x00000000,0x00000000,0x00000000
- long 0x00000000,0x00000000,0x00000000,0x00000000
- long 0x00000000,0x00000000,0x00000000,0x00000000
- long 0x00000000,0x00000000,0x00000000,0x00000000
- long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN
- long 0xfffe0000,0xffffffff,0xffffffff,0x00000000 # -EXT; RZ
- long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM
- long 0xfffe0000,0xffffffff,0xffffffff,0x00000000 # -EXT; RP
- long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN
- long 0xc07e0000,0xffffff00,0x00000000,0x00000000 # -SGL; RZ
- long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM
- long 0xc07e0000,0xffffff00,0x00000000,0x00000000 # -SGL; RP
- long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN
- long 0xc3fe0000,0xffffffff,0xfffff800,0x00000000 # -DBL; RZ
- long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM
- long 0xc3fe0000,0xffffffff,0xfffff800,0x00000000 # -DBL; RP
- #########################################################################
- # XDEF **************************************************************** #
- # fout(): move from fp register to memory or data register #
- # #
- # XREF **************************************************************** #
- # _round() - needed to create EXOP for sgl/dbl precision #
- # norm() - needed to create EXOP for extended precision #
- # ovf_res() - create default overflow result for sgl/dbl precision#
- # unf_res() - create default underflow result for sgl/dbl prec. #
- # dst_dbl() - create rounded dbl precision result. #
- # dst_sgl() - create rounded sgl precision result. #
- # fetch_dreg() - fetch dynamic k-factor reg for packed. #
- # bindec() - convert FP binary number to packed number. #
- # _mem_write() - write data to memory. #
- # _mem_write2() - write data to memory unless supv mode -(a7) exc.#
- # _dmem_write_{byte,word,long}() - write data to memory. #
- # store_dreg_{b,w,l}() - store data to data register file. #
- # facc_out_{b,w,l,d,x}() - data access error occurred. #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to extended precision source operand #
- # d0 = round prec,mode #
- # #
- # OUTPUT ************************************************************** #
- # fp0 : intermediate underflow or overflow result if #
- # OVFL/UNFL occurred for a sgl or dbl operand #
- # #
- # ALGORITHM *********************************************************** #
- # This routine is accessed by many handlers that need to do an #
- # opclass three move of an operand out to memory. #
- # Decode an fmove out (opclass 3) instruction to determine if #
- # it's b,w,l,s,d,x, or p in size. b,w,l can be stored to either a data #
- # register or memory. The algorithm uses a standard "fmove" to create #
- # the rounded result. Also, since exceptions are disabled, this also #
- # create the correct OPERR default result if appropriate. #
- # For sgl or dbl precision, overflow or underflow can occur. If #
- # either occurs and is enabled, the EXOP. #
- # For extended precision, the stacked <ea> must be fixed along #
- # w/ the address index register as appropriate w/ _calc_ea_fout(). If #
- # the source is a denorm and if underflow is enabled, an EXOP must be #
- # created. #
- # For packed, the k-factor must be fetched from the instruction #
- # word or a data register. The <ea> must be fixed as w/ extended #
- # precision. Then, bindec() is called to create the appropriate #
- # packed result. #
- # If at any time an access error is flagged by one of the move- #
- # to-memory routines, then a special exit must be made so that the #
- # access error can be handled properly. #
- # #
- #########################################################################
- global fout
- fout:
- bfextu EXC_CMDREG(%a6){&3:&3},%d1 # extract dst fmt
- mov.w (tbl_fout.b,%pc,%d1.w*2),%a1 # use as index
- jmp (tbl_fout.b,%pc,%a1) # jump to routine
- swbeg &0x8
- tbl_fout:
- short fout_long - tbl_fout
- short fout_sgl - tbl_fout
- short fout_ext - tbl_fout
- short fout_pack - tbl_fout
- short fout_word - tbl_fout
- short fout_dbl - tbl_fout
- short fout_byte - tbl_fout
- short fout_pack - tbl_fout
- #################################################################
- # fmove.b out ###################################################
- #################################################################
- # Only "Unimplemented Data Type" exceptions enter here. The operand
- # is either a DENORM or a NORM.
- fout_byte:
- tst.b STAG(%a6) # is operand normalized?
- bne.b fout_byte_denorm # no
- fmovm.x SRC(%a0),&0x80 # load value
- fout_byte_norm:
- fmov.l %d0,%fpcr # insert rnd prec,mode
- fmov.b %fp0,%d0 # exec move out w/ correct rnd mode
- fmov.l &0x0,%fpcr # clear FPCR
- fmov.l %fpsr,%d1 # fetch FPSR
- or.w %d1,2+USER_FPSR(%a6) # save new exc,accrued bits
- mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode
- andi.b &0x38,%d1 # is mode == 0? (Dreg dst)
- beq.b fout_byte_dn # must save to integer regfile
- mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct
- bsr.l _dmem_write_byte # write byte
- tst.l %d1 # did dstore fail?
- bne.l facc_out_b # yes
- rts
- fout_byte_dn:
- mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn
- andi.w &0x7,%d1
- bsr.l store_dreg_b
- rts
- fout_byte_denorm:
- mov.l SRC_EX(%a0),%d1
- andi.l &0x80000000,%d1 # keep DENORM sign
- ori.l &0x00800000,%d1 # make smallest sgl
- fmov.s %d1,%fp0
- bra.b fout_byte_norm
- #################################################################
- # fmove.w out ###################################################
- #################################################################
- # Only "Unimplemented Data Type" exceptions enter here. The operand
- # is either a DENORM or a NORM.
- fout_word:
- tst.b STAG(%a6) # is operand normalized?
- bne.b fout_word_denorm # no
- fmovm.x SRC(%a0),&0x80 # load value
- fout_word_norm:
- fmov.l %d0,%fpcr # insert rnd prec:mode
- fmov.w %fp0,%d0 # exec move out w/ correct rnd mode
- fmov.l &0x0,%fpcr # clear FPCR
- fmov.l %fpsr,%d1 # fetch FPSR
- or.w %d1,2+USER_FPSR(%a6) # save new exc,accrued bits
- mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode
- andi.b &0x38,%d1 # is mode == 0? (Dreg dst)
- beq.b fout_word_dn # must save to integer regfile
- mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct
- bsr.l _dmem_write_word # write word
- tst.l %d1 # did dstore fail?
- bne.l facc_out_w # yes
- rts
- fout_word_dn:
- mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn
- andi.w &0x7,%d1
- bsr.l store_dreg_w
- rts
- fout_word_denorm:
- mov.l SRC_EX(%a0),%d1
- andi.l &0x80000000,%d1 # keep DENORM sign
- ori.l &0x00800000,%d1 # make smallest sgl
- fmov.s %d1,%fp0
- bra.b fout_word_norm
- #################################################################
- # fmove.l out ###################################################
- #################################################################
- # Only "Unimplemented Data Type" exceptions enter here. The operand
- # is either a DENORM or a NORM.
- fout_long:
- tst.b STAG(%a6) # is operand normalized?
- bne.b fout_long_denorm # no
- fmovm.x SRC(%a0),&0x80 # load value
- fout_long_norm:
- fmov.l %d0,%fpcr # insert rnd prec:mode
- fmov.l %fp0,%d0 # exec move out w/ correct rnd mode
- fmov.l &0x0,%fpcr # clear FPCR
- fmov.l %fpsr,%d1 # fetch FPSR
- or.w %d1,2+USER_FPSR(%a6) # save new exc,accrued bits
- fout_long_write:
- mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode
- andi.b &0x38,%d1 # is mode == 0? (Dreg dst)
- beq.b fout_long_dn # must save to integer regfile
- mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct
- bsr.l _dmem_write_long # write long
- tst.l %d1 # did dstore fail?
- bne.l facc_out_l # yes
- rts
- fout_long_dn:
- mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn
- andi.w &0x7,%d1
- bsr.l store_dreg_l
- rts
- fout_long_denorm:
- mov.l SRC_EX(%a0),%d1
- andi.l &0x80000000,%d1 # keep DENORM sign
- ori.l &0x00800000,%d1 # make smallest sgl
- fmov.s %d1,%fp0
- bra.b fout_long_norm
- #################################################################
- # fmove.x out ###################################################
- #################################################################
- # Only "Unimplemented Data Type" exceptions enter here. The operand
- # is either a DENORM or a NORM.
- # The DENORM causes an Underflow exception.
- fout_ext:
- # we copy the extended precision result to FP_SCR0 so that the reserved
- # 16-bit field gets zeroed. we do this since we promise not to disturb
- # what's at SRC(a0).
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- clr.w 2+FP_SCR0_EX(%a6) # clear reserved field
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- fmovm.x SRC(%a0),&0x80 # return result
- bsr.l _calc_ea_fout # fix stacked <ea>
- mov.l %a0,%a1 # pass: dst addr
- lea FP_SCR0(%a6),%a0 # pass: src addr
- mov.l &0xc,%d0 # pass: opsize is 12 bytes
- # we must not yet write the extended precision data to the stack
- # in the pre-decrement case from supervisor mode or else we'll corrupt
- # the stack frame. so, leave it in FP_SRC for now and deal with it later...
- cmpi.b SPCOND_FLG(%a6),&mda7_flg
- beq.b fout_ext_a7
- bsr.l _dmem_write # write ext prec number to memory
- tst.l %d1 # did dstore fail?
- bne.w fout_ext_err # yes
- tst.b STAG(%a6) # is operand normalized?
- bne.b fout_ext_denorm # no
- rts
- # the number is a DENORM. must set the underflow exception bit
- fout_ext_denorm:
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set underflow exc bit
- mov.b FPCR_ENABLE(%a6),%d0
- andi.b &0x0a,%d0 # is UNFL or INEX enabled?
- bne.b fout_ext_exc # yes
- rts
- # we don't want to do the write if the exception occurred in supervisor mode
- # so _mem_write2() handles this for us.
- fout_ext_a7:
- bsr.l _mem_write2 # write ext prec number to memory
- tst.l %d1 # did dstore fail?
- bne.w fout_ext_err # yes
- tst.b STAG(%a6) # is operand normalized?
- bne.b fout_ext_denorm # no
- rts
- fout_ext_exc:
- lea FP_SCR0(%a6),%a0
- bsr.l norm # normalize the mantissa
- neg.w %d0 # new exp = -(shft amt)
- andi.w &0x7fff,%d0
- andi.w &0x8000,FP_SCR0_EX(%a6) # keep only old sign
- or.w %d0,FP_SCR0_EX(%a6) # insert new exponent
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- rts
- fout_ext_err:
- mov.l EXC_A6(%a6),(%a6) # fix stacked a6
- bra.l facc_out_x
- #########################################################################
- # fmove.s out ###########################################################
- #########################################################################
- fout_sgl:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &s_mode*0x10,%d0 # insert sgl prec
- mov.l %d0,L_SCR3(%a6) # save rnd prec,mode on stack
- #
- # operand is a normalized number. first, we check to see if the move out
- # would cause either an underflow or overflow. these cases are handled
- # separately. otherwise, set the FPCR to the proper rounding mode and
- # execute the move.
- #
- mov.w SRC_EX(%a0),%d0 # extract exponent
- andi.w &0x7fff,%d0 # strip sign
- cmpi.w %d0,&SGL_HI # will operand overflow?
- bgt.w fout_sgl_ovfl # yes; go handle OVFL
- beq.w fout_sgl_may_ovfl # maybe; go handle possible OVFL
- cmpi.w %d0,&SGL_LO # will operand underflow?
- blt.w fout_sgl_unfl # yes; go handle underflow
- #
- # NORMs(in range) can be stored out by a simple "fmov.s"
- # Unnormalized inputs can come through this point.
- #
- fout_sgl_exg:
- fmovm.x SRC(%a0),&0x80 # fetch fop from stack
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.s %fp0,%d0 # store does convert and round
- fmov.l &0x0,%fpcr # clear FPCR
- fmov.l %fpsr,%d1 # save FPSR
- or.w %d1,2+USER_FPSR(%a6) # set possible inex2/ainex
- fout_sgl_exg_write:
- mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode
- andi.b &0x38,%d1 # is mode == 0? (Dreg dst)
- beq.b fout_sgl_exg_write_dn # must save to integer regfile
- mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct
- bsr.l _dmem_write_long # write long
- tst.l %d1 # did dstore fail?
- bne.l facc_out_l # yes
- rts
- fout_sgl_exg_write_dn:
- mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn
- andi.w &0x7,%d1
- bsr.l store_dreg_l
- rts
- #
- # here, we know that the operand would UNFL if moved out to single prec,
- # so, denorm and round and then use generic store single routine to
- # write the value to memory.
- #
- fout_sgl_unfl:
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set UNFL
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- mov.l %a0,-(%sp)
- clr.l %d0 # pass: S.F. = 0
- cmpi.b STAG(%a6),&DENORM # fetch src optype tag
- bne.b fout_sgl_unfl_cont # let DENORMs fall through
- lea FP_SCR0(%a6),%a0
- bsr.l norm # normalize the DENORM
- fout_sgl_unfl_cont:
- lea FP_SCR0(%a6),%a0 # pass: ptr to operand
- mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
- bsr.l unf_res # calc default underflow result
- lea FP_SCR0(%a6),%a0 # pass: ptr to fop
- bsr.l dst_sgl # convert to single prec
- mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode
- andi.b &0x38,%d1 # is mode == 0? (Dreg dst)
- beq.b fout_sgl_unfl_dn # must save to integer regfile
- mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct
- bsr.l _dmem_write_long # write long
- tst.l %d1 # did dstore fail?
- bne.l facc_out_l # yes
- bra.b fout_sgl_unfl_chkexc
- fout_sgl_unfl_dn:
- mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn
- andi.w &0x7,%d1
- bsr.l store_dreg_l
- fout_sgl_unfl_chkexc:
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x0a,%d1 # is UNFL or INEX enabled?
- bne.w fout_sd_exc_unfl # yes
- addq.l &0x4,%sp
- rts
- #
- # it's definitely an overflow so call ovf_res to get the correct answer
- #
- fout_sgl_ovfl:
- tst.b 3+SRC_HI(%a0) # is result inexact?
- bne.b fout_sgl_ovfl_inex2
- tst.l SRC_LO(%a0) # is result inexact?
- bne.b fout_sgl_ovfl_inex2
- ori.w &ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex
- bra.b fout_sgl_ovfl_cont
- fout_sgl_ovfl_inex2:
- ori.w &ovfinx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex/inex2
- fout_sgl_ovfl_cont:
- mov.l %a0,-(%sp)
- # call ovf_res() w/ sgl prec and the correct rnd mode to create the default
- # overflow result. DON'T save the returned ccodes from ovf_res() since
- # fmove out doesn't alter them.
- tst.b SRC_EX(%a0) # is operand negative?
- smi %d1 # set if so
- mov.l L_SCR3(%a6),%d0 # pass: sgl prec,rnd mode
- bsr.l ovf_res # calc OVFL result
- fmovm.x (%a0),&0x80 # load default overflow result
- fmov.s %fp0,%d0 # store to single
- mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode
- andi.b &0x38,%d1 # is mode == 0? (Dreg dst)
- beq.b fout_sgl_ovfl_dn # must save to integer regfile
- mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct
- bsr.l _dmem_write_long # write long
- tst.l %d1 # did dstore fail?
- bne.l facc_out_l # yes
- bra.b fout_sgl_ovfl_chkexc
- fout_sgl_ovfl_dn:
- mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn
- andi.w &0x7,%d1
- bsr.l store_dreg_l
- fout_sgl_ovfl_chkexc:
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x0a,%d1 # is UNFL or INEX enabled?
- bne.w fout_sd_exc_ovfl # yes
- addq.l &0x4,%sp
- rts
- #
- # move out MAY overflow:
- # (1) force the exp to 0x3fff
- # (2) do a move w/ appropriate rnd mode
- # (3) if exp still equals zero, then insert original exponent
- # for the correct result.
- # if exp now equals one, then it overflowed so call ovf_res.
- #
- fout_sgl_may_ovfl:
- mov.w SRC_EX(%a0),%d1 # fetch current sign
- andi.w &0x8000,%d1 # keep it,clear exp
- ori.w &0x3fff,%d1 # insert exp = 0
- mov.w %d1,FP_SCR0_EX(%a6) # insert scaled exp
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) # copy hi(man)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) # copy lo(man)
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.x FP_SCR0(%a6),%fp0 # force fop to be rounded
- fmov.l &0x0,%fpcr # clear FPCR
- fabs.x %fp0 # need absolute value
- fcmp.b %fp0,&0x2 # did exponent increase?
- fblt.w fout_sgl_exg # no; go finish NORM
- bra.w fout_sgl_ovfl # yes; go handle overflow
- ################
- fout_sd_exc_unfl:
- mov.l (%sp)+,%a0
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- cmpi.b STAG(%a6),&DENORM # was src a DENORM?
- bne.b fout_sd_exc_cont # no
- lea FP_SCR0(%a6),%a0
- bsr.l norm
- neg.l %d0
- andi.w &0x7fff,%d0
- bfins %d0,FP_SCR0_EX(%a6){&1:&15}
- bra.b fout_sd_exc_cont
- fout_sd_exc:
- fout_sd_exc_ovfl:
- mov.l (%sp)+,%a0 # restore a0
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- fout_sd_exc_cont:
- bclr &0x7,FP_SCR0_EX(%a6) # clear sign bit
- sne.b 2+FP_SCR0_EX(%a6) # set internal sign bit
- lea FP_SCR0(%a6),%a0 # pass: ptr to DENORM
- mov.b 3+L_SCR3(%a6),%d1
- lsr.b &0x4,%d1
- andi.w &0x0c,%d1
- swap %d1
- mov.b 3+L_SCR3(%a6),%d1
- lsr.b &0x4,%d1
- andi.w &0x03,%d1
- clr.l %d0 # pass: zero g,r,s
- bsr.l _round # round the DENORM
- tst.b 2+FP_SCR0_EX(%a6) # is EXOP negative?
- beq.b fout_sd_exc_done # no
- bset &0x7,FP_SCR0_EX(%a6) # yes
- fout_sd_exc_done:
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- rts
- #################################################################
- # fmove.d out ###################################################
- #################################################################
- fout_dbl:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &d_mode*0x10,%d0 # insert dbl prec
- mov.l %d0,L_SCR3(%a6) # save rnd prec,mode on stack
- #
- # operand is a normalized number. first, we check to see if the move out
- # would cause either an underflow or overflow. these cases are handled
- # separately. otherwise, set the FPCR to the proper rounding mode and
- # execute the move.
- #
- mov.w SRC_EX(%a0),%d0 # extract exponent
- andi.w &0x7fff,%d0 # strip sign
- cmpi.w %d0,&DBL_HI # will operand overflow?
- bgt.w fout_dbl_ovfl # yes; go handle OVFL
- beq.w fout_dbl_may_ovfl # maybe; go handle possible OVFL
- cmpi.w %d0,&DBL_LO # will operand underflow?
- blt.w fout_dbl_unfl # yes; go handle underflow
- #
- # NORMs(in range) can be stored out by a simple "fmov.d"
- # Unnormalized inputs can come through this point.
- #
- fout_dbl_exg:
- fmovm.x SRC(%a0),&0x80 # fetch fop from stack
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.d %fp0,L_SCR1(%a6) # store does convert and round
- fmov.l &0x0,%fpcr # clear FPCR
- fmov.l %fpsr,%d0 # save FPSR
- or.w %d0,2+USER_FPSR(%a6) # set possible inex2/ainex
- mov.l EXC_EA(%a6),%a1 # pass: dst addr
- lea L_SCR1(%a6),%a0 # pass: src addr
- movq.l &0x8,%d0 # pass: opsize is 8 bytes
- bsr.l _dmem_write # store dbl fop to memory
- tst.l %d1 # did dstore fail?
- bne.l facc_out_d # yes
- rts # no; so we're finished
- #
- # here, we know that the operand would UNFL if moved out to double prec,
- # so, denorm and round and then use generic store double routine to
- # write the value to memory.
- #
- fout_dbl_unfl:
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set UNFL
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- mov.l %a0,-(%sp)
- clr.l %d0 # pass: S.F. = 0
- cmpi.b STAG(%a6),&DENORM # fetch src optype tag
- bne.b fout_dbl_unfl_cont # let DENORMs fall through
- lea FP_SCR0(%a6),%a0
- bsr.l norm # normalize the DENORM
- fout_dbl_unfl_cont:
- lea FP_SCR0(%a6),%a0 # pass: ptr to operand
- mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
- bsr.l unf_res # calc default underflow result
- lea FP_SCR0(%a6),%a0 # pass: ptr to fop
- bsr.l dst_dbl # convert to single prec
- mov.l %d0,L_SCR1(%a6)
- mov.l %d1,L_SCR2(%a6)
- mov.l EXC_EA(%a6),%a1 # pass: dst addr
- lea L_SCR1(%a6),%a0 # pass: src addr
- movq.l &0x8,%d0 # pass: opsize is 8 bytes
- bsr.l _dmem_write # store dbl fop to memory
- tst.l %d1 # did dstore fail?
- bne.l facc_out_d # yes
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x0a,%d1 # is UNFL or INEX enabled?
- bne.w fout_sd_exc_unfl # yes
- addq.l &0x4,%sp
- rts
- #
- # it's definitely an overflow so call ovf_res to get the correct answer
- #
- fout_dbl_ovfl:
- mov.w 2+SRC_LO(%a0),%d0
- andi.w &0x7ff,%d0
- bne.b fout_dbl_ovfl_inex2
- ori.w &ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex
- bra.b fout_dbl_ovfl_cont
- fout_dbl_ovfl_inex2:
- ori.w &ovfinx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex/inex2
- fout_dbl_ovfl_cont:
- mov.l %a0,-(%sp)
- # call ovf_res() w/ dbl prec and the correct rnd mode to create the default
- # overflow result. DON'T save the returned ccodes from ovf_res() since
- # fmove out doesn't alter them.
- tst.b SRC_EX(%a0) # is operand negative?
- smi %d1 # set if so
- mov.l L_SCR3(%a6),%d0 # pass: dbl prec,rnd mode
- bsr.l ovf_res # calc OVFL result
- fmovm.x (%a0),&0x80 # load default overflow result
- fmov.d %fp0,L_SCR1(%a6) # store to double
- mov.l EXC_EA(%a6),%a1 # pass: dst addr
- lea L_SCR1(%a6),%a0 # pass: src addr
- movq.l &0x8,%d0 # pass: opsize is 8 bytes
- bsr.l _dmem_write # store dbl fop to memory
- tst.l %d1 # did dstore fail?
- bne.l facc_out_d # yes
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x0a,%d1 # is UNFL or INEX enabled?
- bne.w fout_sd_exc_ovfl # yes
- addq.l &0x4,%sp
- rts
- #
- # move out MAY overflow:
- # (1) force the exp to 0x3fff
- # (2) do a move w/ appropriate rnd mode
- # (3) if exp still equals zero, then insert original exponent
- # for the correct result.
- # if exp now equals one, then it overflowed so call ovf_res.
- #
- fout_dbl_may_ovfl:
- mov.w SRC_EX(%a0),%d1 # fetch current sign
- andi.w &0x8000,%d1 # keep it,clear exp
- ori.w &0x3fff,%d1 # insert exp = 0
- mov.w %d1,FP_SCR0_EX(%a6) # insert scaled exp
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) # copy hi(man)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) # copy lo(man)
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.x FP_SCR0(%a6),%fp0 # force fop to be rounded
- fmov.l &0x0,%fpcr # clear FPCR
- fabs.x %fp0 # need absolute value
- fcmp.b %fp0,&0x2 # did exponent increase?
- fblt.w fout_dbl_exg # no; go finish NORM
- bra.w fout_dbl_ovfl # yes; go handle overflow
- #########################################################################
- # XDEF **************************************************************** #
- # dst_dbl(): create double precision value from extended prec. #
- # #
- # XREF **************************************************************** #
- # None #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to source operand in extended precision #
- # #
- # OUTPUT ************************************************************** #
- # d0 = hi(double precision result) #
- # d1 = lo(double precision result) #
- # #
- # ALGORITHM *********************************************************** #
- # #
- # Changes extended precision to double precision. #
- # Note: no attempt is made to round the extended value to double. #
- # dbl_sign = ext_sign #
- # dbl_exp = ext_exp - $3fff(ext bias) + $7ff(dbl bias) #
- # get rid of ext integer bit #
- # dbl_mant = ext_mant{62:12} #
- # #
- # --------------- --------------- --------------- #
- # extended -> |s| exp | |1| ms mant | | ls mant | #
- # --------------- --------------- --------------- #
- # 95 64 63 62 32 31 11 0 #
- # | | #
- # | | #
- # | | #
- # v v #
- # --------------- --------------- #
- # double -> |s|exp| mant | | mant | #
- # --------------- --------------- #
- # 63 51 32 31 0 #
- # #
- #########################################################################
- dst_dbl:
- clr.l %d0 # clear d0
- mov.w FTEMP_EX(%a0),%d0 # get exponent
- subi.w &EXT_BIAS,%d0 # subtract extended precision bias
- addi.w &DBL_BIAS,%d0 # add double precision bias
- tst.b FTEMP_HI(%a0) # is number a denorm?
- bmi.b dst_get_dupper # no
- subq.w &0x1,%d0 # yes; denorm bias = DBL_BIAS - 1
- dst_get_dupper:
- swap %d0 # d0 now in upper word
- lsl.l &0x4,%d0 # d0 in proper place for dbl prec exp
- tst.b FTEMP_EX(%a0) # test sign
- bpl.b dst_get_dman # if postive, go process mantissa
- bset &0x1f,%d0 # if negative, set sign
- dst_get_dman:
- mov.l FTEMP_HI(%a0),%d1 # get ms mantissa
- bfextu %d1{&1:&20},%d1 # get upper 20 bits of ms
- or.l %d1,%d0 # put these bits in ms word of double
- mov.l %d0,L_SCR1(%a6) # put the new exp back on the stack
- mov.l FTEMP_HI(%a0),%d1 # get ms mantissa
- mov.l &21,%d0 # load shift count
- lsl.l %d0,%d1 # put lower 11 bits in upper bits
- mov.l %d1,L_SCR2(%a6) # build lower lword in memory
- mov.l FTEMP_LO(%a0),%d1 # get ls mantissa
- bfextu %d1{&0:&21},%d0 # get ls 21 bits of double
- mov.l L_SCR2(%a6),%d1
- or.l %d0,%d1 # put them in double result
- mov.l L_SCR1(%a6),%d0
- rts
- #########################################################################
- # XDEF **************************************************************** #
- # dst_sgl(): create single precision value from extended prec #
- # #
- # XREF **************************************************************** #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to source operand in extended precision #
- # #
- # OUTPUT ************************************************************** #
- # d0 = single precision result #
- # #
- # ALGORITHM *********************************************************** #
- # #
- # Changes extended precision to single precision. #
- # sgl_sign = ext_sign #
- # sgl_exp = ext_exp - $3fff(ext bias) + $7f(sgl bias) #
- # get rid of ext integer bit #
- # sgl_mant = ext_mant{62:12} #
- # #
- # --------------- --------------- --------------- #
- # extended -> |s| exp | |1| ms mant | | ls mant | #
- # --------------- --------------- --------------- #
- # 95 64 63 62 40 32 31 12 0 #
- # | | #
- # | | #
- # | | #
- # v v #
- # --------------- #
- # single -> |s|exp| mant | #
- # --------------- #
- # 31 22 0 #
- # #
- #########################################################################
- dst_sgl:
- clr.l %d0
- mov.w FTEMP_EX(%a0),%d0 # get exponent
- subi.w &EXT_BIAS,%d0 # subtract extended precision bias
- addi.w &SGL_BIAS,%d0 # add single precision bias
- tst.b FTEMP_HI(%a0) # is number a denorm?
- bmi.b dst_get_supper # no
- subq.w &0x1,%d0 # yes; denorm bias = SGL_BIAS - 1
- dst_get_supper:
- swap %d0 # put exp in upper word of d0
- lsl.l &0x7,%d0 # shift it into single exp bits
- tst.b FTEMP_EX(%a0) # test sign
- bpl.b dst_get_sman # if positive, continue
- bset &0x1f,%d0 # if negative, put in sign first
- dst_get_sman:
- mov.l FTEMP_HI(%a0),%d1 # get ms mantissa
- andi.l &0x7fffff00,%d1 # get upper 23 bits of ms
- lsr.l &0x8,%d1 # and put them flush right
- or.l %d1,%d0 # put these bits in ms word of single
- rts
- ##############################################################################
- fout_pack:
- bsr.l _calc_ea_fout # fetch the <ea>
- mov.l %a0,-(%sp)
- mov.b STAG(%a6),%d0 # fetch input type
- bne.w fout_pack_not_norm # input is not NORM
- fout_pack_norm:
- btst &0x4,EXC_CMDREG(%a6) # static or dynamic?
- beq.b fout_pack_s # static
- fout_pack_d:
- mov.b 1+EXC_CMDREG(%a6),%d1 # fetch dynamic reg
- lsr.b &0x4,%d1
- andi.w &0x7,%d1
- bsr.l fetch_dreg # fetch Dn w/ k-factor
- bra.b fout_pack_type
- fout_pack_s:
- mov.b 1+EXC_CMDREG(%a6),%d0 # fetch static field
- fout_pack_type:
- bfexts %d0{&25:&7},%d0 # extract k-factor
- mov.l %d0,-(%sp)
- lea FP_SRC(%a6),%a0 # pass: ptr to input
- # bindec is currently scrambling FP_SRC for denorm inputs.
- # we'll have to change this, but for now, tough luck!!!
- bsr.l bindec # convert xprec to packed
- # andi.l &0xcfff000f,FP_SCR0(%a6) # clear unused fields
- andi.l &0xcffff00f,FP_SCR0(%a6) # clear unused fields
- mov.l (%sp)+,%d0
- tst.b 3+FP_SCR0_EX(%a6)
- bne.b fout_pack_set
- tst.l FP_SCR0_HI(%a6)
- bne.b fout_pack_set
- tst.l FP_SCR0_LO(%a6)
- bne.b fout_pack_set
- # add the extra condition that only if the k-factor was zero, too, should
- # we zero the exponent
- tst.l %d0
- bne.b fout_pack_set
- # "mantissa" is all zero which means that the answer is zero. but, the '040
- # algorithm allows the exponent to be non-zero. the 881/2 do not. therefore,
- # if the mantissa is zero, I will zero the exponent, too.
- # the question now is whether the exponents sign bit is allowed to be non-zero
- # for a zero, also...
- andi.w &0xf000,FP_SCR0(%a6)
- fout_pack_set:
- lea FP_SCR0(%a6),%a0 # pass: src addr
- fout_pack_write:
- mov.l (%sp)+,%a1 # pass: dst addr
- mov.l &0xc,%d0 # pass: opsize is 12 bytes
- cmpi.b SPCOND_FLG(%a6),&mda7_flg
- beq.b fout_pack_a7
- bsr.l _dmem_write # write ext prec number to memory
- tst.l %d1 # did dstore fail?
- bne.w fout_ext_err # yes
- rts
- # we don't want to do the write if the exception occurred in supervisor mode
- # so _mem_write2() handles this for us.
- fout_pack_a7:
- bsr.l _mem_write2 # write ext prec number to memory
- tst.l %d1 # did dstore fail?
- bne.w fout_ext_err # yes
- rts
- fout_pack_not_norm:
- cmpi.b %d0,&DENORM # is it a DENORM?
- beq.w fout_pack_norm # yes
- lea FP_SRC(%a6),%a0
- clr.w 2+FP_SRC_EX(%a6)
- cmpi.b %d0,&SNAN # is it an SNAN?
- beq.b fout_pack_snan # yes
- bra.b fout_pack_write # no
- fout_pack_snan:
- ori.w &snaniop2_mask,FPSR_EXCEPT(%a6) # set SNAN/AIOP
- bset &0x6,FP_SRC_HI(%a6) # set snan bit
- bra.b fout_pack_write
- #########################################################################
- # XDEF **************************************************************** #
- # fmul(): emulates the fmul instruction #
- # fsmul(): emulates the fsmul instruction #
- # fdmul(): emulates the fdmul instruction #
- # #
- # XREF **************************************************************** #
- # scale_to_zero_src() - scale src exponent to zero #
- # scale_to_zero_dst() - scale dst exponent to zero #
- # unf_res() - return default underflow result #
- # ovf_res() - return default overflow result #
- # res_qnan() - return QNAN result #
- # res_snan() - return SNAN result #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to extended precision source operand #
- # a1 = pointer to extended precision destination operand #
- # d0 rnd prec,mode #
- # #
- # OUTPUT ************************************************************** #
- # fp0 = result #
- # fp1 = EXOP (if exception occurred) #
- # #
- # ALGORITHM *********************************************************** #
- # Handle NANs, infinities, and zeroes as special cases. Divide #
- # norms/denorms into ext/sgl/dbl precision. #
- # For norms/denorms, scale the exponents such that a multiply #
- # instruction won't cause an exception. Use the regular fmul to #
- # compute a result. Check if the regular operands would have taken #
- # an exception. If so, return the default overflow/underflow result #
- # and return the EXOP if exceptions are enabled. Else, scale the #
- # result operand to the proper exponent. #
- # #
- #########################################################################
- align 0x10
- tbl_fmul_ovfl:
- long 0x3fff - 0x7ffe # ext_max
- long 0x3fff - 0x407e # sgl_max
- long 0x3fff - 0x43fe # dbl_max
- tbl_fmul_unfl:
- long 0x3fff + 0x0001 # ext_unfl
- long 0x3fff - 0x3f80 # sgl_unfl
- long 0x3fff - 0x3c00 # dbl_unfl
- global fsmul
- fsmul:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &s_mode*0x10,%d0 # insert sgl prec
- bra.b fmul
- global fdmul
- fdmul:
- andi.b &0x30,%d0
- ori.b &d_mode*0x10,%d0 # insert dbl prec
- global fmul
- fmul:
- mov.l %d0,L_SCR3(%a6) # store rnd info
- clr.w %d1
- mov.b DTAG(%a6),%d1
- lsl.b &0x3,%d1
- or.b STAG(%a6),%d1 # combine src tags
- bne.w fmul_not_norm # optimize on non-norm input
- fmul_norm:
- mov.w DST_EX(%a1),FP_SCR1_EX(%a6)
- mov.l DST_HI(%a1),FP_SCR1_HI(%a6)
- mov.l DST_LO(%a1),FP_SCR1_LO(%a6)
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- bsr.l scale_to_zero_src # scale src exponent
- mov.l %d0,-(%sp) # save scale factor 1
- bsr.l scale_to_zero_dst # scale dst exponent
- add.l %d0,(%sp) # SCALE_FACTOR = scale1 + scale2
- mov.w 2+L_SCR3(%a6),%d1 # fetch precision
- lsr.b &0x6,%d1 # shift to lo bits
- mov.l (%sp)+,%d0 # load S.F.
- cmp.l %d0,(tbl_fmul_ovfl.w,%pc,%d1.w*4) # would result ovfl?
- beq.w fmul_may_ovfl # result may rnd to overflow
- blt.w fmul_ovfl # result will overflow
- cmp.l %d0,(tbl_fmul_unfl.w,%pc,%d1.w*4) # would result unfl?
- beq.w fmul_may_unfl # result may rnd to no unfl
- bgt.w fmul_unfl # result will underflow
- #
- # NORMAL:
- # - the result of the multiply operation will neither overflow nor underflow.
- # - do the multiply to the proper precision and rounding mode.
- # - scale the result exponent using the scale factor. if both operands were
- # normalized then we really don't need to go through this scaling. but for now,
- # this will do.
- #
- fmul_normal:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst operand
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
- fmul.x FP_SCR0(%a6),%fp0 # execute multiply
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
- fmul_normal_exit:
- fmovm.x &0x80,FP_SCR0(%a6) # store out result
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factor
- or.w %d2,%d1 # concat old sign,new exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
- rts
- #
- # OVERFLOW:
- # - the result of the multiply operation is an overflow.
- # - do the multiply to the proper precision and rounding mode in order to
- # set the inexact bits.
- # - calculate the default result and return it in fp0.
- # - if overflow or inexact is enabled, we need a multiply result rounded to
- # extended precision. if the original operation was extended, then we have this
- # result. if the original operation was single or double, we have to do another
- # multiply using extended precision and the correct rounding mode. the result
- # of this operation then has its exponent scaled by -0x6000 to create the
- # exceptional operand.
- #
- fmul_ovfl:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst operand
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
- fmul.x FP_SCR0(%a6),%fp0 # execute multiply
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
- # save setting this until now because this is where fmul_may_ovfl may jump in
- fmul_ovfl_tst:
- or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x13,%d1 # is OVFL or INEX enabled?
- bne.b fmul_ovfl_ena # yes
- # calculate the default result
- fmul_ovfl_dis:
- btst &neg_bit,FPSR_CC(%a6) # is result negative?
- sne %d1 # set sign param accordingly
- mov.l L_SCR3(%a6),%d0 # pass rnd prec,mode
- bsr.l ovf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # set INF,N if applicable
- fmovm.x (%a0),&0x80 # return default result in fp0
- rts
- #
- # OVFL is enabled; Create EXOP:
- # - if precision is extended, then we have the EXOP. simply bias the exponent
- # with an extra -0x6000. if the precision is single or double, we need to
- # calculate a result rounded to extended precision.
- #
- fmul_ovfl_ena:
- mov.l L_SCR3(%a6),%d1
- andi.b &0xc0,%d1 # test the rnd prec
- bne.b fmul_ovfl_ena_sd # it's sgl or dbl
- fmul_ovfl_ena_cont:
- fmovm.x &0x80,FP_SCR0(%a6) # move result to stack
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
- mov.w %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- sub.l %d0,%d1 # add scale factor
- subi.l &0x6000,%d1 # subtract bias
- andi.w &0x7fff,%d1 # clear sign bit
- andi.w &0x8000,%d2 # keep old sign
- or.w %d2,%d1 # concat old sign,new exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- bra.b fmul_ovfl_dis
- fmul_ovfl_ena_sd:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst operand
- mov.l L_SCR3(%a6),%d1
- andi.b &0x30,%d1 # keep rnd mode only
- fmov.l %d1,%fpcr # set FPCR
- fmul.x FP_SCR0(%a6),%fp0 # execute multiply
- fmov.l &0x0,%fpcr # clear FPCR
- bra.b fmul_ovfl_ena_cont
- #
- # may OVERFLOW:
- # - the result of the multiply operation MAY overflow.
- # - do the multiply to the proper precision and rounding mode in order to
- # set the inexact bits.
- # - calculate the default result and return it in fp0.
- #
- fmul_may_ovfl:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
- fmul.x FP_SCR0(%a6),%fp0 # execute multiply
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
- fabs.x %fp0,%fp1 # make a copy of result
- fcmp.b %fp1,&0x2 # is |result| >= 2.b?
- fbge.w fmul_ovfl_tst # yes; overflow has occurred
- # no, it didn't overflow; we have correct result
- bra.w fmul_normal_exit
- #
- # UNDERFLOW:
- # - the result of the multiply operation is an underflow.
- # - do the multiply to the proper precision and rounding mode in order to
- # set the inexact bits.
- # - calculate the default result and return it in fp0.
- # - if overflow or inexact is enabled, we need a multiply result rounded to
- # extended precision. if the original operation was extended, then we have this
- # result. if the original operation was single or double, we have to do another
- # multiply using extended precision and the correct rounding mode. the result
- # of this operation then has its exponent scaled by -0x6000 to create the
- # exceptional operand.
- #
- fmul_unfl:
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
- # for fun, let's use only extended precision, round to zero. then, let
- # the unf_res() routine figure out all the rest.
- # will we get the correct answer.
- fmovm.x FP_SCR1(%a6),&0x80 # load dst operand
- fmov.l &rz_mode*0x10,%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
- fmul.x FP_SCR0(%a6),%fp0 # execute multiply
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x0b,%d1 # is UNFL or INEX enabled?
- bne.b fmul_unfl_ena # yes
- fmul_unfl_dis:
- fmovm.x &0x80,FP_SCR0(%a6) # store out result
- lea FP_SCR0(%a6),%a0 # pass: result addr
- mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
- bsr.l unf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # unf_res2 may have set 'Z'
- fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
- rts
- #
- # UNFL is enabled.
- #
- fmul_unfl_ena:
- fmovm.x FP_SCR1(%a6),&0x40 # load dst op
- mov.l L_SCR3(%a6),%d1
- andi.b &0xc0,%d1 # is precision extended?
- bne.b fmul_unfl_ena_sd # no, sgl or dbl
- # if the rnd mode is anything but RZ, then we have to re-do the above
- # multiplication becuase we used RZ for all.
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmul_unfl_ena_cont:
- fmov.l &0x0,%fpsr # clear FPSR
- fmul.x FP_SCR0(%a6),%fp1 # execute multiply
- fmov.l &0x0,%fpcr # clear FPCR
- fmovm.x &0x40,FP_SCR0(%a6) # save result to stack
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factor
- addi.l &0x6000,%d1 # add bias
- andi.w &0x7fff,%d1
- or.w %d2,%d1 # concat old sign,new exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- bra.w fmul_unfl_dis
- fmul_unfl_ena_sd:
- mov.l L_SCR3(%a6),%d1
- andi.b &0x30,%d1 # use only rnd mode
- fmov.l %d1,%fpcr # set FPCR
- bra.b fmul_unfl_ena_cont
- # MAY UNDERFLOW:
- # -use the correct rounding mode and precision. this code favors operations
- # that do not underflow.
- fmul_may_unfl:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst operand
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
- fmul.x FP_SCR0(%a6),%fp0 # execute multiply
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
- fabs.x %fp0,%fp1 # make a copy of result
- fcmp.b %fp1,&0x2 # is |result| > 2.b?
- fbgt.w fmul_normal_exit # no; no underflow occurred
- fblt.w fmul_unfl # yes; underflow occurred
- #
- # we still don't know if underflow occurred. result is ~ equal to 2. but,
- # we don't know if the result was an underflow that rounded up to a 2 or
- # a normalized number that rounded down to a 2. so, redo the entire operation
- # using RZ as the rounding mode to see what the pre-rounded result is.
- # this case should be relatively rare.
- #
- fmovm.x FP_SCR1(%a6),&0x40 # load dst operand
- mov.l L_SCR3(%a6),%d1
- andi.b &0xc0,%d1 # keep rnd prec
- ori.b &rz_mode*0x10,%d1 # insert RZ
- fmov.l %d1,%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
- fmul.x FP_SCR0(%a6),%fp1 # execute multiply
- fmov.l &0x0,%fpcr # clear FPCR
- fabs.x %fp1 # make absolute value
- fcmp.b %fp1,&0x2 # is |result| < 2.b?
- fbge.w fmul_normal_exit # no; no underflow occurred
- bra.w fmul_unfl # yes, underflow occurred
- ################################################################################
- #
- # Multiply: inputs are not both normalized; what are they?
- #
- fmul_not_norm:
- mov.w (tbl_fmul_op.b,%pc,%d1.w*2),%d1
- jmp (tbl_fmul_op.b,%pc,%d1.w)
- swbeg &48
- tbl_fmul_op:
- short fmul_norm - tbl_fmul_op # NORM x NORM
- short fmul_zero - tbl_fmul_op # NORM x ZERO
- short fmul_inf_src - tbl_fmul_op # NORM x INF
- short fmul_res_qnan - tbl_fmul_op # NORM x QNAN
- short fmul_norm - tbl_fmul_op # NORM x DENORM
- short fmul_res_snan - tbl_fmul_op # NORM x SNAN
- short tbl_fmul_op - tbl_fmul_op #
- short tbl_fmul_op - tbl_fmul_op #
- short fmul_zero - tbl_fmul_op # ZERO x NORM
- short fmul_zero - tbl_fmul_op # ZERO x ZERO
- short fmul_res_operr - tbl_fmul_op # ZERO x INF
- short fmul_res_qnan - tbl_fmul_op # ZERO x QNAN
- short fmul_zero - tbl_fmul_op # ZERO x DENORM
- short fmul_res_snan - tbl_fmul_op # ZERO x SNAN
- short tbl_fmul_op - tbl_fmul_op #
- short tbl_fmul_op - tbl_fmul_op #
- short fmul_inf_dst - tbl_fmul_op # INF x NORM
- short fmul_res_operr - tbl_fmul_op # INF x ZERO
- short fmul_inf_dst - tbl_fmul_op # INF x INF
- short fmul_res_qnan - tbl_fmul_op # INF x QNAN
- short fmul_inf_dst - tbl_fmul_op # INF x DENORM
- short fmul_res_snan - tbl_fmul_op # INF x SNAN
- short tbl_fmul_op - tbl_fmul_op #
- short tbl_fmul_op - tbl_fmul_op #
- short fmul_res_qnan - tbl_fmul_op # QNAN x NORM
- short fmul_res_qnan - tbl_fmul_op # QNAN x ZERO
- short fmul_res_qnan - tbl_fmul_op # QNAN x INF
- short fmul_res_qnan - tbl_fmul_op # QNAN x QNAN
- short fmul_res_qnan - tbl_fmul_op # QNAN x DENORM
- short fmul_res_snan - tbl_fmul_op # QNAN x SNAN
- short tbl_fmul_op - tbl_fmul_op #
- short tbl_fmul_op - tbl_fmul_op #
- short fmul_norm - tbl_fmul_op # NORM x NORM
- short fmul_zero - tbl_fmul_op # NORM x ZERO
- short fmul_inf_src - tbl_fmul_op # NORM x INF
- short fmul_res_qnan - tbl_fmul_op # NORM x QNAN
- short fmul_norm - tbl_fmul_op # NORM x DENORM
- short fmul_res_snan - tbl_fmul_op # NORM x SNAN
- short tbl_fmul_op - tbl_fmul_op #
- short tbl_fmul_op - tbl_fmul_op #
- short fmul_res_snan - tbl_fmul_op # SNAN x NORM
- short fmul_res_snan - tbl_fmul_op # SNAN x ZERO
- short fmul_res_snan - tbl_fmul_op # SNAN x INF
- short fmul_res_snan - tbl_fmul_op # SNAN x QNAN
- short fmul_res_snan - tbl_fmul_op # SNAN x DENORM
- short fmul_res_snan - tbl_fmul_op # SNAN x SNAN
- short tbl_fmul_op - tbl_fmul_op #
- short tbl_fmul_op - tbl_fmul_op #
- fmul_res_operr:
- bra.l res_operr
- fmul_res_snan:
- bra.l res_snan
- fmul_res_qnan:
- bra.l res_qnan
- #
- # Multiply: (Zero x Zero) || (Zero x norm) || (Zero x denorm)
- #
- global fmul_zero # global for fsglmul
- fmul_zero:
- mov.b SRC_EX(%a0),%d0 # exclusive or the signs
- mov.b DST_EX(%a1),%d1
- eor.b %d0,%d1
- bpl.b fmul_zero_p # result ZERO is pos.
- fmul_zero_n:
- fmov.s &0x80000000,%fp0 # load -ZERO
- mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set Z/N
- rts
- fmul_zero_p:
- fmov.s &0x00000000,%fp0 # load +ZERO
- mov.b &z_bmask,FPSR_CC(%a6) # set Z
- rts
- #
- # Multiply: (inf x inf) || (inf x norm) || (inf x denorm)
- #
- # Note: The j-bit for an infinity is a don't-care. However, to be
- # strictly compatible w/ the 68881/882, we make sure to return an
- # INF w/ the j-bit set if the input INF j-bit was set. Destination
- # INFs take priority.
- #
- global fmul_inf_dst # global for fsglmul
- fmul_inf_dst:
- fmovm.x DST(%a1),&0x80 # return INF result in fp0
- mov.b SRC_EX(%a0),%d0 # exclusive or the signs
- mov.b DST_EX(%a1),%d1
- eor.b %d0,%d1
- bpl.b fmul_inf_dst_p # result INF is pos.
- fmul_inf_dst_n:
- fabs.x %fp0 # clear result sign
- fneg.x %fp0 # set result sign
- mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/N
- rts
- fmul_inf_dst_p:
- fabs.x %fp0 # clear result sign
- mov.b &inf_bmask,FPSR_CC(%a6) # set INF
- rts
- global fmul_inf_src # global for fsglmul
- fmul_inf_src:
- fmovm.x SRC(%a0),&0x80 # return INF result in fp0
- mov.b SRC_EX(%a0),%d0 # exclusive or the signs
- mov.b DST_EX(%a1),%d1
- eor.b %d0,%d1
- bpl.b fmul_inf_dst_p # result INF is pos.
- bra.b fmul_inf_dst_n
- #########################################################################
- # XDEF **************************************************************** #
- # fin(): emulates the fmove instruction #
- # fsin(): emulates the fsmove instruction #
- # fdin(): emulates the fdmove instruction #
- # #
- # XREF **************************************************************** #
- # norm() - normalize mantissa for EXOP on denorm #
- # scale_to_zero_src() - scale src exponent to zero #
- # ovf_res() - return default overflow result #
- # unf_res() - return default underflow result #
- # res_qnan_1op() - return QNAN result #
- # res_snan_1op() - return SNAN result #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to extended precision source operand #
- # d0 = round prec/mode #
- # #
- # OUTPUT ************************************************************** #
- # fp0 = result #
- # fp1 = EXOP (if exception occurred) #
- # #
- # ALGORITHM *********************************************************** #
- # Handle NANs, infinities, and zeroes as special cases. Divide #
- # norms into extended, single, and double precision. #
- # Norms can be emulated w/ a regular fmove instruction. For #
- # sgl/dbl, must scale exponent and perform an "fmove". Check to see #
- # if the result would have overflowed/underflowed. If so, use unf_res() #
- # or ovf_res() to return the default result. Also return EXOP if #
- # exception is enabled. If no exception, return the default result. #
- # Unnorms don't pass through here. #
- # #
- #########################################################################
- global fsin
- fsin:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &s_mode*0x10,%d0 # insert sgl precision
- bra.b fin
- global fdin
- fdin:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &d_mode*0x10,%d0 # insert dbl precision
- global fin
- fin:
- mov.l %d0,L_SCR3(%a6) # store rnd info
- mov.b STAG(%a6),%d1 # fetch src optype tag
- bne.w fin_not_norm # optimize on non-norm input
- #
- # FP MOVE IN: NORMs and DENORMs ONLY!
- #
- fin_norm:
- andi.b &0xc0,%d0 # is precision extended?
- bne.w fin_not_ext # no, so go handle dbl or sgl
- #
- # precision selected is extended. so...we cannot get an underflow
- # or overflow because of rounding to the correct precision. so...
- # skip the scaling and unscaling...
- #
- tst.b SRC_EX(%a0) # is the operand negative?
- bpl.b fin_norm_done # no
- bset &neg_bit,FPSR_CC(%a6) # yes, so set 'N' ccode bit
- fin_norm_done:
- fmovm.x SRC(%a0),&0x80 # return result in fp0
- rts
- #
- # for an extended precision DENORM, the UNFL exception bit is set
- # the accrued bit is NOT set in this instance(no inexactness!)
- #
- fin_denorm:
- andi.b &0xc0,%d0 # is precision extended?
- bne.w fin_not_ext # no, so go handle dbl or sgl
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
- tst.b SRC_EX(%a0) # is the operand negative?
- bpl.b fin_denorm_done # no
- bset &neg_bit,FPSR_CC(%a6) # yes, so set 'N' ccode bit
- fin_denorm_done:
- fmovm.x SRC(%a0),&0x80 # return result in fp0
- btst &unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled?
- bne.b fin_denorm_unfl_ena # yes
- rts
- #
- # the input is an extended DENORM and underflow is enabled in the FPCR.
- # normalize the mantissa and add the bias of 0x6000 to the resulting negative
- # exponent and insert back into the operand.
- #
- fin_denorm_unfl_ena:
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- lea FP_SCR0(%a6),%a0 # pass: ptr to operand
- bsr.l norm # normalize result
- neg.w %d0 # new exponent = -(shft val)
- addi.w &0x6000,%d0 # add new bias to exponent
- mov.w FP_SCR0_EX(%a6),%d1 # fetch old sign,exp
- andi.w &0x8000,%d1 # keep old sign
- andi.w &0x7fff,%d0 # clear sign position
- or.w %d1,%d0 # concat new exo,old sign
- mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- rts
- #
- # operand is to be rounded to single or double precision
- #
- fin_not_ext:
- cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec
- bne.b fin_dbl
- #
- # operand is to be rounded to single precision
- #
- fin_sgl:
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- bsr.l scale_to_zero_src # calculate scale factor
- cmpi.l %d0,&0x3fff-0x3f80 # will move in underflow?
- bge.w fin_sd_unfl # yes; go handle underflow
- cmpi.l %d0,&0x3fff-0x407e # will move in overflow?
- beq.w fin_sd_may_ovfl # maybe; go check
- blt.w fin_sd_ovfl # yes; go handle overflow
- #
- # operand will NOT overflow or underflow when moved into the fp reg file
- #
- fin_sd_normal:
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.x FP_SCR0(%a6),%fp0 # perform move
- fmov.l %fpsr,%d1 # save FPSR
- fmov.l &0x0,%fpcr # clear FPCR
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
- fin_sd_normal_exit:
- mov.l %d2,-(%sp) # save d2
- fmovm.x &0x80,FP_SCR0(%a6) # store out result
- mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp}
- mov.w %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- sub.l %d0,%d1 # add scale factor
- andi.w &0x8000,%d2 # keep old sign
- or.w %d1,%d2 # concat old sign,new exponent
- mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0
- rts
- #
- # operand is to be rounded to double precision
- #
- fin_dbl:
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- bsr.l scale_to_zero_src # calculate scale factor
- cmpi.l %d0,&0x3fff-0x3c00 # will move in underflow?
- bge.w fin_sd_unfl # yes; go handle underflow
- cmpi.l %d0,&0x3fff-0x43fe # will move in overflow?
- beq.w fin_sd_may_ovfl # maybe; go check
- blt.w fin_sd_ovfl # yes; go handle overflow
- bra.w fin_sd_normal # no; ho handle normalized op
- #
- # operand WILL underflow when moved in to the fp register file
- #
- fin_sd_unfl:
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
- tst.b FP_SCR0_EX(%a6) # is operand negative?
- bpl.b fin_sd_unfl_tst
- bset &neg_bit,FPSR_CC(%a6) # set 'N' ccode bit
- # if underflow or inexact is enabled, then go calculate the EXOP first.
- fin_sd_unfl_tst:
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x0b,%d1 # is UNFL or INEX enabled?
- bne.b fin_sd_unfl_ena # yes
- fin_sd_unfl_dis:
- lea FP_SCR0(%a6),%a0 # pass: result addr
- mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
- bsr.l unf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # unf_res may have set 'Z'
- fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
- rts
- #
- # operand will underflow AND underflow or inexact is enabled.
- # therefore, we must return the result rounded to extended precision.
- #
- fin_sd_unfl_ena:
- mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6)
- mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6)
- mov.w FP_SCR0_EX(%a6),%d1 # load current exponent
- mov.l %d2,-(%sp) # save d2
- mov.w %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- sub.l %d0,%d1 # subtract scale factor
- andi.w &0x8000,%d2 # extract old sign
- addi.l &0x6000,%d1 # add new bias
- andi.w &0x7fff,%d1
- or.w %d1,%d2 # concat old sign,new exp
- mov.w %d2,FP_SCR1_EX(%a6) # insert new exponent
- fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1
- mov.l (%sp)+,%d2 # restore d2
- bra.b fin_sd_unfl_dis
- #
- # operand WILL overflow.
- #
- fin_sd_ovfl:
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.x FP_SCR0(%a6),%fp0 # perform move
- fmov.l &0x0,%fpcr # clear FPCR
- fmov.l %fpsr,%d1 # save FPSR
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
- fin_sd_ovfl_tst:
- or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x13,%d1 # is OVFL or INEX enabled?
- bne.b fin_sd_ovfl_ena # yes
- #
- # OVFL is not enabled; therefore, we must create the default result by
- # calling ovf_res().
- #
- fin_sd_ovfl_dis:
- btst &neg_bit,FPSR_CC(%a6) # is result negative?
- sne %d1 # set sign param accordingly
- mov.l L_SCR3(%a6),%d0 # pass: prec,mode
- bsr.l ovf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # set INF,N if applicable
- fmovm.x (%a0),&0x80 # return default result in fp0
- rts
- #
- # OVFL is enabled.
- # the INEX2 bit has already been updated by the round to the correct precision.
- # now, round to extended(and don't alter the FPSR).
- #
- fin_sd_ovfl_ena:
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factor
- sub.l &0x6000,%d1 # subtract bias
- andi.w &0x7fff,%d1
- or.w %d2,%d1
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- bra.b fin_sd_ovfl_dis
- #
- # the move in MAY overflow. so...
- #
- fin_sd_may_ovfl:
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.x FP_SCR0(%a6),%fp0 # perform the move
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
- fabs.x %fp0,%fp1 # make a copy of result
- fcmp.b %fp1,&0x2 # is |result| >= 2.b?
- fbge.w fin_sd_ovfl_tst # yes; overflow has occurred
- # no, it didn't overflow; we have correct result
- bra.w fin_sd_normal_exit
- ##########################################################################
- #
- # operand is not a NORM: check its optype and branch accordingly
- #
- fin_not_norm:
- cmpi.b %d1,&DENORM # weed out DENORM
- beq.w fin_denorm
- cmpi.b %d1,&SNAN # weed out SNANs
- beq.l res_snan_1op
- cmpi.b %d1,&QNAN # weed out QNANs
- beq.l res_qnan_1op
- #
- # do the fmove in; at this point, only possible ops are ZERO and INF.
- # use fmov to determine ccodes.
- # prec:mode should be zero at this point but it won't affect answer anyways.
- #
- fmov.x SRC(%a0),%fp0 # do fmove in
- fmov.l %fpsr,%d0 # no exceptions possible
- rol.l &0x8,%d0 # put ccodes in lo byte
- mov.b %d0,FPSR_CC(%a6) # insert correct ccodes
- rts
- #########################################################################
- # XDEF **************************************************************** #
- # fdiv(): emulates the fdiv instruction #
- # fsdiv(): emulates the fsdiv instruction #
- # fddiv(): emulates the fddiv instruction #
- # #
- # XREF **************************************************************** #
- # scale_to_zero_src() - scale src exponent to zero #
- # scale_to_zero_dst() - scale dst exponent to zero #
- # unf_res() - return default underflow result #
- # ovf_res() - return default overflow result #
- # res_qnan() - return QNAN result #
- # res_snan() - return SNAN result #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to extended precision source operand #
- # a1 = pointer to extended precision destination operand #
- # d0 rnd prec,mode #
- # #
- # OUTPUT ************************************************************** #
- # fp0 = result #
- # fp1 = EXOP (if exception occurred) #
- # #
- # ALGORITHM *********************************************************** #
- # Handle NANs, infinities, and zeroes as special cases. Divide #
- # norms/denorms into ext/sgl/dbl precision. #
- # For norms/denorms, scale the exponents such that a divide #
- # instruction won't cause an exception. Use the regular fdiv to #
- # compute a result. Check if the regular operands would have taken #
- # an exception. If so, return the default overflow/underflow result #
- # and return the EXOP if exceptions are enabled. Else, scale the #
- # result operand to the proper exponent. #
- # #
- #########################################################################
- align 0x10
- tbl_fdiv_unfl:
- long 0x3fff - 0x0000 # ext_unfl
- long 0x3fff - 0x3f81 # sgl_unfl
- long 0x3fff - 0x3c01 # dbl_unfl
- tbl_fdiv_ovfl:
- long 0x3fff - 0x7ffe # ext overflow exponent
- long 0x3fff - 0x407e # sgl overflow exponent
- long 0x3fff - 0x43fe # dbl overflow exponent
- global fsdiv
- fsdiv:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &s_mode*0x10,%d0 # insert sgl prec
- bra.b fdiv
- global fddiv
- fddiv:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &d_mode*0x10,%d0 # insert dbl prec
- global fdiv
- fdiv:
- mov.l %d0,L_SCR3(%a6) # store rnd info
- clr.w %d1
- mov.b DTAG(%a6),%d1
- lsl.b &0x3,%d1
- or.b STAG(%a6),%d1 # combine src tags
- bne.w fdiv_not_norm # optimize on non-norm input
- #
- # DIVIDE: NORMs and DENORMs ONLY!
- #
- fdiv_norm:
- mov.w DST_EX(%a1),FP_SCR1_EX(%a6)
- mov.l DST_HI(%a1),FP_SCR1_HI(%a6)
- mov.l DST_LO(%a1),FP_SCR1_LO(%a6)
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- bsr.l scale_to_zero_src # scale src exponent
- mov.l %d0,-(%sp) # save scale factor 1
- bsr.l scale_to_zero_dst # scale dst exponent
- neg.l (%sp) # SCALE FACTOR = scale1 - scale2
- add.l %d0,(%sp)
- mov.w 2+L_SCR3(%a6),%d1 # fetch precision
- lsr.b &0x6,%d1 # shift to lo bits
- mov.l (%sp)+,%d0 # load S.F.
- cmp.l %d0,(tbl_fdiv_ovfl.b,%pc,%d1.w*4) # will result overflow?
- ble.w fdiv_may_ovfl # result will overflow
- cmp.l %d0,(tbl_fdiv_unfl.w,%pc,%d1.w*4) # will result underflow?
- beq.w fdiv_may_unfl # maybe
- bgt.w fdiv_unfl # yes; go handle underflow
- fdiv_normal:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
- fmov.l L_SCR3(%a6),%fpcr # save FPCR
- fmov.l &0x0,%fpsr # clear FPSR
- fdiv.x FP_SCR0(%a6),%fp0 # perform divide
- fmov.l %fpsr,%d1 # save FPSR
- fmov.l &0x0,%fpcr # clear FPCR
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
- fdiv_normal_exit:
- fmovm.x &0x80,FP_SCR0(%a6) # store result on stack
- mov.l %d2,-(%sp) # store d2
- mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factor
- or.w %d2,%d1 # concat old sign,new exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0
- rts
- tbl_fdiv_ovfl2:
- long 0x7fff
- long 0x407f
- long 0x43ff
- fdiv_no_ovfl:
- mov.l (%sp)+,%d0 # restore scale factor
- bra.b fdiv_normal_exit
- fdiv_may_ovfl:
- mov.l %d0,-(%sp) # save scale factor
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # set FPSR
- fdiv.x FP_SCR0(%a6),%fp0 # execute divide
- fmov.l %fpsr,%d0
- fmov.l &0x0,%fpcr
- or.l %d0,USER_FPSR(%a6) # save INEX,N
- fmovm.x &0x01,-(%sp) # save result to stack
- mov.w (%sp),%d0 # fetch new exponent
- add.l &0xc,%sp # clear result from stack
- andi.l &0x7fff,%d0 # strip sign
- sub.l (%sp),%d0 # add scale factor
- cmp.l %d0,(tbl_fdiv_ovfl2.b,%pc,%d1.w*4)
- blt.b fdiv_no_ovfl
- mov.l (%sp)+,%d0
- fdiv_ovfl_tst:
- or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x13,%d1 # is OVFL or INEX enabled?
- bne.b fdiv_ovfl_ena # yes
- fdiv_ovfl_dis:
- btst &neg_bit,FPSR_CC(%a6) # is result negative?
- sne %d1 # set sign param accordingly
- mov.l L_SCR3(%a6),%d0 # pass prec:rnd
- bsr.l ovf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # set INF if applicable
- fmovm.x (%a0),&0x80 # return default result in fp0
- rts
- fdiv_ovfl_ena:
- mov.l L_SCR3(%a6),%d1
- andi.b &0xc0,%d1 # is precision extended?
- bne.b fdiv_ovfl_ena_sd # no, do sgl or dbl
- fdiv_ovfl_ena_cont:
- fmovm.x &0x80,FP_SCR0(%a6) # move result to stack
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
- mov.w %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- sub.l %d0,%d1 # add scale factor
- subi.l &0x6000,%d1 # subtract bias
- andi.w &0x7fff,%d1 # clear sign bit
- andi.w &0x8000,%d2 # keep old sign
- or.w %d2,%d1 # concat old sign,new exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- bra.b fdiv_ovfl_dis
- fdiv_ovfl_ena_sd:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst operand
- mov.l L_SCR3(%a6),%d1
- andi.b &0x30,%d1 # keep rnd mode
- fmov.l %d1,%fpcr # set FPCR
- fdiv.x FP_SCR0(%a6),%fp0 # execute divide
- fmov.l &0x0,%fpcr # clear FPCR
- bra.b fdiv_ovfl_ena_cont
- fdiv_unfl:
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
- fmov.l &rz_mode*0x10,%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
- fdiv.x FP_SCR0(%a6),%fp0 # execute divide
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x0b,%d1 # is UNFL or INEX enabled?
- bne.b fdiv_unfl_ena # yes
- fdiv_unfl_dis:
- fmovm.x &0x80,FP_SCR0(%a6) # store out result
- lea FP_SCR0(%a6),%a0 # pass: result addr
- mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
- bsr.l unf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # 'Z' may have been set
- fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
- rts
- #
- # UNFL is enabled.
- #
- fdiv_unfl_ena:
- fmovm.x FP_SCR1(%a6),&0x40 # load dst op
- mov.l L_SCR3(%a6),%d1
- andi.b &0xc0,%d1 # is precision extended?
- bne.b fdiv_unfl_ena_sd # no, sgl or dbl
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fdiv_unfl_ena_cont:
- fmov.l &0x0,%fpsr # clear FPSR
- fdiv.x FP_SCR0(%a6),%fp1 # execute divide
- fmov.l &0x0,%fpcr # clear FPCR
- fmovm.x &0x40,FP_SCR0(%a6) # save result to stack
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factoer
- addi.l &0x6000,%d1 # add bias
- andi.w &0x7fff,%d1
- or.w %d2,%d1 # concat old sign,new exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exp
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- bra.w fdiv_unfl_dis
- fdiv_unfl_ena_sd:
- mov.l L_SCR3(%a6),%d1
- andi.b &0x30,%d1 # use only rnd mode
- fmov.l %d1,%fpcr # set FPCR
- bra.b fdiv_unfl_ena_cont
- #
- # the divide operation MAY underflow:
- #
- fdiv_may_unfl:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
- fdiv.x FP_SCR0(%a6),%fp0 # execute divide
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
- fabs.x %fp0,%fp1 # make a copy of result
- fcmp.b %fp1,&0x1 # is |result| > 1.b?
- fbgt.w fdiv_normal_exit # no; no underflow occurred
- fblt.w fdiv_unfl # yes; underflow occurred
- #
- # we still don't know if underflow occurred. result is ~ equal to 1. but,
- # we don't know if the result was an underflow that rounded up to a 1
- # or a normalized number that rounded down to a 1. so, redo the entire
- # operation using RZ as the rounding mode to see what the pre-rounded
- # result is. this case should be relatively rare.
- #
- fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1
- mov.l L_SCR3(%a6),%d1
- andi.b &0xc0,%d1 # keep rnd prec
- ori.b &rz_mode*0x10,%d1 # insert RZ
- fmov.l %d1,%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
- fdiv.x FP_SCR0(%a6),%fp1 # execute divide
- fmov.l &0x0,%fpcr # clear FPCR
- fabs.x %fp1 # make absolute value
- fcmp.b %fp1,&0x1 # is |result| < 1.b?
- fbge.w fdiv_normal_exit # no; no underflow occurred
- bra.w fdiv_unfl # yes; underflow occurred
- ############################################################################
- #
- # Divide: inputs are not both normalized; what are they?
- #
- fdiv_not_norm:
- mov.w (tbl_fdiv_op.b,%pc,%d1.w*2),%d1
- jmp (tbl_fdiv_op.b,%pc,%d1.w*1)
- swbeg &48
- tbl_fdiv_op:
- short fdiv_norm - tbl_fdiv_op # NORM / NORM
- short fdiv_inf_load - tbl_fdiv_op # NORM / ZERO
- short fdiv_zero_load - tbl_fdiv_op # NORM / INF
- short fdiv_res_qnan - tbl_fdiv_op # NORM / QNAN
- short fdiv_norm - tbl_fdiv_op # NORM / DENORM
- short fdiv_res_snan - tbl_fdiv_op # NORM / SNAN
- short tbl_fdiv_op - tbl_fdiv_op #
- short tbl_fdiv_op - tbl_fdiv_op #
- short fdiv_zero_load - tbl_fdiv_op # ZERO / NORM
- short fdiv_res_operr - tbl_fdiv_op # ZERO / ZERO
- short fdiv_zero_load - tbl_fdiv_op # ZERO / INF
- short fdiv_res_qnan - tbl_fdiv_op # ZERO / QNAN
- short fdiv_zero_load - tbl_fdiv_op # ZERO / DENORM
- short fdiv_res_snan - tbl_fdiv_op # ZERO / SNAN
- short tbl_fdiv_op - tbl_fdiv_op #
- short tbl_fdiv_op - tbl_fdiv_op #
- short fdiv_inf_dst - tbl_fdiv_op # INF / NORM
- short fdiv_inf_dst - tbl_fdiv_op # INF / ZERO
- short fdiv_res_operr - tbl_fdiv_op # INF / INF
- short fdiv_res_qnan - tbl_fdiv_op # INF / QNAN
- short fdiv_inf_dst - tbl_fdiv_op # INF / DENORM
- short fdiv_res_snan - tbl_fdiv_op # INF / SNAN
- short tbl_fdiv_op - tbl_fdiv_op #
- short tbl_fdiv_op - tbl_fdiv_op #
- short fdiv_res_qnan - tbl_fdiv_op # QNAN / NORM
- short fdiv_res_qnan - tbl_fdiv_op # QNAN / ZERO
- short fdiv_res_qnan - tbl_fdiv_op # QNAN / INF
- short fdiv_res_qnan - tbl_fdiv_op # QNAN / QNAN
- short fdiv_res_qnan - tbl_fdiv_op # QNAN / DENORM
- short fdiv_res_snan - tbl_fdiv_op # QNAN / SNAN
- short tbl_fdiv_op - tbl_fdiv_op #
- short tbl_fdiv_op - tbl_fdiv_op #
- short fdiv_norm - tbl_fdiv_op # DENORM / NORM
- short fdiv_inf_load - tbl_fdiv_op # DENORM / ZERO
- short fdiv_zero_load - tbl_fdiv_op # DENORM / INF
- short fdiv_res_qnan - tbl_fdiv_op # DENORM / QNAN
- short fdiv_norm - tbl_fdiv_op # DENORM / DENORM
- short fdiv_res_snan - tbl_fdiv_op # DENORM / SNAN
- short tbl_fdiv_op - tbl_fdiv_op #
- short tbl_fdiv_op - tbl_fdiv_op #
- short fdiv_res_snan - tbl_fdiv_op # SNAN / NORM
- short fdiv_res_snan - tbl_fdiv_op # SNAN / ZERO
- short fdiv_res_snan - tbl_fdiv_op # SNAN / INF
- short fdiv_res_snan - tbl_fdiv_op # SNAN / QNAN
- short fdiv_res_snan - tbl_fdiv_op # SNAN / DENORM
- short fdiv_res_snan - tbl_fdiv_op # SNAN / SNAN
- short tbl_fdiv_op - tbl_fdiv_op #
- short tbl_fdiv_op - tbl_fdiv_op #
- fdiv_res_qnan:
- bra.l res_qnan
- fdiv_res_snan:
- bra.l res_snan
- fdiv_res_operr:
- bra.l res_operr
- global fdiv_zero_load # global for fsgldiv
- fdiv_zero_load:
- mov.b SRC_EX(%a0),%d0 # result sign is exclusive
- mov.b DST_EX(%a1),%d1 # or of input signs.
- eor.b %d0,%d1
- bpl.b fdiv_zero_load_p # result is positive
- fmov.s &0x80000000,%fp0 # load a -ZERO
- mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set Z/N
- rts
- fdiv_zero_load_p:
- fmov.s &0x00000000,%fp0 # load a +ZERO
- mov.b &z_bmask,FPSR_CC(%a6) # set Z
- rts
- #
- # The destination was In Range and the source was a ZERO. The result,
- # therefore, is an INF w/ the proper sign.
- # So, determine the sign and return a new INF (w/ the j-bit cleared).
- #
- global fdiv_inf_load # global for fsgldiv
- fdiv_inf_load:
- ori.w &dz_mask+adz_mask,2+USER_FPSR(%a6) # no; set DZ/ADZ
- mov.b SRC_EX(%a0),%d0 # load both signs
- mov.b DST_EX(%a1),%d1
- eor.b %d0,%d1
- bpl.b fdiv_inf_load_p # result is positive
- fmov.s &0xff800000,%fp0 # make result -INF
- mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/N
- rts
- fdiv_inf_load_p:
- fmov.s &0x7f800000,%fp0 # make result +INF
- mov.b &inf_bmask,FPSR_CC(%a6) # set INF
- rts
- #
- # The destination was an INF w/ an In Range or ZERO source, the result is
- # an INF w/ the proper sign.
- # The 68881/882 returns the destination INF w/ the new sign(if the j-bit of the
- # dst INF is set, then then j-bit of the result INF is also set).
- #
- global fdiv_inf_dst # global for fsgldiv
- fdiv_inf_dst:
- mov.b DST_EX(%a1),%d0 # load both signs
- mov.b SRC_EX(%a0),%d1
- eor.b %d0,%d1
- bpl.b fdiv_inf_dst_p # result is positive
- fmovm.x DST(%a1),&0x80 # return result in fp0
- fabs.x %fp0 # clear sign bit
- fneg.x %fp0 # set sign bit
- mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/NEG
- rts
- fdiv_inf_dst_p:
- fmovm.x DST(%a1),&0x80 # return result in fp0
- fabs.x %fp0 # return positive INF
- mov.b &inf_bmask,FPSR_CC(%a6) # set INF
- rts
- #########################################################################
- # XDEF **************************************************************** #
- # fneg(): emulates the fneg instruction #
- # fsneg(): emulates the fsneg instruction #
- # fdneg(): emulates the fdneg instruction #
- # #
- # XREF **************************************************************** #
- # norm() - normalize a denorm to provide EXOP #
- # scale_to_zero_src() - scale sgl/dbl source exponent #
- # ovf_res() - return default overflow result #
- # unf_res() - return default underflow result #
- # res_qnan_1op() - return QNAN result #
- # res_snan_1op() - return SNAN result #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to extended precision source operand #
- # d0 = rnd prec,mode #
- # #
- # OUTPUT ************************************************************** #
- # fp0 = result #
- # fp1 = EXOP (if exception occurred) #
- # #
- # ALGORITHM *********************************************************** #
- # Handle NANs, zeroes, and infinities as special cases. Separate #
- # norms/denorms into ext/sgl/dbl precisions. Extended precision can be #
- # emulated by simply setting sign bit. Sgl/dbl operands must be scaled #
- # and an actual fneg performed to see if overflow/underflow would have #
- # occurred. If so, return default underflow/overflow result. Else, #
- # scale the result exponent and return result. FPSR gets set based on #
- # the result value. #
- # #
- #########################################################################
- global fsneg
- fsneg:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &s_mode*0x10,%d0 # insert sgl precision
- bra.b fneg
- global fdneg
- fdneg:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &d_mode*0x10,%d0 # insert dbl prec
- global fneg
- fneg:
- mov.l %d0,L_SCR3(%a6) # store rnd info
- mov.b STAG(%a6),%d1
- bne.w fneg_not_norm # optimize on non-norm input
- #
- # NEGATE SIGN : norms and denorms ONLY!
- #
- fneg_norm:
- andi.b &0xc0,%d0 # is precision extended?
- bne.w fneg_not_ext # no; go handle sgl or dbl
- #
- # precision selected is extended. so...we can not get an underflow
- # or overflow because of rounding to the correct precision. so...
- # skip the scaling and unscaling...
- #
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- mov.w SRC_EX(%a0),%d0
- eori.w &0x8000,%d0 # negate sign
- bpl.b fneg_norm_load # sign is positive
- mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit
- fneg_norm_load:
- mov.w %d0,FP_SCR0_EX(%a6)
- fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0
- rts
- #
- # for an extended precision DENORM, the UNFL exception bit is set
- # the accrued bit is NOT set in this instance(no inexactness!)
- #
- fneg_denorm:
- andi.b &0xc0,%d0 # is precision extended?
- bne.b fneg_not_ext # no; go handle sgl or dbl
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- mov.w SRC_EX(%a0),%d0
- eori.w &0x8000,%d0 # negate sign
- bpl.b fneg_denorm_done # no
- mov.b &neg_bmask,FPSR_CC(%a6) # yes, set 'N' ccode bit
- fneg_denorm_done:
- mov.w %d0,FP_SCR0_EX(%a6)
- fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
- btst &unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled?
- bne.b fneg_ext_unfl_ena # yes
- rts
- #
- # the input is an extended DENORM and underflow is enabled in the FPCR.
- # normalize the mantissa and add the bias of 0x6000 to the resulting negative
- # exponent and insert back into the operand.
- #
- fneg_ext_unfl_ena:
- lea FP_SCR0(%a6),%a0 # pass: ptr to operand
- bsr.l norm # normalize result
- neg.w %d0 # new exponent = -(shft val)
- addi.w &0x6000,%d0 # add new bias to exponent
- mov.w FP_SCR0_EX(%a6),%d1 # fetch old sign,exp
- andi.w &0x8000,%d1 # keep old sign
- andi.w &0x7fff,%d0 # clear sign position
- or.w %d1,%d0 # concat old sign, new exponent
- mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- rts
- #
- # operand is either single or double
- #
- fneg_not_ext:
- cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec
- bne.b fneg_dbl
- #
- # operand is to be rounded to single precision
- #
- fneg_sgl:
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- bsr.l scale_to_zero_src # calculate scale factor
- cmpi.l %d0,&0x3fff-0x3f80 # will move in underflow?
- bge.w fneg_sd_unfl # yes; go handle underflow
- cmpi.l %d0,&0x3fff-0x407e # will move in overflow?
- beq.w fneg_sd_may_ovfl # maybe; go check
- blt.w fneg_sd_ovfl # yes; go handle overflow
- #
- # operand will NOT overflow or underflow when moved in to the fp reg file
- #
- fneg_sd_normal:
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fneg.x FP_SCR0(%a6),%fp0 # perform negation
- fmov.l %fpsr,%d1 # save FPSR
- fmov.l &0x0,%fpcr # clear FPCR
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
- fneg_sd_normal_exit:
- mov.l %d2,-(%sp) # save d2
- fmovm.x &0x80,FP_SCR0(%a6) # store out result
- mov.w FP_SCR0_EX(%a6),%d1 # load sgn,exp
- mov.w %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- sub.l %d0,%d1 # add scale factor
- andi.w &0x8000,%d2 # keep old sign
- or.w %d1,%d2 # concat old sign,new exp
- mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0
- rts
- #
- # operand is to be rounded to double precision
- #
- fneg_dbl:
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- bsr.l scale_to_zero_src # calculate scale factor
- cmpi.l %d0,&0x3fff-0x3c00 # will move in underflow?
- bge.b fneg_sd_unfl # yes; go handle underflow
- cmpi.l %d0,&0x3fff-0x43fe # will move in overflow?
- beq.w fneg_sd_may_ovfl # maybe; go check
- blt.w fneg_sd_ovfl # yes; go handle overflow
- bra.w fneg_sd_normal # no; ho handle normalized op
- #
- # operand WILL underflow when moved in to the fp register file
- #
- fneg_sd_unfl:
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
- eori.b &0x80,FP_SCR0_EX(%a6) # negate sign
- bpl.b fneg_sd_unfl_tst
- bset &neg_bit,FPSR_CC(%a6) # set 'N' ccode bit
- # if underflow or inexact is enabled, go calculate EXOP first.
- fneg_sd_unfl_tst:
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x0b,%d1 # is UNFL or INEX enabled?
- bne.b fneg_sd_unfl_ena # yes
- fneg_sd_unfl_dis:
- lea FP_SCR0(%a6),%a0 # pass: result addr
- mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
- bsr.l unf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # unf_res may have set 'Z'
- fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
- rts
- #
- # operand will underflow AND underflow is enabled.
- # therefore, we must return the result rounded to extended precision.
- #
- fneg_sd_unfl_ena:
- mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6)
- mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6)
- mov.w FP_SCR0_EX(%a6),%d1 # load current exponent
- mov.l %d2,-(%sp) # save d2
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # subtract scale factor
- addi.l &0x6000,%d1 # add new bias
- andi.w &0x7fff,%d1
- or.w %d2,%d1 # concat new sign,new exp
- mov.w %d1,FP_SCR1_EX(%a6) # insert new exp
- fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1
- mov.l (%sp)+,%d2 # restore d2
- bra.b fneg_sd_unfl_dis
- #
- # operand WILL overflow.
- #
- fneg_sd_ovfl:
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fneg.x FP_SCR0(%a6),%fp0 # perform negation
- fmov.l &0x0,%fpcr # clear FPCR
- fmov.l %fpsr,%d1 # save FPSR
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
- fneg_sd_ovfl_tst:
- or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x13,%d1 # is OVFL or INEX enabled?
- bne.b fneg_sd_ovfl_ena # yes
- #
- # OVFL is not enabled; therefore, we must create the default result by
- # calling ovf_res().
- #
- fneg_sd_ovfl_dis:
- btst &neg_bit,FPSR_CC(%a6) # is result negative?
- sne %d1 # set sign param accordingly
- mov.l L_SCR3(%a6),%d0 # pass: prec,mode
- bsr.l ovf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # set INF,N if applicable
- fmovm.x (%a0),&0x80 # return default result in fp0
- rts
- #
- # OVFL is enabled.
- # the INEX2 bit has already been updated by the round to the correct precision.
- # now, round to extended(and don't alter the FPSR).
- #
- fneg_sd_ovfl_ena:
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factor
- subi.l &0x6000,%d1 # subtract bias
- andi.w &0x7fff,%d1
- or.w %d2,%d1 # concat sign,exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- mov.l (%sp)+,%d2 # restore d2
- bra.b fneg_sd_ovfl_dis
- #
- # the move in MAY underflow. so...
- #
- fneg_sd_may_ovfl:
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fneg.x FP_SCR0(%a6),%fp0 # perform negation
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
- fabs.x %fp0,%fp1 # make a copy of result
- fcmp.b %fp1,&0x2 # is |result| >= 2.b?
- fbge.w fneg_sd_ovfl_tst # yes; overflow has occurred
- # no, it didn't overflow; we have correct result
- bra.w fneg_sd_normal_exit
- ##########################################################################
- #
- # input is not normalized; what is it?
- #
- fneg_not_norm:
- cmpi.b %d1,&DENORM # weed out DENORM
- beq.w fneg_denorm
- cmpi.b %d1,&SNAN # weed out SNAN
- beq.l res_snan_1op
- cmpi.b %d1,&QNAN # weed out QNAN
- beq.l res_qnan_1op
- #
- # do the fneg; at this point, only possible ops are ZERO and INF.
- # use fneg to determine ccodes.
- # prec:mode should be zero at this point but it won't affect answer anyways.
- #
- fneg.x SRC_EX(%a0),%fp0 # do fneg
- fmov.l %fpsr,%d0
- rol.l &0x8,%d0 # put ccodes in lo byte
- mov.b %d0,FPSR_CC(%a6) # insert correct ccodes
- rts
- #########################################################################
- # XDEF **************************************************************** #
- # ftst(): emulates the ftest instruction #
- # #
- # XREF **************************************************************** #
- # res{s,q}nan_1op() - set NAN result for monadic instruction #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to extended precision source operand #
- # #
- # OUTPUT ************************************************************** #
- # none #
- # #
- # ALGORITHM *********************************************************** #
- # Check the source operand tag (STAG) and set the FPCR according #
- # to the operand type and sign. #
- # #
- #########################################################################
- global ftst
- ftst:
- mov.b STAG(%a6),%d1
- bne.b ftst_not_norm # optimize on non-norm input
- #
- # Norm:
- #
- ftst_norm:
- tst.b SRC_EX(%a0) # is operand negative?
- bmi.b ftst_norm_m # yes
- rts
- ftst_norm_m:
- mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit
- rts
- #
- # input is not normalized; what is it?
- #
- ftst_not_norm:
- cmpi.b %d1,&ZERO # weed out ZERO
- beq.b ftst_zero
- cmpi.b %d1,&INF # weed out INF
- beq.b ftst_inf
- cmpi.b %d1,&SNAN # weed out SNAN
- beq.l res_snan_1op
- cmpi.b %d1,&QNAN # weed out QNAN
- beq.l res_qnan_1op
- #
- # Denorm:
- #
- ftst_denorm:
- tst.b SRC_EX(%a0) # is operand negative?
- bmi.b ftst_denorm_m # yes
- rts
- ftst_denorm_m:
- mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit
- rts
- #
- # Infinity:
- #
- ftst_inf:
- tst.b SRC_EX(%a0) # is operand negative?
- bmi.b ftst_inf_m # yes
- ftst_inf_p:
- mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit
- rts
- ftst_inf_m:
- mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'I','N' ccode bits
- rts
- #
- # Zero:
- #
- ftst_zero:
- tst.b SRC_EX(%a0) # is operand negative?
- bmi.b ftst_zero_m # yes
- ftst_zero_p:
- mov.b &z_bmask,FPSR_CC(%a6) # set 'N' ccode bit
- rts
- ftst_zero_m:
- mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits
- rts
- #########################################################################
- # XDEF **************************************************************** #
- # fint(): emulates the fint instruction #
- # #
- # XREF **************************************************************** #
- # res_{s,q}nan_1op() - set NAN result for monadic operation #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to extended precision source operand #
- # d0 = round precision/mode #
- # #
- # OUTPUT ************************************************************** #
- # fp0 = result #
- # #
- # ALGORITHM *********************************************************** #
- # Separate according to operand type. Unnorms don't pass through #
- # here. For norms, load the rounding mode/prec, execute a "fint", then #
- # store the resulting FPSR bits. #
- # For denorms, force the j-bit to a one and do the same as for #
- # norms. Denorms are so low that the answer will either be a zero or a #
- # one. #
- # For zeroes/infs/NANs, return the same while setting the FPSR #
- # as appropriate. #
- # #
- #########################################################################
- global fint
- fint:
- mov.b STAG(%a6),%d1
- bne.b fint_not_norm # optimize on non-norm input
- #
- # Norm:
- #
- fint_norm:
- andi.b &0x30,%d0 # set prec = ext
- fmov.l %d0,%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
- fint.x SRC(%a0),%fp0 # execute fint
- fmov.l &0x0,%fpcr # clear FPCR
- fmov.l %fpsr,%d0 # save FPSR
- or.l %d0,USER_FPSR(%a6) # set exception bits
- rts
- #
- # input is not normalized; what is it?
- #
- fint_not_norm:
- cmpi.b %d1,&ZERO # weed out ZERO
- beq.b fint_zero
- cmpi.b %d1,&INF # weed out INF
- beq.b fint_inf
- cmpi.b %d1,&DENORM # weed out DENORM
- beq.b fint_denorm
- cmpi.b %d1,&SNAN # weed out SNAN
- beq.l res_snan_1op
- bra.l res_qnan_1op # weed out QNAN
- #
- # Denorm:
- #
- # for DENORMs, the result will be either (+/-)ZERO or (+/-)1.
- # also, the INEX2 and AINEX exception bits will be set.
- # so, we could either set these manually or force the DENORM
- # to a very small NORM and ship it to the NORM routine.
- # I do the latter.
- #
- fint_denorm:
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) # copy sign, zero exp
- mov.b &0x80,FP_SCR0_HI(%a6) # force DENORM ==> small NORM
- lea FP_SCR0(%a6),%a0
- bra.b fint_norm
- #
- # Zero:
- #
- fint_zero:
- tst.b SRC_EX(%a0) # is ZERO negative?
- bmi.b fint_zero_m # yes
- fint_zero_p:
- fmov.s &0x00000000,%fp0 # return +ZERO in fp0
- mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit
- rts
- fint_zero_m:
- fmov.s &0x80000000,%fp0 # return -ZERO in fp0
- mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits
- rts
- #
- # Infinity:
- #
- fint_inf:
- fmovm.x SRC(%a0),&0x80 # return result in fp0
- tst.b SRC_EX(%a0) # is INF negative?
- bmi.b fint_inf_m # yes
- fint_inf_p:
- mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit
- rts
- fint_inf_m:
- mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits
- rts
- #########################################################################
- # XDEF **************************************************************** #
- # fintrz(): emulates the fintrz instruction #
- # #
- # XREF **************************************************************** #
- # res_{s,q}nan_1op() - set NAN result for monadic operation #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to extended precision source operand #
- # d0 = round precision/mode #
- # #
- # OUTPUT ************************************************************** #
- # fp0 = result #
- # #
- # ALGORITHM *********************************************************** #
- # Separate according to operand type. Unnorms don't pass through #
- # here. For norms, load the rounding mode/prec, execute a "fintrz", #
- # then store the resulting FPSR bits. #
- # For denorms, force the j-bit to a one and do the same as for #
- # norms. Denorms are so low that the answer will either be a zero or a #
- # one. #
- # For zeroes/infs/NANs, return the same while setting the FPSR #
- # as appropriate. #
- # #
- #########################################################################
- global fintrz
- fintrz:
- mov.b STAG(%a6),%d1
- bne.b fintrz_not_norm # optimize on non-norm input
- #
- # Norm:
- #
- fintrz_norm:
- fmov.l &0x0,%fpsr # clear FPSR
- fintrz.x SRC(%a0),%fp0 # execute fintrz
- fmov.l %fpsr,%d0 # save FPSR
- or.l %d0,USER_FPSR(%a6) # set exception bits
- rts
- #
- # input is not normalized; what is it?
- #
- fintrz_not_norm:
- cmpi.b %d1,&ZERO # weed out ZERO
- beq.b fintrz_zero
- cmpi.b %d1,&INF # weed out INF
- beq.b fintrz_inf
- cmpi.b %d1,&DENORM # weed out DENORM
- beq.b fintrz_denorm
- cmpi.b %d1,&SNAN # weed out SNAN
- beq.l res_snan_1op
- bra.l res_qnan_1op # weed out QNAN
- #
- # Denorm:
- #
- # for DENORMs, the result will be (+/-)ZERO.
- # also, the INEX2 and AINEX exception bits will be set.
- # so, we could either set these manually or force the DENORM
- # to a very small NORM and ship it to the NORM routine.
- # I do the latter.
- #
- fintrz_denorm:
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) # copy sign, zero exp
- mov.b &0x80,FP_SCR0_HI(%a6) # force DENORM ==> small NORM
- lea FP_SCR0(%a6),%a0
- bra.b fintrz_norm
- #
- # Zero:
- #
- fintrz_zero:
- tst.b SRC_EX(%a0) # is ZERO negative?
- bmi.b fintrz_zero_m # yes
- fintrz_zero_p:
- fmov.s &0x00000000,%fp0 # return +ZERO in fp0
- mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit
- rts
- fintrz_zero_m:
- fmov.s &0x80000000,%fp0 # return -ZERO in fp0
- mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits
- rts
- #
- # Infinity:
- #
- fintrz_inf:
- fmovm.x SRC(%a0),&0x80 # return result in fp0
- tst.b SRC_EX(%a0) # is INF negative?
- bmi.b fintrz_inf_m # yes
- fintrz_inf_p:
- mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit
- rts
- fintrz_inf_m:
- mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits
- rts
- #########################################################################
- # XDEF **************************************************************** #
- # fabs(): emulates the fabs instruction #
- # fsabs(): emulates the fsabs instruction #
- # fdabs(): emulates the fdabs instruction #
- # #
- # XREF **************************************************************** #
- # norm() - normalize denorm mantissa to provide EXOP #
- # scale_to_zero_src() - make exponent. = 0; get scale factor #
- # unf_res() - calculate underflow result #
- # ovf_res() - calculate overflow result #
- # res_{s,q}nan_1op() - set NAN result for monadic operation #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to extended precision source operand #
- # d0 = rnd precision/mode #
- # #
- # OUTPUT ************************************************************** #
- # fp0 = result #
- # fp1 = EXOP (if exception occurred) #
- # #
- # ALGORITHM *********************************************************** #
- # Handle NANs, infinities, and zeroes as special cases. Divide #
- # norms into extended, single, and double precision. #
- # Simply clear sign for extended precision norm. Ext prec denorm #
- # gets an EXOP created for it since it's an underflow. #
- # Double and single precision can overflow and underflow. First, #
- # scale the operand such that the exponent is zero. Perform an "fabs" #
- # using the correct rnd mode/prec. Check to see if the original #
- # exponent would take an exception. If so, use unf_res() or ovf_res() #
- # to calculate the default result. Also, create the EXOP for the #
- # exceptional case. If no exception should occur, insert the correct #
- # result exponent and return. #
- # Unnorms don't pass through here. #
- # #
- #########################################################################
- global fsabs
- fsabs:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &s_mode*0x10,%d0 # insert sgl precision
- bra.b fabs
- global fdabs
- fdabs:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &d_mode*0x10,%d0 # insert dbl precision
- global fabs
- fabs:
- mov.l %d0,L_SCR3(%a6) # store rnd info
- mov.b STAG(%a6),%d1
- bne.w fabs_not_norm # optimize on non-norm input
- #
- # ABSOLUTE VALUE: norms and denorms ONLY!
- #
- fabs_norm:
- andi.b &0xc0,%d0 # is precision extended?
- bne.b fabs_not_ext # no; go handle sgl or dbl
- #
- # precision selected is extended. so...we can not get an underflow
- # or overflow because of rounding to the correct precision. so...
- # skip the scaling and unscaling...
- #
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- mov.w SRC_EX(%a0),%d1
- bclr &15,%d1 # force absolute value
- mov.w %d1,FP_SCR0_EX(%a6) # insert exponent
- fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0
- rts
- #
- # for an extended precision DENORM, the UNFL exception bit is set
- # the accrued bit is NOT set in this instance(no inexactness!)
- #
- fabs_denorm:
- andi.b &0xc0,%d0 # is precision extended?
- bne.b fabs_not_ext # no
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- mov.w SRC_EX(%a0),%d0
- bclr &15,%d0 # clear sign
- mov.w %d0,FP_SCR0_EX(%a6) # insert exponent
- fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
- btst &unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled?
- bne.b fabs_ext_unfl_ena
- rts
- #
- # the input is an extended DENORM and underflow is enabled in the FPCR.
- # normalize the mantissa and add the bias of 0x6000 to the resulting negative
- # exponent and insert back into the operand.
- #
- fabs_ext_unfl_ena:
- lea FP_SCR0(%a6),%a0 # pass: ptr to operand
- bsr.l norm # normalize result
- neg.w %d0 # new exponent = -(shft val)
- addi.w &0x6000,%d0 # add new bias to exponent
- mov.w FP_SCR0_EX(%a6),%d1 # fetch old sign,exp
- andi.w &0x8000,%d1 # keep old sign
- andi.w &0x7fff,%d0 # clear sign position
- or.w %d1,%d0 # concat old sign, new exponent
- mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- rts
- #
- # operand is either single or double
- #
- fabs_not_ext:
- cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec
- bne.b fabs_dbl
- #
- # operand is to be rounded to single precision
- #
- fabs_sgl:
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- bsr.l scale_to_zero_src # calculate scale factor
- cmpi.l %d0,&0x3fff-0x3f80 # will move in underflow?
- bge.w fabs_sd_unfl # yes; go handle underflow
- cmpi.l %d0,&0x3fff-0x407e # will move in overflow?
- beq.w fabs_sd_may_ovfl # maybe; go check
- blt.w fabs_sd_ovfl # yes; go handle overflow
- #
- # operand will NOT overflow or underflow when moved in to the fp reg file
- #
- fabs_sd_normal:
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fabs.x FP_SCR0(%a6),%fp0 # perform absolute
- fmov.l %fpsr,%d1 # save FPSR
- fmov.l &0x0,%fpcr # clear FPCR
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
- fabs_sd_normal_exit:
- mov.l %d2,-(%sp) # save d2
- fmovm.x &0x80,FP_SCR0(%a6) # store out result
- mov.w FP_SCR0_EX(%a6),%d1 # load sgn,exp
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- sub.l %d0,%d1 # add scale factor
- andi.w &0x8000,%d2 # keep old sign
- or.w %d1,%d2 # concat old sign,new exp
- mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0
- rts
- #
- # operand is to be rounded to double precision
- #
- fabs_dbl:
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- bsr.l scale_to_zero_src # calculate scale factor
- cmpi.l %d0,&0x3fff-0x3c00 # will move in underflow?
- bge.b fabs_sd_unfl # yes; go handle underflow
- cmpi.l %d0,&0x3fff-0x43fe # will move in overflow?
- beq.w fabs_sd_may_ovfl # maybe; go check
- blt.w fabs_sd_ovfl # yes; go handle overflow
- bra.w fabs_sd_normal # no; ho handle normalized op
- #
- # operand WILL underflow when moved in to the fp register file
- #
- fabs_sd_unfl:
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
- bclr &0x7,FP_SCR0_EX(%a6) # force absolute value
- # if underflow or inexact is enabled, go calculate EXOP first.
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x0b,%d1 # is UNFL or INEX enabled?
- bne.b fabs_sd_unfl_ena # yes
- fabs_sd_unfl_dis:
- lea FP_SCR0(%a6),%a0 # pass: result addr
- mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
- bsr.l unf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # set possible 'Z' ccode
- fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
- rts
- #
- # operand will underflow AND underflow is enabled.
- # therefore, we must return the result rounded to extended precision.
- #
- fabs_sd_unfl_ena:
- mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6)
- mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6)
- mov.w FP_SCR0_EX(%a6),%d1 # load current exponent
- mov.l %d2,-(%sp) # save d2
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # subtract scale factor
- addi.l &0x6000,%d1 # add new bias
- andi.w &0x7fff,%d1
- or.w %d2,%d1 # concat new sign,new exp
- mov.w %d1,FP_SCR1_EX(%a6) # insert new exp
- fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1
- mov.l (%sp)+,%d2 # restore d2
- bra.b fabs_sd_unfl_dis
- #
- # operand WILL overflow.
- #
- fabs_sd_ovfl:
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fabs.x FP_SCR0(%a6),%fp0 # perform absolute
- fmov.l &0x0,%fpcr # clear FPCR
- fmov.l %fpsr,%d1 # save FPSR
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
- fabs_sd_ovfl_tst:
- or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x13,%d1 # is OVFL or INEX enabled?
- bne.b fabs_sd_ovfl_ena # yes
- #
- # OVFL is not enabled; therefore, we must create the default result by
- # calling ovf_res().
- #
- fabs_sd_ovfl_dis:
- btst &neg_bit,FPSR_CC(%a6) # is result negative?
- sne %d1 # set sign param accordingly
- mov.l L_SCR3(%a6),%d0 # pass: prec,mode
- bsr.l ovf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # set INF,N if applicable
- fmovm.x (%a0),&0x80 # return default result in fp0
- rts
- #
- # OVFL is enabled.
- # the INEX2 bit has already been updated by the round to the correct precision.
- # now, round to extended(and don't alter the FPSR).
- #
- fabs_sd_ovfl_ena:
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factor
- subi.l &0x6000,%d1 # subtract bias
- andi.w &0x7fff,%d1
- or.w %d2,%d1 # concat sign,exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- mov.l (%sp)+,%d2 # restore d2
- bra.b fabs_sd_ovfl_dis
- #
- # the move in MAY underflow. so...
- #
- fabs_sd_may_ovfl:
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fabs.x FP_SCR0(%a6),%fp0 # perform absolute
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
- fabs.x %fp0,%fp1 # make a copy of result
- fcmp.b %fp1,&0x2 # is |result| >= 2.b?
- fbge.w fabs_sd_ovfl_tst # yes; overflow has occurred
- # no, it didn't overflow; we have correct result
- bra.w fabs_sd_normal_exit
- ##########################################################################
- #
- # input is not normalized; what is it?
- #
- fabs_not_norm:
- cmpi.b %d1,&DENORM # weed out DENORM
- beq.w fabs_denorm
- cmpi.b %d1,&SNAN # weed out SNAN
- beq.l res_snan_1op
- cmpi.b %d1,&QNAN # weed out QNAN
- beq.l res_qnan_1op
- fabs.x SRC(%a0),%fp0 # force absolute value
- cmpi.b %d1,&INF # weed out INF
- beq.b fabs_inf
- fabs_zero:
- mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit
- rts
- fabs_inf:
- mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit
- rts
- #########################################################################
- # XDEF **************************************************************** #
- # fcmp(): fp compare op routine #
- # #
- # XREF **************************************************************** #
- # res_qnan() - return QNAN result #
- # res_snan() - return SNAN result #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to extended precision source operand #
- # a1 = pointer to extended precision destination operand #
- # d0 = round prec/mode #
- # #
- # OUTPUT ************************************************************** #
- # None #
- # #
- # ALGORITHM *********************************************************** #
- # Handle NANs and denorms as special cases. For everything else, #
- # just use the actual fcmp instruction to produce the correct condition #
- # codes. #
- # #
- #########################################################################
- global fcmp
- fcmp:
- clr.w %d1
- mov.b DTAG(%a6),%d1
- lsl.b &0x3,%d1
- or.b STAG(%a6),%d1
- bne.b fcmp_not_norm # optimize on non-norm input
- #
- # COMPARE FP OPs : NORMs, ZEROs, INFs, and "corrected" DENORMs
- #
- fcmp_norm:
- fmovm.x DST(%a1),&0x80 # load dst op
- fcmp.x %fp0,SRC(%a0) # do compare
- fmov.l %fpsr,%d0 # save FPSR
- rol.l &0x8,%d0 # extract ccode bits
- mov.b %d0,FPSR_CC(%a6) # set ccode bits(no exc bits are set)
- rts
- #
- # fcmp: inputs are not both normalized; what are they?
- #
- fcmp_not_norm:
- mov.w (tbl_fcmp_op.b,%pc,%d1.w*2),%d1
- jmp (tbl_fcmp_op.b,%pc,%d1.w*1)
- swbeg &48
- tbl_fcmp_op:
- short fcmp_norm - tbl_fcmp_op # NORM - NORM
- short fcmp_norm - tbl_fcmp_op # NORM - ZERO
- short fcmp_norm - tbl_fcmp_op # NORM - INF
- short fcmp_res_qnan - tbl_fcmp_op # NORM - QNAN
- short fcmp_nrm_dnrm - tbl_fcmp_op # NORM - DENORM
- short fcmp_res_snan - tbl_fcmp_op # NORM - SNAN
- short tbl_fcmp_op - tbl_fcmp_op #
- short tbl_fcmp_op - tbl_fcmp_op #
- short fcmp_norm - tbl_fcmp_op # ZERO - NORM
- short fcmp_norm - tbl_fcmp_op # ZERO - ZERO
- short fcmp_norm - tbl_fcmp_op # ZERO - INF
- short fcmp_res_qnan - tbl_fcmp_op # ZERO - QNAN
- short fcmp_dnrm_s - tbl_fcmp_op # ZERO - DENORM
- short fcmp_res_snan - tbl_fcmp_op # ZERO - SNAN
- short tbl_fcmp_op - tbl_fcmp_op #
- short tbl_fcmp_op - tbl_fcmp_op #
- short fcmp_norm - tbl_fcmp_op # INF - NORM
- short fcmp_norm - tbl_fcmp_op # INF - ZERO
- short fcmp_norm - tbl_fcmp_op # INF - INF
- short fcmp_res_qnan - tbl_fcmp_op # INF - QNAN
- short fcmp_dnrm_s - tbl_fcmp_op # INF - DENORM
- short fcmp_res_snan - tbl_fcmp_op # INF - SNAN
- short tbl_fcmp_op - tbl_fcmp_op #
- short tbl_fcmp_op - tbl_fcmp_op #
- short fcmp_res_qnan - tbl_fcmp_op # QNAN - NORM
- short fcmp_res_qnan - tbl_fcmp_op # QNAN - ZERO
- short fcmp_res_qnan - tbl_fcmp_op # QNAN - INF
- short fcmp_res_qnan - tbl_fcmp_op # QNAN - QNAN
- short fcmp_res_qnan - tbl_fcmp_op # QNAN - DENORM
- short fcmp_res_snan - tbl_fcmp_op # QNAN - SNAN
- short tbl_fcmp_op - tbl_fcmp_op #
- short tbl_fcmp_op - tbl_fcmp_op #
- short fcmp_dnrm_nrm - tbl_fcmp_op # DENORM - NORM
- short fcmp_dnrm_d - tbl_fcmp_op # DENORM - ZERO
- short fcmp_dnrm_d - tbl_fcmp_op # DENORM - INF
- short fcmp_res_qnan - tbl_fcmp_op # DENORM - QNAN
- short fcmp_dnrm_sd - tbl_fcmp_op # DENORM - DENORM
- short fcmp_res_snan - tbl_fcmp_op # DENORM - SNAN
- short tbl_fcmp_op - tbl_fcmp_op #
- short tbl_fcmp_op - tbl_fcmp_op #
- short fcmp_res_snan - tbl_fcmp_op # SNAN - NORM
- short fcmp_res_snan - tbl_fcmp_op # SNAN - ZERO
- short fcmp_res_snan - tbl_fcmp_op # SNAN - INF
- short fcmp_res_snan - tbl_fcmp_op # SNAN - QNAN
- short fcmp_res_snan - tbl_fcmp_op # SNAN - DENORM
- short fcmp_res_snan - tbl_fcmp_op # SNAN - SNAN
- short tbl_fcmp_op - tbl_fcmp_op #
- short tbl_fcmp_op - tbl_fcmp_op #
- # unlike all other functions for QNAN and SNAN, fcmp does NOT set the
- # 'N' bit for a negative QNAN or SNAN input so we must squelch it here.
- fcmp_res_qnan:
- bsr.l res_qnan
- andi.b &0xf7,FPSR_CC(%a6)
- rts
- fcmp_res_snan:
- bsr.l res_snan
- andi.b &0xf7,FPSR_CC(%a6)
- rts
- #
- # DENORMs are a little more difficult.
- # If you have a 2 DENORMs, then you can just force the j-bit to a one
- # and use the fcmp_norm routine.
- # If you have a DENORM and an INF or ZERO, just force the DENORM's j-bit to a one
- # and use the fcmp_norm routine.
- # If you have a DENORM and a NORM with opposite signs, then use fcmp_norm, also.
- # But with a DENORM and a NORM of the same sign, the neg bit is set if the
- # (1) signs are (+) and the DENORM is the dst or
- # (2) signs are (-) and the DENORM is the src
- #
- fcmp_dnrm_s:
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),%d0
- bset &31,%d0 # DENORM src; make into small norm
- mov.l %d0,FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- lea FP_SCR0(%a6),%a0
- bra.w fcmp_norm
- fcmp_dnrm_d:
- mov.l DST_EX(%a1),FP_SCR0_EX(%a6)
- mov.l DST_HI(%a1),%d0
- bset &31,%d0 # DENORM src; make into small norm
- mov.l %d0,FP_SCR0_HI(%a6)
- mov.l DST_LO(%a1),FP_SCR0_LO(%a6)
- lea FP_SCR0(%a6),%a1
- bra.w fcmp_norm
- fcmp_dnrm_sd:
- mov.w DST_EX(%a1),FP_SCR1_EX(%a6)
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l DST_HI(%a1),%d0
- bset &31,%d0 # DENORM dst; make into small norm
- mov.l %d0,FP_SCR1_HI(%a6)
- mov.l SRC_HI(%a0),%d0
- bset &31,%d0 # DENORM dst; make into small norm
- mov.l %d0,FP_SCR0_HI(%a6)
- mov.l DST_LO(%a1),FP_SCR1_LO(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- lea FP_SCR1(%a6),%a1
- lea FP_SCR0(%a6),%a0
- bra.w fcmp_norm
- fcmp_nrm_dnrm:
- mov.b SRC_EX(%a0),%d0 # determine if like signs
- mov.b DST_EX(%a1),%d1
- eor.b %d0,%d1
- bmi.w fcmp_dnrm_s
- # signs are the same, so must determine the answer ourselves.
- tst.b %d0 # is src op negative?
- bmi.b fcmp_nrm_dnrm_m # yes
- rts
- fcmp_nrm_dnrm_m:
- mov.b &neg_bmask,FPSR_CC(%a6) # set 'Z' ccode bit
- rts
- fcmp_dnrm_nrm:
- mov.b SRC_EX(%a0),%d0 # determine if like signs
- mov.b DST_EX(%a1),%d1
- eor.b %d0,%d1
- bmi.w fcmp_dnrm_d
- # signs are the same, so must determine the answer ourselves.
- tst.b %d0 # is src op negative?
- bpl.b fcmp_dnrm_nrm_m # no
- rts
- fcmp_dnrm_nrm_m:
- mov.b &neg_bmask,FPSR_CC(%a6) # set 'Z' ccode bit
- rts
- #########################################################################
- # XDEF **************************************************************** #
- # fsglmul(): emulates the fsglmul instruction #
- # #
- # XREF **************************************************************** #
- # scale_to_zero_src() - scale src exponent to zero #
- # scale_to_zero_dst() - scale dst exponent to zero #
- # unf_res4() - return default underflow result for sglop #
- # ovf_res() - return default overflow result #
- # res_qnan() - return QNAN result #
- # res_snan() - return SNAN result #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to extended precision source operand #
- # a1 = pointer to extended precision destination operand #
- # d0 rnd prec,mode #
- # #
- # OUTPUT ************************************************************** #
- # fp0 = result #
- # fp1 = EXOP (if exception occurred) #
- # #
- # ALGORITHM *********************************************************** #
- # Handle NANs, infinities, and zeroes as special cases. Divide #
- # norms/denorms into ext/sgl/dbl precision. #
- # For norms/denorms, scale the exponents such that a multiply #
- # instruction won't cause an exception. Use the regular fsglmul to #
- # compute a result. Check if the regular operands would have taken #
- # an exception. If so, return the default overflow/underflow result #
- # and return the EXOP if exceptions are enabled. Else, scale the #
- # result operand to the proper exponent. #
- # #
- #########################################################################
- global fsglmul
- fsglmul:
- mov.l %d0,L_SCR3(%a6) # store rnd info
- clr.w %d1
- mov.b DTAG(%a6),%d1
- lsl.b &0x3,%d1
- or.b STAG(%a6),%d1
- bne.w fsglmul_not_norm # optimize on non-norm input
- fsglmul_norm:
- mov.w DST_EX(%a1),FP_SCR1_EX(%a6)
- mov.l DST_HI(%a1),FP_SCR1_HI(%a6)
- mov.l DST_LO(%a1),FP_SCR1_LO(%a6)
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- bsr.l scale_to_zero_src # scale exponent
- mov.l %d0,-(%sp) # save scale factor 1
- bsr.l scale_to_zero_dst # scale dst exponent
- add.l (%sp)+,%d0 # SCALE_FACTOR = scale1 + scale2
- cmpi.l %d0,&0x3fff-0x7ffe # would result ovfl?
- beq.w fsglmul_may_ovfl # result may rnd to overflow
- blt.w fsglmul_ovfl # result will overflow
- cmpi.l %d0,&0x3fff+0x0001 # would result unfl?
- beq.w fsglmul_may_unfl # result may rnd to no unfl
- bgt.w fsglmul_unfl # result will underflow
- fsglmul_normal:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
- fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
- fsglmul_normal_exit:
- fmovm.x &0x80,FP_SCR0(%a6) # store out result
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factor
- or.w %d2,%d1 # concat old sign,new exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0
- rts
- fsglmul_ovfl:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
- fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
- fsglmul_ovfl_tst:
- # save setting this until now because this is where fsglmul_may_ovfl may jump in
- or.l &ovfl_inx_mask, USER_FPSR(%a6) # set ovfl/aovfl/ainex
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x13,%d1 # is OVFL or INEX enabled?
- bne.b fsglmul_ovfl_ena # yes
- fsglmul_ovfl_dis:
- btst &neg_bit,FPSR_CC(%a6) # is result negative?
- sne %d1 # set sign param accordingly
- mov.l L_SCR3(%a6),%d0 # pass prec:rnd
- andi.b &0x30,%d0 # force prec = ext
- bsr.l ovf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # set INF,N if applicable
- fmovm.x (%a0),&0x80 # return default result in fp0
- rts
- fsglmul_ovfl_ena:
- fmovm.x &0x80,FP_SCR0(%a6) # move result to stack
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- sub.l %d0,%d1 # add scale factor
- subi.l &0x6000,%d1 # subtract bias
- andi.w &0x7fff,%d1
- andi.w &0x8000,%d2 # keep old sign
- or.w %d2,%d1 # concat old sign,new exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- bra.b fsglmul_ovfl_dis
- fsglmul_may_ovfl:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
- fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
- fabs.x %fp0,%fp1 # make a copy of result
- fcmp.b %fp1,&0x2 # is |result| >= 2.b?
- fbge.w fsglmul_ovfl_tst # yes; overflow has occurred
- # no, it didn't overflow; we have correct result
- bra.w fsglmul_normal_exit
- fsglmul_unfl:
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
- fmov.l &rz_mode*0x10,%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
- fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x0b,%d1 # is UNFL or INEX enabled?
- bne.b fsglmul_unfl_ena # yes
- fsglmul_unfl_dis:
- fmovm.x &0x80,FP_SCR0(%a6) # store out result
- lea FP_SCR0(%a6),%a0 # pass: result addr
- mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
- bsr.l unf_res4 # calculate default result
- or.b %d0,FPSR_CC(%a6) # 'Z' bit may have been set
- fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
- rts
- #
- # UNFL is enabled.
- #
- fsglmul_unfl_ena:
- fmovm.x FP_SCR1(%a6),&0x40 # load dst op
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
- fsglmul.x FP_SCR0(%a6),%fp1 # execute sgl multiply
- fmov.l &0x0,%fpcr # clear FPCR
- fmovm.x &0x40,FP_SCR0(%a6) # save result to stack
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factor
- addi.l &0x6000,%d1 # add bias
- andi.w &0x7fff,%d1
- or.w %d2,%d1 # concat old sign,new exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- bra.w fsglmul_unfl_dis
- fsglmul_may_unfl:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
- fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
- fabs.x %fp0,%fp1 # make a copy of result
- fcmp.b %fp1,&0x2 # is |result| > 2.b?
- fbgt.w fsglmul_normal_exit # no; no underflow occurred
- fblt.w fsglmul_unfl # yes; underflow occurred
- #
- # we still don't know if underflow occurred. result is ~ equal to 2. but,
- # we don't know if the result was an underflow that rounded up to a 2 or
- # a normalized number that rounded down to a 2. so, redo the entire operation
- # using RZ as the rounding mode to see what the pre-rounded result is.
- # this case should be relatively rare.
- #
- fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1
- mov.l L_SCR3(%a6),%d1
- andi.b &0xc0,%d1 # keep rnd prec
- ori.b &rz_mode*0x10,%d1 # insert RZ
- fmov.l %d1,%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
- fsglmul.x FP_SCR0(%a6),%fp1 # execute sgl multiply
- fmov.l &0x0,%fpcr # clear FPCR
- fabs.x %fp1 # make absolute value
- fcmp.b %fp1,&0x2 # is |result| < 2.b?
- fbge.w fsglmul_normal_exit # no; no underflow occurred
- bra.w fsglmul_unfl # yes, underflow occurred
- ##############################################################################
- #
- # Single Precision Multiply: inputs are not both normalized; what are they?
- #
- fsglmul_not_norm:
- mov.w (tbl_fsglmul_op.b,%pc,%d1.w*2),%d1
- jmp (tbl_fsglmul_op.b,%pc,%d1.w*1)
- swbeg &48
- tbl_fsglmul_op:
- short fsglmul_norm - tbl_fsglmul_op # NORM x NORM
- short fsglmul_zero - tbl_fsglmul_op # NORM x ZERO
- short fsglmul_inf_src - tbl_fsglmul_op # NORM x INF
- short fsglmul_res_qnan - tbl_fsglmul_op # NORM x QNAN
- short fsglmul_norm - tbl_fsglmul_op # NORM x DENORM
- short fsglmul_res_snan - tbl_fsglmul_op # NORM x SNAN
- short tbl_fsglmul_op - tbl_fsglmul_op #
- short tbl_fsglmul_op - tbl_fsglmul_op #
- short fsglmul_zero - tbl_fsglmul_op # ZERO x NORM
- short fsglmul_zero - tbl_fsglmul_op # ZERO x ZERO
- short fsglmul_res_operr - tbl_fsglmul_op # ZERO x INF
- short fsglmul_res_qnan - tbl_fsglmul_op # ZERO x QNAN
- short fsglmul_zero - tbl_fsglmul_op # ZERO x DENORM
- short fsglmul_res_snan - tbl_fsglmul_op # ZERO x SNAN
- short tbl_fsglmul_op - tbl_fsglmul_op #
- short tbl_fsglmul_op - tbl_fsglmul_op #
- short fsglmul_inf_dst - tbl_fsglmul_op # INF x NORM
- short fsglmul_res_operr - tbl_fsglmul_op # INF x ZERO
- short fsglmul_inf_dst - tbl_fsglmul_op # INF x INF
- short fsglmul_res_qnan - tbl_fsglmul_op # INF x QNAN
- short fsglmul_inf_dst - tbl_fsglmul_op # INF x DENORM
- short fsglmul_res_snan - tbl_fsglmul_op # INF x SNAN
- short tbl_fsglmul_op - tbl_fsglmul_op #
- short tbl_fsglmul_op - tbl_fsglmul_op #
- short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x NORM
- short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x ZERO
- short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x INF
- short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x QNAN
- short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x DENORM
- short fsglmul_res_snan - tbl_fsglmul_op # QNAN x SNAN
- short tbl_fsglmul_op - tbl_fsglmul_op #
- short tbl_fsglmul_op - tbl_fsglmul_op #
- short fsglmul_norm - tbl_fsglmul_op # NORM x NORM
- short fsglmul_zero - tbl_fsglmul_op # NORM x ZERO
- short fsglmul_inf_src - tbl_fsglmul_op # NORM x INF
- short fsglmul_res_qnan - tbl_fsglmul_op # NORM x QNAN
- short fsglmul_norm - tbl_fsglmul_op # NORM x DENORM
- short fsglmul_res_snan - tbl_fsglmul_op # NORM x SNAN
- short tbl_fsglmul_op - tbl_fsglmul_op #
- short tbl_fsglmul_op - tbl_fsglmul_op #
- short fsglmul_res_snan - tbl_fsglmul_op # SNAN x NORM
- short fsglmul_res_snan - tbl_fsglmul_op # SNAN x ZERO
- short fsglmul_res_snan - tbl_fsglmul_op # SNAN x INF
- short fsglmul_res_snan - tbl_fsglmul_op # SNAN x QNAN
- short fsglmul_res_snan - tbl_fsglmul_op # SNAN x DENORM
- short fsglmul_res_snan - tbl_fsglmul_op # SNAN x SNAN
- short tbl_fsglmul_op - tbl_fsglmul_op #
- short tbl_fsglmul_op - tbl_fsglmul_op #
- fsglmul_res_operr:
- bra.l res_operr
- fsglmul_res_snan:
- bra.l res_snan
- fsglmul_res_qnan:
- bra.l res_qnan
- fsglmul_zero:
- bra.l fmul_zero
- fsglmul_inf_src:
- bra.l fmul_inf_src
- fsglmul_inf_dst:
- bra.l fmul_inf_dst
- #########################################################################
- # XDEF **************************************************************** #
- # fsgldiv(): emulates the fsgldiv instruction #
- # #
- # XREF **************************************************************** #
- # scale_to_zero_src() - scale src exponent to zero #
- # scale_to_zero_dst() - scale dst exponent to zero #
- # unf_res4() - return default underflow result for sglop #
- # ovf_res() - return default overflow result #
- # res_qnan() - return QNAN result #
- # res_snan() - return SNAN result #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to extended precision source operand #
- # a1 = pointer to extended precision destination operand #
- # d0 rnd prec,mode #
- # #
- # OUTPUT ************************************************************** #
- # fp0 = result #
- # fp1 = EXOP (if exception occurred) #
- # #
- # ALGORITHM *********************************************************** #
- # Handle NANs, infinities, and zeroes as special cases. Divide #
- # norms/denorms into ext/sgl/dbl precision. #
- # For norms/denorms, scale the exponents such that a divide #
- # instruction won't cause an exception. Use the regular fsgldiv to #
- # compute a result. Check if the regular operands would have taken #
- # an exception. If so, return the default overflow/underflow result #
- # and return the EXOP if exceptions are enabled. Else, scale the #
- # result operand to the proper exponent. #
- # #
- #########################################################################
- global fsgldiv
- fsgldiv:
- mov.l %d0,L_SCR3(%a6) # store rnd info
- clr.w %d1
- mov.b DTAG(%a6),%d1
- lsl.b &0x3,%d1
- or.b STAG(%a6),%d1 # combine src tags
- bne.w fsgldiv_not_norm # optimize on non-norm input
- #
- # DIVIDE: NORMs and DENORMs ONLY!
- #
- fsgldiv_norm:
- mov.w DST_EX(%a1),FP_SCR1_EX(%a6)
- mov.l DST_HI(%a1),FP_SCR1_HI(%a6)
- mov.l DST_LO(%a1),FP_SCR1_LO(%a6)
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- bsr.l scale_to_zero_src # calculate scale factor 1
- mov.l %d0,-(%sp) # save scale factor 1
- bsr.l scale_to_zero_dst # calculate scale factor 2
- neg.l (%sp) # S.F. = scale1 - scale2
- add.l %d0,(%sp)
- mov.w 2+L_SCR3(%a6),%d1 # fetch precision,mode
- lsr.b &0x6,%d1
- mov.l (%sp)+,%d0
- cmpi.l %d0,&0x3fff-0x7ffe
- ble.w fsgldiv_may_ovfl
- cmpi.l %d0,&0x3fff-0x0000 # will result underflow?
- beq.w fsgldiv_may_unfl # maybe
- bgt.w fsgldiv_unfl # yes; go handle underflow
- fsgldiv_normal:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
- fmov.l L_SCR3(%a6),%fpcr # save FPCR
- fmov.l &0x0,%fpsr # clear FPSR
- fsgldiv.x FP_SCR0(%a6),%fp0 # perform sgl divide
- fmov.l %fpsr,%d1 # save FPSR
- fmov.l &0x0,%fpcr # clear FPCR
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
- fsgldiv_normal_exit:
- fmovm.x &0x80,FP_SCR0(%a6) # store result on stack
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factor
- or.w %d2,%d1 # concat old sign,new exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0
- rts
- fsgldiv_may_ovfl:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # set FPSR
- fsgldiv.x FP_SCR0(%a6),%fp0 # execute divide
- fmov.l %fpsr,%d1
- fmov.l &0x0,%fpcr
- or.l %d1,USER_FPSR(%a6) # save INEX,N
- fmovm.x &0x01,-(%sp) # save result to stack
- mov.w (%sp),%d1 # fetch new exponent
- add.l &0xc,%sp # clear result
- andi.l &0x7fff,%d1 # strip sign
- sub.l %d0,%d1 # add scale factor
- cmp.l %d1,&0x7fff # did divide overflow?
- blt.b fsgldiv_normal_exit
- fsgldiv_ovfl_tst:
- or.w &ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x13,%d1 # is OVFL or INEX enabled?
- bne.b fsgldiv_ovfl_ena # yes
- fsgldiv_ovfl_dis:
- btst &neg_bit,FPSR_CC(%a6) # is result negative
- sne %d1 # set sign param accordingly
- mov.l L_SCR3(%a6),%d0 # pass prec:rnd
- andi.b &0x30,%d0 # kill precision
- bsr.l ovf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # set INF if applicable
- fmovm.x (%a0),&0x80 # return default result in fp0
- rts
- fsgldiv_ovfl_ena:
- fmovm.x &0x80,FP_SCR0(%a6) # move result to stack
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factor
- subi.l &0x6000,%d1 # subtract new bias
- andi.w &0x7fff,%d1 # clear ms bit
- or.w %d2,%d1 # concat old sign,new exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- bra.b fsgldiv_ovfl_dis
- fsgldiv_unfl:
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
- fmov.l &rz_mode*0x10,%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
- fsgldiv.x FP_SCR0(%a6),%fp0 # execute sgl divide
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x0b,%d1 # is UNFL or INEX enabled?
- bne.b fsgldiv_unfl_ena # yes
- fsgldiv_unfl_dis:
- fmovm.x &0x80,FP_SCR0(%a6) # store out result
- lea FP_SCR0(%a6),%a0 # pass: result addr
- mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
- bsr.l unf_res4 # calculate default result
- or.b %d0,FPSR_CC(%a6) # 'Z' bit may have been set
- fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
- rts
- #
- # UNFL is enabled.
- #
- fsgldiv_unfl_ena:
- fmovm.x FP_SCR1(%a6),&0x40 # load dst op
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
- fsgldiv.x FP_SCR0(%a6),%fp1 # execute sgl divide
- fmov.l &0x0,%fpcr # clear FPCR
- fmovm.x &0x40,FP_SCR0(%a6) # save result to stack
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factor
- addi.l &0x6000,%d1 # add bias
- andi.w &0x7fff,%d1 # clear top bit
- or.w %d2,%d1 # concat old sign, new exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- bra.b fsgldiv_unfl_dis
- #
- # the divide operation MAY underflow:
- #
- fsgldiv_may_unfl:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
- fsgldiv.x FP_SCR0(%a6),%fp0 # execute sgl divide
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
- fabs.x %fp0,%fp1 # make a copy of result
- fcmp.b %fp1,&0x1 # is |result| > 1.b?
- fbgt.w fsgldiv_normal_exit # no; no underflow occurred
- fblt.w fsgldiv_unfl # yes; underflow occurred
- #
- # we still don't know if underflow occurred. result is ~ equal to 1. but,
- # we don't know if the result was an underflow that rounded up to a 1
- # or a normalized number that rounded down to a 1. so, redo the entire
- # operation using RZ as the rounding mode to see what the pre-rounded
- # result is. this case should be relatively rare.
- #
- fmovm.x FP_SCR1(%a6),&0x40 # load dst op into %fp1
- clr.l %d1 # clear scratch register
- ori.b &rz_mode*0x10,%d1 # force RZ rnd mode
- fmov.l %d1,%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
- fsgldiv.x FP_SCR0(%a6),%fp1 # execute sgl divide
- fmov.l &0x0,%fpcr # clear FPCR
- fabs.x %fp1 # make absolute value
- fcmp.b %fp1,&0x1 # is |result| < 1.b?
- fbge.w fsgldiv_normal_exit # no; no underflow occurred
- bra.w fsgldiv_unfl # yes; underflow occurred
- ############################################################################
- #
- # Divide: inputs are not both normalized; what are they?
- #
- fsgldiv_not_norm:
- mov.w (tbl_fsgldiv_op.b,%pc,%d1.w*2),%d1
- jmp (tbl_fsgldiv_op.b,%pc,%d1.w*1)
- swbeg &48
- tbl_fsgldiv_op:
- short fsgldiv_norm - tbl_fsgldiv_op # NORM / NORM
- short fsgldiv_inf_load - tbl_fsgldiv_op # NORM / ZERO
- short fsgldiv_zero_load - tbl_fsgldiv_op # NORM / INF
- short fsgldiv_res_qnan - tbl_fsgldiv_op # NORM / QNAN
- short fsgldiv_norm - tbl_fsgldiv_op # NORM / DENORM
- short fsgldiv_res_snan - tbl_fsgldiv_op # NORM / SNAN
- short tbl_fsgldiv_op - tbl_fsgldiv_op #
- short tbl_fsgldiv_op - tbl_fsgldiv_op #
- short fsgldiv_zero_load - tbl_fsgldiv_op # ZERO / NORM
- short fsgldiv_res_operr - tbl_fsgldiv_op # ZERO / ZERO
- short fsgldiv_zero_load - tbl_fsgldiv_op # ZERO / INF
- short fsgldiv_res_qnan - tbl_fsgldiv_op # ZERO / QNAN
- short fsgldiv_zero_load - tbl_fsgldiv_op # ZERO / DENORM
- short fsgldiv_res_snan - tbl_fsgldiv_op # ZERO / SNAN
- short tbl_fsgldiv_op - tbl_fsgldiv_op #
- short tbl_fsgldiv_op - tbl_fsgldiv_op #
- short fsgldiv_inf_dst - tbl_fsgldiv_op # INF / NORM
- short fsgldiv_inf_dst - tbl_fsgldiv_op # INF / ZERO
- short fsgldiv_res_operr - tbl_fsgldiv_op # INF / INF
- short fsgldiv_res_qnan - tbl_fsgldiv_op # INF / QNAN
- short fsgldiv_inf_dst - tbl_fsgldiv_op # INF / DENORM
- short fsgldiv_res_snan - tbl_fsgldiv_op # INF / SNAN
- short tbl_fsgldiv_op - tbl_fsgldiv_op #
- short tbl_fsgldiv_op - tbl_fsgldiv_op #
- short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / NORM
- short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / ZERO
- short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / INF
- short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / QNAN
- short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / DENORM
- short fsgldiv_res_snan - tbl_fsgldiv_op # QNAN / SNAN
- short tbl_fsgldiv_op - tbl_fsgldiv_op #
- short tbl_fsgldiv_op - tbl_fsgldiv_op #
- short fsgldiv_norm - tbl_fsgldiv_op # DENORM / NORM
- short fsgldiv_inf_load - tbl_fsgldiv_op # DENORM / ZERO
- short fsgldiv_zero_load - tbl_fsgldiv_op # DENORM / INF
- short fsgldiv_res_qnan - tbl_fsgldiv_op # DENORM / QNAN
- short fsgldiv_norm - tbl_fsgldiv_op # DENORM / DENORM
- short fsgldiv_res_snan - tbl_fsgldiv_op # DENORM / SNAN
- short tbl_fsgldiv_op - tbl_fsgldiv_op #
- short tbl_fsgldiv_op - tbl_fsgldiv_op #
- short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / NORM
- short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / ZERO
- short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / INF
- short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / QNAN
- short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / DENORM
- short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / SNAN
- short tbl_fsgldiv_op - tbl_fsgldiv_op #
- short tbl_fsgldiv_op - tbl_fsgldiv_op #
- fsgldiv_res_qnan:
- bra.l res_qnan
- fsgldiv_res_snan:
- bra.l res_snan
- fsgldiv_res_operr:
- bra.l res_operr
- fsgldiv_inf_load:
- bra.l fdiv_inf_load
- fsgldiv_zero_load:
- bra.l fdiv_zero_load
- fsgldiv_inf_dst:
- bra.l fdiv_inf_dst
- #########################################################################
- # XDEF **************************************************************** #
- # fadd(): emulates the fadd instruction #
- # fsadd(): emulates the fadd instruction #
- # fdadd(): emulates the fdadd instruction #
- # #
- # XREF **************************************************************** #
- # addsub_scaler2() - scale the operands so they won't take exc #
- # ovf_res() - return default overflow result #
- # unf_res() - return default underflow result #
- # res_qnan() - set QNAN result #
- # res_snan() - set SNAN result #
- # res_operr() - set OPERR result #
- # scale_to_zero_src() - set src operand exponent equal to zero #
- # scale_to_zero_dst() - set dst operand exponent equal to zero #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to extended precision source operand #
- # a1 = pointer to extended precision destination operand #
- # #
- # OUTPUT ************************************************************** #
- # fp0 = result #
- # fp1 = EXOP (if exception occurred) #
- # #
- # ALGORITHM *********************************************************** #
- # Handle NANs, infinities, and zeroes as special cases. Divide #
- # norms into extended, single, and double precision. #
- # Do addition after scaling exponents such that exception won't #
- # occur. Then, check result exponent to see if exception would have #
- # occurred. If so, return default result and maybe EXOP. Else, insert #
- # the correct result exponent and return. Set FPSR bits as appropriate. #
- # #
- #########################################################################
- global fsadd
- fsadd:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &s_mode*0x10,%d0 # insert sgl prec
- bra.b fadd
- global fdadd
- fdadd:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &d_mode*0x10,%d0 # insert dbl prec
- global fadd
- fadd:
- mov.l %d0,L_SCR3(%a6) # store rnd info
- clr.w %d1
- mov.b DTAG(%a6),%d1
- lsl.b &0x3,%d1
- or.b STAG(%a6),%d1 # combine src tags
- bne.w fadd_not_norm # optimize on non-norm input
- #
- # ADD: norms and denorms
- #
- fadd_norm:
- bsr.l addsub_scaler2 # scale exponents
- fadd_zero_entry:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fadd.x FP_SCR0(%a6),%fp0 # execute add
- fmov.l &0x0,%fpcr # clear FPCR
- fmov.l %fpsr,%d1 # fetch INEX2,N,Z
- or.l %d1,USER_FPSR(%a6) # save exc and ccode bits
- fbeq.w fadd_zero_exit # if result is zero, end now
- mov.l %d2,-(%sp) # save d2
- fmovm.x &0x01,-(%sp) # save result to stack
- mov.w 2+L_SCR3(%a6),%d1
- lsr.b &0x6,%d1
- mov.w (%sp),%d2 # fetch new sign, exp
- andi.l &0x7fff,%d2 # strip sign
- sub.l %d0,%d2 # add scale factor
- cmp.l %d2,(tbl_fadd_ovfl.b,%pc,%d1.w*4) # is it an overflow?
- bge.b fadd_ovfl # yes
- cmp.l %d2,(tbl_fadd_unfl.b,%pc,%d1.w*4) # is it an underflow?
- blt.w fadd_unfl # yes
- beq.w fadd_may_unfl # maybe; go find out
- fadd_normal:
- mov.w (%sp),%d1
- andi.w &0x8000,%d1 # keep sign
- or.w %d2,%d1 # concat sign,new exp
- mov.w %d1,(%sp) # insert new exponent
- fmovm.x (%sp)+,&0x80 # return result in fp0
- mov.l (%sp)+,%d2 # restore d2
- rts
- fadd_zero_exit:
- # fmov.s &0x00000000,%fp0 # return zero in fp0
- rts
- tbl_fadd_ovfl:
- long 0x7fff # ext ovfl
- long 0x407f # sgl ovfl
- long 0x43ff # dbl ovfl
- tbl_fadd_unfl:
- long 0x0000 # ext unfl
- long 0x3f81 # sgl unfl
- long 0x3c01 # dbl unfl
- fadd_ovfl:
- or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x13,%d1 # is OVFL or INEX enabled?
- bne.b fadd_ovfl_ena # yes
- add.l &0xc,%sp
- fadd_ovfl_dis:
- btst &neg_bit,FPSR_CC(%a6) # is result negative?
- sne %d1 # set sign param accordingly
- mov.l L_SCR3(%a6),%d0 # pass prec:rnd
- bsr.l ovf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # set INF,N if applicable
- fmovm.x (%a0),&0x80 # return default result in fp0
- mov.l (%sp)+,%d2 # restore d2
- rts
- fadd_ovfl_ena:
- mov.b L_SCR3(%a6),%d1
- andi.b &0xc0,%d1 # is precision extended?
- bne.b fadd_ovfl_ena_sd # no; prec = sgl or dbl
- fadd_ovfl_ena_cont:
- mov.w (%sp),%d1
- andi.w &0x8000,%d1 # keep sign
- subi.l &0x6000,%d2 # add extra bias
- andi.w &0x7fff,%d2
- or.w %d2,%d1 # concat sign,new exp
- mov.w %d1,(%sp) # insert new exponent
- fmovm.x (%sp)+,&0x40 # return EXOP in fp1
- bra.b fadd_ovfl_dis
- fadd_ovfl_ena_sd:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
- mov.l L_SCR3(%a6),%d1
- andi.b &0x30,%d1 # keep rnd mode
- fmov.l %d1,%fpcr # set FPCR
- fadd.x FP_SCR0(%a6),%fp0 # execute add
- fmov.l &0x0,%fpcr # clear FPCR
- add.l &0xc,%sp
- fmovm.x &0x01,-(%sp)
- bra.b fadd_ovfl_ena_cont
- fadd_unfl:
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
- add.l &0xc,%sp
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
- fmov.l &rz_mode*0x10,%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
- fadd.x FP_SCR0(%a6),%fp0 # execute add
- fmov.l &0x0,%fpcr # clear FPCR
- fmov.l %fpsr,%d1 # save status
- or.l %d1,USER_FPSR(%a6) # save INEX,N
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x0b,%d1 # is UNFL or INEX enabled?
- bne.b fadd_unfl_ena # yes
- fadd_unfl_dis:
- fmovm.x &0x80,FP_SCR0(%a6) # store out result
- lea FP_SCR0(%a6),%a0 # pass: result addr
- mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
- bsr.l unf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # 'Z' bit may have been set
- fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
- mov.l (%sp)+,%d2 # restore d2
- rts
- fadd_unfl_ena:
- fmovm.x FP_SCR1(%a6),&0x40 # load dst op
- mov.l L_SCR3(%a6),%d1
- andi.b &0xc0,%d1 # is precision extended?
- bne.b fadd_unfl_ena_sd # no; sgl or dbl
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fadd_unfl_ena_cont:
- fmov.l &0x0,%fpsr # clear FPSR
- fadd.x FP_SCR0(%a6),%fp1 # execute multiply
- fmov.l &0x0,%fpcr # clear FPCR
- fmovm.x &0x40,FP_SCR0(%a6) # save result to stack
- mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factor
- addi.l &0x6000,%d1 # add new bias
- andi.w &0x7fff,%d1 # clear top bit
- or.w %d2,%d1 # concat sign,new exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- bra.w fadd_unfl_dis
- fadd_unfl_ena_sd:
- mov.l L_SCR3(%a6),%d1
- andi.b &0x30,%d1 # use only rnd mode
- fmov.l %d1,%fpcr # set FPCR
- bra.b fadd_unfl_ena_cont
- #
- # result is equal to the smallest normalized number in the selected precision
- # if the precision is extended, this result could not have come from an
- # underflow that rounded up.
- #
- fadd_may_unfl:
- mov.l L_SCR3(%a6),%d1
- andi.b &0xc0,%d1
- beq.w fadd_normal # yes; no underflow occurred
- mov.l 0x4(%sp),%d1 # extract hi(man)
- cmpi.l %d1,&0x80000000 # is hi(man) = 0x80000000?
- bne.w fadd_normal # no; no underflow occurred
- tst.l 0x8(%sp) # is lo(man) = 0x0?
- bne.w fadd_normal # no; no underflow occurred
- btst &inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set?
- beq.w fadd_normal # no; no underflow occurred
- #
- # ok, so now the result has a exponent equal to the smallest normalized
- # exponent for the selected precision. also, the mantissa is equal to
- # 0x8000000000000000 and this mantissa is the result of rounding non-zero
- # g,r,s.
- # now, we must determine whether the pre-rounded result was an underflow
- # rounded "up" or a normalized number rounded "down".
- # so, we do this be re-executing the add using RZ as the rounding mode and
- # seeing if the new result is smaller or equal to the current result.
- #
- fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1
- mov.l L_SCR3(%a6),%d1
- andi.b &0xc0,%d1 # keep rnd prec
- ori.b &rz_mode*0x10,%d1 # insert rnd mode
- fmov.l %d1,%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
- fadd.x FP_SCR0(%a6),%fp1 # execute add
- fmov.l &0x0,%fpcr # clear FPCR
- fabs.x %fp0 # compare absolute values
- fabs.x %fp1
- fcmp.x %fp0,%fp1 # is first result > second?
- fbgt.w fadd_unfl # yes; it's an underflow
- bra.w fadd_normal # no; it's not an underflow
- ##########################################################################
- #
- # Add: inputs are not both normalized; what are they?
- #
- fadd_not_norm:
- mov.w (tbl_fadd_op.b,%pc,%d1.w*2),%d1
- jmp (tbl_fadd_op.b,%pc,%d1.w*1)
- swbeg &48
- tbl_fadd_op:
- short fadd_norm - tbl_fadd_op # NORM + NORM
- short fadd_zero_src - tbl_fadd_op # NORM + ZERO
- short fadd_inf_src - tbl_fadd_op # NORM + INF
- short fadd_res_qnan - tbl_fadd_op # NORM + QNAN
- short fadd_norm - tbl_fadd_op # NORM + DENORM
- short fadd_res_snan - tbl_fadd_op # NORM + SNAN
- short tbl_fadd_op - tbl_fadd_op #
- short tbl_fadd_op - tbl_fadd_op #
- short fadd_zero_dst - tbl_fadd_op # ZERO + NORM
- short fadd_zero_2 - tbl_fadd_op # ZERO + ZERO
- short fadd_inf_src - tbl_fadd_op # ZERO + INF
- short fadd_res_qnan - tbl_fadd_op # NORM + QNAN
- short fadd_zero_dst - tbl_fadd_op # ZERO + DENORM
- short fadd_res_snan - tbl_fadd_op # NORM + SNAN
- short tbl_fadd_op - tbl_fadd_op #
- short tbl_fadd_op - tbl_fadd_op #
- short fadd_inf_dst - tbl_fadd_op # INF + NORM
- short fadd_inf_dst - tbl_fadd_op # INF + ZERO
- short fadd_inf_2 - tbl_fadd_op # INF + INF
- short fadd_res_qnan - tbl_fadd_op # NORM + QNAN
- short fadd_inf_dst - tbl_fadd_op # INF + DENORM
- short fadd_res_snan - tbl_fadd_op # NORM + SNAN
- short tbl_fadd_op - tbl_fadd_op #
- short tbl_fadd_op - tbl_fadd_op #
- short fadd_res_qnan - tbl_fadd_op # QNAN + NORM
- short fadd_res_qnan - tbl_fadd_op # QNAN + ZERO
- short fadd_res_qnan - tbl_fadd_op # QNAN + INF
- short fadd_res_qnan - tbl_fadd_op # QNAN + QNAN
- short fadd_res_qnan - tbl_fadd_op # QNAN + DENORM
- short fadd_res_snan - tbl_fadd_op # QNAN + SNAN
- short tbl_fadd_op - tbl_fadd_op #
- short tbl_fadd_op - tbl_fadd_op #
- short fadd_norm - tbl_fadd_op # DENORM + NORM
- short fadd_zero_src - tbl_fadd_op # DENORM + ZERO
- short fadd_inf_src - tbl_fadd_op # DENORM + INF
- short fadd_res_qnan - tbl_fadd_op # NORM + QNAN
- short fadd_norm - tbl_fadd_op # DENORM + DENORM
- short fadd_res_snan - tbl_fadd_op # NORM + SNAN
- short tbl_fadd_op - tbl_fadd_op #
- short tbl_fadd_op - tbl_fadd_op #
- short fadd_res_snan - tbl_fadd_op # SNAN + NORM
- short fadd_res_snan - tbl_fadd_op # SNAN + ZERO
- short fadd_res_snan - tbl_fadd_op # SNAN + INF
- short fadd_res_snan - tbl_fadd_op # SNAN + QNAN
- short fadd_res_snan - tbl_fadd_op # SNAN + DENORM
- short fadd_res_snan - tbl_fadd_op # SNAN + SNAN
- short tbl_fadd_op - tbl_fadd_op #
- short tbl_fadd_op - tbl_fadd_op #
- fadd_res_qnan:
- bra.l res_qnan
- fadd_res_snan:
- bra.l res_snan
- #
- # both operands are ZEROes
- #
- fadd_zero_2:
- mov.b SRC_EX(%a0),%d0 # are the signs opposite
- mov.b DST_EX(%a1),%d1
- eor.b %d0,%d1
- bmi.w fadd_zero_2_chk_rm # weed out (-ZERO)+(+ZERO)
- # the signs are the same. so determine whether they are positive or negative
- # and return the appropriately signed zero.
- tst.b %d0 # are ZEROes positive or negative?
- bmi.b fadd_zero_rm # negative
- fmov.s &0x00000000,%fp0 # return +ZERO
- mov.b &z_bmask,FPSR_CC(%a6) # set Z
- rts
- #
- # the ZEROes have opposite signs:
- # - therefore, we return +ZERO if the rounding modes are RN,RZ, or RP.
- # - -ZERO is returned in the case of RM.
- #
- fadd_zero_2_chk_rm:
- mov.b 3+L_SCR3(%a6),%d1
- andi.b &0x30,%d1 # extract rnd mode
- cmpi.b %d1,&rm_mode*0x10 # is rnd mode == RM?
- beq.b fadd_zero_rm # yes
- fmov.s &0x00000000,%fp0 # return +ZERO
- mov.b &z_bmask,FPSR_CC(%a6) # set Z
- rts
- fadd_zero_rm:
- fmov.s &0x80000000,%fp0 # return -ZERO
- mov.b &neg_bmask+z_bmask,FPSR_CC(%a6) # set NEG/Z
- rts
- #
- # one operand is a ZERO and the other is a DENORM or NORM. scale
- # the DENORM or NORM and jump to the regular fadd routine.
- #
- fadd_zero_dst:
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- bsr.l scale_to_zero_src # scale the operand
- clr.w FP_SCR1_EX(%a6)
- clr.l FP_SCR1_HI(%a6)
- clr.l FP_SCR1_LO(%a6)
- bra.w fadd_zero_entry # go execute fadd
- fadd_zero_src:
- mov.w DST_EX(%a1),FP_SCR1_EX(%a6)
- mov.l DST_HI(%a1),FP_SCR1_HI(%a6)
- mov.l DST_LO(%a1),FP_SCR1_LO(%a6)
- bsr.l scale_to_zero_dst # scale the operand
- clr.w FP_SCR0_EX(%a6)
- clr.l FP_SCR0_HI(%a6)
- clr.l FP_SCR0_LO(%a6)
- bra.w fadd_zero_entry # go execute fadd
- #
- # both operands are INFs. an OPERR will result if the INFs have
- # different signs. else, an INF of the same sign is returned
- #
- fadd_inf_2:
- mov.b SRC_EX(%a0),%d0 # exclusive or the signs
- mov.b DST_EX(%a1),%d1
- eor.b %d1,%d0
- bmi.l res_operr # weed out (-INF)+(+INF)
- # ok, so it's not an OPERR. but, we do have to remember to return the
- # src INF since that's where the 881/882 gets the j-bit from...
- #
- # operands are INF and one of {ZERO, INF, DENORM, NORM}
- #
- fadd_inf_src:
- fmovm.x SRC(%a0),&0x80 # return src INF
- tst.b SRC_EX(%a0) # is INF positive?
- bpl.b fadd_inf_done # yes; we're done
- mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG
- rts
- #
- # operands are INF and one of {ZERO, INF, DENORM, NORM}
- #
- fadd_inf_dst:
- fmovm.x DST(%a1),&0x80 # return dst INF
- tst.b DST_EX(%a1) # is INF positive?
- bpl.b fadd_inf_done # yes; we're done
- mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG
- rts
- fadd_inf_done:
- mov.b &inf_bmask,FPSR_CC(%a6) # set INF
- rts
- #########################################################################
- # XDEF **************************************************************** #
- # fsub(): emulates the fsub instruction #
- # fssub(): emulates the fssub instruction #
- # fdsub(): emulates the fdsub instruction #
- # #
- # XREF **************************************************************** #
- # addsub_scaler2() - scale the operands so they won't take exc #
- # ovf_res() - return default overflow result #
- # unf_res() - return default underflow result #
- # res_qnan() - set QNAN result #
- # res_snan() - set SNAN result #
- # res_operr() - set OPERR result #
- # scale_to_zero_src() - set src operand exponent equal to zero #
- # scale_to_zero_dst() - set dst operand exponent equal to zero #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to extended precision source operand #
- # a1 = pointer to extended precision destination operand #
- # #
- # OUTPUT ************************************************************** #
- # fp0 = result #
- # fp1 = EXOP (if exception occurred) #
- # #
- # ALGORITHM *********************************************************** #
- # Handle NANs, infinities, and zeroes as special cases. Divide #
- # norms into extended, single, and double precision. #
- # Do subtraction after scaling exponents such that exception won't#
- # occur. Then, check result exponent to see if exception would have #
- # occurred. If so, return default result and maybe EXOP. Else, insert #
- # the correct result exponent and return. Set FPSR bits as appropriate. #
- # #
- #########################################################################
- global fssub
- fssub:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &s_mode*0x10,%d0 # insert sgl prec
- bra.b fsub
- global fdsub
- fdsub:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &d_mode*0x10,%d0 # insert dbl prec
- global fsub
- fsub:
- mov.l %d0,L_SCR3(%a6) # store rnd info
- clr.w %d1
- mov.b DTAG(%a6),%d1
- lsl.b &0x3,%d1
- or.b STAG(%a6),%d1 # combine src tags
- bne.w fsub_not_norm # optimize on non-norm input
- #
- # SUB: norms and denorms
- #
- fsub_norm:
- bsr.l addsub_scaler2 # scale exponents
- fsub_zero_entry:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fsub.x FP_SCR0(%a6),%fp0 # execute subtract
- fmov.l &0x0,%fpcr # clear FPCR
- fmov.l %fpsr,%d1 # fetch INEX2, N, Z
- or.l %d1,USER_FPSR(%a6) # save exc and ccode bits
- fbeq.w fsub_zero_exit # if result zero, end now
- mov.l %d2,-(%sp) # save d2
- fmovm.x &0x01,-(%sp) # save result to stack
- mov.w 2+L_SCR3(%a6),%d1
- lsr.b &0x6,%d1
- mov.w (%sp),%d2 # fetch new exponent
- andi.l &0x7fff,%d2 # strip sign
- sub.l %d0,%d2 # add scale factor
- cmp.l %d2,(tbl_fsub_ovfl.b,%pc,%d1.w*4) # is it an overflow?
- bge.b fsub_ovfl # yes
- cmp.l %d2,(tbl_fsub_unfl.b,%pc,%d1.w*4) # is it an underflow?
- blt.w fsub_unfl # yes
- beq.w fsub_may_unfl # maybe; go find out
- fsub_normal:
- mov.w (%sp),%d1
- andi.w &0x8000,%d1 # keep sign
- or.w %d2,%d1 # insert new exponent
- mov.w %d1,(%sp) # insert new exponent
- fmovm.x (%sp)+,&0x80 # return result in fp0
- mov.l (%sp)+,%d2 # restore d2
- rts
- fsub_zero_exit:
- # fmov.s &0x00000000,%fp0 # return zero in fp0
- rts
- tbl_fsub_ovfl:
- long 0x7fff # ext ovfl
- long 0x407f # sgl ovfl
- long 0x43ff # dbl ovfl
- tbl_fsub_unfl:
- long 0x0000 # ext unfl
- long 0x3f81 # sgl unfl
- long 0x3c01 # dbl unfl
- fsub_ovfl:
- or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x13,%d1 # is OVFL or INEX enabled?
- bne.b fsub_ovfl_ena # yes
- add.l &0xc,%sp
- fsub_ovfl_dis:
- btst &neg_bit,FPSR_CC(%a6) # is result negative?
- sne %d1 # set sign param accordingly
- mov.l L_SCR3(%a6),%d0 # pass prec:rnd
- bsr.l ovf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # set INF,N if applicable
- fmovm.x (%a0),&0x80 # return default result in fp0
- mov.l (%sp)+,%d2 # restore d2
- rts
- fsub_ovfl_ena:
- mov.b L_SCR3(%a6),%d1
- andi.b &0xc0,%d1 # is precision extended?
- bne.b fsub_ovfl_ena_sd # no
- fsub_ovfl_ena_cont:
- mov.w (%sp),%d1 # fetch {sgn,exp}
- andi.w &0x8000,%d1 # keep sign
- subi.l &0x6000,%d2 # subtract new bias
- andi.w &0x7fff,%d2 # clear top bit
- or.w %d2,%d1 # concat sign,exp
- mov.w %d1,(%sp) # insert new exponent
- fmovm.x (%sp)+,&0x40 # return EXOP in fp1
- bra.b fsub_ovfl_dis
- fsub_ovfl_ena_sd:
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
- mov.l L_SCR3(%a6),%d1
- andi.b &0x30,%d1 # clear rnd prec
- fmov.l %d1,%fpcr # set FPCR
- fsub.x FP_SCR0(%a6),%fp0 # execute subtract
- fmov.l &0x0,%fpcr # clear FPCR
- add.l &0xc,%sp
- fmovm.x &0x01,-(%sp)
- bra.b fsub_ovfl_ena_cont
- fsub_unfl:
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
- add.l &0xc,%sp
- fmovm.x FP_SCR1(%a6),&0x80 # load dst op
- fmov.l &rz_mode*0x10,%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
- fsub.x FP_SCR0(%a6),%fp0 # execute subtract
- fmov.l &0x0,%fpcr # clear FPCR
- fmov.l %fpsr,%d1 # save status
- or.l %d1,USER_FPSR(%a6)
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x0b,%d1 # is UNFL or INEX enabled?
- bne.b fsub_unfl_ena # yes
- fsub_unfl_dis:
- fmovm.x &0x80,FP_SCR0(%a6) # store out result
- lea FP_SCR0(%a6),%a0 # pass: result addr
- mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
- bsr.l unf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # 'Z' may have been set
- fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
- mov.l (%sp)+,%d2 # restore d2
- rts
- fsub_unfl_ena:
- fmovm.x FP_SCR1(%a6),&0x40
- mov.l L_SCR3(%a6),%d1
- andi.b &0xc0,%d1 # is precision extended?
- bne.b fsub_unfl_ena_sd # no
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fsub_unfl_ena_cont:
- fmov.l &0x0,%fpsr # clear FPSR
- fsub.x FP_SCR0(%a6),%fp1 # execute subtract
- fmov.l &0x0,%fpcr # clear FPCR
- fmovm.x &0x40,FP_SCR0(%a6) # store result to stack
- mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factor
- addi.l &0x6000,%d1 # subtract new bias
- andi.w &0x7fff,%d1 # clear top bit
- or.w %d2,%d1 # concat sgn,exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- bra.w fsub_unfl_dis
- fsub_unfl_ena_sd:
- mov.l L_SCR3(%a6),%d1
- andi.b &0x30,%d1 # clear rnd prec
- fmov.l %d1,%fpcr # set FPCR
- bra.b fsub_unfl_ena_cont
- #
- # result is equal to the smallest normalized number in the selected precision
- # if the precision is extended, this result could not have come from an
- # underflow that rounded up.
- #
- fsub_may_unfl:
- mov.l L_SCR3(%a6),%d1
- andi.b &0xc0,%d1 # fetch rnd prec
- beq.w fsub_normal # yes; no underflow occurred
- mov.l 0x4(%sp),%d1
- cmpi.l %d1,&0x80000000 # is hi(man) = 0x80000000?
- bne.w fsub_normal # no; no underflow occurred
- tst.l 0x8(%sp) # is lo(man) = 0x0?
- bne.w fsub_normal # no; no underflow occurred
- btst &inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set?
- beq.w fsub_normal # no; no underflow occurred
- #
- # ok, so now the result has a exponent equal to the smallest normalized
- # exponent for the selected precision. also, the mantissa is equal to
- # 0x8000000000000000 and this mantissa is the result of rounding non-zero
- # g,r,s.
- # now, we must determine whether the pre-rounded result was an underflow
- # rounded "up" or a normalized number rounded "down".
- # so, we do this be re-executing the add using RZ as the rounding mode and
- # seeing if the new result is smaller or equal to the current result.
- #
- fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1
- mov.l L_SCR3(%a6),%d1
- andi.b &0xc0,%d1 # keep rnd prec
- ori.b &rz_mode*0x10,%d1 # insert rnd mode
- fmov.l %d1,%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
- fsub.x FP_SCR0(%a6),%fp1 # execute subtract
- fmov.l &0x0,%fpcr # clear FPCR
- fabs.x %fp0 # compare absolute values
- fabs.x %fp1
- fcmp.x %fp0,%fp1 # is first result > second?
- fbgt.w fsub_unfl # yes; it's an underflow
- bra.w fsub_normal # no; it's not an underflow
- ##########################################################################
- #
- # Sub: inputs are not both normalized; what are they?
- #
- fsub_not_norm:
- mov.w (tbl_fsub_op.b,%pc,%d1.w*2),%d1
- jmp (tbl_fsub_op.b,%pc,%d1.w*1)
- swbeg &48
- tbl_fsub_op:
- short fsub_norm - tbl_fsub_op # NORM - NORM
- short fsub_zero_src - tbl_fsub_op # NORM - ZERO
- short fsub_inf_src - tbl_fsub_op # NORM - INF
- short fsub_res_qnan - tbl_fsub_op # NORM - QNAN
- short fsub_norm - tbl_fsub_op # NORM - DENORM
- short fsub_res_snan - tbl_fsub_op # NORM - SNAN
- short tbl_fsub_op - tbl_fsub_op #
- short tbl_fsub_op - tbl_fsub_op #
- short fsub_zero_dst - tbl_fsub_op # ZERO - NORM
- short fsub_zero_2 - tbl_fsub_op # ZERO - ZERO
- short fsub_inf_src - tbl_fsub_op # ZERO - INF
- short fsub_res_qnan - tbl_fsub_op # NORM - QNAN
- short fsub_zero_dst - tbl_fsub_op # ZERO - DENORM
- short fsub_res_snan - tbl_fsub_op # NORM - SNAN
- short tbl_fsub_op - tbl_fsub_op #
- short tbl_fsub_op - tbl_fsub_op #
- short fsub_inf_dst - tbl_fsub_op # INF - NORM
- short fsub_inf_dst - tbl_fsub_op # INF - ZERO
- short fsub_inf_2 - tbl_fsub_op # INF - INF
- short fsub_res_qnan - tbl_fsub_op # NORM - QNAN
- short fsub_inf_dst - tbl_fsub_op # INF - DENORM
- short fsub_res_snan - tbl_fsub_op # NORM - SNAN
- short tbl_fsub_op - tbl_fsub_op #
- short tbl_fsub_op - tbl_fsub_op #
- short fsub_res_qnan - tbl_fsub_op # QNAN - NORM
- short fsub_res_qnan - tbl_fsub_op # QNAN - ZERO
- short fsub_res_qnan - tbl_fsub_op # QNAN - INF
- short fsub_res_qnan - tbl_fsub_op # QNAN - QNAN
- short fsub_res_qnan - tbl_fsub_op # QNAN - DENORM
- short fsub_res_snan - tbl_fsub_op # QNAN - SNAN
- short tbl_fsub_op - tbl_fsub_op #
- short tbl_fsub_op - tbl_fsub_op #
- short fsub_norm - tbl_fsub_op # DENORM - NORM
- short fsub_zero_src - tbl_fsub_op # DENORM - ZERO
- short fsub_inf_src - tbl_fsub_op # DENORM - INF
- short fsub_res_qnan - tbl_fsub_op # NORM - QNAN
- short fsub_norm - tbl_fsub_op # DENORM - DENORM
- short fsub_res_snan - tbl_fsub_op # NORM - SNAN
- short tbl_fsub_op - tbl_fsub_op #
- short tbl_fsub_op - tbl_fsub_op #
- short fsub_res_snan - tbl_fsub_op # SNAN - NORM
- short fsub_res_snan - tbl_fsub_op # SNAN - ZERO
- short fsub_res_snan - tbl_fsub_op # SNAN - INF
- short fsub_res_snan - tbl_fsub_op # SNAN - QNAN
- short fsub_res_snan - tbl_fsub_op # SNAN - DENORM
- short fsub_res_snan - tbl_fsub_op # SNAN - SNAN
- short tbl_fsub_op - tbl_fsub_op #
- short tbl_fsub_op - tbl_fsub_op #
- fsub_res_qnan:
- bra.l res_qnan
- fsub_res_snan:
- bra.l res_snan
- #
- # both operands are ZEROes
- #
- fsub_zero_2:
- mov.b SRC_EX(%a0),%d0
- mov.b DST_EX(%a1),%d1
- eor.b %d1,%d0
- bpl.b fsub_zero_2_chk_rm
- # the signs are opposite, so, return a ZERO w/ the sign of the dst ZERO
- tst.b %d0 # is dst negative?
- bmi.b fsub_zero_2_rm # yes
- fmov.s &0x00000000,%fp0 # no; return +ZERO
- mov.b &z_bmask,FPSR_CC(%a6) # set Z
- rts
- #
- # the ZEROes have the same signs:
- # - therefore, we return +ZERO if the rounding mode is RN,RZ, or RP
- # - -ZERO is returned in the case of RM.
- #
- fsub_zero_2_chk_rm:
- mov.b 3+L_SCR3(%a6),%d1
- andi.b &0x30,%d1 # extract rnd mode
- cmpi.b %d1,&rm_mode*0x10 # is rnd mode = RM?
- beq.b fsub_zero_2_rm # yes
- fmov.s &0x00000000,%fp0 # no; return +ZERO
- mov.b &z_bmask,FPSR_CC(%a6) # set Z
- rts
- fsub_zero_2_rm:
- fmov.s &0x80000000,%fp0 # return -ZERO
- mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set Z/NEG
- rts
- #
- # one operand is a ZERO and the other is a DENORM or a NORM.
- # scale the DENORM or NORM and jump to the regular fsub routine.
- #
- fsub_zero_dst:
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- bsr.l scale_to_zero_src # scale the operand
- clr.w FP_SCR1_EX(%a6)
- clr.l FP_SCR1_HI(%a6)
- clr.l FP_SCR1_LO(%a6)
- bra.w fsub_zero_entry # go execute fsub
- fsub_zero_src:
- mov.w DST_EX(%a1),FP_SCR1_EX(%a6)
- mov.l DST_HI(%a1),FP_SCR1_HI(%a6)
- mov.l DST_LO(%a1),FP_SCR1_LO(%a6)
- bsr.l scale_to_zero_dst # scale the operand
- clr.w FP_SCR0_EX(%a6)
- clr.l FP_SCR0_HI(%a6)
- clr.l FP_SCR0_LO(%a6)
- bra.w fsub_zero_entry # go execute fsub
- #
- # both operands are INFs. an OPERR will result if the INFs have the
- # same signs. else,
- #
- fsub_inf_2:
- mov.b SRC_EX(%a0),%d0 # exclusive or the signs
- mov.b DST_EX(%a1),%d1
- eor.b %d1,%d0
- bpl.l res_operr # weed out (-INF)+(+INF)
- # ok, so it's not an OPERR. but we do have to remember to return
- # the src INF since that's where the 881/882 gets the j-bit.
- fsub_inf_src:
- fmovm.x SRC(%a0),&0x80 # return src INF
- fneg.x %fp0 # invert sign
- fbge.w fsub_inf_done # sign is now positive
- mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG
- rts
- fsub_inf_dst:
- fmovm.x DST(%a1),&0x80 # return dst INF
- tst.b DST_EX(%a1) # is INF negative?
- bpl.b fsub_inf_done # no
- mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG
- rts
- fsub_inf_done:
- mov.b &inf_bmask,FPSR_CC(%a6) # set INF
- rts
- #########################################################################
- # XDEF **************************************************************** #
- # fsqrt(): emulates the fsqrt instruction #
- # fssqrt(): emulates the fssqrt instruction #
- # fdsqrt(): emulates the fdsqrt instruction #
- # #
- # XREF **************************************************************** #
- # scale_sqrt() - scale the source operand #
- # unf_res() - return default underflow result #
- # ovf_res() - return default overflow result #
- # res_qnan_1op() - return QNAN result #
- # res_snan_1op() - return SNAN result #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to extended precision source operand #
- # d0 rnd prec,mode #
- # #
- # OUTPUT ************************************************************** #
- # fp0 = result #
- # fp1 = EXOP (if exception occurred) #
- # #
- # ALGORITHM *********************************************************** #
- # Handle NANs, infinities, and zeroes as special cases. Divide #
- # norms/denorms into ext/sgl/dbl precision. #
- # For norms/denorms, scale the exponents such that a sqrt #
- # instruction won't cause an exception. Use the regular fsqrt to #
- # compute a result. Check if the regular operands would have taken #
- # an exception. If so, return the default overflow/underflow result #
- # and return the EXOP if exceptions are enabled. Else, scale the #
- # result operand to the proper exponent. #
- # #
- #########################################################################
- global fssqrt
- fssqrt:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &s_mode*0x10,%d0 # insert sgl precision
- bra.b fsqrt
- global fdsqrt
- fdsqrt:
- andi.b &0x30,%d0 # clear rnd prec
- ori.b &d_mode*0x10,%d0 # insert dbl precision
- global fsqrt
- fsqrt:
- mov.l %d0,L_SCR3(%a6) # store rnd info
- clr.w %d1
- mov.b STAG(%a6),%d1
- bne.w fsqrt_not_norm # optimize on non-norm input
- #
- # SQUARE ROOT: norms and denorms ONLY!
- #
- fsqrt_norm:
- tst.b SRC_EX(%a0) # is operand negative?
- bmi.l res_operr # yes
- andi.b &0xc0,%d0 # is precision extended?
- bne.b fsqrt_not_ext # no; go handle sgl or dbl
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
- fsqrt.x (%a0),%fp0 # execute square root
- fmov.l %fpsr,%d1
- or.l %d1,USER_FPSR(%a6) # set N,INEX
- rts
- fsqrt_denorm:
- tst.b SRC_EX(%a0) # is operand negative?
- bmi.l res_operr # yes
- andi.b &0xc0,%d0 # is precision extended?
- bne.b fsqrt_not_ext # no; go handle sgl or dbl
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- bsr.l scale_sqrt # calculate scale factor
- bra.w fsqrt_sd_normal
- #
- # operand is either single or double
- #
- fsqrt_not_ext:
- cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec
- bne.w fsqrt_dbl
- #
- # operand is to be rounded to single precision
- #
- fsqrt_sgl:
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- bsr.l scale_sqrt # calculate scale factor
- cmpi.l %d0,&0x3fff-0x3f81 # will move in underflow?
- beq.w fsqrt_sd_may_unfl
- bgt.w fsqrt_sd_unfl # yes; go handle underflow
- cmpi.l %d0,&0x3fff-0x407f # will move in overflow?
- beq.w fsqrt_sd_may_ovfl # maybe; go check
- blt.w fsqrt_sd_ovfl # yes; go handle overflow
- #
- # operand will NOT overflow or underflow when moved in to the fp reg file
- #
- fsqrt_sd_normal:
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fsqrt.x FP_SCR0(%a6),%fp0 # perform absolute
- fmov.l %fpsr,%d1 # save FPSR
- fmov.l &0x0,%fpcr # clear FPCR
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
- fsqrt_sd_normal_exit:
- mov.l %d2,-(%sp) # save d2
- fmovm.x &0x80,FP_SCR0(%a6) # store out result
- mov.w FP_SCR0_EX(%a6),%d1 # load sgn,exp
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- sub.l %d0,%d1 # add scale factor
- andi.w &0x8000,%d2 # keep old sign
- or.w %d1,%d2 # concat old sign,new exp
- mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent
- mov.l (%sp)+,%d2 # restore d2
- fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0
- rts
- #
- # operand is to be rounded to double precision
- #
- fsqrt_dbl:
- mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
- mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
- mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
- bsr.l scale_sqrt # calculate scale factor
- cmpi.l %d0,&0x3fff-0x3c01 # will move in underflow?
- beq.w fsqrt_sd_may_unfl
- bgt.b fsqrt_sd_unfl # yes; go handle underflow
- cmpi.l %d0,&0x3fff-0x43ff # will move in overflow?
- beq.w fsqrt_sd_may_ovfl # maybe; go check
- blt.w fsqrt_sd_ovfl # yes; go handle overflow
- bra.w fsqrt_sd_normal # no; ho handle normalized op
- # we're on the line here and the distinguising characteristic is whether
- # the exponent is 3fff or 3ffe. if it's 3ffe, then it's a safe number
- # elsewise fall through to underflow.
- fsqrt_sd_may_unfl:
- btst &0x0,1+FP_SCR0_EX(%a6) # is exponent 0x3fff?
- bne.w fsqrt_sd_normal # yes, so no underflow
- #
- # operand WILL underflow when moved in to the fp register file
- #
- fsqrt_sd_unfl:
- bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
- fmov.l &rz_mode*0x10,%fpcr # set FPCR
- fmov.l &0x0,%fpsr # clear FPSR
- fsqrt.x FP_SCR0(%a6),%fp0 # execute square root
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
- # if underflow or inexact is enabled, go calculate EXOP first.
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x0b,%d1 # is UNFL or INEX enabled?
- bne.b fsqrt_sd_unfl_ena # yes
- fsqrt_sd_unfl_dis:
- fmovm.x &0x80,FP_SCR0(%a6) # store out result
- lea FP_SCR0(%a6),%a0 # pass: result addr
- mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
- bsr.l unf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # set possible 'Z' ccode
- fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
- rts
- #
- # operand will underflow AND underflow is enabled.
- # therefore, we must return the result rounded to extended precision.
- #
- fsqrt_sd_unfl_ena:
- mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6)
- mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6)
- mov.w FP_SCR0_EX(%a6),%d1 # load current exponent
- mov.l %d2,-(%sp) # save d2
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # subtract scale factor
- addi.l &0x6000,%d1 # add new bias
- andi.w &0x7fff,%d1
- or.w %d2,%d1 # concat new sign,new exp
- mov.w %d1,FP_SCR1_EX(%a6) # insert new exp
- fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1
- mov.l (%sp)+,%d2 # restore d2
- bra.b fsqrt_sd_unfl_dis
- #
- # operand WILL overflow.
- #
- fsqrt_sd_ovfl:
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fsqrt.x FP_SCR0(%a6),%fp0 # perform square root
- fmov.l &0x0,%fpcr # clear FPCR
- fmov.l %fpsr,%d1 # save FPSR
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
- fsqrt_sd_ovfl_tst:
- or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
- mov.b FPCR_ENABLE(%a6),%d1
- andi.b &0x13,%d1 # is OVFL or INEX enabled?
- bne.b fsqrt_sd_ovfl_ena # yes
- #
- # OVFL is not enabled; therefore, we must create the default result by
- # calling ovf_res().
- #
- fsqrt_sd_ovfl_dis:
- btst &neg_bit,FPSR_CC(%a6) # is result negative?
- sne %d1 # set sign param accordingly
- mov.l L_SCR3(%a6),%d0 # pass: prec,mode
- bsr.l ovf_res # calculate default result
- or.b %d0,FPSR_CC(%a6) # set INF,N if applicable
- fmovm.x (%a0),&0x80 # return default result in fp0
- rts
- #
- # OVFL is enabled.
- # the INEX2 bit has already been updated by the round to the correct precision.
- # now, round to extended(and don't alter the FPSR).
- #
- fsqrt_sd_ovfl_ena:
- mov.l %d2,-(%sp) # save d2
- mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
- mov.l %d1,%d2 # make a copy
- andi.l &0x7fff,%d1 # strip sign
- andi.w &0x8000,%d2 # keep old sign
- sub.l %d0,%d1 # add scale factor
- subi.l &0x6000,%d1 # subtract bias
- andi.w &0x7fff,%d1
- or.w %d2,%d1 # concat sign,exp
- mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
- fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
- mov.l (%sp)+,%d2 # restore d2
- bra.b fsqrt_sd_ovfl_dis
- #
- # the move in MAY underflow. so...
- #
- fsqrt_sd_may_ovfl:
- btst &0x0,1+FP_SCR0_EX(%a6) # is exponent 0x3fff?
- bne.w fsqrt_sd_ovfl # yes, so overflow
- fmov.l &0x0,%fpsr # clear FPSR
- fmov.l L_SCR3(%a6),%fpcr # set FPCR
- fsqrt.x FP_SCR0(%a6),%fp0 # perform absolute
- fmov.l %fpsr,%d1 # save status
- fmov.l &0x0,%fpcr # clear FPCR
- or.l %d1,USER_FPSR(%a6) # save INEX2,N
- fmov.x %fp0,%fp1 # make a copy of result
- fcmp.b %fp1,&0x1 # is |result| >= 1.b?
- fbge.w fsqrt_sd_ovfl_tst # yes; overflow has occurred
- # no, it didn't overflow; we have correct result
- bra.w fsqrt_sd_normal_exit
- ##########################################################################
- #
- # input is not normalized; what is it?
- #
- fsqrt_not_norm:
- cmpi.b %d1,&DENORM # weed out DENORM
- beq.w fsqrt_denorm
- cmpi.b %d1,&ZERO # weed out ZERO
- beq.b fsqrt_zero
- cmpi.b %d1,&INF # weed out INF
- beq.b fsqrt_inf
- cmpi.b %d1,&SNAN # weed out SNAN
- beq.l res_snan_1op
- bra.l res_qnan_1op
- #
- # fsqrt(+0) = +0
- # fsqrt(-0) = -0
- # fsqrt(+INF) = +INF
- # fsqrt(-INF) = OPERR
- #
- fsqrt_zero:
- tst.b SRC_EX(%a0) # is ZERO positive or negative?
- bmi.b fsqrt_zero_m # negative
- fsqrt_zero_p:
- fmov.s &0x00000000,%fp0 # return +ZERO
- mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit
- rts
- fsqrt_zero_m:
- fmov.s &0x80000000,%fp0 # return -ZERO
- mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits
- rts
- fsqrt_inf:
- tst.b SRC_EX(%a0) # is INF positive or negative?
- bmi.l res_operr # negative
- fsqrt_inf_p:
- fmovm.x SRC(%a0),&0x80 # return +INF in fp0
- mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit
- rts
- #########################################################################
- # XDEF **************************************************************** #
- # fetch_dreg(): fetch register according to index in d1 #
- # #
- # XREF **************************************************************** #
- # None #
- # #
- # INPUT *************************************************************** #
- # d1 = index of register to fetch from #
- # #
- # OUTPUT ************************************************************** #
- # d0 = value of register fetched #
- # #
- # ALGORITHM *********************************************************** #
- # According to the index value in d1 which can range from zero #
- # to fifteen, load the corresponding register file value (where #
- # address register indexes start at 8). D0/D1/A0/A1/A6/A7 are on the #
- # stack. The rest should still be in their original places. #
- # #
- #########################################################################
- # this routine leaves d1 intact for subsequent store_dreg calls.
- global fetch_dreg
- fetch_dreg:
- mov.w (tbl_fdreg.b,%pc,%d1.w*2),%d0
- jmp (tbl_fdreg.b,%pc,%d0.w*1)
- tbl_fdreg:
- short fdreg0 - tbl_fdreg
- short fdreg1 - tbl_fdreg
- short fdreg2 - tbl_fdreg
- short fdreg3 - tbl_fdreg
- short fdreg4 - tbl_fdreg
- short fdreg5 - tbl_fdreg
- short fdreg6 - tbl_fdreg
- short fdreg7 - tbl_fdreg
- short fdreg8 - tbl_fdreg
- short fdreg9 - tbl_fdreg
- short fdrega - tbl_fdreg
- short fdregb - tbl_fdreg
- short fdregc - tbl_fdreg
- short fdregd - tbl_fdreg
- short fdrege - tbl_fdreg
- short fdregf - tbl_fdreg
- fdreg0:
- mov.l EXC_DREGS+0x0(%a6),%d0
- rts
- fdreg1:
- mov.l EXC_DREGS+0x4(%a6),%d0
- rts
- fdreg2:
- mov.l %d2,%d0
- rts
- fdreg3:
- mov.l %d3,%d0
- rts
- fdreg4:
- mov.l %d4,%d0
- rts
- fdreg5:
- mov.l %d5,%d0
- rts
- fdreg6:
- mov.l %d6,%d0
- rts
- fdreg7:
- mov.l %d7,%d0
- rts
- fdreg8:
- mov.l EXC_DREGS+0x8(%a6),%d0
- rts
- fdreg9:
- mov.l EXC_DREGS+0xc(%a6),%d0
- rts
- fdrega:
- mov.l %a2,%d0
- rts
- fdregb:
- mov.l %a3,%d0
- rts
- fdregc:
- mov.l %a4,%d0
- rts
- fdregd:
- mov.l %a5,%d0
- rts
- fdrege:
- mov.l (%a6),%d0
- rts
- fdregf:
- mov.l EXC_A7(%a6),%d0
- rts
- #########################################################################
- # XDEF **************************************************************** #
- # store_dreg_l(): store longword to data register specified by d1 #
- # #
- # XREF **************************************************************** #
- # None #
- # #
- # INPUT *************************************************************** #
- # d0 = longowrd value to store #
- # d1 = index of register to fetch from #
- # #
- # OUTPUT ************************************************************** #
- # (data register is updated) #
- # #
- # ALGORITHM *********************************************************** #
- # According to the index value in d1, store the longword value #
- # in d0 to the corresponding data register. D0/D1 are on the stack #
- # while the rest are in their initial places. #
- # #
- #########################################################################
- global store_dreg_l
- store_dreg_l:
- mov.w (tbl_sdregl.b,%pc,%d1.w*2),%d1
- jmp (tbl_sdregl.b,%pc,%d1.w*1)
- tbl_sdregl:
- short sdregl0 - tbl_sdregl
- short sdregl1 - tbl_sdregl
- short sdregl2 - tbl_sdregl
- short sdregl3 - tbl_sdregl
- short sdregl4 - tbl_sdregl
- short sdregl5 - tbl_sdregl
- short sdregl6 - tbl_sdregl
- short sdregl7 - tbl_sdregl
- sdregl0:
- mov.l %d0,EXC_DREGS+0x0(%a6)
- rts
- sdregl1:
- mov.l %d0,EXC_DREGS+0x4(%a6)
- rts
- sdregl2:
- mov.l %d0,%d2
- rts
- sdregl3:
- mov.l %d0,%d3
- rts
- sdregl4:
- mov.l %d0,%d4
- rts
- sdregl5:
- mov.l %d0,%d5
- rts
- sdregl6:
- mov.l %d0,%d6
- rts
- sdregl7:
- mov.l %d0,%d7
- rts
- #########################################################################
- # XDEF **************************************************************** #
- # store_dreg_w(): store word to data register specified by d1 #
- # #
- # XREF **************************************************************** #
- # None #
- # #
- # INPUT *************************************************************** #
- # d0 = word value to store #
- # d1 = index of register to fetch from #
- # #
- # OUTPUT ************************************************************** #
- # (data register is updated) #
- # #
- # ALGORITHM *********************************************************** #
- # According to the index value in d1, store the word value #
- # in d0 to the corresponding data register. D0/D1 are on the stack #
- # while the rest are in their initial places. #
- # #
- #########################################################################
- global store_dreg_w
- store_dreg_w:
- mov.w (tbl_sdregw.b,%pc,%d1.w*2),%d1
- jmp (tbl_sdregw.b,%pc,%d1.w*1)
- tbl_sdregw:
- short sdregw0 - tbl_sdregw
- short sdregw1 - tbl_sdregw
- short sdregw2 - tbl_sdregw
- short sdregw3 - tbl_sdregw
- short sdregw4 - tbl_sdregw
- short sdregw5 - tbl_sdregw
- short sdregw6 - tbl_sdregw
- short sdregw7 - tbl_sdregw
- sdregw0:
- mov.w %d0,2+EXC_DREGS+0x0(%a6)
- rts
- sdregw1:
- mov.w %d0,2+EXC_DREGS+0x4(%a6)
- rts
- sdregw2:
- mov.w %d0,%d2
- rts
- sdregw3:
- mov.w %d0,%d3
- rts
- sdregw4:
- mov.w %d0,%d4
- rts
- sdregw5:
- mov.w %d0,%d5
- rts
- sdregw6:
- mov.w %d0,%d6
- rts
- sdregw7:
- mov.w %d0,%d7
- rts
- #########################################################################
- # XDEF **************************************************************** #
- # store_dreg_b(): store byte to data register specified by d1 #
- # #
- # XREF **************************************************************** #
- # None #
- # #
- # INPUT *************************************************************** #
- # d0 = byte value to store #
- # d1 = index of register to fetch from #
- # #
- # OUTPUT ************************************************************** #
- # (data register is updated) #
- # #
- # ALGORITHM *********************************************************** #
- # According to the index value in d1, store the byte value #
- # in d0 to the corresponding data register. D0/D1 are on the stack #
- # while the rest are in their initial places. #
- # #
- #########################################################################
- global store_dreg_b
- store_dreg_b:
- mov.w (tbl_sdregb.b,%pc,%d1.w*2),%d1
- jmp (tbl_sdregb.b,%pc,%d1.w*1)
- tbl_sdregb:
- short sdregb0 - tbl_sdregb
- short sdregb1 - tbl_sdregb
- short sdregb2 - tbl_sdregb
- short sdregb3 - tbl_sdregb
- short sdregb4 - tbl_sdregb
- short sdregb5 - tbl_sdregb
- short sdregb6 - tbl_sdregb
- short sdregb7 - tbl_sdregb
- sdregb0:
- mov.b %d0,3+EXC_DREGS+0x0(%a6)
- rts
- sdregb1:
- mov.b %d0,3+EXC_DREGS+0x4(%a6)
- rts
- sdregb2:
- mov.b %d0,%d2
- rts
- sdregb3:
- mov.b %d0,%d3
- rts
- sdregb4:
- mov.b %d0,%d4
- rts
- sdregb5:
- mov.b %d0,%d5
- rts
- sdregb6:
- mov.b %d0,%d6
- rts
- sdregb7:
- mov.b %d0,%d7
- rts
- #########################################################################
- # XDEF **************************************************************** #
- # inc_areg(): increment an address register by the value in d0 #
- # #
- # XREF **************************************************************** #
- # None #
- # #
- # INPUT *************************************************************** #
- # d0 = amount to increment by #
- # d1 = index of address register to increment #
- # #
- # OUTPUT ************************************************************** #
- # (address register is updated) #
- # #
- # ALGORITHM *********************************************************** #
- # Typically used for an instruction w/ a post-increment <ea>, #
- # this routine adds the increment value in d0 to the address register #
- # specified by d1. A0/A1/A6/A7 reside on the stack. The rest reside #
- # in their original places. #
- # For a7, if the increment amount is one, then we have to #
- # increment by two. For any a7 update, set the mia7_flag so that if #
- # an access error exception occurs later in emulation, this address #
- # register update can be undone. #
- # #
- #########################################################################
- global inc_areg
- inc_areg:
- mov.w (tbl_iareg.b,%pc,%d1.w*2),%d1
- jmp (tbl_iareg.b,%pc,%d1.w*1)
- tbl_iareg:
- short iareg0 - tbl_iareg
- short iareg1 - tbl_iareg
- short iareg2 - tbl_iareg
- short iareg3 - tbl_iareg
- short iareg4 - tbl_iareg
- short iareg5 - tbl_iareg
- short iareg6 - tbl_iareg
- short iareg7 - tbl_iareg
- iareg0: add.l %d0,EXC_DREGS+0x8(%a6)
- rts
- iareg1: add.l %d0,EXC_DREGS+0xc(%a6)
- rts
- iareg2: add.l %d0,%a2
- rts
- iareg3: add.l %d0,%a3
- rts
- iareg4: add.l %d0,%a4
- rts
- iareg5: add.l %d0,%a5
- rts
- iareg6: add.l %d0,(%a6)
- rts
- iareg7: mov.b &mia7_flg,SPCOND_FLG(%a6)
- cmpi.b %d0,&0x1
- beq.b iareg7b
- add.l %d0,EXC_A7(%a6)
- rts
- iareg7b:
- addq.l &0x2,EXC_A7(%a6)
- rts
- #########################################################################
- # XDEF **************************************************************** #
- # dec_areg(): decrement an address register by the value in d0 #
- # #
- # XREF **************************************************************** #
- # None #
- # #
- # INPUT *************************************************************** #
- # d0 = amount to decrement by #
- # d1 = index of address register to decrement #
- # #
- # OUTPUT ************************************************************** #
- # (address register is updated) #
- # #
- # ALGORITHM *********************************************************** #
- # Typically used for an instruction w/ a pre-decrement <ea>, #
- # this routine adds the decrement value in d0 to the address register #
- # specified by d1. A0/A1/A6/A7 reside on the stack. The rest reside #
- # in their original places. #
- # For a7, if the decrement amount is one, then we have to #
- # decrement by two. For any a7 update, set the mda7_flag so that if #
- # an access error exception occurs later in emulation, this address #
- # register update can be undone. #
- # #
- #########################################################################
- global dec_areg
- dec_areg:
- mov.w (tbl_dareg.b,%pc,%d1.w*2),%d1
- jmp (tbl_dareg.b,%pc,%d1.w*1)
- tbl_dareg:
- short dareg0 - tbl_dareg
- short dareg1 - tbl_dareg
- short dareg2 - tbl_dareg
- short dareg3 - tbl_dareg
- short dareg4 - tbl_dareg
- short dareg5 - tbl_dareg
- short dareg6 - tbl_dareg
- short dareg7 - tbl_dareg
- dareg0: sub.l %d0,EXC_DREGS+0x8(%a6)
- rts
- dareg1: sub.l %d0,EXC_DREGS+0xc(%a6)
- rts
- dareg2: sub.l %d0,%a2
- rts
- dareg3: sub.l %d0,%a3
- rts
- dareg4: sub.l %d0,%a4
- rts
- dareg5: sub.l %d0,%a5
- rts
- dareg6: sub.l %d0,(%a6)
- rts
- dareg7: mov.b &mda7_flg,SPCOND_FLG(%a6)
- cmpi.b %d0,&0x1
- beq.b dareg7b
- sub.l %d0,EXC_A7(%a6)
- rts
- dareg7b:
- subq.l &0x2,EXC_A7(%a6)
- rts
- ##############################################################################
- #########################################################################
- # XDEF **************************************************************** #
- # load_fpn1(): load FP register value into FP_SRC(a6). #
- # #
- # XREF **************************************************************** #
- # None #
- # #
- # INPUT *************************************************************** #
- # d0 = index of FP register to load #
- # #
- # OUTPUT ************************************************************** #
- # FP_SRC(a6) = value loaded from FP register file #
- # #
- # ALGORITHM *********************************************************** #
- # Using the index in d0, load FP_SRC(a6) with a number from the #
- # FP register file. #
- # #
- #########################################################################
- global load_fpn1
- load_fpn1:
- mov.w (tbl_load_fpn1.b,%pc,%d0.w*2), %d0
- jmp (tbl_load_fpn1.b,%pc,%d0.w*1)
- tbl_load_fpn1:
- short load_fpn1_0 - tbl_load_fpn1
- short load_fpn1_1 - tbl_load_fpn1
- short load_fpn1_2 - tbl_load_fpn1
- short load_fpn1_3 - tbl_load_fpn1
- short load_fpn1_4 - tbl_load_fpn1
- short load_fpn1_5 - tbl_load_fpn1
- short load_fpn1_6 - tbl_load_fpn1
- short load_fpn1_7 - tbl_load_fpn1
- load_fpn1_0:
- mov.l 0+EXC_FP0(%a6), 0+FP_SRC(%a6)
- mov.l 4+EXC_FP0(%a6), 4+FP_SRC(%a6)
- mov.l 8+EXC_FP0(%a6), 8+FP_SRC(%a6)
- lea FP_SRC(%a6), %a0
- rts
- load_fpn1_1:
- mov.l 0+EXC_FP1(%a6), 0+FP_SRC(%a6)
- mov.l 4+EXC_FP1(%a6), 4+FP_SRC(%a6)
- mov.l 8+EXC_FP1(%a6), 8+FP_SRC(%a6)
- lea FP_SRC(%a6), %a0
- rts
- load_fpn1_2:
- fmovm.x &0x20, FP_SRC(%a6)
- lea FP_SRC(%a6), %a0
- rts
- load_fpn1_3:
- fmovm.x &0x10, FP_SRC(%a6)
- lea FP_SRC(%a6), %a0
- rts
- load_fpn1_4:
- fmovm.x &0x08, FP_SRC(%a6)
- lea FP_SRC(%a6), %a0
- rts
- load_fpn1_5:
- fmovm.x &0x04, FP_SRC(%a6)
- lea FP_SRC(%a6), %a0
- rts
- load_fpn1_6:
- fmovm.x &0x02, FP_SRC(%a6)
- lea FP_SRC(%a6), %a0
- rts
- load_fpn1_7:
- fmovm.x &0x01, FP_SRC(%a6)
- lea FP_SRC(%a6), %a0
- rts
- #############################################################################
- #########################################################################
- # XDEF **************************************************************** #
- # load_fpn2(): load FP register value into FP_DST(a6). #
- # #
- # XREF **************************************************************** #
- # None #
- # #
- # INPUT *************************************************************** #
- # d0 = index of FP register to load #
- # #
- # OUTPUT ************************************************************** #
- # FP_DST(a6) = value loaded from FP register file #
- # #
- # ALGORITHM *********************************************************** #
- # Using the index in d0, load FP_DST(a6) with a number from the #
- # FP register file. #
- # #
- #########################################################################
- global load_fpn2
- load_fpn2:
- mov.w (tbl_load_fpn2.b,%pc,%d0.w*2), %d0
- jmp (tbl_load_fpn2.b,%pc,%d0.w*1)
- tbl_load_fpn2:
- short load_fpn2_0 - tbl_load_fpn2
- short load_fpn2_1 - tbl_load_fpn2
- short load_fpn2_2 - tbl_load_fpn2
- short load_fpn2_3 - tbl_load_fpn2
- short load_fpn2_4 - tbl_load_fpn2
- short load_fpn2_5 - tbl_load_fpn2
- short load_fpn2_6 - tbl_load_fpn2
- short load_fpn2_7 - tbl_load_fpn2
- load_fpn2_0:
- mov.l 0+EXC_FP0(%a6), 0+FP_DST(%a6)
- mov.l 4+EXC_FP0(%a6), 4+FP_DST(%a6)
- mov.l 8+EXC_FP0(%a6), 8+FP_DST(%a6)
- lea FP_DST(%a6), %a0
- rts
- load_fpn2_1:
- mov.l 0+EXC_FP1(%a6), 0+FP_DST(%a6)
- mov.l 4+EXC_FP1(%a6), 4+FP_DST(%a6)
- mov.l 8+EXC_FP1(%a6), 8+FP_DST(%a6)
- lea FP_DST(%a6), %a0
- rts
- load_fpn2_2:
- fmovm.x &0x20, FP_DST(%a6)
- lea FP_DST(%a6), %a0
- rts
- load_fpn2_3:
- fmovm.x &0x10, FP_DST(%a6)
- lea FP_DST(%a6), %a0
- rts
- load_fpn2_4:
- fmovm.x &0x08, FP_DST(%a6)
- lea FP_DST(%a6), %a0
- rts
- load_fpn2_5:
- fmovm.x &0x04, FP_DST(%a6)
- lea FP_DST(%a6), %a0
- rts
- load_fpn2_6:
- fmovm.x &0x02, FP_DST(%a6)
- lea FP_DST(%a6), %a0
- rts
- load_fpn2_7:
- fmovm.x &0x01, FP_DST(%a6)
- lea FP_DST(%a6), %a0
- rts
- #############################################################################
- #########################################################################
- # XDEF **************************************************************** #
- # store_fpreg(): store an fp value to the fpreg designated d0. #
- # #
- # XREF **************************************************************** #
- # None #
- # #
- # INPUT *************************************************************** #
- # fp0 = extended precision value to store #
- # d0 = index of floating-point register #
- # #
- # OUTPUT ************************************************************** #
- # None #
- # #
- # ALGORITHM *********************************************************** #
- # Store the value in fp0 to the FP register designated by the #
- # value in d0. The FP number can be DENORM or SNAN so we have to be #
- # careful that we don't take an exception here. #
- # #
- #########################################################################
- global store_fpreg
- store_fpreg:
- mov.w (tbl_store_fpreg.b,%pc,%d0.w*2), %d0
- jmp (tbl_store_fpreg.b,%pc,%d0.w*1)
- tbl_store_fpreg:
- short store_fpreg_0 - tbl_store_fpreg
- short store_fpreg_1 - tbl_store_fpreg
- short store_fpreg_2 - tbl_store_fpreg
- short store_fpreg_3 - tbl_store_fpreg
- short store_fpreg_4 - tbl_store_fpreg
- short store_fpreg_5 - tbl_store_fpreg
- short store_fpreg_6 - tbl_store_fpreg
- short store_fpreg_7 - tbl_store_fpreg
- store_fpreg_0:
- fmovm.x &0x80, EXC_FP0(%a6)
- rts
- store_fpreg_1:
- fmovm.x &0x80, EXC_FP1(%a6)
- rts
- store_fpreg_2:
- fmovm.x &0x01, -(%sp)
- fmovm.x (%sp)+, &0x20
- rts
- store_fpreg_3:
- fmovm.x &0x01, -(%sp)
- fmovm.x (%sp)+, &0x10
- rts
- store_fpreg_4:
- fmovm.x &0x01, -(%sp)
- fmovm.x (%sp)+, &0x08
- rts
- store_fpreg_5:
- fmovm.x &0x01, -(%sp)
- fmovm.x (%sp)+, &0x04
- rts
- store_fpreg_6:
- fmovm.x &0x01, -(%sp)
- fmovm.x (%sp)+, &0x02
- rts
- store_fpreg_7:
- fmovm.x &0x01, -(%sp)
- fmovm.x (%sp)+, &0x01
- rts
- #########################################################################
- # XDEF **************************************************************** #
- # get_packed(): fetch a packed operand from memory and then #
- # convert it to a floating-point binary number. #
- # #
- # XREF **************************************************************** #
- # _dcalc_ea() - calculate the correct <ea> #
- # _mem_read() - fetch the packed operand from memory #
- # facc_in_x() - the fetch failed so jump to special exit code #
- # decbin() - convert packed to binary extended precision #
- # #
- # INPUT *************************************************************** #
- # None #
- # #
- # OUTPUT ************************************************************** #
- # If no failure on _mem_read(): #
- # FP_SRC(a6) = packed operand now as a binary FP number #
- # #
- # ALGORITHM *********************************************************** #
- # Get the correct <ea> whihc is the value on the exception stack #
- # frame w/ maybe a correction factor if the <ea> is -(an) or (an)+. #
- # Then, fetch the operand from memory. If the fetch fails, exit #
- # through facc_in_x(). #
- # If the packed operand is a ZERO,NAN, or INF, convert it to #
- # its binary representation here. Else, call decbin() which will #
- # convert the packed value to an extended precision binary value. #
- # #
- #########################################################################
- # the stacked <ea> for packed is correct except for -(An).
- # the base reg must be updated for both -(An) and (An)+.
- global get_packed
- get_packed:
- mov.l &0xc,%d0 # packed is 12 bytes
- bsr.l _dcalc_ea # fetch <ea>; correct An
- lea FP_SRC(%a6),%a1 # pass: ptr to super dst
- mov.l &0xc,%d0 # pass: 12 bytes
- bsr.l _dmem_read # read packed operand
- tst.l %d1 # did dfetch fail?
- bne.l facc_in_x # yes
- # The packed operand is an INF or a NAN if the exponent field is all ones.
- bfextu FP_SRC(%a6){&1:&15},%d0 # get exp
- cmpi.w %d0,&0x7fff # INF or NAN?
- bne.b gp_try_zero # no
- rts # operand is an INF or NAN
- # The packed operand is a zero if the mantissa is all zero, else it's
- # a normal packed op.
- gp_try_zero:
- mov.b 3+FP_SRC(%a6),%d0 # get byte 4
- andi.b &0x0f,%d0 # clear all but last nybble
- bne.b gp_not_spec # not a zero
- tst.l FP_SRC_HI(%a6) # is lw 2 zero?
- bne.b gp_not_spec # not a zero
- tst.l FP_SRC_LO(%a6) # is lw 3 zero?
- bne.b gp_not_spec # not a zero
- rts # operand is a ZERO
- gp_not_spec:
- lea FP_SRC(%a6),%a0 # pass: ptr to packed op
- bsr.l decbin # convert to extended
- fmovm.x &0x80,FP_SRC(%a6) # make this the srcop
- rts
- #########################################################################
- # decbin(): Converts normalized packed bcd value pointed to by register #
- # a0 to extended-precision value in fp0. #
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to normalized packed bcd value #
- # #
- # OUTPUT ************************************************************** #
- # fp0 = exact fp representation of the packed bcd value. #
- # #
- # ALGORITHM *********************************************************** #
- # Expected is a normal bcd (i.e. non-exceptional; all inf, zero, #
- # and NaN operands are dispatched without entering this routine) #
- # value in 68881/882 format at location (a0). #
- # #
- # A1. Convert the bcd exponent to binary by successive adds and #
- # muls. Set the sign according to SE. Subtract 16 to compensate #
- # for the mantissa which is to be interpreted as 17 integer #
- # digits, rather than 1 integer and 16 fraction digits. #
- # Note: this operation can never overflow. #
- # #
- # A2. Convert the bcd mantissa to binary by successive #
- # adds and muls in FP0. Set the sign according to SM. #
- # The mantissa digits will be converted with the decimal point #
- # assumed following the least-significant digit. #
- # Note: this operation can never overflow. #
- # #
- # A3. Count the number of leading/trailing zeros in the #
- # bcd string. If SE is positive, count the leading zeros; #
- # if negative, count the trailing zeros. Set the adjusted #
- # exponent equal to the exponent from A1 and the zero count #
- # added if SM = 1 and subtracted if SM = 0. Scale the #
- # mantissa the equivalent of forcing in the bcd value: #
- # #
- # SM = 0 a non-zero digit in the integer position #
- # SM = 1 a non-zero digit in Mant0, lsd of the fraction #
- # #
- # this will insure that any value, regardless of its #
- # representation (ex. 0.1E2, 1E1, 10E0, 100E-1), is converted #
- # consistently. #
- # #
- # A4. Calculate the factor 10^exp in FP1 using a table of #
- # 10^(2^n) values. To reduce the error in forming factors #
- # greater than 10^27, a directed rounding scheme is used with #
- # tables rounded to RN, RM, and RP, according to the table #
- # in the comments of the pwrten section. #
- # #
- # A5. Form the final binary number by scaling the mantissa by #
- # the exponent factor. This is done by multiplying the #
- # mantissa in FP0 by the factor in FP1 if the adjusted #
- # exponent sign is positive, and dividing FP0 by FP1 if #
- # it is negative. #
- # #
- # Clean up and return. Check if the final mul or div was inexact. #
- # If so, set INEX1 in USER_FPSR. #
- # #
- #########################################################################
- #
- # PTENRN, PTENRM, and PTENRP are arrays of powers of 10 rounded
- # to nearest, minus, and plus, respectively. The tables include
- # 10**{1,2,4,8,16,32,64,128,256,512,1024,2048,4096}. No rounding
- # is required until the power is greater than 27, however, all
- # tables include the first 5 for ease of indexing.
- #
- RTABLE:
- byte 0,0,0,0
- byte 2,3,2,3
- byte 2,3,3,2
- byte 3,2,2,3
- set FNIBS,7
- set FSTRT,0
- set ESTRT,4
- set EDIGITS,2
- global decbin
- decbin:
- mov.l 0x0(%a0),FP_SCR0_EX(%a6) # make a copy of input
- mov.l 0x4(%a0),FP_SCR0_HI(%a6) # so we don't alter it
- mov.l 0x8(%a0),FP_SCR0_LO(%a6)
- lea FP_SCR0(%a6),%a0
- movm.l &0x3c00,-(%sp) # save d2-d5
- fmovm.x &0x1,-(%sp) # save fp1
- #
- # Calculate exponent:
- # 1. Copy bcd value in memory for use as a working copy.
- # 2. Calculate absolute value of exponent in d1 by mul and add.
- # 3. Correct for exponent sign.
- # 4. Subtract 16 to compensate for interpreting the mant as all integer digits.
- # (i.e., all digits assumed left of the decimal point.)
- #
- # Register usage:
- #
- # calc_e:
- # (*) d0: temp digit storage
- # (*) d1: accumulator for binary exponent
- # (*) d2: digit count
- # (*) d3: offset pointer
- # ( ) d4: first word of bcd
- # ( ) a0: pointer to working bcd value
- # ( ) a6: pointer to original bcd value
- # (*) FP_SCR1: working copy of original bcd value
- # (*) L_SCR1: copy of original exponent word
- #
- calc_e:
- mov.l &EDIGITS,%d2 # # of nibbles (digits) in fraction part
- mov.l &ESTRT,%d3 # counter to pick up digits
- mov.l (%a0),%d4 # get first word of bcd
- clr.l %d1 # zero d1 for accumulator
- e_gd:
- mulu.l &0xa,%d1 # mul partial product by one digit place
- bfextu %d4{%d3:&4},%d0 # get the digit and zero extend into d0
- add.l %d0,%d1 # d1 = d1 + d0
- addq.b &4,%d3 # advance d3 to the next digit
- dbf.w %d2,e_gd # if we have used all 3 digits, exit loop
- btst &30,%d4 # get SE
- beq.b e_pos # don't negate if pos
- neg.l %d1 # negate before subtracting
- e_pos:
- sub.l &16,%d1 # sub to compensate for shift of mant
- bge.b e_save # if still pos, do not neg
- neg.l %d1 # now negative, make pos and set SE
- or.l &0x40000000,%d4 # set SE in d4,
- or.l &0x40000000,(%a0) # and in working bcd
- e_save:
- mov.l %d1,-(%sp) # save exp on stack
- #
- #
- # Calculate mantissa:
- # 1. Calculate absolute value of mantissa in fp0 by mul and add.
- # 2. Correct for mantissa sign.
- # (i.e., all digits assumed left of the decimal point.)
- #
- # Register usage:
- #
- # calc_m:
- # (*) d0: temp digit storage
- # (*) d1: lword counter
- # (*) d2: digit count
- # (*) d3: offset pointer
- # ( ) d4: words 2 and 3 of bcd
- # ( ) a0: pointer to working bcd value
- # ( ) a6: pointer to original bcd value
- # (*) fp0: mantissa accumulator
- # ( ) FP_SCR1: working copy of original bcd value
- # ( ) L_SCR1: copy of original exponent word
- #
- calc_m:
- mov.l &1,%d1 # word counter, init to 1
- fmov.s &0x00000000,%fp0 # accumulator
- #
- #
- # Since the packed number has a long word between the first & second parts,
- # get the integer digit then skip down & get the rest of the
- # mantissa. We will unroll the loop once.
- #
- bfextu (%a0){&28:&4},%d0 # integer part is ls digit in long word
- fadd.b %d0,%fp0 # add digit to sum in fp0
- #
- #
- # Get the rest of the mantissa.
- #
- loadlw:
- mov.l (%a0,%d1.L*4),%d4 # load mantissa lonqword into d4
- mov.l &FSTRT,%d3 # counter to pick up digits
- mov.l &FNIBS,%d2 # reset number of digits per a0 ptr
- md2b:
- fmul.s &0x41200000,%fp0 # fp0 = fp0 * 10
- bfextu %d4{%d3:&4},%d0 # get the digit and zero extend
- fadd.b %d0,%fp0 # fp0 = fp0 + digit
- #
- #
- # If all the digits (8) in that long word have been converted (d2=0),
- # then inc d1 (=2) to point to the next long word and reset d3 to 0
- # to initialize the digit offset, and set d2 to 7 for the digit count;
- # else continue with this long word.
- #
- addq.b &4,%d3 # advance d3 to the next digit
- dbf.w %d2,md2b # check for last digit in this lw
- nextlw:
- addq.l &1,%d1 # inc lw pointer in mantissa
- cmp.l %d1,&2 # test for last lw
- ble.b loadlw # if not, get last one
- #
- # Check the sign of the mant and make the value in fp0 the same sign.
- #
- m_sign:
- btst &31,(%a0) # test sign of the mantissa
- beq.b ap_st_z # if clear, go to append/strip zeros
- fneg.x %fp0 # if set, negate fp0
- #
- # Append/strip zeros:
- #
- # For adjusted exponents which have an absolute value greater than 27*,
- # this routine calculates the amount needed to normalize the mantissa
- # for the adjusted exponent. That number is subtracted from the exp
- # if the exp was positive, and added if it was negative. The purpose
- # of this is to reduce the value of the exponent and the possibility
- # of error in calculation of pwrten.
- #
- # 1. Branch on the sign of the adjusted exponent.
- # 2p.(positive exp)
- # 2. Check M16 and the digits in lwords 2 and 3 in decending order.
- # 3. Add one for each zero encountered until a non-zero digit.
- # 4. Subtract the count from the exp.
- # 5. Check if the exp has crossed zero in #3 above; make the exp abs
- # and set SE.
- # 6. Multiply the mantissa by 10**count.
- # 2n.(negative exp)
- # 2. Check the digits in lwords 3 and 2 in decending order.
- # 3. Add one for each zero encountered until a non-zero digit.
- # 4. Add the count to the exp.
- # 5. Check if the exp has crossed zero in #3 above; clear SE.
- # 6. Divide the mantissa by 10**count.
- #
- # *Why 27? If the adjusted exponent is within -28 < expA < 28, than
- # any adjustment due to append/strip zeros will drive the resultane
- # exponent towards zero. Since all pwrten constants with a power
- # of 27 or less are exact, there is no need to use this routine to
- # attempt to lessen the resultant exponent.
- #
- # Register usage:
- #
- # ap_st_z:
- # (*) d0: temp digit storage
- # (*) d1: zero count
- # (*) d2: digit count
- # (*) d3: offset pointer
- # ( ) d4: first word of bcd
- # (*) d5: lword counter
- # ( ) a0: pointer to working bcd value
- # ( ) FP_SCR1: working copy of original bcd value
- # ( ) L_SCR1: copy of original exponent word
- #
- #
- # First check the absolute value of the exponent to see if this
- # routine is necessary. If so, then check the sign of the exponent
- # and do append (+) or strip (-) zeros accordingly.
- # This section handles a positive adjusted exponent.
- #
- ap_st_z:
- mov.l (%sp),%d1 # load expA for range test
- cmp.l %d1,&27 # test is with 27
- ble.w pwrten # if abs(expA) <28, skip ap/st zeros
- btst &30,(%a0) # check sign of exp
- bne.b ap_st_n # if neg, go to neg side
- clr.l %d1 # zero count reg
- mov.l (%a0),%d4 # load lword 1 to d4
- bfextu %d4{&28:&4},%d0 # get M16 in d0
- bne.b ap_p_fx # if M16 is non-zero, go fix exp
- addq.l &1,%d1 # inc zero count
- mov.l &1,%d5 # init lword counter
- mov.l (%a0,%d5.L*4),%d4 # get lword 2 to d4
- bne.b ap_p_cl # if lw 2 is zero, skip it
- addq.l &8,%d1 # and inc count by 8
- addq.l &1,%d5 # inc lword counter
- mov.l (%a0,%d5.L*4),%d4 # get lword 3 to d4
- ap_p_cl:
- clr.l %d3 # init offset reg
- mov.l &7,%d2 # init digit counter
- ap_p_gd:
- bfextu %d4{%d3:&4},%d0 # get digit
- bne.b ap_p_fx # if non-zero, go to fix exp
- addq.l &4,%d3 # point to next digit
- addq.l &1,%d1 # inc digit counter
- dbf.w %d2,ap_p_gd # get next digit
- ap_p_fx:
- mov.l %d1,%d0 # copy counter to d2
- mov.l (%sp),%d1 # get adjusted exp from memory
- sub.l %d0,%d1 # subtract count from exp
- bge.b ap_p_fm # if still pos, go to pwrten
- neg.l %d1 # now its neg; get abs
- mov.l (%a0),%d4 # load lword 1 to d4
- or.l &0x40000000,%d4 # and set SE in d4
- or.l &0x40000000,(%a0) # and in memory
- #
- # Calculate the mantissa multiplier to compensate for the striping of
- # zeros from the mantissa.
- #
- ap_p_fm:
- lea.l PTENRN(%pc),%a1 # get address of power-of-ten table
- clr.l %d3 # init table index
- fmov.s &0x3f800000,%fp1 # init fp1 to 1
- mov.l &3,%d2 # init d2 to count bits in counter
- ap_p_el:
- asr.l &1,%d0 # shift lsb into carry
- bcc.b ap_p_en # if 1, mul fp1 by pwrten factor
- fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no)
- ap_p_en:
- add.l &12,%d3 # inc d3 to next rtable entry
- tst.l %d0 # check if d0 is zero
- bne.b ap_p_el # if not, get next bit
- fmul.x %fp1,%fp0 # mul mantissa by 10**(no_bits_shifted)
- bra.b pwrten # go calc pwrten
- #
- # This section handles a negative adjusted exponent.
- #
- ap_st_n:
- clr.l %d1 # clr counter
- mov.l &2,%d5 # set up d5 to point to lword 3
- mov.l (%a0,%d5.L*4),%d4 # get lword 3
- bne.b ap_n_cl # if not zero, check digits
- sub.l &1,%d5 # dec d5 to point to lword 2
- addq.l &8,%d1 # inc counter by 8
- mov.l (%a0,%d5.L*4),%d4 # get lword 2
- ap_n_cl:
- mov.l &28,%d3 # point to last digit
- mov.l &7,%d2 # init digit counter
- ap_n_gd:
- bfextu %d4{%d3:&4},%d0 # get digit
- bne.b ap_n_fx # if non-zero, go to exp fix
- subq.l &4,%d3 # point to previous digit
- addq.l &1,%d1 # inc digit counter
- dbf.w %d2,ap_n_gd # get next digit
- ap_n_fx:
- mov.l %d1,%d0 # copy counter to d0
- mov.l (%sp),%d1 # get adjusted exp from memory
- sub.l %d0,%d1 # subtract count from exp
- bgt.b ap_n_fm # if still pos, go fix mantissa
- neg.l %d1 # take abs of exp and clr SE
- mov.l (%a0),%d4 # load lword 1 to d4
- and.l &0xbfffffff,%d4 # and clr SE in d4
- and.l &0xbfffffff,(%a0) # and in memory
- #
- # Calculate the mantissa multiplier to compensate for the appending of
- # zeros to the mantissa.
- #
- ap_n_fm:
- lea.l PTENRN(%pc),%a1 # get address of power-of-ten table
- clr.l %d3 # init table index
- fmov.s &0x3f800000,%fp1 # init fp1 to 1
- mov.l &3,%d2 # init d2 to count bits in counter
- ap_n_el:
- asr.l &1,%d0 # shift lsb into carry
- bcc.b ap_n_en # if 1, mul fp1 by pwrten factor
- fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no)
- ap_n_en:
- add.l &12,%d3 # inc d3 to next rtable entry
- tst.l %d0 # check if d0 is zero
- bne.b ap_n_el # if not, get next bit
- fdiv.x %fp1,%fp0 # div mantissa by 10**(no_bits_shifted)
- #
- #
- # Calculate power-of-ten factor from adjusted and shifted exponent.
- #
- # Register usage:
- #
- # pwrten:
- # (*) d0: temp
- # ( ) d1: exponent
- # (*) d2: {FPCR[6:5],SM,SE} as index in RTABLE; temp
- # (*) d3: FPCR work copy
- # ( ) d4: first word of bcd
- # (*) a1: RTABLE pointer
- # calc_p:
- # (*) d0: temp
- # ( ) d1: exponent
- # (*) d3: PWRTxx table index
- # ( ) a0: pointer to working copy of bcd
- # (*) a1: PWRTxx pointer
- # (*) fp1: power-of-ten accumulator
- #
- # Pwrten calculates the exponent factor in the selected rounding mode
- # according to the following table:
- #
- # Sign of Mant Sign of Exp Rounding Mode PWRTEN Rounding Mode
- #
- # ANY ANY RN RN
- #
- # + + RP RP
- # - + RP RM
- # + - RP RM
- # - - RP RP
- #
- # + + RM RM
- # - + RM RP
- # + - RM RP
- # - - RM RM
- #
- # + + RZ RM
- # - + RZ RM
- # + - RZ RP
- # - - RZ RP
- #
- #
- pwrten:
- mov.l USER_FPCR(%a6),%d3 # get user's FPCR
- bfextu %d3{&26:&2},%d2 # isolate rounding mode bits
- mov.l (%a0),%d4 # reload 1st bcd word to d4
- asl.l &2,%d2 # format d2 to be
- bfextu %d4{&0:&2},%d0 # {FPCR[6],FPCR[5],SM,SE}
- add.l %d0,%d2 # in d2 as index into RTABLE
- lea.l RTABLE(%pc),%a1 # load rtable base
- mov.b (%a1,%d2),%d0 # load new rounding bits from table
- clr.l %d3 # clear d3 to force no exc and extended
- bfins %d0,%d3{&26:&2} # stuff new rounding bits in FPCR
- fmov.l %d3,%fpcr # write new FPCR
- asr.l &1,%d0 # write correct PTENxx table
- bcc.b not_rp # to a1
- lea.l PTENRP(%pc),%a1 # it is RP
- bra.b calc_p # go to init section
- not_rp:
- asr.l &1,%d0 # keep checking
- bcc.b not_rm
- lea.l PTENRM(%pc),%a1 # it is RM
- bra.b calc_p # go to init section
- not_rm:
- lea.l PTENRN(%pc),%a1 # it is RN
- calc_p:
- mov.l %d1,%d0 # copy exp to d0;use d0
- bpl.b no_neg # if exp is negative,
- neg.l %d0 # invert it
- or.l &0x40000000,(%a0) # and set SE bit
- no_neg:
- clr.l %d3 # table index
- fmov.s &0x3f800000,%fp1 # init fp1 to 1
- e_loop:
- asr.l &1,%d0 # shift next bit into carry
- bcc.b e_next # if zero, skip the mul
- fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no)
- e_next:
- add.l &12,%d3 # inc d3 to next rtable entry
- tst.l %d0 # check if d0 is zero
- bne.b e_loop # not zero, continue shifting
- #
- #
- # Check the sign of the adjusted exp and make the value in fp0 the
- # same sign. If the exp was pos then multiply fp1*fp0;
- # else divide fp0/fp1.
- #
- # Register Usage:
- # norm:
- # ( ) a0: pointer to working bcd value
- # (*) fp0: mantissa accumulator
- # ( ) fp1: scaling factor - 10**(abs(exp))
- #
- pnorm:
- btst &30,(%a0) # test the sign of the exponent
- beq.b mul # if clear, go to multiply
- div:
- fdiv.x %fp1,%fp0 # exp is negative, so divide mant by exp
- bra.b end_dec
- mul:
- fmul.x %fp1,%fp0 # exp is positive, so multiply by exp
- #
- #
- # Clean up and return with result in fp0.
- #
- # If the final mul/div in decbin incurred an inex exception,
- # it will be inex2, but will be reported as inex1 by get_op.
- #
- end_dec:
- fmov.l %fpsr,%d0 # get status register
- bclr &inex2_bit+8,%d0 # test for inex2 and clear it
- beq.b no_exc # skip this if no exc
- ori.w &inx1a_mask,2+USER_FPSR(%a6) # set INEX1/AINEX
- no_exc:
- add.l &0x4,%sp # clear 1 lw param
- fmovm.x (%sp)+,&0x40 # restore fp1
- movm.l (%sp)+,&0x3c # restore d2-d5
- fmov.l &0x0,%fpcr
- fmov.l &0x0,%fpsr
- rts
- #########################################################################
- # bindec(): Converts an input in extended precision format to bcd format#
- # #
- # INPUT *************************************************************** #
- # a0 = pointer to the input extended precision value in memory. #
- # the input may be either normalized, unnormalized, or #
- # denormalized. #
- # d0 = contains the k-factor sign-extended to 32-bits. #
- # #
- # OUTPUT ************************************************************** #
- # FP_SCR0(a6) = bcd format result on the stack. #
- # #
- # ALGORITHM *********************************************************** #
- # #
- # A1. Set RM and size ext; Set SIGMA = sign of input. #
- # The k-factor is saved for use in d7. Clear the #
- # BINDEC_FLG for separating normalized/denormalized #
- # input. If input is unnormalized or denormalized, #
- # normalize it. #
- # #
- # A2. Set X = abs(input). #
- # #
- # A3. Compute ILOG. #
- # ILOG is the log base 10 of the input value. It is #
- # approximated by adding e + 0.f when the original #
- # value is viewed as 2^^e * 1.f in extended precision. #
- # This value is stored in d6. #
- # #
- # A4. Clr INEX bit. #
- # The operation in A3 above may have set INEX2. #
- # #
- # A5. Set ICTR = 0; #
- # ICTR is a flag used in A13. It must be set before the #
- # loop entry A6. #
- # #
- # A6. Calculate LEN. #
- # LEN is the number of digits to be displayed. The #
- # k-factor can dictate either the total number of digits, #
- # if it is a positive number, or the number of digits #
- # after the decimal point which are to be included as #
- # significant. See the 68882 manual for examples. #
- # If LEN is computed to be greater than 17, set OPERR in #
- # USER_FPSR. LEN is stored in d4. #
- # #
- # A7. Calculate SCALE. #
- # SCALE is equal to 10^ISCALE, where ISCALE is the number #
- # of decimal places needed to insure LEN integer digits #
- # in the output before conversion to bcd. LAMBDA is the #
- # sign of ISCALE, used in A9. Fp1 contains #
- # 10^^(abs(ISCALE)) using a rounding mode which is a #
- # function of the original rounding mode and the signs #
- # of ISCALE and X. A table is given in the code. #
- # #
- # A8. Clr INEX; Force RZ. #
- # The operation in A3 above may have set INEX2. #
- # RZ mode is forced for the scaling operation to insure #
- # only one rounding error. The grs bits are collected in #
- # the INEX flag for use in A10. #
- # #
- # A9. Scale X -> Y. #
- # The mantissa is scaled to the desired number of #
- # significant digits. The excess digits are collected #
- # in INEX2. #
- # #
- # A10. Or in INEX. #
- # If INEX is set, round error occurred. This is #
- # compensated for by 'or-ing' in the INEX2 flag to #
- # the lsb of Y. #
- # #
- # A11. Restore original FPCR; set size ext. #
- # Perform FINT operation in the user's rounding mode. #
- # Keep the size to extended. #
- # #
- # A12. Calculate YINT = FINT(Y) according to user's rounding #
- # mode. The FPSP routine sintd0 is used. The output #
- # is in fp0. #
- # #
- # A13. Check for LEN digits. #
- # If the int operation results in more than LEN digits, #
- # or less than LEN -1 digits, adjust ILOG and repeat from #
- # A6. This test occurs only on the first pass. If the #
- # result is exactly 10^LEN, decrement ILOG and divide #
- # the mantissa by 10. #
- # #
- # A14. Convert the mantissa to bcd. #
- # The binstr routine is used to convert the LEN digit #
- # mantissa to bcd in memory. The input to binstr is #
- # to be a fraction; i.e. (mantissa)/10^LEN and adjusted #
- # such that the decimal point is to the left of bit 63. #
- # The bcd digits are stored in the correct position in #
- # the final string area in memory. #
- # #
- # A15. Convert the exponent to bcd. #
- # As in A14 above, the exp is converted to bcd and the #
- # digits are stored in the final string. #
- # Test the length of the final exponent string. If the #
- # length is 4, set operr. #
- # #
- # A16. Write sign bits to final string. #
- # #
- #########################################################################
- set BINDEC_FLG, EXC_TEMP # DENORM flag
- # Constants in extended precision
- PLOG2:
- long 0x3FFD0000,0x9A209A84,0xFBCFF798,0x00000000
- PLOG2UP1:
- long 0x3FFD0000,0x9A209A84,0xFBCFF799,0x00000000
- # Constants in single precision
- FONE:
- long 0x3F800000,0x00000000,0x00000000,0x00000000
- FTWO:
- long 0x40000000,0x00000000,0x00000000,0x00000000
- FTEN:
- long 0x41200000,0x00000000,0x00000000,0x00000000
- F4933:
- long 0x459A2800,0x00000000,0x00000000,0x00000000
- RBDTBL:
- byte 0,0,0,0
- byte 3,3,2,2
- byte 3,2,2,3
- byte 2,3,3,2
- # Implementation Notes:
- #
- # The registers are used as follows:
- #
- # d0: scratch; LEN input to binstr
- # d1: scratch
- # d2: upper 32-bits of mantissa for binstr
- # d3: scratch;lower 32-bits of mantissa for binstr
- # d4: LEN
- # d5: LAMBDA/ICTR
- # d6: ILOG
- # d7: k-factor
- # a0: ptr for original operand/final result
- # a1: scratch pointer
- # a2: pointer to FP_X; abs(original value) in ext
- # fp0: scratch
- # fp1: scratch
- # fp2: scratch
- # F_SCR1:
- # F_SCR2:
- # L_SCR1:
- # L_SCR2:
- global bindec
- bindec:
- movm.l &0x3f20,-(%sp) # {%d2-%d7/%a2}
- fmovm.x &0x7,-(%sp) # {%fp0-%fp2}
- # A1. Set RM and size ext. Set SIGMA = sign input;
- # The k-factor is saved for use in d7. Clear BINDEC_FLG for
- # separating normalized/denormalized input. If the input
- # is a denormalized number, set the BINDEC_FLG memory word
- # to signal denorm. If the input is unnormalized, normalize
- # the input and test for denormalized result.
- #
- fmov.l &rm_mode*0x10,%fpcr # set RM and ext
- mov.l (%a0),L_SCR2(%a6) # save exponent for sign check
- mov.l %d0,%d7 # move k-factor to d7
- clr.b BINDEC_FLG(%a6) # clr norm/denorm flag
- cmpi.b STAG(%a6),&DENORM # is input a DENORM?
- bne.w A2_str # no; input is a NORM
- #
- # Normalize the denorm
- #
- un_de_norm:
- mov.w (%a0),%d0
- and.w &0x7fff,%d0 # strip sign of normalized exp
- mov.l 4(%a0),%d1
- mov.l 8(%a0),%d2
- norm_loop:
- sub.w &1,%d0
- lsl.l &1,%d2
- roxl.l &1,%d1
- tst.l %d1
- bge.b norm_loop
- #
- # Test if the normalized input is denormalized
- #
- tst.w %d0
- bgt.b pos_exp # if greater than zero, it is a norm
- st BINDEC_FLG(%a6) # set flag for denorm
- pos_exp:
- and.w &0x7fff,%d0 # strip sign of normalized exp
- mov.w %d0,(%a0)
- mov.l %d1,4(%a0)
- mov.l %d2,8(%a0)
- # A2. Set X = abs(input).
- #
- A2_str:
- mov.l (%a0),FP_SCR1(%a6) # move input to work space
- mov.l 4(%a0),FP_SCR1+4(%a6) # move input to work space
- mov.l 8(%a0),FP_SCR1+8(%a6) # move input to work space
- and.l &0x7fffffff,FP_SCR1(%a6) # create abs(X)
- # A3. Compute ILOG.
- # ILOG is the log base 10 of the input value. It is approx-
- # imated by adding e + 0.f when the original value is viewed
- # as 2^^e * 1.f in extended precision. This value is stored
- # in d6.
- #
- # Register usage:
- # Input/Output
- # d0: k-factor/exponent
- # d2: x/x
- # d3: x/x
- # d4: x/x
- # d5: x/x
- # d6: x/ILOG
- # d7: k-factor/Unchanged
- # a0: ptr for original operand/final result
- # a1: x/x
- # a2: x/x
- # fp0: x/float(ILOG)
- # fp1: x/x
- # fp2: x/x
- # F_SCR1:x/x
- # F_SCR2:Abs(X)/Abs(X) with $3fff exponent
- # L_SCR1:x/x
- # L_SCR2:first word of X packed/Unchanged
- tst.b BINDEC_FLG(%a6) # check for denorm
- beq.b A3_cont # if clr, continue with norm
- mov.l &-4933,%d6 # force ILOG = -4933
- bra.b A4_str
- A3_cont:
- mov.w FP_SCR1(%a6),%d0 # move exp to d0
- mov.w &0x3fff,FP_SCR1(%a6) # replace exponent with 0x3fff
- fmov.x FP_SCR1(%a6),%fp0 # now fp0 has 1.f
- sub.w &0x3fff,%d0 # strip off bias
- fadd.w %d0,%fp0 # add in exp
- fsub.s FONE(%pc),%fp0 # subtract off 1.0
- fbge.w pos_res # if pos, branch
- fmul.x PLOG2UP1(%pc),%fp0 # if neg, mul by LOG2UP1
- fmov.l %fp0,%d6 # put ILOG in d6 as a lword
- bra.b A4_str # go move out ILOG
- pos_res:
- fmul.x PLOG2(%pc),%fp0 # if pos, mul by LOG2
- fmov.l %fp0,%d6 # put ILOG in d6 as a lword
- # A4. Clr INEX bit.
- # The operation in A3 above may have set INEX2.
- A4_str:
- fmov.l &0,%fpsr # zero all of fpsr - nothing needed
- # A5. Set ICTR = 0;
- # ICTR is a flag used in A13. It must be set before the
- # loop entry A6. The lower word of d5 is used for ICTR.
- clr.w %d5 # clear ICTR
- # A6. Calculate LEN.
- # LEN is the number of digits to be displayed. The k-factor
- # can dictate either the total number of digits, if it is
- # a positive number, or the number of digits after the
- # original decimal point which are to be included as
- # significant. See the 68882 manual for examples.
- # If LEN is computed to be greater than 17, set OPERR in
- # USER_FPSR. LEN is stored in d4.
- #
- # Register usage:
- # Input/Output
- # d0: exponent/Unchanged
- # d2: x/x/scratch
- # d3: x/x
- # d4: exc picture/LEN
- # d5: ICTR/Unchanged
- # d6: ILOG/Unchanged
- # d7: k-factor/Unchanged
- # a0: ptr for original operand/final result
- # a1: x/x
- # a2: x/x
- # fp0: float(ILOG)/Unchanged
- # fp1: x/x
- # fp2: x/x
- # F_SCR1:x/x
- # F_SCR2:Abs(X) with $3fff exponent/Unchanged
- # L_SCR1:x/x
- # L_SCR2:first word of X packed/Unchanged
- A6_str:
- tst.l %d7 # branch on sign of k
- ble.b k_neg # if k <= 0, LEN = ILOG + 1 - k
- mov.l %d7,%d4 # if k > 0, LEN = k
- bra.b len_ck # skip to LEN check
- k_neg:
- mov.l %d6,%d4 # first load ILOG to d4
- sub.l %d7,%d4 # subtract off k
- addq.l &1,%d4 # add in the 1
- len_ck:
- tst.l %d4 # LEN check: branch on sign of LEN
- ble.b LEN_ng # if neg, set LEN = 1
- cmp.l %d4,&17 # test if LEN > 17
- ble.b A7_str # if not, forget it
- mov.l &17,%d4 # set max LEN = 17
- tst.l %d7 # if negative, never set OPERR
- ble.b A7_str # if positive, continue
- or.l &opaop_mask,USER_FPSR(%a6) # set OPERR & AIOP in USER_FPSR
- bra.b A7_str # finished here
- LEN_ng:
- mov.l &1,%d4 # min LEN is 1
- # A7. Calculate SCALE.
- # SCALE is equal to 10^ISCALE, where ISCALE is the number
- # of decimal places needed to insure LEN integer digits
- # in the output before conversion to bcd. LAMBDA is the sign
- # of ISCALE, used in A9. Fp1 contains 10^^(abs(ISCALE)) using
- # the rounding mode as given in the following table (see
- # Coonen, p. 7.23 as ref.; however, the SCALE variable is
- # of opposite sign in bindec.sa from Coonen).
- #
- # Initial USE
- # FPCR[6:5] LAMBDA SIGN(X) FPCR[6:5]
- # ----------------------------------------------
- # RN 00 0 0 00/0 RN
- # RN 00 0 1 00/0 RN
- # RN 00 1 0 00/0 RN
- # RN 00 1 1 00/0 RN
- # RZ 01 0 0 11/3 RP
- # RZ 01 0 1 11/3 RP
- # RZ 01 1 0 10/2 RM
- # RZ 01 1 1 10/2 RM
- # RM 10 0 0 11/3 RP
- # RM 10 0 1 10/2 RM
- # RM 10 1 0 10/2 RM
- # RM 10 1 1 11/3 RP
- # RP 11 0 0 10/2 RM
- # RP 11 0 1 11/3 RP
- # RP 11 1 0 11/3 RP
- # RP 11 1 1 10/2 RM
- #
- # Register usage:
- # Input/Output
- # d0: exponent/scratch - final is 0
- # d2: x/0 or 24 for A9
- # d3: x/scratch - offset ptr into PTENRM array
- # d4: LEN/Unchanged
- # d5: 0/ICTR:LAMBDA
- # d6: ILOG/ILOG or k if ((k<=0)&(ILOG<k))
- # d7: k-factor/Unchanged
- # a0: ptr for original operand/final result
- # a1: x/ptr to PTENRM array
- # a2: x/x
- # fp0: float(ILOG)/Unchanged
- # fp1: x/10^ISCALE
- # fp2: x/x
- # F_SCR1:x/x
- # F_SCR2:Abs(X) with $3fff exponent/Unchanged
- # L_SCR1:x/x
- # L_SCR2:first word of X packed/Unchanged
- A7_str:
- tst.l %d7 # test sign of k
- bgt.b k_pos # if pos and > 0, skip this
- cmp.l %d7,%d6 # test k - ILOG
- blt.b k_pos # if ILOG >= k, skip this
- mov.l %d7,%d6 # if ((k<0) & (ILOG < k)) ILOG = k
- k_pos:
- mov.l %d6,%d0 # calc ILOG + 1 - LEN in d0
- addq.l &1,%d0 # add the 1
- sub.l %d4,%d0 # sub off LEN
- swap %d5 # use upper word of d5 for LAMBDA
- clr.w %d5 # set it zero initially
- clr.w %d2 # set up d2 for very small case
- tst.l %d0 # test sign of ISCALE
- bge.b iscale # if pos, skip next inst
- addq.w &1,%d5 # if neg, set LAMBDA true
- cmp.l %d0,&0xffffecd4 # test iscale <= -4908
- bgt.b no_inf # if false, skip rest
- add.l &24,%d0 # add in 24 to iscale
- mov.l &24,%d2 # put 24 in d2 for A9
- no_inf:
- neg.l %d0 # and take abs of ISCALE
- iscale:
- fmov.s FONE(%pc),%fp1 # init fp1 to 1
- bfextu USER_FPCR(%a6){&26:&2},%d1 # get initial rmode bits
- lsl.w &1,%d1 # put them in bits 2:1
- add.w %d5,%d1 # add in LAMBDA
- lsl.w &1,%d1 # put them in bits 3:1
- tst.l L_SCR2(%a6) # test sign of original x
- bge.b x_pos # if pos, don't set bit 0
- addq.l &1,%d1 # if neg, set bit 0
- x_pos:
- lea.l RBDTBL(%pc),%a2 # load rbdtbl base
- mov.b (%a2,%d1),%d3 # load d3 with new rmode
- lsl.l &4,%d3 # put bits in proper position
- fmov.l %d3,%fpcr # load bits into fpu
- lsr.l &4,%d3 # put bits in proper position
- tst.b %d3 # decode new rmode for pten table
- bne.b not_rn # if zero, it is RN
- lea.l PTENRN(%pc),%a1 # load a1 with RN table base
- bra.b rmode # exit decode
- not_rn:
- lsr.b &1,%d3 # get lsb in carry
- bcc.b not_rp2 # if carry clear, it is RM
- lea.l PTENRP(%pc),%a1 # load a1 with RP table base
- bra.b rmode # exit decode
- not_rp2:
- lea.l PTENRM(%pc),%a1 # load a1 with RM table base
- rmode:
- clr.l %d3 # clr table index
- e_loop2:
- lsr.l &1,%d0 # shift next bit into carry
- bcc.b e_next2 # if zero, skip the mul
- fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no)
- e_next2:
- add.l &12,%d3 # inc d3 to next pwrten table entry
- tst.l %d0 # test if ISCALE is zero
- bne.b e_loop2 # if not, loop
- # A8. Clr INEX; Force RZ.
- # The operation in A3 above may have set INEX2.
- # RZ mode is forced for the scaling operation to insure
- # only one rounding error. The grs bits are collected in
- # the INEX flag for use in A10.
- #
- # Register usage:
- # Input/Output
- fmov.l &0,%fpsr # clr INEX
- fmov.l &rz_mode*0x10,%fpcr # set RZ rounding mode
- # A9. Scale X -> Y.
- # The mantissa is scaled to the desired number of significant
- # digits. The excess digits are collected in INEX2. If mul,
- # Check d2 for excess 10 exponential value. If not zero,
- # the iscale value would have caused the pwrten calculation
- # to overflow. Only a negative iscale can cause this, so
- # multiply by 10^(d2), which is now only allowed to be 24,
- # with a multiply by 10^8 and 10^16, which is exact since
- # 10^24 is exact. If the input was denormalized, we must
- # create a busy stack frame with the mul command and the
- # two operands, and allow the fpu to complete the multiply.
- #
- # Register usage:
- # Input/Output
- # d0: FPCR with RZ mode/Unchanged
- # d2: 0 or 24/unchanged
- # d3: x/x
- # d4: LEN/Unchanged
- # d5: ICTR:LAMBDA
- # d6: ILOG/Unchanged
- # d7: k-factor/Unchanged
- # a0: ptr for original operand/final result
- # a1: ptr to PTENRM array/Unchanged
- # a2: x/x
- # fp0: float(ILOG)/X adjusted for SCALE (Y)
- # fp1: 10^ISCALE/Unchanged
- # fp2: x/x
- # F_SCR1:x/x
- # F_SCR2:Abs(X) with $3fff exponent/Unchanged
- # L_SCR1:x/x
- # L_SCR2:first word of X packed/Unchanged
- A9_str:
- fmov.x (%a0),%fp0 # load X from memory
- fabs.x %fp0 # use abs(X)
- tst.w %d5 # LAMBDA is in lower word of d5
- bne.b sc_mul # if neg (LAMBDA = 1), scale by mul
- fdiv.x %fp1,%fp0 # calculate X / SCALE -> Y to fp0
- bra.w A10_st # branch to A10
- sc_mul:
- tst.b BINDEC_FLG(%a6) # check for denorm
- beq.w A9_norm # if norm, continue with mul
- # for DENORM, we must calculate:
- # fp0 = input_op * 10^ISCALE * 10^24
- # since the input operand is a DENORM, we can't multiply it directly.
- # so, we do the multiplication of the exponents and mantissas separately.
- # in this way, we avoid underflow on intermediate stages of the
- # multiplication and guarantee a result without exception.
- fmovm.x &0x2,-(%sp) # save 10^ISCALE to stack
- mov.w (%sp),%d3 # grab exponent
- andi.w &0x7fff,%d3 # clear sign
- ori.w &0x8000,(%a0) # make DENORM exp negative
- add.w (%a0),%d3 # add DENORM exp to 10^ISCALE exp
- subi.w &0x3fff,%d3 # subtract BIAS
- add.w 36(%a1),%d3
- subi.w &0x3fff,%d3 # subtract BIAS
- add.w 48(%a1),%d3
- subi.w &0x3fff,%d3 # subtract BIAS
- bmi.w sc_mul_err # is result is DENORM, punt!!!
- andi.w &0x8000,(%sp) # keep sign
- or.w %d3,(%sp) # insert new exponent
- andi.w &0x7fff,(%a0) # clear sign bit on DENORM again
- mov.l 0x8(%a0),-(%sp) # put input op mantissa on stk
- mov.l 0x4(%a0),-(%sp)
- mov.l &0x3fff0000,-(%sp) # force exp to zero
- fmovm.x (%sp)+,&0x80 # load normalized DENORM into fp0
- fmul.x (%sp)+,%fp0
- # fmul.x 36(%a1),%fp0 # multiply fp0 by 10^8
- # fmul.x 48(%a1),%fp0 # multiply fp0 by 10^16
- mov.l 36+8(%a1),-(%sp) # get 10^8 mantissa
- mov.l 36+4(%a1),-(%sp)
- mov.l &0x3fff0000,-(%sp) # force exp to zero
- mov.l 48+8(%a1),-(%sp) # get 10^16 mantissa
- mov.l 48+4(%a1),-(%sp)
- mov.l &0x3fff0000,-(%sp)# force exp to zero
- fmul.x (%sp)+,%fp0 # multiply fp0 by 10^8
- fmul.x (%sp)+,%fp0 # multiply fp0 by 10^16
- bra.b A10_st
- sc_mul_err:
- bra.b sc_mul_err
- A9_norm:
- tst.w %d2 # test for small exp case
- beq.b A9_con # if zero, continue as normal
- fmul.x 36(%a1),%fp0 # multiply fp0 by 10^8
- fmul.x 48(%a1),%fp0 # multiply fp0 by 10^16
- A9_con:
- fmul.x %fp1,%fp0 # calculate X * SCALE -> Y to fp0
- # A10. Or in INEX.
- # If INEX is set, round error occurred. This is compensated
- # for by 'or-ing' in the INEX2 flag to the lsb of Y.
- #
- # Register usage:
- # Input/Output
- # d0: FPCR with RZ mode/FPSR with INEX2 isolated
- # d2: x/x
- # d3: x/x
- # d4: LEN/Unchanged
- # d5: ICTR:LAMBDA
- # d6: ILOG/Unchanged
- # d7: k-factor/Unchanged
- # a0: ptr for original operand/final result
- # a1: ptr to PTENxx array/Unchanged
- # a2: x/ptr to FP_SCR1(a6)
- # fp0: Y/Y with lsb adjusted
- # fp1: 10^ISCALE/Unchanged
- # fp2: x/x
- A10_st:
- fmov.l %fpsr,%d0 # get FPSR
- fmov.x %fp0,FP_SCR1(%a6) # move Y to memory
- lea.l FP_SCR1(%a6),%a2 # load a2 with ptr to FP_SCR1
- btst &9,%d0 # check if INEX2 set
- beq.b A11_st # if clear, skip rest
- or.l &1,8(%a2) # or in 1 to lsb of mantissa
- fmov.x FP_SCR1(%a6),%fp0 # write adjusted Y back to fpu
- # A11. Restore original FPCR; set size ext.
- # Perform FINT operation in the user's rounding mode. Keep
- # the size to extended. The sintdo entry point in the sint
- # routine expects the FPCR value to be in USER_FPCR for
- # mode and precision. The original FPCR is saved in L_SCR1.
- A11_st:
- mov.l USER_FPCR(%a6),L_SCR1(%a6) # save it for later
- and.l &0x00000030,USER_FPCR(%a6) # set size to ext,
- # ;block exceptions
- # A12. Calculate YINT = FINT(Y) according to user's rounding mode.
- # The FPSP routine sintd0 is used. The output is in fp0.
- #
- # Register usage:
- # Input/Output
- # d0: FPSR with AINEX cleared/FPCR with size set to ext
- # d2: x/x/scratch
- # d3: x/x
- # d4: LEN/Unchanged
- # d5: ICTR:LAMBDA/Unchanged
- # d6: ILOG/Unchanged
- # d7: k-factor/Unchanged
- # a0: ptr for original operand/src ptr for sintdo
- # a1: ptr to PTENxx array/Unchanged
- # a2: ptr to FP_SCR1(a6)/Unchanged
- # a6: temp pointer to FP_SCR1(a6) - orig value saved and restored
- # fp0: Y/YINT
- # fp1: 10^ISCALE/Unchanged
- # fp2: x/x
- # F_SCR1:x/x
- # F_SCR2:Y adjusted for inex/Y with original exponent
- # L_SCR1:x/original USER_FPCR
- # L_SCR2:first word of X packed/Unchanged
- A12_st:
- movm.l &0xc0c0,-(%sp) # save regs used by sintd0 {%d0-%d1/%a0-%a1}
- mov.l L_SCR1(%a6),-(%sp)
- mov.l L_SCR2(%a6),-(%sp)
- lea.l FP_SCR1(%a6),%a0 # a0 is ptr to FP_SCR1(a6)
- fmov.x %fp0,(%a0) # move Y to memory at FP_SCR1(a6)
- tst.l L_SCR2(%a6) # test sign of original operand
- bge.b do_fint12 # if pos, use Y
- or.l &0x80000000,(%a0) # if neg, use -Y
- do_fint12:
- mov.l USER_FPSR(%a6),-(%sp)
- # bsr sintdo # sint routine returns int in fp0
- fmov.l USER_FPCR(%a6),%fpcr
- fmov.l &0x0,%fpsr # clear the AEXC bits!!!
- ## mov.l USER_FPCR(%a6),%d0 # ext prec/keep rnd mode
- ## andi.l &0x00000030,%d0
- ## fmov.l %d0,%fpcr
- fint.x FP_SCR1(%a6),%fp0 # do fint()
- fmov.l %fpsr,%d0
- or.w %d0,FPSR_EXCEPT(%a6)
- ## fmov.l &0x0,%fpcr
- ## fmov.l %fpsr,%d0 # don't keep ccodes
- ## or.w %d0,FPSR_EXCEPT(%a6)
- mov.b (%sp),USER_FPSR(%a6)
- add.l &4,%sp
- mov.l (%sp)+,L_SCR2(%a6)
- mov.l (%sp)+,L_SCR1(%a6)
- movm.l (%sp)+,&0x303 # restore regs used by sint {%d0-%d1/%a0-%a1}
- mov.l L_SCR2(%a6),FP_SCR1(%a6) # restore original exponent
- mov.l L_SCR1(%a6),USER_FPCR(%a6) # restore user's FPCR
- # A13. Check for LEN digits.
- # If the int operation results in more than LEN digits,
- # or less than LEN -1 digits, adjust ILOG and repeat from
- # A6. This test occurs only on the first pass. If the
- # result is exactly 10^LEN, decrement ILOG and divide
- # the mantissa by 10. The calculation of 10^LEN cannot
- # be inexact, since all powers of ten upto 10^27 are exact
- # in extended precision, so the use of a previous power-of-ten
- # table will introduce no error.
- #
- #
- # Register usage:
- # Input/Output
- # d0: FPCR with size set to ext/scratch final = 0
- # d2: x/x
- # d3: x/scratch final = x
- # d4: LEN/LEN adjusted
- # d5: ICTR:LAMBDA/LAMBDA:ICTR
- # d6: ILOG/ILOG adjusted
- # d7: k-factor/Unchanged
- # a0: pointer into memory for packed bcd string formation
- # a1: ptr to PTENxx array/Unchanged
- # a2: ptr to FP_SCR1(a6)/Unchanged
- # fp0: int portion of Y/abs(YINT) adjusted
- # fp1: 10^ISCALE/Unchanged
- # fp2: x/10^LEN
- # F_SCR1:x/x
- # F_SCR2:Y with original exponent/Unchanged
- # L_SCR1:original USER_FPCR/Unchanged
- # L_SCR2:first word of X packed/Unchanged
- A13_st:
- swap %d5 # put ICTR in lower word of d5
- tst.w %d5 # check if ICTR = 0
- bne not_zr # if non-zero, go to second test
- #
- # Compute 10^(LEN-1)
- #
- fmov.s FONE(%pc),%fp2 # init fp2 to 1.0
- mov.l %d4,%d0 # put LEN in d0
- subq.l &1,%d0 # d0 = LEN -1
- clr.l %d3 # clr table index
- l_loop:
- lsr.l &1,%d0 # shift next bit into carry
- bcc.b l_next # if zero, skip the mul
- fmul.x (%a1,%d3),%fp2 # mul by 10**(d3_bit_no)
- l_next:
- add.l &12,%d3 # inc d3 to next pwrten table entry
- tst.l %d0 # test if LEN is zero
- bne.b l_loop # if not, loop
- #
- # 10^LEN-1 is computed for this test and A14. If the input was
- # denormalized, check only the case in which YINT > 10^LEN.
- #
- tst.b BINDEC_FLG(%a6) # check if input was norm
- beq.b A13_con # if norm, continue with checking
- fabs.x %fp0 # take abs of YINT
- bra test_2
- #
- # Compare abs(YINT) to 10^(LEN-1) and 10^LEN
- #
- A13_con:
- fabs.x %fp0 # take abs of YINT
- fcmp.x %fp0,%fp2 # compare abs(YINT) with 10^(LEN-1)
- fbge.w test_2 # if greater, do next test
- subq.l &1,%d6 # subtract 1 from ILOG
- mov.w &1,%d5 # set ICTR
- fmov.l &rm_mode*0x10,%fpcr # set rmode to RM
- fmul.s FTEN(%pc),%fp2 # compute 10^LEN
- bra.w A6_str # return to A6 and recompute YINT
- test_2:
- fmul.s FTEN(%pc),%fp2 # compute 10^LEN
- fcmp.x %fp0,%fp2 # compare abs(YINT) with 10^LEN
- fblt.w A14_st # if less, all is ok, go to A14
- fbgt.w fix_ex # if greater, fix and redo
- fdiv.s FTEN(%pc),%fp0 # if equal, divide by 10
- addq.l &1,%d6 # and inc ILOG
- bra.b A14_st # and continue elsewhere
- fix_ex:
- addq.l &1,%d6 # increment ILOG by 1
- mov.w &1,%d5 # set ICTR
- fmov.l &rm_mode*0x10,%fpcr # set rmode to RM
- bra.w A6_str # return to A6 and recompute YINT
- #
- # Since ICTR <> 0, we have already been through one adjustment,
- # and shouldn't have another; this is to check if abs(YINT) = 10^LEN
- # 10^LEN is again computed using whatever table is in a1 since the
- # value calculated cannot be inexact.
- #
- not_zr:
- fmov.s FONE(%pc),%fp2 # init fp2 to 1.0
- mov.l %d4,%d0 # put LEN in d0
- clr.l %d3 # clr table index
- z_loop:
- lsr.l &1,%d0 # shift next bit into carry
- bcc.b z_next # if zero, skip the mul
- fmul.x (%a1,%d3),%fp2 # mul by 10**(d3_bit_no)
- z_next:
- add.l &12,%d3 # inc d3 to next pwrten table entry
- tst.l %d0 # test if LEN is zero
- bne.b z_loop # if not, loop
- fabs.x %fp0 # get abs(YINT)
- fcmp.x %fp0,%fp2 # check if abs(YINT) = 10^LEN
- fbneq.w A14_st # if not, skip this
- fdiv.s FTEN(%pc),%fp0 # divide abs(YINT) by 10
- addq.l &1,%d6 # and inc ILOG by 1
- addq.l &1,%d4 # and inc LEN
- fmul.s FTEN(%pc),%fp2 # if LEN++, the get 10^^LEN
- # A14. Convert the mantissa to bcd.
- # The binstr routine is used to convert the LEN digit
- # mantissa to bcd in memory. The input to binstr is
- # to be a fraction; i.e. (mantissa)/10^LEN and adjusted
- # such that the decimal point is to the left of bit 63.
- # The bcd digits are stored in the correct position in
- # the final string area in memory.
- #
- #
- # Register usage:
- # Input/Output
- # d0: x/LEN call to binstr - final is 0
- # d1: x/0
- # d2: x/ms 32-bits of mant of abs(YINT)
- # d3: x/ls 32-bits of mant of abs(YINT)
- # d4: LEN/Unchanged
- # d5: ICTR:LAMBDA/LAMBDA:ICTR
- # d6: ILOG
- # d7: k-factor/Unchanged
- # a0: pointer into memory for packed bcd string formation
- # /ptr to first mantissa byte in result string
- # a1: ptr to PTENxx array/Unchanged
- # a2: ptr to FP_SCR1(a6)/Unchanged
- # fp0: int portion of Y/abs(YINT) adjusted
- # fp1: 10^ISCALE/Unchanged
- # fp2: 10^LEN/Unchanged
- # F_SCR1:x/Work area for final result
- # F_SCR2:Y with original exponent/Unchanged
- # L_SCR1:original USER_FPCR/Unchanged
- # L_SCR2:first word of X packed/Unchanged
- A14_st:
- fmov.l &rz_mode*0x10,%fpcr # force rz for conversion
- fdiv.x %fp2,%fp0 # divide abs(YINT) by 10^LEN
- lea.l FP_SCR0(%a6),%a0
- fmov.x %fp0,(%a0) # move abs(YINT)/10^LEN to memory
- mov.l 4(%a0),%d2 # move 2nd word of FP_RES to d2
- mov.l 8(%a0),%d3 # move 3rd word of FP_RES to d3
- clr.l 4(%a0) # zero word 2 of FP_RES
- clr.l 8(%a0) # zero word 3 of FP_RES
- mov.l (%a0),%d0 # move exponent to d0
- swap %d0 # put exponent in lower word
- beq.b no_sft # if zero, don't shift
- sub.l &0x3ffd,%d0 # sub bias less 2 to make fract
- tst.l %d0 # check if > 1
- bgt.b no_sft # if so, don't shift
- neg.l %d0 # make exp positive
- m_loop:
- lsr.l &1,%d2 # shift d2:d3 right, add 0s
- roxr.l &1,%d3 # the number of places
- dbf.w %d0,m_loop # given in d0
- no_sft:
- tst.l %d2 # check for mantissa of zero
- bne.b no_zr # if not, go on
- tst.l %d3 # continue zero check
- beq.b zer_m # if zero, go directly to binstr
- no_zr:
- clr.l %d1 # put zero in d1 for addx
- add.l &0x00000080,%d3 # inc at bit 7
- addx.l %d1,%d2 # continue inc
- and.l &0xffffff80,%d3 # strip off lsb not used by 882
- zer_m:
- mov.l %d4,%d0 # put LEN in d0 for binstr call
- addq.l &3,%a0 # a0 points to M16 byte in result
- bsr binstr # call binstr to convert mant
- # A15. Convert the exponent to bcd.
- # As in A14 above, the exp is converted to bcd and the
- # digits are stored in the final string.
- #
- # Digits are stored in L_SCR1(a6) on return from BINDEC as:
- #
- # 32 16 15 0
- # -----------------------------------------
- # | 0 | e3 | e2 | e1 | e4 | X | X | X |
- # -----------------------------------------
- #
- # And are moved into their proper places in FP_SCR0. If digit e4
- # is non-zero, OPERR is signaled. In all cases, all 4 digits are
- # written as specified in the 881/882 manual for packed decimal.
- #
- # Register usage:
- # Input/Output
- # d0: x/LEN call to binstr - final is 0
- # d1: x/scratch (0);shift count for final exponent packing
- # d2: x/ms 32-bits of exp fraction/scratch
- # d3: x/ls 32-bits of exp fraction
- # d4: LEN/Unchanged
- # d5: ICTR:LAMBDA/LAMBDA:ICTR
- # d6: ILOG
- # d7: k-factor/Unchanged
- # a0: ptr to result string/ptr to L_SCR1(a6)
- # a1: ptr to PTENxx array/Unchanged
- # a2: ptr to FP_SCR1(a6)/Unchanged
- # fp0: abs(YINT) adjusted/float(ILOG)
- # fp1: 10^ISCALE/Unchanged
- # fp2: 10^LEN/Unchanged
- # F_SCR1:Work area for final result/BCD result
- # F_SCR2:Y with original exponent/ILOG/10^4
- # L_SCR1:original USER_FPCR/Exponent digits on return from binstr
- # L_SCR2:first word of X packed/Unchanged
- A15_st:
- tst.b BINDEC_FLG(%a6) # check for denorm
- beq.b not_denorm
- ftest.x %fp0 # test for zero
- fbeq.w den_zero # if zero, use k-factor or 4933
- fmov.l %d6,%fp0 # float ILOG
- fabs.x %fp0 # get abs of ILOG
- bra.b convrt
- den_zero:
- tst.l %d7 # check sign of the k-factor
- blt.b use_ilog # if negative, use ILOG
- fmov.s F4933(%pc),%fp0 # force exponent to 4933
- bra.b convrt # do it
- use_ilog:
- fmov.l %d6,%fp0 # float ILOG
- fabs.x %fp0 # get abs of ILOG
- bra.b convrt
- not_denorm:
- ftest.x %fp0 # test for zero
- fbneq.w not_zero # if zero, force exponent
- fmov.s FONE(%pc),%fp0 # force exponent to 1
- bra.b convrt # do it
- not_zero:
- fmov.l %d6,%fp0 # float ILOG
- fabs.x %fp0 # get abs of ILOG
- convrt:
- fdiv.x 24(%a1),%fp0 # compute ILOG/10^4
- fmov.x %fp0,FP_SCR1(%a6) # store fp0 in memory
- mov.l 4(%a2),%d2 # move word 2 to d2
- mov.l 8(%a2),%d3 # move word 3 to d3
- mov.w (%a2),%d0 # move exp to d0
- beq.b x_loop_fin # if zero, skip the shift
- sub.w &0x3ffd,%d0 # subtract off bias
- neg.w %d0 # make exp positive
- x_loop:
- lsr.l &1,%d2 # shift d2:d3 right
- roxr.l &1,%d3 # the number of places
- dbf.w %d0,x_loop # given in d0
- x_loop_fin:
- clr.l %d1 # put zero in d1 for addx
- add.l &0x00000080,%d3 # inc at bit 6
- addx.l %d1,%d2 # continue inc
- and.l &0xffffff80,%d3 # strip off lsb not used by 882
- mov.l &4,%d0 # put 4 in d0 for binstr call
- lea.l L_SCR1(%a6),%a0 # a0 is ptr to L_SCR1 for exp digits
- bsr binstr # call binstr to convert exp
- mov.l L_SCR1(%a6),%d0 # load L_SCR1 lword to d0
- mov.l &12,%d1 # use d1 for shift count
- lsr.l %d1,%d0 # shift d0 right by 12
- bfins %d0,FP_SCR0(%a6){&4:&12} # put e3:e2:e1 in FP_SCR0
- lsr.l %d1,%d0 # shift d0 right by 12
- bfins %d0,FP_SCR0(%a6){&16:&4} # put e4 in FP_SCR0
- tst.b %d0 # check if e4 is zero
- beq.b A16_st # if zero, skip rest
- or.l &opaop_mask,USER_FPSR(%a6) # set OPERR & AIOP in USER_FPSR
- # A16. Write sign bits to final string.
- # Sigma is bit 31 of initial value; RHO is bit 31 of d6 (ILOG).
- #
- # Register usage:
- # Input/Output
- # d0: x/scratch - final is x
- # d2: x/x
- # d3: x/x
- # d4: LEN/Unchanged
- # d5: ICTR:LAMBDA/LAMBDA:ICTR
- # d6: ILOG/ILOG adjusted
- # d7: k-factor/Unchanged
- # a0: ptr to L_SCR1(a6)/Unchanged
- # a1: ptr to PTENxx array/Unchanged
- # a2: ptr to FP_SCR1(a6)/Unchanged
- # fp0: float(ILOG)/Unchanged
- # fp1: 10^ISCALE/Unchanged
- # fp2: 10^LEN/Unchanged
- # F_SCR1:BCD result with correct signs
- # F_SCR2:ILOG/10^4
- # L_SCR1:Exponent digits on return from binstr
- # L_SCR2:first word of X packed/Unchanged
- A16_st:
- clr.l %d0 # clr d0 for collection of signs
- and.b &0x0f,FP_SCR0(%a6) # clear first nibble of FP_SCR0
- tst.l L_SCR2(%a6) # check sign of original mantissa
- bge.b mant_p # if pos, don't set SM
- mov.l &2,%d0 # move 2 in to d0 for SM
- mant_p:
- tst.l %d6 # check sign of ILOG
- bge.b wr_sgn # if pos, don't set SE
- addq.l &1,%d0 # set bit 0 in d0 for SE
- wr_sgn:
- bfins %d0,FP_SCR0(%a6){&0:&2} # insert SM and SE into FP_SCR0
- # Clean up and restore all registers used.
- fmov.l &0,%fpsr # clear possible inex2/ainex bits
- fmovm.x (%sp)+,&0xe0 # {%fp0-%fp2}
- movm.l (%sp)+,&0x4fc # {%d2-%d7/%a2}
- rts
- global PTENRN
- PTENRN:
- long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1
- long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2
- long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4
- long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8
- long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16
- long 0x40690000,0x9DC5ADA8,0x2B70B59E # 10 ^ 32
- long 0x40D30000,0xC2781F49,0xFFCFA6D5 # 10 ^ 64
- long 0x41A80000,0x93BA47C9,0x80E98CE0 # 10 ^ 128
- long 0x43510000,0xAA7EEBFB,0x9DF9DE8E # 10 ^ 256
- long 0x46A30000,0xE319A0AE,0xA60E91C7 # 10 ^ 512
- long 0x4D480000,0xC9767586,0x81750C17 # 10 ^ 1024
- long 0x5A920000,0x9E8B3B5D,0xC53D5DE5 # 10 ^ 2048
- long 0x75250000,0xC4605202,0x8A20979B # 10 ^ 4096
- global PTENRP
- PTENRP:
- long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1
- long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2
- long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4
- long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8
- long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16
- long 0x40690000,0x9DC5ADA8,0x2B70B59E # 10 ^ 32
- long 0x40D30000,0xC2781F49,0xFFCFA6D6 # 10 ^ 64
- long 0x41A80000,0x93BA47C9,0x80E98CE0 # 10 ^ 128
- long 0x43510000,0xAA7EEBFB,0x9DF9DE8E # 10 ^ 256
- long 0x46A30000,0xE319A0AE,0xA60E91C7 # 10 ^ 512
- long 0x4D480000,0xC9767586,0x81750C18 # 10 ^ 1024
- long 0x5A920000,0x9E8B3B5D,0xC53D5DE5 # 10 ^ 2048
- long 0x75250000,0xC4605202,0x8A20979B # 10 ^ 4096
- global PTENRM
- PTENRM:
- long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1
- long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2
- long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4
- long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8
- long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16
- long 0x40690000,0x9DC5ADA8,0x2B70B59D # 10 ^ 32
- long 0x40D30000,0xC2781F49,0xFFCFA6D5 # 10 ^ 64
- long 0x41A80000,0x93BA47C9,0x80E98CDF # 10 ^ 128
- long 0x43510000,0xAA7EEBFB,0x9DF9DE8D # 10 ^ 256
- long 0x46A30000,0xE319A0AE,0xA60E91C6 # 10 ^ 512
- long 0x4D480000,0xC9767586,0x81750C17 # 10 ^ 1024
- long 0x5A920000,0x9E8B3B5D,0xC53D5DE4 # 10 ^ 2048
- long 0x75250000,0xC4605202,0x8A20979A # 10 ^ 4096
- #########################################################################
- # binstr(): Converts a 64-bit binary integer to bcd. #
- # #
- # INPUT *************************************************************** #
- # d2:d3 = 64-bit binary integer #
- # d0 = desired length (LEN) #
- # a0 = pointer to start in memory for bcd characters #
- # (This pointer must point to byte 4 of the first #
- # lword of the packed decimal memory string.) #
- # #
- # OUTPUT ************************************************************** #
- # a0 = pointer to LEN bcd digits representing the 64-bit integer. #
- # #
- # ALGORITHM *********************************************************** #
- # The 64-bit binary is assumed to have a decimal point before #
- # bit 63. The fraction is multiplied by 10 using a mul by 2 #
- # shift and a mul by 8 shift. The bits shifted out of the #
- # msb form a decimal digit. This process is iterated until #
- # LEN digits are formed. #
- # #
- # A1. Init d7 to 1. D7 is the byte digit counter, and if 1, the #
- # digit formed will be assumed the least significant. This is #
- # to force the first byte formed to have a 0 in the upper 4 bits. #
- # #
- # A2. Beginning of the loop: #
- # Copy the fraction in d2:d3 to d4:d5. #
- # #
- # A3. Multiply the fraction in d2:d3 by 8 using bit-field #
- # extracts and shifts. The three msbs from d2 will go into d1. #
- # #
- # A4. Multiply the fraction in d4:d5 by 2 using shifts. The msb #
- # will be collected by the carry. #
- # #
- # A5. Add using the carry the 64-bit quantities in d2:d3 and d4:d5 #
- # into d2:d3. D1 will contain the bcd digit formed. #
- # #
- # A6. Test d7. If zero, the digit formed is the ms digit. If non- #
- # zero, it is the ls digit. Put the digit in its place in the #
- # upper word of d0. If it is the ls digit, write the word #
- # from d0 to memory. #
- # #
- # A7. Decrement d6 (LEN counter) and repeat the loop until zero. #
- # #
- #########################################################################
- # Implementation Notes:
- #
- # The registers are used as follows:
- #
- # d0: LEN counter
- # d1: temp used to form the digit
- # d2: upper 32-bits of fraction for mul by 8
- # d3: lower 32-bits of fraction for mul by 8
- # d4: upper 32-bits of fraction for mul by 2
- # d5: lower 32-bits of fraction for mul by 2
- # d6: temp for bit-field extracts
- # d7: byte digit formation word;digit count {0,1}
- # a0: pointer into memory for packed bcd string formation
- #
- global binstr
- binstr:
- movm.l &0xff00,-(%sp) # {%d0-%d7}
- #
- # A1: Init d7
- #
- mov.l &1,%d7 # init d7 for second digit
- subq.l &1,%d0 # for dbf d0 would have LEN+1 passes
- #
- # A2. Copy d2:d3 to d4:d5. Start loop.
- #
- loop:
- mov.l %d2,%d4 # copy the fraction before muls
- mov.l %d3,%d5 # to d4:d5
- #
- # A3. Multiply d2:d3 by 8; extract msbs into d1.
- #
- bfextu %d2{&0:&3},%d1 # copy 3 msbs of d2 into d1
- asl.l &3,%d2 # shift d2 left by 3 places
- bfextu %d3{&0:&3},%d6 # copy 3 msbs of d3 into d6
- asl.l &3,%d3 # shift d3 left by 3 places
- or.l %d6,%d2 # or in msbs from d3 into d2
- #
- # A4. Multiply d4:d5 by 2; add carry out to d1.
- #
- asl.l &1,%d5 # mul d5 by 2
- roxl.l &1,%d4 # mul d4 by 2
- swap %d6 # put 0 in d6 lower word
- addx.w %d6,%d1 # add in extend from mul by 2
- #
- # A5. Add mul by 8 to mul by 2. D1 contains the digit formed.
- #
- add.l %d5,%d3 # add lower 32 bits
- nop # ERRATA FIX #13 (Rev. 1.2 6/6/90)
- addx.l %d4,%d2 # add with extend upper 32 bits
- nop # ERRATA FIX #13 (Rev. 1.2 6/6/90)
- addx.w %d6,%d1 # add in extend from add to d1
- swap %d6 # with d6 = 0; put 0 in upper word
- #
- # A6. Test d7 and branch.
- #
- tst.w %d7 # if zero, store digit & to loop
- beq.b first_d # if non-zero, form byte & write
- sec_d:
- swap %d7 # bring first digit to word d7b
- asl.w &4,%d7 # first digit in upper 4 bits d7b
- add.w %d1,%d7 # add in ls digit to d7b
- mov.b %d7,(%a0)+ # store d7b byte in memory
- swap %d7 # put LEN counter in word d7a
- clr.w %d7 # set d7a to signal no digits done
- dbf.w %d0,loop # do loop some more!
- bra.b end_bstr # finished, so exit
- first_d:
- swap %d7 # put digit word in d7b
- mov.w %d1,%d7 # put new digit in d7b
- swap %d7 # put LEN counter in word d7a
- addq.w &1,%d7 # set d7a to signal first digit done
- dbf.w %d0,loop # do loop some more!
- swap %d7 # put last digit in string
- lsl.w &4,%d7 # move it to upper 4 bits
- mov.b %d7,(%a0)+ # store it in memory string
- #
- # Clean up and return with result in fp0.
- #
- end_bstr:
- movm.l (%sp)+,&0xff # {%d0-%d7}
- rts
- #########################################################################
- # XDEF **************************************************************** #
- # facc_in_b(): dmem_read_byte failed #
- # facc_in_w(): dmem_read_word failed #
- # facc_in_l(): dmem_read_long failed #
- # facc_in_d(): dmem_read of dbl prec failed #
- # facc_in_x(): dmem_read of ext prec failed #
- # #
- # facc_out_b(): dmem_write_byte failed #
- # facc_out_w(): dmem_write_word failed #
- # facc_out_l(): dmem_write_long failed #
- # facc_out_d(): dmem_write of dbl prec failed #
- # facc_out_x(): dmem_write of ext prec failed #
- # #
- # XREF **************************************************************** #
- # _real_access() - exit through access error handler #
- # #
- # INPUT *************************************************************** #
- # None #
- # #
- # OUTPUT ************************************************************** #
- # None #
- # #
- # ALGORITHM *********************************************************** #
- # Flow jumps here when an FP data fetch call gets an error #
- # result. This means the operating system wants an access error frame #
- # made out of the current exception stack frame. #
- # So, we first call restore() which makes sure that any updated #
- # -(an)+ register gets returned to its pre-exception value and then #
- # we change the stack to an access error stack frame. #
- # #
- #########################################################################
- facc_in_b:
- movq.l &0x1,%d0 # one byte
- bsr.w restore # fix An
- mov.w &0x0121,EXC_VOFF(%a6) # set FSLW
- bra.w facc_finish
- facc_in_w:
- movq.l &0x2,%d0 # two bytes
- bsr.w restore # fix An
- mov.w &0x0141,EXC_VOFF(%a6) # set FSLW
- bra.b facc_finish
- facc_in_l:
- movq.l &0x4,%d0 # four bytes
- bsr.w restore # fix An
- mov.w &0x0101,EXC_VOFF(%a6) # set FSLW
- bra.b facc_finish
- facc_in_d:
- movq.l &0x8,%d0 # eight bytes
- bsr.w restore # fix An
- mov.w &0x0161,EXC_VOFF(%a6) # set FSLW
- bra.b facc_finish
- facc_in_x:
- movq.l &0xc,%d0 # twelve bytes
- bsr.w restore # fix An
- mov.w &0x0161,EXC_VOFF(%a6) # set FSLW
- bra.b facc_finish
- ################################################################
- facc_out_b:
- movq.l &0x1,%d0 # one byte
- bsr.w restore # restore An
- mov.w &0x00a1,EXC_VOFF(%a6) # set FSLW
- bra.b facc_finish
- facc_out_w:
- movq.l &0x2,%d0 # two bytes
- bsr.w restore # restore An
- mov.w &0x00c1,EXC_VOFF(%a6) # set FSLW
- bra.b facc_finish
- facc_out_l:
- movq.l &0x4,%d0 # four bytes
- bsr.w restore # restore An
- mov.w &0x0081,EXC_VOFF(%a6) # set FSLW
- bra.b facc_finish
- facc_out_d:
- movq.l &0x8,%d0 # eight bytes
- bsr.w restore # restore An
- mov.w &0x00e1,EXC_VOFF(%a6) # set FSLW
- bra.b facc_finish
- facc_out_x:
- mov.l &0xc,%d0 # twelve bytes
- bsr.w restore # restore An
- mov.w &0x00e1,EXC_VOFF(%a6) # set FSLW
- # here's where we actually create the access error frame from the
- # current exception stack frame.
- facc_finish:
- mov.l USER_FPIAR(%a6),EXC_PC(%a6) # store current PC
- fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
- fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
- movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
- unlk %a6
- mov.l (%sp),-(%sp) # store SR, hi(PC)
- mov.l 0x8(%sp),0x4(%sp) # store lo(PC)
- mov.l 0xc(%sp),0x8(%sp) # store EA
- mov.l &0x00000001,0xc(%sp) # store FSLW
- mov.w 0x6(%sp),0xc(%sp) # fix FSLW (size)
- mov.w &0x4008,0x6(%sp) # store voff
- btst &0x5,(%sp) # supervisor or user mode?
- beq.b facc_out2 # user
- bset &0x2,0xd(%sp) # set supervisor TM bit
- facc_out2:
- bra.l _real_access
- ##################################################################
- # if the effective addressing mode was predecrement or postincrement,
- # the emulation has already changed its value to the correct post-
- # instruction value. but since we're exiting to the access error
- # handler, then AN must be returned to its pre-instruction value.
- # we do that here.
- restore:
- mov.b EXC_OPWORD+0x1(%a6),%d1
- andi.b &0x38,%d1 # extract opmode
- cmpi.b %d1,&0x18 # postinc?
- beq.w rest_inc
- cmpi.b %d1,&0x20 # predec?
- beq.w rest_dec
- rts
- rest_inc:
- mov.b EXC_OPWORD+0x1(%a6),%d1
- andi.w &0x0007,%d1 # fetch An
- mov.w (tbl_rest_inc.b,%pc,%d1.w*2),%d1
- jmp (tbl_rest_inc.b,%pc,%d1.w*1)
- tbl_rest_inc:
- short ri_a0 - tbl_rest_inc
- short ri_a1 - tbl_rest_inc
- short ri_a2 - tbl_rest_inc
- short ri_a3 - tbl_rest_inc
- short ri_a4 - tbl_rest_inc
- short ri_a5 - tbl_rest_inc
- short ri_a6 - tbl_rest_inc
- short ri_a7 - tbl_rest_inc
- ri_a0:
- sub.l %d0,EXC_DREGS+0x8(%a6) # fix stacked a0
- rts
- ri_a1:
- sub.l %d0,EXC_DREGS+0xc(%a6) # fix stacked a1
- rts
- ri_a2:
- sub.l %d0,%a2 # fix a2
- rts
- ri_a3:
- sub.l %d0,%a3 # fix a3
- rts
- ri_a4:
- sub.l %d0,%a4 # fix a4
- rts
- ri_a5:
- sub.l %d0,%a5 # fix a5
- rts
- ri_a6:
- sub.l %d0,(%a6) # fix stacked a6
- rts
- # if it's a fmove out instruction, we don't have to fix a7
- # because we hadn't changed it yet. if it's an opclass two
- # instruction (data moved in) and the exception was in supervisor
- # mode, then also also wasn't updated. if it was user mode, then
- # restore the correct a7 which is in the USP currently.
- ri_a7:
- cmpi.b EXC_VOFF(%a6),&0x30 # move in or out?
- bne.b ri_a7_done # out
- btst &0x5,EXC_SR(%a6) # user or supervisor?
- bne.b ri_a7_done # supervisor
- movc %usp,%a0 # restore USP
- sub.l %d0,%a0
- movc %a0,%usp
- ri_a7_done:
- rts
- # need to invert adjustment value if the <ea> was predec
- rest_dec:
- neg.l %d0
- bra.b rest_inc