/kern_oII/drivers/net/atlx/atl2.c

http://omnia2droid.googlecode.com/ · C · 3110 lines · 2132 code · 472 blank · 506 comment · 299 complexity · 56d942548634107c771534d7d8688b97 MD5 · raw file

  1. /*
  2. * Copyright(c) 2006 - 2007 Atheros Corporation. All rights reserved.
  3. * Copyright(c) 2007 - 2008 Chris Snook <csnook@redhat.com>
  4. *
  5. * Derived from Intel e1000 driver
  6. * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms of the GNU General Public License as published by the Free
  10. * Software Foundation; either version 2 of the License, or (at your option)
  11. * any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful, but WITHOUT
  14. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  15. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  16. * more details.
  17. *
  18. * You should have received a copy of the GNU General Public License along with
  19. * this program; if not, write to the Free Software Foundation, Inc., 59
  20. * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  21. */
  22. #include <asm/atomic.h>
  23. #include <linux/crc32.h>
  24. #include <linux/dma-mapping.h>
  25. #include <linux/etherdevice.h>
  26. #include <linux/ethtool.h>
  27. #include <linux/hardirq.h>
  28. #include <linux/if_vlan.h>
  29. #include <linux/in.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/ip.h>
  32. #include <linux/irqflags.h>
  33. #include <linux/irqreturn.h>
  34. #include <linux/mii.h>
  35. #include <linux/net.h>
  36. #include <linux/netdevice.h>
  37. #include <linux/pci.h>
  38. #include <linux/pci_ids.h>
  39. #include <linux/pm.h>
  40. #include <linux/skbuff.h>
  41. #include <linux/spinlock.h>
  42. #include <linux/string.h>
  43. #include <linux/tcp.h>
  44. #include <linux/timer.h>
  45. #include <linux/types.h>
  46. #include <linux/workqueue.h>
  47. #include "atl2.h"
  48. #define ATL2_DRV_VERSION "2.2.3"
  49. static char atl2_driver_name[] = "atl2";
  50. static const char atl2_driver_string[] = "Atheros(R) L2 Ethernet Driver";
  51. static char atl2_copyright[] = "Copyright (c) 2007 Atheros Corporation.";
  52. static char atl2_driver_version[] = ATL2_DRV_VERSION;
  53. MODULE_AUTHOR("Atheros Corporation <xiong.huang@atheros.com>, Chris Snook <csnook@redhat.com>");
  54. MODULE_DESCRIPTION("Atheros Fast Ethernet Network Driver");
  55. MODULE_LICENSE("GPL");
  56. MODULE_VERSION(ATL2_DRV_VERSION);
  57. /*
  58. * atl2_pci_tbl - PCI Device ID Table
  59. */
  60. static struct pci_device_id atl2_pci_tbl[] = {
  61. {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L2)},
  62. /* required last entry */
  63. {0,}
  64. };
  65. MODULE_DEVICE_TABLE(pci, atl2_pci_tbl);
  66. static void atl2_set_ethtool_ops(struct net_device *netdev);
  67. static void atl2_check_options(struct atl2_adapter *adapter);
  68. /*
  69. * atl2_sw_init - Initialize general software structures (struct atl2_adapter)
  70. * @adapter: board private structure to initialize
  71. *
  72. * atl2_sw_init initializes the Adapter private data structure.
  73. * Fields are initialized based on PCI device information and
  74. * OS network device settings (MTU size).
  75. */
  76. static int __devinit atl2_sw_init(struct atl2_adapter *adapter)
  77. {
  78. struct atl2_hw *hw = &adapter->hw;
  79. struct pci_dev *pdev = adapter->pdev;
  80. /* PCI config space info */
  81. hw->vendor_id = pdev->vendor;
  82. hw->device_id = pdev->device;
  83. hw->subsystem_vendor_id = pdev->subsystem_vendor;
  84. hw->subsystem_id = pdev->subsystem_device;
  85. pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
  86. pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
  87. adapter->wol = 0;
  88. adapter->ict = 50000; /* ~100ms */
  89. adapter->link_speed = SPEED_0; /* hardware init */
  90. adapter->link_duplex = FULL_DUPLEX;
  91. hw->phy_configured = false;
  92. hw->preamble_len = 7;
  93. hw->ipgt = 0x60;
  94. hw->min_ifg = 0x50;
  95. hw->ipgr1 = 0x40;
  96. hw->ipgr2 = 0x60;
  97. hw->retry_buf = 2;
  98. hw->max_retry = 0xf;
  99. hw->lcol = 0x37;
  100. hw->jam_ipg = 7;
  101. hw->fc_rxd_hi = 0;
  102. hw->fc_rxd_lo = 0;
  103. hw->max_frame_size = adapter->netdev->mtu;
  104. spin_lock_init(&adapter->stats_lock);
  105. set_bit(__ATL2_DOWN, &adapter->flags);
  106. return 0;
  107. }
  108. /*
  109. * atl2_set_multi - Multicast and Promiscuous mode set
  110. * @netdev: network interface device structure
  111. *
  112. * The set_multi entry point is called whenever the multicast address
  113. * list or the network interface flags are updated. This routine is
  114. * responsible for configuring the hardware for proper multicast,
  115. * promiscuous mode, and all-multi behavior.
  116. */
  117. static void atl2_set_multi(struct net_device *netdev)
  118. {
  119. struct atl2_adapter *adapter = netdev_priv(netdev);
  120. struct atl2_hw *hw = &adapter->hw;
  121. struct dev_mc_list *mc_ptr;
  122. u32 rctl;
  123. u32 hash_value;
  124. /* Check for Promiscuous and All Multicast modes */
  125. rctl = ATL2_READ_REG(hw, REG_MAC_CTRL);
  126. if (netdev->flags & IFF_PROMISC) {
  127. rctl |= MAC_CTRL_PROMIS_EN;
  128. } else if (netdev->flags & IFF_ALLMULTI) {
  129. rctl |= MAC_CTRL_MC_ALL_EN;
  130. rctl &= ~MAC_CTRL_PROMIS_EN;
  131. } else
  132. rctl &= ~(MAC_CTRL_PROMIS_EN | MAC_CTRL_MC_ALL_EN);
  133. ATL2_WRITE_REG(hw, REG_MAC_CTRL, rctl);
  134. /* clear the old settings from the multicast hash table */
  135. ATL2_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
  136. ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
  137. /* comoute mc addresses' hash value ,and put it into hash table */
  138. for (mc_ptr = netdev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
  139. hash_value = atl2_hash_mc_addr(hw, mc_ptr->dmi_addr);
  140. atl2_hash_set(hw, hash_value);
  141. }
  142. }
  143. static void init_ring_ptrs(struct atl2_adapter *adapter)
  144. {
  145. /* Read / Write Ptr Initialize: */
  146. adapter->txd_write_ptr = 0;
  147. atomic_set(&adapter->txd_read_ptr, 0);
  148. adapter->rxd_read_ptr = 0;
  149. adapter->rxd_write_ptr = 0;
  150. atomic_set(&adapter->txs_write_ptr, 0);
  151. adapter->txs_next_clear = 0;
  152. }
  153. /*
  154. * atl2_configure - Configure Transmit&Receive Unit after Reset
  155. * @adapter: board private structure
  156. *
  157. * Configure the Tx /Rx unit of the MAC after a reset.
  158. */
  159. static int atl2_configure(struct atl2_adapter *adapter)
  160. {
  161. struct atl2_hw *hw = &adapter->hw;
  162. u32 value;
  163. /* clear interrupt status */
  164. ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0xffffffff);
  165. /* set MAC Address */
  166. value = (((u32)hw->mac_addr[2]) << 24) |
  167. (((u32)hw->mac_addr[3]) << 16) |
  168. (((u32)hw->mac_addr[4]) << 8) |
  169. (((u32)hw->mac_addr[5]));
  170. ATL2_WRITE_REG(hw, REG_MAC_STA_ADDR, value);
  171. value = (((u32)hw->mac_addr[0]) << 8) |
  172. (((u32)hw->mac_addr[1]));
  173. ATL2_WRITE_REG(hw, (REG_MAC_STA_ADDR+4), value);
  174. /* HI base address */
  175. ATL2_WRITE_REG(hw, REG_DESC_BASE_ADDR_HI,
  176. (u32)((adapter->ring_dma & 0xffffffff00000000ULL) >> 32));
  177. /* LO base address */
  178. ATL2_WRITE_REG(hw, REG_TXD_BASE_ADDR_LO,
  179. (u32)(adapter->txd_dma & 0x00000000ffffffffULL));
  180. ATL2_WRITE_REG(hw, REG_TXS_BASE_ADDR_LO,
  181. (u32)(adapter->txs_dma & 0x00000000ffffffffULL));
  182. ATL2_WRITE_REG(hw, REG_RXD_BASE_ADDR_LO,
  183. (u32)(adapter->rxd_dma & 0x00000000ffffffffULL));
  184. /* element count */
  185. ATL2_WRITE_REGW(hw, REG_TXD_MEM_SIZE, (u16)(adapter->txd_ring_size/4));
  186. ATL2_WRITE_REGW(hw, REG_TXS_MEM_SIZE, (u16)adapter->txs_ring_size);
  187. ATL2_WRITE_REGW(hw, REG_RXD_BUF_NUM, (u16)adapter->rxd_ring_size);
  188. /* config Internal SRAM */
  189. /*
  190. ATL2_WRITE_REGW(hw, REG_SRAM_TXRAM_END, sram_tx_end);
  191. ATL2_WRITE_REGW(hw, REG_SRAM_TXRAM_END, sram_rx_end);
  192. */
  193. /* config IPG/IFG */
  194. value = (((u32)hw->ipgt & MAC_IPG_IFG_IPGT_MASK) <<
  195. MAC_IPG_IFG_IPGT_SHIFT) |
  196. (((u32)hw->min_ifg & MAC_IPG_IFG_MIFG_MASK) <<
  197. MAC_IPG_IFG_MIFG_SHIFT) |
  198. (((u32)hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK) <<
  199. MAC_IPG_IFG_IPGR1_SHIFT)|
  200. (((u32)hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK) <<
  201. MAC_IPG_IFG_IPGR2_SHIFT);
  202. ATL2_WRITE_REG(hw, REG_MAC_IPG_IFG, value);
  203. /* config Half-Duplex Control */
  204. value = ((u32)hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
  205. (((u32)hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK) <<
  206. MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
  207. MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
  208. (0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
  209. (((u32)hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK) <<
  210. MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
  211. ATL2_WRITE_REG(hw, REG_MAC_HALF_DUPLX_CTRL, value);
  212. /* set Interrupt Moderator Timer */
  213. ATL2_WRITE_REGW(hw, REG_IRQ_MODU_TIMER_INIT, adapter->imt);
  214. ATL2_WRITE_REG(hw, REG_MASTER_CTRL, MASTER_CTRL_ITIMER_EN);
  215. /* set Interrupt Clear Timer */
  216. ATL2_WRITE_REGW(hw, REG_CMBDISDMA_TIMER, adapter->ict);
  217. /* set MTU */
  218. ATL2_WRITE_REG(hw, REG_MTU, adapter->netdev->mtu +
  219. ENET_HEADER_SIZE + VLAN_SIZE + ETHERNET_FCS_SIZE);
  220. /* 1590 */
  221. ATL2_WRITE_REG(hw, REG_TX_CUT_THRESH, 0x177);
  222. /* flow control */
  223. ATL2_WRITE_REGW(hw, REG_PAUSE_ON_TH, hw->fc_rxd_hi);
  224. ATL2_WRITE_REGW(hw, REG_PAUSE_OFF_TH, hw->fc_rxd_lo);
  225. /* Init mailbox */
  226. ATL2_WRITE_REGW(hw, REG_MB_TXD_WR_IDX, (u16)adapter->txd_write_ptr);
  227. ATL2_WRITE_REGW(hw, REG_MB_RXD_RD_IDX, (u16)adapter->rxd_read_ptr);
  228. /* enable DMA read/write */
  229. ATL2_WRITE_REGB(hw, REG_DMAR, DMAR_EN);
  230. ATL2_WRITE_REGB(hw, REG_DMAW, DMAW_EN);
  231. value = ATL2_READ_REG(&adapter->hw, REG_ISR);
  232. if ((value & ISR_PHY_LINKDOWN) != 0)
  233. value = 1; /* config failed */
  234. else
  235. value = 0;
  236. /* clear all interrupt status */
  237. ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0x3fffffff);
  238. ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0);
  239. return value;
  240. }
  241. /*
  242. * atl2_setup_ring_resources - allocate Tx / RX descriptor resources
  243. * @adapter: board private structure
  244. *
  245. * Return 0 on success, negative on failure
  246. */
  247. static s32 atl2_setup_ring_resources(struct atl2_adapter *adapter)
  248. {
  249. struct pci_dev *pdev = adapter->pdev;
  250. int size;
  251. u8 offset = 0;
  252. /* real ring DMA buffer */
  253. adapter->ring_size = size =
  254. adapter->txd_ring_size * 1 + 7 + /* dword align */
  255. adapter->txs_ring_size * 4 + 7 + /* dword align */
  256. adapter->rxd_ring_size * 1536 + 127; /* 128bytes align */
  257. adapter->ring_vir_addr = pci_alloc_consistent(pdev, size,
  258. &adapter->ring_dma);
  259. if (!adapter->ring_vir_addr)
  260. return -ENOMEM;
  261. memset(adapter->ring_vir_addr, 0, adapter->ring_size);
  262. /* Init TXD Ring */
  263. adapter->txd_dma = adapter->ring_dma ;
  264. offset = (adapter->txd_dma & 0x7) ? (8 - (adapter->txd_dma & 0x7)) : 0;
  265. adapter->txd_dma += offset;
  266. adapter->txd_ring = (struct tx_pkt_header *) (adapter->ring_vir_addr +
  267. offset);
  268. /* Init TXS Ring */
  269. adapter->txs_dma = adapter->txd_dma + adapter->txd_ring_size;
  270. offset = (adapter->txs_dma & 0x7) ? (8 - (adapter->txs_dma & 0x7)) : 0;
  271. adapter->txs_dma += offset;
  272. adapter->txs_ring = (struct tx_pkt_status *)
  273. (((u8 *)adapter->txd_ring) + (adapter->txd_ring_size + offset));
  274. /* Init RXD Ring */
  275. adapter->rxd_dma = adapter->txs_dma + adapter->txs_ring_size * 4;
  276. offset = (adapter->rxd_dma & 127) ?
  277. (128 - (adapter->rxd_dma & 127)) : 0;
  278. if (offset > 7)
  279. offset -= 8;
  280. else
  281. offset += (128 - 8);
  282. adapter->rxd_dma += offset;
  283. adapter->rxd_ring = (struct rx_desc *) (((u8 *)adapter->txs_ring) +
  284. (adapter->txs_ring_size * 4 + offset));
  285. /*
  286. * Read / Write Ptr Initialize:
  287. * init_ring_ptrs(adapter);
  288. */
  289. return 0;
  290. }
  291. /*
  292. * atl2_irq_enable - Enable default interrupt generation settings
  293. * @adapter: board private structure
  294. */
  295. static inline void atl2_irq_enable(struct atl2_adapter *adapter)
  296. {
  297. ATL2_WRITE_REG(&adapter->hw, REG_IMR, IMR_NORMAL_MASK);
  298. ATL2_WRITE_FLUSH(&adapter->hw);
  299. }
  300. /*
  301. * atl2_irq_disable - Mask off interrupt generation on the NIC
  302. * @adapter: board private structure
  303. */
  304. static inline void atl2_irq_disable(struct atl2_adapter *adapter)
  305. {
  306. ATL2_WRITE_REG(&adapter->hw, REG_IMR, 0);
  307. ATL2_WRITE_FLUSH(&adapter->hw);
  308. synchronize_irq(adapter->pdev->irq);
  309. }
  310. #ifdef NETIF_F_HW_VLAN_TX
  311. static void atl2_vlan_rx_register(struct net_device *netdev,
  312. struct vlan_group *grp)
  313. {
  314. struct atl2_adapter *adapter = netdev_priv(netdev);
  315. u32 ctrl;
  316. atl2_irq_disable(adapter);
  317. adapter->vlgrp = grp;
  318. if (grp) {
  319. /* enable VLAN tag insert/strip */
  320. ctrl = ATL2_READ_REG(&adapter->hw, REG_MAC_CTRL);
  321. ctrl |= MAC_CTRL_RMV_VLAN;
  322. ATL2_WRITE_REG(&adapter->hw, REG_MAC_CTRL, ctrl);
  323. } else {
  324. /* disable VLAN tag insert/strip */
  325. ctrl = ATL2_READ_REG(&adapter->hw, REG_MAC_CTRL);
  326. ctrl &= ~MAC_CTRL_RMV_VLAN;
  327. ATL2_WRITE_REG(&adapter->hw, REG_MAC_CTRL, ctrl);
  328. }
  329. atl2_irq_enable(adapter);
  330. }
  331. static void atl2_restore_vlan(struct atl2_adapter *adapter)
  332. {
  333. atl2_vlan_rx_register(adapter->netdev, adapter->vlgrp);
  334. }
  335. #endif
  336. static void atl2_intr_rx(struct atl2_adapter *adapter)
  337. {
  338. struct net_device *netdev = adapter->netdev;
  339. struct rx_desc *rxd;
  340. struct sk_buff *skb;
  341. do {
  342. rxd = adapter->rxd_ring+adapter->rxd_write_ptr;
  343. if (!rxd->status.update)
  344. break; /* end of tx */
  345. /* clear this flag at once */
  346. rxd->status.update = 0;
  347. if (rxd->status.ok && rxd->status.pkt_size >= 60) {
  348. int rx_size = (int)(rxd->status.pkt_size - 4);
  349. /* alloc new buffer */
  350. skb = netdev_alloc_skb(netdev, rx_size + NET_IP_ALIGN);
  351. if (NULL == skb) {
  352. printk(KERN_WARNING
  353. "%s: Mem squeeze, deferring packet.\n",
  354. netdev->name);
  355. /*
  356. * Check that some rx space is free. If not,
  357. * free one and mark stats->rx_dropped++.
  358. */
  359. netdev->stats.rx_dropped++;
  360. break;
  361. }
  362. skb_reserve(skb, NET_IP_ALIGN);
  363. skb->dev = netdev;
  364. memcpy(skb->data, rxd->packet, rx_size);
  365. skb_put(skb, rx_size);
  366. skb->protocol = eth_type_trans(skb, netdev);
  367. #ifdef NETIF_F_HW_VLAN_TX
  368. if (adapter->vlgrp && (rxd->status.vlan)) {
  369. u16 vlan_tag = (rxd->status.vtag>>4) |
  370. ((rxd->status.vtag&7) << 13) |
  371. ((rxd->status.vtag&8) << 9);
  372. vlan_hwaccel_rx(skb, adapter->vlgrp, vlan_tag);
  373. } else
  374. #endif
  375. netif_rx(skb);
  376. netdev->stats.rx_bytes += rx_size;
  377. netdev->stats.rx_packets++;
  378. } else {
  379. netdev->stats.rx_errors++;
  380. if (rxd->status.ok && rxd->status.pkt_size <= 60)
  381. netdev->stats.rx_length_errors++;
  382. if (rxd->status.mcast)
  383. netdev->stats.multicast++;
  384. if (rxd->status.crc)
  385. netdev->stats.rx_crc_errors++;
  386. if (rxd->status.align)
  387. netdev->stats.rx_frame_errors++;
  388. }
  389. /* advance write ptr */
  390. if (++adapter->rxd_write_ptr == adapter->rxd_ring_size)
  391. adapter->rxd_write_ptr = 0;
  392. } while (1);
  393. /* update mailbox? */
  394. adapter->rxd_read_ptr = adapter->rxd_write_ptr;
  395. ATL2_WRITE_REGW(&adapter->hw, REG_MB_RXD_RD_IDX, adapter->rxd_read_ptr);
  396. }
  397. static void atl2_intr_tx(struct atl2_adapter *adapter)
  398. {
  399. struct net_device *netdev = adapter->netdev;
  400. u32 txd_read_ptr;
  401. u32 txs_write_ptr;
  402. struct tx_pkt_status *txs;
  403. struct tx_pkt_header *txph;
  404. int free_hole = 0;
  405. do {
  406. txs_write_ptr = (u32) atomic_read(&adapter->txs_write_ptr);
  407. txs = adapter->txs_ring + txs_write_ptr;
  408. if (!txs->update)
  409. break; /* tx stop here */
  410. free_hole = 1;
  411. txs->update = 0;
  412. if (++txs_write_ptr == adapter->txs_ring_size)
  413. txs_write_ptr = 0;
  414. atomic_set(&adapter->txs_write_ptr, (int)txs_write_ptr);
  415. txd_read_ptr = (u32) atomic_read(&adapter->txd_read_ptr);
  416. txph = (struct tx_pkt_header *)
  417. (((u8 *)adapter->txd_ring) + txd_read_ptr);
  418. if (txph->pkt_size != txs->pkt_size) {
  419. struct tx_pkt_status *old_txs = txs;
  420. printk(KERN_WARNING
  421. "%s: txs packet size not consistent with txd"
  422. " txd_:0x%08x, txs_:0x%08x!\n",
  423. adapter->netdev->name,
  424. *(u32 *)txph, *(u32 *)txs);
  425. printk(KERN_WARNING
  426. "txd read ptr: 0x%x\n",
  427. txd_read_ptr);
  428. txs = adapter->txs_ring + txs_write_ptr;
  429. printk(KERN_WARNING
  430. "txs-behind:0x%08x\n",
  431. *(u32 *)txs);
  432. if (txs_write_ptr < 2) {
  433. txs = adapter->txs_ring +
  434. (adapter->txs_ring_size +
  435. txs_write_ptr - 2);
  436. } else {
  437. txs = adapter->txs_ring + (txs_write_ptr - 2);
  438. }
  439. printk(KERN_WARNING
  440. "txs-before:0x%08x\n",
  441. *(u32 *)txs);
  442. txs = old_txs;
  443. }
  444. /* 4for TPH */
  445. txd_read_ptr += (((u32)(txph->pkt_size) + 7) & ~3);
  446. if (txd_read_ptr >= adapter->txd_ring_size)
  447. txd_read_ptr -= adapter->txd_ring_size;
  448. atomic_set(&adapter->txd_read_ptr, (int)txd_read_ptr);
  449. /* tx statistics: */
  450. if (txs->ok) {
  451. netdev->stats.tx_bytes += txs->pkt_size;
  452. netdev->stats.tx_packets++;
  453. }
  454. else
  455. netdev->stats.tx_errors++;
  456. if (txs->defer)
  457. netdev->stats.collisions++;
  458. if (txs->abort_col)
  459. netdev->stats.tx_aborted_errors++;
  460. if (txs->late_col)
  461. netdev->stats.tx_window_errors++;
  462. if (txs->underun)
  463. netdev->stats.tx_fifo_errors++;
  464. } while (1);
  465. if (free_hole) {
  466. if (netif_queue_stopped(adapter->netdev) &&
  467. netif_carrier_ok(adapter->netdev))
  468. netif_wake_queue(adapter->netdev);
  469. }
  470. }
  471. static void atl2_check_for_link(struct atl2_adapter *adapter)
  472. {
  473. struct net_device *netdev = adapter->netdev;
  474. u16 phy_data = 0;
  475. spin_lock(&adapter->stats_lock);
  476. atl2_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data);
  477. atl2_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data);
  478. spin_unlock(&adapter->stats_lock);
  479. /* notify upper layer link down ASAP */
  480. if (!(phy_data & BMSR_LSTATUS)) { /* Link Down */
  481. if (netif_carrier_ok(netdev)) { /* old link state: Up */
  482. printk(KERN_INFO "%s: %s NIC Link is Down\n",
  483. atl2_driver_name, netdev->name);
  484. adapter->link_speed = SPEED_0;
  485. netif_carrier_off(netdev);
  486. netif_stop_queue(netdev);
  487. }
  488. }
  489. schedule_work(&adapter->link_chg_task);
  490. }
  491. static inline void atl2_clear_phy_int(struct atl2_adapter *adapter)
  492. {
  493. u16 phy_data;
  494. spin_lock(&adapter->stats_lock);
  495. atl2_read_phy_reg(&adapter->hw, 19, &phy_data);
  496. spin_unlock(&adapter->stats_lock);
  497. }
  498. /*
  499. * atl2_intr - Interrupt Handler
  500. * @irq: interrupt number
  501. * @data: pointer to a network interface device structure
  502. * @pt_regs: CPU registers structure
  503. */
  504. static irqreturn_t atl2_intr(int irq, void *data)
  505. {
  506. struct atl2_adapter *adapter = netdev_priv(data);
  507. struct atl2_hw *hw = &adapter->hw;
  508. u32 status;
  509. status = ATL2_READ_REG(hw, REG_ISR);
  510. if (0 == status)
  511. return IRQ_NONE;
  512. /* link event */
  513. if (status & ISR_PHY)
  514. atl2_clear_phy_int(adapter);
  515. /* clear ISR status, and Enable CMB DMA/Disable Interrupt */
  516. ATL2_WRITE_REG(hw, REG_ISR, status | ISR_DIS_INT);
  517. /* check if PCIE PHY Link down */
  518. if (status & ISR_PHY_LINKDOWN) {
  519. if (netif_running(adapter->netdev)) { /* reset MAC */
  520. ATL2_WRITE_REG(hw, REG_ISR, 0);
  521. ATL2_WRITE_REG(hw, REG_IMR, 0);
  522. ATL2_WRITE_FLUSH(hw);
  523. schedule_work(&adapter->reset_task);
  524. return IRQ_HANDLED;
  525. }
  526. }
  527. /* check if DMA read/write error? */
  528. if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
  529. ATL2_WRITE_REG(hw, REG_ISR, 0);
  530. ATL2_WRITE_REG(hw, REG_IMR, 0);
  531. ATL2_WRITE_FLUSH(hw);
  532. schedule_work(&adapter->reset_task);
  533. return IRQ_HANDLED;
  534. }
  535. /* link event */
  536. if (status & (ISR_PHY | ISR_MANUAL)) {
  537. adapter->netdev->stats.tx_carrier_errors++;
  538. atl2_check_for_link(adapter);
  539. }
  540. /* transmit event */
  541. if (status & ISR_TX_EVENT)
  542. atl2_intr_tx(adapter);
  543. /* rx exception */
  544. if (status & ISR_RX_EVENT)
  545. atl2_intr_rx(adapter);
  546. /* re-enable Interrupt */
  547. ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0);
  548. return IRQ_HANDLED;
  549. }
  550. static int atl2_request_irq(struct atl2_adapter *adapter)
  551. {
  552. struct net_device *netdev = adapter->netdev;
  553. int flags, err = 0;
  554. flags = IRQF_SHARED;
  555. adapter->have_msi = true;
  556. err = pci_enable_msi(adapter->pdev);
  557. if (err)
  558. adapter->have_msi = false;
  559. if (adapter->have_msi)
  560. flags &= ~IRQF_SHARED;
  561. return request_irq(adapter->pdev->irq, &atl2_intr, flags, netdev->name,
  562. netdev);
  563. }
  564. /*
  565. * atl2_free_ring_resources - Free Tx / RX descriptor Resources
  566. * @adapter: board private structure
  567. *
  568. * Free all transmit software resources
  569. */
  570. static void atl2_free_ring_resources(struct atl2_adapter *adapter)
  571. {
  572. struct pci_dev *pdev = adapter->pdev;
  573. pci_free_consistent(pdev, adapter->ring_size, adapter->ring_vir_addr,
  574. adapter->ring_dma);
  575. }
  576. /*
  577. * atl2_open - Called when a network interface is made active
  578. * @netdev: network interface device structure
  579. *
  580. * Returns 0 on success, negative value on failure
  581. *
  582. * The open entry point is called when a network interface is made
  583. * active by the system (IFF_UP). At this point all resources needed
  584. * for transmit and receive operations are allocated, the interrupt
  585. * handler is registered with the OS, the watchdog timer is started,
  586. * and the stack is notified that the interface is ready.
  587. */
  588. static int atl2_open(struct net_device *netdev)
  589. {
  590. struct atl2_adapter *adapter = netdev_priv(netdev);
  591. int err;
  592. u32 val;
  593. /* disallow open during test */
  594. if (test_bit(__ATL2_TESTING, &adapter->flags))
  595. return -EBUSY;
  596. /* allocate transmit descriptors */
  597. err = atl2_setup_ring_resources(adapter);
  598. if (err)
  599. return err;
  600. err = atl2_init_hw(&adapter->hw);
  601. if (err) {
  602. err = -EIO;
  603. goto err_init_hw;
  604. }
  605. /* hardware has been reset, we need to reload some things */
  606. atl2_set_multi(netdev);
  607. init_ring_ptrs(adapter);
  608. #ifdef NETIF_F_HW_VLAN_TX
  609. atl2_restore_vlan(adapter);
  610. #endif
  611. if (atl2_configure(adapter)) {
  612. err = -EIO;
  613. goto err_config;
  614. }
  615. err = atl2_request_irq(adapter);
  616. if (err)
  617. goto err_req_irq;
  618. clear_bit(__ATL2_DOWN, &adapter->flags);
  619. mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 4*HZ));
  620. val = ATL2_READ_REG(&adapter->hw, REG_MASTER_CTRL);
  621. ATL2_WRITE_REG(&adapter->hw, REG_MASTER_CTRL,
  622. val | MASTER_CTRL_MANUAL_INT);
  623. atl2_irq_enable(adapter);
  624. return 0;
  625. err_init_hw:
  626. err_req_irq:
  627. err_config:
  628. atl2_free_ring_resources(adapter);
  629. atl2_reset_hw(&adapter->hw);
  630. return err;
  631. }
  632. static void atl2_down(struct atl2_adapter *adapter)
  633. {
  634. struct net_device *netdev = adapter->netdev;
  635. /* signal that we're down so the interrupt handler does not
  636. * reschedule our watchdog timer */
  637. set_bit(__ATL2_DOWN, &adapter->flags);
  638. netif_tx_disable(netdev);
  639. /* reset MAC to disable all RX/TX */
  640. atl2_reset_hw(&adapter->hw);
  641. msleep(1);
  642. atl2_irq_disable(adapter);
  643. del_timer_sync(&adapter->watchdog_timer);
  644. del_timer_sync(&adapter->phy_config_timer);
  645. clear_bit(0, &adapter->cfg_phy);
  646. netif_carrier_off(netdev);
  647. adapter->link_speed = SPEED_0;
  648. adapter->link_duplex = -1;
  649. }
  650. static void atl2_free_irq(struct atl2_adapter *adapter)
  651. {
  652. struct net_device *netdev = adapter->netdev;
  653. free_irq(adapter->pdev->irq, netdev);
  654. #ifdef CONFIG_PCI_MSI
  655. if (adapter->have_msi)
  656. pci_disable_msi(adapter->pdev);
  657. #endif
  658. }
  659. /*
  660. * atl2_close - Disables a network interface
  661. * @netdev: network interface device structure
  662. *
  663. * Returns 0, this is not allowed to fail
  664. *
  665. * The close entry point is called when an interface is de-activated
  666. * by the OS. The hardware is still under the drivers control, but
  667. * needs to be disabled. A global MAC reset is issued to stop the
  668. * hardware, and all transmit and receive resources are freed.
  669. */
  670. static int atl2_close(struct net_device *netdev)
  671. {
  672. struct atl2_adapter *adapter = netdev_priv(netdev);
  673. WARN_ON(test_bit(__ATL2_RESETTING, &adapter->flags));
  674. atl2_down(adapter);
  675. atl2_free_irq(adapter);
  676. atl2_free_ring_resources(adapter);
  677. return 0;
  678. }
  679. static inline int TxsFreeUnit(struct atl2_adapter *adapter)
  680. {
  681. u32 txs_write_ptr = (u32) atomic_read(&adapter->txs_write_ptr);
  682. return (adapter->txs_next_clear >= txs_write_ptr) ?
  683. (int) (adapter->txs_ring_size - adapter->txs_next_clear +
  684. txs_write_ptr - 1) :
  685. (int) (txs_write_ptr - adapter->txs_next_clear - 1);
  686. }
  687. static inline int TxdFreeBytes(struct atl2_adapter *adapter)
  688. {
  689. u32 txd_read_ptr = (u32)atomic_read(&adapter->txd_read_ptr);
  690. return (adapter->txd_write_ptr >= txd_read_ptr) ?
  691. (int) (adapter->txd_ring_size - adapter->txd_write_ptr +
  692. txd_read_ptr - 1) :
  693. (int) (txd_read_ptr - adapter->txd_write_ptr - 1);
  694. }
  695. static int atl2_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
  696. {
  697. struct atl2_adapter *adapter = netdev_priv(netdev);
  698. struct tx_pkt_header *txph;
  699. u32 offset, copy_len;
  700. int txs_unused;
  701. int txbuf_unused;
  702. if (test_bit(__ATL2_DOWN, &adapter->flags)) {
  703. dev_kfree_skb_any(skb);
  704. return NETDEV_TX_OK;
  705. }
  706. if (unlikely(skb->len <= 0)) {
  707. dev_kfree_skb_any(skb);
  708. return NETDEV_TX_OK;
  709. }
  710. txs_unused = TxsFreeUnit(adapter);
  711. txbuf_unused = TxdFreeBytes(adapter);
  712. if (skb->len + sizeof(struct tx_pkt_header) + 4 > txbuf_unused ||
  713. txs_unused < 1) {
  714. /* not enough resources */
  715. netif_stop_queue(netdev);
  716. return NETDEV_TX_BUSY;
  717. }
  718. offset = adapter->txd_write_ptr;
  719. txph = (struct tx_pkt_header *) (((u8 *)adapter->txd_ring) + offset);
  720. *(u32 *)txph = 0;
  721. txph->pkt_size = skb->len;
  722. offset += 4;
  723. if (offset >= adapter->txd_ring_size)
  724. offset -= adapter->txd_ring_size;
  725. copy_len = adapter->txd_ring_size - offset;
  726. if (copy_len >= skb->len) {
  727. memcpy(((u8 *)adapter->txd_ring) + offset, skb->data, skb->len);
  728. offset += ((u32)(skb->len + 3) & ~3);
  729. } else {
  730. memcpy(((u8 *)adapter->txd_ring)+offset, skb->data, copy_len);
  731. memcpy((u8 *)adapter->txd_ring, skb->data+copy_len,
  732. skb->len-copy_len);
  733. offset = ((u32)(skb->len-copy_len + 3) & ~3);
  734. }
  735. #ifdef NETIF_F_HW_VLAN_TX
  736. if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
  737. u16 vlan_tag = vlan_tx_tag_get(skb);
  738. vlan_tag = (vlan_tag << 4) |
  739. (vlan_tag >> 13) |
  740. ((vlan_tag >> 9) & 0x8);
  741. txph->ins_vlan = 1;
  742. txph->vlan = vlan_tag;
  743. }
  744. #endif
  745. if (offset >= adapter->txd_ring_size)
  746. offset -= adapter->txd_ring_size;
  747. adapter->txd_write_ptr = offset;
  748. /* clear txs before send */
  749. adapter->txs_ring[adapter->txs_next_clear].update = 0;
  750. if (++adapter->txs_next_clear == adapter->txs_ring_size)
  751. adapter->txs_next_clear = 0;
  752. ATL2_WRITE_REGW(&adapter->hw, REG_MB_TXD_WR_IDX,
  753. (adapter->txd_write_ptr >> 2));
  754. mmiowb();
  755. netdev->trans_start = jiffies;
  756. dev_kfree_skb_any(skb);
  757. return NETDEV_TX_OK;
  758. }
  759. /*
  760. * atl2_change_mtu - Change the Maximum Transfer Unit
  761. * @netdev: network interface device structure
  762. * @new_mtu: new value for maximum frame size
  763. *
  764. * Returns 0 on success, negative on failure
  765. */
  766. static int atl2_change_mtu(struct net_device *netdev, int new_mtu)
  767. {
  768. struct atl2_adapter *adapter = netdev_priv(netdev);
  769. struct atl2_hw *hw = &adapter->hw;
  770. if ((new_mtu < 40) || (new_mtu > (ETH_DATA_LEN + VLAN_SIZE)))
  771. return -EINVAL;
  772. /* set MTU */
  773. if (hw->max_frame_size != new_mtu) {
  774. netdev->mtu = new_mtu;
  775. ATL2_WRITE_REG(hw, REG_MTU, new_mtu + ENET_HEADER_SIZE +
  776. VLAN_SIZE + ETHERNET_FCS_SIZE);
  777. }
  778. return 0;
  779. }
  780. /*
  781. * atl2_set_mac - Change the Ethernet Address of the NIC
  782. * @netdev: network interface device structure
  783. * @p: pointer to an address structure
  784. *
  785. * Returns 0 on success, negative on failure
  786. */
  787. static int atl2_set_mac(struct net_device *netdev, void *p)
  788. {
  789. struct atl2_adapter *adapter = netdev_priv(netdev);
  790. struct sockaddr *addr = p;
  791. if (!is_valid_ether_addr(addr->sa_data))
  792. return -EADDRNOTAVAIL;
  793. if (netif_running(netdev))
  794. return -EBUSY;
  795. memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
  796. memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
  797. atl2_set_mac_addr(&adapter->hw);
  798. return 0;
  799. }
  800. /*
  801. * atl2_mii_ioctl -
  802. * @netdev:
  803. * @ifreq:
  804. * @cmd:
  805. */
  806. static int atl2_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
  807. {
  808. struct atl2_adapter *adapter = netdev_priv(netdev);
  809. struct mii_ioctl_data *data = if_mii(ifr);
  810. unsigned long flags;
  811. switch (cmd) {
  812. case SIOCGMIIPHY:
  813. data->phy_id = 0;
  814. break;
  815. case SIOCGMIIREG:
  816. if (!capable(CAP_NET_ADMIN))
  817. return -EPERM;
  818. spin_lock_irqsave(&adapter->stats_lock, flags);
  819. if (atl2_read_phy_reg(&adapter->hw,
  820. data->reg_num & 0x1F, &data->val_out)) {
  821. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  822. return -EIO;
  823. }
  824. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  825. break;
  826. case SIOCSMIIREG:
  827. if (!capable(CAP_NET_ADMIN))
  828. return -EPERM;
  829. if (data->reg_num & ~(0x1F))
  830. return -EFAULT;
  831. spin_lock_irqsave(&adapter->stats_lock, flags);
  832. if (atl2_write_phy_reg(&adapter->hw, data->reg_num,
  833. data->val_in)) {
  834. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  835. return -EIO;
  836. }
  837. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  838. break;
  839. default:
  840. return -EOPNOTSUPP;
  841. }
  842. return 0;
  843. }
  844. /*
  845. * atl2_ioctl -
  846. * @netdev:
  847. * @ifreq:
  848. * @cmd:
  849. */
  850. static int atl2_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
  851. {
  852. switch (cmd) {
  853. case SIOCGMIIPHY:
  854. case SIOCGMIIREG:
  855. case SIOCSMIIREG:
  856. return atl2_mii_ioctl(netdev, ifr, cmd);
  857. #ifdef ETHTOOL_OPS_COMPAT
  858. case SIOCETHTOOL:
  859. return ethtool_ioctl(ifr);
  860. #endif
  861. default:
  862. return -EOPNOTSUPP;
  863. }
  864. }
  865. /*
  866. * atl2_tx_timeout - Respond to a Tx Hang
  867. * @netdev: network interface device structure
  868. */
  869. static void atl2_tx_timeout(struct net_device *netdev)
  870. {
  871. struct atl2_adapter *adapter = netdev_priv(netdev);
  872. /* Do the reset outside of interrupt context */
  873. schedule_work(&adapter->reset_task);
  874. }
  875. /*
  876. * atl2_watchdog - Timer Call-back
  877. * @data: pointer to netdev cast into an unsigned long
  878. */
  879. static void atl2_watchdog(unsigned long data)
  880. {
  881. struct atl2_adapter *adapter = (struct atl2_adapter *) data;
  882. if (!test_bit(__ATL2_DOWN, &adapter->flags)) {
  883. u32 drop_rxd, drop_rxs;
  884. unsigned long flags;
  885. spin_lock_irqsave(&adapter->stats_lock, flags);
  886. drop_rxd = ATL2_READ_REG(&adapter->hw, REG_STS_RXD_OV);
  887. drop_rxs = ATL2_READ_REG(&adapter->hw, REG_STS_RXS_OV);
  888. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  889. adapter->netdev->stats.rx_over_errors += drop_rxd + drop_rxs;
  890. /* Reset the timer */
  891. mod_timer(&adapter->watchdog_timer,
  892. round_jiffies(jiffies + 4 * HZ));
  893. }
  894. }
  895. /*
  896. * atl2_phy_config - Timer Call-back
  897. * @data: pointer to netdev cast into an unsigned long
  898. */
  899. static void atl2_phy_config(unsigned long data)
  900. {
  901. struct atl2_adapter *adapter = (struct atl2_adapter *) data;
  902. struct atl2_hw *hw = &adapter->hw;
  903. unsigned long flags;
  904. spin_lock_irqsave(&adapter->stats_lock, flags);
  905. atl2_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
  906. atl2_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN |
  907. MII_CR_RESTART_AUTO_NEG);
  908. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  909. clear_bit(0, &adapter->cfg_phy);
  910. }
  911. static int atl2_up(struct atl2_adapter *adapter)
  912. {
  913. struct net_device *netdev = adapter->netdev;
  914. int err = 0;
  915. u32 val;
  916. /* hardware has been reset, we need to reload some things */
  917. err = atl2_init_hw(&adapter->hw);
  918. if (err) {
  919. err = -EIO;
  920. return err;
  921. }
  922. atl2_set_multi(netdev);
  923. init_ring_ptrs(adapter);
  924. #ifdef NETIF_F_HW_VLAN_TX
  925. atl2_restore_vlan(adapter);
  926. #endif
  927. if (atl2_configure(adapter)) {
  928. err = -EIO;
  929. goto err_up;
  930. }
  931. clear_bit(__ATL2_DOWN, &adapter->flags);
  932. val = ATL2_READ_REG(&adapter->hw, REG_MASTER_CTRL);
  933. ATL2_WRITE_REG(&adapter->hw, REG_MASTER_CTRL, val |
  934. MASTER_CTRL_MANUAL_INT);
  935. atl2_irq_enable(adapter);
  936. err_up:
  937. return err;
  938. }
  939. static void atl2_reinit_locked(struct atl2_adapter *adapter)
  940. {
  941. WARN_ON(in_interrupt());
  942. while (test_and_set_bit(__ATL2_RESETTING, &adapter->flags))
  943. msleep(1);
  944. atl2_down(adapter);
  945. atl2_up(adapter);
  946. clear_bit(__ATL2_RESETTING, &adapter->flags);
  947. }
  948. static void atl2_reset_task(struct work_struct *work)
  949. {
  950. struct atl2_adapter *adapter;
  951. adapter = container_of(work, struct atl2_adapter, reset_task);
  952. atl2_reinit_locked(adapter);
  953. }
  954. static void atl2_setup_mac_ctrl(struct atl2_adapter *adapter)
  955. {
  956. u32 value;
  957. struct atl2_hw *hw = &adapter->hw;
  958. struct net_device *netdev = adapter->netdev;
  959. /* Config MAC CTRL Register */
  960. value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN | MAC_CTRL_MACLP_CLK_PHY;
  961. /* duplex */
  962. if (FULL_DUPLEX == adapter->link_duplex)
  963. value |= MAC_CTRL_DUPLX;
  964. /* flow control */
  965. value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
  966. /* PAD & CRC */
  967. value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
  968. /* preamble length */
  969. value |= (((u32)adapter->hw.preamble_len & MAC_CTRL_PRMLEN_MASK) <<
  970. MAC_CTRL_PRMLEN_SHIFT);
  971. /* vlan */
  972. if (adapter->vlgrp)
  973. value |= MAC_CTRL_RMV_VLAN;
  974. /* filter mode */
  975. value |= MAC_CTRL_BC_EN;
  976. if (netdev->flags & IFF_PROMISC)
  977. value |= MAC_CTRL_PROMIS_EN;
  978. else if (netdev->flags & IFF_ALLMULTI)
  979. value |= MAC_CTRL_MC_ALL_EN;
  980. /* half retry buffer */
  981. value |= (((u32)(adapter->hw.retry_buf &
  982. MAC_CTRL_HALF_LEFT_BUF_MASK)) << MAC_CTRL_HALF_LEFT_BUF_SHIFT);
  983. ATL2_WRITE_REG(hw, REG_MAC_CTRL, value);
  984. }
  985. static int atl2_check_link(struct atl2_adapter *adapter)
  986. {
  987. struct atl2_hw *hw = &adapter->hw;
  988. struct net_device *netdev = adapter->netdev;
  989. int ret_val;
  990. u16 speed, duplex, phy_data;
  991. int reconfig = 0;
  992. /* MII_BMSR must read twise */
  993. atl2_read_phy_reg(hw, MII_BMSR, &phy_data);
  994. atl2_read_phy_reg(hw, MII_BMSR, &phy_data);
  995. if (!(phy_data&BMSR_LSTATUS)) { /* link down */
  996. if (netif_carrier_ok(netdev)) { /* old link state: Up */
  997. u32 value;
  998. /* disable rx */
  999. value = ATL2_READ_REG(hw, REG_MAC_CTRL);
  1000. value &= ~MAC_CTRL_RX_EN;
  1001. ATL2_WRITE_REG(hw, REG_MAC_CTRL, value);
  1002. adapter->link_speed = SPEED_0;
  1003. netif_carrier_off(netdev);
  1004. netif_stop_queue(netdev);
  1005. }
  1006. return 0;
  1007. }
  1008. /* Link Up */
  1009. ret_val = atl2_get_speed_and_duplex(hw, &speed, &duplex);
  1010. if (ret_val)
  1011. return ret_val;
  1012. switch (hw->MediaType) {
  1013. case MEDIA_TYPE_100M_FULL:
  1014. if (speed != SPEED_100 || duplex != FULL_DUPLEX)
  1015. reconfig = 1;
  1016. break;
  1017. case MEDIA_TYPE_100M_HALF:
  1018. if (speed != SPEED_100 || duplex != HALF_DUPLEX)
  1019. reconfig = 1;
  1020. break;
  1021. case MEDIA_TYPE_10M_FULL:
  1022. if (speed != SPEED_10 || duplex != FULL_DUPLEX)
  1023. reconfig = 1;
  1024. break;
  1025. case MEDIA_TYPE_10M_HALF:
  1026. if (speed != SPEED_10 || duplex != HALF_DUPLEX)
  1027. reconfig = 1;
  1028. break;
  1029. }
  1030. /* link result is our setting */
  1031. if (reconfig == 0) {
  1032. if (adapter->link_speed != speed ||
  1033. adapter->link_duplex != duplex) {
  1034. adapter->link_speed = speed;
  1035. adapter->link_duplex = duplex;
  1036. atl2_setup_mac_ctrl(adapter);
  1037. printk(KERN_INFO "%s: %s NIC Link is Up<%d Mbps %s>\n",
  1038. atl2_driver_name, netdev->name,
  1039. adapter->link_speed,
  1040. adapter->link_duplex == FULL_DUPLEX ?
  1041. "Full Duplex" : "Half Duplex");
  1042. }
  1043. if (!netif_carrier_ok(netdev)) { /* Link down -> Up */
  1044. netif_carrier_on(netdev);
  1045. netif_wake_queue(netdev);
  1046. }
  1047. return 0;
  1048. }
  1049. /* change original link status */
  1050. if (netif_carrier_ok(netdev)) {
  1051. u32 value;
  1052. /* disable rx */
  1053. value = ATL2_READ_REG(hw, REG_MAC_CTRL);
  1054. value &= ~MAC_CTRL_RX_EN;
  1055. ATL2_WRITE_REG(hw, REG_MAC_CTRL, value);
  1056. adapter->link_speed = SPEED_0;
  1057. netif_carrier_off(netdev);
  1058. netif_stop_queue(netdev);
  1059. }
  1060. /* auto-neg, insert timer to re-config phy
  1061. * (if interval smaller than 5 seconds, something strange) */
  1062. if (!test_bit(__ATL2_DOWN, &adapter->flags)) {
  1063. if (!test_and_set_bit(0, &adapter->cfg_phy))
  1064. mod_timer(&adapter->phy_config_timer,
  1065. round_jiffies(jiffies + 5 * HZ));
  1066. }
  1067. return 0;
  1068. }
  1069. /*
  1070. * atl2_link_chg_task - deal with link change event Out of interrupt context
  1071. * @netdev: network interface device structure
  1072. */
  1073. static void atl2_link_chg_task(struct work_struct *work)
  1074. {
  1075. struct atl2_adapter *adapter;
  1076. unsigned long flags;
  1077. adapter = container_of(work, struct atl2_adapter, link_chg_task);
  1078. spin_lock_irqsave(&adapter->stats_lock, flags);
  1079. atl2_check_link(adapter);
  1080. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  1081. }
  1082. static void atl2_setup_pcicmd(struct pci_dev *pdev)
  1083. {
  1084. u16 cmd;
  1085. pci_read_config_word(pdev, PCI_COMMAND, &cmd);
  1086. if (cmd & PCI_COMMAND_INTX_DISABLE)
  1087. cmd &= ~PCI_COMMAND_INTX_DISABLE;
  1088. if (cmd & PCI_COMMAND_IO)
  1089. cmd &= ~PCI_COMMAND_IO;
  1090. if (0 == (cmd & PCI_COMMAND_MEMORY))
  1091. cmd |= PCI_COMMAND_MEMORY;
  1092. if (0 == (cmd & PCI_COMMAND_MASTER))
  1093. cmd |= PCI_COMMAND_MASTER;
  1094. pci_write_config_word(pdev, PCI_COMMAND, cmd);
  1095. /*
  1096. * some motherboards BIOS(PXE/EFI) driver may set PME
  1097. * while they transfer control to OS (Windows/Linux)
  1098. * so we should clear this bit before NIC work normally
  1099. */
  1100. pci_write_config_dword(pdev, REG_PM_CTRLSTAT, 0);
  1101. }
  1102. #ifdef CONFIG_NET_POLL_CONTROLLER
  1103. static void atl2_poll_controller(struct net_device *netdev)
  1104. {
  1105. disable_irq(netdev->irq);
  1106. atl2_intr(netdev->irq, netdev);
  1107. enable_irq(netdev->irq);
  1108. }
  1109. #endif
  1110. static const struct net_device_ops atl2_netdev_ops = {
  1111. .ndo_open = atl2_open,
  1112. .ndo_stop = atl2_close,
  1113. .ndo_start_xmit = atl2_xmit_frame,
  1114. .ndo_set_multicast_list = atl2_set_multi,
  1115. .ndo_validate_addr = eth_validate_addr,
  1116. .ndo_set_mac_address = atl2_set_mac,
  1117. .ndo_change_mtu = atl2_change_mtu,
  1118. .ndo_do_ioctl = atl2_ioctl,
  1119. .ndo_tx_timeout = atl2_tx_timeout,
  1120. .ndo_vlan_rx_register = atl2_vlan_rx_register,
  1121. #ifdef CONFIG_NET_POLL_CONTROLLER
  1122. .ndo_poll_controller = atl2_poll_controller,
  1123. #endif
  1124. };
  1125. /*
  1126. * atl2_probe - Device Initialization Routine
  1127. * @pdev: PCI device information struct
  1128. * @ent: entry in atl2_pci_tbl
  1129. *
  1130. * Returns 0 on success, negative on failure
  1131. *
  1132. * atl2_probe initializes an adapter identified by a pci_dev structure.
  1133. * The OS initialization, configuring of the adapter private structure,
  1134. * and a hardware reset occur.
  1135. */
  1136. static int __devinit atl2_probe(struct pci_dev *pdev,
  1137. const struct pci_device_id *ent)
  1138. {
  1139. struct net_device *netdev;
  1140. struct atl2_adapter *adapter;
  1141. static int cards_found;
  1142. unsigned long mmio_start;
  1143. int mmio_len;
  1144. int err;
  1145. cards_found = 0;
  1146. err = pci_enable_device(pdev);
  1147. if (err)
  1148. return err;
  1149. /*
  1150. * atl2 is a shared-high-32-bit device, so we're stuck with 32-bit DMA
  1151. * until the kernel has the proper infrastructure to support 64-bit DMA
  1152. * on these devices.
  1153. */
  1154. if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) &&
  1155. pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
  1156. printk(KERN_ERR "atl2: No usable DMA configuration, aborting\n");
  1157. goto err_dma;
  1158. }
  1159. /* Mark all PCI regions associated with PCI device
  1160. * pdev as being reserved by owner atl2_driver_name */
  1161. err = pci_request_regions(pdev, atl2_driver_name);
  1162. if (err)
  1163. goto err_pci_reg;
  1164. /* Enables bus-mastering on the device and calls
  1165. * pcibios_set_master to do the needed arch specific settings */
  1166. pci_set_master(pdev);
  1167. err = -ENOMEM;
  1168. netdev = alloc_etherdev(sizeof(struct atl2_adapter));
  1169. if (!netdev)
  1170. goto err_alloc_etherdev;
  1171. SET_NETDEV_DEV(netdev, &pdev->dev);
  1172. pci_set_drvdata(pdev, netdev);
  1173. adapter = netdev_priv(netdev);
  1174. adapter->netdev = netdev;
  1175. adapter->pdev = pdev;
  1176. adapter->hw.back = adapter;
  1177. mmio_start = pci_resource_start(pdev, 0x0);
  1178. mmio_len = pci_resource_len(pdev, 0x0);
  1179. adapter->hw.mem_rang = (u32)mmio_len;
  1180. adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
  1181. if (!adapter->hw.hw_addr) {
  1182. err = -EIO;
  1183. goto err_ioremap;
  1184. }
  1185. atl2_setup_pcicmd(pdev);
  1186. netdev->netdev_ops = &atl2_netdev_ops;
  1187. atl2_set_ethtool_ops(netdev);
  1188. netdev->watchdog_timeo = 5 * HZ;
  1189. strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
  1190. netdev->mem_start = mmio_start;
  1191. netdev->mem_end = mmio_start + mmio_len;
  1192. adapter->bd_number = cards_found;
  1193. adapter->pci_using_64 = false;
  1194. /* setup the private structure */
  1195. err = atl2_sw_init(adapter);
  1196. if (err)
  1197. goto err_sw_init;
  1198. err = -EIO;
  1199. #ifdef NETIF_F_HW_VLAN_TX
  1200. netdev->features |= (NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX);
  1201. #endif
  1202. /* Init PHY as early as possible due to power saving issue */
  1203. atl2_phy_init(&adapter->hw);
  1204. /* reset the controller to
  1205. * put the device in a known good starting state */
  1206. if (atl2_reset_hw(&adapter->hw)) {
  1207. err = -EIO;
  1208. goto err_reset;
  1209. }
  1210. /* copy the MAC address out of the EEPROM */
  1211. atl2_read_mac_addr(&adapter->hw);
  1212. memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
  1213. /* FIXME: do we still need this? */
  1214. #ifdef ETHTOOL_GPERMADDR
  1215. memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
  1216. if (!is_valid_ether_addr(netdev->perm_addr)) {
  1217. #else
  1218. if (!is_valid_ether_addr(netdev->dev_addr)) {
  1219. #endif
  1220. err = -EIO;
  1221. goto err_eeprom;
  1222. }
  1223. atl2_check_options(adapter);
  1224. init_timer(&adapter->watchdog_timer);
  1225. adapter->watchdog_timer.function = &atl2_watchdog;
  1226. adapter->watchdog_timer.data = (unsigned long) adapter;
  1227. init_timer(&adapter->phy_config_timer);
  1228. adapter->phy_config_timer.function = &atl2_phy_config;
  1229. adapter->phy_config_timer.data = (unsigned long) adapter;
  1230. INIT_WORK(&adapter->reset_task, atl2_reset_task);
  1231. INIT_WORK(&adapter->link_chg_task, atl2_link_chg_task);
  1232. strcpy(netdev->name, "eth%d"); /* ?? */
  1233. err = register_netdev(netdev);
  1234. if (err)
  1235. goto err_register;
  1236. /* assume we have no link for now */
  1237. netif_carrier_off(netdev);
  1238. netif_stop_queue(netdev);
  1239. cards_found++;
  1240. return 0;
  1241. err_reset:
  1242. err_register:
  1243. err_sw_init:
  1244. err_eeprom:
  1245. iounmap(adapter->hw.hw_addr);
  1246. err_ioremap:
  1247. free_netdev(netdev);
  1248. err_alloc_etherdev:
  1249. pci_release_regions(pdev);
  1250. err_pci_reg:
  1251. err_dma:
  1252. pci_disable_device(pdev);
  1253. return err;
  1254. }
  1255. /*
  1256. * atl2_remove - Device Removal Routine
  1257. * @pdev: PCI device information struct
  1258. *
  1259. * atl2_remove is called by the PCI subsystem to alert the driver
  1260. * that it should release a PCI device. The could be caused by a
  1261. * Hot-Plug event, or because the driver is going to be removed from
  1262. * memory.
  1263. */
  1264. /* FIXME: write the original MAC address back in case it was changed from a
  1265. * BIOS-set value, as in atl1 -- CHS */
  1266. static void __devexit atl2_remove(struct pci_dev *pdev)
  1267. {
  1268. struct net_device *netdev = pci_get_drvdata(pdev);
  1269. struct atl2_adapter *adapter = netdev_priv(netdev);
  1270. /* flush_scheduled work may reschedule our watchdog task, so
  1271. * explicitly disable watchdog tasks from being rescheduled */
  1272. set_bit(__ATL2_DOWN, &adapter->flags);
  1273. del_timer_sync(&adapter->watchdog_timer);
  1274. del_timer_sync(&adapter->phy_config_timer);
  1275. flush_scheduled_work();
  1276. unregister_netdev(netdev);
  1277. atl2_force_ps(&adapter->hw);
  1278. iounmap(adapter->hw.hw_addr);
  1279. pci_release_regions(pdev);
  1280. free_netdev(netdev);
  1281. pci_disable_device(pdev);
  1282. }
  1283. static int atl2_suspend(struct pci_dev *pdev, pm_message_t state)
  1284. {
  1285. struct net_device *netdev = pci_get_drvdata(pdev);
  1286. struct atl2_adapter *adapter = netdev_priv(netdev);
  1287. struct atl2_hw *hw = &adapter->hw;
  1288. u16 speed, duplex;
  1289. u32 ctrl = 0;
  1290. u32 wufc = adapter->wol;
  1291. #ifdef CONFIG_PM
  1292. int retval = 0;
  1293. #endif
  1294. netif_device_detach(netdev);
  1295. if (netif_running(netdev)) {
  1296. WARN_ON(test_bit(__ATL2_RESETTING, &adapter->flags));
  1297. atl2_down(adapter);
  1298. }
  1299. #ifdef CONFIG_PM
  1300. retval = pci_save_state(pdev);
  1301. if (retval)
  1302. return retval;
  1303. #endif
  1304. atl2_read_phy_reg(hw, MII_BMSR, (u16 *)&ctrl);
  1305. atl2_read_phy_reg(hw, MII_BMSR, (u16 *)&ctrl);
  1306. if (ctrl & BMSR_LSTATUS)
  1307. wufc &= ~ATLX_WUFC_LNKC;
  1308. if (0 != (ctrl & BMSR_LSTATUS) && 0 != wufc) {
  1309. u32 ret_val;
  1310. /* get current link speed & duplex */
  1311. ret_val = atl2_get_speed_and_duplex(hw, &speed, &duplex);
  1312. if (ret_val) {
  1313. printk(KERN_DEBUG
  1314. "%s: get speed&duplex error while suspend\n",
  1315. atl2_driver_name);
  1316. goto wol_dis;
  1317. }
  1318. ctrl = 0;
  1319. /* turn on magic packet wol */
  1320. if (wufc & ATLX_WUFC_MAG)
  1321. ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN);
  1322. /* ignore Link Chg event when Link is up */
  1323. ATL2_WRITE_REG(hw, REG_WOL_CTRL, ctrl);
  1324. /* Config MAC CTRL Register */
  1325. ctrl = MAC_CTRL_RX_EN | MAC_CTRL_MACLP_CLK_PHY;
  1326. if (FULL_DUPLEX == adapter->link_duplex)
  1327. ctrl |= MAC_CTRL_DUPLX;
  1328. ctrl |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
  1329. ctrl |= (((u32)adapter->hw.preamble_len &
  1330. MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
  1331. ctrl |= (((u32)(adapter->hw.retry_buf &
  1332. MAC_CTRL_HALF_LEFT_BUF_MASK)) <<
  1333. MAC_CTRL_HALF_LEFT_BUF_SHIFT);
  1334. if (wufc & ATLX_WUFC_MAG) {
  1335. /* magic packet maybe Broadcast&multicast&Unicast */
  1336. ctrl |= MAC_CTRL_BC_EN;
  1337. }
  1338. ATL2_WRITE_REG(hw, REG_MAC_CTRL, ctrl);
  1339. /* pcie patch */
  1340. ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC);
  1341. ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
  1342. ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
  1343. ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1);
  1344. ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK;
  1345. ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl);
  1346. pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
  1347. goto suspend_exit;
  1348. }
  1349. if (0 == (ctrl&BMSR_LSTATUS) && 0 != (wufc&ATLX_WUFC_LNKC)) {
  1350. /* link is down, so only LINK CHG WOL event enable */
  1351. ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
  1352. ATL2_WRITE_REG(hw, REG_WOL_CTRL, ctrl);
  1353. ATL2_WRITE_REG(hw, REG_MAC_CTRL, 0);
  1354. /* pcie patch */
  1355. ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC);
  1356. ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
  1357. ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
  1358. ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1);
  1359. ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK;
  1360. ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl);
  1361. hw->phy_configured = false; /* re-init PHY when resume */
  1362. pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
  1363. goto suspend_exit;
  1364. }
  1365. wol_dis:
  1366. /* WOL disabled */
  1367. ATL2_WRITE_REG(hw, REG_WOL_CTRL, 0);
  1368. /* pcie patch */
  1369. ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC);
  1370. ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
  1371. ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
  1372. ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1);
  1373. ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK;
  1374. ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl);
  1375. atl2_force_ps(hw);
  1376. hw->phy_configured = false; /* re-init PHY when resume */
  1377. pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
  1378. suspend_exit:
  1379. if (netif_running(netdev))
  1380. atl2_free_irq(adapter);
  1381. pci_disable_device(pdev);
  1382. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  1383. return 0;
  1384. }
  1385. #ifdef CONFIG_PM
  1386. static int atl2_resume(struct pci_dev *pdev)
  1387. {
  1388. struct net_device *netdev = pci_get_drvdata(pdev);
  1389. struct atl2_adapter *adapter = netdev_priv(netdev);
  1390. u32 err;
  1391. pci_set_power_state(pdev, PCI_D0);
  1392. pci_restore_state(pdev);
  1393. err = pci_enable_device(pdev);
  1394. if (err) {
  1395. printk(KERN_ERR
  1396. "atl2: Cannot enable PCI device from suspend\n");
  1397. return err;
  1398. }
  1399. pci_set_master(pdev);
  1400. ATL2_READ_REG(&adapter->hw, REG_WOL_CTRL); /* clear WOL status */
  1401. pci_enable_wake(pdev, PCI_D3hot, 0);
  1402. pci_enable_wake(pdev, PCI_D3cold, 0);
  1403. ATL2_WRITE_REG(&adapter->hw, REG_WOL_CTRL, 0);
  1404. if (netif_running(netdev)) {
  1405. err = atl2_request_irq(adapter);
  1406. if (err)
  1407. return err;
  1408. }
  1409. atl2_reset_hw(&adapter->hw);
  1410. if (netif_running(netdev))
  1411. atl2_up(adapter);
  1412. netif_device_attach(netdev);
  1413. return 0;
  1414. }
  1415. #endif
  1416. static void atl2_shutdown(struct pci_dev *pdev)
  1417. {
  1418. atl2_suspend(pdev, PMSG_SUSPEND);
  1419. }
  1420. static struct pci_driver atl2_driver = {
  1421. .name = atl2_driver_name,
  1422. .id_table = atl2_pci_tbl,
  1423. .probe = atl2_probe,
  1424. .remove = __devexit_p(atl2_remove),
  1425. /* Power Managment Hooks */
  1426. .suspend = atl2_suspend,
  1427. #ifdef CONFIG_PM
  1428. .resume = atl2_resume,
  1429. #endif
  1430. .shutdown = atl2_shutdown,
  1431. };
  1432. /*
  1433. * atl2_init_module - Driver Registration Routine
  1434. *
  1435. * atl2_init_module is the first routine called when the driver is
  1436. * loaded. All it does is register with the PCI subsystem.
  1437. */
  1438. static int __init atl2_init_module(void)
  1439. {
  1440. printk(KERN_INFO "%s - version %s\n", atl2_driver_string,
  1441. atl2_driver_version);
  1442. printk(KERN_INFO "%s\n", atl2_copyright);
  1443. return pci_register_driver(&atl2_driver);
  1444. }
  1445. module_init(atl2_init_module);
  1446. /*
  1447. * atl2_exit_module - Driver Exit Cleanup Routine
  1448. *
  1449. * atl2_exit_module is called just before the driver is removed
  1450. * from memory.
  1451. */
  1452. static void __exit atl2_exit_module(void)
  1453. {
  1454. pci_unregister_driver(&atl2_driver);
  1455. }
  1456. module_exit(atl2_exit_module);
  1457. static void atl2_read_pci_cfg(struct atl2_hw *hw, u32 reg, u16 *value)
  1458. {
  1459. struct atl2_adapter *adapter = hw->back;
  1460. pci_read_config_word(adapter->pdev, reg, value);
  1461. }
  1462. static void atl2_write_pci_cfg(struct atl2_hw *hw, u32 reg, u16 *value)
  1463. {
  1464. struct atl2_adapter *adapter = hw->back;
  1465. pci_write_config_word(adapter->pdev, reg, *value);
  1466. }
  1467. static int atl2_get_settings(struct net_device *netdev,
  1468. struct ethtool_cmd *ecmd)
  1469. {
  1470. struct atl2_adapter *adapter = netdev_priv(netdev);
  1471. struct atl2_hw *hw = &adapter->hw;
  1472. ecmd->supported = (SUPPORTED_10baseT_Half |
  1473. SUPPORTED_10baseT_Full |
  1474. SUPPORTED_100baseT_Half |
  1475. SUPPORTED_100baseT_Full |
  1476. SUPPORTED_Autoneg |
  1477. SUPPORTED_TP);
  1478. ecmd->advertising = ADVERTISED_TP;
  1479. ecmd->advertising |= ADVERTISED_Autoneg;
  1480. ecmd->advertising |= hw->autoneg_advertised;
  1481. ecmd->port = PORT_TP;
  1482. ecmd->phy_address = 0;
  1483. ecmd->transceiver = XCVR_INTERNAL;
  1484. if (adapter->link_speed != SPEED_0) {
  1485. ecmd->speed = adapter->link_speed;
  1486. if (adapter->link_duplex == FULL_DUPLEX)
  1487. ecmd->duplex = DUPLEX_FULL;
  1488. else
  1489. ecmd->duplex = DUPLEX_HALF;
  1490. } else {
  1491. ecmd->speed = -1;
  1492. ecmd->duplex = -1;
  1493. }
  1494. ecmd->autoneg = AUTONEG_ENABLE;
  1495. return 0;
  1496. }
  1497. static int atl2_set_settings(struct net_device *netdev,
  1498. struct ethtool_cmd *ecmd)
  1499. {
  1500. struct atl2_adapter *adapter = netdev_priv(netdev);
  1501. struct atl2_hw *hw = &adapter->hw;
  1502. while (test_and_set_bit(__ATL2_RESETTING, &adapter->flags))
  1503. msleep(1);
  1504. if (ecmd->autoneg == AUTONEG_ENABLE) {
  1505. #define MY_ADV_MASK (ADVERTISE_10_HALF | \
  1506. ADVERTISE_10_FULL | \
  1507. ADVERTISE_100_HALF| \
  1508. ADVERTISE_100_FULL)
  1509. if ((ecmd->advertising & MY_ADV_MASK) == MY_ADV_MASK) {
  1510. hw->MediaType = MEDIA_TYPE_AUTO_SENSOR;
  1511. hw->autoneg_advertised = MY_ADV_MASK;
  1512. } else if ((ecmd->advertising & MY_ADV_MASK) ==
  1513. ADVERTISE_100_FULL) {
  1514. hw->MediaType = MEDIA_TYPE_100M_FULL;
  1515. hw->autoneg_advertised = ADVERTISE_100_FULL;
  1516. } else if ((ecmd->advertising & MY_ADV_MASK) ==
  1517. ADVERTISE_100_HALF) {
  1518. hw->MediaType = MEDIA_TYPE_100M_HALF;
  1519. hw->autoneg_advertised = ADVERTISE_100_HALF;
  1520. } else if ((ecmd->advertising & MY_ADV_MASK) ==
  1521. ADVERTISE_10_FULL) {
  1522. hw->MediaType = MEDIA_TYPE_10M_FULL;
  1523. hw->autoneg_advertised = ADVERTISE_10_FULL;
  1524. } else if ((ecmd->advertising & MY_ADV_MASK) ==
  1525. ADVERTISE_10_HALF) {
  1526. hw->MediaType = MEDIA_TYPE_10M_HALF;
  1527. hw->autoneg_advertised = ADVERTISE_10_HALF;
  1528. } else {
  1529. clear_bit(__ATL2_RESETTING, &adapter->flags);
  1530. return -EINVAL;
  1531. }
  1532. ecmd->advertising = hw->autoneg_advertised |
  1533. ADVERTISED_TP | ADVERTISED_Autoneg;
  1534. } else {
  1535. clear_bit(__ATL2_RESETTING, &adapter->flags);
  1536. return -EINVAL;
  1537. }
  1538. /* reset the link */
  1539. if (netif_running(adapter->netdev)) {
  1540. atl2_down(adapter);
  1541. atl2_up(adapter);
  1542. } else
  1543. atl2_reset_hw(&adapter->hw);
  1544. clear_bit(__ATL2_RESETTING, &adapter->flags);
  1545. return 0;
  1546. }
  1547. static u32 atl2_get_tx_csum(struct net_device *netdev)
  1548. {
  1549. return (netdev->features & NETIF_F_HW_CSUM) != 0;
  1550. }
  1551. static u32 atl2_get_msglevel(struct net_device *netdev)
  1552. {
  1553. return 0;
  1554. }
  1555. /*
  1556. * It's sane for this to be empty, but we might want to take advantage of this.
  1557. */
  1558. static void atl2_set_msglevel(struct net_device *netdev, u32 data)
  1559. {
  1560. }
  1561. static int atl2_get_regs_len(struct net_device *netdev)
  1562. {
  1563. #define ATL2_REGS_LEN 42
  1564. return sizeof(u32) * ATL2_REGS_LEN;
  1565. }
  1566. static void atl2_get_regs(struct net_device *netdev,
  1567. struct ethtool_regs *regs, void *p)
  1568. {
  1569. struct atl2_adapter *adapter = netdev_priv(netdev);
  1570. struct atl2_hw *hw = &adapter->hw;
  1571. u32 *regs_buff = p;
  1572. u16 phy_data;
  1573. memset(p, 0, sizeof(u32) * ATL2_REGS_LEN);
  1574. regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
  1575. regs_buff[0] = ATL2_READ_REG(hw, REG_VPD_CAP);
  1576. regs_buff[1] = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL);
  1577. regs_buff[2] = ATL2_READ_REG(hw, REG_SPI_FLASH_CONFIG);
  1578. regs_buff[3] = ATL2_READ_REG(hw, REG_TWSI_CTRL);
  1579. regs_buff[4] = ATL2_READ_REG(hw, REG_PCIE_DEV_MISC_CTRL);
  1580. regs_buff[5] = ATL2_READ_REG(hw, REG_MASTER_CTRL);
  1581. regs_buff[6] = ATL2_READ_REG(hw, REG_MANUAL_TIMER_INIT);
  1582. regs_buff[7] = ATL2_READ_REG(hw, REG_IRQ_MODU_TIMER_INIT);
  1583. regs_buff[8] = ATL2_READ_REG(hw, REG_PHY_ENABLE);
  1584. regs_buff[9] = ATL2_READ_REG(hw, REG_CMBDISDMA_TIMER);
  1585. regs_buff[10] = ATL2_READ_REG(hw, REG_IDLE_STATUS);
  1586. regs_buff[11] = ATL2_READ_REG(hw, REG_MDIO_CTRL);
  1587. regs_buff[12] = ATL2_READ_REG(hw, REG_SERDES_LOCK);
  1588. regs_buff[13] = ATL2_READ_REG(hw, REG_MAC_CTRL);
  1589. regs_buff[14] = ATL2_READ_REG(hw, REG_MAC_IPG_IFG);
  1590. regs_buff[15] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR);
  1591. regs_buff[16] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR+4);
  1592. regs_buff[17] = ATL2_READ_REG(hw, REG_RX_HASH_TABLE);
  1593. regs_buff[18] = ATL2_READ_REG(hw, REG_RX_HASH_TABLE+4);
  1594. regs_buff[19] = ATL2_READ_REG(hw, REG_MAC_HALF_DUPLX_CTRL);
  1595. regs_buff[20] = ATL2_READ_REG(hw, REG_MTU);
  1596. regs_buff[21] = ATL2_READ_REG(hw, REG_WOL_CTRL);
  1597. regs_buff[22] = ATL2_READ_REG(hw, REG_SRAM_TXRAM_END);
  1598. regs_buff[23] = ATL2_READ_REG(hw, REG_DESC_BASE_ADDR_HI);
  1599. regs_buff[24] = ATL2_READ_REG(hw, REG_TXD_BASE_ADDR_LO);
  1600. regs_buff[25] = ATL2_READ_REG(hw, REG_TXD_MEM_SIZE);
  1601. regs_buff[26] = ATL2_READ_REG(hw, REG_TXS_BASE_ADDR_LO);
  1602. regs_buff[27] = ATL2_READ_REG(hw, REG_TXS_MEM_SIZE);
  1603. regs_buff[28] = ATL2_READ_REG(hw, REG_RXD_BASE_ADDR_LO);
  1604. regs_buff[29] = ATL2_READ_REG(hw, REG_RXD_BUF_NUM);
  1605. regs_buff[30] = ATL2_READ_REG(hw, REG_DMAR);
  1606. regs_buff[31] = ATL2_READ_REG(hw, REG_TX_CUT_THRESH);
  1607. regs_buff[32] = ATL2_READ_REG(hw, REG_DMAW);
  1608. regs_buff[33] = ATL2_READ_REG(hw, REG_PAUSE_ON_TH);
  1609. regs_buff[34] = ATL2_READ_REG(hw, REG_PAUSE_OFF_TH);
  1610. regs_buff[35] = ATL2_READ_REG(hw, REG_MB_TXD_WR_IDX);
  1611. regs_buff[36] = ATL2_READ_REG(hw, REG_MB_RXD_RD_IDX);
  1612. regs_buff[38] = ATL2_READ_REG(hw, REG_ISR);
  1613. regs_buff[39] = ATL2_READ_REG(hw, REG_IMR);
  1614. atl2_read_phy_reg(hw, MII_BMCR, &phy_data);
  1615. regs_buff[40] = (u32)phy_data;
  1616. atl2_read_phy_reg(hw, MII_BMSR, &phy_data);
  1617. regs_buff[41] = (u32)phy_data;
  1618. }
  1619. static int atl2_get_eeprom_len(struct net_device *netdev)
  1620. {
  1621. struct atl2_adapter *adapter = netdev_priv(netdev);
  1622. if (!atl2_check_eeprom_exist(&adapter->hw))
  1623. return 512;
  1624. else
  1625. return 0;
  1626. }
  1627. static int atl2_get_eeprom(struct net_device *netdev,
  1628. struct ethtool_eeprom *eeprom, u8 *bytes)
  1629. {
  1630. struct atl2_adapter *adapter = netdev_priv(netdev);
  1631. struct atl2_hw *hw = &adapter->hw;
  1632. u32 *eeprom_buff;
  1633. int first_dword, last_dword;
  1634. int ret_val = 0;
  1635. int i;
  1636. if (eeprom->len == 0)
  1637. return -EINVAL;
  1638. if (atl2_check_eeprom_exist(hw))
  1639. return -EINVAL;
  1640. eeprom->magic = hw->vendor_id | (hw->device_id << 16);
  1641. first_dword = eeprom->offset >> 2;
  1642. last_dword = (eeprom->offset + eeprom->len - 1) >> 2;
  1643. eeprom_buff = kmalloc(sizeof(u32) * (last_dword - first_dword + 1),
  1644. GFP_KERNEL);
  1645. if (!eeprom_buff)
  1646. return -ENOMEM;
  1647. for (i = first_dword; i < last_dword; i++) {
  1648. if (!atl2_read_eeprom(hw, i*4, &(eeprom_buff[i-first_dword])))
  1649. return -EIO;
  1650. }
  1651. memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 3),
  1652. eeprom->len);
  1653. kfree(eeprom_buff);
  1654. return ret_val;
  1655. }
  1656. static int atl2_set_eeprom(struct net_device *netdev,
  1657. struct ethtool_eeprom *eeprom, u8 *bytes)
  1658. {
  1659. struct atl2_adapter *adapter = netdev_priv(netdev);
  1660. struct atl2_hw *hw = &adapter->hw;
  1661. u32 *eeprom_buff;
  1662. u32 *ptr;
  1663. int max_len, first_dword, last_dword, ret_val = 0;
  1664. int i;
  1665. if (eeprom->len == 0)
  1666. return -EOPNOTSUPP;
  1667. if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
  1668. return -EFAULT;
  1669. max_len = 512;
  1670. first_dword = eeprom->offset >> 2;
  1671. last_dword = (eeprom->offset + eeprom->len - 1) >> 2;
  1672. eeprom_buff = kmalloc(max_len, GFP_KERNEL);
  1673. if (!eeprom_buff)
  1674. return -ENOMEM;
  1675. ptr = (u32 *)eeprom_buff;
  1676. if (eeprom->offset & 3) {
  1677. /* need read/modify/write of first changed EEPROM word */
  1678. /* only the second byte of the word is being modified */
  1679. if (!atl2_read_eeprom(hw, first_dword*4, &(eeprom_buff[0])))
  1680. return -EIO;
  1681. ptr++;
  1682. }
  1683. if (((eeprom->offset + eeprom->len) & 3)) {
  1684. /*
  1685. * need read/modify/write of last changed EEPROM word
  1686. * only the first byte of the word is being modified
  1687. */
  1688. if (!atl2_read_eeprom(hw, last_dword * 4,
  1689. &(eeprom_buff[last_dword - first_dword])))
  1690. return -EIO;
  1691. }
  1692. /* Device's eeprom is always little-endian, word addressable */
  1693. memcpy(ptr, bytes, eeprom->len);
  1694. for (i = 0; i < last_dword - first_dword + 1; i++) {
  1695. if (!atl2_write_eeprom(hw, ((first_dword+i)*4), eeprom_buff[i]))
  1696. return -EIO;
  1697. }
  1698. kfree(eeprom_buff);
  1699. return ret_val;
  1700. }
  1701. static void atl2_get_drvinfo(struct net_device *netdev,
  1702. struct ethtool_drvinfo *drvinfo)
  1703. {
  1704. struct atl2_adapter *adapter = netdev_priv(netdev);
  1705. strncpy(drvinfo->driver, atl2_driver_name, 32);
  1706. strncpy(drvinfo->version, atl2_driver_version, 32);
  1707. strncpy(drvinfo->fw_version, "L2", 32);
  1708. strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
  1709. drvinfo->n_stats = 0;
  1710. drvinfo->testinfo_len = 0;
  1711. drvinfo->regdump_len = atl2_get_regs_len(netdev);
  1712. drvinfo->eedump_len = atl2_get_eeprom_len(netdev);
  1713. }
  1714. static void atl2_get_wol(struct net_device *netdev,
  1715. struct ethtool_wolinfo *wol)
  1716. {
  1717. struct atl2_adapter *adapter = netdev_priv(netdev);
  1718. wol->supported = WAKE_MAGIC;
  1719. wol->wolopts = 0;
  1720. if (adapter->wol & ATLX_WUFC_EX)
  1721. wol->wolopts |= WAKE_UCAST;
  1722. if (adapter->wol & ATLX_WUFC_MC)
  1723. wol->wolopts |= WAKE_MCAST;
  1724. if (adapter->wol & ATLX_WUFC_BC)
  1725. wol->wolopts |= WAKE_BCAST;
  1726. if (adapter->wol & ATLX_WUFC_MAG)
  1727. wol->wolopts |= WAKE_MAGIC;
  1728. if (adapter->wol & ATLX_WUFC_LNKC)
  1729. wol->wolopts |= WAKE_PHY;
  1730. }
  1731. static int atl2_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
  1732. {
  1733. struct atl2_adapter *adapter = netdev_priv(netdev);
  1734. if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
  1735. return -EOPNOTSUPP;
  1736. if (wol->wolopts & (WAKE_UCAST | WAKE_BCAST | WAKE_MCAST))
  1737. return -EOPNOTSUPP;
  1738. /* these settings will always override what we currently have */
  1739. adapter->wol = 0;
  1740. if (wol->wolopts & WAKE_MAGIC)
  1741. adapter->wol |= ATLX_WUFC_MAG;
  1742. if (wol->wolopts & WAKE_PHY)
  1743. adapter->wol |= ATLX_WUFC_LNKC;
  1744. return 0;
  1745. }
  1746. static int atl2_nway_reset(struct net_device *netdev)
  1747. {
  1748. struct atl2_adapter *adapter = netdev_priv(netdev);
  1749. if (netif_running(netdev))
  1750. atl2_reinit_locked(adapter);
  1751. return 0;
  1752. }
  1753. static struct ethtool_ops atl2_ethtool_ops = {
  1754. .get_settings = atl2_get_settings,
  1755. .set_settings = atl2_set_settings,
  1756. .get_drvinfo = atl2_get_drvinfo,
  1757. .get_regs_len = atl2_get_regs_len,
  1758. .get_regs = atl2_get_regs,
  1759. .get_wol = atl2_get_wol,
  1760. .set_wol = atl2_set_wol,
  1761. .get_msglevel = atl2_get_msglevel,
  1762. .set_msglevel = atl2_set_msglevel,
  1763. .nway_reset = atl2_nway_reset,
  1764. .get_link = ethtool_op_get_link,
  1765. .get_eeprom_len = atl2_get_eeprom_len,
  1766. .get_eeprom = atl2_get_eeprom,
  1767. .set_eeprom = atl2_set_eeprom,
  1768. .get_tx_csum = atl2_get_tx_csum,
  1769. .get_sg = ethtool_op_get_sg,
  1770. .set_sg = ethtool_op_set_sg,
  1771. #ifdef NETIF_F_TSO
  1772. .get_tso = ethtool_op_get_tso,
  1773. #endif
  1774. };
  1775. static void atl2_set_ethtool_ops(struct net_device *netdev)
  1776. {
  1777. SET_ETHTOOL_OPS(netdev, &atl2_ethtool_ops);
  1778. }
  1779. #define LBYTESWAP(a) ((((a) & 0x00ff00ff) << 8) | \
  1780. (((a) & 0xff00ff00) >> 8))
  1781. #define LONGSWAP(a) ((LBYTESWAP(a) << 16) | (LBYTESWAP(a) >> 16))
  1782. #define SHORTSWAP(a) (((a) << 8) | ((a) >> 8))
  1783. /*
  1784. * Reset the transmit and receive units; mask and clear all interrupts.
  1785. *
  1786. * hw - Struct containing variables accessed by shared code
  1787. * return : 0 or idle status (if error)
  1788. */
  1789. static s32 atl2_reset_hw(struct atl2_hw *hw)
  1790. {
  1791. u32 icr;
  1792. u16 pci_cfg_cmd_word;
  1793. int i;
  1794. /* Workaround for PCI problem when BIOS sets MMRBC incorrectly. */
  1795. atl2_read_pci_cfg(hw, PCI_REG_COMMAND, &pci_cfg_cmd_word);
  1796. if ((pci_cfg_cmd_word &
  1797. (CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER)) !=
  1798. (CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER)) {
  1799. pci_cfg_cmd_word |=
  1800. (CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER);
  1801. atl2_write_pci_cfg(hw, PCI_REG_COMMAND, &pci_cfg_cmd_word);
  1802. }
  1803. /* Clear Interrupt mask to stop board from generating
  1804. * interrupts & Clear any pending interrupt events
  1805. */
  1806. /* FIXME */
  1807. /* ATL2_WRITE_REG(hw, REG_IMR, 0); */
  1808. /* ATL2_WRITE_REG(hw, REG_ISR, 0xffffffff); */
  1809. /* Issue Soft Reset to the MAC. This will reset the chip's
  1810. * transmit, receive, DMA. It will not effect
  1811. * the current PCI configuration. The global reset bit is self-
  1812. * clearing, and should clear within a microsecond.
  1813. */
  1814. ATL2_WRITE_REG(hw, REG_MASTER_CTRL, MASTER_CTRL_SOFT_RST);
  1815. wmb();
  1816. msleep(1); /* delay about 1ms */
  1817. /* Wait at least 10ms for All module to be Idle */
  1818. for (i = 0; i < 10; i++) {
  1819. icr = ATL2_READ_REG(hw, REG_IDLE_STATUS);
  1820. if (!icr)
  1821. break;
  1822. msleep(1); /* delay 1 ms */
  1823. cpu_relax();
  1824. }
  1825. if (icr)
  1826. return icr;
  1827. return 0;
  1828. }
  1829. #define CUSTOM_SPI_CS_SETUP 2
  1830. #define CUSTOM_SPI_CLK_HI 2
  1831. #define CUSTOM_SPI_CLK_LO 2
  1832. #define CUSTOM_SPI_CS_HOLD 2
  1833. #define CUSTOM_SPI_CS_HI 3
  1834. static struct atl2_spi_flash_dev flash_table[] =
  1835. {
  1836. /* MFR WRSR READ PROGRAM WREN WRDI RDSR RDID SECTOR_ERASE CHIP_ERASE */
  1837. {"Atmel", 0x0, 0x03, 0x02, 0x06, 0x04, 0x05, 0x15, 0x52, 0x62 },
  1838. {"SST", 0x01, 0x03, 0x02, 0x06, 0x04, 0x05, 0x90, 0x20, 0x60 },
  1839. {"ST", 0x01, 0x03, 0x02, 0x06, 0x04, 0x05, 0xAB, 0xD8, 0xC7 },
  1840. };
  1841. static bool atl2_spi_read(struct atl2_hw *hw, u32 addr, u32 *buf)
  1842. {
  1843. int i;
  1844. u32 value;
  1845. ATL2_WRITE_REG(hw, REG_SPI_DATA, 0);
  1846. ATL2_WRITE_REG(hw, REG_SPI_ADDR, addr);
  1847. value = SPI_FLASH_CTRL_WAIT_READY |
  1848. (CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
  1849. SPI_FLASH_CTRL_CS_SETUP_SHIFT |
  1850. (CUSTOM_SPI_CLK_HI & SPI_FLASH_CTRL_CLK_HI_MASK) <<
  1851. SPI_FLASH_CTRL_CLK_HI_SHIFT |
  1852. (CUSTOM_SPI_CLK_LO & SPI_FLASH_CTRL_CLK_LO_MASK) <<
  1853. SPI_FLASH_CTRL_CLK_LO_SHIFT |
  1854. (CUSTOM_SPI_CS_HOLD & SPI_FLASH_CTRL_CS_HOLD_MASK) <<
  1855. SPI_FLASH_CTRL_CS_HOLD_SHIFT |
  1856. (CUSTOM_SPI_CS_HI & SPI_FLASH_CTRL_CS_HI_MASK) <<
  1857. SPI_FLASH_CTRL_CS_HI_SHIFT |
  1858. (0x1 & SPI_FLASH_CTRL_INS_MASK) << SPI_FLASH_CTRL_INS_SHIFT;
  1859. ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
  1860. value |= SPI_FLASH_CTRL_START;
  1861. ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
  1862. for (i = 0; i < 10; i++) {
  1863. msleep(1);
  1864. value = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL);
  1865. if (!(value & SPI_FLASH_CTRL_START))
  1866. break;
  1867. }
  1868. if (value & SPI_FLASH_CTRL_START)
  1869. return false;
  1870. *buf = ATL2_READ_REG(hw, REG_SPI_DATA);
  1871. return true;
  1872. }
  1873. /*
  1874. * get_permanent_address
  1875. * return 0 if get valid mac address,
  1876. */
  1877. static int get_permanent_address(struct atl2_hw *hw)
  1878. {
  1879. u32 Addr[2];
  1880. u32 i, Control;
  1881. u16 Register;
  1882. u8 EthAddr[NODE_ADDRESS_SIZE];
  1883. bool KeyValid;
  1884. if (is_valid_ether_addr(hw->perm_mac_addr))
  1885. return 0;
  1886. Addr[0] = 0;
  1887. Addr[1] = 0;
  1888. if (!atl2_check_eeprom_exist(hw)) { /* eeprom exists */
  1889. Register = 0;
  1890. KeyValid = false;
  1891. /* Read out all EEPROM content */
  1892. i = 0;
  1893. while (1) {
  1894. if (atl2_read_eeprom(hw, i + 0x100, &Control)) {
  1895. if (KeyValid) {
  1896. if (Register == REG_MAC_STA_ADDR)
  1897. Addr[0] = Control;
  1898. else if (Register ==
  1899. (REG_MAC_STA_ADDR + 4))
  1900. Addr[1] = Control;
  1901. KeyValid = false;
  1902. } else if ((Control & 0xff) == 0x5A) {
  1903. KeyValid = true;
  1904. Register = (u16) (Control >> 16);
  1905. } else {
  1906. /* assume data end while encount an invalid KEYWORD */
  1907. break;
  1908. }
  1909. } else {
  1910. break; /* read error */
  1911. }
  1912. i += 4;
  1913. }
  1914. *(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]);
  1915. *(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *) &Addr[1]);
  1916. if (is_valid_ether_addr(EthAddr)) {
  1917. memcpy(hw->perm_mac_addr, EthAddr, NODE_ADDRESS_SIZE);
  1918. return 0;
  1919. }
  1920. return 1;
  1921. }
  1922. /* see if SPI flash exists? */
  1923. Addr[0] = 0;
  1924. Addr[1] = 0;
  1925. Register = 0;
  1926. KeyValid = false;
  1927. i = 0;
  1928. while (1) {
  1929. if (atl2_spi_read(hw, i + 0x1f000, &Control)) {
  1930. if (KeyValid) {
  1931. if (Register == REG_MAC_STA_ADDR)
  1932. Addr[0] = Control;
  1933. else if (Register == (REG_MAC_STA_ADDR + 4))
  1934. Addr[1] = Control;
  1935. KeyValid = false;
  1936. } else if ((Control & 0xff) == 0x5A) {
  1937. KeyValid = true;
  1938. Register = (u16) (Control >> 16);
  1939. } else {
  1940. break; /* data end */
  1941. }
  1942. } else {
  1943. break; /* read error */
  1944. }
  1945. i += 4;
  1946. }
  1947. *(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]);
  1948. *(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *)&Addr[1]);
  1949. if (is_valid_ether_addr(EthAddr)) {
  1950. memcpy(hw->perm_mac_addr, EthAddr, NODE_ADDRESS_SIZE);
  1951. return 0;
  1952. }
  1953. /* maybe MAC-address is from BIOS */
  1954. Addr[0] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR);
  1955. Addr[1] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR + 4);
  1956. *(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]);
  1957. *(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *) &Addr[1]);
  1958. if (is_valid_ether_addr(EthAddr)) {
  1959. memcpy(hw->perm_mac_addr, EthAddr, NODE_ADDRESS_SIZE);
  1960. return 0;
  1961. }
  1962. return 1;
  1963. }
  1964. /*
  1965. * Reads the adapter's MAC address from the EEPROM
  1966. *
  1967. * hw - Struct containing variables accessed by shared code
  1968. */
  1969. static s32 atl2_read_mac_addr(struct atl2_hw *hw)
  1970. {
  1971. u16 i;
  1972. if (get_permanent_address(hw)) {
  1973. /* for test */
  1974. /* FIXME: shouldn't we use random_ether_addr() here? */
  1975. hw->perm_mac_addr[0] = 0x00;
  1976. hw->perm_mac_addr[1] = 0x13;
  1977. hw->perm_mac_addr[2] = 0x74;
  1978. hw->perm_mac_addr[3] = 0x00;
  1979. hw->perm_mac_addr[4] = 0x5c;
  1980. hw->perm_mac_addr[5] = 0x38;
  1981. }
  1982. for (i = 0; i < NODE_ADDRESS_SIZE; i++)
  1983. hw->mac_addr[i] = hw->perm_mac_addr[i];
  1984. return 0;
  1985. }
  1986. /*
  1987. * Hashes an address to determine its location in the multicast table
  1988. *
  1989. * hw - Struct containing variables accessed by shared code
  1990. * mc_addr - the multicast address to hash
  1991. *
  1992. * atl2_hash_mc_addr
  1993. * purpose
  1994. * set hash value for a multicast address
  1995. * hash calcu processing :
  1996. * 1. calcu 32bit CRC for multicast address
  1997. * 2. reverse crc with MSB to LSB
  1998. */
  1999. static u32 atl2_hash_mc_addr(struct atl2_hw *hw, u8 *mc_addr)
  2000. {
  2001. u32 crc32, value;
  2002. int i;
  2003. value = 0;
  2004. crc32 = ether_crc_le(6, mc_addr);
  2005. for (i = 0; i < 32; i++)
  2006. value |= (((crc32 >> i) & 1) << (31 - i));
  2007. return value;
  2008. }
  2009. /*
  2010. * Sets the bit in the multicast table corresponding to the hash value.
  2011. *
  2012. * hw - Struct containing variables accessed by shared code
  2013. * hash_value - Multicast address hash value
  2014. */
  2015. static void atl2_hash_set(struct atl2_hw *hw, u32 hash_value)
  2016. {
  2017. u32 hash_bit, hash_reg;
  2018. u32 mta;
  2019. /* The HASH Table is a register array of 2 32-bit registers.
  2020. * It is treated like an array of 64 bits. We want to set
  2021. * bit BitArray[hash_value]. So we figure out what register
  2022. * the bit is in, read it, OR in the new bit, then write
  2023. * back the new value. The register is determined by the
  2024. * upper 7 bits of the hash value and the bit within that
  2025. * register are determined by the lower 5 bits of the value.
  2026. */
  2027. hash_reg = (hash_value >> 31) & 0x1;
  2028. hash_bit = (hash_value >> 26) & 0x1F;
  2029. mta = ATL2_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg);
  2030. mta |= (1 << hash_bit);
  2031. ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta);
  2032. }
  2033. /*
  2034. * atl2_init_pcie - init PCIE module
  2035. */
  2036. static void atl2_init_pcie(struct atl2_hw *hw)
  2037. {
  2038. u32 value;
  2039. value = LTSSM_TEST_MODE_DEF;
  2040. ATL2_WRITE_REG(hw, REG_LTSSM_TEST_MODE, value);
  2041. value = PCIE_DLL_TX_CTRL1_DEF;
  2042. ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, value);
  2043. }
  2044. static void atl2_init_flash_opcode(struct atl2_hw *hw)
  2045. {
  2046. if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
  2047. hw->flash_vendor = 0; /* ATMEL */
  2048. /* Init OP table */
  2049. ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_PROGRAM,
  2050. flash_table[hw->flash_vendor].cmdPROGRAM);
  2051. ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_SC_ERASE,
  2052. flash_table[hw->flash_vendor].cmdSECTOR_ERASE);
  2053. ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_CHIP_ERASE,
  2054. flash_table[hw->flash_vendor].cmdCHIP_ERASE);
  2055. ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_RDID,
  2056. flash_table[hw->flash_vendor].cmdRDID);
  2057. ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_WREN,
  2058. flash_table[hw->flash_vendor].cmdWREN);
  2059. ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_RDSR,
  2060. flash_table[hw->flash_vendor].cmdRDSR);
  2061. ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_WRSR,
  2062. flash_table[hw->flash_vendor].cmdWRSR);
  2063. ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_READ,
  2064. flash_table[hw->flash_vendor].cmdREAD);
  2065. }
  2066. /********************************************************************
  2067. * Performs basic configuration of the adapter.
  2068. *
  2069. * hw - Struct containing variables accessed by shared code
  2070. * Assumes that the controller has previously been reset and is in a
  2071. * post-reset uninitialized state. Initializes multicast table,
  2072. * and Calls routines to setup link
  2073. * Leaves the transmit and receive units disabled and uninitialized.
  2074. ********************************************************************/
  2075. static s32 atl2_init_hw(struct atl2_hw *hw)
  2076. {
  2077. u32 ret_val = 0;
  2078. atl2_init_pcie(hw);
  2079. /* Zero out the Multicast HASH table */
  2080. /* clear the old settings from the multicast hash table */
  2081. ATL2_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
  2082. ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
  2083. atl2_init_flash_opcode(hw);
  2084. ret_val = atl2_phy_init(hw);
  2085. return ret_val;
  2086. }
  2087. /*
  2088. * Detects the current speed and duplex settings of the hardware.
  2089. *
  2090. * hw - Struct containing variables accessed by shared code
  2091. * speed - Speed of the connection
  2092. * duplex - Duplex setting of the connection
  2093. */
  2094. static s32 atl2_get_speed_and_duplex(struct atl2_hw *hw, u16 *speed,
  2095. u16 *duplex)
  2096. {
  2097. s32 ret_val;
  2098. u16 phy_data;
  2099. /* Read PHY Specific Status Register (17) */
  2100. ret_val = atl2_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
  2101. if (ret_val)
  2102. return ret_val;
  2103. if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
  2104. return ATLX_ERR_PHY_RES;
  2105. switch (phy_data & MII_ATLX_PSSR_SPEED) {
  2106. case MII_ATLX_PSSR_100MBS:
  2107. *speed = SPEED_100;
  2108. break;
  2109. case MII_ATLX_PSSR_10MBS:
  2110. *speed = SPEED_10;
  2111. break;
  2112. default:
  2113. return ATLX_ERR_PHY_SPEED;
  2114. break;
  2115. }
  2116. if (phy_data & MII_ATLX_PSSR_DPLX)
  2117. *duplex = FULL_DUPLEX;
  2118. else
  2119. *duplex = HALF_DUPLEX;
  2120. return 0;
  2121. }
  2122. /*
  2123. * Reads the value from a PHY register
  2124. * hw - Struct containing variables accessed by shared code
  2125. * reg_addr - address of the PHY register to read
  2126. */
  2127. static s32 atl2_read_phy_reg(struct atl2_hw *hw, u16 reg_addr, u16 *phy_data)
  2128. {
  2129. u32 val;
  2130. int i;
  2131. val = ((u32)(reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
  2132. MDIO_START |
  2133. MDIO_SUP_PREAMBLE |
  2134. MDIO_RW |
  2135. MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
  2136. ATL2_WRITE_REG(hw, REG_MDIO_CTRL, val);
  2137. wmb();
  2138. for (i = 0; i < MDIO_WAIT_TIMES; i++) {
  2139. udelay(2);
  2140. val = ATL2_READ_REG(hw, REG_MDIO_CTRL);
  2141. if (!(val & (MDIO_START | MDIO_BUSY)))
  2142. break;
  2143. wmb();
  2144. }
  2145. if (!(val & (MDIO_START | MDIO_BUSY))) {
  2146. *phy_data = (u16)val;
  2147. return 0;
  2148. }
  2149. return ATLX_ERR_PHY;
  2150. }
  2151. /*
  2152. * Writes a value to a PHY register
  2153. * hw - Struct containing variables accessed by shared code
  2154. * reg_addr - address of the PHY register to write
  2155. * data - data to write to the PHY
  2156. */
  2157. static s32 atl2_write_phy_reg(struct atl2_hw *hw, u32 reg_addr, u16 phy_data)
  2158. {
  2159. int i;
  2160. u32 val;
  2161. val = ((u32)(phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
  2162. (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
  2163. MDIO_SUP_PREAMBLE |
  2164. MDIO_START |
  2165. MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
  2166. ATL2_WRITE_REG(hw, REG_MDIO_CTRL, val);
  2167. wmb();
  2168. for (i = 0; i < MDIO_WAIT_TIMES; i++) {
  2169. udelay(2);
  2170. val = ATL2_READ_REG(hw, REG_MDIO_CTRL);
  2171. if (!(val & (MDIO_START | MDIO_BUSY)))
  2172. break;
  2173. wmb();
  2174. }
  2175. if (!(val & (MDIO_START | MDIO_BUSY)))
  2176. return 0;
  2177. return ATLX_ERR_PHY;
  2178. }
  2179. /*
  2180. * Configures PHY autoneg and flow control advertisement settings
  2181. *
  2182. * hw - Struct containing variables accessed by shared code
  2183. */
  2184. static s32 atl2_phy_setup_autoneg_adv(struct atl2_hw *hw)
  2185. {
  2186. s32 ret_val;
  2187. s16 mii_autoneg_adv_reg;
  2188. /* Read the MII Auto-Neg Advertisement Register (Address 4). */
  2189. mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
  2190. /* Need to parse autoneg_advertised and set up
  2191. * the appropriate PHY registers. First we will parse for
  2192. * autoneg_advertised software override. Since we can advertise
  2193. * a plethora of combinations, we need to check each bit
  2194. * individually.
  2195. */
  2196. /* First we clear all the 10/100 mb speed bits in the Auto-Neg
  2197. * Advertisement Register (Address 4) and the 1000 mb speed bits in
  2198. * the 1000Base-T Control Register (Address 9). */
  2199. mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
  2200. /* Need to parse MediaType and setup the
  2201. * appropriate PHY registers. */
  2202. switch (hw->MediaType) {
  2203. case MEDIA_TYPE_AUTO_SENSOR:
  2204. mii_autoneg_adv_reg |=
  2205. (MII_AR_10T_HD_CAPS |
  2206. MII_AR_10T_FD_CAPS |
  2207. MII_AR_100TX_HD_CAPS|
  2208. MII_AR_100TX_FD_CAPS);
  2209. hw->autoneg_advertised =
  2210. ADVERTISE_10_HALF |
  2211. ADVERTISE_10_FULL |
  2212. ADVERTISE_100_HALF|
  2213. ADVERTISE_100_FULL;
  2214. break;
  2215. case MEDIA_TYPE_100M_FULL:
  2216. mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
  2217. hw->autoneg_advertised = ADVERTISE_100_FULL;
  2218. break;
  2219. case MEDIA_TYPE_100M_HALF:
  2220. mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
  2221. hw->autoneg_advertised = ADVERTISE_100_HALF;
  2222. break;
  2223. case MEDIA_TYPE_10M_FULL:
  2224. mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
  2225. hw->autoneg_advertised = ADVERTISE_10_FULL;
  2226. break;
  2227. default:
  2228. mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
  2229. hw->autoneg_advertised = ADVERTISE_10_HALF;
  2230. break;
  2231. }
  2232. /* flow control fixed to enable all */
  2233. mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
  2234. hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
  2235. ret_val = atl2_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
  2236. if (ret_val)
  2237. return ret_val;
  2238. return 0;
  2239. }
  2240. /*
  2241. * Resets the PHY and make all config validate
  2242. *
  2243. * hw - Struct containing variables accessed by shared code
  2244. *
  2245. * Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
  2246. */
  2247. static s32 atl2_phy_commit(struct atl2_hw *hw)
  2248. {
  2249. s32 ret_val;
  2250. u16 phy_data;
  2251. phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
  2252. ret_val = atl2_write_phy_reg(hw, MII_BMCR, phy_data);
  2253. if (ret_val) {
  2254. u32 val;
  2255. int i;
  2256. /* pcie serdes link may be down ! */
  2257. for (i = 0; i < 25; i++) {
  2258. msleep(1);
  2259. val = ATL2_READ_REG(hw, REG_MDIO_CTRL);
  2260. if (!(val & (MDIO_START | MDIO_BUSY)))
  2261. break;
  2262. }
  2263. if (0 != (val & (MDIO_START | MDIO_BUSY))) {
  2264. printk(KERN_ERR "atl2: PCIe link down for at least 25ms !\n");
  2265. return ret_val;
  2266. }
  2267. }
  2268. return 0;
  2269. }
  2270. static s32 atl2_phy_init(struct atl2_hw *hw)
  2271. {
  2272. s32 ret_val;
  2273. u16 phy_val;
  2274. if (hw->phy_configured)
  2275. return 0;
  2276. /* Enable PHY */
  2277. ATL2_WRITE_REGW(hw, REG_PHY_ENABLE, 1);
  2278. ATL2_WRITE_FLUSH(hw);
  2279. msleep(1);
  2280. /* check if the PHY is in powersaving mode */
  2281. atl2_write_phy_reg(hw, MII_DBG_ADDR, 0);
  2282. atl2_read_phy_reg(hw, MII_DBG_DATA, &phy_val);
  2283. /* 024E / 124E 0r 0274 / 1274 ? */
  2284. if (phy_val & 0x1000) {
  2285. phy_val &= ~0x1000;
  2286. atl2_write_phy_reg(hw, MII_DBG_DATA, phy_val);
  2287. }
  2288. msleep(1);
  2289. /*Enable PHY LinkChange Interrupt */
  2290. ret_val = atl2_write_phy_reg(hw, 18, 0xC00);
  2291. if (ret_val)
  2292. return ret_val;
  2293. /* setup AutoNeg parameters */
  2294. ret_val = atl2_phy_setup_autoneg_adv(hw);
  2295. if (ret_val)
  2296. return ret_val;
  2297. /* SW.Reset & En-Auto-Neg to restart Auto-Neg */
  2298. ret_val = atl2_phy_commit(hw);
  2299. if (ret_val)
  2300. return ret_val;
  2301. hw->phy_configured = true;
  2302. return ret_val;
  2303. }
  2304. static void atl2_set_mac_addr(struct atl2_hw *hw)
  2305. {
  2306. u32 value;
  2307. /* 00-0B-6A-F6-00-DC
  2308. * 0: 6AF600DC 1: 000B
  2309. * low dword */
  2310. value = (((u32)hw->mac_addr[2]) << 24) |
  2311. (((u32)hw->mac_addr[3]) << 16) |
  2312. (((u32)hw->mac_addr[4]) << 8) |
  2313. (((u32)hw->mac_addr[5]));
  2314. ATL2_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value);
  2315. /* hight dword */
  2316. value = (((u32)hw->mac_addr[0]) << 8) |
  2317. (((u32)hw->mac_addr[1]));
  2318. ATL2_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value);
  2319. }
  2320. /*
  2321. * check_eeprom_exist
  2322. * return 0 if eeprom exist
  2323. */
  2324. static int atl2_check_eeprom_exist(struct atl2_hw *hw)
  2325. {
  2326. u32 value;
  2327. value = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL);
  2328. if (value & SPI_FLASH_CTRL_EN_VPD) {
  2329. value &= ~SPI_FLASH_CTRL_EN_VPD;
  2330. ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
  2331. }
  2332. value = ATL2_READ_REGW(hw, REG_PCIE_CAP_LIST);
  2333. return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
  2334. }
  2335. /* FIXME: This doesn't look right. -- CHS */
  2336. static bool atl2_write_eeprom(struct atl2_hw *hw, u32 offset, u32 value)
  2337. {
  2338. return true;
  2339. }
  2340. static bool atl2_read_eeprom(struct atl2_hw *hw, u32 Offset, u32 *pValue)
  2341. {
  2342. int i;
  2343. u32 Control;
  2344. if (Offset & 0x3)
  2345. return false; /* address do not align */
  2346. ATL2_WRITE_REG(hw, REG_VPD_DATA, 0);
  2347. Control = (Offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
  2348. ATL2_WRITE_REG(hw, REG_VPD_CAP, Control);
  2349. for (i = 0; i < 10; i++) {
  2350. msleep(2);
  2351. Control = ATL2_READ_REG(hw, REG_VPD_CAP);
  2352. if (Control & VPD_CAP_VPD_FLAG)
  2353. break;
  2354. }
  2355. if (Control & VPD_CAP_VPD_FLAG) {
  2356. *pValue = ATL2_READ_REG(hw, REG_VPD_DATA);
  2357. return true;
  2358. }
  2359. return false; /* timeout */
  2360. }
  2361. static void atl2_force_ps(struct atl2_hw *hw)
  2362. {
  2363. u16 phy_val;
  2364. atl2_write_phy_reg(hw, MII_DBG_ADDR, 0);
  2365. atl2_read_phy_reg(hw, MII_DBG_DATA, &phy_val);
  2366. atl2_write_phy_reg(hw, MII_DBG_DATA, phy_val | 0x1000);
  2367. atl2_write_phy_reg(hw, MII_DBG_ADDR, 2);
  2368. atl2_write_phy_reg(hw, MII_DBG_DATA, 0x3000);
  2369. atl2_write_phy_reg(hw, MII_DBG_ADDR, 3);
  2370. atl2_write_phy_reg(hw, MII_DBG_DATA, 0);
  2371. }
  2372. /* This is the only thing that needs to be changed to adjust the
  2373. * maximum number of ports that the driver can manage.
  2374. */
  2375. #define ATL2_MAX_NIC 4
  2376. #define OPTION_UNSET -1
  2377. #define OPTION_DISABLED 0
  2378. #define OPTION_ENABLED 1
  2379. /* All parameters are treated the same, as an integer array of values.
  2380. * This macro just reduces the need to repeat the same declaration code
  2381. * over and over (plus this helps to avoid typo bugs).
  2382. */
  2383. #define ATL2_PARAM_INIT {[0 ... ATL2_MAX_NIC] = OPTION_UNSET}
  2384. #ifndef module_param_array
  2385. /* Module Parameters are always initialized to -1, so that the driver
  2386. * can tell the difference between no user specified value or the
  2387. * user asking for the default value.
  2388. * The true default values are loaded in when atl2_check_options is called.
  2389. *
  2390. * This is a GCC extension to ANSI C.
  2391. * See the item "Labeled Elements in Initializers" in the section
  2392. * "Extensions to the C Language Family" of the GCC documentation.
  2393. */
  2394. #define ATL2_PARAM(X, desc) \
  2395. static const int __devinitdata X[ATL2_MAX_NIC + 1] = ATL2_PARAM_INIT; \
  2396. MODULE_PARM(X, "1-" __MODULE_STRING(ATL2_MAX_NIC) "i"); \
  2397. MODULE_PARM_DESC(X, desc);
  2398. #else
  2399. #define ATL2_PARAM(X, desc) \
  2400. static int __devinitdata X[ATL2_MAX_NIC+1] = ATL2_PARAM_INIT; \
  2401. static unsigned int num_##X; \
  2402. module_param_array_named(X, X, int, &num_##X, 0); \
  2403. MODULE_PARM_DESC(X, desc);
  2404. #endif
  2405. /*
  2406. * Transmit Memory Size
  2407. * Valid Range: 64-2048
  2408. * Default Value: 128
  2409. */
  2410. #define ATL2_MIN_TX_MEMSIZE 4 /* 4KB */
  2411. #define ATL2_MAX_TX_MEMSIZE 64 /* 64KB */
  2412. #define ATL2_DEFAULT_TX_MEMSIZE 8 /* 8KB */
  2413. ATL2_PARAM(TxMemSize, "Bytes of Transmit Memory");
  2414. /*
  2415. * Receive Memory Block Count
  2416. * Valid Range: 16-512
  2417. * Default Value: 128
  2418. */
  2419. #define ATL2_MIN_RXD_COUNT 16
  2420. #define ATL2_MAX_RXD_COUNT 512
  2421. #define ATL2_DEFAULT_RXD_COUNT 64
  2422. ATL2_PARAM(RxMemBlock, "Number of receive memory block");
  2423. /*
  2424. * User Specified MediaType Override
  2425. *
  2426. * Valid Range: 0-5
  2427. * - 0 - auto-negotiate at all supported speeds
  2428. * - 1 - only link at 1000Mbps Full Duplex
  2429. * - 2 - only link at 100Mbps Full Duplex
  2430. * - 3 - only link at 100Mbps Half Duplex
  2431. * - 4 - only link at 10Mbps Full Duplex
  2432. * - 5 - only link at 10Mbps Half Duplex
  2433. * Default Value: 0
  2434. */
  2435. ATL2_PARAM(MediaType, "MediaType Select");
  2436. /*
  2437. * Interrupt Moderate Timer in units of 2048 ns (~2 us)
  2438. * Valid Range: 10-65535
  2439. * Default Value: 45000(90ms)
  2440. */
  2441. #define INT_MOD_DEFAULT_CNT 100 /* 200us */
  2442. #define INT_MOD_MAX_CNT 65000
  2443. #define INT_MOD_MIN_CNT 50
  2444. ATL2_PARAM(IntModTimer, "Interrupt Moderator Timer");
  2445. /*
  2446. * FlashVendor
  2447. * Valid Range: 0-2
  2448. * 0 - Atmel
  2449. * 1 - SST
  2450. * 2 - ST
  2451. */
  2452. ATL2_PARAM(FlashVendor, "SPI Flash Vendor");
  2453. #define AUTONEG_ADV_DEFAULT 0x2F
  2454. #define AUTONEG_ADV_MASK 0x2F
  2455. #define FLOW_CONTROL_DEFAULT FLOW_CONTROL_FULL
  2456. #define FLASH_VENDOR_DEFAULT 0
  2457. #define FLASH_VENDOR_MIN 0
  2458. #define FLASH_VENDOR_MAX 2
  2459. struct atl2_option {
  2460. enum { enable_option, range_option, list_option } type;
  2461. char *name;
  2462. char *err;
  2463. int def;
  2464. union {
  2465. struct { /* range_option info */
  2466. int min;
  2467. int max;
  2468. } r;
  2469. struct { /* list_option info */
  2470. int nr;
  2471. struct atl2_opt_list { int i; char *str; } *p;
  2472. } l;
  2473. } arg;
  2474. };
  2475. static int __devinit atl2_validate_option(int *value, struct atl2_option *opt)
  2476. {
  2477. int i;
  2478. struct atl2_opt_list *ent;
  2479. if (*value == OPTION_UNSET) {
  2480. *value = opt->def;
  2481. return 0;
  2482. }
  2483. switch (opt->type) {
  2484. case enable_option:
  2485. switch (*value) {
  2486. case OPTION_ENABLED:
  2487. printk(KERN_INFO "%s Enabled\n", opt->name);
  2488. return 0;
  2489. break;
  2490. case OPTION_DISABLED:
  2491. printk(KERN_INFO "%s Disabled\n", opt->name);
  2492. return 0;
  2493. break;
  2494. }
  2495. break;
  2496. case range_option:
  2497. if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
  2498. printk(KERN_INFO "%s set to %i\n", opt->name, *value);
  2499. return 0;
  2500. }
  2501. break;
  2502. case list_option:
  2503. for (i = 0; i < opt->arg.l.nr; i++) {
  2504. ent = &opt->arg.l.p[i];
  2505. if (*value == ent->i) {
  2506. if (ent->str[0] != '\0')
  2507. printk(KERN_INFO "%s\n", ent->str);
  2508. return 0;
  2509. }
  2510. }
  2511. break;
  2512. default:
  2513. BUG();
  2514. }
  2515. printk(KERN_INFO "Invalid %s specified (%i) %s\n",
  2516. opt->name, *value, opt->err);
  2517. *value = opt->def;
  2518. return -1;
  2519. }
  2520. /*
  2521. * atl2_check_options - Range Checking for Command Line Parameters
  2522. * @adapter: board private structure
  2523. *
  2524. * This routine checks all command line parameters for valid user
  2525. * input. If an invalid value is given, or if no user specified
  2526. * value exists, a default value is used. The final value is stored
  2527. * in a variable in the adapter structure.
  2528. */
  2529. static void __devinit atl2_check_options(struct atl2_adapter *adapter)
  2530. {
  2531. int val;
  2532. struct atl2_option opt;
  2533. int bd = adapter->bd_number;
  2534. if (bd >= ATL2_MAX_NIC) {
  2535. printk(KERN_NOTICE "Warning: no configuration for board #%i\n",
  2536. bd);
  2537. printk(KERN_NOTICE "Using defaults for all values\n");
  2538. #ifndef module_param_array
  2539. bd = ATL2_MAX_NIC;
  2540. #endif
  2541. }
  2542. /* Bytes of Transmit Memory */
  2543. opt.type = range_option;
  2544. opt.name = "Bytes of Transmit Memory";
  2545. opt.err = "using default of " __MODULE_STRING(ATL2_DEFAULT_TX_MEMSIZE);
  2546. opt.def = ATL2_DEFAULT_TX_MEMSIZE;
  2547. opt.arg.r.min = ATL2_MIN_TX_MEMSIZE;
  2548. opt.arg.r.max = ATL2_MAX_TX_MEMSIZE;
  2549. #ifdef module_param_array
  2550. if (num_TxMemSize > bd) {
  2551. #endif
  2552. val = TxMemSize[bd];
  2553. atl2_validate_option(&val, &opt);
  2554. adapter->txd_ring_size = ((u32) val) * 1024;
  2555. #ifdef module_param_array
  2556. } else
  2557. adapter->txd_ring_size = ((u32)opt.def) * 1024;
  2558. #endif
  2559. /* txs ring size: */
  2560. adapter->txs_ring_size = adapter->txd_ring_size / 128;
  2561. if (adapter->txs_ring_size > 160)
  2562. adapter->txs_ring_size = 160;
  2563. /* Receive Memory Block Count */
  2564. opt.type = range_option;
  2565. opt.name = "Number of receive memory block";
  2566. opt.err = "using default of " __MODULE_STRING(ATL2_DEFAULT_RXD_COUNT);
  2567. opt.def = ATL2_DEFAULT_RXD_COUNT;
  2568. opt.arg.r.min = ATL2_MIN_RXD_COUNT;
  2569. opt.arg.r.max = ATL2_MAX_RXD_COUNT;
  2570. #ifdef module_param_array
  2571. if (num_RxMemBlock > bd) {
  2572. #endif
  2573. val = RxMemBlock[bd];
  2574. atl2_validate_option(&val, &opt);
  2575. adapter->rxd_ring_size = (u32)val;
  2576. /* FIXME */
  2577. /* ((u16)val)&~1; */ /* even number */
  2578. #ifdef module_param_array
  2579. } else
  2580. adapter->rxd_ring_size = (u32)opt.def;
  2581. #endif
  2582. /* init RXD Flow control value */
  2583. adapter->hw.fc_rxd_hi = (adapter->rxd_ring_size / 8) * 7;
  2584. adapter->hw.fc_rxd_lo = (ATL2_MIN_RXD_COUNT / 8) >
  2585. (adapter->rxd_ring_size / 12) ? (ATL2_MIN_RXD_COUNT / 8) :
  2586. (adapter->rxd_ring_size / 12);
  2587. /* Interrupt Moderate Timer */
  2588. opt.type = range_option;
  2589. opt.name = "Interrupt Moderate Timer";
  2590. opt.err = "using default of " __MODULE_STRING(INT_MOD_DEFAULT_CNT);
  2591. opt.def = INT_MOD_DEFAULT_CNT;
  2592. opt.arg.r.min = INT_MOD_MIN_CNT;
  2593. opt.arg.r.max = INT_MOD_MAX_CNT;
  2594. #ifdef module_param_array
  2595. if (num_IntModTimer > bd) {
  2596. #endif
  2597. val = IntModTimer[bd];
  2598. atl2_validate_option(&val, &opt);
  2599. adapter->imt = (u16) val;
  2600. #ifdef module_param_array
  2601. } else
  2602. adapter->imt = (u16)(opt.def);
  2603. #endif
  2604. /* Flash Vendor */
  2605. opt.type = range_option;
  2606. opt.name = "SPI Flash Vendor";
  2607. opt.err = "using default of " __MODULE_STRING(FLASH_VENDOR_DEFAULT);
  2608. opt.def = FLASH_VENDOR_DEFAULT;
  2609. opt.arg.r.min = FLASH_VENDOR_MIN;
  2610. opt.arg.r.max = FLASH_VENDOR_MAX;
  2611. #ifdef module_param_array
  2612. if (num_FlashVendor > bd) {
  2613. #endif
  2614. val = FlashVendor[bd];
  2615. atl2_validate_option(&val, &opt);
  2616. adapter->hw.flash_vendor = (u8) val;
  2617. #ifdef module_param_array
  2618. } else
  2619. adapter->hw.flash_vendor = (u8)(opt.def);
  2620. #endif
  2621. /* MediaType */
  2622. opt.type = range_option;
  2623. opt.name = "Speed/Duplex Selection";
  2624. opt.err = "using default of " __MODULE_STRING(MEDIA_TYPE_AUTO_SENSOR);
  2625. opt.def = MEDIA_TYPE_AUTO_SENSOR;
  2626. opt.arg.r.min = MEDIA_TYPE_AUTO_SENSOR;
  2627. opt.arg.r.max = MEDIA_TYPE_10M_HALF;
  2628. #ifdef module_param_array
  2629. if (num_MediaType > bd) {
  2630. #endif
  2631. val = MediaType[bd];
  2632. atl2_validate_option(&val, &opt);
  2633. adapter->hw.MediaType = (u16) val;
  2634. #ifdef module_param_array
  2635. } else
  2636. adapter->hw.MediaType = (u16)(opt.def);
  2637. #endif
  2638. }