PageRenderTime 76ms CodeModel.GetById 24ms RepoModel.GetById 0ms app.codeStats 1ms

/net/socket.c

http://github.com/mirrors/linux
C | 3900 lines | 2673 code | 554 blank | 673 comment | 433 complexity | 84723dff9441b8f411429fc030df9f76 MD5 | raw file
Possible License(s): AGPL-1.0, GPL-2.0, LGPL-2.0
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * NET An implementation of the SOCKET network access protocol.
  4. *
  5. * Version: @(#)socket.c 1.1.93 18/02/95
  6. *
  7. * Authors: Orest Zborowski, <obz@Kodak.COM>
  8. * Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. *
  11. * Fixes:
  12. * Anonymous : NOTSOCK/BADF cleanup. Error fix in
  13. * shutdown()
  14. * Alan Cox : verify_area() fixes
  15. * Alan Cox : Removed DDI
  16. * Jonathan Kamens : SOCK_DGRAM reconnect bug
  17. * Alan Cox : Moved a load of checks to the very
  18. * top level.
  19. * Alan Cox : Move address structures to/from user
  20. * mode above the protocol layers.
  21. * Rob Janssen : Allow 0 length sends.
  22. * Alan Cox : Asynchronous I/O support (cribbed from the
  23. * tty drivers).
  24. * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
  25. * Jeff Uphoff : Made max number of sockets command-line
  26. * configurable.
  27. * Matti Aarnio : Made the number of sockets dynamic,
  28. * to be allocated when needed, and mr.
  29. * Uphoff's max is used as max to be
  30. * allowed to allocate.
  31. * Linus : Argh. removed all the socket allocation
  32. * altogether: it's in the inode now.
  33. * Alan Cox : Made sock_alloc()/sock_release() public
  34. * for NetROM and future kernel nfsd type
  35. * stuff.
  36. * Alan Cox : sendmsg/recvmsg basics.
  37. * Tom Dyas : Export net symbols.
  38. * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
  39. * Alan Cox : Added thread locking to sys_* calls
  40. * for sockets. May have errors at the
  41. * moment.
  42. * Kevin Buhr : Fixed the dumb errors in the above.
  43. * Andi Kleen : Some small cleanups, optimizations,
  44. * and fixed a copy_from_user() bug.
  45. * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
  46. * Tigran Aivazian : Made listen(2) backlog sanity checks
  47. * protocol-independent
  48. *
  49. * This module is effectively the top level interface to the BSD socket
  50. * paradigm.
  51. *
  52. * Based upon Swansea University Computer Society NET3.039
  53. */
  54. #include <linux/mm.h>
  55. #include <linux/socket.h>
  56. #include <linux/file.h>
  57. #include <linux/net.h>
  58. #include <linux/interrupt.h>
  59. #include <linux/thread_info.h>
  60. #include <linux/rcupdate.h>
  61. #include <linux/netdevice.h>
  62. #include <linux/proc_fs.h>
  63. #include <linux/seq_file.h>
  64. #include <linux/mutex.h>
  65. #include <linux/if_bridge.h>
  66. #include <linux/if_frad.h>
  67. #include <linux/if_vlan.h>
  68. #include <linux/ptp_classify.h>
  69. #include <linux/init.h>
  70. #include <linux/poll.h>
  71. #include <linux/cache.h>
  72. #include <linux/module.h>
  73. #include <linux/highmem.h>
  74. #include <linux/mount.h>
  75. #include <linux/pseudo_fs.h>
  76. #include <linux/security.h>
  77. #include <linux/syscalls.h>
  78. #include <linux/compat.h>
  79. #include <linux/kmod.h>
  80. #include <linux/audit.h>
  81. #include <linux/wireless.h>
  82. #include <linux/nsproxy.h>
  83. #include <linux/magic.h>
  84. #include <linux/slab.h>
  85. #include <linux/xattr.h>
  86. #include <linux/nospec.h>
  87. #include <linux/indirect_call_wrapper.h>
  88. #include <linux/uaccess.h>
  89. #include <asm/unistd.h>
  90. #include <net/compat.h>
  91. #include <net/wext.h>
  92. #include <net/cls_cgroup.h>
  93. #include <net/sock.h>
  94. #include <linux/netfilter.h>
  95. #include <linux/if_tun.h>
  96. #include <linux/ipv6_route.h>
  97. #include <linux/route.h>
  98. #include <linux/termios.h>
  99. #include <linux/sockios.h>
  100. #include <net/busy_poll.h>
  101. #include <linux/errqueue.h>
  102. #ifdef CONFIG_NET_RX_BUSY_POLL
  103. unsigned int sysctl_net_busy_read __read_mostly;
  104. unsigned int sysctl_net_busy_poll __read_mostly;
  105. #endif
  106. static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
  107. static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
  108. static int sock_mmap(struct file *file, struct vm_area_struct *vma);
  109. static int sock_close(struct inode *inode, struct file *file);
  110. static __poll_t sock_poll(struct file *file,
  111. struct poll_table_struct *wait);
  112. static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
  113. #ifdef CONFIG_COMPAT
  114. static long compat_sock_ioctl(struct file *file,
  115. unsigned int cmd, unsigned long arg);
  116. #endif
  117. static int sock_fasync(int fd, struct file *filp, int on);
  118. static ssize_t sock_sendpage(struct file *file, struct page *page,
  119. int offset, size_t size, loff_t *ppos, int more);
  120. static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
  121. struct pipe_inode_info *pipe, size_t len,
  122. unsigned int flags);
  123. #ifdef CONFIG_PROC_FS
  124. static void sock_show_fdinfo(struct seq_file *m, struct file *f)
  125. {
  126. struct socket *sock = f->private_data;
  127. if (sock->ops->show_fdinfo)
  128. sock->ops->show_fdinfo(m, sock);
  129. }
  130. #else
  131. #define sock_show_fdinfo NULL
  132. #endif
  133. /*
  134. * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
  135. * in the operation structures but are done directly via the socketcall() multiplexor.
  136. */
  137. static const struct file_operations socket_file_ops = {
  138. .owner = THIS_MODULE,
  139. .llseek = no_llseek,
  140. .read_iter = sock_read_iter,
  141. .write_iter = sock_write_iter,
  142. .poll = sock_poll,
  143. .unlocked_ioctl = sock_ioctl,
  144. #ifdef CONFIG_COMPAT
  145. .compat_ioctl = compat_sock_ioctl,
  146. #endif
  147. .mmap = sock_mmap,
  148. .release = sock_close,
  149. .fasync = sock_fasync,
  150. .sendpage = sock_sendpage,
  151. .splice_write = generic_splice_sendpage,
  152. .splice_read = sock_splice_read,
  153. .show_fdinfo = sock_show_fdinfo,
  154. };
  155. /*
  156. * The protocol list. Each protocol is registered in here.
  157. */
  158. static DEFINE_SPINLOCK(net_family_lock);
  159. static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
  160. /*
  161. * Support routines.
  162. * Move socket addresses back and forth across the kernel/user
  163. * divide and look after the messy bits.
  164. */
  165. /**
  166. * move_addr_to_kernel - copy a socket address into kernel space
  167. * @uaddr: Address in user space
  168. * @kaddr: Address in kernel space
  169. * @ulen: Length in user space
  170. *
  171. * The address is copied into kernel space. If the provided address is
  172. * too long an error code of -EINVAL is returned. If the copy gives
  173. * invalid addresses -EFAULT is returned. On a success 0 is returned.
  174. */
  175. int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
  176. {
  177. if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
  178. return -EINVAL;
  179. if (ulen == 0)
  180. return 0;
  181. if (copy_from_user(kaddr, uaddr, ulen))
  182. return -EFAULT;
  183. return audit_sockaddr(ulen, kaddr);
  184. }
  185. /**
  186. * move_addr_to_user - copy an address to user space
  187. * @kaddr: kernel space address
  188. * @klen: length of address in kernel
  189. * @uaddr: user space address
  190. * @ulen: pointer to user length field
  191. *
  192. * The value pointed to by ulen on entry is the buffer length available.
  193. * This is overwritten with the buffer space used. -EINVAL is returned
  194. * if an overlong buffer is specified or a negative buffer size. -EFAULT
  195. * is returned if either the buffer or the length field are not
  196. * accessible.
  197. * After copying the data up to the limit the user specifies, the true
  198. * length of the data is written over the length limit the user
  199. * specified. Zero is returned for a success.
  200. */
  201. static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
  202. void __user *uaddr, int __user *ulen)
  203. {
  204. int err;
  205. int len;
  206. BUG_ON(klen > sizeof(struct sockaddr_storage));
  207. err = get_user(len, ulen);
  208. if (err)
  209. return err;
  210. if (len > klen)
  211. len = klen;
  212. if (len < 0)
  213. return -EINVAL;
  214. if (len) {
  215. if (audit_sockaddr(klen, kaddr))
  216. return -ENOMEM;
  217. if (copy_to_user(uaddr, kaddr, len))
  218. return -EFAULT;
  219. }
  220. /*
  221. * "fromlen shall refer to the value before truncation.."
  222. * 1003.1g
  223. */
  224. return __put_user(klen, ulen);
  225. }
  226. static struct kmem_cache *sock_inode_cachep __ro_after_init;
  227. static struct inode *sock_alloc_inode(struct super_block *sb)
  228. {
  229. struct socket_alloc *ei;
  230. ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
  231. if (!ei)
  232. return NULL;
  233. init_waitqueue_head(&ei->socket.wq.wait);
  234. ei->socket.wq.fasync_list = NULL;
  235. ei->socket.wq.flags = 0;
  236. ei->socket.state = SS_UNCONNECTED;
  237. ei->socket.flags = 0;
  238. ei->socket.ops = NULL;
  239. ei->socket.sk = NULL;
  240. ei->socket.file = NULL;
  241. return &ei->vfs_inode;
  242. }
  243. static void sock_free_inode(struct inode *inode)
  244. {
  245. struct socket_alloc *ei;
  246. ei = container_of(inode, struct socket_alloc, vfs_inode);
  247. kmem_cache_free(sock_inode_cachep, ei);
  248. }
  249. static void init_once(void *foo)
  250. {
  251. struct socket_alloc *ei = (struct socket_alloc *)foo;
  252. inode_init_once(&ei->vfs_inode);
  253. }
  254. static void init_inodecache(void)
  255. {
  256. sock_inode_cachep = kmem_cache_create("sock_inode_cache",
  257. sizeof(struct socket_alloc),
  258. 0,
  259. (SLAB_HWCACHE_ALIGN |
  260. SLAB_RECLAIM_ACCOUNT |
  261. SLAB_MEM_SPREAD | SLAB_ACCOUNT),
  262. init_once);
  263. BUG_ON(sock_inode_cachep == NULL);
  264. }
  265. static const struct super_operations sockfs_ops = {
  266. .alloc_inode = sock_alloc_inode,
  267. .free_inode = sock_free_inode,
  268. .statfs = simple_statfs,
  269. };
  270. /*
  271. * sockfs_dname() is called from d_path().
  272. */
  273. static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
  274. {
  275. return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
  276. d_inode(dentry)->i_ino);
  277. }
  278. static const struct dentry_operations sockfs_dentry_operations = {
  279. .d_dname = sockfs_dname,
  280. };
  281. static int sockfs_xattr_get(const struct xattr_handler *handler,
  282. struct dentry *dentry, struct inode *inode,
  283. const char *suffix, void *value, size_t size)
  284. {
  285. if (value) {
  286. if (dentry->d_name.len + 1 > size)
  287. return -ERANGE;
  288. memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
  289. }
  290. return dentry->d_name.len + 1;
  291. }
  292. #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
  293. #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
  294. #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
  295. static const struct xattr_handler sockfs_xattr_handler = {
  296. .name = XATTR_NAME_SOCKPROTONAME,
  297. .get = sockfs_xattr_get,
  298. };
  299. static int sockfs_security_xattr_set(const struct xattr_handler *handler,
  300. struct dentry *dentry, struct inode *inode,
  301. const char *suffix, const void *value,
  302. size_t size, int flags)
  303. {
  304. /* Handled by LSM. */
  305. return -EAGAIN;
  306. }
  307. static const struct xattr_handler sockfs_security_xattr_handler = {
  308. .prefix = XATTR_SECURITY_PREFIX,
  309. .set = sockfs_security_xattr_set,
  310. };
  311. static const struct xattr_handler *sockfs_xattr_handlers[] = {
  312. &sockfs_xattr_handler,
  313. &sockfs_security_xattr_handler,
  314. NULL
  315. };
  316. static int sockfs_init_fs_context(struct fs_context *fc)
  317. {
  318. struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
  319. if (!ctx)
  320. return -ENOMEM;
  321. ctx->ops = &sockfs_ops;
  322. ctx->dops = &sockfs_dentry_operations;
  323. ctx->xattr = sockfs_xattr_handlers;
  324. return 0;
  325. }
  326. static struct vfsmount *sock_mnt __read_mostly;
  327. static struct file_system_type sock_fs_type = {
  328. .name = "sockfs",
  329. .init_fs_context = sockfs_init_fs_context,
  330. .kill_sb = kill_anon_super,
  331. };
  332. /*
  333. * Obtains the first available file descriptor and sets it up for use.
  334. *
  335. * These functions create file structures and maps them to fd space
  336. * of the current process. On success it returns file descriptor
  337. * and file struct implicitly stored in sock->file.
  338. * Note that another thread may close file descriptor before we return
  339. * from this function. We use the fact that now we do not refer
  340. * to socket after mapping. If one day we will need it, this
  341. * function will increment ref. count on file by 1.
  342. *
  343. * In any case returned fd MAY BE not valid!
  344. * This race condition is unavoidable
  345. * with shared fd spaces, we cannot solve it inside kernel,
  346. * but we take care of internal coherence yet.
  347. */
  348. /**
  349. * sock_alloc_file - Bind a &socket to a &file
  350. * @sock: socket
  351. * @flags: file status flags
  352. * @dname: protocol name
  353. *
  354. * Returns the &file bound with @sock, implicitly storing it
  355. * in sock->file. If dname is %NULL, sets to "".
  356. * On failure the return is a ERR pointer (see linux/err.h).
  357. * This function uses GFP_KERNEL internally.
  358. */
  359. struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
  360. {
  361. struct file *file;
  362. if (!dname)
  363. dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
  364. file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
  365. O_RDWR | (flags & O_NONBLOCK),
  366. &socket_file_ops);
  367. if (IS_ERR(file)) {
  368. sock_release(sock);
  369. return file;
  370. }
  371. sock->file = file;
  372. file->private_data = sock;
  373. stream_open(SOCK_INODE(sock), file);
  374. return file;
  375. }
  376. EXPORT_SYMBOL(sock_alloc_file);
  377. static int sock_map_fd(struct socket *sock, int flags)
  378. {
  379. struct file *newfile;
  380. int fd = get_unused_fd_flags(flags);
  381. if (unlikely(fd < 0)) {
  382. sock_release(sock);
  383. return fd;
  384. }
  385. newfile = sock_alloc_file(sock, flags, NULL);
  386. if (!IS_ERR(newfile)) {
  387. fd_install(fd, newfile);
  388. return fd;
  389. }
  390. put_unused_fd(fd);
  391. return PTR_ERR(newfile);
  392. }
  393. /**
  394. * sock_from_file - Return the &socket bounded to @file.
  395. * @file: file
  396. * @err: pointer to an error code return
  397. *
  398. * On failure returns %NULL and assigns -ENOTSOCK to @err.
  399. */
  400. struct socket *sock_from_file(struct file *file, int *err)
  401. {
  402. if (file->f_op == &socket_file_ops)
  403. return file->private_data; /* set in sock_map_fd */
  404. *err = -ENOTSOCK;
  405. return NULL;
  406. }
  407. EXPORT_SYMBOL(sock_from_file);
  408. /**
  409. * sockfd_lookup - Go from a file number to its socket slot
  410. * @fd: file handle
  411. * @err: pointer to an error code return
  412. *
  413. * The file handle passed in is locked and the socket it is bound
  414. * to is returned. If an error occurs the err pointer is overwritten
  415. * with a negative errno code and NULL is returned. The function checks
  416. * for both invalid handles and passing a handle which is not a socket.
  417. *
  418. * On a success the socket object pointer is returned.
  419. */
  420. struct socket *sockfd_lookup(int fd, int *err)
  421. {
  422. struct file *file;
  423. struct socket *sock;
  424. file = fget(fd);
  425. if (!file) {
  426. *err = -EBADF;
  427. return NULL;
  428. }
  429. sock = sock_from_file(file, err);
  430. if (!sock)
  431. fput(file);
  432. return sock;
  433. }
  434. EXPORT_SYMBOL(sockfd_lookup);
  435. static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
  436. {
  437. struct fd f = fdget(fd);
  438. struct socket *sock;
  439. *err = -EBADF;
  440. if (f.file) {
  441. sock = sock_from_file(f.file, err);
  442. if (likely(sock)) {
  443. *fput_needed = f.flags;
  444. return sock;
  445. }
  446. fdput(f);
  447. }
  448. return NULL;
  449. }
  450. static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
  451. size_t size)
  452. {
  453. ssize_t len;
  454. ssize_t used = 0;
  455. len = security_inode_listsecurity(d_inode(dentry), buffer, size);
  456. if (len < 0)
  457. return len;
  458. used += len;
  459. if (buffer) {
  460. if (size < used)
  461. return -ERANGE;
  462. buffer += len;
  463. }
  464. len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
  465. used += len;
  466. if (buffer) {
  467. if (size < used)
  468. return -ERANGE;
  469. memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
  470. buffer += len;
  471. }
  472. return used;
  473. }
  474. static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
  475. {
  476. int err = simple_setattr(dentry, iattr);
  477. if (!err && (iattr->ia_valid & ATTR_UID)) {
  478. struct socket *sock = SOCKET_I(d_inode(dentry));
  479. if (sock->sk)
  480. sock->sk->sk_uid = iattr->ia_uid;
  481. else
  482. err = -ENOENT;
  483. }
  484. return err;
  485. }
  486. static const struct inode_operations sockfs_inode_ops = {
  487. .listxattr = sockfs_listxattr,
  488. .setattr = sockfs_setattr,
  489. };
  490. /**
  491. * sock_alloc - allocate a socket
  492. *
  493. * Allocate a new inode and socket object. The two are bound together
  494. * and initialised. The socket is then returned. If we are out of inodes
  495. * NULL is returned. This functions uses GFP_KERNEL internally.
  496. */
  497. struct socket *sock_alloc(void)
  498. {
  499. struct inode *inode;
  500. struct socket *sock;
  501. inode = new_inode_pseudo(sock_mnt->mnt_sb);
  502. if (!inode)
  503. return NULL;
  504. sock = SOCKET_I(inode);
  505. inode->i_ino = get_next_ino();
  506. inode->i_mode = S_IFSOCK | S_IRWXUGO;
  507. inode->i_uid = current_fsuid();
  508. inode->i_gid = current_fsgid();
  509. inode->i_op = &sockfs_inode_ops;
  510. return sock;
  511. }
  512. EXPORT_SYMBOL(sock_alloc);
  513. /**
  514. * sock_release - close a socket
  515. * @sock: socket to close
  516. *
  517. * The socket is released from the protocol stack if it has a release
  518. * callback, and the inode is then released if the socket is bound to
  519. * an inode not a file.
  520. */
  521. static void __sock_release(struct socket *sock, struct inode *inode)
  522. {
  523. if (sock->ops) {
  524. struct module *owner = sock->ops->owner;
  525. if (inode)
  526. inode_lock(inode);
  527. sock->ops->release(sock);
  528. sock->sk = NULL;
  529. if (inode)
  530. inode_unlock(inode);
  531. sock->ops = NULL;
  532. module_put(owner);
  533. }
  534. if (sock->wq.fasync_list)
  535. pr_err("%s: fasync list not empty!\n", __func__);
  536. if (!sock->file) {
  537. iput(SOCK_INODE(sock));
  538. return;
  539. }
  540. sock->file = NULL;
  541. }
  542. void sock_release(struct socket *sock)
  543. {
  544. __sock_release(sock, NULL);
  545. }
  546. EXPORT_SYMBOL(sock_release);
  547. void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
  548. {
  549. u8 flags = *tx_flags;
  550. if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
  551. flags |= SKBTX_HW_TSTAMP;
  552. if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
  553. flags |= SKBTX_SW_TSTAMP;
  554. if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
  555. flags |= SKBTX_SCHED_TSTAMP;
  556. *tx_flags = flags;
  557. }
  558. EXPORT_SYMBOL(__sock_tx_timestamp);
  559. INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
  560. size_t));
  561. INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
  562. size_t));
  563. static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
  564. {
  565. int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
  566. inet_sendmsg, sock, msg,
  567. msg_data_left(msg));
  568. BUG_ON(ret == -EIOCBQUEUED);
  569. return ret;
  570. }
  571. /**
  572. * sock_sendmsg - send a message through @sock
  573. * @sock: socket
  574. * @msg: message to send
  575. *
  576. * Sends @msg through @sock, passing through LSM.
  577. * Returns the number of bytes sent, or an error code.
  578. */
  579. int sock_sendmsg(struct socket *sock, struct msghdr *msg)
  580. {
  581. int err = security_socket_sendmsg(sock, msg,
  582. msg_data_left(msg));
  583. return err ?: sock_sendmsg_nosec(sock, msg);
  584. }
  585. EXPORT_SYMBOL(sock_sendmsg);
  586. /**
  587. * kernel_sendmsg - send a message through @sock (kernel-space)
  588. * @sock: socket
  589. * @msg: message header
  590. * @vec: kernel vec
  591. * @num: vec array length
  592. * @size: total message data size
  593. *
  594. * Builds the message data with @vec and sends it through @sock.
  595. * Returns the number of bytes sent, or an error code.
  596. */
  597. int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
  598. struct kvec *vec, size_t num, size_t size)
  599. {
  600. iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
  601. return sock_sendmsg(sock, msg);
  602. }
  603. EXPORT_SYMBOL(kernel_sendmsg);
  604. /**
  605. * kernel_sendmsg_locked - send a message through @sock (kernel-space)
  606. * @sk: sock
  607. * @msg: message header
  608. * @vec: output s/g array
  609. * @num: output s/g array length
  610. * @size: total message data size
  611. *
  612. * Builds the message data with @vec and sends it through @sock.
  613. * Returns the number of bytes sent, or an error code.
  614. * Caller must hold @sk.
  615. */
  616. int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
  617. struct kvec *vec, size_t num, size_t size)
  618. {
  619. struct socket *sock = sk->sk_socket;
  620. if (!sock->ops->sendmsg_locked)
  621. return sock_no_sendmsg_locked(sk, msg, size);
  622. iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
  623. return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
  624. }
  625. EXPORT_SYMBOL(kernel_sendmsg_locked);
  626. static bool skb_is_err_queue(const struct sk_buff *skb)
  627. {
  628. /* pkt_type of skbs enqueued on the error queue are set to
  629. * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
  630. * in recvmsg, since skbs received on a local socket will never
  631. * have a pkt_type of PACKET_OUTGOING.
  632. */
  633. return skb->pkt_type == PACKET_OUTGOING;
  634. }
  635. /* On transmit, software and hardware timestamps are returned independently.
  636. * As the two skb clones share the hardware timestamp, which may be updated
  637. * before the software timestamp is received, a hardware TX timestamp may be
  638. * returned only if there is no software TX timestamp. Ignore false software
  639. * timestamps, which may be made in the __sock_recv_timestamp() call when the
  640. * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
  641. * hardware timestamp.
  642. */
  643. static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
  644. {
  645. return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
  646. }
  647. static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
  648. {
  649. struct scm_ts_pktinfo ts_pktinfo;
  650. struct net_device *orig_dev;
  651. if (!skb_mac_header_was_set(skb))
  652. return;
  653. memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
  654. rcu_read_lock();
  655. orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
  656. if (orig_dev)
  657. ts_pktinfo.if_index = orig_dev->ifindex;
  658. rcu_read_unlock();
  659. ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
  660. put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
  661. sizeof(ts_pktinfo), &ts_pktinfo);
  662. }
  663. /*
  664. * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
  665. */
  666. void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
  667. struct sk_buff *skb)
  668. {
  669. int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
  670. int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
  671. struct scm_timestamping_internal tss;
  672. int empty = 1, false_tstamp = 0;
  673. struct skb_shared_hwtstamps *shhwtstamps =
  674. skb_hwtstamps(skb);
  675. /* Race occurred between timestamp enabling and packet
  676. receiving. Fill in the current time for now. */
  677. if (need_software_tstamp && skb->tstamp == 0) {
  678. __net_timestamp(skb);
  679. false_tstamp = 1;
  680. }
  681. if (need_software_tstamp) {
  682. if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
  683. if (new_tstamp) {
  684. struct __kernel_sock_timeval tv;
  685. skb_get_new_timestamp(skb, &tv);
  686. put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
  687. sizeof(tv), &tv);
  688. } else {
  689. struct __kernel_old_timeval tv;
  690. skb_get_timestamp(skb, &tv);
  691. put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
  692. sizeof(tv), &tv);
  693. }
  694. } else {
  695. if (new_tstamp) {
  696. struct __kernel_timespec ts;
  697. skb_get_new_timestampns(skb, &ts);
  698. put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
  699. sizeof(ts), &ts);
  700. } else {
  701. struct __kernel_old_timespec ts;
  702. skb_get_timestampns(skb, &ts);
  703. put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
  704. sizeof(ts), &ts);
  705. }
  706. }
  707. }
  708. memset(&tss, 0, sizeof(tss));
  709. if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
  710. ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
  711. empty = 0;
  712. if (shhwtstamps &&
  713. (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
  714. !skb_is_swtx_tstamp(skb, false_tstamp) &&
  715. ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
  716. empty = 0;
  717. if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
  718. !skb_is_err_queue(skb))
  719. put_ts_pktinfo(msg, skb);
  720. }
  721. if (!empty) {
  722. if (sock_flag(sk, SOCK_TSTAMP_NEW))
  723. put_cmsg_scm_timestamping64(msg, &tss);
  724. else
  725. put_cmsg_scm_timestamping(msg, &tss);
  726. if (skb_is_err_queue(skb) && skb->len &&
  727. SKB_EXT_ERR(skb)->opt_stats)
  728. put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
  729. skb->len, skb->data);
  730. }
  731. }
  732. EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
  733. void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
  734. struct sk_buff *skb)
  735. {
  736. int ack;
  737. if (!sock_flag(sk, SOCK_WIFI_STATUS))
  738. return;
  739. if (!skb->wifi_acked_valid)
  740. return;
  741. ack = skb->wifi_acked;
  742. put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
  743. }
  744. EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
  745. static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
  746. struct sk_buff *skb)
  747. {
  748. if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
  749. put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
  750. sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
  751. }
  752. void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
  753. struct sk_buff *skb)
  754. {
  755. sock_recv_timestamp(msg, sk, skb);
  756. sock_recv_drops(msg, sk, skb);
  757. }
  758. EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
  759. INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
  760. size_t, int));
  761. INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
  762. size_t, int));
  763. static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
  764. int flags)
  765. {
  766. return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
  767. inet_recvmsg, sock, msg, msg_data_left(msg),
  768. flags);
  769. }
  770. /**
  771. * sock_recvmsg - receive a message from @sock
  772. * @sock: socket
  773. * @msg: message to receive
  774. * @flags: message flags
  775. *
  776. * Receives @msg from @sock, passing through LSM. Returns the total number
  777. * of bytes received, or an error.
  778. */
  779. int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
  780. {
  781. int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
  782. return err ?: sock_recvmsg_nosec(sock, msg, flags);
  783. }
  784. EXPORT_SYMBOL(sock_recvmsg);
  785. /**
  786. * kernel_recvmsg - Receive a message from a socket (kernel space)
  787. * @sock: The socket to receive the message from
  788. * @msg: Received message
  789. * @vec: Input s/g array for message data
  790. * @num: Size of input s/g array
  791. * @size: Number of bytes to read
  792. * @flags: Message flags (MSG_DONTWAIT, etc...)
  793. *
  794. * On return the msg structure contains the scatter/gather array passed in the
  795. * vec argument. The array is modified so that it consists of the unfilled
  796. * portion of the original array.
  797. *
  798. * The returned value is the total number of bytes received, or an error.
  799. */
  800. int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
  801. struct kvec *vec, size_t num, size_t size, int flags)
  802. {
  803. mm_segment_t oldfs = get_fs();
  804. int result;
  805. iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
  806. set_fs(KERNEL_DS);
  807. result = sock_recvmsg(sock, msg, flags);
  808. set_fs(oldfs);
  809. return result;
  810. }
  811. EXPORT_SYMBOL(kernel_recvmsg);
  812. static ssize_t sock_sendpage(struct file *file, struct page *page,
  813. int offset, size_t size, loff_t *ppos, int more)
  814. {
  815. struct socket *sock;
  816. int flags;
  817. sock = file->private_data;
  818. flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
  819. /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
  820. flags |= more;
  821. return kernel_sendpage(sock, page, offset, size, flags);
  822. }
  823. static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
  824. struct pipe_inode_info *pipe, size_t len,
  825. unsigned int flags)
  826. {
  827. struct socket *sock = file->private_data;
  828. if (unlikely(!sock->ops->splice_read))
  829. return generic_file_splice_read(file, ppos, pipe, len, flags);
  830. return sock->ops->splice_read(sock, ppos, pipe, len, flags);
  831. }
  832. static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
  833. {
  834. struct file *file = iocb->ki_filp;
  835. struct socket *sock = file->private_data;
  836. struct msghdr msg = {.msg_iter = *to,
  837. .msg_iocb = iocb};
  838. ssize_t res;
  839. if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
  840. msg.msg_flags = MSG_DONTWAIT;
  841. if (iocb->ki_pos != 0)
  842. return -ESPIPE;
  843. if (!iov_iter_count(to)) /* Match SYS5 behaviour */
  844. return 0;
  845. res = sock_recvmsg(sock, &msg, msg.msg_flags);
  846. *to = msg.msg_iter;
  847. return res;
  848. }
  849. static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
  850. {
  851. struct file *file = iocb->ki_filp;
  852. struct socket *sock = file->private_data;
  853. struct msghdr msg = {.msg_iter = *from,
  854. .msg_iocb = iocb};
  855. ssize_t res;
  856. if (iocb->ki_pos != 0)
  857. return -ESPIPE;
  858. if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
  859. msg.msg_flags = MSG_DONTWAIT;
  860. if (sock->type == SOCK_SEQPACKET)
  861. msg.msg_flags |= MSG_EOR;
  862. res = sock_sendmsg(sock, &msg);
  863. *from = msg.msg_iter;
  864. return res;
  865. }
  866. /*
  867. * Atomic setting of ioctl hooks to avoid race
  868. * with module unload.
  869. */
  870. static DEFINE_MUTEX(br_ioctl_mutex);
  871. static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
  872. void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
  873. {
  874. mutex_lock(&br_ioctl_mutex);
  875. br_ioctl_hook = hook;
  876. mutex_unlock(&br_ioctl_mutex);
  877. }
  878. EXPORT_SYMBOL(brioctl_set);
  879. static DEFINE_MUTEX(vlan_ioctl_mutex);
  880. static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
  881. void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
  882. {
  883. mutex_lock(&vlan_ioctl_mutex);
  884. vlan_ioctl_hook = hook;
  885. mutex_unlock(&vlan_ioctl_mutex);
  886. }
  887. EXPORT_SYMBOL(vlan_ioctl_set);
  888. static DEFINE_MUTEX(dlci_ioctl_mutex);
  889. static int (*dlci_ioctl_hook) (unsigned int, void __user *);
  890. void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
  891. {
  892. mutex_lock(&dlci_ioctl_mutex);
  893. dlci_ioctl_hook = hook;
  894. mutex_unlock(&dlci_ioctl_mutex);
  895. }
  896. EXPORT_SYMBOL(dlci_ioctl_set);
  897. static long sock_do_ioctl(struct net *net, struct socket *sock,
  898. unsigned int cmd, unsigned long arg)
  899. {
  900. int err;
  901. void __user *argp = (void __user *)arg;
  902. err = sock->ops->ioctl(sock, cmd, arg);
  903. /*
  904. * If this ioctl is unknown try to hand it down
  905. * to the NIC driver.
  906. */
  907. if (err != -ENOIOCTLCMD)
  908. return err;
  909. if (cmd == SIOCGIFCONF) {
  910. struct ifconf ifc;
  911. if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
  912. return -EFAULT;
  913. rtnl_lock();
  914. err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
  915. rtnl_unlock();
  916. if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
  917. err = -EFAULT;
  918. } else {
  919. struct ifreq ifr;
  920. bool need_copyout;
  921. if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
  922. return -EFAULT;
  923. err = dev_ioctl(net, cmd, &ifr, &need_copyout);
  924. if (!err && need_copyout)
  925. if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
  926. return -EFAULT;
  927. }
  928. return err;
  929. }
  930. /*
  931. * With an ioctl, arg may well be a user mode pointer, but we don't know
  932. * what to do with it - that's up to the protocol still.
  933. */
  934. /**
  935. * get_net_ns - increment the refcount of the network namespace
  936. * @ns: common namespace (net)
  937. *
  938. * Returns the net's common namespace.
  939. */
  940. struct ns_common *get_net_ns(struct ns_common *ns)
  941. {
  942. return &get_net(container_of(ns, struct net, ns))->ns;
  943. }
  944. EXPORT_SYMBOL_GPL(get_net_ns);
  945. static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
  946. {
  947. struct socket *sock;
  948. struct sock *sk;
  949. void __user *argp = (void __user *)arg;
  950. int pid, err;
  951. struct net *net;
  952. sock = file->private_data;
  953. sk = sock->sk;
  954. net = sock_net(sk);
  955. if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
  956. struct ifreq ifr;
  957. bool need_copyout;
  958. if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
  959. return -EFAULT;
  960. err = dev_ioctl(net, cmd, &ifr, &need_copyout);
  961. if (!err && need_copyout)
  962. if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
  963. return -EFAULT;
  964. } else
  965. #ifdef CONFIG_WEXT_CORE
  966. if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
  967. err = wext_handle_ioctl(net, cmd, argp);
  968. } else
  969. #endif
  970. switch (cmd) {
  971. case FIOSETOWN:
  972. case SIOCSPGRP:
  973. err = -EFAULT;
  974. if (get_user(pid, (int __user *)argp))
  975. break;
  976. err = f_setown(sock->file, pid, 1);
  977. break;
  978. case FIOGETOWN:
  979. case SIOCGPGRP:
  980. err = put_user(f_getown(sock->file),
  981. (int __user *)argp);
  982. break;
  983. case SIOCGIFBR:
  984. case SIOCSIFBR:
  985. case SIOCBRADDBR:
  986. case SIOCBRDELBR:
  987. err = -ENOPKG;
  988. if (!br_ioctl_hook)
  989. request_module("bridge");
  990. mutex_lock(&br_ioctl_mutex);
  991. if (br_ioctl_hook)
  992. err = br_ioctl_hook(net, cmd, argp);
  993. mutex_unlock(&br_ioctl_mutex);
  994. break;
  995. case SIOCGIFVLAN:
  996. case SIOCSIFVLAN:
  997. err = -ENOPKG;
  998. if (!vlan_ioctl_hook)
  999. request_module("8021q");
  1000. mutex_lock(&vlan_ioctl_mutex);
  1001. if (vlan_ioctl_hook)
  1002. err = vlan_ioctl_hook(net, argp);
  1003. mutex_unlock(&vlan_ioctl_mutex);
  1004. break;
  1005. case SIOCADDDLCI:
  1006. case SIOCDELDLCI:
  1007. err = -ENOPKG;
  1008. if (!dlci_ioctl_hook)
  1009. request_module("dlci");
  1010. mutex_lock(&dlci_ioctl_mutex);
  1011. if (dlci_ioctl_hook)
  1012. err = dlci_ioctl_hook(cmd, argp);
  1013. mutex_unlock(&dlci_ioctl_mutex);
  1014. break;
  1015. case SIOCGSKNS:
  1016. err = -EPERM;
  1017. if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
  1018. break;
  1019. err = open_related_ns(&net->ns, get_net_ns);
  1020. break;
  1021. case SIOCGSTAMP_OLD:
  1022. case SIOCGSTAMPNS_OLD:
  1023. if (!sock->ops->gettstamp) {
  1024. err = -ENOIOCTLCMD;
  1025. break;
  1026. }
  1027. err = sock->ops->gettstamp(sock, argp,
  1028. cmd == SIOCGSTAMP_OLD,
  1029. !IS_ENABLED(CONFIG_64BIT));
  1030. break;
  1031. case SIOCGSTAMP_NEW:
  1032. case SIOCGSTAMPNS_NEW:
  1033. if (!sock->ops->gettstamp) {
  1034. err = -ENOIOCTLCMD;
  1035. break;
  1036. }
  1037. err = sock->ops->gettstamp(sock, argp,
  1038. cmd == SIOCGSTAMP_NEW,
  1039. false);
  1040. break;
  1041. default:
  1042. err = sock_do_ioctl(net, sock, cmd, arg);
  1043. break;
  1044. }
  1045. return err;
  1046. }
  1047. /**
  1048. * sock_create_lite - creates a socket
  1049. * @family: protocol family (AF_INET, ...)
  1050. * @type: communication type (SOCK_STREAM, ...)
  1051. * @protocol: protocol (0, ...)
  1052. * @res: new socket
  1053. *
  1054. * Creates a new socket and assigns it to @res, passing through LSM.
  1055. * The new socket initialization is not complete, see kernel_accept().
  1056. * Returns 0 or an error. On failure @res is set to %NULL.
  1057. * This function internally uses GFP_KERNEL.
  1058. */
  1059. int sock_create_lite(int family, int type, int protocol, struct socket **res)
  1060. {
  1061. int err;
  1062. struct socket *sock = NULL;
  1063. err = security_socket_create(family, type, protocol, 1);
  1064. if (err)
  1065. goto out;
  1066. sock = sock_alloc();
  1067. if (!sock) {
  1068. err = -ENOMEM;
  1069. goto out;
  1070. }
  1071. sock->type = type;
  1072. err = security_socket_post_create(sock, family, type, protocol, 1);
  1073. if (err)
  1074. goto out_release;
  1075. out:
  1076. *res = sock;
  1077. return err;
  1078. out_release:
  1079. sock_release(sock);
  1080. sock = NULL;
  1081. goto out;
  1082. }
  1083. EXPORT_SYMBOL(sock_create_lite);
  1084. /* No kernel lock held - perfect */
  1085. static __poll_t sock_poll(struct file *file, poll_table *wait)
  1086. {
  1087. struct socket *sock = file->private_data;
  1088. __poll_t events = poll_requested_events(wait), flag = 0;
  1089. if (!sock->ops->poll)
  1090. return 0;
  1091. if (sk_can_busy_loop(sock->sk)) {
  1092. /* poll once if requested by the syscall */
  1093. if (events & POLL_BUSY_LOOP)
  1094. sk_busy_loop(sock->sk, 1);
  1095. /* if this socket can poll_ll, tell the system call */
  1096. flag = POLL_BUSY_LOOP;
  1097. }
  1098. return sock->ops->poll(file, sock, wait) | flag;
  1099. }
  1100. static int sock_mmap(struct file *file, struct vm_area_struct *vma)
  1101. {
  1102. struct socket *sock = file->private_data;
  1103. return sock->ops->mmap(file, sock, vma);
  1104. }
  1105. static int sock_close(struct inode *inode, struct file *filp)
  1106. {
  1107. __sock_release(SOCKET_I(inode), inode);
  1108. return 0;
  1109. }
  1110. /*
  1111. * Update the socket async list
  1112. *
  1113. * Fasync_list locking strategy.
  1114. *
  1115. * 1. fasync_list is modified only under process context socket lock
  1116. * i.e. under semaphore.
  1117. * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
  1118. * or under socket lock
  1119. */
  1120. static int sock_fasync(int fd, struct file *filp, int on)
  1121. {
  1122. struct socket *sock = filp->private_data;
  1123. struct sock *sk = sock->sk;
  1124. struct socket_wq *wq = &sock->wq;
  1125. if (sk == NULL)
  1126. return -EINVAL;
  1127. lock_sock(sk);
  1128. fasync_helper(fd, filp, on, &wq->fasync_list);
  1129. if (!wq->fasync_list)
  1130. sock_reset_flag(sk, SOCK_FASYNC);
  1131. else
  1132. sock_set_flag(sk, SOCK_FASYNC);
  1133. release_sock(sk);
  1134. return 0;
  1135. }
  1136. /* This function may be called only under rcu_lock */
  1137. int sock_wake_async(struct socket_wq *wq, int how, int band)
  1138. {
  1139. if (!wq || !wq->fasync_list)
  1140. return -1;
  1141. switch (how) {
  1142. case SOCK_WAKE_WAITD:
  1143. if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
  1144. break;
  1145. goto call_kill;
  1146. case SOCK_WAKE_SPACE:
  1147. if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
  1148. break;
  1149. /* fall through */
  1150. case SOCK_WAKE_IO:
  1151. call_kill:
  1152. kill_fasync(&wq->fasync_list, SIGIO, band);
  1153. break;
  1154. case SOCK_WAKE_URG:
  1155. kill_fasync(&wq->fasync_list, SIGURG, band);
  1156. }
  1157. return 0;
  1158. }
  1159. EXPORT_SYMBOL(sock_wake_async);
  1160. /**
  1161. * __sock_create - creates a socket
  1162. * @net: net namespace
  1163. * @family: protocol family (AF_INET, ...)
  1164. * @type: communication type (SOCK_STREAM, ...)
  1165. * @protocol: protocol (0, ...)
  1166. * @res: new socket
  1167. * @kern: boolean for kernel space sockets
  1168. *
  1169. * Creates a new socket and assigns it to @res, passing through LSM.
  1170. * Returns 0 or an error. On failure @res is set to %NULL. @kern must
  1171. * be set to true if the socket resides in kernel space.
  1172. * This function internally uses GFP_KERNEL.
  1173. */
  1174. int __sock_create(struct net *net, int family, int type, int protocol,
  1175. struct socket **res, int kern)
  1176. {
  1177. int err;
  1178. struct socket *sock;
  1179. const struct net_proto_family *pf;
  1180. /*
  1181. * Check protocol is in range
  1182. */
  1183. if (family < 0 || family >= NPROTO)
  1184. return -EAFNOSUPPORT;
  1185. if (type < 0 || type >= SOCK_MAX)
  1186. return -EINVAL;
  1187. /* Compatibility.
  1188. This uglymoron is moved from INET layer to here to avoid
  1189. deadlock in module load.
  1190. */
  1191. if (family == PF_INET && type == SOCK_PACKET) {
  1192. pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
  1193. current->comm);
  1194. family = PF_PACKET;
  1195. }
  1196. err = security_socket_create(family, type, protocol, kern);
  1197. if (err)
  1198. return err;
  1199. /*
  1200. * Allocate the socket and allow the family to set things up. if
  1201. * the protocol is 0, the family is instructed to select an appropriate
  1202. * default.
  1203. */
  1204. sock = sock_alloc();
  1205. if (!sock) {
  1206. net_warn_ratelimited("socket: no more sockets\n");
  1207. return -ENFILE; /* Not exactly a match, but its the
  1208. closest posix thing */
  1209. }
  1210. sock->type = type;
  1211. #ifdef CONFIG_MODULES
  1212. /* Attempt to load a protocol module if the find failed.
  1213. *
  1214. * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
  1215. * requested real, full-featured networking support upon configuration.
  1216. * Otherwise module support will break!
  1217. */
  1218. if (rcu_access_pointer(net_families[family]) == NULL)
  1219. request_module("net-pf-%d", family);
  1220. #endif
  1221. rcu_read_lock();
  1222. pf = rcu_dereference(net_families[family]);
  1223. err = -EAFNOSUPPORT;
  1224. if (!pf)
  1225. goto out_release;
  1226. /*
  1227. * We will call the ->create function, that possibly is in a loadable
  1228. * module, so we have to bump that loadable module refcnt first.
  1229. */
  1230. if (!try_module_get(pf->owner))
  1231. goto out_release;
  1232. /* Now protected by module ref count */
  1233. rcu_read_unlock();
  1234. err = pf->create(net, sock, protocol, kern);
  1235. if (err < 0)
  1236. goto out_module_put;
  1237. /*
  1238. * Now to bump the refcnt of the [loadable] module that owns this
  1239. * socket at sock_release time we decrement its refcnt.
  1240. */
  1241. if (!try_module_get(sock->ops->owner))
  1242. goto out_module_busy;
  1243. /*
  1244. * Now that we're done with the ->create function, the [loadable]
  1245. * module can have its refcnt decremented
  1246. */
  1247. module_put(pf->owner);
  1248. err = security_socket_post_create(sock, family, type, protocol, kern);
  1249. if (err)
  1250. goto out_sock_release;
  1251. *res = sock;
  1252. return 0;
  1253. out_module_busy:
  1254. err = -EAFNOSUPPORT;
  1255. out_module_put:
  1256. sock->ops = NULL;
  1257. module_put(pf->owner);
  1258. out_sock_release:
  1259. sock_release(sock);
  1260. return err;
  1261. out_release:
  1262. rcu_read_unlock();
  1263. goto out_sock_release;
  1264. }
  1265. EXPORT_SYMBOL(__sock_create);
  1266. /**
  1267. * sock_create - creates a socket
  1268. * @family: protocol family (AF_INET, ...)
  1269. * @type: communication type (SOCK_STREAM, ...)
  1270. * @protocol: protocol (0, ...)
  1271. * @res: new socket
  1272. *
  1273. * A wrapper around __sock_create().
  1274. * Returns 0 or an error. This function internally uses GFP_KERNEL.
  1275. */
  1276. int sock_create(int family, int type, int protocol, struct socket **res)
  1277. {
  1278. return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
  1279. }
  1280. EXPORT_SYMBOL(sock_create);
  1281. /**
  1282. * sock_create_kern - creates a socket (kernel space)
  1283. * @net: net namespace
  1284. * @family: protocol family (AF_INET, ...)
  1285. * @type: communication type (SOCK_STREAM, ...)
  1286. * @protocol: protocol (0, ...)
  1287. * @res: new socket
  1288. *
  1289. * A wrapper around __sock_create().
  1290. * Returns 0 or an error. This function internally uses GFP_KERNEL.
  1291. */
  1292. int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
  1293. {
  1294. return __sock_create(net, family, type, protocol, res, 1);
  1295. }
  1296. EXPORT_SYMBOL(sock_create_kern);
  1297. int __sys_socket(int family, int type, int protocol)
  1298. {
  1299. int retval;
  1300. struct socket *sock;
  1301. int flags;
  1302. /* Check the SOCK_* constants for consistency. */
  1303. BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
  1304. BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
  1305. BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
  1306. BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
  1307. flags = type & ~SOCK_TYPE_MASK;
  1308. if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
  1309. return -EINVAL;
  1310. type &= SOCK_TYPE_MASK;
  1311. if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
  1312. flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
  1313. retval = sock_create(family, type, protocol, &sock);
  1314. if (retval < 0)
  1315. return retval;
  1316. return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
  1317. }
  1318. SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
  1319. {
  1320. return __sys_socket(family, type, protocol);
  1321. }
  1322. /*
  1323. * Create a pair of connected sockets.
  1324. */
  1325. int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
  1326. {
  1327. struct socket *sock1, *sock2;
  1328. int fd1, fd2, err;
  1329. struct file *newfile1, *newfile2;
  1330. int flags;
  1331. flags = type & ~SOCK_TYPE_MASK;
  1332. if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
  1333. return -EINVAL;
  1334. type &= SOCK_TYPE_MASK;
  1335. if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
  1336. flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
  1337. /*
  1338. * reserve descriptors and make sure we won't fail
  1339. * to return them to userland.
  1340. */
  1341. fd1 = get_unused_fd_flags(flags);
  1342. if (unlikely(fd1 < 0))
  1343. return fd1;
  1344. fd2 = get_unused_fd_flags(flags);
  1345. if (unlikely(fd2 < 0)) {
  1346. put_unused_fd(fd1);
  1347. return fd2;
  1348. }
  1349. err = put_user(fd1, &usockvec[0]);
  1350. if (err)
  1351. goto out;
  1352. err = put_user(fd2, &usockvec[1]);
  1353. if (err)
  1354. goto out;
  1355. /*
  1356. * Obtain the first socket and check if the underlying protocol
  1357. * supports the socketpair call.
  1358. */
  1359. err = sock_create(family, type, protocol, &sock1);
  1360. if (unlikely(err < 0))
  1361. goto out;
  1362. err = sock_create(family, type, protocol, &sock2);
  1363. if (unlikely(err < 0)) {
  1364. sock_release(sock1);
  1365. goto out;
  1366. }
  1367. err = security_socket_socketpair(sock1, sock2);
  1368. if (unlikely(err)) {
  1369. sock_release(sock2);
  1370. sock_release(sock1);
  1371. goto out;
  1372. }
  1373. err = sock1->ops->socketpair(sock1, sock2);
  1374. if (unlikely(err < 0)) {
  1375. sock_release(sock2);
  1376. sock_release(sock1);
  1377. goto out;
  1378. }
  1379. newfile1 = sock_alloc_file(sock1, flags, NULL);
  1380. if (IS_ERR(newfile1)) {
  1381. err = PTR_ERR(newfile1);
  1382. sock_release(sock2);
  1383. goto out;
  1384. }
  1385. newfile2 = sock_alloc_file(sock2, flags, NULL);
  1386. if (IS_ERR(newfile2)) {
  1387. err = PTR_ERR(newfile2);
  1388. fput(newfile1);
  1389. goto out;
  1390. }
  1391. audit_fd_pair(fd1, fd2);
  1392. fd_install(fd1, newfile1);
  1393. fd_install(fd2, newfile2);
  1394. return 0;
  1395. out:
  1396. put_unused_fd(fd2);
  1397. put_unused_fd(fd1);
  1398. return err;
  1399. }
  1400. SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
  1401. int __user *, usockvec)
  1402. {
  1403. return __sys_socketpair(family, type, protocol, usockvec);
  1404. }
  1405. /*
  1406. * Bind a name to a socket. Nothing much to do here since it's
  1407. * the protocol's responsibility to handle the local address.
  1408. *
  1409. * We move the socket address to kernel space before we call
  1410. * the protocol layer (having also checked the address is ok).
  1411. */
  1412. int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
  1413. {
  1414. struct socket *sock;
  1415. struct sockaddr_storage address;
  1416. int err, fput_needed;
  1417. sock = sockfd_lookup_light(fd, &err, &fput_needed);
  1418. if (sock) {
  1419. err = move_addr_to_kernel(umyaddr, addrlen, &address);
  1420. if (!err) {
  1421. err = security_socket_bind(sock,
  1422. (struct sockaddr *)&address,
  1423. addrlen);
  1424. if (!err)
  1425. err = sock->ops->bind(sock,
  1426. (struct sockaddr *)
  1427. &address, addrlen);
  1428. }
  1429. fput_light(sock->file, fput_needed);
  1430. }
  1431. return err;
  1432. }
  1433. SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
  1434. {
  1435. return __sys_bind(fd, umyaddr, addrlen);
  1436. }
  1437. /*
  1438. * Perform a listen. Basically, we allow the protocol to do anything
  1439. * necessary for a listen, and if that works, we mark the socket as
  1440. * ready for listening.
  1441. */
  1442. int __sys_listen(int fd, int backlog)
  1443. {
  1444. struct socket *sock;
  1445. int err, fput_needed;
  1446. int somaxconn;
  1447. sock = sockfd_lookup_light(fd, &err, &fput_needed);
  1448. if (sock) {
  1449. somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
  1450. if ((unsigned int)backlog > somaxconn)
  1451. backlog = somaxconn;
  1452. err = security_socket_listen(sock, backlog);
  1453. if (!err)
  1454. err = sock->ops->listen(sock, backlog);
  1455. fput_light(sock->file, fput_needed);
  1456. }
  1457. return err;
  1458. }
  1459. SYSCALL_DEFINE2(listen, int, fd, int, backlog)
  1460. {
  1461. return __sys_listen(fd, backlog);
  1462. }
  1463. int __sys_accept4_file(struct file *file, unsigned file_flags,
  1464. struct sockaddr __user *upeer_sockaddr,
  1465. int __user *upeer_addrlen, int flags,
  1466. unsigned long nofile)
  1467. {
  1468. struct socket *sock, *newsock;
  1469. struct file *newfile;
  1470. int err, len, newfd;
  1471. struct sockaddr_storage address;
  1472. if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
  1473. return -EINVAL;
  1474. if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
  1475. flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
  1476. sock = sock_from_file(file, &err);
  1477. if (!sock)
  1478. goto out;
  1479. err = -ENFILE;
  1480. newsock = sock_alloc();
  1481. if (!newsock)
  1482. goto out;
  1483. newsock->type = sock->type;
  1484. newsock->ops = sock->ops;
  1485. /*
  1486. * We don't need try_module_get here, as the listening socket (sock)
  1487. * has the protocol module (sock->ops->owner) held.
  1488. */
  1489. __module_get(newsock->ops->owner);
  1490. newfd = __get_unused_fd_flags(flags, nofile);
  1491. if (unlikely(newfd < 0)) {
  1492. err = newfd;
  1493. sock_release(newsock);
  1494. goto out;
  1495. }
  1496. newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
  1497. if (IS_ERR(newfile)) {
  1498. err = PTR_ERR(newfile);
  1499. put_unused_fd(newfd);
  1500. goto out;
  1501. }
  1502. err = security_socket_accept(sock, newsock);
  1503. if (err)
  1504. goto out_fd;
  1505. err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
  1506. false);
  1507. if (err < 0)
  1508. goto out_fd;
  1509. if (upeer_sockaddr) {
  1510. len = newsock->ops->getname(newsock,
  1511. (struct sockaddr *)&address, 2);
  1512. if (len < 0) {
  1513. err = -ECONNABORTED;
  1514. goto out_fd;
  1515. }
  1516. err = move_addr_to_user(&address,
  1517. len, upeer_sockaddr, upeer_addrlen);
  1518. if (err < 0)
  1519. goto out_fd;
  1520. }
  1521. /* File flags are not inherited via accept() unlike another OSes. */
  1522. fd_install(newfd, newfile);
  1523. err = newfd;
  1524. out:
  1525. return err;
  1526. out_fd:
  1527. fput(newfile);
  1528. put_unused_fd(newfd);
  1529. goto out;
  1530. }
  1531. /*
  1532. * For accept, we attempt to create a new socket, set up the link
  1533. * with the client, wake up the client, then return the new
  1534. * connected fd. We collect the address of the connector in kernel
  1535. * space and move it to user at the very end. This is unclean because
  1536. * we open the socket then return an error.
  1537. *
  1538. * 1003.1g adds the ability to recvmsg() to query connection pending
  1539. * status to recvmsg. We need to add that support in a way thats
  1540. * clean when we restructure accept also.
  1541. */
  1542. int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
  1543. int __user *upeer_addrlen, int flags)
  1544. {
  1545. int ret = -EBADF;
  1546. struct fd f;
  1547. f = fdget(fd);
  1548. if (f.file) {
  1549. ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
  1550. upeer_addrlen, flags,
  1551. rlimit(RLIMIT_NOFILE));
  1552. if (f.flags)
  1553. fput(f.file);
  1554. }
  1555. return ret;
  1556. }
  1557. SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
  1558. int __user *, upeer_addrlen, int, flags)
  1559. {
  1560. return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
  1561. }
  1562. SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
  1563. int __user *, upeer_addrlen)
  1564. {
  1565. return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
  1566. }
  1567. /*
  1568. * Attempt to connect to a socket with the server address. The address
  1569. * is in user space so we verify it is OK and move it to kernel space.
  1570. *
  1571. * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
  1572. * break bindings
  1573. *
  1574. * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
  1575. * other SEQPACKET protocols that take time to connect() as it doesn't
  1576. * include the -EINPROGRESS status for such sockets.
  1577. */
  1578. int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
  1579. int addrlen, int file_flags)
  1580. {
  1581. struct socket *sock;
  1582. int err;
  1583. sock = sock_from_file(file, &err);
  1584. if (!sock)
  1585. goto out;
  1586. err =
  1587. security_socket_connect(sock, (struct sockaddr *)address, addrlen);
  1588. if (err)
  1589. goto out;
  1590. err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
  1591. sock->file->f_flags | file_flags);
  1592. out:
  1593. return err;
  1594. }
  1595. int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
  1596. {
  1597. int ret = -EBADF;
  1598. struct fd f;
  1599. f = fdget(fd);
  1600. if (f.file) {
  1601. struct sockaddr_storage address;
  1602. ret = move_addr_to_kernel(uservaddr, addrlen, &address);
  1603. if (!ret)
  1604. ret = __sys_connect_file(f.file, &address, addrlen, 0);
  1605. if (f.flags)
  1606. fput(f.file);
  1607. }
  1608. return ret;
  1609. }
  1610. SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
  1611. int, addrlen)
  1612. {
  1613. return __sys_connect(fd, uservaddr, addrlen);
  1614. }
  1615. /*
  1616. * Get the local address ('name') of a socket object. Move the obtained
  1617. * name to user space.
  1618. */
  1619. int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
  1620. int __user *usockaddr_len)
  1621. {
  1622. struct socket *sock;
  1623. struct sockaddr_storage address;
  1624. int err, fput_needed;
  1625. sock = sockfd_lookup_light(fd, &err, &fput_needed);
  1626. if (!sock)
  1627. goto out;
  1628. err = security_socket_getsockname(sock);
  1629. if (err)
  1630. goto out_put;
  1631. err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
  1632. if (err < 0)
  1633. goto out_put;
  1634. /* "err" is actually length in this case */
  1635. err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
  1636. out_put:
  1637. fput_light(sock->file, fput_needed);
  1638. out:
  1639. return err;
  1640. }
  1641. SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
  1642. int __user *, usockaddr_len)
  1643. {
  1644. return __sys_getsockname(fd, usockaddr, usockaddr_len);
  1645. }
  1646. /*
  1647. * Get the remote address ('name') of a socket object. Move the obtained
  1648. * name to user space.
  1649. */
  1650. int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
  1651. int __user *usockaddr_len)
  1652. {
  1653. struct socket *sock;
  1654. struct sockaddr_storage address;
  1655. int err, fput_needed;
  1656. sock = sockfd_lookup_light(fd, &err, &fput_needed);
  1657. if (sock != NULL) {
  1658. err = security_socket_getpeername(sock);
  1659. if (err) {
  1660. fput_light(sock->file, fput_needed);
  1661. return err;
  1662. }
  1663. err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
  1664. if (err >= 0)
  1665. /* "err" is actually length in this case */
  1666. err = move_addr_to_user(&address, err, usockaddr,
  1667. usockaddr_len);
  1668. fput_light(sock->file, fput_needed);
  1669. }
  1670. return err;
  1671. }
  1672. SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
  1673. int __user *, usockaddr_len)
  1674. {
  1675. return __sys_getpeername(fd, usockaddr, usockaddr_len);
  1676. }
  1677. /*
  1678. * Send a datagram to a given address. We move the address into kernel
  1679. * space and check the user space data area is readable before invoking
  1680. * the protocol.
  1681. */
  1682. int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
  1683. struct sockaddr __user *addr, int addr_len)
  1684. {
  1685. struct socket *sock;
  1686. struct sockaddr_storage address;
  1687. int err;
  1688. struct msghdr msg;
  1689. struct iovec iov;
  1690. int fput_needed;
  1691. err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
  1692. if (unlikely(err))
  1693. return err;
  1694. sock = sockfd_lookup_light(fd, &err, &fput_needed);
  1695. if (!sock)
  1696. goto out;
  1697. msg.msg_name = NULL;
  1698. msg.msg_control = NULL;
  1699. msg.msg_controllen = 0;
  1700. msg.msg_namelen = 0;
  1701. if (addr) {
  1702. err = move_addr_to_kernel(addr, addr_len, &address);
  1703. if (err < 0)
  1704. goto out_put;
  1705. msg.msg_name = (struct sockaddr *)&address;
  1706. msg.msg_namelen = addr_len;
  1707. }
  1708. if (sock->file->f_flags & O_NONBLOCK)
  1709. flags |= MSG_DONTWAIT;
  1710. msg.msg_flags = flags;
  1711. err = sock_sendmsg(sock, &msg);
  1712. out_put:
  1713. fput_light(sock->file, fput_needed);
  1714. out:
  1715. return err;
  1716. }
  1717. SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
  1718. unsigned int, flags, struct sockaddr __user *, addr,
  1719. int, addr_len)
  1720. {
  1721. return __sys_sendto(fd, buff, len, flags, addr, addr_len);
  1722. }
  1723. /*
  1724. * Send a datagram down a socket.
  1725. */
  1726. SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
  1727. unsigned int, flags)
  1728. {
  1729. return __sys_sendto(fd, buff, len, flags, NULL, 0);
  1730. }
  1731. /*
  1732. * Receive a frame from the socket and optionally record the address of the
  1733. * sender. We verify the buffers are writable and if needed move the
  1734. * sender address from kernel to user space.
  1735. */
  1736. int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
  1737. struct sockaddr __user *addr, int __user *addr_len)
  1738. {
  1739. struct socket *sock;
  1740. struct iovec iov;
  1741. struct msghdr msg;
  1742. struct sockaddr_storage address;
  1743. int err, err2;
  1744. int fput_needed;
  1745. err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
  1746. if (unlikely(err))
  1747. return err;
  1748. sock = sockfd_lookup_light(fd, &err, &fput_needed);
  1749. if (!sock)
  1750. goto out;
  1751. msg.msg_control = NULL;
  1752. msg.msg_controllen = 0;
  1753. /* Save some cycles and don't copy the address if not needed */
  1754. msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
  1755. /* We assume all kernel code knows the size of sockaddr_storage */
  1756. msg.msg_namelen = 0;
  1757. msg.msg_iocb = NULL;
  1758. msg.msg_flags = 0;
  1759. if (sock->file->f_flags & O_NONBLOCK)
  1760. flags |= MSG_DONTWAIT;
  1761. err = sock_recvmsg(sock, &msg, flags);
  1762. if (err >= 0 && addr != NULL) {
  1763. err2 = move_addr_to_user(&address,
  1764. msg.msg_namelen, addr, addr_len);
  1765. if (err2 < 0)
  1766. err = err2;
  1767. }
  1768. fput_light(sock->file, fput_needed);
  1769. out:
  1770. return err;
  1771. }
  1772. SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
  1773. unsigned int, flags, struct sockaddr __user *, addr,
  1774. int __user *, addr_len)
  1775. {
  1776. return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
  1777. }
  1778. /*
  1779. * Receive a datagram from a socket.
  1780. */
  1781. SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
  1782. unsigned int, flags)
  1783. {
  1784. return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
  1785. }
  1786. /*
  1787. * Set a socket option. Because we don't know the option lengths we have
  1788. * to pass the user mode parameter for the protocols to sort out.
  1789. */
  1790. static int __sys_setsockopt(int fd, int level, int optname,
  1791. char __user *optval, int optlen)
  1792. {
  1793. mm_segment_t oldfs = get_fs();
  1794. char *kernel_optval = NULL;
  1795. int err, fput_needed;
  1796. struct socket *sock;
  1797. if (optlen < 0)
  1798. return -EINVAL;
  1799. sock = sockfd_lookup_light(fd, &err, &fput_needed);
  1800. if (sock != NULL) {
  1801. err = security_socket_setsockopt(sock, level, optname);
  1802. if (err)
  1803. goto out_put;
  1804. err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level,
  1805. &optname, optval, &optlen,
  1806. &kernel_optval);
  1807. if (err < 0) {
  1808. goto out_put;
  1809. } else if (err > 0) {
  1810. err = 0;
  1811. goto out_put;
  1812. }
  1813. if (kernel_optval) {
  1814. set_fs(KERNEL_DS);
  1815. optval = (char __user __force *)kernel_optval;
  1816. }
  1817. if (level == SOL_SOCKET)
  1818. err =
  1819. sock_setsockopt(sock, level, optname, optval,
  1820. optlen);
  1821. else
  1822. err =
  1823. sock->ops->setsockopt(sock, level, optname, optval,
  1824. optlen);
  1825. if (kernel_optval) {
  1826. set_fs(oldfs);
  1827. kfree(kernel_optval);
  1828. }
  1829. out_put:
  1830. fput_light(sock->file, fput_needed);
  1831. }
  1832. return err;
  1833. }
  1834. SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
  1835. char __user *, optval, int, optlen)
  1836. {
  1837. return __sys_setsockopt(fd, level, optname, optval, optlen);
  1838. }
  1839. /*
  1840. * Get a socket option. Because we don't know the option lengths we have
  1841. * to pass a user mode parameter for the protocols to sort out.
  1842. */
  1843. static int __sys_getsockopt(int fd, int level, int optname,
  1844. char __user *optval, int __user *optlen)
  1845. {
  1846. int err, fput_needed;
  1847. struct socket *sock;
  1848. int max_optlen;
  1849. sock = sockfd_lookup_light(fd, &err, &fput_needed);
  1850. if (sock != NULL) {
  1851. err = security_socket_getsockopt(sock, level, optname);
  1852. if (err)
  1853. goto out_put;
  1854. max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
  1855. if (level == SOL_SOCKET)
  1856. err =
  1857. sock_getsockopt(sock, level, optname, optval,
  1858. optlen);
  1859. else
  1860. err =
  1861. sock->ops->getsockopt(sock, level, optname, optval,
  1862. optlen);
  1863. err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
  1864. optval, optlen,
  1865. max_optlen, err);
  1866. out_put:
  1867. fput_light(sock->file, fput_needed);
  1868. }
  1869. return err;
  1870. }
  1871. SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
  1872. char __user *, optval, int __user *, optlen)
  1873. {
  1874. return __sys_getsockopt(fd, level, optname, optval, optlen);
  1875. }
  1876. /*
  1877. * Shutdown a socket.
  1878. */
  1879. int __sys_shutdown(int fd, int how)
  1880. {
  1881. int err, fput_needed;
  1882. struct socket *sock;
  1883. sock = sockfd_lookup_light(fd, &err, &fput_needed);
  1884. if (sock != NULL) {
  1885. err = security_socket_shutdown(sock, how);
  1886. if (!err)
  1887. err = sock->ops->shutdown(sock, how);
  1888. fput_light(sock->file, fput_needed);
  1889. }
  1890. return err;
  1891. }
  1892. SYSCALL_DEFINE2(shutdown, int, fd, int, how)
  1893. {
  1894. return __sys_shutdown(fd, how);
  1895. }
  1896. /* A couple of helpful macros for getting the address of the 32/64 bit
  1897. * fields which are the same type (int / unsigned) on our platforms.
  1898. */
  1899. #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
  1900. #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
  1901. #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
  1902. struct used_address {
  1903. struct sockaddr_storage name;
  1904. unsigned int name_len;
  1905. };
  1906. int __copy_msghdr_from_user(struct msghdr *kmsg,
  1907. struct user_msghdr __user *umsg,
  1908. struct sockaddr __user **save_addr,
  1909. struct iovec __user **uiov, size_t *nsegs)
  1910. {
  1911. struct user_msghdr msg;
  1912. ssize_t err;
  1913. if (copy_from_user(&msg, umsg, sizeof(*umsg)))
  1914. return -EFAULT;
  1915. kmsg->msg_control = (void __force *)msg.msg_control;
  1916. kmsg->msg_controllen = msg.msg_controllen;
  1917. kmsg->msg_flags = msg.msg_flags;
  1918. kmsg->msg_namelen = msg.msg_namelen;
  1919. if (!msg.msg_name)
  1920. kmsg->msg_namelen = 0;
  1921. if (kmsg->msg_namelen < 0)
  1922. return -EINVAL;
  1923. if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
  1924. kmsg->msg_namelen = sizeof(struct sockaddr_storage);
  1925. if (save_addr)
  1926. *save_addr = msg.msg_name;
  1927. if (msg.msg_name && kmsg->msg_namelen) {
  1928. if (!save_addr) {
  1929. err = move_addr_to_kernel(msg.msg_name,
  1930. kmsg->msg_namelen,
  1931. kmsg->msg_name);
  1932. if (err < 0)
  1933. return err;
  1934. }
  1935. } else {
  1936. kmsg->msg_name = NULL;
  1937. kmsg->msg_namelen = 0;
  1938. }
  1939. if (msg.msg_iovlen > UIO_MAXIOV)
  1940. return -EMSGSIZE;
  1941. kmsg->msg_iocb = NULL;
  1942. *uiov = msg.msg_iov;
  1943. *nsegs = msg.msg_iovlen;
  1944. return 0;
  1945. }
  1946. static int copy_msghdr_from_user(struct msghdr *kmsg,
  1947. struct user_msghdr __user *umsg,
  1948. struct sockaddr __user **save_addr,
  1949. struct iovec **iov)
  1950. {
  1951. struct user_msghdr msg;
  1952. ssize_t err;
  1953. err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
  1954. &msg.msg_iovlen);
  1955. if (err)
  1956. return err;
  1957. err = import_iovec(save_addr ? READ : WRITE,
  1958. msg.msg_iov, msg.msg_iovlen,
  1959. UIO_FASTIOV, iov, &kmsg->msg_iter);
  1960. return err < 0 ? err : 0;
  1961. }
  1962. static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
  1963. unsigned int flags, struct used_address *used_address,
  1964. unsigned int allowed_msghdr_flags)
  1965. {
  1966. unsigned char ctl[sizeof(struct cmsghdr) + 20]
  1967. __aligned(sizeof(__kernel_size_t));
  1968. /* 20 is size of ipv6_pktinfo */
  1969. unsigned char *ctl_buf = ctl;
  1970. int ctl_len;
  1971. ssize_t err;
  1972. err = -ENOBUFS;
  1973. if (msg_sys->msg_controllen > INT_MAX)
  1974. goto out;
  1975. flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
  1976. ctl_len = msg_sys->msg_controllen;
  1977. if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
  1978. err =
  1979. cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
  1980. sizeof(ctl));
  1981. if (err)
  1982. goto out;
  1983. ctl_buf = msg_sys->msg_control;
  1984. ctl_len = msg_sys->msg_controllen;
  1985. } else if (ctl_len) {
  1986. BUILD_BUG_ON(sizeof(struct cmsghdr) !=
  1987. CMSG_ALIGN(sizeof(struct cmsghdr)));
  1988. if (ctl_len > sizeof(ctl)) {
  1989. ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
  1990. if (ctl_buf == NULL)
  1991. goto out;
  1992. }
  1993. err = -EFAULT;
  1994. /*
  1995. * Careful! Before this, msg_sys->msg_control contains a user pointer.
  1996. * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
  1997. * checking falls down on this.
  1998. */
  1999. if (copy_from_user(ctl_buf,
  2000. (void __user __force *)msg_sys->msg_control,
  2001. ctl_len))
  2002. goto out_freectl;
  2003. msg_sys->msg_control = ctl_buf;
  2004. }
  2005. msg_sys->msg_flags = flags;
  2006. if (sock->file->f_flags & O_NONBLOCK)
  2007. msg_sys->msg_flags |= MSG_DONTWAIT;
  2008. /*
  2009. * If this is sendmmsg() and current destination address is same as
  2010. * previously succeeded address, omit asking LSM's decision.
  2011. * used_address->name_len is initialized to UINT_MAX so that the first
  2012. * destination address never matches.
  2013. */
  2014. if (used_address && msg_sys->msg_name &&
  2015. used_address->name_len == msg_sys->msg_namelen &&
  2016. !memcmp(&used_address->name, msg_sys->msg_name,
  2017. used_address->name_len)) {
  2018. err = sock_sendmsg_nosec(sock, msg_sys);
  2019. goto out_freectl;
  2020. }
  2021. err = sock_sendmsg(sock, msg_sys);
  2022. /*
  2023. * If this is sendmmsg() and sending to current destination address was
  2024. * successful, remember it.
  2025. */
  2026. if (used_address && err >= 0) {
  2027. used_address->name_len = msg_sys->msg_namelen;
  2028. if (msg_sys->msg_name)
  2029. memcpy(&used_address->name, msg_sys->msg_name,
  2030. used_address->name_len);
  2031. }
  2032. out_freectl:
  2033. if (ctl_buf != ctl)
  2034. sock_kfree_s(sock->sk, ctl_buf, ctl_len);
  2035. out:
  2036. return err;
  2037. }
  2038. int sendmsg_copy_msghdr(struct msghdr *msg,
  2039. struct user_msghdr __user *umsg, unsigned flags,
  2040. struct iovec **iov)
  2041. {
  2042. int err;
  2043. if (flags & MSG_CMSG_COMPAT) {
  2044. struct compat_msghdr __user *msg_compat;
  2045. msg_compat = (struct compat_msghdr __user *) umsg;
  2046. err = get_compat_msghdr(msg, msg_compat, NULL, iov);
  2047. } else {
  2048. err = copy_msghdr_from_user(msg, umsg, NULL, iov);
  2049. }
  2050. if (err < 0)
  2051. return err;
  2052. return 0;
  2053. }
  2054. static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
  2055. struct msghdr *msg_sys, unsigned int flags,
  2056. struct used_address *used_address,
  2057. unsigned int allowed_msghdr_flags)
  2058. {
  2059. struct sockaddr_storage address;
  2060. struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
  2061. ssize_t err;
  2062. msg_sys->msg_name = &address;
  2063. err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
  2064. if (err < 0)
  2065. return err;
  2066. err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
  2067. allowed_msghdr_flags);
  2068. kfree(iov);
  2069. return err;
  2070. }
  2071. /*
  2072. * BSD sendmsg interface
  2073. */
  2074. long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
  2075. unsigned int flags)
  2076. {
  2077. /* disallow ancillary data requests from this path */
  2078. if (msg->msg_control || msg->msg_controllen)
  2079. return -EINVAL;
  2080. return ____sys_sendmsg(sock, msg, flags, NULL, 0);
  2081. }
  2082. long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
  2083. bool forbid_cmsg_compat)
  2084. {
  2085. int fput_needed, err;
  2086. struct msghdr msg_sys;
  2087. struct socket *sock;
  2088. if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
  2089. return -EINVAL;
  2090. sock = sockfd_lookup_light(fd, &err, &fput_needed);
  2091. if (!sock)
  2092. goto out;
  2093. err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
  2094. fput_light(sock->file, fput_needed);
  2095. out:
  2096. return err;
  2097. }
  2098. SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
  2099. {
  2100. return __sys_sendmsg(fd, msg, flags, true);
  2101. }
  2102. /*
  2103. * Linux sendmmsg interface
  2104. */
  2105. int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
  2106. unsigned int flags, bool forbid_cmsg_compat)
  2107. {
  2108. int fput_needed, err, datagrams;
  2109. struct socket *sock;
  2110. struct mmsghdr __user *entry;
  2111. struct compat_mmsghdr __user *compat_entry;
  2112. struct msghdr msg_sys;
  2113. struct used_address used_address;
  2114. unsigned int oflags = flags;
  2115. if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
  2116. return -EINVAL;
  2117. if (vlen > UIO_MAXIOV)
  2118. vlen = UIO_MAXIOV;
  2119. datagrams = 0;
  2120. sock = sockfd_lookup_light(fd, &err, &fput_needed);
  2121. if (!sock)
  2122. return err;
  2123. used_address.name_len = UINT_MAX;
  2124. entry = mmsg;
  2125. compat_entry = (struct compat_mmsghdr __user *)mmsg;
  2126. err = 0;
  2127. flags |= MSG_BATCH;
  2128. while (datagrams < vlen) {
  2129. if (datagrams == vlen - 1)
  2130. flags = oflags;
  2131. if (MSG_CMSG_COMPAT & flags) {
  2132. err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
  2133. &msg_sys, flags, &used_address, MSG_EOR);
  2134. if (err < 0)
  2135. break;
  2136. err = __put_user(err, &compat_entry->msg_len);
  2137. ++compat_entry;
  2138. } else {
  2139. err = ___sys_sendmsg(sock,
  2140. (struct user_msghdr __user *)entry,
  2141. &msg_sys, flags, &used_address, MSG_EOR);
  2142. if (err < 0)
  2143. break;
  2144. err = put_user(err, &entry->msg_len);
  2145. ++entry;
  2146. }
  2147. if (err)
  2148. break;
  2149. ++datagrams;
  2150. if (msg_data_left(&msg_sys))
  2151. break;
  2152. cond_resched();
  2153. }
  2154. fput_light(sock->file, fput_needed);
  2155. /* We only return an error if no datagrams were able to be sent */
  2156. if (datagrams != 0)
  2157. return datagrams;
  2158. return err;
  2159. }
  2160. SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
  2161. unsigned int, vlen, unsigned int, flags)
  2162. {
  2163. return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
  2164. }
  2165. int recvmsg_copy_msghdr(struct msghdr *msg,
  2166. struct user_msghdr __user *umsg, unsigned flags,
  2167. struct sockaddr __user **uaddr,
  2168. struct iovec **iov)
  2169. {
  2170. ssize_t err;
  2171. if (MSG_CMSG_COMPAT & flags) {
  2172. struct compat_msghdr __user *msg_compat;
  2173. msg_compat = (struct compat_msghdr __user *) umsg;
  2174. err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
  2175. } else {
  2176. err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
  2177. }
  2178. if (err < 0)
  2179. return err;
  2180. return 0;
  2181. }
  2182. static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
  2183. struct user_msghdr __user *msg,
  2184. struct sockaddr __user *uaddr,
  2185. unsigned int flags, int nosec)
  2186. {
  2187. struct compat_msghdr __user *msg_compat =
  2188. (struct compat_msghdr __user *) msg;
  2189. int __user *uaddr_len = COMPAT_NAMELEN(msg);
  2190. struct sockaddr_storage addr;
  2191. unsigned long cmsg_ptr;
  2192. int len;
  2193. ssize_t err;
  2194. msg_sys->msg_name = &addr;
  2195. cmsg_ptr = (unsigned long)msg_sys->msg_control;
  2196. msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
  2197. /* We assume all kernel code knows the size of sockaddr_storage */
  2198. msg_sys->msg_namelen = 0;
  2199. if (sock->file->f_flags & O_NONBLOCK)
  2200. flags |= MSG_DONTWAIT;
  2201. if (unlikely(nosec))
  2202. err = sock_recvmsg_nosec(sock, msg_sys, flags);
  2203. else
  2204. err = sock_recvmsg(sock, msg_sys, flags);
  2205. if (err < 0)
  2206. goto out;
  2207. len = err;
  2208. if (uaddr != NULL) {
  2209. err = move_addr_to_user(&addr,
  2210. msg_sys->msg_namelen, uaddr,
  2211. uaddr_len);
  2212. if (err < 0)
  2213. goto out;
  2214. }
  2215. err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
  2216. COMPAT_FLAGS(msg));
  2217. if (err)
  2218. goto out;
  2219. if (MSG_CMSG_COMPAT & flags)
  2220. err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
  2221. &msg_compat->msg_controllen);
  2222. else
  2223. err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
  2224. &msg->msg_controllen);
  2225. if (err)
  2226. goto out;
  2227. err = len;
  2228. out:
  2229. return err;
  2230. }
  2231. static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
  2232. struct msghdr *msg_sys, unsigned int flags, int nosec)
  2233. {
  2234. struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
  2235. /* user mode address pointers */
  2236. struct sockaddr __user *uaddr;
  2237. ssize_t err;
  2238. err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
  2239. if (err < 0)
  2240. return err;
  2241. err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
  2242. kfree(iov);
  2243. return err;
  2244. }
  2245. /*
  2246. * BSD recvmsg interface
  2247. */
  2248. long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
  2249. struct user_msghdr __user *umsg,
  2250. struct sockaddr __user *uaddr, unsigned int flags)
  2251. {
  2252. /* disallow ancillary data requests from this path */
  2253. if (msg->msg_control || msg->msg_controllen)
  2254. return -EINVAL;
  2255. return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
  2256. }
  2257. long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
  2258. bool forbid_cmsg_compat)
  2259. {
  2260. int fput_needed, err;
  2261. struct msghdr msg_sys;
  2262. struct socket *sock;
  2263. if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
  2264. return -EINVAL;
  2265. sock = sockfd_lookup_light(fd, &err, &fput_needed);
  2266. if (!sock)
  2267. goto out;
  2268. err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
  2269. fput_light(sock->file, fput_needed);
  2270. out:
  2271. return err;
  2272. }
  2273. SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
  2274. unsigned int, flags)
  2275. {
  2276. return __sys_recvmsg(fd, msg, flags, true);
  2277. }
  2278. /*
  2279. * Linux recvmmsg interface
  2280. */
  2281. static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
  2282. unsigned int vlen, unsigned int flags,
  2283. struct timespec64 *timeout)
  2284. {
  2285. int fput_needed, err, datagrams;
  2286. struct socket *sock;
  2287. struct mmsghdr __user *entry;
  2288. struct compat_mmsghdr __user *compat_entry;
  2289. struct msghdr msg_sys;
  2290. struct timespec64 end_time;
  2291. struct timespec64 timeout64;
  2292. if (timeout &&
  2293. poll_select_set_timeout(&end_time, timeout->tv_sec,
  2294. timeout->tv_nsec))
  2295. return -EINVAL;
  2296. datagrams = 0;
  2297. sock = sockfd_lookup_light(fd, &err, &fput_needed);
  2298. if (!sock)
  2299. return err;
  2300. if (likely(!(flags & MSG_ERRQUEUE))) {
  2301. err = sock_error(sock->sk);
  2302. if (err) {
  2303. datagrams = err;
  2304. goto out_put;
  2305. }
  2306. }
  2307. entry = mmsg;
  2308. compat_entry = (struct compat_mmsghdr __user *)mmsg;
  2309. while (datagrams < vlen) {
  2310. /*
  2311. * No need to ask LSM for more than the first datagram.
  2312. */
  2313. if (MSG_CMSG_COMPAT & flags) {
  2314. err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
  2315. &msg_sys, flags & ~MSG_WAITFORONE,
  2316. datagrams);
  2317. if (err < 0)
  2318. break;
  2319. err = __put_user(err, &compat_entry->msg_len);
  2320. ++compat_entry;
  2321. } else {
  2322. err = ___sys_recvmsg(sock,
  2323. (struct user_msghdr __user *)entry,
  2324. &msg_sys, flags & ~MSG_WAITFORONE,
  2325. datagrams);
  2326. if (err < 0)
  2327. break;
  2328. err = put_user(err, &entry->msg_len);
  2329. ++entry;
  2330. }
  2331. if (err)
  2332. break;
  2333. ++datagrams;
  2334. /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
  2335. if (flags & MSG_WAITFORONE)
  2336. flags |= MSG_DONTWAIT;
  2337. if (timeout) {
  2338. ktime_get_ts64(&timeout64);
  2339. *timeout = timespec64_sub(end_time, timeout64);
  2340. if (timeout->tv_sec < 0) {
  2341. timeout->tv_sec = timeout->tv_nsec = 0;
  2342. break;
  2343. }
  2344. /* Timeout, return less than vlen datagrams */
  2345. if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
  2346. break;
  2347. }
  2348. /* Out of band data, return right away */
  2349. if (msg_sys.msg_flags & MSG_OOB)
  2350. break;
  2351. cond_resched();
  2352. }
  2353. if (err == 0)
  2354. goto out_put;
  2355. if (datagrams == 0) {
  2356. datagrams = err;
  2357. goto out_put;
  2358. }
  2359. /*
  2360. * We may return less entries than requested (vlen) if the
  2361. * sock is non block and there aren't enough datagrams...
  2362. */
  2363. if (err != -EAGAIN) {
  2364. /*
  2365. * ... or if recvmsg returns an error after we
  2366. * received some datagrams, where we record the
  2367. * error to return on the next call or if the
  2368. * app asks about it using getsockopt(SO_ERROR).
  2369. */
  2370. sock->sk->sk_err = -err;
  2371. }
  2372. out_put:
  2373. fput_light(sock->file, fput_needed);
  2374. return datagrams;
  2375. }
  2376. int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
  2377. unsigned int vlen, unsigned int flags,
  2378. struct __kernel_timespec __user *timeout,
  2379. struct old_timespec32 __user *timeout32)
  2380. {
  2381. int datagrams;
  2382. struct timespec64 timeout_sys;
  2383. if (timeout && get_timespec64(&timeout_sys, timeout))
  2384. return -EFAULT;
  2385. if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
  2386. return -EFAULT;
  2387. if (!timeout && !timeout32)
  2388. return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
  2389. datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
  2390. if (datagrams <= 0)
  2391. return datagrams;
  2392. if (timeout && put_timespec64(&timeout_sys, timeout))
  2393. datagrams = -EFAULT;
  2394. if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
  2395. datagrams = -EFAULT;
  2396. return datagrams;
  2397. }
  2398. SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
  2399. unsigned int, vlen, unsigned int, flags,
  2400. struct __kernel_timespec __user *, timeout)
  2401. {
  2402. if (flags & MSG_CMSG_COMPAT)
  2403. return -EINVAL;
  2404. return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
  2405. }
  2406. #ifdef CONFIG_COMPAT_32BIT_TIME
  2407. SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
  2408. unsigned int, vlen, unsigned int, flags,
  2409. struct old_timespec32 __user *, timeout)
  2410. {
  2411. if (flags & MSG_CMSG_COMPAT)
  2412. return -EINVAL;
  2413. return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
  2414. }
  2415. #endif
  2416. #ifdef __ARCH_WANT_SYS_SOCKETCALL
  2417. /* Argument list sizes for sys_socketcall */
  2418. #define AL(x) ((x) * sizeof(unsigned long))
  2419. static const unsigned char nargs[21] = {
  2420. AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
  2421. AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
  2422. AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
  2423. AL(4), AL(5), AL(4)
  2424. };
  2425. #undef AL
  2426. /*
  2427. * System call vectors.
  2428. *
  2429. * Argument checking cleaned up. Saved 20% in size.
  2430. * This function doesn't need to set the kernel lock because
  2431. * it is set by the callees.
  2432. */
  2433. SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
  2434. {
  2435. unsigned long a[AUDITSC_ARGS];
  2436. unsigned long a0, a1;
  2437. int err;
  2438. unsigned int len;
  2439. if (call < 1 || call > SYS_SENDMMSG)
  2440. return -EINVAL;
  2441. call = array_index_nospec(call, SYS_SENDMMSG + 1);
  2442. len = nargs[call];
  2443. if (len > sizeof(a))
  2444. return -EINVAL;
  2445. /* copy_from_user should be SMP safe. */
  2446. if (copy_from_user(a, args, len))
  2447. return -EFAULT;
  2448. err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
  2449. if (err)
  2450. return err;
  2451. a0 = a[0];
  2452. a1 = a[1];
  2453. switch (call) {
  2454. case SYS_SOCKET:
  2455. err = __sys_socket(a0, a1, a[2]);
  2456. break;
  2457. case SYS_BIND:
  2458. err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
  2459. break;
  2460. case SYS_CONNECT:
  2461. err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
  2462. break;
  2463. case SYS_LISTEN:
  2464. err = __sys_listen(a0, a1);
  2465. break;
  2466. case SYS_ACCEPT:
  2467. err = __sys_accept4(a0, (struct sockaddr __user *)a1,
  2468. (int __user *)a[2], 0);
  2469. break;
  2470. case SYS_GETSOCKNAME:
  2471. err =
  2472. __sys_getsockname(a0, (struct sockaddr __user *)a1,
  2473. (int __user *)a[2]);
  2474. break;
  2475. case SYS_GETPEERNAME:
  2476. err =
  2477. __sys_getpeername(a0, (struct sockaddr __user *)a1,
  2478. (int __user *)a[2]);
  2479. break;
  2480. case SYS_SOCKETPAIR:
  2481. err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
  2482. break;
  2483. case SYS_SEND:
  2484. err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
  2485. NULL, 0);
  2486. break;
  2487. case SYS_SENDTO:
  2488. err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
  2489. (struct sockaddr __user *)a[4], a[5]);
  2490. break;
  2491. case SYS_RECV:
  2492. err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
  2493. NULL, NULL);
  2494. break;
  2495. case SYS_RECVFROM:
  2496. err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
  2497. (struct sockaddr __user *)a[4],
  2498. (int __user *)a[5]);
  2499. break;
  2500. case SYS_SHUTDOWN:
  2501. err = __sys_shutdown(a0, a1);
  2502. break;
  2503. case SYS_SETSOCKOPT:
  2504. err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
  2505. a[4]);
  2506. break;
  2507. case SYS_GETSOCKOPT:
  2508. err =
  2509. __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
  2510. (int __user *)a[4]);
  2511. break;
  2512. case SYS_SENDMSG:
  2513. err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
  2514. a[2], true);
  2515. break;
  2516. case SYS_SENDMMSG:
  2517. err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
  2518. a[3], true);
  2519. break;
  2520. case SYS_RECVMSG:
  2521. err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
  2522. a[2], true);
  2523. break;
  2524. case SYS_RECVMMSG:
  2525. if (IS_ENABLED(CONFIG_64BIT))
  2526. err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
  2527. a[2], a[3],
  2528. (struct __kernel_timespec __user *)a[4],
  2529. NULL);
  2530. else
  2531. err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
  2532. a[2], a[3], NULL,
  2533. (struct old_timespec32 __user *)a[4]);
  2534. break;
  2535. case SYS_ACCEPT4:
  2536. err = __sys_accept4(a0, (struct sockaddr __user *)a1,
  2537. (int __user *)a[2], a[3]);
  2538. break;
  2539. default:
  2540. err = -EINVAL;
  2541. break;
  2542. }
  2543. return err;
  2544. }
  2545. #endif /* __ARCH_WANT_SYS_SOCKETCALL */
  2546. /**
  2547. * sock_register - add a socket protocol handler
  2548. * @ops: description of protocol
  2549. *
  2550. * This function is called by a protocol handler that wants to
  2551. * advertise its address family, and have it linked into the
  2552. * socket interface. The value ops->family corresponds to the
  2553. * socket system call protocol family.
  2554. */
  2555. int sock_register(const struct net_proto_family *ops)
  2556. {
  2557. int err;
  2558. if (ops->family >= NPROTO) {
  2559. pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
  2560. return -ENOBUFS;
  2561. }
  2562. spin_lock(&net_family_lock);
  2563. if (rcu_dereference_protected(net_families[ops->family],
  2564. lockdep_is_held(&net_family_lock)))
  2565. err = -EEXIST;
  2566. else {
  2567. rcu_assign_pointer(net_families[ops->family], ops);
  2568. err = 0;
  2569. }
  2570. spin_unlock(&net_family_lock);
  2571. pr_info("NET: Registered protocol family %d\n", ops->family);
  2572. return err;
  2573. }
  2574. EXPORT_SYMBOL(sock_register);
  2575. /**
  2576. * sock_unregister - remove a protocol handler
  2577. * @family: protocol family to remove
  2578. *
  2579. * This function is called by a protocol handler that wants to
  2580. * remove its address family, and have it unlinked from the
  2581. * new socket creation.
  2582. *
  2583. * If protocol handler is a module, then it can use module reference
  2584. * counts to protect against new references. If protocol handler is not
  2585. * a module then it needs to provide its own protection in
  2586. * the ops->create routine.
  2587. */
  2588. void sock_unregister(int family)
  2589. {
  2590. BUG_ON(family < 0 || family >= NPROTO);
  2591. spin_lock(&net_family_lock);
  2592. RCU_INIT_POINTER(net_families[family], NULL);
  2593. spin_unlock(&net_family_lock);
  2594. synchronize_rcu();
  2595. pr_info("NET: Unregistered protocol family %d\n", family);
  2596. }
  2597. EXPORT_SYMBOL(sock_unregister);
  2598. bool sock_is_registered(int family)
  2599. {
  2600. return family < NPROTO && rcu_access_pointer(net_families[family]);
  2601. }
  2602. static int __init sock_init(void)
  2603. {
  2604. int err;
  2605. /*
  2606. * Initialize the network sysctl infrastructure.
  2607. */
  2608. err = net_sysctl_init();
  2609. if (err)
  2610. goto out;
  2611. /*
  2612. * Initialize skbuff SLAB cache
  2613. */
  2614. skb_init();
  2615. /*
  2616. * Initialize the protocols module.
  2617. */
  2618. init_inodecache();
  2619. err = register_filesystem(&sock_fs_type);
  2620. if (err)
  2621. goto out_fs;
  2622. sock_mnt = kern_mount(&sock_fs_type);
  2623. if (IS_ERR(sock_mnt)) {
  2624. err = PTR_ERR(sock_mnt);
  2625. goto out_mount;
  2626. }
  2627. /* The real protocol initialization is performed in later initcalls.
  2628. */
  2629. #ifdef CONFIG_NETFILTER
  2630. err = netfilter_init();
  2631. if (err)
  2632. goto out;
  2633. #endif
  2634. ptp_classifier_init();
  2635. out:
  2636. return err;
  2637. out_mount:
  2638. unregister_filesystem(&sock_fs_type);
  2639. out_fs:
  2640. goto out;
  2641. }
  2642. core_initcall(sock_init); /* early initcall */
  2643. #ifdef CONFIG_PROC_FS
  2644. void socket_seq_show(struct seq_file *seq)
  2645. {
  2646. seq_printf(seq, "sockets: used %d\n",
  2647. sock_inuse_get(seq->private));
  2648. }
  2649. #endif /* CONFIG_PROC_FS */
  2650. #ifdef CONFIG_COMPAT
  2651. static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
  2652. {
  2653. struct compat_ifconf ifc32;
  2654. struct ifconf ifc;
  2655. int err;
  2656. if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
  2657. return -EFAULT;
  2658. ifc.ifc_len = ifc32.ifc_len;
  2659. ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
  2660. rtnl_lock();
  2661. err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
  2662. rtnl_unlock();
  2663. if (err)
  2664. return err;
  2665. ifc32.ifc_len = ifc.ifc_len;
  2666. if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
  2667. return -EFAULT;
  2668. return 0;
  2669. }
  2670. static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
  2671. {
  2672. struct compat_ethtool_rxnfc __user *compat_rxnfc;
  2673. bool convert_in = false, convert_out = false;
  2674. size_t buf_size = 0;
  2675. struct ethtool_rxnfc __user *rxnfc = NULL;
  2676. struct ifreq ifr;
  2677. u32 rule_cnt = 0, actual_rule_cnt;
  2678. u32 ethcmd;
  2679. u32 data;
  2680. int ret;
  2681. if (get_user(data, &ifr32->ifr_ifru.ifru_data))
  2682. return -EFAULT;
  2683. compat_rxnfc = compat_ptr(data);
  2684. if (get_user(ethcmd, &compat_rxnfc->cmd))
  2685. return -EFAULT;
  2686. /* Most ethtool structures are defined without padding.
  2687. * Unfortunately struct ethtool_rxnfc is an exception.
  2688. */
  2689. switch (ethcmd) {
  2690. default:
  2691. break;
  2692. case ETHTOOL_GRXCLSRLALL:
  2693. /* Buffer size is variable */
  2694. if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
  2695. return -EFAULT;
  2696. if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
  2697. return -ENOMEM;
  2698. buf_size += rule_cnt * sizeof(u32);
  2699. /* fall through */
  2700. case ETHTOOL_GRXRINGS:
  2701. case ETHTOOL_GRXCLSRLCNT:
  2702. case ETHTOOL_GRXCLSRULE:
  2703. case ETHTOOL_SRXCLSRLINS:
  2704. convert_out = true;
  2705. /* fall through */
  2706. case ETHTOOL_SRXCLSRLDEL:
  2707. buf_size += sizeof(struct ethtool_rxnfc);
  2708. convert_in = true;
  2709. rxnfc = compat_alloc_user_space(buf_size);
  2710. break;
  2711. }
  2712. if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
  2713. return -EFAULT;
  2714. ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
  2715. if (convert_in) {
  2716. /* We expect there to be holes between fs.m_ext and
  2717. * fs.ring_cookie and at the end of fs, but nowhere else.
  2718. */
  2719. BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
  2720. sizeof(compat_rxnfc->fs.m_ext) !=
  2721. offsetof(struct ethtool_rxnfc, fs.m_ext) +
  2722. sizeof(rxnfc->fs.m_ext));
  2723. BUILD_BUG_ON(
  2724. offsetof(struct compat_ethtool_rxnfc, fs.location) -
  2725. offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
  2726. offsetof(struct ethtool_rxnfc, fs.location) -
  2727. offsetof(struct ethtool_rxnfc, fs.ring_cookie));
  2728. if (copy_in_user(rxnfc, compat_rxnfc,
  2729. (void __user *)(&rxnfc->fs.m_ext + 1) -
  2730. (void __user *)rxnfc) ||
  2731. copy_in_user(&rxnfc->fs.ring_cookie,
  2732. &compat_rxnfc->fs.ring_cookie,
  2733. (void __user *)(&rxnfc->fs.location + 1) -
  2734. (void __user *)&rxnfc->fs.ring_cookie))
  2735. return -EFAULT;
  2736. if (ethcmd == ETHTOOL_GRXCLSRLALL) {
  2737. if (put_user(rule_cnt, &rxnfc->rule_cnt))
  2738. return -EFAULT;
  2739. } else if (copy_in_user(&rxnfc->rule_cnt,
  2740. &compat_rxnfc->rule_cnt,
  2741. sizeof(rxnfc->rule_cnt)))
  2742. return -EFAULT;
  2743. }
  2744. ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
  2745. if (ret)
  2746. return ret;
  2747. if (convert_out) {
  2748. if (copy_in_user(compat_rxnfc, rxnfc,
  2749. (const void __user *)(&rxnfc->fs.m_ext + 1) -
  2750. (const void __user *)rxnfc) ||
  2751. copy_in_user(&compat_rxnfc->fs.ring_cookie,
  2752. &rxnfc->fs.ring_cookie,
  2753. (const void __user *)(&rxnfc->fs.location + 1) -
  2754. (const void __user *)&rxnfc->fs.ring_cookie) ||
  2755. copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
  2756. sizeof(rxnfc->rule_cnt)))
  2757. return -EFAULT;
  2758. if (ethcmd == ETHTOOL_GRXCLSRLALL) {
  2759. /* As an optimisation, we only copy the actual
  2760. * number of rules that the underlying
  2761. * function returned. Since Mallory might
  2762. * change the rule count in user memory, we
  2763. * check that it is less than the rule count
  2764. * originally given (as the user buffer size),
  2765. * which has been range-checked.
  2766. */
  2767. if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
  2768. return -EFAULT;
  2769. if (actual_rule_cnt < rule_cnt)
  2770. rule_cnt = actual_rule_cnt;
  2771. if (copy_in_user(&compat_rxnfc->rule_locs[0],
  2772. &rxnfc->rule_locs[0],
  2773. rule_cnt * sizeof(u32)))
  2774. return -EFAULT;
  2775. }
  2776. }
  2777. return 0;
  2778. }
  2779. static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
  2780. {
  2781. compat_uptr_t uptr32;
  2782. struct ifreq ifr;
  2783. void __user *saved;
  2784. int err;
  2785. if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
  2786. return -EFAULT;
  2787. if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
  2788. return -EFAULT;
  2789. saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
  2790. ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
  2791. err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
  2792. if (!err) {
  2793. ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
  2794. if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
  2795. err = -EFAULT;
  2796. }
  2797. return err;
  2798. }
  2799. /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
  2800. static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
  2801. struct compat_ifreq __user *u_ifreq32)
  2802. {
  2803. struct ifreq ifreq;
  2804. u32 data32;
  2805. if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
  2806. return -EFAULT;
  2807. if (get_user(data32, &u_ifreq32->ifr_data))
  2808. return -EFAULT;
  2809. ifreq.ifr_data = compat_ptr(data32);
  2810. return dev_ioctl(net, cmd, &ifreq, NULL);
  2811. }
  2812. static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
  2813. unsigned int cmd,
  2814. struct compat_ifreq __user *uifr32)
  2815. {
  2816. struct ifreq __user *uifr;
  2817. int err;
  2818. /* Handle the fact that while struct ifreq has the same *layout* on
  2819. * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
  2820. * which are handled elsewhere, it still has different *size* due to
  2821. * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
  2822. * resulting in struct ifreq being 32 and 40 bytes respectively).
  2823. * As a result, if the struct happens to be at the end of a page and
  2824. * the next page isn't readable/writable, we get a fault. To prevent
  2825. * that, copy back and forth to the full size.
  2826. */
  2827. uifr = compat_alloc_user_space(sizeof(*uifr));
  2828. if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
  2829. return -EFAULT;
  2830. err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
  2831. if (!err) {
  2832. switch (cmd) {
  2833. case SIOCGIFFLAGS:
  2834. case SIOCGIFMETRIC:
  2835. case SIOCGIFMTU:
  2836. case SIOCGIFMEM:
  2837. case SIOCGIFHWADDR:
  2838. case SIOCGIFINDEX:
  2839. case SIOCGIFADDR:
  2840. case SIOCGIFBRDADDR:
  2841. case SIOCGIFDSTADDR:
  2842. case SIOCGIFNETMASK:
  2843. case SIOCGIFPFLAGS:
  2844. case SIOCGIFTXQLEN:
  2845. case SIOCGMIIPHY:
  2846. case SIOCGMIIREG:
  2847. case SIOCGIFNAME:
  2848. if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
  2849. err = -EFAULT;
  2850. break;
  2851. }
  2852. }
  2853. return err;
  2854. }
  2855. static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
  2856. struct compat_ifreq __user *uifr32)
  2857. {
  2858. struct ifreq ifr;
  2859. struct compat_ifmap __user *uifmap32;
  2860. int err;
  2861. uifmap32 = &uifr32->ifr_ifru.ifru_map;
  2862. err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
  2863. err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
  2864. err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
  2865. err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
  2866. err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
  2867. err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
  2868. err |= get_user(ifr.ifr_map.port, &uifmap32->port);
  2869. if (err)
  2870. return -EFAULT;
  2871. err = dev_ioctl(net, cmd, &ifr, NULL);
  2872. if (cmd == SIOCGIFMAP && !err) {
  2873. err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
  2874. err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
  2875. err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
  2876. err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
  2877. err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
  2878. err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
  2879. err |= put_user(ifr.ifr_map.port, &uifmap32->port);
  2880. if (err)
  2881. err = -EFAULT;
  2882. }
  2883. return err;
  2884. }
  2885. struct rtentry32 {
  2886. u32 rt_pad1;
  2887. struct sockaddr rt_dst; /* target address */
  2888. struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
  2889. struct sockaddr rt_genmask; /* target network mask (IP) */
  2890. unsigned short rt_flags;
  2891. short rt_pad2;
  2892. u32 rt_pad3;
  2893. unsigned char rt_tos;
  2894. unsigned char rt_class;
  2895. short rt_pad4;
  2896. short rt_metric; /* +1 for binary compatibility! */
  2897. /* char * */ u32 rt_dev; /* forcing the device at add */
  2898. u32 rt_mtu; /* per route MTU/Window */
  2899. u32 rt_window; /* Window clamping */
  2900. unsigned short rt_irtt; /* Initial RTT */
  2901. };
  2902. struct in6_rtmsg32 {
  2903. struct in6_addr rtmsg_dst;
  2904. struct in6_addr rtmsg_src;
  2905. struct in6_addr rtmsg_gateway;
  2906. u32 rtmsg_type;
  2907. u16 rtmsg_dst_len;
  2908. u16 rtmsg_src_len;
  2909. u32 rtmsg_metric;
  2910. u32 rtmsg_info;
  2911. u32 rtmsg_flags;
  2912. s32 rtmsg_ifindex;
  2913. };
  2914. static int routing_ioctl(struct net *net, struct socket *sock,
  2915. unsigned int cmd, void __user *argp)
  2916. {
  2917. int ret;
  2918. void *r = NULL;
  2919. struct in6_rtmsg r6;
  2920. struct rtentry r4;
  2921. char devname[16];
  2922. u32 rtdev;
  2923. mm_segment_t old_fs = get_fs();
  2924. if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
  2925. struct in6_rtmsg32 __user *ur6 = argp;
  2926. ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
  2927. 3 * sizeof(struct in6_addr));
  2928. ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
  2929. ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
  2930. ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
  2931. ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
  2932. ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
  2933. ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
  2934. ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
  2935. r = (void *) &r6;
  2936. } else { /* ipv4 */
  2937. struct rtentry32 __user *ur4 = argp;
  2938. ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
  2939. 3 * sizeof(struct sockaddr));
  2940. ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
  2941. ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
  2942. ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
  2943. ret |= get_user(r4.rt_window, &(ur4->rt_window));
  2944. ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
  2945. ret |= get_user(rtdev, &(ur4->rt_dev));
  2946. if (rtdev) {
  2947. ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
  2948. r4.rt_dev = (char __user __force *)devname;
  2949. devname[15] = 0;
  2950. } else
  2951. r4.rt_dev = NULL;
  2952. r = (void *) &r4;
  2953. }
  2954. if (ret) {
  2955. ret = -EFAULT;
  2956. goto out;
  2957. }
  2958. set_fs(KERNEL_DS);
  2959. ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
  2960. set_fs(old_fs);
  2961. out:
  2962. return ret;
  2963. }
  2964. /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
  2965. * for some operations; this forces use of the newer bridge-utils that
  2966. * use compatible ioctls
  2967. */
  2968. static int old_bridge_ioctl(compat_ulong_t __user *argp)
  2969. {
  2970. compat_ulong_t tmp;
  2971. if (get_user(tmp, argp))
  2972. return -EFAULT;
  2973. if (tmp == BRCTL_GET_VERSION)
  2974. return BRCTL_VERSION + 1;
  2975. return -EINVAL;
  2976. }
  2977. static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
  2978. unsigned int cmd, unsigned long arg)
  2979. {
  2980. void __user *argp = compat_ptr(arg);
  2981. struct sock *sk = sock->sk;
  2982. struct net *net = sock_net(sk);
  2983. if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
  2984. return compat_ifr_data_ioctl(net, cmd, argp);
  2985. switch (cmd) {
  2986. case SIOCSIFBR:
  2987. case SIOCGIFBR:
  2988. return old_bridge_ioctl(argp);
  2989. case SIOCGIFCONF:
  2990. return compat_dev_ifconf(net, argp);
  2991. case SIOCETHTOOL:
  2992. return ethtool_ioctl(net, argp);
  2993. case SIOCWANDEV:
  2994. return compat_siocwandev(net, argp);
  2995. case SIOCGIFMAP:
  2996. case SIOCSIFMAP:
  2997. return compat_sioc_ifmap(net, cmd, argp);
  2998. case SIOCADDRT:
  2999. case SIOCDELRT:
  3000. return routing_ioctl(net, sock, cmd, argp);
  3001. case SIOCGSTAMP_OLD:
  3002. case SIOCGSTAMPNS_OLD:
  3003. if (!sock->ops->gettstamp)
  3004. return -ENOIOCTLCMD;
  3005. return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
  3006. !COMPAT_USE_64BIT_TIME);
  3007. case SIOCBONDSLAVEINFOQUERY:
  3008. case SIOCBONDINFOQUERY:
  3009. case SIOCSHWTSTAMP:
  3010. case SIOCGHWTSTAMP:
  3011. return compat_ifr_data_ioctl(net, cmd, argp);
  3012. case FIOSETOWN:
  3013. case SIOCSPGRP:
  3014. case FIOGETOWN:
  3015. case SIOCGPGRP:
  3016. case SIOCBRADDBR:
  3017. case SIOCBRDELBR:
  3018. case SIOCGIFVLAN:
  3019. case SIOCSIFVLAN:
  3020. case SIOCADDDLCI:
  3021. case SIOCDELDLCI:
  3022. case SIOCGSKNS:
  3023. case SIOCGSTAMP_NEW:
  3024. case SIOCGSTAMPNS_NEW:
  3025. return sock_ioctl(file, cmd, arg);
  3026. case SIOCGIFFLAGS:
  3027. case SIOCSIFFLAGS:
  3028. case SIOCGIFMETRIC:
  3029. case SIOCSIFMETRIC:
  3030. case SIOCGIFMTU:
  3031. case SIOCSIFMTU:
  3032. case SIOCGIFMEM:
  3033. case SIOCSIFMEM:
  3034. case SIOCGIFHWADDR:
  3035. case SIOCSIFHWADDR:
  3036. case SIOCADDMULTI:
  3037. case SIOCDELMULTI:
  3038. case SIOCGIFINDEX:
  3039. case SIOCGIFADDR:
  3040. case SIOCSIFADDR:
  3041. case SIOCSIFHWBROADCAST:
  3042. case SIOCDIFADDR:
  3043. case SIOCGIFBRDADDR:
  3044. case SIOCSIFBRDADDR:
  3045. case SIOCGIFDSTADDR:
  3046. case SIOCSIFDSTADDR:
  3047. case SIOCGIFNETMASK:
  3048. case SIOCSIFNETMASK:
  3049. case SIOCSIFPFLAGS:
  3050. case SIOCGIFPFLAGS:
  3051. case SIOCGIFTXQLEN:
  3052. case SIOCSIFTXQLEN:
  3053. case SIOCBRADDIF:
  3054. case SIOCBRDELIF:
  3055. case SIOCGIFNAME:
  3056. case SIOCSIFNAME:
  3057. case SIOCGMIIPHY:
  3058. case SIOCGMIIREG:
  3059. case SIOCSMIIREG:
  3060. case SIOCBONDENSLAVE:
  3061. case SIOCBONDRELEASE:
  3062. case SIOCBONDSETHWADDR:
  3063. case SIOCBONDCHANGEACTIVE:
  3064. return compat_ifreq_ioctl(net, sock, cmd, argp);
  3065. case SIOCSARP:
  3066. case SIOCGARP:
  3067. case SIOCDARP:
  3068. case SIOCOUTQ:
  3069. case SIOCOUTQNSD:
  3070. case SIOCATMARK:
  3071. return sock_do_ioctl(net, sock, cmd, arg);
  3072. }
  3073. return -ENOIOCTLCMD;
  3074. }
  3075. static long compat_sock_ioctl(struct file *file, unsigned int cmd,
  3076. unsigned long arg)
  3077. {
  3078. struct socket *sock = file->private_data;
  3079. int ret = -ENOIOCTLCMD;
  3080. struct sock *sk;
  3081. struct net *net;
  3082. sk = sock->sk;
  3083. net = sock_net(sk);
  3084. if (sock->ops->compat_ioctl)
  3085. ret = sock->ops->compat_ioctl(sock, cmd, arg);
  3086. if (ret == -ENOIOCTLCMD &&
  3087. (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
  3088. ret = compat_wext_handle_ioctl(net, cmd, arg);
  3089. if (ret == -ENOIOCTLCMD)
  3090. ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
  3091. return ret;
  3092. }
  3093. #endif
  3094. /**
  3095. * kernel_bind - bind an address to a socket (kernel space)
  3096. * @sock: socket
  3097. * @addr: address
  3098. * @addrlen: length of address
  3099. *
  3100. * Returns 0 or an error.
  3101. */
  3102. int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
  3103. {
  3104. return sock->ops->bind(sock, addr, addrlen);
  3105. }
  3106. EXPORT_SYMBOL(kernel_bind);
  3107. /**
  3108. * kernel_listen - move socket to listening state (kernel space)
  3109. * @sock: socket
  3110. * @backlog: pending connections queue size
  3111. *
  3112. * Returns 0 or an error.
  3113. */
  3114. int kernel_listen(struct socket *sock, int backlog)
  3115. {
  3116. return sock->ops->listen(sock, backlog);
  3117. }
  3118. EXPORT_SYMBOL(kernel_listen);
  3119. /**
  3120. * kernel_accept - accept a connection (kernel space)
  3121. * @sock: listening socket
  3122. * @newsock: new connected socket
  3123. * @flags: flags
  3124. *
  3125. * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
  3126. * If it fails, @newsock is guaranteed to be %NULL.
  3127. * Returns 0 or an error.
  3128. */
  3129. int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
  3130. {
  3131. struct sock *sk = sock->sk;
  3132. int err;
  3133. err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
  3134. newsock);
  3135. if (err < 0)
  3136. goto done;
  3137. err = sock->ops->accept(sock, *newsock, flags, true);
  3138. if (err < 0) {
  3139. sock_release(*newsock);
  3140. *newsock = NULL;
  3141. goto done;
  3142. }
  3143. (*newsock)->ops = sock->ops;
  3144. __module_get((*newsock)->ops->owner);
  3145. done:
  3146. return err;
  3147. }
  3148. EXPORT_SYMBOL(kernel_accept);
  3149. /**
  3150. * kernel_connect - connect a socket (kernel space)
  3151. * @sock: socket
  3152. * @addr: address
  3153. * @addrlen: address length
  3154. * @flags: flags (O_NONBLOCK, ...)
  3155. *
  3156. * For datagram sockets, @addr is the addres to which datagrams are sent
  3157. * by default, and the only address from which datagrams are received.
  3158. * For stream sockets, attempts to connect to @addr.
  3159. * Returns 0 or an error code.
  3160. */
  3161. int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
  3162. int flags)
  3163. {
  3164. return sock->ops->connect(sock, addr, addrlen, flags);
  3165. }
  3166. EXPORT_SYMBOL(kernel_connect);
  3167. /**
  3168. * kernel_getsockname - get the address which the socket is bound (kernel space)
  3169. * @sock: socket
  3170. * @addr: address holder
  3171. *
  3172. * Fills the @addr pointer with the address which the socket is bound.
  3173. * Returns 0 or an error code.
  3174. */
  3175. int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
  3176. {
  3177. return sock->ops->getname(sock, addr, 0);
  3178. }
  3179. EXPORT_SYMBOL(kernel_getsockname);
  3180. /**
  3181. * kernel_peername - get the address which the socket is connected (kernel space)
  3182. * @sock: socket
  3183. * @addr: address holder
  3184. *
  3185. * Fills the @addr pointer with the address which the socket is connected.
  3186. * Returns 0 or an error code.
  3187. */
  3188. int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
  3189. {
  3190. return sock->ops->getname(sock, addr, 1);
  3191. }
  3192. EXPORT_SYMBOL(kernel_getpeername);
  3193. /**
  3194. * kernel_getsockopt - get a socket option (kernel space)
  3195. * @sock: socket
  3196. * @level: API level (SOL_SOCKET, ...)
  3197. * @optname: option tag
  3198. * @optval: option value
  3199. * @optlen: option length
  3200. *
  3201. * Assigns the option length to @optlen.
  3202. * Returns 0 or an error.
  3203. */
  3204. int kernel_getsockopt(struct socket *sock, int level, int optname,
  3205. char *optval, int *optlen)
  3206. {
  3207. mm_segment_t oldfs = get_fs();
  3208. char __user *uoptval;
  3209. int __user *uoptlen;
  3210. int err;
  3211. uoptval = (char __user __force *) optval;
  3212. uoptlen = (int __user __force *) optlen;
  3213. set_fs(KERNEL_DS);
  3214. if (level == SOL_SOCKET)
  3215. err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
  3216. else
  3217. err = sock->ops->getsockopt(sock, level, optname, uoptval,
  3218. uoptlen);
  3219. set_fs(oldfs);
  3220. return err;
  3221. }
  3222. EXPORT_SYMBOL(kernel_getsockopt);
  3223. /**
  3224. * kernel_setsockopt - set a socket option (kernel space)
  3225. * @sock: socket
  3226. * @level: API level (SOL_SOCKET, ...)
  3227. * @optname: option tag
  3228. * @optval: option value
  3229. * @optlen: option length
  3230. *
  3231. * Returns 0 or an error.
  3232. */
  3233. int kernel_setsockopt(struct socket *sock, int level, int optname,
  3234. char *optval, unsigned int optlen)
  3235. {
  3236. mm_segment_t oldfs = get_fs();
  3237. char __user *uoptval;
  3238. int err;
  3239. uoptval = (char __user __force *) optval;
  3240. set_fs(KERNEL_DS);
  3241. if (level == SOL_SOCKET)
  3242. err = sock_setsockopt(sock, level, optname, uoptval, optlen);
  3243. else
  3244. err = sock->ops->setsockopt(sock, level, optname, uoptval,
  3245. optlen);
  3246. set_fs(oldfs);
  3247. return err;
  3248. }
  3249. EXPORT_SYMBOL(kernel_setsockopt);
  3250. /**
  3251. * kernel_sendpage - send a &page through a socket (kernel space)
  3252. * @sock: socket
  3253. * @page: page
  3254. * @offset: page offset
  3255. * @size: total size in bytes
  3256. * @flags: flags (MSG_DONTWAIT, ...)
  3257. *
  3258. * Returns the total amount sent in bytes or an error.
  3259. */
  3260. int kernel_sendpage(struct socket *sock, struct page *page, int offset,
  3261. size_t size, int flags)
  3262. {
  3263. if (sock->ops->sendpage)
  3264. return sock->ops->sendpage(sock, page, offset, size, flags);
  3265. return sock_no_sendpage(sock, page, offset, size, flags);
  3266. }
  3267. EXPORT_SYMBOL(kernel_sendpage);
  3268. /**
  3269. * kernel_sendpage_locked - send a &page through the locked sock (kernel space)
  3270. * @sk: sock
  3271. * @page: page
  3272. * @offset: page offset
  3273. * @size: total size in bytes
  3274. * @flags: flags (MSG_DONTWAIT, ...)
  3275. *
  3276. * Returns the total amount sent in bytes or an error.
  3277. * Caller must hold @sk.
  3278. */
  3279. int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
  3280. size_t size, int flags)
  3281. {
  3282. struct socket *sock = sk->sk_socket;
  3283. if (sock->ops->sendpage_locked)
  3284. return sock->ops->sendpage_locked(sk, page, offset, size,
  3285. flags);
  3286. return sock_no_sendpage_locked(sk, page, offset, size, flags);
  3287. }
  3288. EXPORT_SYMBOL(kernel_sendpage_locked);
  3289. /**
  3290. * kernel_shutdown - shut down part of a full-duplex connection (kernel space)
  3291. * @sock: socket
  3292. * @how: connection part
  3293. *
  3294. * Returns 0 or an error.
  3295. */
  3296. int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
  3297. {
  3298. return sock->ops->shutdown(sock, how);
  3299. }
  3300. EXPORT_SYMBOL(kernel_sock_shutdown);
  3301. /**
  3302. * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
  3303. * @sk: socket
  3304. *
  3305. * This routine returns the IP overhead imposed by a socket i.e.
  3306. * the length of the underlying IP header, depending on whether
  3307. * this is an IPv4 or IPv6 socket and the length from IP options turned
  3308. * on at the socket. Assumes that the caller has a lock on the socket.
  3309. */
  3310. u32 kernel_sock_ip_overhead(struct sock *sk)
  3311. {
  3312. struct inet_sock *inet;
  3313. struct ip_options_rcu *opt;
  3314. u32 overhead = 0;
  3315. #if IS_ENABLED(CONFIG_IPV6)
  3316. struct ipv6_pinfo *np;
  3317. struct ipv6_txoptions *optv6 = NULL;
  3318. #endif /* IS_ENABLED(CONFIG_IPV6) */
  3319. if (!sk)
  3320. return overhead;
  3321. switch (sk->sk_family) {
  3322. case AF_INET:
  3323. inet = inet_sk(sk);
  3324. overhead += sizeof(struct iphdr);
  3325. opt = rcu_dereference_protected(inet->inet_opt,
  3326. sock_owned_by_user(sk));
  3327. if (opt)
  3328. overhead += opt->opt.optlen;
  3329. return overhead;
  3330. #if IS_ENABLED(CONFIG_IPV6)
  3331. case AF_INET6:
  3332. np = inet6_sk(sk);
  3333. overhead += sizeof(struct ipv6hdr);
  3334. if (np)
  3335. optv6 = rcu_dereference_protected(np->opt,
  3336. sock_owned_by_user(sk));
  3337. if (optv6)
  3338. overhead += (optv6->opt_flen + optv6->opt_nflen);
  3339. return overhead;
  3340. #endif /* IS_ENABLED(CONFIG_IPV6) */
  3341. default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
  3342. return overhead;
  3343. }
  3344. }
  3345. EXPORT_SYMBOL(kernel_sock_ip_overhead);