PageRenderTime 65ms CodeModel.GetById 17ms RepoModel.GetById 0ms app.codeStats 0ms

/net/netlink/af_netlink.c

http://github.com/mirrors/linux
C | 2780 lines | 2127 code | 449 blank | 204 comment | 393 complexity | 517b2a5492a812d872ac4822651117e8 MD5 | raw file
Possible License(s): AGPL-1.0, GPL-2.0, LGPL-2.0
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * NETLINK Kernel-user communication protocol.
  4. *
  5. * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
  6. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  7. * Patrick McHardy <kaber@trash.net>
  8. *
  9. * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith
  10. * added netlink_proto_exit
  11. * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br>
  12. * use nlk_sk, as sk->protinfo is on a diet 8)
  13. * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org>
  14. * - inc module use count of module that owns
  15. * the kernel socket in case userspace opens
  16. * socket of same protocol
  17. * - remove all module support, since netlink is
  18. * mandatory if CONFIG_NET=y these days
  19. */
  20. #include <linux/module.h>
  21. #include <linux/capability.h>
  22. #include <linux/kernel.h>
  23. #include <linux/init.h>
  24. #include <linux/signal.h>
  25. #include <linux/sched.h>
  26. #include <linux/errno.h>
  27. #include <linux/string.h>
  28. #include <linux/stat.h>
  29. #include <linux/socket.h>
  30. #include <linux/un.h>
  31. #include <linux/fcntl.h>
  32. #include <linux/termios.h>
  33. #include <linux/sockios.h>
  34. #include <linux/net.h>
  35. #include <linux/fs.h>
  36. #include <linux/slab.h>
  37. #include <linux/uaccess.h>
  38. #include <linux/skbuff.h>
  39. #include <linux/netdevice.h>
  40. #include <linux/rtnetlink.h>
  41. #include <linux/proc_fs.h>
  42. #include <linux/seq_file.h>
  43. #include <linux/notifier.h>
  44. #include <linux/security.h>
  45. #include <linux/jhash.h>
  46. #include <linux/jiffies.h>
  47. #include <linux/random.h>
  48. #include <linux/bitops.h>
  49. #include <linux/mm.h>
  50. #include <linux/types.h>
  51. #include <linux/audit.h>
  52. #include <linux/mutex.h>
  53. #include <linux/vmalloc.h>
  54. #include <linux/if_arp.h>
  55. #include <linux/rhashtable.h>
  56. #include <asm/cacheflush.h>
  57. #include <linux/hash.h>
  58. #include <linux/genetlink.h>
  59. #include <linux/net_namespace.h>
  60. #include <linux/nospec.h>
  61. #include <net/net_namespace.h>
  62. #include <net/netns/generic.h>
  63. #include <net/sock.h>
  64. #include <net/scm.h>
  65. #include <net/netlink.h>
  66. #include "af_netlink.h"
  67. struct listeners {
  68. struct rcu_head rcu;
  69. unsigned long masks[];
  70. };
  71. /* state bits */
  72. #define NETLINK_S_CONGESTED 0x0
  73. static inline int netlink_is_kernel(struct sock *sk)
  74. {
  75. return nlk_sk(sk)->flags & NETLINK_F_KERNEL_SOCKET;
  76. }
  77. struct netlink_table *nl_table __read_mostly;
  78. EXPORT_SYMBOL_GPL(nl_table);
  79. static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait);
  80. static struct lock_class_key nlk_cb_mutex_keys[MAX_LINKS];
  81. static const char *const nlk_cb_mutex_key_strings[MAX_LINKS + 1] = {
  82. "nlk_cb_mutex-ROUTE",
  83. "nlk_cb_mutex-1",
  84. "nlk_cb_mutex-USERSOCK",
  85. "nlk_cb_mutex-FIREWALL",
  86. "nlk_cb_mutex-SOCK_DIAG",
  87. "nlk_cb_mutex-NFLOG",
  88. "nlk_cb_mutex-XFRM",
  89. "nlk_cb_mutex-SELINUX",
  90. "nlk_cb_mutex-ISCSI",
  91. "nlk_cb_mutex-AUDIT",
  92. "nlk_cb_mutex-FIB_LOOKUP",
  93. "nlk_cb_mutex-CONNECTOR",
  94. "nlk_cb_mutex-NETFILTER",
  95. "nlk_cb_mutex-IP6_FW",
  96. "nlk_cb_mutex-DNRTMSG",
  97. "nlk_cb_mutex-KOBJECT_UEVENT",
  98. "nlk_cb_mutex-GENERIC",
  99. "nlk_cb_mutex-17",
  100. "nlk_cb_mutex-SCSITRANSPORT",
  101. "nlk_cb_mutex-ECRYPTFS",
  102. "nlk_cb_mutex-RDMA",
  103. "nlk_cb_mutex-CRYPTO",
  104. "nlk_cb_mutex-SMC",
  105. "nlk_cb_mutex-23",
  106. "nlk_cb_mutex-24",
  107. "nlk_cb_mutex-25",
  108. "nlk_cb_mutex-26",
  109. "nlk_cb_mutex-27",
  110. "nlk_cb_mutex-28",
  111. "nlk_cb_mutex-29",
  112. "nlk_cb_mutex-30",
  113. "nlk_cb_mutex-31",
  114. "nlk_cb_mutex-MAX_LINKS"
  115. };
  116. static int netlink_dump(struct sock *sk);
  117. /* nl_table locking explained:
  118. * Lookup and traversal are protected with an RCU read-side lock. Insertion
  119. * and removal are protected with per bucket lock while using RCU list
  120. * modification primitives and may run in parallel to RCU protected lookups.
  121. * Destruction of the Netlink socket may only occur *after* nl_table_lock has
  122. * been acquired * either during or after the socket has been removed from
  123. * the list and after an RCU grace period.
  124. */
  125. DEFINE_RWLOCK(nl_table_lock);
  126. EXPORT_SYMBOL_GPL(nl_table_lock);
  127. static atomic_t nl_table_users = ATOMIC_INIT(0);
  128. #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock));
  129. static BLOCKING_NOTIFIER_HEAD(netlink_chain);
  130. static const struct rhashtable_params netlink_rhashtable_params;
  131. static inline u32 netlink_group_mask(u32 group)
  132. {
  133. return group ? 1 << (group - 1) : 0;
  134. }
  135. static struct sk_buff *netlink_to_full_skb(const struct sk_buff *skb,
  136. gfp_t gfp_mask)
  137. {
  138. unsigned int len = skb_end_offset(skb);
  139. struct sk_buff *new;
  140. new = alloc_skb(len, gfp_mask);
  141. if (new == NULL)
  142. return NULL;
  143. NETLINK_CB(new).portid = NETLINK_CB(skb).portid;
  144. NETLINK_CB(new).dst_group = NETLINK_CB(skb).dst_group;
  145. NETLINK_CB(new).creds = NETLINK_CB(skb).creds;
  146. skb_put_data(new, skb->data, len);
  147. return new;
  148. }
  149. static unsigned int netlink_tap_net_id;
  150. struct netlink_tap_net {
  151. struct list_head netlink_tap_all;
  152. struct mutex netlink_tap_lock;
  153. };
  154. int netlink_add_tap(struct netlink_tap *nt)
  155. {
  156. struct net *net = dev_net(nt->dev);
  157. struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id);
  158. if (unlikely(nt->dev->type != ARPHRD_NETLINK))
  159. return -EINVAL;
  160. mutex_lock(&nn->netlink_tap_lock);
  161. list_add_rcu(&nt->list, &nn->netlink_tap_all);
  162. mutex_unlock(&nn->netlink_tap_lock);
  163. __module_get(nt->module);
  164. return 0;
  165. }
  166. EXPORT_SYMBOL_GPL(netlink_add_tap);
  167. static int __netlink_remove_tap(struct netlink_tap *nt)
  168. {
  169. struct net *net = dev_net(nt->dev);
  170. struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id);
  171. bool found = false;
  172. struct netlink_tap *tmp;
  173. mutex_lock(&nn->netlink_tap_lock);
  174. list_for_each_entry(tmp, &nn->netlink_tap_all, list) {
  175. if (nt == tmp) {
  176. list_del_rcu(&nt->list);
  177. found = true;
  178. goto out;
  179. }
  180. }
  181. pr_warn("__netlink_remove_tap: %p not found\n", nt);
  182. out:
  183. mutex_unlock(&nn->netlink_tap_lock);
  184. if (found)
  185. module_put(nt->module);
  186. return found ? 0 : -ENODEV;
  187. }
  188. int netlink_remove_tap(struct netlink_tap *nt)
  189. {
  190. int ret;
  191. ret = __netlink_remove_tap(nt);
  192. synchronize_net();
  193. return ret;
  194. }
  195. EXPORT_SYMBOL_GPL(netlink_remove_tap);
  196. static __net_init int netlink_tap_init_net(struct net *net)
  197. {
  198. struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id);
  199. INIT_LIST_HEAD(&nn->netlink_tap_all);
  200. mutex_init(&nn->netlink_tap_lock);
  201. return 0;
  202. }
  203. static struct pernet_operations netlink_tap_net_ops = {
  204. .init = netlink_tap_init_net,
  205. .id = &netlink_tap_net_id,
  206. .size = sizeof(struct netlink_tap_net),
  207. };
  208. static bool netlink_filter_tap(const struct sk_buff *skb)
  209. {
  210. struct sock *sk = skb->sk;
  211. /* We take the more conservative approach and
  212. * whitelist socket protocols that may pass.
  213. */
  214. switch (sk->sk_protocol) {
  215. case NETLINK_ROUTE:
  216. case NETLINK_USERSOCK:
  217. case NETLINK_SOCK_DIAG:
  218. case NETLINK_NFLOG:
  219. case NETLINK_XFRM:
  220. case NETLINK_FIB_LOOKUP:
  221. case NETLINK_NETFILTER:
  222. case NETLINK_GENERIC:
  223. return true;
  224. }
  225. return false;
  226. }
  227. static int __netlink_deliver_tap_skb(struct sk_buff *skb,
  228. struct net_device *dev)
  229. {
  230. struct sk_buff *nskb;
  231. struct sock *sk = skb->sk;
  232. int ret = -ENOMEM;
  233. if (!net_eq(dev_net(dev), sock_net(sk)))
  234. return 0;
  235. dev_hold(dev);
  236. if (is_vmalloc_addr(skb->head))
  237. nskb = netlink_to_full_skb(skb, GFP_ATOMIC);
  238. else
  239. nskb = skb_clone(skb, GFP_ATOMIC);
  240. if (nskb) {
  241. nskb->dev = dev;
  242. nskb->protocol = htons((u16) sk->sk_protocol);
  243. nskb->pkt_type = netlink_is_kernel(sk) ?
  244. PACKET_KERNEL : PACKET_USER;
  245. skb_reset_network_header(nskb);
  246. ret = dev_queue_xmit(nskb);
  247. if (unlikely(ret > 0))
  248. ret = net_xmit_errno(ret);
  249. }
  250. dev_put(dev);
  251. return ret;
  252. }
  253. static void __netlink_deliver_tap(struct sk_buff *skb, struct netlink_tap_net *nn)
  254. {
  255. int ret;
  256. struct netlink_tap *tmp;
  257. if (!netlink_filter_tap(skb))
  258. return;
  259. list_for_each_entry_rcu(tmp, &nn->netlink_tap_all, list) {
  260. ret = __netlink_deliver_tap_skb(skb, tmp->dev);
  261. if (unlikely(ret))
  262. break;
  263. }
  264. }
  265. static void netlink_deliver_tap(struct net *net, struct sk_buff *skb)
  266. {
  267. struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id);
  268. rcu_read_lock();
  269. if (unlikely(!list_empty(&nn->netlink_tap_all)))
  270. __netlink_deliver_tap(skb, nn);
  271. rcu_read_unlock();
  272. }
  273. static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src,
  274. struct sk_buff *skb)
  275. {
  276. if (!(netlink_is_kernel(dst) && netlink_is_kernel(src)))
  277. netlink_deliver_tap(sock_net(dst), skb);
  278. }
  279. static void netlink_overrun(struct sock *sk)
  280. {
  281. struct netlink_sock *nlk = nlk_sk(sk);
  282. if (!(nlk->flags & NETLINK_F_RECV_NO_ENOBUFS)) {
  283. if (!test_and_set_bit(NETLINK_S_CONGESTED,
  284. &nlk_sk(sk)->state)) {
  285. sk->sk_err = ENOBUFS;
  286. sk->sk_error_report(sk);
  287. }
  288. }
  289. atomic_inc(&sk->sk_drops);
  290. }
  291. static void netlink_rcv_wake(struct sock *sk)
  292. {
  293. struct netlink_sock *nlk = nlk_sk(sk);
  294. if (skb_queue_empty(&sk->sk_receive_queue))
  295. clear_bit(NETLINK_S_CONGESTED, &nlk->state);
  296. if (!test_bit(NETLINK_S_CONGESTED, &nlk->state))
  297. wake_up_interruptible(&nlk->wait);
  298. }
  299. static void netlink_skb_destructor(struct sk_buff *skb)
  300. {
  301. if (is_vmalloc_addr(skb->head)) {
  302. if (!skb->cloned ||
  303. !atomic_dec_return(&(skb_shinfo(skb)->dataref)))
  304. vfree(skb->head);
  305. skb->head = NULL;
  306. }
  307. if (skb->sk != NULL)
  308. sock_rfree(skb);
  309. }
  310. static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
  311. {
  312. WARN_ON(skb->sk != NULL);
  313. skb->sk = sk;
  314. skb->destructor = netlink_skb_destructor;
  315. atomic_add(skb->truesize, &sk->sk_rmem_alloc);
  316. sk_mem_charge(sk, skb->truesize);
  317. }
  318. static void netlink_sock_destruct(struct sock *sk)
  319. {
  320. struct netlink_sock *nlk = nlk_sk(sk);
  321. if (nlk->cb_running) {
  322. if (nlk->cb.done)
  323. nlk->cb.done(&nlk->cb);
  324. module_put(nlk->cb.module);
  325. kfree_skb(nlk->cb.skb);
  326. }
  327. skb_queue_purge(&sk->sk_receive_queue);
  328. if (!sock_flag(sk, SOCK_DEAD)) {
  329. printk(KERN_ERR "Freeing alive netlink socket %p\n", sk);
  330. return;
  331. }
  332. WARN_ON(atomic_read(&sk->sk_rmem_alloc));
  333. WARN_ON(refcount_read(&sk->sk_wmem_alloc));
  334. WARN_ON(nlk_sk(sk)->groups);
  335. }
  336. static void netlink_sock_destruct_work(struct work_struct *work)
  337. {
  338. struct netlink_sock *nlk = container_of(work, struct netlink_sock,
  339. work);
  340. sk_free(&nlk->sk);
  341. }
  342. /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on
  343. * SMP. Look, when several writers sleep and reader wakes them up, all but one
  344. * immediately hit write lock and grab all the cpus. Exclusive sleep solves
  345. * this, _but_ remember, it adds useless work on UP machines.
  346. */
  347. void netlink_table_grab(void)
  348. __acquires(nl_table_lock)
  349. {
  350. might_sleep();
  351. write_lock_irq(&nl_table_lock);
  352. if (atomic_read(&nl_table_users)) {
  353. DECLARE_WAITQUEUE(wait, current);
  354. add_wait_queue_exclusive(&nl_table_wait, &wait);
  355. for (;;) {
  356. set_current_state(TASK_UNINTERRUPTIBLE);
  357. if (atomic_read(&nl_table_users) == 0)
  358. break;
  359. write_unlock_irq(&nl_table_lock);
  360. schedule();
  361. write_lock_irq(&nl_table_lock);
  362. }
  363. __set_current_state(TASK_RUNNING);
  364. remove_wait_queue(&nl_table_wait, &wait);
  365. }
  366. }
  367. void netlink_table_ungrab(void)
  368. __releases(nl_table_lock)
  369. {
  370. write_unlock_irq(&nl_table_lock);
  371. wake_up(&nl_table_wait);
  372. }
  373. static inline void
  374. netlink_lock_table(void)
  375. {
  376. /* read_lock() synchronizes us to netlink_table_grab */
  377. read_lock(&nl_table_lock);
  378. atomic_inc(&nl_table_users);
  379. read_unlock(&nl_table_lock);
  380. }
  381. static inline void
  382. netlink_unlock_table(void)
  383. {
  384. if (atomic_dec_and_test(&nl_table_users))
  385. wake_up(&nl_table_wait);
  386. }
  387. struct netlink_compare_arg
  388. {
  389. possible_net_t pnet;
  390. u32 portid;
  391. };
  392. /* Doing sizeof directly may yield 4 extra bytes on 64-bit. */
  393. #define netlink_compare_arg_len \
  394. (offsetof(struct netlink_compare_arg, portid) + sizeof(u32))
  395. static inline int netlink_compare(struct rhashtable_compare_arg *arg,
  396. const void *ptr)
  397. {
  398. const struct netlink_compare_arg *x = arg->key;
  399. const struct netlink_sock *nlk = ptr;
  400. return nlk->portid != x->portid ||
  401. !net_eq(sock_net(&nlk->sk), read_pnet(&x->pnet));
  402. }
  403. static void netlink_compare_arg_init(struct netlink_compare_arg *arg,
  404. struct net *net, u32 portid)
  405. {
  406. memset(arg, 0, sizeof(*arg));
  407. write_pnet(&arg->pnet, net);
  408. arg->portid = portid;
  409. }
  410. static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid,
  411. struct net *net)
  412. {
  413. struct netlink_compare_arg arg;
  414. netlink_compare_arg_init(&arg, net, portid);
  415. return rhashtable_lookup_fast(&table->hash, &arg,
  416. netlink_rhashtable_params);
  417. }
  418. static int __netlink_insert(struct netlink_table *table, struct sock *sk)
  419. {
  420. struct netlink_compare_arg arg;
  421. netlink_compare_arg_init(&arg, sock_net(sk), nlk_sk(sk)->portid);
  422. return rhashtable_lookup_insert_key(&table->hash, &arg,
  423. &nlk_sk(sk)->node,
  424. netlink_rhashtable_params);
  425. }
  426. static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid)
  427. {
  428. struct netlink_table *table = &nl_table[protocol];
  429. struct sock *sk;
  430. rcu_read_lock();
  431. sk = __netlink_lookup(table, portid, net);
  432. if (sk)
  433. sock_hold(sk);
  434. rcu_read_unlock();
  435. return sk;
  436. }
  437. static const struct proto_ops netlink_ops;
  438. static void
  439. netlink_update_listeners(struct sock *sk)
  440. {
  441. struct netlink_table *tbl = &nl_table[sk->sk_protocol];
  442. unsigned long mask;
  443. unsigned int i;
  444. struct listeners *listeners;
  445. listeners = nl_deref_protected(tbl->listeners);
  446. if (!listeners)
  447. return;
  448. for (i = 0; i < NLGRPLONGS(tbl->groups); i++) {
  449. mask = 0;
  450. sk_for_each_bound(sk, &tbl->mc_list) {
  451. if (i < NLGRPLONGS(nlk_sk(sk)->ngroups))
  452. mask |= nlk_sk(sk)->groups[i];
  453. }
  454. listeners->masks[i] = mask;
  455. }
  456. /* this function is only called with the netlink table "grabbed", which
  457. * makes sure updates are visible before bind or setsockopt return. */
  458. }
  459. static int netlink_insert(struct sock *sk, u32 portid)
  460. {
  461. struct netlink_table *table = &nl_table[sk->sk_protocol];
  462. int err;
  463. lock_sock(sk);
  464. err = nlk_sk(sk)->portid == portid ? 0 : -EBUSY;
  465. if (nlk_sk(sk)->bound)
  466. goto err;
  467. nlk_sk(sk)->portid = portid;
  468. sock_hold(sk);
  469. err = __netlink_insert(table, sk);
  470. if (err) {
  471. /* In case the hashtable backend returns with -EBUSY
  472. * from here, it must not escape to the caller.
  473. */
  474. if (unlikely(err == -EBUSY))
  475. err = -EOVERFLOW;
  476. if (err == -EEXIST)
  477. err = -EADDRINUSE;
  478. sock_put(sk);
  479. goto err;
  480. }
  481. /* We need to ensure that the socket is hashed and visible. */
  482. smp_wmb();
  483. nlk_sk(sk)->bound = portid;
  484. err:
  485. release_sock(sk);
  486. return err;
  487. }
  488. static void netlink_remove(struct sock *sk)
  489. {
  490. struct netlink_table *table;
  491. table = &nl_table[sk->sk_protocol];
  492. if (!rhashtable_remove_fast(&table->hash, &nlk_sk(sk)->node,
  493. netlink_rhashtable_params)) {
  494. WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
  495. __sock_put(sk);
  496. }
  497. netlink_table_grab();
  498. if (nlk_sk(sk)->subscriptions) {
  499. __sk_del_bind_node(sk);
  500. netlink_update_listeners(sk);
  501. }
  502. if (sk->sk_protocol == NETLINK_GENERIC)
  503. atomic_inc(&genl_sk_destructing_cnt);
  504. netlink_table_ungrab();
  505. }
  506. static struct proto netlink_proto = {
  507. .name = "NETLINK",
  508. .owner = THIS_MODULE,
  509. .obj_size = sizeof(struct netlink_sock),
  510. };
  511. static int __netlink_create(struct net *net, struct socket *sock,
  512. struct mutex *cb_mutex, int protocol,
  513. int kern)
  514. {
  515. struct sock *sk;
  516. struct netlink_sock *nlk;
  517. sock->ops = &netlink_ops;
  518. sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto, kern);
  519. if (!sk)
  520. return -ENOMEM;
  521. sock_init_data(sock, sk);
  522. nlk = nlk_sk(sk);
  523. if (cb_mutex) {
  524. nlk->cb_mutex = cb_mutex;
  525. } else {
  526. nlk->cb_mutex = &nlk->cb_def_mutex;
  527. mutex_init(nlk->cb_mutex);
  528. lockdep_set_class_and_name(nlk->cb_mutex,
  529. nlk_cb_mutex_keys + protocol,
  530. nlk_cb_mutex_key_strings[protocol]);
  531. }
  532. init_waitqueue_head(&nlk->wait);
  533. sk->sk_destruct = netlink_sock_destruct;
  534. sk->sk_protocol = protocol;
  535. return 0;
  536. }
  537. static int netlink_create(struct net *net, struct socket *sock, int protocol,
  538. int kern)
  539. {
  540. struct module *module = NULL;
  541. struct mutex *cb_mutex;
  542. struct netlink_sock *nlk;
  543. int (*bind)(struct net *net, int group);
  544. void (*unbind)(struct net *net, int group);
  545. int err = 0;
  546. sock->state = SS_UNCONNECTED;
  547. if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM)
  548. return -ESOCKTNOSUPPORT;
  549. if (protocol < 0 || protocol >= MAX_LINKS)
  550. return -EPROTONOSUPPORT;
  551. protocol = array_index_nospec(protocol, MAX_LINKS);
  552. netlink_lock_table();
  553. #ifdef CONFIG_MODULES
  554. if (!nl_table[protocol].registered) {
  555. netlink_unlock_table();
  556. request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol);
  557. netlink_lock_table();
  558. }
  559. #endif
  560. if (nl_table[protocol].registered &&
  561. try_module_get(nl_table[protocol].module))
  562. module = nl_table[protocol].module;
  563. else
  564. err = -EPROTONOSUPPORT;
  565. cb_mutex = nl_table[protocol].cb_mutex;
  566. bind = nl_table[protocol].bind;
  567. unbind = nl_table[protocol].unbind;
  568. netlink_unlock_table();
  569. if (err < 0)
  570. goto out;
  571. err = __netlink_create(net, sock, cb_mutex, protocol, kern);
  572. if (err < 0)
  573. goto out_module;
  574. local_bh_disable();
  575. sock_prot_inuse_add(net, &netlink_proto, 1);
  576. local_bh_enable();
  577. nlk = nlk_sk(sock->sk);
  578. nlk->module = module;
  579. nlk->netlink_bind = bind;
  580. nlk->netlink_unbind = unbind;
  581. out:
  582. return err;
  583. out_module:
  584. module_put(module);
  585. goto out;
  586. }
  587. static void deferred_put_nlk_sk(struct rcu_head *head)
  588. {
  589. struct netlink_sock *nlk = container_of(head, struct netlink_sock, rcu);
  590. struct sock *sk = &nlk->sk;
  591. kfree(nlk->groups);
  592. nlk->groups = NULL;
  593. if (!refcount_dec_and_test(&sk->sk_refcnt))
  594. return;
  595. if (nlk->cb_running && nlk->cb.done) {
  596. INIT_WORK(&nlk->work, netlink_sock_destruct_work);
  597. schedule_work(&nlk->work);
  598. return;
  599. }
  600. sk_free(sk);
  601. }
  602. static int netlink_release(struct socket *sock)
  603. {
  604. struct sock *sk = sock->sk;
  605. struct netlink_sock *nlk;
  606. if (!sk)
  607. return 0;
  608. netlink_remove(sk);
  609. sock_orphan(sk);
  610. nlk = nlk_sk(sk);
  611. /*
  612. * OK. Socket is unlinked, any packets that arrive now
  613. * will be purged.
  614. */
  615. /* must not acquire netlink_table_lock in any way again before unbind
  616. * and notifying genetlink is done as otherwise it might deadlock
  617. */
  618. if (nlk->netlink_unbind) {
  619. int i;
  620. for (i = 0; i < nlk->ngroups; i++)
  621. if (test_bit(i, nlk->groups))
  622. nlk->netlink_unbind(sock_net(sk), i + 1);
  623. }
  624. if (sk->sk_protocol == NETLINK_GENERIC &&
  625. atomic_dec_return(&genl_sk_destructing_cnt) == 0)
  626. wake_up(&genl_sk_destructing_waitq);
  627. sock->sk = NULL;
  628. wake_up_interruptible_all(&nlk->wait);
  629. skb_queue_purge(&sk->sk_write_queue);
  630. if (nlk->portid && nlk->bound) {
  631. struct netlink_notify n = {
  632. .net = sock_net(sk),
  633. .protocol = sk->sk_protocol,
  634. .portid = nlk->portid,
  635. };
  636. blocking_notifier_call_chain(&netlink_chain,
  637. NETLINK_URELEASE, &n);
  638. }
  639. module_put(nlk->module);
  640. if (netlink_is_kernel(sk)) {
  641. netlink_table_grab();
  642. BUG_ON(nl_table[sk->sk_protocol].registered == 0);
  643. if (--nl_table[sk->sk_protocol].registered == 0) {
  644. struct listeners *old;
  645. old = nl_deref_protected(nl_table[sk->sk_protocol].listeners);
  646. RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL);
  647. kfree_rcu(old, rcu);
  648. nl_table[sk->sk_protocol].module = NULL;
  649. nl_table[sk->sk_protocol].bind = NULL;
  650. nl_table[sk->sk_protocol].unbind = NULL;
  651. nl_table[sk->sk_protocol].flags = 0;
  652. nl_table[sk->sk_protocol].registered = 0;
  653. }
  654. netlink_table_ungrab();
  655. }
  656. local_bh_disable();
  657. sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1);
  658. local_bh_enable();
  659. call_rcu(&nlk->rcu, deferred_put_nlk_sk);
  660. return 0;
  661. }
  662. static int netlink_autobind(struct socket *sock)
  663. {
  664. struct sock *sk = sock->sk;
  665. struct net *net = sock_net(sk);
  666. struct netlink_table *table = &nl_table[sk->sk_protocol];
  667. s32 portid = task_tgid_vnr(current);
  668. int err;
  669. s32 rover = -4096;
  670. bool ok;
  671. retry:
  672. cond_resched();
  673. rcu_read_lock();
  674. ok = !__netlink_lookup(table, portid, net);
  675. rcu_read_unlock();
  676. if (!ok) {
  677. /* Bind collision, search negative portid values. */
  678. if (rover == -4096)
  679. /* rover will be in range [S32_MIN, -4097] */
  680. rover = S32_MIN + prandom_u32_max(-4096 - S32_MIN);
  681. else if (rover >= -4096)
  682. rover = -4097;
  683. portid = rover--;
  684. goto retry;
  685. }
  686. err = netlink_insert(sk, portid);
  687. if (err == -EADDRINUSE)
  688. goto retry;
  689. /* If 2 threads race to autobind, that is fine. */
  690. if (err == -EBUSY)
  691. err = 0;
  692. return err;
  693. }
  694. /**
  695. * __netlink_ns_capable - General netlink message capability test
  696. * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace.
  697. * @user_ns: The user namespace of the capability to use
  698. * @cap: The capability to use
  699. *
  700. * Test to see if the opener of the socket we received the message
  701. * from had when the netlink socket was created and the sender of the
  702. * message has has the capability @cap in the user namespace @user_ns.
  703. */
  704. bool __netlink_ns_capable(const struct netlink_skb_parms *nsp,
  705. struct user_namespace *user_ns, int cap)
  706. {
  707. return ((nsp->flags & NETLINK_SKB_DST) ||
  708. file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) &&
  709. ns_capable(user_ns, cap);
  710. }
  711. EXPORT_SYMBOL(__netlink_ns_capable);
  712. /**
  713. * netlink_ns_capable - General netlink message capability test
  714. * @skb: socket buffer holding a netlink command from userspace
  715. * @user_ns: The user namespace of the capability to use
  716. * @cap: The capability to use
  717. *
  718. * Test to see if the opener of the socket we received the message
  719. * from had when the netlink socket was created and the sender of the
  720. * message has has the capability @cap in the user namespace @user_ns.
  721. */
  722. bool netlink_ns_capable(const struct sk_buff *skb,
  723. struct user_namespace *user_ns, int cap)
  724. {
  725. return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap);
  726. }
  727. EXPORT_SYMBOL(netlink_ns_capable);
  728. /**
  729. * netlink_capable - Netlink global message capability test
  730. * @skb: socket buffer holding a netlink command from userspace
  731. * @cap: The capability to use
  732. *
  733. * Test to see if the opener of the socket we received the message
  734. * from had when the netlink socket was created and the sender of the
  735. * message has has the capability @cap in all user namespaces.
  736. */
  737. bool netlink_capable(const struct sk_buff *skb, int cap)
  738. {
  739. return netlink_ns_capable(skb, &init_user_ns, cap);
  740. }
  741. EXPORT_SYMBOL(netlink_capable);
  742. /**
  743. * netlink_net_capable - Netlink network namespace message capability test
  744. * @skb: socket buffer holding a netlink command from userspace
  745. * @cap: The capability to use
  746. *
  747. * Test to see if the opener of the socket we received the message
  748. * from had when the netlink socket was created and the sender of the
  749. * message has has the capability @cap over the network namespace of
  750. * the socket we received the message from.
  751. */
  752. bool netlink_net_capable(const struct sk_buff *skb, int cap)
  753. {
  754. return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap);
  755. }
  756. EXPORT_SYMBOL(netlink_net_capable);
  757. static inline int netlink_allowed(const struct socket *sock, unsigned int flag)
  758. {
  759. return (nl_table[sock->sk->sk_protocol].flags & flag) ||
  760. ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN);
  761. }
  762. static void
  763. netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions)
  764. {
  765. struct netlink_sock *nlk = nlk_sk(sk);
  766. if (nlk->subscriptions && !subscriptions)
  767. __sk_del_bind_node(sk);
  768. else if (!nlk->subscriptions && subscriptions)
  769. sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list);
  770. nlk->subscriptions = subscriptions;
  771. }
  772. static int netlink_realloc_groups(struct sock *sk)
  773. {
  774. struct netlink_sock *nlk = nlk_sk(sk);
  775. unsigned int groups;
  776. unsigned long *new_groups;
  777. int err = 0;
  778. netlink_table_grab();
  779. groups = nl_table[sk->sk_protocol].groups;
  780. if (!nl_table[sk->sk_protocol].registered) {
  781. err = -ENOENT;
  782. goto out_unlock;
  783. }
  784. if (nlk->ngroups >= groups)
  785. goto out_unlock;
  786. new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC);
  787. if (new_groups == NULL) {
  788. err = -ENOMEM;
  789. goto out_unlock;
  790. }
  791. memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0,
  792. NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups));
  793. nlk->groups = new_groups;
  794. nlk->ngroups = groups;
  795. out_unlock:
  796. netlink_table_ungrab();
  797. return err;
  798. }
  799. static void netlink_undo_bind(int group, long unsigned int groups,
  800. struct sock *sk)
  801. {
  802. struct netlink_sock *nlk = nlk_sk(sk);
  803. int undo;
  804. if (!nlk->netlink_unbind)
  805. return;
  806. for (undo = 0; undo < group; undo++)
  807. if (test_bit(undo, &groups))
  808. nlk->netlink_unbind(sock_net(sk), undo + 1);
  809. }
  810. static int netlink_bind(struct socket *sock, struct sockaddr *addr,
  811. int addr_len)
  812. {
  813. struct sock *sk = sock->sk;
  814. struct net *net = sock_net(sk);
  815. struct netlink_sock *nlk = nlk_sk(sk);
  816. struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
  817. int err = 0;
  818. unsigned long groups;
  819. bool bound;
  820. if (addr_len < sizeof(struct sockaddr_nl))
  821. return -EINVAL;
  822. if (nladdr->nl_family != AF_NETLINK)
  823. return -EINVAL;
  824. groups = nladdr->nl_groups;
  825. /* Only superuser is allowed to listen multicasts */
  826. if (groups) {
  827. if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
  828. return -EPERM;
  829. err = netlink_realloc_groups(sk);
  830. if (err)
  831. return err;
  832. }
  833. if (nlk->ngroups < BITS_PER_LONG)
  834. groups &= (1UL << nlk->ngroups) - 1;
  835. bound = nlk->bound;
  836. if (bound) {
  837. /* Ensure nlk->portid is up-to-date. */
  838. smp_rmb();
  839. if (nladdr->nl_pid != nlk->portid)
  840. return -EINVAL;
  841. }
  842. netlink_lock_table();
  843. if (nlk->netlink_bind && groups) {
  844. int group;
  845. /* nl_groups is a u32, so cap the maximum groups we can bind */
  846. for (group = 0; group < BITS_PER_TYPE(u32); group++) {
  847. if (!test_bit(group, &groups))
  848. continue;
  849. err = nlk->netlink_bind(net, group + 1);
  850. if (!err)
  851. continue;
  852. netlink_undo_bind(group, groups, sk);
  853. goto unlock;
  854. }
  855. }
  856. /* No need for barriers here as we return to user-space without
  857. * using any of the bound attributes.
  858. */
  859. if (!bound) {
  860. err = nladdr->nl_pid ?
  861. netlink_insert(sk, nladdr->nl_pid) :
  862. netlink_autobind(sock);
  863. if (err) {
  864. netlink_undo_bind(BITS_PER_TYPE(u32), groups, sk);
  865. goto unlock;
  866. }
  867. }
  868. if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0]))
  869. goto unlock;
  870. netlink_unlock_table();
  871. netlink_table_grab();
  872. netlink_update_subscriptions(sk, nlk->subscriptions +
  873. hweight32(groups) -
  874. hweight32(nlk->groups[0]));
  875. nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups;
  876. netlink_update_listeners(sk);
  877. netlink_table_ungrab();
  878. return 0;
  879. unlock:
  880. netlink_unlock_table();
  881. return err;
  882. }
  883. static int netlink_connect(struct socket *sock, struct sockaddr *addr,
  884. int alen, int flags)
  885. {
  886. int err = 0;
  887. struct sock *sk = sock->sk;
  888. struct netlink_sock *nlk = nlk_sk(sk);
  889. struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
  890. if (alen < sizeof(addr->sa_family))
  891. return -EINVAL;
  892. if (addr->sa_family == AF_UNSPEC) {
  893. sk->sk_state = NETLINK_UNCONNECTED;
  894. nlk->dst_portid = 0;
  895. nlk->dst_group = 0;
  896. return 0;
  897. }
  898. if (addr->sa_family != AF_NETLINK)
  899. return -EINVAL;
  900. if (alen < sizeof(struct sockaddr_nl))
  901. return -EINVAL;
  902. if ((nladdr->nl_groups || nladdr->nl_pid) &&
  903. !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
  904. return -EPERM;
  905. /* No need for barriers here as we return to user-space without
  906. * using any of the bound attributes.
  907. */
  908. if (!nlk->bound)
  909. err = netlink_autobind(sock);
  910. if (err == 0) {
  911. sk->sk_state = NETLINK_CONNECTED;
  912. nlk->dst_portid = nladdr->nl_pid;
  913. nlk->dst_group = ffs(nladdr->nl_groups);
  914. }
  915. return err;
  916. }
  917. static int netlink_getname(struct socket *sock, struct sockaddr *addr,
  918. int peer)
  919. {
  920. struct sock *sk = sock->sk;
  921. struct netlink_sock *nlk = nlk_sk(sk);
  922. DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr);
  923. nladdr->nl_family = AF_NETLINK;
  924. nladdr->nl_pad = 0;
  925. if (peer) {
  926. nladdr->nl_pid = nlk->dst_portid;
  927. nladdr->nl_groups = netlink_group_mask(nlk->dst_group);
  928. } else {
  929. nladdr->nl_pid = nlk->portid;
  930. netlink_lock_table();
  931. nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0;
  932. netlink_unlock_table();
  933. }
  934. return sizeof(*nladdr);
  935. }
  936. static int netlink_ioctl(struct socket *sock, unsigned int cmd,
  937. unsigned long arg)
  938. {
  939. /* try to hand this ioctl down to the NIC drivers.
  940. */
  941. return -ENOIOCTLCMD;
  942. }
  943. static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid)
  944. {
  945. struct sock *sock;
  946. struct netlink_sock *nlk;
  947. sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid);
  948. if (!sock)
  949. return ERR_PTR(-ECONNREFUSED);
  950. /* Don't bother queuing skb if kernel socket has no input function */
  951. nlk = nlk_sk(sock);
  952. if (sock->sk_state == NETLINK_CONNECTED &&
  953. nlk->dst_portid != nlk_sk(ssk)->portid) {
  954. sock_put(sock);
  955. return ERR_PTR(-ECONNREFUSED);
  956. }
  957. return sock;
  958. }
  959. struct sock *netlink_getsockbyfilp(struct file *filp)
  960. {
  961. struct inode *inode = file_inode(filp);
  962. struct sock *sock;
  963. if (!S_ISSOCK(inode->i_mode))
  964. return ERR_PTR(-ENOTSOCK);
  965. sock = SOCKET_I(inode)->sk;
  966. if (sock->sk_family != AF_NETLINK)
  967. return ERR_PTR(-EINVAL);
  968. sock_hold(sock);
  969. return sock;
  970. }
  971. static struct sk_buff *netlink_alloc_large_skb(unsigned int size,
  972. int broadcast)
  973. {
  974. struct sk_buff *skb;
  975. void *data;
  976. if (size <= NLMSG_GOODSIZE || broadcast)
  977. return alloc_skb(size, GFP_KERNEL);
  978. size = SKB_DATA_ALIGN(size) +
  979. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  980. data = vmalloc(size);
  981. if (data == NULL)
  982. return NULL;
  983. skb = __build_skb(data, size);
  984. if (skb == NULL)
  985. vfree(data);
  986. else
  987. skb->destructor = netlink_skb_destructor;
  988. return skb;
  989. }
  990. /*
  991. * Attach a skb to a netlink socket.
  992. * The caller must hold a reference to the destination socket. On error, the
  993. * reference is dropped. The skb is not send to the destination, just all
  994. * all error checks are performed and memory in the queue is reserved.
  995. * Return values:
  996. * < 0: error. skb freed, reference to sock dropped.
  997. * 0: continue
  998. * 1: repeat lookup - reference dropped while waiting for socket memory.
  999. */
  1000. int netlink_attachskb(struct sock *sk, struct sk_buff *skb,
  1001. long *timeo, struct sock *ssk)
  1002. {
  1003. struct netlink_sock *nlk;
  1004. nlk = nlk_sk(sk);
  1005. if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  1006. test_bit(NETLINK_S_CONGESTED, &nlk->state))) {
  1007. DECLARE_WAITQUEUE(wait, current);
  1008. if (!*timeo) {
  1009. if (!ssk || netlink_is_kernel(ssk))
  1010. netlink_overrun(sk);
  1011. sock_put(sk);
  1012. kfree_skb(skb);
  1013. return -EAGAIN;
  1014. }
  1015. __set_current_state(TASK_INTERRUPTIBLE);
  1016. add_wait_queue(&nlk->wait, &wait);
  1017. if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  1018. test_bit(NETLINK_S_CONGESTED, &nlk->state)) &&
  1019. !sock_flag(sk, SOCK_DEAD))
  1020. *timeo = schedule_timeout(*timeo);
  1021. __set_current_state(TASK_RUNNING);
  1022. remove_wait_queue(&nlk->wait, &wait);
  1023. sock_put(sk);
  1024. if (signal_pending(current)) {
  1025. kfree_skb(skb);
  1026. return sock_intr_errno(*timeo);
  1027. }
  1028. return 1;
  1029. }
  1030. netlink_skb_set_owner_r(skb, sk);
  1031. return 0;
  1032. }
  1033. static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb)
  1034. {
  1035. int len = skb->len;
  1036. netlink_deliver_tap(sock_net(sk), skb);
  1037. skb_queue_tail(&sk->sk_receive_queue, skb);
  1038. sk->sk_data_ready(sk);
  1039. return len;
  1040. }
  1041. int netlink_sendskb(struct sock *sk, struct sk_buff *skb)
  1042. {
  1043. int len = __netlink_sendskb(sk, skb);
  1044. sock_put(sk);
  1045. return len;
  1046. }
  1047. void netlink_detachskb(struct sock *sk, struct sk_buff *skb)
  1048. {
  1049. kfree_skb(skb);
  1050. sock_put(sk);
  1051. }
  1052. static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation)
  1053. {
  1054. int delta;
  1055. WARN_ON(skb->sk != NULL);
  1056. delta = skb->end - skb->tail;
  1057. if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize)
  1058. return skb;
  1059. if (skb_shared(skb)) {
  1060. struct sk_buff *nskb = skb_clone(skb, allocation);
  1061. if (!nskb)
  1062. return skb;
  1063. consume_skb(skb);
  1064. skb = nskb;
  1065. }
  1066. pskb_expand_head(skb, 0, -delta,
  1067. (allocation & ~__GFP_DIRECT_RECLAIM) |
  1068. __GFP_NOWARN | __GFP_NORETRY);
  1069. return skb;
  1070. }
  1071. static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb,
  1072. struct sock *ssk)
  1073. {
  1074. int ret;
  1075. struct netlink_sock *nlk = nlk_sk(sk);
  1076. ret = -ECONNREFUSED;
  1077. if (nlk->netlink_rcv != NULL) {
  1078. ret = skb->len;
  1079. netlink_skb_set_owner_r(skb, sk);
  1080. NETLINK_CB(skb).sk = ssk;
  1081. netlink_deliver_tap_kernel(sk, ssk, skb);
  1082. nlk->netlink_rcv(skb);
  1083. consume_skb(skb);
  1084. } else {
  1085. kfree_skb(skb);
  1086. }
  1087. sock_put(sk);
  1088. return ret;
  1089. }
  1090. int netlink_unicast(struct sock *ssk, struct sk_buff *skb,
  1091. u32 portid, int nonblock)
  1092. {
  1093. struct sock *sk;
  1094. int err;
  1095. long timeo;
  1096. skb = netlink_trim(skb, gfp_any());
  1097. timeo = sock_sndtimeo(ssk, nonblock);
  1098. retry:
  1099. sk = netlink_getsockbyportid(ssk, portid);
  1100. if (IS_ERR(sk)) {
  1101. kfree_skb(skb);
  1102. return PTR_ERR(sk);
  1103. }
  1104. if (netlink_is_kernel(sk))
  1105. return netlink_unicast_kernel(sk, skb, ssk);
  1106. if (sk_filter(sk, skb)) {
  1107. err = skb->len;
  1108. kfree_skb(skb);
  1109. sock_put(sk);
  1110. return err;
  1111. }
  1112. err = netlink_attachskb(sk, skb, &timeo, ssk);
  1113. if (err == 1)
  1114. goto retry;
  1115. if (err)
  1116. return err;
  1117. return netlink_sendskb(sk, skb);
  1118. }
  1119. EXPORT_SYMBOL(netlink_unicast);
  1120. int netlink_has_listeners(struct sock *sk, unsigned int group)
  1121. {
  1122. int res = 0;
  1123. struct listeners *listeners;
  1124. BUG_ON(!netlink_is_kernel(sk));
  1125. rcu_read_lock();
  1126. listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners);
  1127. if (listeners && group - 1 < nl_table[sk->sk_protocol].groups)
  1128. res = test_bit(group - 1, listeners->masks);
  1129. rcu_read_unlock();
  1130. return res;
  1131. }
  1132. EXPORT_SYMBOL_GPL(netlink_has_listeners);
  1133. bool netlink_strict_get_check(struct sk_buff *skb)
  1134. {
  1135. const struct netlink_sock *nlk = nlk_sk(NETLINK_CB(skb).sk);
  1136. return nlk->flags & NETLINK_F_STRICT_CHK;
  1137. }
  1138. EXPORT_SYMBOL_GPL(netlink_strict_get_check);
  1139. static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb)
  1140. {
  1141. struct netlink_sock *nlk = nlk_sk(sk);
  1142. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
  1143. !test_bit(NETLINK_S_CONGESTED, &nlk->state)) {
  1144. netlink_skb_set_owner_r(skb, sk);
  1145. __netlink_sendskb(sk, skb);
  1146. return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1);
  1147. }
  1148. return -1;
  1149. }
  1150. struct netlink_broadcast_data {
  1151. struct sock *exclude_sk;
  1152. struct net *net;
  1153. u32 portid;
  1154. u32 group;
  1155. int failure;
  1156. int delivery_failure;
  1157. int congested;
  1158. int delivered;
  1159. gfp_t allocation;
  1160. struct sk_buff *skb, *skb2;
  1161. int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data);
  1162. void *tx_data;
  1163. };
  1164. static void do_one_broadcast(struct sock *sk,
  1165. struct netlink_broadcast_data *p)
  1166. {
  1167. struct netlink_sock *nlk = nlk_sk(sk);
  1168. int val;
  1169. if (p->exclude_sk == sk)
  1170. return;
  1171. if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
  1172. !test_bit(p->group - 1, nlk->groups))
  1173. return;
  1174. if (!net_eq(sock_net(sk), p->net)) {
  1175. if (!(nlk->flags & NETLINK_F_LISTEN_ALL_NSID))
  1176. return;
  1177. if (!peernet_has_id(sock_net(sk), p->net))
  1178. return;
  1179. if (!file_ns_capable(sk->sk_socket->file, p->net->user_ns,
  1180. CAP_NET_BROADCAST))
  1181. return;
  1182. }
  1183. if (p->failure) {
  1184. netlink_overrun(sk);
  1185. return;
  1186. }
  1187. sock_hold(sk);
  1188. if (p->skb2 == NULL) {
  1189. if (skb_shared(p->skb)) {
  1190. p->skb2 = skb_clone(p->skb, p->allocation);
  1191. } else {
  1192. p->skb2 = skb_get(p->skb);
  1193. /*
  1194. * skb ownership may have been set when
  1195. * delivered to a previous socket.
  1196. */
  1197. skb_orphan(p->skb2);
  1198. }
  1199. }
  1200. if (p->skb2 == NULL) {
  1201. netlink_overrun(sk);
  1202. /* Clone failed. Notify ALL listeners. */
  1203. p->failure = 1;
  1204. if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR)
  1205. p->delivery_failure = 1;
  1206. goto out;
  1207. }
  1208. if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) {
  1209. kfree_skb(p->skb2);
  1210. p->skb2 = NULL;
  1211. goto out;
  1212. }
  1213. if (sk_filter(sk, p->skb2)) {
  1214. kfree_skb(p->skb2);
  1215. p->skb2 = NULL;
  1216. goto out;
  1217. }
  1218. NETLINK_CB(p->skb2).nsid = peernet2id(sock_net(sk), p->net);
  1219. if (NETLINK_CB(p->skb2).nsid != NETNSA_NSID_NOT_ASSIGNED)
  1220. NETLINK_CB(p->skb2).nsid_is_set = true;
  1221. val = netlink_broadcast_deliver(sk, p->skb2);
  1222. if (val < 0) {
  1223. netlink_overrun(sk);
  1224. if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR)
  1225. p->delivery_failure = 1;
  1226. } else {
  1227. p->congested |= val;
  1228. p->delivered = 1;
  1229. p->skb2 = NULL;
  1230. }
  1231. out:
  1232. sock_put(sk);
  1233. }
  1234. int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid,
  1235. u32 group, gfp_t allocation,
  1236. int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data),
  1237. void *filter_data)
  1238. {
  1239. struct net *net = sock_net(ssk);
  1240. struct netlink_broadcast_data info;
  1241. struct sock *sk;
  1242. skb = netlink_trim(skb, allocation);
  1243. info.exclude_sk = ssk;
  1244. info.net = net;
  1245. info.portid = portid;
  1246. info.group = group;
  1247. info.failure = 0;
  1248. info.delivery_failure = 0;
  1249. info.congested = 0;
  1250. info.delivered = 0;
  1251. info.allocation = allocation;
  1252. info.skb = skb;
  1253. info.skb2 = NULL;
  1254. info.tx_filter = filter;
  1255. info.tx_data = filter_data;
  1256. /* While we sleep in clone, do not allow to change socket list */
  1257. netlink_lock_table();
  1258. sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
  1259. do_one_broadcast(sk, &info);
  1260. consume_skb(skb);
  1261. netlink_unlock_table();
  1262. if (info.delivery_failure) {
  1263. kfree_skb(info.skb2);
  1264. return -ENOBUFS;
  1265. }
  1266. consume_skb(info.skb2);
  1267. if (info.delivered) {
  1268. if (info.congested && gfpflags_allow_blocking(allocation))
  1269. yield();
  1270. return 0;
  1271. }
  1272. return -ESRCH;
  1273. }
  1274. EXPORT_SYMBOL(netlink_broadcast_filtered);
  1275. int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid,
  1276. u32 group, gfp_t allocation)
  1277. {
  1278. return netlink_broadcast_filtered(ssk, skb, portid, group, allocation,
  1279. NULL, NULL);
  1280. }
  1281. EXPORT_SYMBOL(netlink_broadcast);
  1282. struct netlink_set_err_data {
  1283. struct sock *exclude_sk;
  1284. u32 portid;
  1285. u32 group;
  1286. int code;
  1287. };
  1288. static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p)
  1289. {
  1290. struct netlink_sock *nlk = nlk_sk(sk);
  1291. int ret = 0;
  1292. if (sk == p->exclude_sk)
  1293. goto out;
  1294. if (!net_eq(sock_net(sk), sock_net(p->exclude_sk)))
  1295. goto out;
  1296. if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
  1297. !test_bit(p->group - 1, nlk->groups))
  1298. goto out;
  1299. if (p->code == ENOBUFS && nlk->flags & NETLINK_F_RECV_NO_ENOBUFS) {
  1300. ret = 1;
  1301. goto out;
  1302. }
  1303. sk->sk_err = p->code;
  1304. sk->sk_error_report(sk);
  1305. out:
  1306. return ret;
  1307. }
  1308. /**
  1309. * netlink_set_err - report error to broadcast listeners
  1310. * @ssk: the kernel netlink socket, as returned by netlink_kernel_create()
  1311. * @portid: the PORTID of a process that we want to skip (if any)
  1312. * @group: the broadcast group that will notice the error
  1313. * @code: error code, must be negative (as usual in kernelspace)
  1314. *
  1315. * This function returns the number of broadcast listeners that have set the
  1316. * NETLINK_NO_ENOBUFS socket option.
  1317. */
  1318. int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code)
  1319. {
  1320. struct netlink_set_err_data info;
  1321. struct sock *sk;
  1322. int ret = 0;
  1323. info.exclude_sk = ssk;
  1324. info.portid = portid;
  1325. info.group = group;
  1326. /* sk->sk_err wants a positive error value */
  1327. info.code = -code;
  1328. read_lock(&nl_table_lock);
  1329. sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
  1330. ret += do_one_set_err(sk, &info);
  1331. read_unlock(&nl_table_lock);
  1332. return ret;
  1333. }
  1334. EXPORT_SYMBOL(netlink_set_err);
  1335. /* must be called with netlink table grabbed */
  1336. static void netlink_update_socket_mc(struct netlink_sock *nlk,
  1337. unsigned int group,
  1338. int is_new)
  1339. {
  1340. int old, new = !!is_new, subscriptions;
  1341. old = test_bit(group - 1, nlk->groups);
  1342. subscriptions = nlk->subscriptions - old + new;
  1343. if (new)
  1344. __set_bit(group - 1, nlk->groups);
  1345. else
  1346. __clear_bit(group - 1, nlk->groups);
  1347. netlink_update_subscriptions(&nlk->sk, subscriptions);
  1348. netlink_update_listeners(&nlk->sk);
  1349. }
  1350. static int netlink_setsockopt(struct socket *sock, int level, int optname,
  1351. char __user *optval, unsigned int optlen)
  1352. {
  1353. struct sock *sk = sock->sk;
  1354. struct netlink_sock *nlk = nlk_sk(sk);
  1355. unsigned int val = 0;
  1356. int err;
  1357. if (level != SOL_NETLINK)
  1358. return -ENOPROTOOPT;
  1359. if (optlen >= sizeof(int) &&
  1360. get_user(val, (unsigned int __user *)optval))
  1361. return -EFAULT;
  1362. switch (optname) {
  1363. case NETLINK_PKTINFO:
  1364. if (val)
  1365. nlk->flags |= NETLINK_F_RECV_PKTINFO;
  1366. else
  1367. nlk->flags &= ~NETLINK_F_RECV_PKTINFO;
  1368. err = 0;
  1369. break;
  1370. case NETLINK_ADD_MEMBERSHIP:
  1371. case NETLINK_DROP_MEMBERSHIP: {
  1372. if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
  1373. return -EPERM;
  1374. err = netlink_realloc_groups(sk);
  1375. if (err)
  1376. return err;
  1377. if (!val || val - 1 >= nlk->ngroups)
  1378. return -EINVAL;
  1379. if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) {
  1380. err = nlk->netlink_bind(sock_net(sk), val);
  1381. if (err)
  1382. return err;
  1383. }
  1384. netlink_table_grab();
  1385. netlink_update_socket_mc(nlk, val,
  1386. optname == NETLINK_ADD_MEMBERSHIP);
  1387. netlink_table_ungrab();
  1388. if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind)
  1389. nlk->netlink_unbind(sock_net(sk), val);
  1390. err = 0;
  1391. break;
  1392. }
  1393. case NETLINK_BROADCAST_ERROR:
  1394. if (val)
  1395. nlk->flags |= NETLINK_F_BROADCAST_SEND_ERROR;
  1396. else
  1397. nlk->flags &= ~NETLINK_F_BROADCAST_SEND_ERROR;
  1398. err = 0;
  1399. break;
  1400. case NETLINK_NO_ENOBUFS:
  1401. if (val) {
  1402. nlk->flags |= NETLINK_F_RECV_NO_ENOBUFS;
  1403. clear_bit(NETLINK_S_CONGESTED, &nlk->state);
  1404. wake_up_interruptible(&nlk->wait);
  1405. } else {
  1406. nlk->flags &= ~NETLINK_F_RECV_NO_ENOBUFS;
  1407. }
  1408. err = 0;
  1409. break;
  1410. case NETLINK_LISTEN_ALL_NSID:
  1411. if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_BROADCAST))
  1412. return -EPERM;
  1413. if (val)
  1414. nlk->flags |= NETLINK_F_LISTEN_ALL_NSID;
  1415. else
  1416. nlk->flags &= ~NETLINK_F_LISTEN_ALL_NSID;
  1417. err = 0;
  1418. break;
  1419. case NETLINK_CAP_ACK:
  1420. if (val)
  1421. nlk->flags |= NETLINK_F_CAP_ACK;
  1422. else
  1423. nlk->flags &= ~NETLINK_F_CAP_ACK;
  1424. err = 0;
  1425. break;
  1426. case NETLINK_EXT_ACK:
  1427. if (val)
  1428. nlk->flags |= NETLINK_F_EXT_ACK;
  1429. else
  1430. nlk->flags &= ~NETLINK_F_EXT_ACK;
  1431. err = 0;
  1432. break;
  1433. case NETLINK_GET_STRICT_CHK:
  1434. if (val)
  1435. nlk->flags |= NETLINK_F_STRICT_CHK;
  1436. else
  1437. nlk->flags &= ~NETLINK_F_STRICT_CHK;
  1438. err = 0;
  1439. break;
  1440. default:
  1441. err = -ENOPROTOOPT;
  1442. }
  1443. return err;
  1444. }
  1445. static int netlink_getsockopt(struct socket *sock, int level, int optname,
  1446. char __user *optval, int __user *optlen)
  1447. {
  1448. struct sock *sk = sock->sk;
  1449. struct netlink_sock *nlk = nlk_sk(sk);
  1450. int len, val, err;
  1451. if (level != SOL_NETLINK)
  1452. return -ENOPROTOOPT;
  1453. if (get_user(len, optlen))
  1454. return -EFAULT;
  1455. if (len < 0)
  1456. return -EINVAL;
  1457. switch (optname) {
  1458. case NETLINK_PKTINFO:
  1459. if (len < sizeof(int))
  1460. return -EINVAL;
  1461. len = sizeof(int);
  1462. val = nlk->flags & NETLINK_F_RECV_PKTINFO ? 1 : 0;
  1463. if (put_user(len, optlen) ||
  1464. put_user(val, optval))
  1465. return -EFAULT;
  1466. err = 0;
  1467. break;
  1468. case NETLINK_BROADCAST_ERROR:
  1469. if (len < sizeof(int))
  1470. return -EINVAL;
  1471. len = sizeof(int);
  1472. val = nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR ? 1 : 0;
  1473. if (put_user(len, optlen) ||
  1474. put_user(val, optval))
  1475. return -EFAULT;
  1476. err = 0;
  1477. break;
  1478. case NETLINK_NO_ENOBUFS:
  1479. if (len < sizeof(int))
  1480. return -EINVAL;
  1481. len = sizeof(int);
  1482. val = nlk->flags & NETLINK_F_RECV_NO_ENOBUFS ? 1 : 0;
  1483. if (put_user(len, optlen) ||
  1484. put_user(val, optval))
  1485. return -EFAULT;
  1486. err = 0;
  1487. break;
  1488. case NETLINK_LIST_MEMBERSHIPS: {
  1489. int pos, idx, shift;
  1490. err = 0;
  1491. netlink_lock_table();
  1492. for (pos = 0; pos * 8 < nlk->ngroups; pos += sizeof(u32)) {
  1493. if (len - pos < sizeof(u32))
  1494. break;
  1495. idx = pos / sizeof(unsigned long);
  1496. shift = (pos % sizeof(unsigned long)) * 8;
  1497. if (put_user((u32)(nlk->groups[idx] >> shift),
  1498. (u32 __user *)(optval + pos))) {
  1499. err = -EFAULT;
  1500. break;
  1501. }
  1502. }
  1503. if (put_user(ALIGN(nlk->ngroups / 8, sizeof(u32)), optlen))
  1504. err = -EFAULT;
  1505. netlink_unlock_table();
  1506. break;
  1507. }
  1508. case NETLINK_CAP_ACK:
  1509. if (len < sizeof(int))
  1510. return -EINVAL;
  1511. len = sizeof(int);
  1512. val = nlk->flags & NETLINK_F_CAP_ACK ? 1 : 0;
  1513. if (put_user(len, optlen) ||
  1514. put_user(val, optval))
  1515. return -EFAULT;
  1516. err = 0;
  1517. break;
  1518. case NETLINK_EXT_ACK:
  1519. if (len < sizeof(int))
  1520. return -EINVAL;
  1521. len = sizeof(int);
  1522. val = nlk->flags & NETLINK_F_EXT_ACK ? 1 : 0;
  1523. if (put_user(len, optlen) || put_user(val, optval))
  1524. return -EFAULT;
  1525. err = 0;
  1526. break;
  1527. case NETLINK_GET_STRICT_CHK:
  1528. if (len < sizeof(int))
  1529. return -EINVAL;
  1530. len = sizeof(int);
  1531. val = nlk->flags & NETLINK_F_STRICT_CHK ? 1 : 0;
  1532. if (put_user(len, optlen) || put_user(val, optval))
  1533. return -EFAULT;
  1534. err = 0;
  1535. break;
  1536. default:
  1537. err = -ENOPROTOOPT;
  1538. }
  1539. return err;
  1540. }
  1541. static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb)
  1542. {
  1543. struct nl_pktinfo info;
  1544. info.group = NETLINK_CB(skb).dst_group;
  1545. put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info);
  1546. }
  1547. static void netlink_cmsg_listen_all_nsid(struct sock *sk, struct msghdr *msg,
  1548. struct sk_buff *skb)
  1549. {
  1550. if (!NETLINK_CB(skb).nsid_is_set)
  1551. return;
  1552. put_cmsg(msg, SOL_NETLINK, NETLINK_LISTEN_ALL_NSID, sizeof(int),
  1553. &NETLINK_CB(skb).nsid);
  1554. }
  1555. static int netlink_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
  1556. {
  1557. struct sock *sk = sock->sk;
  1558. struct netlink_sock *nlk = nlk_sk(sk);
  1559. DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
  1560. u32 dst_portid;
  1561. u32 dst_group;
  1562. struct sk_buff *skb;
  1563. int err;
  1564. struct scm_cookie scm;
  1565. u32 netlink_skb_flags = 0;
  1566. if (msg->msg_flags&MSG_OOB)
  1567. return -EOPNOTSUPP;
  1568. err = scm_send(sock, msg, &scm, true);
  1569. if (err < 0)
  1570. return err;
  1571. if (msg->msg_namelen) {
  1572. err = -EINVAL;
  1573. if (msg->msg_namelen < sizeof(struct sockaddr_nl))
  1574. goto out;
  1575. if (addr->nl_family != AF_NETLINK)
  1576. goto out;
  1577. dst_portid = addr->nl_pid;
  1578. dst_group = ffs(addr->nl_groups);
  1579. err = -EPERM;
  1580. if ((dst_group || dst_portid) &&
  1581. !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
  1582. goto out;
  1583. netlink_skb_flags |= NETLINK_SKB_DST;
  1584. } else {
  1585. dst_portid = nlk->dst_portid;
  1586. dst_group = nlk->dst_group;
  1587. }
  1588. if (!nlk->bound) {
  1589. err = netlink_autobind(sock);
  1590. if (err)
  1591. goto out;
  1592. } else {
  1593. /* Ensure nlk is hashed and visible. */
  1594. smp_rmb();
  1595. }
  1596. err = -EMSGSIZE;
  1597. if (len > sk->sk_sndbuf - 32)
  1598. goto out;
  1599. err = -ENOBUFS;
  1600. skb = netlink_alloc_large_skb(len, dst_group);
  1601. if (skb == NULL)
  1602. goto out;
  1603. NETLINK_CB(skb).portid = nlk->portid;
  1604. NETLINK_CB(skb).dst_group = dst_group;
  1605. NETLINK_CB(skb).creds = scm.creds;
  1606. NETLINK_CB(skb).flags = netlink_skb_flags;
  1607. err = -EFAULT;
  1608. if (memcpy_from_msg(skb_put(skb, len), msg, len)) {
  1609. kfree_skb(skb);
  1610. goto out;
  1611. }
  1612. err = security_netlink_send(sk, skb);
  1613. if (err) {
  1614. kfree_skb(skb);
  1615. goto out;
  1616. }
  1617. if (dst_group) {
  1618. refcount_inc(&skb->users);
  1619. netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL);
  1620. }
  1621. err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT);
  1622. out:
  1623. scm_destroy(&scm);
  1624. return err;
  1625. }
  1626. static int netlink_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
  1627. int flags)
  1628. {
  1629. struct scm_cookie scm;
  1630. struct sock *sk = sock->sk;
  1631. struct netlink_sock *nlk = nlk_sk(sk);
  1632. int noblock = flags&MSG_DONTWAIT;
  1633. size_t copied;
  1634. struct sk_buff *skb, *data_skb;
  1635. int err, ret;
  1636. if (flags&MSG_OOB)
  1637. return -EOPNOTSUPP;
  1638. copied = 0;
  1639. skb = skb_recv_datagram(sk, flags, noblock, &err);
  1640. if (skb == NULL)
  1641. goto out;
  1642. data_skb = skb;
  1643. #ifdef CONFIG_COMPAT_NETLINK_MESSAGES
  1644. if (unlikely(skb_shinfo(skb)->frag_list)) {
  1645. /*
  1646. * If this skb has a frag_list, then here that means that we
  1647. * will have to use the frag_list skb's data for compat tasks
  1648. * and the regular skb's data for normal (non-compat) tasks.
  1649. *
  1650. * If we need to send the compat skb, assign it to the
  1651. * 'data_skb' variable so that it will be used below for data
  1652. * copying. We keep 'skb' for everything else, including
  1653. * freeing both later.
  1654. */
  1655. if (flags & MSG_CMSG_COMPAT)
  1656. data_skb = skb_shinfo(skb)->frag_list;
  1657. }
  1658. #endif
  1659. /* Record the max length of recvmsg() calls for future allocations */
  1660. nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len);
  1661. nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len,
  1662. SKB_WITH_OVERHEAD(32768));
  1663. copied = data_skb->len;
  1664. if (len < copied) {
  1665. msg->msg_flags |= MSG_TRUNC;
  1666. copied = len;
  1667. }
  1668. skb_reset_transport_header(data_skb);
  1669. err = skb_copy_datagram_msg(data_skb, 0, msg, copied);
  1670. if (msg->msg_name) {
  1671. DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
  1672. addr->nl_family = AF_NETLINK;
  1673. addr->nl_pad = 0;
  1674. addr->nl_pid = NETLINK_CB(skb).portid;
  1675. addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group);
  1676. msg->msg_namelen = sizeof(*addr);
  1677. }
  1678. if (nlk->flags & NETLINK_F_RECV_PKTINFO)
  1679. netlink_cmsg_recv_pktinfo(msg, skb);
  1680. if (nlk->flags & NETLINK_F_LISTEN_ALL_NSID)
  1681. netlink_cmsg_listen_all_nsid(sk, msg, skb);
  1682. memset(&scm, 0, sizeof(scm));
  1683. scm.creds = *NETLINK_CREDS(skb);
  1684. if (flags & MSG_TRUNC)
  1685. copied = data_skb->len;
  1686. skb_free_datagram(sk, skb);
  1687. if (nlk->cb_running &&
  1688. atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) {
  1689. ret = netlink_dump(sk);
  1690. if (ret) {
  1691. sk->sk_err = -ret;
  1692. sk->sk_error_report(sk);
  1693. }
  1694. }
  1695. scm_recv(sock, msg, &scm, flags);
  1696. out:
  1697. netlink_rcv_wake(sk);
  1698. return err ? : copied;
  1699. }
  1700. static void netlink_data_ready(struct sock *sk)
  1701. {
  1702. BUG();
  1703. }
  1704. /*
  1705. * We export these functions to other modules. They provide a
  1706. * complete set of kernel non-blocking support for message
  1707. * queueing.
  1708. */
  1709. struct sock *
  1710. __netlink_kernel_create(struct net *net, int unit, struct module *module,
  1711. struct netlink_kernel_cfg *cfg)
  1712. {
  1713. struct socket *sock;
  1714. struct sock *sk;
  1715. struct netlink_sock *nlk;
  1716. struct listeners *listeners = NULL;
  1717. struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL;
  1718. unsigned int groups;
  1719. BUG_ON(!nl_table);
  1720. if (unit < 0 || unit >= MAX_LINKS)
  1721. return NULL;
  1722. if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock))
  1723. return NULL;
  1724. if (__netlink_create(net, sock, cb_mutex, unit, 1) < 0)
  1725. goto out_sock_release_nosk;
  1726. sk = sock->sk;
  1727. if (!cfg || cfg->groups < 32)
  1728. groups = 32;
  1729. else
  1730. groups = cfg->groups;
  1731. listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
  1732. if (!listeners)
  1733. goto out_sock_release;
  1734. sk->sk_data_ready = netlink_data_ready;
  1735. if (cfg && cfg->input)
  1736. nlk_sk(sk)->netlink_rcv = cfg->input;
  1737. if (netlink_insert(sk, 0))
  1738. goto out_sock_release;
  1739. nlk = nlk_sk(sk);
  1740. nlk->flags |= NETLINK_F_KERNEL_SOCKET;
  1741. netlink_table_grab();
  1742. if (!nl_table[unit].registered) {
  1743. nl_table[unit].groups = groups;
  1744. rcu_assign_pointer(nl_table[unit].listeners, listeners);
  1745. nl_table[unit].cb_mutex = cb_mutex;
  1746. nl_table[unit].module = module;
  1747. if (cfg) {
  1748. nl_table[unit].bind = cfg->bind;
  1749. nl_table[unit].unbind = cfg->unbind;
  1750. nl_table[unit].flags = cfg->flags;
  1751. if (cfg->compare)
  1752. nl_table[unit].compare = cfg->compare;
  1753. }
  1754. nl_table[unit].registered = 1;
  1755. } else {
  1756. kfree(listeners);
  1757. nl_table[unit].registered++;
  1758. }
  1759. netlink_table_ungrab();
  1760. return sk;
  1761. out_sock_release:
  1762. kfree(listeners);
  1763. netlink_kernel_release(sk);
  1764. return NULL;
  1765. out_sock_release_nosk:
  1766. sock_release(sock);
  1767. return NULL;
  1768. }
  1769. EXPORT_SYMBOL(__netlink_kernel_create);
  1770. void
  1771. netlink_kernel_release(struct sock *sk)
  1772. {
  1773. if (sk == NULL || sk->sk_socket == NULL)
  1774. return;
  1775. sock_release(sk->sk_socket);
  1776. }
  1777. EXPORT_SYMBOL(netlink_kernel_release);
  1778. int __netlink_change_ngroups(struct sock *sk, unsigned int groups)
  1779. {
  1780. struct listeners *new, *old;
  1781. struct netlink_table *tbl = &nl_table[sk->sk_protocol];
  1782. if (groups < 32)
  1783. groups = 32;
  1784. if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) {
  1785. new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC);
  1786. if (!new)
  1787. return -ENOMEM;
  1788. old = nl_deref_protected(tbl->listeners);
  1789. memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups));
  1790. rcu_assign_pointer(tbl->listeners, new);
  1791. kfree_rcu(old, rcu);
  1792. }
  1793. tbl->groups = groups;
  1794. return 0;
  1795. }
  1796. /**
  1797. * netlink_change_ngroups - change number of multicast groups
  1798. *
  1799. * This changes the number of multicast groups that are available
  1800. * on a certain netlink family. Note that it is not possible to
  1801. * change the number of groups to below 32. Also note that it does
  1802. * not implicitly call netlink_clear_multicast_users() when the
  1803. * number of groups is reduced.
  1804. *
  1805. * @sk: The kernel netlink socket, as returned by netlink_kernel_create().
  1806. * @groups: The new number of groups.
  1807. */
  1808. int netlink_change_ngroups(struct sock *sk, unsigned int groups)
  1809. {
  1810. int err;
  1811. netlink_table_grab();
  1812. err = __netlink_change_ngroups(sk, groups);
  1813. netlink_table_ungrab();
  1814. return err;
  1815. }
  1816. void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group)
  1817. {
  1818. struct sock *sk;
  1819. struct netlink_table *tbl = &nl_table[ksk->sk_protocol];
  1820. sk_for_each_bound(sk, &tbl->mc_list)
  1821. netlink_update_socket_mc(nlk_sk(sk), group, 0);
  1822. }
  1823. struct nlmsghdr *
  1824. __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags)
  1825. {
  1826. struct nlmsghdr *nlh;
  1827. int size = nlmsg_msg_size(len);
  1828. nlh = skb_put(skb, NLMSG_ALIGN(size));
  1829. nlh->nlmsg_type = type;
  1830. nlh->nlmsg_len = size;
  1831. nlh->nlmsg_flags = flags;
  1832. nlh->nlmsg_pid = portid;
  1833. nlh->nlmsg_seq = seq;
  1834. if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0)
  1835. memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size);
  1836. return nlh;
  1837. }
  1838. EXPORT_SYMBOL(__nlmsg_put);
  1839. /*
  1840. * It looks a bit ugly.
  1841. * It would be better to create kernel thread.
  1842. */
  1843. static int netlink_dump(struct sock *sk)
  1844. {
  1845. struct netlink_sock *nlk = nlk_sk(sk);
  1846. struct netlink_ext_ack extack = {};
  1847. struct netlink_callback *cb;
  1848. struct sk_buff *skb = NULL;
  1849. struct nlmsghdr *nlh;
  1850. struct module *module;
  1851. int err = -ENOBUFS;
  1852. int alloc_min_size;
  1853. int alloc_size;
  1854. mutex_lock(nlk->cb_mutex);
  1855. if (!nlk->cb_running) {
  1856. err = -EINVAL;
  1857. goto errout_skb;
  1858. }
  1859. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  1860. goto errout_skb;
  1861. /* NLMSG_GOODSIZE is small to avoid high order allocations being
  1862. * required, but it makes sense to _attempt_ a 16K bytes allocation
  1863. * to reduce number of system calls on dump operations, if user
  1864. * ever provided a big enough buffer.
  1865. */
  1866. cb = &nlk->cb;
  1867. alloc_min_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE);
  1868. if (alloc_min_size < nlk->max_recvmsg_len) {
  1869. alloc_size = nlk->max_recvmsg_len;
  1870. skb = alloc_skb(alloc_size,
  1871. (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) |
  1872. __GFP_NOWARN | __GFP_NORETRY);
  1873. }
  1874. if (!skb) {
  1875. alloc_size = alloc_min_size;
  1876. skb = alloc_skb(alloc_size, GFP_KERNEL);
  1877. }
  1878. if (!skb)
  1879. goto errout_skb;
  1880. /* Trim skb to allocated size. User is expected to provide buffer as
  1881. * large as max(min_dump_alloc, 16KiB (mac_recvmsg_len capped at
  1882. * netlink_recvmsg())). dump will pack as many smaller messages as
  1883. * could fit within the allocated skb. skb is typically allocated
  1884. * with larger space than required (could be as much as near 2x the
  1885. * requested size with align to next power of 2 approach). Allowing
  1886. * dump to use the excess space makes it difficult for a user to have a
  1887. * reasonable static buffer based on the expected largest dump of a
  1888. * single netdev. The outcome is MSG_TRUNC error.
  1889. */
  1890. skb_reserve(skb, skb_tailroom(skb) - alloc_size);
  1891. netlink_skb_set_owner_r(skb, sk);
  1892. if (nlk->dump_done_errno > 0) {
  1893. cb->extack = &extack;
  1894. nlk->dump_done_errno = cb->dump(skb, cb);
  1895. cb->extack = NULL;
  1896. }
  1897. if (nlk->dump_done_errno > 0 ||
  1898. skb_tailroom(skb) < nlmsg_total_size(sizeof(nlk->dump_done_errno))) {
  1899. mutex_unlock(nlk->cb_mutex);
  1900. if (sk_filter(sk, skb))
  1901. kfree_skb(skb);
  1902. else
  1903. __netlink_sendskb(sk, skb);
  1904. return 0;
  1905. }
  1906. nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE,
  1907. sizeof(nlk->dump_done_errno),
  1908. NLM_F_MULTI | cb->answer_flags);
  1909. if (WARN_ON(!nlh))
  1910. goto errout_skb;
  1911. nl_dump_check_consistent(cb, nlh);
  1912. memcpy(nlmsg_data(nlh), &nlk->dump_done_errno,
  1913. sizeof(nlk->dump_done_errno));
  1914. if (extack._msg && nlk->flags & NETLINK_F_EXT_ACK) {
  1915. nlh->nlmsg_flags |= NLM_F_ACK_TLVS;
  1916. if (!nla_put_string(skb, NLMSGERR_ATTR_MSG, extack._msg))
  1917. nlmsg_end(skb, nlh);
  1918. }
  1919. if (sk_filter(sk, skb))
  1920. kfree_skb(skb);
  1921. else
  1922. __netlink_sendskb(sk, skb);
  1923. if (cb->done)
  1924. cb->done(cb);
  1925. nlk->cb_running = false;
  1926. module = cb->module;
  1927. skb = cb->skb;
  1928. mutex_unlock(nlk->cb_mutex);
  1929. module_put(module);
  1930. consume_skb(skb);
  1931. return 0;
  1932. errout_skb:
  1933. mutex_unlock(nlk->cb_mutex);
  1934. kfree_skb(skb);
  1935. return err;
  1936. }
  1937. int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb,
  1938. const struct nlmsghdr *nlh,
  1939. struct netlink_dump_control *control)
  1940. {
  1941. struct netlink_sock *nlk, *nlk2;
  1942. struct netlink_callback *cb;
  1943. struct sock *sk;
  1944. int ret;
  1945. refcount_inc(&skb->users);
  1946. sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid);
  1947. if (sk == NULL) {
  1948. ret = -ECONNREFUSED;
  1949. goto error_free;
  1950. }
  1951. nlk = nlk_sk(sk);
  1952. mutex_lock(nlk->cb_mutex);
  1953. /* A dump is in progress... */
  1954. if (nlk->cb_running) {
  1955. ret = -EBUSY;
  1956. goto error_unlock;
  1957. }
  1958. /* add reference of module which cb->dump belongs to */
  1959. if (!try_module_get(control->module)) {
  1960. ret = -EPROTONOSUPPORT;
  1961. goto error_unlock;
  1962. }
  1963. cb = &nlk->cb;
  1964. memset(cb, 0, sizeof(*cb));
  1965. cb->dump = control->dump;
  1966. cb->done = control->done;
  1967. cb->nlh = nlh;
  1968. cb->data = control->data;
  1969. cb->module = control->module;
  1970. cb->min_dump_alloc = control->min_dump_alloc;
  1971. cb->skb = skb;
  1972. nlk2 = nlk_sk(NETLINK_CB(skb).sk);
  1973. cb->strict_check = !!(nlk2->flags & NETLINK_F_STRICT_CHK);
  1974. if (control->start) {
  1975. ret = control->start(cb);
  1976. if (ret)
  1977. goto error_put;
  1978. }
  1979. nlk->cb_running = true;
  1980. nlk->dump_done_errno = INT_MAX;
  1981. mutex_unlock(nlk->cb_mutex);
  1982. ret = netlink_dump(sk);
  1983. sock_put(sk);
  1984. if (ret)
  1985. return ret;
  1986. /* We successfully started a dump, by returning -EINTR we
  1987. * signal not to send ACK even if it was requested.
  1988. */
  1989. return -EINTR;
  1990. error_put:
  1991. module_put(control->module);
  1992. error_unlock:
  1993. sock_put(sk);
  1994. mutex_unlock(nlk->cb_mutex);
  1995. error_free:
  1996. kfree_skb(skb);
  1997. return ret;
  1998. }
  1999. EXPORT_SYMBOL(__netlink_dump_start);
  2000. void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err,
  2001. const struct netlink_ext_ack *extack)
  2002. {
  2003. struct sk_buff *skb;
  2004. struct nlmsghdr *rep;
  2005. struct nlmsgerr *errmsg;
  2006. size_t payload = sizeof(*errmsg);
  2007. size_t tlvlen = 0;
  2008. struct netlink_sock *nlk = nlk_sk(NETLINK_CB(in_skb).sk);
  2009. unsigned int flags = 0;
  2010. bool nlk_has_extack = nlk->flags & NETLINK_F_EXT_ACK;
  2011. /* Error messages get the original request appened, unless the user
  2012. * requests to cap the error message, and get extra error data if
  2013. * requested.
  2014. */
  2015. if (nlk_has_extack && extack && extack->_msg)
  2016. tlvlen += nla_total_size(strlen(extack->_msg) + 1);
  2017. if (err && !(nlk->flags & NETLINK_F_CAP_ACK))
  2018. payload += nlmsg_len(nlh);
  2019. else
  2020. flags |= NLM_F_CAPPED;
  2021. if (err && nlk_has_extack && extack && extack->bad_attr)
  2022. tlvlen += nla_total_size(sizeof(u32));
  2023. if (nlk_has_extack && extack && extack->cookie_len)
  2024. tlvlen += nla_total_size(extack->cookie_len);
  2025. if (tlvlen)
  2026. flags |= NLM_F_ACK_TLVS;
  2027. skb = nlmsg_new(payload + tlvlen, GFP_KERNEL);
  2028. if (!skb) {
  2029. NETLINK_CB(in_skb).sk->sk_err = ENOBUFS;
  2030. NETLINK_CB(in_skb).sk->sk_error_report(NETLINK_CB(in_skb).sk);
  2031. return;
  2032. }
  2033. rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq,
  2034. NLMSG_ERROR, payload, flags);
  2035. errmsg = nlmsg_data(rep);
  2036. errmsg->error = err;
  2037. memcpy(&errmsg->msg, nlh, payload > sizeof(*errmsg) ? nlh->nlmsg_len : sizeof(*nlh));
  2038. if (nlk_has_extack && extack) {
  2039. if (extack->_msg) {
  2040. WARN_ON(nla_put_string(skb, NLMSGERR_ATTR_MSG,
  2041. extack->_msg));
  2042. }
  2043. if (err && extack->bad_attr &&
  2044. !WARN_ON((u8 *)extack->bad_attr < in_skb->data ||
  2045. (u8 *)extack->bad_attr >= in_skb->data +
  2046. in_skb->len))
  2047. WARN_ON(nla_put_u32(skb, NLMSGERR_ATTR_OFFS,
  2048. (u8 *)extack->bad_attr -
  2049. (u8 *)nlh));
  2050. if (extack->cookie_len)
  2051. WARN_ON(nla_put(skb, NLMSGERR_ATTR_COOKIE,
  2052. extack->cookie_len, extack->cookie));
  2053. }
  2054. nlmsg_end(skb, rep);
  2055. netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT);
  2056. }
  2057. EXPORT_SYMBOL(netlink_ack);
  2058. int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *,
  2059. struct nlmsghdr *,
  2060. struct netlink_ext_ack *))
  2061. {
  2062. struct netlink_ext_ack extack;
  2063. struct nlmsghdr *nlh;
  2064. int err;
  2065. while (skb->len >= nlmsg_total_size(0)) {
  2066. int msglen;
  2067. memset(&extack, 0, sizeof(extack));
  2068. nlh = nlmsg_hdr(skb);
  2069. err = 0;
  2070. if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len)
  2071. return 0;
  2072. /* Only requests are handled by the kernel */
  2073. if (!(nlh->nlmsg_flags & NLM_F_REQUEST))
  2074. goto ack;
  2075. /* Skip control messages */
  2076. if (nlh->nlmsg_type < NLMSG_MIN_TYPE)
  2077. goto ack;
  2078. err = cb(skb, nlh, &extack);
  2079. if (err == -EINTR)
  2080. goto skip;
  2081. ack:
  2082. if (nlh->nlmsg_flags & NLM_F_ACK || err)
  2083. netlink_ack(skb, nlh, err, &extack);
  2084. skip:
  2085. msglen = NLMSG_ALIGN(nlh->nlmsg_len);
  2086. if (msglen > skb->len)
  2087. msglen = skb->len;
  2088. skb_pull(skb, msglen);
  2089. }
  2090. return 0;
  2091. }
  2092. EXPORT_SYMBOL(netlink_rcv_skb);
  2093. /**
  2094. * nlmsg_notify - send a notification netlink message
  2095. * @sk: netlink socket to use
  2096. * @skb: notification message
  2097. * @portid: destination netlink portid for reports or 0
  2098. * @group: destination multicast group or 0
  2099. * @report: 1 to report back, 0 to disable
  2100. * @flags: allocation flags
  2101. */
  2102. int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid,
  2103. unsigned int group, int report, gfp_t flags)
  2104. {
  2105. int err = 0;
  2106. if (group) {
  2107. int exclude_portid = 0;
  2108. if (report) {
  2109. refcount_inc(&skb->users);
  2110. exclude_portid = portid;
  2111. }
  2112. /* errors reported via destination sk->sk_err, but propagate
  2113. * delivery errors if NETLINK_BROADCAST_ERROR flag is set */
  2114. err = nlmsg_multicast(sk, skb, exclude_portid, group, flags);
  2115. }
  2116. if (report) {
  2117. int err2;
  2118. err2 = nlmsg_unicast(sk, skb, portid);
  2119. if (!err || err == -ESRCH)
  2120. err = err2;
  2121. }
  2122. return err;
  2123. }
  2124. EXPORT_SYMBOL(nlmsg_notify);
  2125. #ifdef CONFIG_PROC_FS
  2126. struct nl_seq_iter {
  2127. struct seq_net_private p;
  2128. struct rhashtable_iter hti;
  2129. int link;
  2130. };
  2131. static void netlink_walk_start(struct nl_seq_iter *iter)
  2132. {
  2133. rhashtable_walk_enter(&nl_table[iter->link].hash, &iter->hti);
  2134. rhashtable_walk_start(&iter->hti);
  2135. }
  2136. static void netlink_walk_stop(struct nl_seq_iter *iter)
  2137. {
  2138. rhashtable_walk_stop(&iter->hti);
  2139. rhashtable_walk_exit(&iter->hti);
  2140. }
  2141. static void *__netlink_seq_next(struct seq_file *seq)
  2142. {
  2143. struct nl_seq_iter *iter = seq->private;
  2144. struct netlink_sock *nlk;
  2145. do {
  2146. for (;;) {
  2147. nlk = rhashtable_walk_next(&iter->hti);
  2148. if (IS_ERR(nlk)) {
  2149. if (PTR_ERR(nlk) == -EAGAIN)
  2150. continue;
  2151. return nlk;
  2152. }
  2153. if (nlk)
  2154. break;
  2155. netlink_walk_stop(iter);
  2156. if (++iter->link >= MAX_LINKS)
  2157. return NULL;
  2158. netlink_walk_start(iter);
  2159. }
  2160. } while (sock_net(&nlk->sk) != seq_file_net(seq));
  2161. return nlk;
  2162. }
  2163. static void *netlink_seq_start(struct seq_file *seq, loff_t *posp)
  2164. __acquires(RCU)
  2165. {
  2166. struct nl_seq_iter *iter = seq->private;
  2167. void *obj = SEQ_START_TOKEN;
  2168. loff_t pos;
  2169. iter->link = 0;
  2170. netlink_walk_start(iter);
  2171. for (pos = *posp; pos && obj && !IS_ERR(obj); pos--)
  2172. obj = __netlink_seq_next(seq);
  2173. return obj;
  2174. }
  2175. static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2176. {
  2177. ++*pos;
  2178. return __netlink_seq_next(seq);
  2179. }
  2180. static void netlink_seq_stop(struct seq_file *seq, void *v)
  2181. {
  2182. struct nl_seq_iter *iter = seq->private;
  2183. if (iter->link >= MAX_LINKS)
  2184. return;
  2185. netlink_walk_stop(iter);
  2186. }
  2187. static int netlink_seq_show(struct seq_file *seq, void *v)
  2188. {
  2189. if (v == SEQ_START_TOKEN) {
  2190. seq_puts(seq,
  2191. "sk Eth Pid Groups "
  2192. "Rmem Wmem Dump Locks Drops Inode\n");
  2193. } else {
  2194. struct sock *s = v;
  2195. struct netlink_sock *nlk = nlk_sk(s);
  2196. seq_printf(seq, "%pK %-3d %-10u %08x %-8d %-8d %-5d %-8d %-8u %-8lu\n",
  2197. s,
  2198. s->sk_protocol,
  2199. nlk->portid,
  2200. nlk->groups ? (u32)nlk->groups[0] : 0,
  2201. sk_rmem_alloc_get(s),
  2202. sk_wmem_alloc_get(s),
  2203. nlk->cb_running,
  2204. refcount_read(&s->sk_refcnt),
  2205. atomic_read(&s->sk_drops),
  2206. sock_i_ino(s)
  2207. );
  2208. }
  2209. return 0;
  2210. }
  2211. static const struct seq_operations netlink_seq_ops = {
  2212. .start = netlink_seq_start,
  2213. .next = netlink_seq_next,
  2214. .stop = netlink_seq_stop,
  2215. .show = netlink_seq_show,
  2216. };
  2217. #endif
  2218. int netlink_register_notifier(struct notifier_block *nb)
  2219. {
  2220. return blocking_notifier_chain_register(&netlink_chain, nb);
  2221. }
  2222. EXPORT_SYMBOL(netlink_register_notifier);
  2223. int netlink_unregister_notifier(struct notifier_block *nb)
  2224. {
  2225. return blocking_notifier_chain_unregister(&netlink_chain, nb);
  2226. }
  2227. EXPORT_SYMBOL(netlink_unregister_notifier);
  2228. static const struct proto_ops netlink_ops = {
  2229. .family = PF_NETLINK,
  2230. .owner = THIS_MODULE,
  2231. .release = netlink_release,
  2232. .bind = netlink_bind,
  2233. .connect = netlink_connect,
  2234. .socketpair = sock_no_socketpair,
  2235. .accept = sock_no_accept,
  2236. .getname = netlink_getname,
  2237. .poll = datagram_poll,
  2238. .ioctl = netlink_ioctl,
  2239. .listen = sock_no_listen,
  2240. .shutdown = sock_no_shutdown,
  2241. .setsockopt = netlink_setsockopt,
  2242. .getsockopt = netlink_getsockopt,
  2243. .sendmsg = netlink_sendmsg,
  2244. .recvmsg = netlink_recvmsg,
  2245. .mmap = sock_no_mmap,
  2246. .sendpage = sock_no_sendpage,
  2247. };
  2248. static const struct net_proto_family netlink_family_ops = {
  2249. .family = PF_NETLINK,
  2250. .create = netlink_create,
  2251. .owner = THIS_MODULE, /* for consistency 8) */
  2252. };
  2253. static int __net_init netlink_net_init(struct net *net)
  2254. {
  2255. #ifdef CONFIG_PROC_FS
  2256. if (!proc_create_net("netlink", 0, net->proc_net, &netlink_seq_ops,
  2257. sizeof(struct nl_seq_iter)))
  2258. return -ENOMEM;
  2259. #endif
  2260. return 0;
  2261. }
  2262. static void __net_exit netlink_net_exit(struct net *net)
  2263. {
  2264. #ifdef CONFIG_PROC_FS
  2265. remove_proc_entry("netlink", net->proc_net);
  2266. #endif
  2267. }
  2268. static void __init netlink_add_usersock_entry(void)
  2269. {
  2270. struct listeners *listeners;
  2271. int groups = 32;
  2272. listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
  2273. if (!listeners)
  2274. panic("netlink_add_usersock_entry: Cannot allocate listeners\n");
  2275. netlink_table_grab();
  2276. nl_table[NETLINK_USERSOCK].groups = groups;
  2277. rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners);
  2278. nl_table[NETLINK_USERSOCK].module = THIS_MODULE;
  2279. nl_table[NETLINK_USERSOCK].registered = 1;
  2280. nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND;
  2281. netlink_table_ungrab();
  2282. }
  2283. static struct pernet_operations __net_initdata netlink_net_ops = {
  2284. .init = netlink_net_init,
  2285. .exit = netlink_net_exit,
  2286. };
  2287. static inline u32 netlink_hash(const void *data, u32 len, u32 seed)
  2288. {
  2289. const struct netlink_sock *nlk = data;
  2290. struct netlink_compare_arg arg;
  2291. netlink_compare_arg_init(&arg, sock_net(&nlk->sk), nlk->portid);
  2292. return jhash2((u32 *)&arg, netlink_compare_arg_len / sizeof(u32), seed);
  2293. }
  2294. static const struct rhashtable_params netlink_rhashtable_params = {
  2295. .head_offset = offsetof(struct netlink_sock, node),
  2296. .key_len = netlink_compare_arg_len,
  2297. .obj_hashfn = netlink_hash,
  2298. .obj_cmpfn = netlink_compare,
  2299. .automatic_shrinking = true,
  2300. };
  2301. static int __init netlink_proto_init(void)
  2302. {
  2303. int i;
  2304. int err = proto_register(&netlink_proto, 0);
  2305. if (err != 0)
  2306. goto out;
  2307. BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > sizeof_field(struct sk_buff, cb));
  2308. nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL);
  2309. if (!nl_table)
  2310. goto panic;
  2311. for (i = 0; i < MAX_LINKS; i++) {
  2312. if (rhashtable_init(&nl_table[i].hash,
  2313. &netlink_rhashtable_params) < 0) {
  2314. while (--i > 0)
  2315. rhashtable_destroy(&nl_table[i].hash);
  2316. kfree(nl_table);
  2317. goto panic;
  2318. }
  2319. }
  2320. netlink_add_usersock_entry();
  2321. sock_register(&netlink_family_ops);
  2322. register_pernet_subsys(&netlink_net_ops);
  2323. register_pernet_subsys(&netlink_tap_net_ops);
  2324. /* The netlink device handler may be needed early. */
  2325. rtnetlink_init();
  2326. out:
  2327. return err;
  2328. panic:
  2329. panic("netlink_init: Cannot allocate nl_table\n");
  2330. }
  2331. core_initcall(netlink_proto_init);