PageRenderTime 61ms CodeModel.GetById 16ms RepoModel.GetById 0ms app.codeStats 1ms

/net/core/pktgen.c

http://github.com/mirrors/linux
C | 3896 lines | 2946 code | 619 blank | 331 comment | 595 complexity | c59dadde243d10df992a44b07ef85506 MD5 | raw file
Possible License(s): AGPL-1.0, GPL-2.0, LGPL-2.0
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * Authors:
  4. * Copyright 2001, 2002 by Robert Olsson <robert.olsson@its.uu.se>
  5. * Uppsala University and
  6. * Swedish University of Agricultural Sciences
  7. *
  8. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  9. * Ben Greear <greearb@candelatech.com>
  10. * Jens Låås <jens.laas@data.slu.se>
  11. *
  12. * A tool for loading the network with preconfigurated packets.
  13. * The tool is implemented as a linux module. Parameters are output
  14. * device, delay (to hard_xmit), number of packets, and whether
  15. * to use multiple SKBs or just the same one.
  16. * pktgen uses the installed interface's output routine.
  17. *
  18. * Additional hacking by:
  19. *
  20. * Jens.Laas@data.slu.se
  21. * Improved by ANK. 010120.
  22. * Improved by ANK even more. 010212.
  23. * MAC address typo fixed. 010417 --ro
  24. * Integrated. 020301 --DaveM
  25. * Added multiskb option 020301 --DaveM
  26. * Scaling of results. 020417--sigurdur@linpro.no
  27. * Significant re-work of the module:
  28. * * Convert to threaded model to more efficiently be able to transmit
  29. * and receive on multiple interfaces at once.
  30. * * Converted many counters to __u64 to allow longer runs.
  31. * * Allow configuration of ranges, like min/max IP address, MACs,
  32. * and UDP-ports, for both source and destination, and can
  33. * set to use a random distribution or sequentially walk the range.
  34. * * Can now change most values after starting.
  35. * * Place 12-byte packet in UDP payload with magic number,
  36. * sequence number, and timestamp.
  37. * * Add receiver code that detects dropped pkts, re-ordered pkts, and
  38. * latencies (with micro-second) precision.
  39. * * Add IOCTL interface to easily get counters & configuration.
  40. * --Ben Greear <greearb@candelatech.com>
  41. *
  42. * Renamed multiskb to clone_skb and cleaned up sending core for two distinct
  43. * skb modes. A clone_skb=0 mode for Ben "ranges" work and a clone_skb != 0
  44. * as a "fastpath" with a configurable number of clones after alloc's.
  45. * clone_skb=0 means all packets are allocated this also means ranges time
  46. * stamps etc can be used. clone_skb=100 means 1 malloc is followed by 100
  47. * clones.
  48. *
  49. * Also moved to /proc/net/pktgen/
  50. * --ro
  51. *
  52. * Sept 10: Fixed threading/locking. Lots of bone-headed and more clever
  53. * mistakes. Also merged in DaveM's patch in the -pre6 patch.
  54. * --Ben Greear <greearb@candelatech.com>
  55. *
  56. * Integrated to 2.5.x 021029 --Lucio Maciel (luciomaciel@zipmail.com.br)
  57. *
  58. * 021124 Finished major redesign and rewrite for new functionality.
  59. * See Documentation/networking/pktgen.txt for how to use this.
  60. *
  61. * The new operation:
  62. * For each CPU one thread/process is created at start. This process checks
  63. * for running devices in the if_list and sends packets until count is 0 it
  64. * also the thread checks the thread->control which is used for inter-process
  65. * communication. controlling process "posts" operations to the threads this
  66. * way.
  67. * The if_list is RCU protected, and the if_lock remains to protect updating
  68. * of if_list, from "add_device" as it invoked from userspace (via proc write).
  69. *
  70. * By design there should only be *one* "controlling" process. In practice
  71. * multiple write accesses gives unpredictable result. Understood by "write"
  72. * to /proc gives result code thats should be read be the "writer".
  73. * For practical use this should be no problem.
  74. *
  75. * Note when adding devices to a specific CPU there good idea to also assign
  76. * /proc/irq/XX/smp_affinity so TX-interrupts gets bound to the same CPU.
  77. * --ro
  78. *
  79. * Fix refcount off by one if first packet fails, potential null deref,
  80. * memleak 030710- KJP
  81. *
  82. * First "ranges" functionality for ipv6 030726 --ro
  83. *
  84. * Included flow support. 030802 ANK.
  85. *
  86. * Fixed unaligned access on IA-64 Grant Grundler <grundler@parisc-linux.org>
  87. *
  88. * Remove if fix from added Harald Welte <laforge@netfilter.org> 040419
  89. * ia64 compilation fix from Aron Griffis <aron@hp.com> 040604
  90. *
  91. * New xmit() return, do_div and misc clean up by Stephen Hemminger
  92. * <shemminger@osdl.org> 040923
  93. *
  94. * Randy Dunlap fixed u64 printk compiler warning
  95. *
  96. * Remove FCS from BW calculation. Lennert Buytenhek <buytenh@wantstofly.org>
  97. * New time handling. Lennert Buytenhek <buytenh@wantstofly.org> 041213
  98. *
  99. * Corrections from Nikolai Malykh (nmalykh@bilim.com)
  100. * Removed unused flags F_SET_SRCMAC & F_SET_SRCIP 041230
  101. *
  102. * interruptible_sleep_on_timeout() replaced Nishanth Aravamudan <nacc@us.ibm.com>
  103. * 050103
  104. *
  105. * MPLS support by Steven Whitehouse <steve@chygwyn.com>
  106. *
  107. * 802.1Q/Q-in-Q support by Francesco Fondelli (FF) <francesco.fondelli@gmail.com>
  108. *
  109. * Fixed src_mac command to set source mac of packet to value specified in
  110. * command by Adit Ranadive <adit.262@gmail.com>
  111. */
  112. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  113. #include <linux/sys.h>
  114. #include <linux/types.h>
  115. #include <linux/module.h>
  116. #include <linux/moduleparam.h>
  117. #include <linux/kernel.h>
  118. #include <linux/mutex.h>
  119. #include <linux/sched.h>
  120. #include <linux/slab.h>
  121. #include <linux/vmalloc.h>
  122. #include <linux/unistd.h>
  123. #include <linux/string.h>
  124. #include <linux/ptrace.h>
  125. #include <linux/errno.h>
  126. #include <linux/ioport.h>
  127. #include <linux/interrupt.h>
  128. #include <linux/capability.h>
  129. #include <linux/hrtimer.h>
  130. #include <linux/freezer.h>
  131. #include <linux/delay.h>
  132. #include <linux/timer.h>
  133. #include <linux/list.h>
  134. #include <linux/init.h>
  135. #include <linux/skbuff.h>
  136. #include <linux/netdevice.h>
  137. #include <linux/inet.h>
  138. #include <linux/inetdevice.h>
  139. #include <linux/rtnetlink.h>
  140. #include <linux/if_arp.h>
  141. #include <linux/if_vlan.h>
  142. #include <linux/in.h>
  143. #include <linux/ip.h>
  144. #include <linux/ipv6.h>
  145. #include <linux/udp.h>
  146. #include <linux/proc_fs.h>
  147. #include <linux/seq_file.h>
  148. #include <linux/wait.h>
  149. #include <linux/etherdevice.h>
  150. #include <linux/kthread.h>
  151. #include <linux/prefetch.h>
  152. #include <linux/mmzone.h>
  153. #include <net/net_namespace.h>
  154. #include <net/checksum.h>
  155. #include <net/ipv6.h>
  156. #include <net/udp.h>
  157. #include <net/ip6_checksum.h>
  158. #include <net/addrconf.h>
  159. #ifdef CONFIG_XFRM
  160. #include <net/xfrm.h>
  161. #endif
  162. #include <net/netns/generic.h>
  163. #include <asm/byteorder.h>
  164. #include <linux/rcupdate.h>
  165. #include <linux/bitops.h>
  166. #include <linux/io.h>
  167. #include <linux/timex.h>
  168. #include <linux/uaccess.h>
  169. #include <asm/dma.h>
  170. #include <asm/div64.h> /* do_div */
  171. #define VERSION "2.75"
  172. #define IP_NAME_SZ 32
  173. #define MAX_MPLS_LABELS 16 /* This is the max label stack depth */
  174. #define MPLS_STACK_BOTTOM htonl(0x00000100)
  175. #define func_enter() pr_debug("entering %s\n", __func__);
  176. #define PKT_FLAGS \
  177. pf(IPV6) /* Interface in IPV6 Mode */ \
  178. pf(IPSRC_RND) /* IP-Src Random */ \
  179. pf(IPDST_RND) /* IP-Dst Random */ \
  180. pf(TXSIZE_RND) /* Transmit size is random */ \
  181. pf(UDPSRC_RND) /* UDP-Src Random */ \
  182. pf(UDPDST_RND) /* UDP-Dst Random */ \
  183. pf(UDPCSUM) /* Include UDP checksum */ \
  184. pf(NO_TIMESTAMP) /* Don't timestamp packets (default TS) */ \
  185. pf(MPLS_RND) /* Random MPLS labels */ \
  186. pf(QUEUE_MAP_RND) /* queue map Random */ \
  187. pf(QUEUE_MAP_CPU) /* queue map mirrors smp_processor_id() */ \
  188. pf(FLOW_SEQ) /* Sequential flows */ \
  189. pf(IPSEC) /* ipsec on for flows */ \
  190. pf(MACSRC_RND) /* MAC-Src Random */ \
  191. pf(MACDST_RND) /* MAC-Dst Random */ \
  192. pf(VID_RND) /* Random VLAN ID */ \
  193. pf(SVID_RND) /* Random SVLAN ID */ \
  194. pf(NODE) /* Node memory alloc*/ \
  195. #define pf(flag) flag##_SHIFT,
  196. enum pkt_flags {
  197. PKT_FLAGS
  198. };
  199. #undef pf
  200. /* Device flag bits */
  201. #define pf(flag) static const __u32 F_##flag = (1<<flag##_SHIFT);
  202. PKT_FLAGS
  203. #undef pf
  204. #define pf(flag) __stringify(flag),
  205. static char *pkt_flag_names[] = {
  206. PKT_FLAGS
  207. };
  208. #undef pf
  209. #define NR_PKT_FLAGS ARRAY_SIZE(pkt_flag_names)
  210. /* Thread control flag bits */
  211. #define T_STOP (1<<0) /* Stop run */
  212. #define T_RUN (1<<1) /* Start run */
  213. #define T_REMDEVALL (1<<2) /* Remove all devs */
  214. #define T_REMDEV (1<<3) /* Remove one dev */
  215. /* Xmit modes */
  216. #define M_START_XMIT 0 /* Default normal TX */
  217. #define M_NETIF_RECEIVE 1 /* Inject packets into stack */
  218. #define M_QUEUE_XMIT 2 /* Inject packet into qdisc */
  219. /* If lock -- protects updating of if_list */
  220. #define if_lock(t) mutex_lock(&(t->if_lock));
  221. #define if_unlock(t) mutex_unlock(&(t->if_lock));
  222. /* Used to help with determining the pkts on receive */
  223. #define PKTGEN_MAGIC 0xbe9be955
  224. #define PG_PROC_DIR "pktgen"
  225. #define PGCTRL "pgctrl"
  226. #define MAX_CFLOWS 65536
  227. #define VLAN_TAG_SIZE(x) ((x)->vlan_id == 0xffff ? 0 : 4)
  228. #define SVLAN_TAG_SIZE(x) ((x)->svlan_id == 0xffff ? 0 : 4)
  229. struct flow_state {
  230. __be32 cur_daddr;
  231. int count;
  232. #ifdef CONFIG_XFRM
  233. struct xfrm_state *x;
  234. #endif
  235. __u32 flags;
  236. };
  237. /* flow flag bits */
  238. #define F_INIT (1<<0) /* flow has been initialized */
  239. struct pktgen_dev {
  240. /*
  241. * Try to keep frequent/infrequent used vars. separated.
  242. */
  243. struct proc_dir_entry *entry; /* proc file */
  244. struct pktgen_thread *pg_thread;/* the owner */
  245. struct list_head list; /* chaining in the thread's run-queue */
  246. struct rcu_head rcu; /* freed by RCU */
  247. int running; /* if false, the test will stop */
  248. /* If min != max, then we will either do a linear iteration, or
  249. * we will do a random selection from within the range.
  250. */
  251. __u32 flags;
  252. int xmit_mode;
  253. int min_pkt_size;
  254. int max_pkt_size;
  255. int pkt_overhead; /* overhead for MPLS, VLANs, IPSEC etc */
  256. int nfrags;
  257. int removal_mark; /* non-zero => the device is marked for
  258. * removal by worker thread */
  259. struct page *page;
  260. u64 delay; /* nano-seconds */
  261. __u64 count; /* Default No packets to send */
  262. __u64 sofar; /* How many pkts we've sent so far */
  263. __u64 tx_bytes; /* How many bytes we've transmitted */
  264. __u64 errors; /* Errors when trying to transmit, */
  265. /* runtime counters relating to clone_skb */
  266. __u32 clone_count;
  267. int last_ok; /* Was last skb sent?
  268. * Or a failed transmit of some sort?
  269. * This will keep sequence numbers in order
  270. */
  271. ktime_t next_tx;
  272. ktime_t started_at;
  273. ktime_t stopped_at;
  274. u64 idle_acc; /* nano-seconds */
  275. __u32 seq_num;
  276. int clone_skb; /*
  277. * Use multiple SKBs during packet gen.
  278. * If this number is greater than 1, then
  279. * that many copies of the same packet will be
  280. * sent before a new packet is allocated.
  281. * If you want to send 1024 identical packets
  282. * before creating a new packet,
  283. * set clone_skb to 1024.
  284. */
  285. char dst_min[IP_NAME_SZ]; /* IP, ie 1.2.3.4 */
  286. char dst_max[IP_NAME_SZ]; /* IP, ie 1.2.3.4 */
  287. char src_min[IP_NAME_SZ]; /* IP, ie 1.2.3.4 */
  288. char src_max[IP_NAME_SZ]; /* IP, ie 1.2.3.4 */
  289. struct in6_addr in6_saddr;
  290. struct in6_addr in6_daddr;
  291. struct in6_addr cur_in6_daddr;
  292. struct in6_addr cur_in6_saddr;
  293. /* For ranges */
  294. struct in6_addr min_in6_daddr;
  295. struct in6_addr max_in6_daddr;
  296. struct in6_addr min_in6_saddr;
  297. struct in6_addr max_in6_saddr;
  298. /* If we're doing ranges, random or incremental, then this
  299. * defines the min/max for those ranges.
  300. */
  301. __be32 saddr_min; /* inclusive, source IP address */
  302. __be32 saddr_max; /* exclusive, source IP address */
  303. __be32 daddr_min; /* inclusive, dest IP address */
  304. __be32 daddr_max; /* exclusive, dest IP address */
  305. __u16 udp_src_min; /* inclusive, source UDP port */
  306. __u16 udp_src_max; /* exclusive, source UDP port */
  307. __u16 udp_dst_min; /* inclusive, dest UDP port */
  308. __u16 udp_dst_max; /* exclusive, dest UDP port */
  309. /* DSCP + ECN */
  310. __u8 tos; /* six MSB of (former) IPv4 TOS
  311. are for dscp codepoint */
  312. __u8 traffic_class; /* ditto for the (former) Traffic Class in IPv6
  313. (see RFC 3260, sec. 4) */
  314. /* MPLS */
  315. unsigned int nr_labels; /* Depth of stack, 0 = no MPLS */
  316. __be32 labels[MAX_MPLS_LABELS];
  317. /* VLAN/SVLAN (802.1Q/Q-in-Q) */
  318. __u8 vlan_p;
  319. __u8 vlan_cfi;
  320. __u16 vlan_id; /* 0xffff means no vlan tag */
  321. __u8 svlan_p;
  322. __u8 svlan_cfi;
  323. __u16 svlan_id; /* 0xffff means no svlan tag */
  324. __u32 src_mac_count; /* How many MACs to iterate through */
  325. __u32 dst_mac_count; /* How many MACs to iterate through */
  326. unsigned char dst_mac[ETH_ALEN];
  327. unsigned char src_mac[ETH_ALEN];
  328. __u32 cur_dst_mac_offset;
  329. __u32 cur_src_mac_offset;
  330. __be32 cur_saddr;
  331. __be32 cur_daddr;
  332. __u16 ip_id;
  333. __u16 cur_udp_dst;
  334. __u16 cur_udp_src;
  335. __u16 cur_queue_map;
  336. __u32 cur_pkt_size;
  337. __u32 last_pkt_size;
  338. __u8 hh[14];
  339. /* = {
  340. 0x00, 0x80, 0xC8, 0x79, 0xB3, 0xCB,
  341. We fill in SRC address later
  342. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  343. 0x08, 0x00
  344. };
  345. */
  346. __u16 pad; /* pad out the hh struct to an even 16 bytes */
  347. struct sk_buff *skb; /* skb we are to transmit next, used for when we
  348. * are transmitting the same one multiple times
  349. */
  350. struct net_device *odev; /* The out-going device.
  351. * Note that the device should have it's
  352. * pg_info pointer pointing back to this
  353. * device.
  354. * Set when the user specifies the out-going
  355. * device name (not when the inject is
  356. * started as it used to do.)
  357. */
  358. char odevname[32];
  359. struct flow_state *flows;
  360. unsigned int cflows; /* Concurrent flows (config) */
  361. unsigned int lflow; /* Flow length (config) */
  362. unsigned int nflows; /* accumulated flows (stats) */
  363. unsigned int curfl; /* current sequenced flow (state)*/
  364. u16 queue_map_min;
  365. u16 queue_map_max;
  366. __u32 skb_priority; /* skb priority field */
  367. unsigned int burst; /* number of duplicated packets to burst */
  368. int node; /* Memory node */
  369. #ifdef CONFIG_XFRM
  370. __u8 ipsmode; /* IPSEC mode (config) */
  371. __u8 ipsproto; /* IPSEC type (config) */
  372. __u32 spi;
  373. struct xfrm_dst xdst;
  374. struct dst_ops dstops;
  375. #endif
  376. char result[512];
  377. };
  378. struct pktgen_hdr {
  379. __be32 pgh_magic;
  380. __be32 seq_num;
  381. __be32 tv_sec;
  382. __be32 tv_usec;
  383. };
  384. static unsigned int pg_net_id __read_mostly;
  385. struct pktgen_net {
  386. struct net *net;
  387. struct proc_dir_entry *proc_dir;
  388. struct list_head pktgen_threads;
  389. bool pktgen_exiting;
  390. };
  391. struct pktgen_thread {
  392. struct mutex if_lock; /* for list of devices */
  393. struct list_head if_list; /* All device here */
  394. struct list_head th_list;
  395. struct task_struct *tsk;
  396. char result[512];
  397. /* Field for thread to receive "posted" events terminate,
  398. stop ifs etc. */
  399. u32 control;
  400. int cpu;
  401. wait_queue_head_t queue;
  402. struct completion start_done;
  403. struct pktgen_net *net;
  404. };
  405. #define REMOVE 1
  406. #define FIND 0
  407. static const char version[] =
  408. "Packet Generator for packet performance testing. "
  409. "Version: " VERSION "\n";
  410. static int pktgen_remove_device(struct pktgen_thread *t, struct pktgen_dev *i);
  411. static int pktgen_add_device(struct pktgen_thread *t, const char *ifname);
  412. static struct pktgen_dev *pktgen_find_dev(struct pktgen_thread *t,
  413. const char *ifname, bool exact);
  414. static int pktgen_device_event(struct notifier_block *, unsigned long, void *);
  415. static void pktgen_run_all_threads(struct pktgen_net *pn);
  416. static void pktgen_reset_all_threads(struct pktgen_net *pn);
  417. static void pktgen_stop_all_threads_ifs(struct pktgen_net *pn);
  418. static void pktgen_stop(struct pktgen_thread *t);
  419. static void pktgen_clear_counters(struct pktgen_dev *pkt_dev);
  420. /* Module parameters, defaults. */
  421. static int pg_count_d __read_mostly = 1000;
  422. static int pg_delay_d __read_mostly;
  423. static int pg_clone_skb_d __read_mostly;
  424. static int debug __read_mostly;
  425. static DEFINE_MUTEX(pktgen_thread_lock);
  426. static struct notifier_block pktgen_notifier_block = {
  427. .notifier_call = pktgen_device_event,
  428. };
  429. /*
  430. * /proc handling functions
  431. *
  432. */
  433. static int pgctrl_show(struct seq_file *seq, void *v)
  434. {
  435. seq_puts(seq, version);
  436. return 0;
  437. }
  438. static ssize_t pgctrl_write(struct file *file, const char __user *buf,
  439. size_t count, loff_t *ppos)
  440. {
  441. char data[128];
  442. struct pktgen_net *pn = net_generic(current->nsproxy->net_ns, pg_net_id);
  443. if (!capable(CAP_NET_ADMIN))
  444. return -EPERM;
  445. if (count == 0)
  446. return -EINVAL;
  447. if (count > sizeof(data))
  448. count = sizeof(data);
  449. if (copy_from_user(data, buf, count))
  450. return -EFAULT;
  451. data[count - 1] = 0; /* Strip trailing '\n' and terminate string */
  452. if (!strcmp(data, "stop"))
  453. pktgen_stop_all_threads_ifs(pn);
  454. else if (!strcmp(data, "start"))
  455. pktgen_run_all_threads(pn);
  456. else if (!strcmp(data, "reset"))
  457. pktgen_reset_all_threads(pn);
  458. else
  459. return -EINVAL;
  460. return count;
  461. }
  462. static int pgctrl_open(struct inode *inode, struct file *file)
  463. {
  464. return single_open(file, pgctrl_show, PDE_DATA(inode));
  465. }
  466. static const struct proc_ops pktgen_proc_ops = {
  467. .proc_open = pgctrl_open,
  468. .proc_read = seq_read,
  469. .proc_lseek = seq_lseek,
  470. .proc_write = pgctrl_write,
  471. .proc_release = single_release,
  472. };
  473. static int pktgen_if_show(struct seq_file *seq, void *v)
  474. {
  475. const struct pktgen_dev *pkt_dev = seq->private;
  476. ktime_t stopped;
  477. unsigned int i;
  478. u64 idle;
  479. seq_printf(seq,
  480. "Params: count %llu min_pkt_size: %u max_pkt_size: %u\n",
  481. (unsigned long long)pkt_dev->count, pkt_dev->min_pkt_size,
  482. pkt_dev->max_pkt_size);
  483. seq_printf(seq,
  484. " frags: %d delay: %llu clone_skb: %d ifname: %s\n",
  485. pkt_dev->nfrags, (unsigned long long) pkt_dev->delay,
  486. pkt_dev->clone_skb, pkt_dev->odevname);
  487. seq_printf(seq, " flows: %u flowlen: %u\n", pkt_dev->cflows,
  488. pkt_dev->lflow);
  489. seq_printf(seq,
  490. " queue_map_min: %u queue_map_max: %u\n",
  491. pkt_dev->queue_map_min,
  492. pkt_dev->queue_map_max);
  493. if (pkt_dev->skb_priority)
  494. seq_printf(seq, " skb_priority: %u\n",
  495. pkt_dev->skb_priority);
  496. if (pkt_dev->flags & F_IPV6) {
  497. seq_printf(seq,
  498. " saddr: %pI6c min_saddr: %pI6c max_saddr: %pI6c\n"
  499. " daddr: %pI6c min_daddr: %pI6c max_daddr: %pI6c\n",
  500. &pkt_dev->in6_saddr,
  501. &pkt_dev->min_in6_saddr, &pkt_dev->max_in6_saddr,
  502. &pkt_dev->in6_daddr,
  503. &pkt_dev->min_in6_daddr, &pkt_dev->max_in6_daddr);
  504. } else {
  505. seq_printf(seq,
  506. " dst_min: %s dst_max: %s\n",
  507. pkt_dev->dst_min, pkt_dev->dst_max);
  508. seq_printf(seq,
  509. " src_min: %s src_max: %s\n",
  510. pkt_dev->src_min, pkt_dev->src_max);
  511. }
  512. seq_puts(seq, " src_mac: ");
  513. seq_printf(seq, "%pM ",
  514. is_zero_ether_addr(pkt_dev->src_mac) ?
  515. pkt_dev->odev->dev_addr : pkt_dev->src_mac);
  516. seq_puts(seq, "dst_mac: ");
  517. seq_printf(seq, "%pM\n", pkt_dev->dst_mac);
  518. seq_printf(seq,
  519. " udp_src_min: %d udp_src_max: %d"
  520. " udp_dst_min: %d udp_dst_max: %d\n",
  521. pkt_dev->udp_src_min, pkt_dev->udp_src_max,
  522. pkt_dev->udp_dst_min, pkt_dev->udp_dst_max);
  523. seq_printf(seq,
  524. " src_mac_count: %d dst_mac_count: %d\n",
  525. pkt_dev->src_mac_count, pkt_dev->dst_mac_count);
  526. if (pkt_dev->nr_labels) {
  527. seq_puts(seq, " mpls: ");
  528. for (i = 0; i < pkt_dev->nr_labels; i++)
  529. seq_printf(seq, "%08x%s", ntohl(pkt_dev->labels[i]),
  530. i == pkt_dev->nr_labels-1 ? "\n" : ", ");
  531. }
  532. if (pkt_dev->vlan_id != 0xffff)
  533. seq_printf(seq, " vlan_id: %u vlan_p: %u vlan_cfi: %u\n",
  534. pkt_dev->vlan_id, pkt_dev->vlan_p,
  535. pkt_dev->vlan_cfi);
  536. if (pkt_dev->svlan_id != 0xffff)
  537. seq_printf(seq, " svlan_id: %u vlan_p: %u vlan_cfi: %u\n",
  538. pkt_dev->svlan_id, pkt_dev->svlan_p,
  539. pkt_dev->svlan_cfi);
  540. if (pkt_dev->tos)
  541. seq_printf(seq, " tos: 0x%02x\n", pkt_dev->tos);
  542. if (pkt_dev->traffic_class)
  543. seq_printf(seq, " traffic_class: 0x%02x\n", pkt_dev->traffic_class);
  544. if (pkt_dev->burst > 1)
  545. seq_printf(seq, " burst: %d\n", pkt_dev->burst);
  546. if (pkt_dev->node >= 0)
  547. seq_printf(seq, " node: %d\n", pkt_dev->node);
  548. if (pkt_dev->xmit_mode == M_NETIF_RECEIVE)
  549. seq_puts(seq, " xmit_mode: netif_receive\n");
  550. else if (pkt_dev->xmit_mode == M_QUEUE_XMIT)
  551. seq_puts(seq, " xmit_mode: xmit_queue\n");
  552. seq_puts(seq, " Flags: ");
  553. for (i = 0; i < NR_PKT_FLAGS; i++) {
  554. if (i == F_FLOW_SEQ)
  555. if (!pkt_dev->cflows)
  556. continue;
  557. if (pkt_dev->flags & (1 << i))
  558. seq_printf(seq, "%s ", pkt_flag_names[i]);
  559. else if (i == F_FLOW_SEQ)
  560. seq_puts(seq, "FLOW_RND ");
  561. #ifdef CONFIG_XFRM
  562. if (i == F_IPSEC && pkt_dev->spi)
  563. seq_printf(seq, "spi:%u", pkt_dev->spi);
  564. #endif
  565. }
  566. seq_puts(seq, "\n");
  567. /* not really stopped, more like last-running-at */
  568. stopped = pkt_dev->running ? ktime_get() : pkt_dev->stopped_at;
  569. idle = pkt_dev->idle_acc;
  570. do_div(idle, NSEC_PER_USEC);
  571. seq_printf(seq,
  572. "Current:\n pkts-sofar: %llu errors: %llu\n",
  573. (unsigned long long)pkt_dev->sofar,
  574. (unsigned long long)pkt_dev->errors);
  575. seq_printf(seq,
  576. " started: %lluus stopped: %lluus idle: %lluus\n",
  577. (unsigned long long) ktime_to_us(pkt_dev->started_at),
  578. (unsigned long long) ktime_to_us(stopped),
  579. (unsigned long long) idle);
  580. seq_printf(seq,
  581. " seq_num: %d cur_dst_mac_offset: %d cur_src_mac_offset: %d\n",
  582. pkt_dev->seq_num, pkt_dev->cur_dst_mac_offset,
  583. pkt_dev->cur_src_mac_offset);
  584. if (pkt_dev->flags & F_IPV6) {
  585. seq_printf(seq, " cur_saddr: %pI6c cur_daddr: %pI6c\n",
  586. &pkt_dev->cur_in6_saddr,
  587. &pkt_dev->cur_in6_daddr);
  588. } else
  589. seq_printf(seq, " cur_saddr: %pI4 cur_daddr: %pI4\n",
  590. &pkt_dev->cur_saddr, &pkt_dev->cur_daddr);
  591. seq_printf(seq, " cur_udp_dst: %d cur_udp_src: %d\n",
  592. pkt_dev->cur_udp_dst, pkt_dev->cur_udp_src);
  593. seq_printf(seq, " cur_queue_map: %u\n", pkt_dev->cur_queue_map);
  594. seq_printf(seq, " flows: %u\n", pkt_dev->nflows);
  595. if (pkt_dev->result[0])
  596. seq_printf(seq, "Result: %s\n", pkt_dev->result);
  597. else
  598. seq_puts(seq, "Result: Idle\n");
  599. return 0;
  600. }
  601. static int hex32_arg(const char __user *user_buffer, unsigned long maxlen,
  602. __u32 *num)
  603. {
  604. int i = 0;
  605. *num = 0;
  606. for (; i < maxlen; i++) {
  607. int value;
  608. char c;
  609. *num <<= 4;
  610. if (get_user(c, &user_buffer[i]))
  611. return -EFAULT;
  612. value = hex_to_bin(c);
  613. if (value >= 0)
  614. *num |= value;
  615. else
  616. break;
  617. }
  618. return i;
  619. }
  620. static int count_trail_chars(const char __user * user_buffer,
  621. unsigned int maxlen)
  622. {
  623. int i;
  624. for (i = 0; i < maxlen; i++) {
  625. char c;
  626. if (get_user(c, &user_buffer[i]))
  627. return -EFAULT;
  628. switch (c) {
  629. case '\"':
  630. case '\n':
  631. case '\r':
  632. case '\t':
  633. case ' ':
  634. case '=':
  635. break;
  636. default:
  637. goto done;
  638. }
  639. }
  640. done:
  641. return i;
  642. }
  643. static long num_arg(const char __user *user_buffer, unsigned long maxlen,
  644. unsigned long *num)
  645. {
  646. int i;
  647. *num = 0;
  648. for (i = 0; i < maxlen; i++) {
  649. char c;
  650. if (get_user(c, &user_buffer[i]))
  651. return -EFAULT;
  652. if ((c >= '0') && (c <= '9')) {
  653. *num *= 10;
  654. *num += c - '0';
  655. } else
  656. break;
  657. }
  658. return i;
  659. }
  660. static int strn_len(const char __user * user_buffer, unsigned int maxlen)
  661. {
  662. int i;
  663. for (i = 0; i < maxlen; i++) {
  664. char c;
  665. if (get_user(c, &user_buffer[i]))
  666. return -EFAULT;
  667. switch (c) {
  668. case '\"':
  669. case '\n':
  670. case '\r':
  671. case '\t':
  672. case ' ':
  673. goto done_str;
  674. default:
  675. break;
  676. }
  677. }
  678. done_str:
  679. return i;
  680. }
  681. static ssize_t get_labels(const char __user *buffer, struct pktgen_dev *pkt_dev)
  682. {
  683. unsigned int n = 0;
  684. char c;
  685. ssize_t i = 0;
  686. int len;
  687. pkt_dev->nr_labels = 0;
  688. do {
  689. __u32 tmp;
  690. len = hex32_arg(&buffer[i], 8, &tmp);
  691. if (len <= 0)
  692. return len;
  693. pkt_dev->labels[n] = htonl(tmp);
  694. if (pkt_dev->labels[n] & MPLS_STACK_BOTTOM)
  695. pkt_dev->flags |= F_MPLS_RND;
  696. i += len;
  697. if (get_user(c, &buffer[i]))
  698. return -EFAULT;
  699. i++;
  700. n++;
  701. if (n >= MAX_MPLS_LABELS)
  702. return -E2BIG;
  703. } while (c == ',');
  704. pkt_dev->nr_labels = n;
  705. return i;
  706. }
  707. static __u32 pktgen_read_flag(const char *f, bool *disable)
  708. {
  709. __u32 i;
  710. if (f[0] == '!') {
  711. *disable = true;
  712. f++;
  713. }
  714. for (i = 0; i < NR_PKT_FLAGS; i++) {
  715. if (!IS_ENABLED(CONFIG_XFRM) && i == IPSEC_SHIFT)
  716. continue;
  717. /* allow only disabling ipv6 flag */
  718. if (!*disable && i == IPV6_SHIFT)
  719. continue;
  720. if (strcmp(f, pkt_flag_names[i]) == 0)
  721. return 1 << i;
  722. }
  723. if (strcmp(f, "FLOW_RND") == 0) {
  724. *disable = !*disable;
  725. return F_FLOW_SEQ;
  726. }
  727. return 0;
  728. }
  729. static ssize_t pktgen_if_write(struct file *file,
  730. const char __user * user_buffer, size_t count,
  731. loff_t * offset)
  732. {
  733. struct seq_file *seq = file->private_data;
  734. struct pktgen_dev *pkt_dev = seq->private;
  735. int i, max, len;
  736. char name[16], valstr[32];
  737. unsigned long value = 0;
  738. char *pg_result = NULL;
  739. int tmp = 0;
  740. char buf[128];
  741. pg_result = &(pkt_dev->result[0]);
  742. if (count < 1) {
  743. pr_warn("wrong command format\n");
  744. return -EINVAL;
  745. }
  746. max = count;
  747. tmp = count_trail_chars(user_buffer, max);
  748. if (tmp < 0) {
  749. pr_warn("illegal format\n");
  750. return tmp;
  751. }
  752. i = tmp;
  753. /* Read variable name */
  754. len = strn_len(&user_buffer[i], sizeof(name) - 1);
  755. if (len < 0)
  756. return len;
  757. memset(name, 0, sizeof(name));
  758. if (copy_from_user(name, &user_buffer[i], len))
  759. return -EFAULT;
  760. i += len;
  761. max = count - i;
  762. len = count_trail_chars(&user_buffer[i], max);
  763. if (len < 0)
  764. return len;
  765. i += len;
  766. if (debug) {
  767. size_t copy = min_t(size_t, count + 1, 1024);
  768. char *tp = strndup_user(user_buffer, copy);
  769. if (IS_ERR(tp))
  770. return PTR_ERR(tp);
  771. pr_debug("%s,%zu buffer -:%s:-\n", name, count, tp);
  772. kfree(tp);
  773. }
  774. if (!strcmp(name, "min_pkt_size")) {
  775. len = num_arg(&user_buffer[i], 10, &value);
  776. if (len < 0)
  777. return len;
  778. i += len;
  779. if (value < 14 + 20 + 8)
  780. value = 14 + 20 + 8;
  781. if (value != pkt_dev->min_pkt_size) {
  782. pkt_dev->min_pkt_size = value;
  783. pkt_dev->cur_pkt_size = value;
  784. }
  785. sprintf(pg_result, "OK: min_pkt_size=%u",
  786. pkt_dev->min_pkt_size);
  787. return count;
  788. }
  789. if (!strcmp(name, "max_pkt_size")) {
  790. len = num_arg(&user_buffer[i], 10, &value);
  791. if (len < 0)
  792. return len;
  793. i += len;
  794. if (value < 14 + 20 + 8)
  795. value = 14 + 20 + 8;
  796. if (value != pkt_dev->max_pkt_size) {
  797. pkt_dev->max_pkt_size = value;
  798. pkt_dev->cur_pkt_size = value;
  799. }
  800. sprintf(pg_result, "OK: max_pkt_size=%u",
  801. pkt_dev->max_pkt_size);
  802. return count;
  803. }
  804. /* Shortcut for min = max */
  805. if (!strcmp(name, "pkt_size")) {
  806. len = num_arg(&user_buffer[i], 10, &value);
  807. if (len < 0)
  808. return len;
  809. i += len;
  810. if (value < 14 + 20 + 8)
  811. value = 14 + 20 + 8;
  812. if (value != pkt_dev->min_pkt_size) {
  813. pkt_dev->min_pkt_size = value;
  814. pkt_dev->max_pkt_size = value;
  815. pkt_dev->cur_pkt_size = value;
  816. }
  817. sprintf(pg_result, "OK: pkt_size=%u", pkt_dev->min_pkt_size);
  818. return count;
  819. }
  820. if (!strcmp(name, "debug")) {
  821. len = num_arg(&user_buffer[i], 10, &value);
  822. if (len < 0)
  823. return len;
  824. i += len;
  825. debug = value;
  826. sprintf(pg_result, "OK: debug=%u", debug);
  827. return count;
  828. }
  829. if (!strcmp(name, "frags")) {
  830. len = num_arg(&user_buffer[i], 10, &value);
  831. if (len < 0)
  832. return len;
  833. i += len;
  834. pkt_dev->nfrags = value;
  835. sprintf(pg_result, "OK: frags=%u", pkt_dev->nfrags);
  836. return count;
  837. }
  838. if (!strcmp(name, "delay")) {
  839. len = num_arg(&user_buffer[i], 10, &value);
  840. if (len < 0)
  841. return len;
  842. i += len;
  843. if (value == 0x7FFFFFFF)
  844. pkt_dev->delay = ULLONG_MAX;
  845. else
  846. pkt_dev->delay = (u64)value;
  847. sprintf(pg_result, "OK: delay=%llu",
  848. (unsigned long long) pkt_dev->delay);
  849. return count;
  850. }
  851. if (!strcmp(name, "rate")) {
  852. len = num_arg(&user_buffer[i], 10, &value);
  853. if (len < 0)
  854. return len;
  855. i += len;
  856. if (!value)
  857. return len;
  858. pkt_dev->delay = pkt_dev->min_pkt_size*8*NSEC_PER_USEC/value;
  859. if (debug)
  860. pr_info("Delay set at: %llu ns\n", pkt_dev->delay);
  861. sprintf(pg_result, "OK: rate=%lu", value);
  862. return count;
  863. }
  864. if (!strcmp(name, "ratep")) {
  865. len = num_arg(&user_buffer[i], 10, &value);
  866. if (len < 0)
  867. return len;
  868. i += len;
  869. if (!value)
  870. return len;
  871. pkt_dev->delay = NSEC_PER_SEC/value;
  872. if (debug)
  873. pr_info("Delay set at: %llu ns\n", pkt_dev->delay);
  874. sprintf(pg_result, "OK: rate=%lu", value);
  875. return count;
  876. }
  877. if (!strcmp(name, "udp_src_min")) {
  878. len = num_arg(&user_buffer[i], 10, &value);
  879. if (len < 0)
  880. return len;
  881. i += len;
  882. if (value != pkt_dev->udp_src_min) {
  883. pkt_dev->udp_src_min = value;
  884. pkt_dev->cur_udp_src = value;
  885. }
  886. sprintf(pg_result, "OK: udp_src_min=%u", pkt_dev->udp_src_min);
  887. return count;
  888. }
  889. if (!strcmp(name, "udp_dst_min")) {
  890. len = num_arg(&user_buffer[i], 10, &value);
  891. if (len < 0)
  892. return len;
  893. i += len;
  894. if (value != pkt_dev->udp_dst_min) {
  895. pkt_dev->udp_dst_min = value;
  896. pkt_dev->cur_udp_dst = value;
  897. }
  898. sprintf(pg_result, "OK: udp_dst_min=%u", pkt_dev->udp_dst_min);
  899. return count;
  900. }
  901. if (!strcmp(name, "udp_src_max")) {
  902. len = num_arg(&user_buffer[i], 10, &value);
  903. if (len < 0)
  904. return len;
  905. i += len;
  906. if (value != pkt_dev->udp_src_max) {
  907. pkt_dev->udp_src_max = value;
  908. pkt_dev->cur_udp_src = value;
  909. }
  910. sprintf(pg_result, "OK: udp_src_max=%u", pkt_dev->udp_src_max);
  911. return count;
  912. }
  913. if (!strcmp(name, "udp_dst_max")) {
  914. len = num_arg(&user_buffer[i], 10, &value);
  915. if (len < 0)
  916. return len;
  917. i += len;
  918. if (value != pkt_dev->udp_dst_max) {
  919. pkt_dev->udp_dst_max = value;
  920. pkt_dev->cur_udp_dst = value;
  921. }
  922. sprintf(pg_result, "OK: udp_dst_max=%u", pkt_dev->udp_dst_max);
  923. return count;
  924. }
  925. if (!strcmp(name, "clone_skb")) {
  926. len = num_arg(&user_buffer[i], 10, &value);
  927. if (len < 0)
  928. return len;
  929. if ((value > 0) &&
  930. ((pkt_dev->xmit_mode == M_NETIF_RECEIVE) ||
  931. !(pkt_dev->odev->priv_flags & IFF_TX_SKB_SHARING)))
  932. return -ENOTSUPP;
  933. i += len;
  934. pkt_dev->clone_skb = value;
  935. sprintf(pg_result, "OK: clone_skb=%d", pkt_dev->clone_skb);
  936. return count;
  937. }
  938. if (!strcmp(name, "count")) {
  939. len = num_arg(&user_buffer[i], 10, &value);
  940. if (len < 0)
  941. return len;
  942. i += len;
  943. pkt_dev->count = value;
  944. sprintf(pg_result, "OK: count=%llu",
  945. (unsigned long long)pkt_dev->count);
  946. return count;
  947. }
  948. if (!strcmp(name, "src_mac_count")) {
  949. len = num_arg(&user_buffer[i], 10, &value);
  950. if (len < 0)
  951. return len;
  952. i += len;
  953. if (pkt_dev->src_mac_count != value) {
  954. pkt_dev->src_mac_count = value;
  955. pkt_dev->cur_src_mac_offset = 0;
  956. }
  957. sprintf(pg_result, "OK: src_mac_count=%d",
  958. pkt_dev->src_mac_count);
  959. return count;
  960. }
  961. if (!strcmp(name, "dst_mac_count")) {
  962. len = num_arg(&user_buffer[i], 10, &value);
  963. if (len < 0)
  964. return len;
  965. i += len;
  966. if (pkt_dev->dst_mac_count != value) {
  967. pkt_dev->dst_mac_count = value;
  968. pkt_dev->cur_dst_mac_offset = 0;
  969. }
  970. sprintf(pg_result, "OK: dst_mac_count=%d",
  971. pkt_dev->dst_mac_count);
  972. return count;
  973. }
  974. if (!strcmp(name, "burst")) {
  975. len = num_arg(&user_buffer[i], 10, &value);
  976. if (len < 0)
  977. return len;
  978. i += len;
  979. if ((value > 1) &&
  980. ((pkt_dev->xmit_mode == M_QUEUE_XMIT) ||
  981. ((pkt_dev->xmit_mode == M_START_XMIT) &&
  982. (!(pkt_dev->odev->priv_flags & IFF_TX_SKB_SHARING)))))
  983. return -ENOTSUPP;
  984. pkt_dev->burst = value < 1 ? 1 : value;
  985. sprintf(pg_result, "OK: burst=%d", pkt_dev->burst);
  986. return count;
  987. }
  988. if (!strcmp(name, "node")) {
  989. len = num_arg(&user_buffer[i], 10, &value);
  990. if (len < 0)
  991. return len;
  992. i += len;
  993. if (node_possible(value)) {
  994. pkt_dev->node = value;
  995. sprintf(pg_result, "OK: node=%d", pkt_dev->node);
  996. if (pkt_dev->page) {
  997. put_page(pkt_dev->page);
  998. pkt_dev->page = NULL;
  999. }
  1000. }
  1001. else
  1002. sprintf(pg_result, "ERROR: node not possible");
  1003. return count;
  1004. }
  1005. if (!strcmp(name, "xmit_mode")) {
  1006. char f[32];
  1007. memset(f, 0, 32);
  1008. len = strn_len(&user_buffer[i], sizeof(f) - 1);
  1009. if (len < 0)
  1010. return len;
  1011. if (copy_from_user(f, &user_buffer[i], len))
  1012. return -EFAULT;
  1013. i += len;
  1014. if (strcmp(f, "start_xmit") == 0) {
  1015. pkt_dev->xmit_mode = M_START_XMIT;
  1016. } else if (strcmp(f, "netif_receive") == 0) {
  1017. /* clone_skb set earlier, not supported in this mode */
  1018. if (pkt_dev->clone_skb > 0)
  1019. return -ENOTSUPP;
  1020. pkt_dev->xmit_mode = M_NETIF_RECEIVE;
  1021. /* make sure new packet is allocated every time
  1022. * pktgen_xmit() is called
  1023. */
  1024. pkt_dev->last_ok = 1;
  1025. /* override clone_skb if user passed default value
  1026. * at module loading time
  1027. */
  1028. pkt_dev->clone_skb = 0;
  1029. } else if (strcmp(f, "queue_xmit") == 0) {
  1030. pkt_dev->xmit_mode = M_QUEUE_XMIT;
  1031. pkt_dev->last_ok = 1;
  1032. } else {
  1033. sprintf(pg_result,
  1034. "xmit_mode -:%s:- unknown\nAvailable modes: %s",
  1035. f, "start_xmit, netif_receive\n");
  1036. return count;
  1037. }
  1038. sprintf(pg_result, "OK: xmit_mode=%s", f);
  1039. return count;
  1040. }
  1041. if (!strcmp(name, "flag")) {
  1042. __u32 flag;
  1043. char f[32];
  1044. bool disable = false;
  1045. memset(f, 0, 32);
  1046. len = strn_len(&user_buffer[i], sizeof(f) - 1);
  1047. if (len < 0)
  1048. return len;
  1049. if (copy_from_user(f, &user_buffer[i], len))
  1050. return -EFAULT;
  1051. i += len;
  1052. flag = pktgen_read_flag(f, &disable);
  1053. if (flag) {
  1054. if (disable)
  1055. pkt_dev->flags &= ~flag;
  1056. else
  1057. pkt_dev->flags |= flag;
  1058. } else {
  1059. sprintf(pg_result,
  1060. "Flag -:%s:- unknown\nAvailable flags, (prepend ! to un-set flag):\n%s",
  1061. f,
  1062. "IPSRC_RND, IPDST_RND, UDPSRC_RND, UDPDST_RND, "
  1063. "MACSRC_RND, MACDST_RND, TXSIZE_RND, IPV6, "
  1064. "MPLS_RND, VID_RND, SVID_RND, FLOW_SEQ, "
  1065. "QUEUE_MAP_RND, QUEUE_MAP_CPU, UDPCSUM, "
  1066. "NO_TIMESTAMP, "
  1067. #ifdef CONFIG_XFRM
  1068. "IPSEC, "
  1069. #endif
  1070. "NODE_ALLOC\n");
  1071. return count;
  1072. }
  1073. sprintf(pg_result, "OK: flags=0x%x", pkt_dev->flags);
  1074. return count;
  1075. }
  1076. if (!strcmp(name, "dst_min") || !strcmp(name, "dst")) {
  1077. len = strn_len(&user_buffer[i], sizeof(pkt_dev->dst_min) - 1);
  1078. if (len < 0)
  1079. return len;
  1080. if (copy_from_user(buf, &user_buffer[i], len))
  1081. return -EFAULT;
  1082. buf[len] = 0;
  1083. if (strcmp(buf, pkt_dev->dst_min) != 0) {
  1084. memset(pkt_dev->dst_min, 0, sizeof(pkt_dev->dst_min));
  1085. strcpy(pkt_dev->dst_min, buf);
  1086. pkt_dev->daddr_min = in_aton(pkt_dev->dst_min);
  1087. pkt_dev->cur_daddr = pkt_dev->daddr_min;
  1088. }
  1089. if (debug)
  1090. pr_debug("dst_min set to: %s\n", pkt_dev->dst_min);
  1091. i += len;
  1092. sprintf(pg_result, "OK: dst_min=%s", pkt_dev->dst_min);
  1093. return count;
  1094. }
  1095. if (!strcmp(name, "dst_max")) {
  1096. len = strn_len(&user_buffer[i], sizeof(pkt_dev->dst_max) - 1);
  1097. if (len < 0)
  1098. return len;
  1099. if (copy_from_user(buf, &user_buffer[i], len))
  1100. return -EFAULT;
  1101. buf[len] = 0;
  1102. if (strcmp(buf, pkt_dev->dst_max) != 0) {
  1103. memset(pkt_dev->dst_max, 0, sizeof(pkt_dev->dst_max));
  1104. strcpy(pkt_dev->dst_max, buf);
  1105. pkt_dev->daddr_max = in_aton(pkt_dev->dst_max);
  1106. pkt_dev->cur_daddr = pkt_dev->daddr_max;
  1107. }
  1108. if (debug)
  1109. pr_debug("dst_max set to: %s\n", pkt_dev->dst_max);
  1110. i += len;
  1111. sprintf(pg_result, "OK: dst_max=%s", pkt_dev->dst_max);
  1112. return count;
  1113. }
  1114. if (!strcmp(name, "dst6")) {
  1115. len = strn_len(&user_buffer[i], sizeof(buf) - 1);
  1116. if (len < 0)
  1117. return len;
  1118. pkt_dev->flags |= F_IPV6;
  1119. if (copy_from_user(buf, &user_buffer[i], len))
  1120. return -EFAULT;
  1121. buf[len] = 0;
  1122. in6_pton(buf, -1, pkt_dev->in6_daddr.s6_addr, -1, NULL);
  1123. snprintf(buf, sizeof(buf), "%pI6c", &pkt_dev->in6_daddr);
  1124. pkt_dev->cur_in6_daddr = pkt_dev->in6_daddr;
  1125. if (debug)
  1126. pr_debug("dst6 set to: %s\n", buf);
  1127. i += len;
  1128. sprintf(pg_result, "OK: dst6=%s", buf);
  1129. return count;
  1130. }
  1131. if (!strcmp(name, "dst6_min")) {
  1132. len = strn_len(&user_buffer[i], sizeof(buf) - 1);
  1133. if (len < 0)
  1134. return len;
  1135. pkt_dev->flags |= F_IPV6;
  1136. if (copy_from_user(buf, &user_buffer[i], len))
  1137. return -EFAULT;
  1138. buf[len] = 0;
  1139. in6_pton(buf, -1, pkt_dev->min_in6_daddr.s6_addr, -1, NULL);
  1140. snprintf(buf, sizeof(buf), "%pI6c", &pkt_dev->min_in6_daddr);
  1141. pkt_dev->cur_in6_daddr = pkt_dev->min_in6_daddr;
  1142. if (debug)
  1143. pr_debug("dst6_min set to: %s\n", buf);
  1144. i += len;
  1145. sprintf(pg_result, "OK: dst6_min=%s", buf);
  1146. return count;
  1147. }
  1148. if (!strcmp(name, "dst6_max")) {
  1149. len = strn_len(&user_buffer[i], sizeof(buf) - 1);
  1150. if (len < 0)
  1151. return len;
  1152. pkt_dev->flags |= F_IPV6;
  1153. if (copy_from_user(buf, &user_buffer[i], len))
  1154. return -EFAULT;
  1155. buf[len] = 0;
  1156. in6_pton(buf, -1, pkt_dev->max_in6_daddr.s6_addr, -1, NULL);
  1157. snprintf(buf, sizeof(buf), "%pI6c", &pkt_dev->max_in6_daddr);
  1158. if (debug)
  1159. pr_debug("dst6_max set to: %s\n", buf);
  1160. i += len;
  1161. sprintf(pg_result, "OK: dst6_max=%s", buf);
  1162. return count;
  1163. }
  1164. if (!strcmp(name, "src6")) {
  1165. len = strn_len(&user_buffer[i], sizeof(buf) - 1);
  1166. if (len < 0)
  1167. return len;
  1168. pkt_dev->flags |= F_IPV6;
  1169. if (copy_from_user(buf, &user_buffer[i], len))
  1170. return -EFAULT;
  1171. buf[len] = 0;
  1172. in6_pton(buf, -1, pkt_dev->in6_saddr.s6_addr, -1, NULL);
  1173. snprintf(buf, sizeof(buf), "%pI6c", &pkt_dev->in6_saddr);
  1174. pkt_dev->cur_in6_saddr = pkt_dev->in6_saddr;
  1175. if (debug)
  1176. pr_debug("src6 set to: %s\n", buf);
  1177. i += len;
  1178. sprintf(pg_result, "OK: src6=%s", buf);
  1179. return count;
  1180. }
  1181. if (!strcmp(name, "src_min")) {
  1182. len = strn_len(&user_buffer[i], sizeof(pkt_dev->src_min) - 1);
  1183. if (len < 0)
  1184. return len;
  1185. if (copy_from_user(buf, &user_buffer[i], len))
  1186. return -EFAULT;
  1187. buf[len] = 0;
  1188. if (strcmp(buf, pkt_dev->src_min) != 0) {
  1189. memset(pkt_dev->src_min, 0, sizeof(pkt_dev->src_min));
  1190. strcpy(pkt_dev->src_min, buf);
  1191. pkt_dev->saddr_min = in_aton(pkt_dev->src_min);
  1192. pkt_dev->cur_saddr = pkt_dev->saddr_min;
  1193. }
  1194. if (debug)
  1195. pr_debug("src_min set to: %s\n", pkt_dev->src_min);
  1196. i += len;
  1197. sprintf(pg_result, "OK: src_min=%s", pkt_dev->src_min);
  1198. return count;
  1199. }
  1200. if (!strcmp(name, "src_max")) {
  1201. len = strn_len(&user_buffer[i], sizeof(pkt_dev->src_max) - 1);
  1202. if (len < 0)
  1203. return len;
  1204. if (copy_from_user(buf, &user_buffer[i], len))
  1205. return -EFAULT;
  1206. buf[len] = 0;
  1207. if (strcmp(buf, pkt_dev->src_max) != 0) {
  1208. memset(pkt_dev->src_max, 0, sizeof(pkt_dev->src_max));
  1209. strcpy(pkt_dev->src_max, buf);
  1210. pkt_dev->saddr_max = in_aton(pkt_dev->src_max);
  1211. pkt_dev->cur_saddr = pkt_dev->saddr_max;
  1212. }
  1213. if (debug)
  1214. pr_debug("src_max set to: %s\n", pkt_dev->src_max);
  1215. i += len;
  1216. sprintf(pg_result, "OK: src_max=%s", pkt_dev->src_max);
  1217. return count;
  1218. }
  1219. if (!strcmp(name, "dst_mac")) {
  1220. len = strn_len(&user_buffer[i], sizeof(valstr) - 1);
  1221. if (len < 0)
  1222. return len;
  1223. memset(valstr, 0, sizeof(valstr));
  1224. if (copy_from_user(valstr, &user_buffer[i], len))
  1225. return -EFAULT;
  1226. if (!mac_pton(valstr, pkt_dev->dst_mac))
  1227. return -EINVAL;
  1228. /* Set up Dest MAC */
  1229. ether_addr_copy(&pkt_dev->hh[0], pkt_dev->dst_mac);
  1230. sprintf(pg_result, "OK: dstmac %pM", pkt_dev->dst_mac);
  1231. return count;
  1232. }
  1233. if (!strcmp(name, "src_mac")) {
  1234. len = strn_len(&user_buffer[i], sizeof(valstr) - 1);
  1235. if (len < 0)
  1236. return len;
  1237. memset(valstr, 0, sizeof(valstr));
  1238. if (copy_from_user(valstr, &user_buffer[i], len))
  1239. return -EFAULT;
  1240. if (!mac_pton(valstr, pkt_dev->src_mac))
  1241. return -EINVAL;
  1242. /* Set up Src MAC */
  1243. ether_addr_copy(&pkt_dev->hh[6], pkt_dev->src_mac);
  1244. sprintf(pg_result, "OK: srcmac %pM", pkt_dev->src_mac);
  1245. return count;
  1246. }
  1247. if (!strcmp(name, "clear_counters")) {
  1248. pktgen_clear_counters(pkt_dev);
  1249. sprintf(pg_result, "OK: Clearing counters.\n");
  1250. return count;
  1251. }
  1252. if (!strcmp(name, "flows")) {
  1253. len = num_arg(&user_buffer[i], 10, &value);
  1254. if (len < 0)
  1255. return len;
  1256. i += len;
  1257. if (value > MAX_CFLOWS)
  1258. value = MAX_CFLOWS;
  1259. pkt_dev->cflows = value;
  1260. sprintf(pg_result, "OK: flows=%u", pkt_dev->cflows);
  1261. return count;
  1262. }
  1263. #ifdef CONFIG_XFRM
  1264. if (!strcmp(name, "spi")) {
  1265. len = num_arg(&user_buffer[i], 10, &value);
  1266. if (len < 0)
  1267. return len;
  1268. i += len;
  1269. pkt_dev->spi = value;
  1270. sprintf(pg_result, "OK: spi=%u", pkt_dev->spi);
  1271. return count;
  1272. }
  1273. #endif
  1274. if (!strcmp(name, "flowlen")) {
  1275. len = num_arg(&user_buffer[i], 10, &value);
  1276. if (len < 0)
  1277. return len;
  1278. i += len;
  1279. pkt_dev->lflow = value;
  1280. sprintf(pg_result, "OK: flowlen=%u", pkt_dev->lflow);
  1281. return count;
  1282. }
  1283. if (!strcmp(name, "queue_map_min")) {
  1284. len = num_arg(&user_buffer[i], 5, &value);
  1285. if (len < 0)
  1286. return len;
  1287. i += len;
  1288. pkt_dev->queue_map_min = value;
  1289. sprintf(pg_result, "OK: queue_map_min=%u", pkt_dev->queue_map_min);
  1290. return count;
  1291. }
  1292. if (!strcmp(name, "queue_map_max")) {
  1293. len = num_arg(&user_buffer[i], 5, &value);
  1294. if (len < 0)
  1295. return len;
  1296. i += len;
  1297. pkt_dev->queue_map_max = value;
  1298. sprintf(pg_result, "OK: queue_map_max=%u", pkt_dev->queue_map_max);
  1299. return count;
  1300. }
  1301. if (!strcmp(name, "mpls")) {
  1302. unsigned int n, cnt;
  1303. len = get_labels(&user_buffer[i], pkt_dev);
  1304. if (len < 0)
  1305. return len;
  1306. i += len;
  1307. cnt = sprintf(pg_result, "OK: mpls=");
  1308. for (n = 0; n < pkt_dev->nr_labels; n++)
  1309. cnt += sprintf(pg_result + cnt,
  1310. "%08x%s", ntohl(pkt_dev->labels[n]),
  1311. n == pkt_dev->nr_labels-1 ? "" : ",");
  1312. if (pkt_dev->nr_labels && pkt_dev->vlan_id != 0xffff) {
  1313. pkt_dev->vlan_id = 0xffff; /* turn off VLAN/SVLAN */
  1314. pkt_dev->svlan_id = 0xffff;
  1315. if (debug)
  1316. pr_debug("VLAN/SVLAN auto turned off\n");
  1317. }
  1318. return count;
  1319. }
  1320. if (!strcmp(name, "vlan_id")) {
  1321. len = num_arg(&user_buffer[i], 4, &value);
  1322. if (len < 0)
  1323. return len;
  1324. i += len;
  1325. if (value <= 4095) {
  1326. pkt_dev->vlan_id = value; /* turn on VLAN */
  1327. if (debug)
  1328. pr_debug("VLAN turned on\n");
  1329. if (debug && pkt_dev->nr_labels)
  1330. pr_debug("MPLS auto turned off\n");
  1331. pkt_dev->nr_labels = 0; /* turn off MPLS */
  1332. sprintf(pg_result, "OK: vlan_id=%u", pkt_dev->vlan_id);
  1333. } else {
  1334. pkt_dev->vlan_id = 0xffff; /* turn off VLAN/SVLAN */
  1335. pkt_dev->svlan_id = 0xffff;
  1336. if (debug)
  1337. pr_debug("VLAN/SVLAN turned off\n");
  1338. }
  1339. return count;
  1340. }
  1341. if (!strcmp(name, "vlan_p")) {
  1342. len = num_arg(&user_buffer[i], 1, &value);
  1343. if (len < 0)
  1344. return len;
  1345. i += len;
  1346. if ((value <= 7) && (pkt_dev->vlan_id != 0xffff)) {
  1347. pkt_dev->vlan_p = value;
  1348. sprintf(pg_result, "OK: vlan_p=%u", pkt_dev->vlan_p);
  1349. } else {
  1350. sprintf(pg_result, "ERROR: vlan_p must be 0-7");
  1351. }
  1352. return count;
  1353. }
  1354. if (!strcmp(name, "vlan_cfi")) {
  1355. len = num_arg(&user_buffer[i], 1, &value);
  1356. if (len < 0)
  1357. return len;
  1358. i += len;
  1359. if ((value <= 1) && (pkt_dev->vlan_id != 0xffff)) {
  1360. pkt_dev->vlan_cfi = value;
  1361. sprintf(pg_result, "OK: vlan_cfi=%u", pkt_dev->vlan_cfi);
  1362. } else {
  1363. sprintf(pg_result, "ERROR: vlan_cfi must be 0-1");
  1364. }
  1365. return count;
  1366. }
  1367. if (!strcmp(name, "svlan_id")) {
  1368. len = num_arg(&user_buffer[i], 4, &value);
  1369. if (len < 0)
  1370. return len;
  1371. i += len;
  1372. if ((value <= 4095) && ((pkt_dev->vlan_id != 0xffff))) {
  1373. pkt_dev->svlan_id = value; /* turn on SVLAN */
  1374. if (debug)
  1375. pr_debug("SVLAN turned on\n");
  1376. if (debug && pkt_dev->nr_labels)
  1377. pr_debug("MPLS auto turned off\n");
  1378. pkt_dev->nr_labels = 0; /* turn off MPLS */
  1379. sprintf(pg_result, "OK: svlan_id=%u", pkt_dev->svlan_id);
  1380. } else {
  1381. pkt_dev->vlan_id = 0xffff; /* turn off VLAN/SVLAN */
  1382. pkt_dev->svlan_id = 0xffff;
  1383. if (debug)
  1384. pr_debug("VLAN/SVLAN turned off\n");
  1385. }
  1386. return count;
  1387. }
  1388. if (!strcmp(name, "svlan_p")) {
  1389. len = num_arg(&user_buffer[i], 1, &value);
  1390. if (len < 0)
  1391. return len;
  1392. i += len;
  1393. if ((value <= 7) && (pkt_dev->svlan_id != 0xffff)) {
  1394. pkt_dev->svlan_p = value;
  1395. sprintf(pg_result, "OK: svlan_p=%u", pkt_dev->svlan_p);
  1396. } else {
  1397. sprintf(pg_result, "ERROR: svlan_p must be 0-7");
  1398. }
  1399. return count;
  1400. }
  1401. if (!strcmp(name, "svlan_cfi")) {
  1402. len = num_arg(&user_buffer[i], 1, &value);
  1403. if (len < 0)
  1404. return len;
  1405. i += len;
  1406. if ((value <= 1) && (pkt_dev->svlan_id != 0xffff)) {
  1407. pkt_dev->svlan_cfi = value;
  1408. sprintf(pg_result, "OK: svlan_cfi=%u", pkt_dev->svlan_cfi);
  1409. } else {
  1410. sprintf(pg_result, "ERROR: svlan_cfi must be 0-1");
  1411. }
  1412. return count;
  1413. }
  1414. if (!strcmp(name, "tos")) {
  1415. __u32 tmp_value = 0;
  1416. len = hex32_arg(&user_buffer[i], 2, &tmp_value);
  1417. if (len < 0)
  1418. return len;
  1419. i += len;
  1420. if (len == 2) {
  1421. pkt_dev->tos = tmp_value;
  1422. sprintf(pg_result, "OK: tos=0x%02x", pkt_dev->tos);
  1423. } else {
  1424. sprintf(pg_result, "ERROR: tos must be 00-ff");
  1425. }
  1426. return count;
  1427. }
  1428. if (!strcmp(name, "traffic_class")) {
  1429. __u32 tmp_value = 0;
  1430. len = hex32_arg(&user_buffer[i], 2, &tmp_value);
  1431. if (len < 0)
  1432. return len;
  1433. i += len;
  1434. if (len == 2) {
  1435. pkt_dev->traffic_class = tmp_value;
  1436. sprintf(pg_result, "OK: traffic_class=0x%02x", pkt_dev->traffic_class);
  1437. } else {
  1438. sprintf(pg_result, "ERROR: traffic_class must be 00-ff");
  1439. }
  1440. return count;
  1441. }
  1442. if (!strcmp(name, "skb_priority")) {
  1443. len = num_arg(&user_buffer[i], 9, &value);
  1444. if (len < 0)
  1445. return len;
  1446. i += len;
  1447. pkt_dev->skb_priority = value;
  1448. sprintf(pg_result, "OK: skb_priority=%i",
  1449. pkt_dev->skb_priority);
  1450. return count;
  1451. }
  1452. sprintf(pkt_dev->result, "No such parameter \"%s\"", name);
  1453. return -EINVAL;
  1454. }
  1455. static int pktgen_if_open(struct inode *inode, struct file *file)
  1456. {
  1457. return single_open(file, pktgen_if_show, PDE_DATA(inode));
  1458. }
  1459. static const struct proc_ops pktgen_if_proc_ops = {
  1460. .proc_open = pktgen_if_open,
  1461. .proc_read = seq_read,
  1462. .proc_lseek = seq_lseek,
  1463. .proc_write = pktgen_if_write,
  1464. .proc_release = single_release,
  1465. };
  1466. static int pktgen_thread_show(struct seq_file *seq, void *v)
  1467. {
  1468. struct pktgen_thread *t = seq->private;
  1469. const struct pktgen_dev *pkt_dev;
  1470. BUG_ON(!t);
  1471. seq_puts(seq, "Running: ");
  1472. rcu_read_lock();
  1473. list_for_each_entry_rcu(pkt_dev, &t->if_list, list)
  1474. if (pkt_dev->running)
  1475. seq_printf(seq, "%s ", pkt_dev->odevname);
  1476. seq_puts(seq, "\nStopped: ");
  1477. list_for_each_entry_rcu(pkt_dev, &t->if_list, list)
  1478. if (!pkt_dev->running)
  1479. seq_printf(seq, "%s ", pkt_dev->odevname);
  1480. if (t->result[0])
  1481. seq_printf(seq, "\nResult: %s\n", t->result);
  1482. else
  1483. seq_puts(seq, "\nResult: NA\n");
  1484. rcu_read_unlock();
  1485. return 0;
  1486. }
  1487. static ssize_t pktgen_thread_write(struct file *file,
  1488. const char __user * user_buffer,
  1489. size_t count, loff_t * offset)
  1490. {
  1491. struct seq_file *seq = file->private_data;
  1492. struct pktgen_thread *t = seq->private;
  1493. int i, max, len, ret;
  1494. char name[40];
  1495. char *pg_result;
  1496. if (count < 1) {
  1497. // sprintf(pg_result, "Wrong command format");
  1498. return -EINVAL;
  1499. }
  1500. max = count;
  1501. len = count_trail_chars(user_buffer, max);
  1502. if (len < 0)
  1503. return len;
  1504. i = len;
  1505. /* Read variable name */
  1506. len = strn_len(&user_buffer[i], sizeof(name) - 1);
  1507. if (len < 0)
  1508. return len;
  1509. memset(name, 0, sizeof(name));
  1510. if (copy_from_user(name, &user_buffer[i], len))
  1511. return -EFAULT;
  1512. i += len;
  1513. max = count - i;
  1514. len = count_trail_chars(&user_buffer[i], max);
  1515. if (len < 0)
  1516. return len;
  1517. i += len;
  1518. if (debug)
  1519. pr_debug("t=%s, count=%lu\n", name, (unsigned long)count);
  1520. if (!t) {
  1521. pr_err("ERROR: No thread\n");
  1522. ret = -EINVAL;
  1523. goto out;
  1524. }
  1525. pg_result = &(t->result[0]);
  1526. if (!strcmp(name, "add_device")) {
  1527. char f[32];
  1528. memset(f, 0, 32);
  1529. len = strn_len(&user_buffer[i], sizeof(f) - 1);
  1530. if (len < 0) {
  1531. ret = len;
  1532. goto out;
  1533. }
  1534. if (copy_from_user(f, &user_buffer[i], len))
  1535. return -EFAULT;
  1536. i += len;
  1537. mutex_lock(&pktgen_thread_lock);
  1538. ret = pktgen_add_device(t, f);
  1539. mutex_unlock(&pktgen_thread_lock);
  1540. if (!ret) {
  1541. ret = count;
  1542. sprintf(pg_result, "OK: add_device=%s", f);
  1543. } else
  1544. sprintf(pg_result, "ERROR: can not add device %s", f);
  1545. goto out;
  1546. }
  1547. if (!strcmp(name, "rem_device_all")) {
  1548. mutex_lock(&pktgen_thread_lock);
  1549. t->control |= T_REMDEVALL;
  1550. mutex_unlock(&pktgen_thread_lock);
  1551. schedule_timeout_interruptible(msecs_to_jiffies(125)); /* Propagate thread->control */
  1552. ret = count;
  1553. sprintf(pg_result, "OK: rem_device_all");
  1554. goto out;
  1555. }
  1556. if (!strcmp(name, "max_before_softirq")) {
  1557. sprintf(pg_result, "OK: Note! max_before_softirq is obsoleted -- Do not use");
  1558. ret = count;
  1559. goto out;
  1560. }
  1561. ret = -EINVAL;
  1562. out:
  1563. return ret;
  1564. }
  1565. static int pktgen_thread_open(struct inode *inode, struct file *file)
  1566. {
  1567. return single_open(file, pktgen_thread_show, PDE_DATA(inode));
  1568. }
  1569. static const struct proc_ops pktgen_thread_proc_ops = {
  1570. .proc_open = pktgen_thread_open,
  1571. .proc_read = seq_read,
  1572. .proc_lseek = seq_lseek,
  1573. .proc_write = pktgen_thread_write,
  1574. .proc_release = single_release,
  1575. };
  1576. /* Think find or remove for NN */
  1577. static struct pktgen_dev *__pktgen_NN_threads(const struct pktgen_net *pn,
  1578. const char *ifname, int remove)
  1579. {
  1580. struct pktgen_thread *t;
  1581. struct pktgen_dev *pkt_dev = NULL;
  1582. bool exact = (remove == FIND);
  1583. list_for_each_entry(t, &pn->pktgen_threads, th_list) {
  1584. pkt_dev = pktgen_find_dev(t, ifname, exact);
  1585. if (pkt_dev) {
  1586. if (remove) {
  1587. pkt_dev->removal_mark = 1;
  1588. t->control |= T_REMDEV;
  1589. }
  1590. break;
  1591. }
  1592. }
  1593. return pkt_dev;
  1594. }
  1595. /*
  1596. * mark a device for removal
  1597. */
  1598. static void pktgen_mark_device(const struct pktgen_net *pn, const char *ifname)
  1599. {
  1600. struct pktgen_dev *pkt_dev = NULL;
  1601. const int max_tries = 10, msec_per_try = 125;
  1602. int i = 0;
  1603. mutex_lock(&pktgen_thread_lock);
  1604. pr_debug("%s: marking %s for removal\n", __func__, ifname);
  1605. while (1) {
  1606. pkt_dev = __pktgen_NN_threads(pn, ifname, REMOVE);
  1607. if (pkt_dev == NULL)
  1608. break; /* success */
  1609. mutex_unlock(&pktgen_thread_lock);
  1610. pr_debug("%s: waiting for %s to disappear....\n",
  1611. __func__, ifname);
  1612. schedule_timeout_interruptible(msecs_to_jiffies(msec_per_try));
  1613. mutex_lock(&pktgen_thread_lock);
  1614. if (++i >= max_tries) {
  1615. pr_err("%s: timed out after waiting %d msec for device %s to be removed\n",
  1616. __func__, msec_per_try * i, ifname);
  1617. break;
  1618. }
  1619. }
  1620. mutex_unlock(&pktgen_thread_lock);
  1621. }
  1622. static void pktgen_change_name(const struct pktgen_net *pn, struct net_device *dev)
  1623. {
  1624. struct pktgen_thread *t;
  1625. mutex_lock(&pktgen_thread_lock);
  1626. list_for_each_entry(t, &pn->pktgen_threads, th_list) {
  1627. struct pktgen_dev *pkt_dev;
  1628. if_lock(t);
  1629. list_for_each_entry(pkt_dev, &t->if_list, list) {
  1630. if (pkt_dev->odev != dev)
  1631. continue;
  1632. proc_remove(pkt_dev->entry);
  1633. pkt_dev->entry = proc_create_data(dev->name, 0600,
  1634. pn->proc_dir,
  1635. &pktgen_if_proc_ops,
  1636. pkt_dev);
  1637. if (!pkt_dev->entry)
  1638. pr_err("can't move proc entry for '%s'\n",
  1639. dev->name);
  1640. break;
  1641. }
  1642. if_unlock(t);
  1643. }
  1644. mutex_unlock(&pktgen_thread_lock);
  1645. }
  1646. static int pktgen_device_event(struct notifier_block *unused,
  1647. unsigned long event, void *ptr)
  1648. {
  1649. struct net_device *dev = netdev_notifier_info_to_dev(ptr);
  1650. struct pktgen_net *pn = net_generic(dev_net(dev), pg_net_id);
  1651. if (pn->pktgen_exiting)
  1652. return NOTIFY_DONE;
  1653. /* It is OK that we do not hold the group lock right now,
  1654. * as we run under the RTNL lock.
  1655. */
  1656. switch (event) {
  1657. case NETDEV_CHANGENAME:
  1658. pktgen_change_name(pn, dev);
  1659. break;
  1660. case NETDEV_UNREGISTER:
  1661. pktgen_mark_device(pn, dev->name);
  1662. break;
  1663. }
  1664. return NOTIFY_DONE;
  1665. }
  1666. static struct net_device *pktgen_dev_get_by_name(const struct pktgen_net *pn,
  1667. struct pktgen_dev *pkt_dev,
  1668. const char *ifname)
  1669. {
  1670. char b[IFNAMSIZ+5];
  1671. int i;
  1672. for (i = 0; ifname[i] != '@'; i++) {
  1673. if (i == IFNAMSIZ)
  1674. break;
  1675. b[i] = ifname[i];
  1676. }
  1677. b[i] = 0;
  1678. return dev_get_by_name(pn->net, b);
  1679. }
  1680. /* Associate pktgen_dev with a device. */
  1681. static int pktgen_setup_dev(const struct pktgen_net *pn,
  1682. struct pktgen_dev *pkt_dev, const char *ifname)
  1683. {
  1684. struct net_device *odev;
  1685. int err;
  1686. /* Clean old setups */
  1687. if (pkt_dev->odev) {
  1688. dev_put(pkt_dev->odev);
  1689. pkt_dev->odev = NULL;
  1690. }
  1691. odev = pktgen_dev_get_by_name(pn, pkt_dev, ifname);
  1692. if (!odev) {
  1693. pr_err("no such netdevice: \"%s\"\n", ifname);
  1694. return -ENODEV;
  1695. }
  1696. if (odev->type != ARPHRD_ETHER && odev->type != ARPHRD_LOOPBACK) {
  1697. pr_err("not an ethernet or loopback device: \"%s\"\n", ifname);
  1698. err = -EINVAL;
  1699. } else if (!netif_running(odev)) {
  1700. pr_err("device is down: \"%s\"\n", ifname);
  1701. err = -ENETDOWN;
  1702. } else {
  1703. pkt_dev->odev = odev;
  1704. return 0;
  1705. }
  1706. dev_put(odev);
  1707. return err;
  1708. }
  1709. /* Read pkt_dev from the interface and set up internal pktgen_dev
  1710. * structure to have the right information to create/send packets
  1711. */
  1712. static void pktgen_setup_inject(struct pktgen_dev *pkt_dev)
  1713. {
  1714. int ntxq;
  1715. if (!pkt_dev->odev) {
  1716. pr_err("ERROR: pkt_dev->odev == NULL in setup_inject\n");
  1717. sprintf(pkt_dev->result,
  1718. "ERROR: pkt_dev->odev == NULL in setup_inject.\n");
  1719. return;
  1720. }
  1721. /* make sure that we don't pick a non-existing transmit queue */
  1722. ntxq = pkt_dev->odev->real_num_tx_queues;
  1723. if (ntxq <= pkt_dev->queue_map_min) {
  1724. pr_warn("WARNING: Requested queue_map_min (zero-based) (%d) exceeds valid range [0 - %d] for (%d) queues on %s, resetting\n",
  1725. pkt_dev->queue_map_min, (ntxq ?: 1) - 1, ntxq,
  1726. pkt_dev->odevname);
  1727. pkt_dev->queue_map_min = (ntxq ?: 1) - 1;
  1728. }
  1729. if (pkt_dev->queue_map_max >= ntxq) {
  1730. pr_warn("WARNING: Requested queue_map_max (zero-based) (%d) exceeds valid range [0 - %d] for (%d) queues on %s, resetting\n",
  1731. pkt_dev->queue_map_max, (ntxq ?: 1) - 1, ntxq,
  1732. pkt_dev->odevname);
  1733. pkt_dev->queue_map_max = (ntxq ?: 1) - 1;
  1734. }
  1735. /* Default to the interface's mac if not explicitly set. */
  1736. if (is_zero_ether_addr(pkt_dev->src_mac))
  1737. ether_addr_copy(&(pkt_dev->hh[6]), pkt_dev->odev->dev_addr);
  1738. /* Set up Dest MAC */
  1739. ether_addr_copy(&(pkt_dev->hh[0]), pkt_dev->dst_mac);
  1740. if (pkt_dev->flags & F_IPV6) {
  1741. int i, set = 0, err = 1;
  1742. struct inet6_dev *idev;
  1743. if (pkt_dev->min_pkt_size == 0) {
  1744. pkt_dev->min_pkt_size = 14 + sizeof(struct ipv6hdr)
  1745. + sizeof(struct udphdr)
  1746. + sizeof(struct pktgen_hdr)
  1747. + pkt_dev->pkt_overhead;
  1748. }
  1749. for (i = 0; i < sizeof(struct in6_addr); i++)
  1750. if (pkt_dev->cur_in6_saddr.s6_addr[i]) {
  1751. set = 1;
  1752. break;
  1753. }
  1754. if (!set) {
  1755. /*
  1756. * Use linklevel address if unconfigured.
  1757. *
  1758. * use ipv6_get_lladdr if/when it's get exported
  1759. */
  1760. rcu_read_lock();
  1761. idev = __in6_dev_get(pkt_dev->odev);
  1762. if (idev) {
  1763. struct inet6_ifaddr *ifp;
  1764. read_lock_bh(&idev->lock);
  1765. list_for_each_entry(ifp, &idev->addr_list, if_list) {
  1766. if ((ifp->scope & IFA_LINK) &&
  1767. !(ifp->flags & IFA_F_TENTATIVE)) {
  1768. pkt_dev->cur_in6_saddr = ifp->addr;
  1769. err = 0;
  1770. break;
  1771. }
  1772. }
  1773. read_unlock_bh(&idev->lock);
  1774. }
  1775. rcu_read_unlock();
  1776. if (err)
  1777. pr_err("ERROR: IPv6 link address not available\n");
  1778. }
  1779. } else {
  1780. if (pkt_dev->min_pkt_size == 0) {
  1781. pkt_dev->min_pkt_size = 14 + sizeof(struct iphdr)
  1782. + sizeof(struct udphdr)
  1783. + sizeof(struct pktgen_hdr)
  1784. + pkt_dev->pkt_overhead;
  1785. }
  1786. pkt_dev->saddr_min = 0;
  1787. pkt_dev->saddr_max = 0;
  1788. if (strlen(pkt_dev->src_min) == 0) {
  1789. struct in_device *in_dev;
  1790. rcu_read_lock();
  1791. in_dev = __in_dev_get_rcu(pkt_dev->odev);
  1792. if (in_dev) {
  1793. const struct in_ifaddr *ifa;
  1794. ifa = rcu_dereference(in_dev->ifa_list);
  1795. if (ifa) {
  1796. pkt_dev->saddr_min = ifa->ifa_address;
  1797. pkt_dev->saddr_max = pkt_dev->saddr_min;
  1798. }
  1799. }
  1800. rcu_read_unlock();
  1801. } else {
  1802. pkt_dev->saddr_min = in_aton(pkt_dev->src_min);
  1803. pkt_dev->saddr_max = in_aton(pkt_dev->src_max);
  1804. }
  1805. pkt_dev->daddr_min = in_aton(pkt_dev->dst_min);
  1806. pkt_dev->daddr_max = in_aton(pkt_dev->dst_max);
  1807. }
  1808. /* Initialize current values. */
  1809. pkt_dev->cur_pkt_size = pkt_dev->min_pkt_size;
  1810. if (pkt_dev->min_pkt_size > pkt_dev->max_pkt_size)
  1811. pkt_dev->max_pkt_size = pkt_dev->min_pkt_size;
  1812. pkt_dev->cur_dst_mac_offset = 0;
  1813. pkt_dev->cur_src_mac_offset = 0;
  1814. pkt_dev->cur_saddr = pkt_dev->saddr_min;
  1815. pkt_dev->cur_daddr = pkt_dev->daddr_min;
  1816. pkt_dev->cur_udp_dst = pkt_dev->udp_dst_min;
  1817. pkt_dev->cur_udp_src = pkt_dev->udp_src_min;
  1818. pkt_dev->nflows = 0;
  1819. }
  1820. static void spin(struct pktgen_dev *pkt_dev, ktime_t spin_until)
  1821. {
  1822. ktime_t start_time, end_time;
  1823. s64 remaining;
  1824. struct hrtimer_sleeper t;
  1825. hrtimer_init_sleeper_on_stack(&t, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  1826. hrtimer_set_expires(&t.timer, spin_until);
  1827. remaining = ktime_to_ns(hrtimer_expires_remaining(&t.timer));
  1828. if (remaining <= 0)
  1829. goto out;
  1830. start_time = ktime_get();
  1831. if (remaining < 100000) {
  1832. /* for small delays (<100us), just loop until limit is reached */
  1833. do {
  1834. end_time = ktime_get();
  1835. } while (ktime_compare(end_time, spin_until) < 0);
  1836. } else {
  1837. do {
  1838. set_current_state(TASK_INTERRUPTIBLE);
  1839. hrtimer_sleeper_start_expires(&t, HRTIMER_MODE_ABS);
  1840. if (likely(t.task))
  1841. schedule();
  1842. hrtimer_cancel(&t.timer);
  1843. } while (t.task && pkt_dev->running && !signal_pending(current));
  1844. __set_current_state(TASK_RUNNING);
  1845. end_time = ktime_get();
  1846. }
  1847. pkt_dev->idle_acc += ktime_to_ns(ktime_sub(end_time, start_time));
  1848. out:
  1849. pkt_dev->next_tx = ktime_add_ns(spin_until, pkt_dev->delay);
  1850. destroy_hrtimer_on_stack(&t.timer);
  1851. }
  1852. static inline void set_pkt_overhead(struct pktgen_dev *pkt_dev)
  1853. {
  1854. pkt_dev->pkt_overhead = 0;
  1855. pkt_dev->pkt_overhead += pkt_dev->nr_labels*sizeof(u32);
  1856. pkt_dev->pkt_overhead += VLAN_TAG_SIZE(pkt_dev);
  1857. pkt_dev->pkt_overhead += SVLAN_TAG_SIZE(pkt_dev);
  1858. }
  1859. static inline int f_seen(const struct pktgen_dev *pkt_dev, int flow)
  1860. {
  1861. return !!(pkt_dev->flows[flow].flags & F_INIT);
  1862. }
  1863. static inline int f_pick(struct pktgen_dev *pkt_dev)
  1864. {
  1865. int flow = pkt_dev->curfl;
  1866. if (pkt_dev->flags & F_FLOW_SEQ) {
  1867. if (pkt_dev->flows[flow].count >= pkt_dev->lflow) {
  1868. /* reset time */
  1869. pkt_dev->flows[flow].count = 0;
  1870. pkt_dev->flows[flow].flags = 0;
  1871. pkt_dev->curfl += 1;
  1872. if (pkt_dev->curfl >= pkt_dev->cflows)
  1873. pkt_dev->curfl = 0; /*reset */
  1874. }
  1875. } else {
  1876. flow = prandom_u32() % pkt_dev->cflows;
  1877. pkt_dev->curfl = flow;
  1878. if (pkt_dev->flows[flow].count > pkt_dev->lflow) {
  1879. pkt_dev->flows[flow].count = 0;
  1880. pkt_dev->flows[flow].flags = 0;
  1881. }
  1882. }
  1883. return pkt_dev->curfl;
  1884. }
  1885. #ifdef CONFIG_XFRM
  1886. /* If there was already an IPSEC SA, we keep it as is, else
  1887. * we go look for it ...
  1888. */
  1889. #define DUMMY_MARK 0
  1890. static void get_ipsec_sa(struct pktgen_dev *pkt_dev, int flow)
  1891. {
  1892. struct xfrm_state *x = pkt_dev->flows[flow].x;
  1893. struct pktgen_net *pn = net_generic(dev_net(pkt_dev->odev), pg_net_id);
  1894. if (!x) {
  1895. if (pkt_dev->spi) {
  1896. /* We need as quick as possible to find the right SA
  1897. * Searching with minimum criteria to archieve this.
  1898. */
  1899. x = xfrm_state_lookup_byspi(pn->net, htonl(pkt_dev->spi), AF_INET);
  1900. } else {
  1901. /* slow path: we dont already have xfrm_state */
  1902. x = xfrm_stateonly_find(pn->net, DUMMY_MARK, 0,
  1903. (xfrm_address_t *)&pkt_dev->cur_daddr,
  1904. (xfrm_address_t *)&pkt_dev->cur_saddr,
  1905. AF_INET,
  1906. pkt_dev->ipsmode,
  1907. pkt_dev->ipsproto, 0);
  1908. }
  1909. if (x) {
  1910. pkt_dev->flows[flow].x = x;
  1911. set_pkt_overhead(pkt_dev);
  1912. pkt_dev->pkt_overhead += x->props.header_len;
  1913. }
  1914. }
  1915. }
  1916. #endif
  1917. static void set_cur_queue_map(struct pktgen_dev *pkt_dev)
  1918. {
  1919. if (pkt_dev->flags & F_QUEUE_MAP_CPU)
  1920. pkt_dev->cur_queue_map = smp_processor_id();
  1921. else if (pkt_dev->queue_map_min <= pkt_dev->queue_map_max) {
  1922. __u16 t;
  1923. if (pkt_dev->flags & F_QUEUE_MAP_RND) {
  1924. t = prandom_u32() %
  1925. (pkt_dev->queue_map_max -
  1926. pkt_dev->queue_map_min + 1)
  1927. + pkt_dev->queue_map_min;
  1928. } else {
  1929. t = pkt_dev->cur_queue_map + 1;
  1930. if (t > pkt_dev->queue_map_max)
  1931. t = pkt_dev->queue_map_min;
  1932. }
  1933. pkt_dev->cur_queue_map = t;
  1934. }
  1935. pkt_dev->cur_queue_map = pkt_dev->cur_queue_map % pkt_dev->odev->real_num_tx_queues;
  1936. }
  1937. /* Increment/randomize headers according to flags and current values
  1938. * for IP src/dest, UDP src/dst port, MAC-Addr src/dst
  1939. */
  1940. static void mod_cur_headers(struct pktgen_dev *pkt_dev)
  1941. {
  1942. __u32 imn;
  1943. __u32 imx;
  1944. int flow = 0;
  1945. if (pkt_dev->cflows)
  1946. flow = f_pick(pkt_dev);
  1947. /* Deal with source MAC */
  1948. if (pkt_dev->src_mac_count > 1) {
  1949. __u32 mc;
  1950. __u32 tmp;
  1951. if (pkt_dev->flags & F_MACSRC_RND)
  1952. mc = prandom_u32() % pkt_dev->src_mac_count;
  1953. else {
  1954. mc = pkt_dev->cur_src_mac_offset++;
  1955. if (pkt_dev->cur_src_mac_offset >=
  1956. pkt_dev->src_mac_count)
  1957. pkt_dev->cur_src_mac_offset = 0;
  1958. }
  1959. tmp = pkt_dev->src_mac[5] + (mc & 0xFF);
  1960. pkt_dev->hh[11] = tmp;
  1961. tmp = (pkt_dev->src_mac[4] + ((mc >> 8) & 0xFF) + (tmp >> 8));
  1962. pkt_dev->hh[10] = tmp;
  1963. tmp = (pkt_dev->src_mac[3] + ((mc >> 16) & 0xFF) + (tmp >> 8));
  1964. pkt_dev->hh[9] = tmp;
  1965. tmp = (pkt_dev->src_mac[2] + ((mc >> 24) & 0xFF) + (tmp >> 8));
  1966. pkt_dev->hh[8] = tmp;
  1967. tmp = (pkt_dev->src_mac[1] + (tmp >> 8));
  1968. pkt_dev->hh[7] = tmp;
  1969. }
  1970. /* Deal with Destination MAC */
  1971. if (pkt_dev->dst_mac_count > 1) {
  1972. __u32 mc;
  1973. __u32 tmp;
  1974. if (pkt_dev->flags & F_MACDST_RND)
  1975. mc = prandom_u32() % pkt_dev->dst_mac_count;
  1976. else {
  1977. mc = pkt_dev->cur_dst_mac_offset++;
  1978. if (pkt_dev->cur_dst_mac_offset >=
  1979. pkt_dev->dst_mac_count) {
  1980. pkt_dev->cur_dst_mac_offset = 0;
  1981. }
  1982. }
  1983. tmp = pkt_dev->dst_mac[5] + (mc & 0xFF);
  1984. pkt_dev->hh[5] = tmp;
  1985. tmp = (pkt_dev->dst_mac[4] + ((mc >> 8) & 0xFF) + (tmp >> 8));
  1986. pkt_dev->hh[4] = tmp;
  1987. tmp = (pkt_dev->dst_mac[3] + ((mc >> 16) & 0xFF) + (tmp >> 8));
  1988. pkt_dev->hh[3] = tmp;
  1989. tmp = (pkt_dev->dst_mac[2] + ((mc >> 24) & 0xFF) + (tmp >> 8));
  1990. pkt_dev->hh[2] = tmp;
  1991. tmp = (pkt_dev->dst_mac[1] + (tmp >> 8));
  1992. pkt_dev->hh[1] = tmp;
  1993. }
  1994. if (pkt_dev->flags & F_MPLS_RND) {
  1995. unsigned int i;
  1996. for (i = 0; i < pkt_dev->nr_labels; i++)
  1997. if (pkt_dev->labels[i] & MPLS_STACK_BOTTOM)
  1998. pkt_dev->labels[i] = MPLS_STACK_BOTTOM |
  1999. ((__force __be32)prandom_u32() &
  2000. htonl(0x000fffff));
  2001. }
  2002. if ((pkt_dev->flags & F_VID_RND) && (pkt_dev->vlan_id != 0xffff)) {
  2003. pkt_dev->vlan_id = prandom_u32() & (4096 - 1);
  2004. }
  2005. if ((pkt_dev->flags & F_SVID_RND) && (pkt_dev->svlan_id != 0xffff)) {
  2006. pkt_dev->svlan_id = prandom_u32() & (4096 - 1);
  2007. }
  2008. if (pkt_dev->udp_src_min < pkt_dev->udp_src_max) {
  2009. if (pkt_dev->flags & F_UDPSRC_RND)
  2010. pkt_dev->cur_udp_src = prandom_u32() %
  2011. (pkt_dev->udp_src_max - pkt_dev->udp_src_min)
  2012. + pkt_dev->udp_src_min;
  2013. else {
  2014. pkt_dev->cur_udp_src++;
  2015. if (pkt_dev->cur_udp_src >= pkt_dev->udp_src_max)
  2016. pkt_dev->cur_udp_src = pkt_dev->udp_src_min;
  2017. }
  2018. }
  2019. if (pkt_dev->udp_dst_min < pkt_dev->udp_dst_max) {
  2020. if (pkt_dev->flags & F_UDPDST_RND) {
  2021. pkt_dev->cur_udp_dst = prandom_u32() %
  2022. (pkt_dev->udp_dst_max - pkt_dev->udp_dst_min)
  2023. + pkt_dev->udp_dst_min;
  2024. } else {
  2025. pkt_dev->cur_udp_dst++;
  2026. if (pkt_dev->cur_udp_dst >= pkt_dev->udp_dst_max)
  2027. pkt_dev->cur_udp_dst = pkt_dev->udp_dst_min;
  2028. }
  2029. }
  2030. if (!(pkt_dev->flags & F_IPV6)) {
  2031. imn = ntohl(pkt_dev->saddr_min);
  2032. imx = ntohl(pkt_dev->saddr_max);
  2033. if (imn < imx) {
  2034. __u32 t;
  2035. if (pkt_dev->flags & F_IPSRC_RND)
  2036. t = prandom_u32() % (imx - imn) + imn;
  2037. else {
  2038. t = ntohl(pkt_dev->cur_saddr);
  2039. t++;
  2040. if (t > imx)
  2041. t = imn;
  2042. }
  2043. pkt_dev->cur_saddr = htonl(t);
  2044. }
  2045. if (pkt_dev->cflows && f_seen(pkt_dev, flow)) {
  2046. pkt_dev->cur_daddr = pkt_dev->flows[flow].cur_daddr;
  2047. } else {
  2048. imn = ntohl(pkt_dev->daddr_min);
  2049. imx = ntohl(pkt_dev->daddr_max);
  2050. if (imn < imx) {
  2051. __u32 t;
  2052. __be32 s;
  2053. if (pkt_dev->flags & F_IPDST_RND) {
  2054. do {
  2055. t = prandom_u32() %
  2056. (imx - imn) + imn;
  2057. s = htonl(t);
  2058. } while (ipv4_is_loopback(s) ||
  2059. ipv4_is_multicast(s) ||
  2060. ipv4_is_lbcast(s) ||
  2061. ipv4_is_zeronet(s) ||
  2062. ipv4_is_local_multicast(s));
  2063. pkt_dev->cur_daddr = s;
  2064. } else {
  2065. t = ntohl(pkt_dev->cur_daddr);
  2066. t++;
  2067. if (t > imx) {
  2068. t = imn;
  2069. }
  2070. pkt_dev->cur_daddr = htonl(t);
  2071. }
  2072. }
  2073. if (pkt_dev->cflows) {
  2074. pkt_dev->flows[flow].flags |= F_INIT;
  2075. pkt_dev->flows[flow].cur_daddr =
  2076. pkt_dev->cur_daddr;
  2077. #ifdef CONFIG_XFRM
  2078. if (pkt_dev->flags & F_IPSEC)
  2079. get_ipsec_sa(pkt_dev, flow);
  2080. #endif
  2081. pkt_dev->nflows++;
  2082. }
  2083. }
  2084. } else { /* IPV6 * */
  2085. if (!ipv6_addr_any(&pkt_dev->min_in6_daddr)) {
  2086. int i;
  2087. /* Only random destinations yet */
  2088. for (i = 0; i < 4; i++) {
  2089. pkt_dev->cur_in6_daddr.s6_addr32[i] =
  2090. (((__force __be32)prandom_u32() |
  2091. pkt_dev->min_in6_daddr.s6_addr32[i]) &
  2092. pkt_dev->max_in6_daddr.s6_addr32[i]);
  2093. }
  2094. }
  2095. }
  2096. if (pkt_dev->min_pkt_size < pkt_dev->max_pkt_size) {
  2097. __u32 t;
  2098. if (pkt_dev->flags & F_TXSIZE_RND) {
  2099. t = prandom_u32() %
  2100. (pkt_dev->max_pkt_size - pkt_dev->min_pkt_size)
  2101. + pkt_dev->min_pkt_size;
  2102. } else {
  2103. t = pkt_dev->cur_pkt_size + 1;
  2104. if (t > pkt_dev->max_pkt_size)
  2105. t = pkt_dev->min_pkt_size;
  2106. }
  2107. pkt_dev->cur_pkt_size = t;
  2108. }
  2109. set_cur_queue_map(pkt_dev);
  2110. pkt_dev->flows[flow].count++;
  2111. }
  2112. #ifdef CONFIG_XFRM
  2113. static u32 pktgen_dst_metrics[RTAX_MAX + 1] = {
  2114. [RTAX_HOPLIMIT] = 0x5, /* Set a static hoplimit */
  2115. };
  2116. static int pktgen_output_ipsec(struct sk_buff *skb, struct pktgen_dev *pkt_dev)
  2117. {
  2118. struct xfrm_state *x = pkt_dev->flows[pkt_dev->curfl].x;
  2119. int err = 0;
  2120. struct net *net = dev_net(pkt_dev->odev);
  2121. if (!x)
  2122. return 0;
  2123. /* XXX: we dont support tunnel mode for now until
  2124. * we resolve the dst issue */
  2125. if ((x->props.mode != XFRM_MODE_TRANSPORT) && (pkt_dev->spi == 0))
  2126. return 0;
  2127. /* But when user specify an valid SPI, transformation
  2128. * supports both transport/tunnel mode + ESP/AH type.
  2129. */
  2130. if ((x->props.mode == XFRM_MODE_TUNNEL) && (pkt_dev->spi != 0))
  2131. skb->_skb_refdst = (unsigned long)&pkt_dev->xdst.u.dst | SKB_DST_NOREF;
  2132. rcu_read_lock_bh();
  2133. err = pktgen_xfrm_outer_mode_output(x, skb);
  2134. rcu_read_unlock_bh();
  2135. if (err) {
  2136. XFRM_INC_STATS(net, LINUX_MIB_XFRMOUTSTATEMODEERROR);
  2137. goto error;
  2138. }
  2139. err = x->type->output(x, skb);
  2140. if (err) {
  2141. XFRM_INC_STATS(net, LINUX_MIB_XFRMOUTSTATEPROTOERROR);
  2142. goto error;
  2143. }
  2144. spin_lock_bh(&x->lock);
  2145. x->curlft.bytes += skb->len;
  2146. x->curlft.packets++;
  2147. spin_unlock_bh(&x->lock);
  2148. error:
  2149. return err;
  2150. }
  2151. static void free_SAs(struct pktgen_dev *pkt_dev)
  2152. {
  2153. if (pkt_dev->cflows) {
  2154. /* let go of the SAs if we have them */
  2155. int i;
  2156. for (i = 0; i < pkt_dev->cflows; i++) {
  2157. struct xfrm_state *x = pkt_dev->flows[i].x;
  2158. if (x) {
  2159. xfrm_state_put(x);
  2160. pkt_dev->flows[i].x = NULL;
  2161. }
  2162. }
  2163. }
  2164. }
  2165. static int process_ipsec(struct pktgen_dev *pkt_dev,
  2166. struct sk_buff *skb, __be16 protocol)
  2167. {
  2168. if (pkt_dev->flags & F_IPSEC) {
  2169. struct xfrm_state *x = pkt_dev->flows[pkt_dev->curfl].x;
  2170. int nhead = 0;
  2171. if (x) {
  2172. struct ethhdr *eth;
  2173. struct iphdr *iph;
  2174. int ret;
  2175. nhead = x->props.header_len - skb_headroom(skb);
  2176. if (nhead > 0) {
  2177. ret = pskb_expand_head(skb, nhead, 0, GFP_ATOMIC);
  2178. if (ret < 0) {
  2179. pr_err("Error expanding ipsec packet %d\n",
  2180. ret);
  2181. goto err;
  2182. }
  2183. }
  2184. /* ipsec is not expecting ll header */
  2185. skb_pull(skb, ETH_HLEN);
  2186. ret = pktgen_output_ipsec(skb, pkt_dev);
  2187. if (ret) {
  2188. pr_err("Error creating ipsec packet %d\n", ret);
  2189. goto err;
  2190. }
  2191. /* restore ll */
  2192. eth = skb_push(skb, ETH_HLEN);
  2193. memcpy(eth, pkt_dev->hh, 2 * ETH_ALEN);
  2194. eth->h_proto = protocol;
  2195. /* Update IPv4 header len as well as checksum value */
  2196. iph = ip_hdr(skb);
  2197. iph->tot_len = htons(skb->len - ETH_HLEN);
  2198. ip_send_check(iph);
  2199. }
  2200. }
  2201. return 1;
  2202. err:
  2203. kfree_skb(skb);
  2204. return 0;
  2205. }
  2206. #endif
  2207. static void mpls_push(__be32 *mpls, struct pktgen_dev *pkt_dev)
  2208. {
  2209. unsigned int i;
  2210. for (i = 0; i < pkt_dev->nr_labels; i++)
  2211. *mpls++ = pkt_dev->labels[i] & ~MPLS_STACK_BOTTOM;
  2212. mpls--;
  2213. *mpls |= MPLS_STACK_BOTTOM;
  2214. }
  2215. static inline __be16 build_tci(unsigned int id, unsigned int cfi,
  2216. unsigned int prio)
  2217. {
  2218. return htons(id | (cfi << 12) | (prio << 13));
  2219. }
  2220. static void pktgen_finalize_skb(struct pktgen_dev *pkt_dev, struct sk_buff *skb,
  2221. int datalen)
  2222. {
  2223. struct timespec64 timestamp;
  2224. struct pktgen_hdr *pgh;
  2225. pgh = skb_put(skb, sizeof(*pgh));
  2226. datalen -= sizeof(*pgh);
  2227. if (pkt_dev->nfrags <= 0) {
  2228. skb_put_zero(skb, datalen);
  2229. } else {
  2230. int frags = pkt_dev->nfrags;
  2231. int i, len;
  2232. int frag_len;
  2233. if (frags > MAX_SKB_FRAGS)
  2234. frags = MAX_SKB_FRAGS;
  2235. len = datalen - frags * PAGE_SIZE;
  2236. if (len > 0) {
  2237. skb_put_zero(skb, len);
  2238. datalen = frags * PAGE_SIZE;
  2239. }
  2240. i = 0;
  2241. frag_len = (datalen/frags) < PAGE_SIZE ?
  2242. (datalen/frags) : PAGE_SIZE;
  2243. while (datalen > 0) {
  2244. if (unlikely(!pkt_dev->page)) {
  2245. int node = numa_node_id();
  2246. if (pkt_dev->node >= 0 && (pkt_dev->flags & F_NODE))
  2247. node = pkt_dev->node;
  2248. pkt_dev->page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
  2249. if (!pkt_dev->page)
  2250. break;
  2251. }
  2252. get_page(pkt_dev->page);
  2253. skb_frag_set_page(skb, i, pkt_dev->page);
  2254. skb_frag_off_set(&skb_shinfo(skb)->frags[i], 0);
  2255. /*last fragment, fill rest of data*/
  2256. if (i == (frags - 1))
  2257. skb_frag_size_set(&skb_shinfo(skb)->frags[i],
  2258. (datalen < PAGE_SIZE ? datalen : PAGE_SIZE));
  2259. else
  2260. skb_frag_size_set(&skb_shinfo(skb)->frags[i], frag_len);
  2261. datalen -= skb_frag_size(&skb_shinfo(skb)->frags[i]);
  2262. skb->len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
  2263. skb->data_len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
  2264. i++;
  2265. skb_shinfo(skb)->nr_frags = i;
  2266. }
  2267. }
  2268. /* Stamp the time, and sequence number,
  2269. * convert them to network byte order
  2270. */
  2271. pgh->pgh_magic = htonl(PKTGEN_MAGIC);
  2272. pgh->seq_num = htonl(pkt_dev->seq_num);
  2273. if (pkt_dev->flags & F_NO_TIMESTAMP) {
  2274. pgh->tv_sec = 0;
  2275. pgh->tv_usec = 0;
  2276. } else {
  2277. /*
  2278. * pgh->tv_sec wraps in y2106 when interpreted as unsigned
  2279. * as done by wireshark, or y2038 when interpreted as signed.
  2280. * This is probably harmless, but if anyone wants to improve
  2281. * it, we could introduce a variant that puts 64-bit nanoseconds
  2282. * into the respective header bytes.
  2283. * This would also be slightly faster to read.
  2284. */
  2285. ktime_get_real_ts64(&timestamp);
  2286. pgh->tv_sec = htonl(timestamp.tv_sec);
  2287. pgh->tv_usec = htonl(timestamp.tv_nsec / NSEC_PER_USEC);
  2288. }
  2289. }
  2290. static struct sk_buff *pktgen_alloc_skb(struct net_device *dev,
  2291. struct pktgen_dev *pkt_dev)
  2292. {
  2293. unsigned int extralen = LL_RESERVED_SPACE(dev);
  2294. struct sk_buff *skb = NULL;
  2295. unsigned int size;
  2296. size = pkt_dev->cur_pkt_size + 64 + extralen + pkt_dev->pkt_overhead;
  2297. if (pkt_dev->flags & F_NODE) {
  2298. int node = pkt_dev->node >= 0 ? pkt_dev->node : numa_node_id();
  2299. skb = __alloc_skb(NET_SKB_PAD + size, GFP_NOWAIT, 0, node);
  2300. if (likely(skb)) {
  2301. skb_reserve(skb, NET_SKB_PAD);
  2302. skb->dev = dev;
  2303. }
  2304. } else {
  2305. skb = __netdev_alloc_skb(dev, size, GFP_NOWAIT);
  2306. }
  2307. /* the caller pre-fetches from skb->data and reserves for the mac hdr */
  2308. if (likely(skb))
  2309. skb_reserve(skb, extralen - 16);
  2310. return skb;
  2311. }
  2312. static struct sk_buff *fill_packet_ipv4(struct net_device *odev,
  2313. struct pktgen_dev *pkt_dev)
  2314. {
  2315. struct sk_buff *skb = NULL;
  2316. __u8 *eth;
  2317. struct udphdr *udph;
  2318. int datalen, iplen;
  2319. struct iphdr *iph;
  2320. __be16 protocol = htons(ETH_P_IP);
  2321. __be32 *mpls;
  2322. __be16 *vlan_tci = NULL; /* Encapsulates priority and VLAN ID */
  2323. __be16 *vlan_encapsulated_proto = NULL; /* packet type ID field (or len) for VLAN tag */
  2324. __be16 *svlan_tci = NULL; /* Encapsulates priority and SVLAN ID */
  2325. __be16 *svlan_encapsulated_proto = NULL; /* packet type ID field (or len) for SVLAN tag */
  2326. u16 queue_map;
  2327. if (pkt_dev->nr_labels)
  2328. protocol = htons(ETH_P_MPLS_UC);
  2329. if (pkt_dev->vlan_id != 0xffff)
  2330. protocol = htons(ETH_P_8021Q);
  2331. /* Update any of the values, used when we're incrementing various
  2332. * fields.
  2333. */
  2334. mod_cur_headers(pkt_dev);
  2335. queue_map = pkt_dev->cur_queue_map;
  2336. skb = pktgen_alloc_skb(odev, pkt_dev);
  2337. if (!skb) {
  2338. sprintf(pkt_dev->result, "No memory");
  2339. return NULL;
  2340. }
  2341. prefetchw(skb->data);
  2342. skb_reserve(skb, 16);
  2343. /* Reserve for ethernet and IP header */
  2344. eth = skb_push(skb, 14);
  2345. mpls = skb_put(skb, pkt_dev->nr_labels * sizeof(__u32));
  2346. if (pkt_dev->nr_labels)
  2347. mpls_push(mpls, pkt_dev);
  2348. if (pkt_dev->vlan_id != 0xffff) {
  2349. if (pkt_dev->svlan_id != 0xffff) {
  2350. svlan_tci = skb_put(skb, sizeof(__be16));
  2351. *svlan_tci = build_tci(pkt_dev->svlan_id,
  2352. pkt_dev->svlan_cfi,
  2353. pkt_dev->svlan_p);
  2354. svlan_encapsulated_proto = skb_put(skb,
  2355. sizeof(__be16));
  2356. *svlan_encapsulated_proto = htons(ETH_P_8021Q);
  2357. }
  2358. vlan_tci = skb_put(skb, sizeof(__be16));
  2359. *vlan_tci = build_tci(pkt_dev->vlan_id,
  2360. pkt_dev->vlan_cfi,
  2361. pkt_dev->vlan_p);
  2362. vlan_encapsulated_proto = skb_put(skb, sizeof(__be16));
  2363. *vlan_encapsulated_proto = htons(ETH_P_IP);
  2364. }
  2365. skb_reset_mac_header(skb);
  2366. skb_set_network_header(skb, skb->len);
  2367. iph = skb_put(skb, sizeof(struct iphdr));
  2368. skb_set_transport_header(skb, skb->len);
  2369. udph = skb_put(skb, sizeof(struct udphdr));
  2370. skb_set_queue_mapping(skb, queue_map);
  2371. skb->priority = pkt_dev->skb_priority;
  2372. memcpy(eth, pkt_dev->hh, 12);
  2373. *(__be16 *) & eth[12] = protocol;
  2374. /* Eth + IPh + UDPh + mpls */
  2375. datalen = pkt_dev->cur_pkt_size - 14 - 20 - 8 -
  2376. pkt_dev->pkt_overhead;
  2377. if (datalen < 0 || datalen < sizeof(struct pktgen_hdr))
  2378. datalen = sizeof(struct pktgen_hdr);
  2379. udph->source = htons(pkt_dev->cur_udp_src);
  2380. udph->dest = htons(pkt_dev->cur_udp_dst);
  2381. udph->len = htons(datalen + 8); /* DATA + udphdr */
  2382. udph->check = 0;
  2383. iph->ihl = 5;
  2384. iph->version = 4;
  2385. iph->ttl = 32;
  2386. iph->tos = pkt_dev->tos;
  2387. iph->protocol = IPPROTO_UDP; /* UDP */
  2388. iph->saddr = pkt_dev->cur_saddr;
  2389. iph->daddr = pkt_dev->cur_daddr;
  2390. iph->id = htons(pkt_dev->ip_id);
  2391. pkt_dev->ip_id++;
  2392. iph->frag_off = 0;
  2393. iplen = 20 + 8 + datalen;
  2394. iph->tot_len = htons(iplen);
  2395. ip_send_check(iph);
  2396. skb->protocol = protocol;
  2397. skb->dev = odev;
  2398. skb->pkt_type = PACKET_HOST;
  2399. pktgen_finalize_skb(pkt_dev, skb, datalen);
  2400. if (!(pkt_dev->flags & F_UDPCSUM)) {
  2401. skb->ip_summed = CHECKSUM_NONE;
  2402. } else if (odev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM)) {
  2403. skb->ip_summed = CHECKSUM_PARTIAL;
  2404. skb->csum = 0;
  2405. udp4_hwcsum(skb, iph->saddr, iph->daddr);
  2406. } else {
  2407. __wsum csum = skb_checksum(skb, skb_transport_offset(skb), datalen + 8, 0);
  2408. /* add protocol-dependent pseudo-header */
  2409. udph->check = csum_tcpudp_magic(iph->saddr, iph->daddr,
  2410. datalen + 8, IPPROTO_UDP, csum);
  2411. if (udph->check == 0)
  2412. udph->check = CSUM_MANGLED_0;
  2413. }
  2414. #ifdef CONFIG_XFRM
  2415. if (!process_ipsec(pkt_dev, skb, protocol))
  2416. return NULL;
  2417. #endif
  2418. return skb;
  2419. }
  2420. static struct sk_buff *fill_packet_ipv6(struct net_device *odev,
  2421. struct pktgen_dev *pkt_dev)
  2422. {
  2423. struct sk_buff *skb = NULL;
  2424. __u8 *eth;
  2425. struct udphdr *udph;
  2426. int datalen, udplen;
  2427. struct ipv6hdr *iph;
  2428. __be16 protocol = htons(ETH_P_IPV6);
  2429. __be32 *mpls;
  2430. __be16 *vlan_tci = NULL; /* Encapsulates priority and VLAN ID */
  2431. __be16 *vlan_encapsulated_proto = NULL; /* packet type ID field (or len) for VLAN tag */
  2432. __be16 *svlan_tci = NULL; /* Encapsulates priority and SVLAN ID */
  2433. __be16 *svlan_encapsulated_proto = NULL; /* packet type ID field (or len) for SVLAN tag */
  2434. u16 queue_map;
  2435. if (pkt_dev->nr_labels)
  2436. protocol = htons(ETH_P_MPLS_UC);
  2437. if (pkt_dev->vlan_id != 0xffff)
  2438. protocol = htons(ETH_P_8021Q);
  2439. /* Update any of the values, used when we're incrementing various
  2440. * fields.
  2441. */
  2442. mod_cur_headers(pkt_dev);
  2443. queue_map = pkt_dev->cur_queue_map;
  2444. skb = pktgen_alloc_skb(odev, pkt_dev);
  2445. if (!skb) {
  2446. sprintf(pkt_dev->result, "No memory");
  2447. return NULL;
  2448. }
  2449. prefetchw(skb->data);
  2450. skb_reserve(skb, 16);
  2451. /* Reserve for ethernet and IP header */
  2452. eth = skb_push(skb, 14);
  2453. mpls = skb_put(skb, pkt_dev->nr_labels * sizeof(__u32));
  2454. if (pkt_dev->nr_labels)
  2455. mpls_push(mpls, pkt_dev);
  2456. if (pkt_dev->vlan_id != 0xffff) {
  2457. if (pkt_dev->svlan_id != 0xffff) {
  2458. svlan_tci = skb_put(skb, sizeof(__be16));
  2459. *svlan_tci = build_tci(pkt_dev->svlan_id,
  2460. pkt_dev->svlan_cfi,
  2461. pkt_dev->svlan_p);
  2462. svlan_encapsulated_proto = skb_put(skb,
  2463. sizeof(__be16));
  2464. *svlan_encapsulated_proto = htons(ETH_P_8021Q);
  2465. }
  2466. vlan_tci = skb_put(skb, sizeof(__be16));
  2467. *vlan_tci = build_tci(pkt_dev->vlan_id,
  2468. pkt_dev->vlan_cfi,
  2469. pkt_dev->vlan_p);
  2470. vlan_encapsulated_proto = skb_put(skb, sizeof(__be16));
  2471. *vlan_encapsulated_proto = htons(ETH_P_IPV6);
  2472. }
  2473. skb_reset_mac_header(skb);
  2474. skb_set_network_header(skb, skb->len);
  2475. iph = skb_put(skb, sizeof(struct ipv6hdr));
  2476. skb_set_transport_header(skb, skb->len);
  2477. udph = skb_put(skb, sizeof(struct udphdr));
  2478. skb_set_queue_mapping(skb, queue_map);
  2479. skb->priority = pkt_dev->skb_priority;
  2480. memcpy(eth, pkt_dev->hh, 12);
  2481. *(__be16 *) &eth[12] = protocol;
  2482. /* Eth + IPh + UDPh + mpls */
  2483. datalen = pkt_dev->cur_pkt_size - 14 -
  2484. sizeof(struct ipv6hdr) - sizeof(struct udphdr) -
  2485. pkt_dev->pkt_overhead;
  2486. if (datalen < 0 || datalen < sizeof(struct pktgen_hdr)) {
  2487. datalen = sizeof(struct pktgen_hdr);
  2488. net_info_ratelimited("increased datalen to %d\n", datalen);
  2489. }
  2490. udplen = datalen + sizeof(struct udphdr);
  2491. udph->source = htons(pkt_dev->cur_udp_src);
  2492. udph->dest = htons(pkt_dev->cur_udp_dst);
  2493. udph->len = htons(udplen);
  2494. udph->check = 0;
  2495. *(__be32 *) iph = htonl(0x60000000); /* Version + flow */
  2496. if (pkt_dev->traffic_class) {
  2497. /* Version + traffic class + flow (0) */
  2498. *(__be32 *)iph |= htonl(0x60000000 | (pkt_dev->traffic_class << 20));
  2499. }
  2500. iph->hop_limit = 32;
  2501. iph->payload_len = htons(udplen);
  2502. iph->nexthdr = IPPROTO_UDP;
  2503. iph->daddr = pkt_dev->cur_in6_daddr;
  2504. iph->saddr = pkt_dev->cur_in6_saddr;
  2505. skb->protocol = protocol;
  2506. skb->dev = odev;
  2507. skb->pkt_type = PACKET_HOST;
  2508. pktgen_finalize_skb(pkt_dev, skb, datalen);
  2509. if (!(pkt_dev->flags & F_UDPCSUM)) {
  2510. skb->ip_summed = CHECKSUM_NONE;
  2511. } else if (odev->features & (NETIF_F_HW_CSUM | NETIF_F_IPV6_CSUM)) {
  2512. skb->ip_summed = CHECKSUM_PARTIAL;
  2513. skb->csum_start = skb_transport_header(skb) - skb->head;
  2514. skb->csum_offset = offsetof(struct udphdr, check);
  2515. udph->check = ~csum_ipv6_magic(&iph->saddr, &iph->daddr, udplen, IPPROTO_UDP, 0);
  2516. } else {
  2517. __wsum csum = skb_checksum(skb, skb_transport_offset(skb), udplen, 0);
  2518. /* add protocol-dependent pseudo-header */
  2519. udph->check = csum_ipv6_magic(&iph->saddr, &iph->daddr, udplen, IPPROTO_UDP, csum);
  2520. if (udph->check == 0)
  2521. udph->check = CSUM_MANGLED_0;
  2522. }
  2523. return skb;
  2524. }
  2525. static struct sk_buff *fill_packet(struct net_device *odev,
  2526. struct pktgen_dev *pkt_dev)
  2527. {
  2528. if (pkt_dev->flags & F_IPV6)
  2529. return fill_packet_ipv6(odev, pkt_dev);
  2530. else
  2531. return fill_packet_ipv4(odev, pkt_dev);
  2532. }
  2533. static void pktgen_clear_counters(struct pktgen_dev *pkt_dev)
  2534. {
  2535. pkt_dev->seq_num = 1;
  2536. pkt_dev->idle_acc = 0;
  2537. pkt_dev->sofar = 0;
  2538. pkt_dev->tx_bytes = 0;
  2539. pkt_dev->errors = 0;
  2540. }
  2541. /* Set up structure for sending pkts, clear counters */
  2542. static void pktgen_run(struct pktgen_thread *t)
  2543. {
  2544. struct pktgen_dev *pkt_dev;
  2545. int started = 0;
  2546. func_enter();
  2547. rcu_read_lock();
  2548. list_for_each_entry_rcu(pkt_dev, &t->if_list, list) {
  2549. /*
  2550. * setup odev and create initial packet.
  2551. */
  2552. pktgen_setup_inject(pkt_dev);
  2553. if (pkt_dev->odev) {
  2554. pktgen_clear_counters(pkt_dev);
  2555. pkt_dev->skb = NULL;
  2556. pkt_dev->started_at = pkt_dev->next_tx = ktime_get();
  2557. set_pkt_overhead(pkt_dev);
  2558. strcpy(pkt_dev->result, "Starting");
  2559. pkt_dev->running = 1; /* Cranke yeself! */
  2560. started++;
  2561. } else
  2562. strcpy(pkt_dev->result, "Error starting");
  2563. }
  2564. rcu_read_unlock();
  2565. if (started)
  2566. t->control &= ~(T_STOP);
  2567. }
  2568. static void pktgen_stop_all_threads_ifs(struct pktgen_net *pn)
  2569. {
  2570. struct pktgen_thread *t;
  2571. func_enter();
  2572. mutex_lock(&pktgen_thread_lock);
  2573. list_for_each_entry(t, &pn->pktgen_threads, th_list)
  2574. t->control |= T_STOP;
  2575. mutex_unlock(&pktgen_thread_lock);
  2576. }
  2577. static int thread_is_running(const struct pktgen_thread *t)
  2578. {
  2579. const struct pktgen_dev *pkt_dev;
  2580. rcu_read_lock();
  2581. list_for_each_entry_rcu(pkt_dev, &t->if_list, list)
  2582. if (pkt_dev->running) {
  2583. rcu_read_unlock();
  2584. return 1;
  2585. }
  2586. rcu_read_unlock();
  2587. return 0;
  2588. }
  2589. static int pktgen_wait_thread_run(struct pktgen_thread *t)
  2590. {
  2591. while (thread_is_running(t)) {
  2592. /* note: 't' will still be around even after the unlock/lock
  2593. * cycle because pktgen_thread threads are only cleared at
  2594. * net exit
  2595. */
  2596. mutex_unlock(&pktgen_thread_lock);
  2597. msleep_interruptible(100);
  2598. mutex_lock(&pktgen_thread_lock);
  2599. if (signal_pending(current))
  2600. goto signal;
  2601. }
  2602. return 1;
  2603. signal:
  2604. return 0;
  2605. }
  2606. static int pktgen_wait_all_threads_run(struct pktgen_net *pn)
  2607. {
  2608. struct pktgen_thread *t;
  2609. int sig = 1;
  2610. /* prevent from racing with rmmod */
  2611. if (!try_module_get(THIS_MODULE))
  2612. return sig;
  2613. mutex_lock(&pktgen_thread_lock);
  2614. list_for_each_entry(t, &pn->pktgen_threads, th_list) {
  2615. sig = pktgen_wait_thread_run(t);
  2616. if (sig == 0)
  2617. break;
  2618. }
  2619. if (sig == 0)
  2620. list_for_each_entry(t, &pn->pktgen_threads, th_list)
  2621. t->control |= (T_STOP);
  2622. mutex_unlock(&pktgen_thread_lock);
  2623. module_put(THIS_MODULE);
  2624. return sig;
  2625. }
  2626. static void pktgen_run_all_threads(struct pktgen_net *pn)
  2627. {
  2628. struct pktgen_thread *t;
  2629. func_enter();
  2630. mutex_lock(&pktgen_thread_lock);
  2631. list_for_each_entry(t, &pn->pktgen_threads, th_list)
  2632. t->control |= (T_RUN);
  2633. mutex_unlock(&pktgen_thread_lock);
  2634. /* Propagate thread->control */
  2635. schedule_timeout_interruptible(msecs_to_jiffies(125));
  2636. pktgen_wait_all_threads_run(pn);
  2637. }
  2638. static void pktgen_reset_all_threads(struct pktgen_net *pn)
  2639. {
  2640. struct pktgen_thread *t;
  2641. func_enter();
  2642. mutex_lock(&pktgen_thread_lock);
  2643. list_for_each_entry(t, &pn->pktgen_threads, th_list)
  2644. t->control |= (T_REMDEVALL);
  2645. mutex_unlock(&pktgen_thread_lock);
  2646. /* Propagate thread->control */
  2647. schedule_timeout_interruptible(msecs_to_jiffies(125));
  2648. pktgen_wait_all_threads_run(pn);
  2649. }
  2650. static void show_results(struct pktgen_dev *pkt_dev, int nr_frags)
  2651. {
  2652. __u64 bps, mbps, pps;
  2653. char *p = pkt_dev->result;
  2654. ktime_t elapsed = ktime_sub(pkt_dev->stopped_at,
  2655. pkt_dev->started_at);
  2656. ktime_t idle = ns_to_ktime(pkt_dev->idle_acc);
  2657. p += sprintf(p, "OK: %llu(c%llu+d%llu) usec, %llu (%dbyte,%dfrags)\n",
  2658. (unsigned long long)ktime_to_us(elapsed),
  2659. (unsigned long long)ktime_to_us(ktime_sub(elapsed, idle)),
  2660. (unsigned long long)ktime_to_us(idle),
  2661. (unsigned long long)pkt_dev->sofar,
  2662. pkt_dev->cur_pkt_size, nr_frags);
  2663. pps = div64_u64(pkt_dev->sofar * NSEC_PER_SEC,
  2664. ktime_to_ns(elapsed));
  2665. bps = pps * 8 * pkt_dev->cur_pkt_size;
  2666. mbps = bps;
  2667. do_div(mbps, 1000000);
  2668. p += sprintf(p, " %llupps %lluMb/sec (%llubps) errors: %llu",
  2669. (unsigned long long)pps,
  2670. (unsigned long long)mbps,
  2671. (unsigned long long)bps,
  2672. (unsigned long long)pkt_dev->errors);
  2673. }
  2674. /* Set stopped-at timer, remove from running list, do counters & statistics */
  2675. static int pktgen_stop_device(struct pktgen_dev *pkt_dev)
  2676. {
  2677. int nr_frags = pkt_dev->skb ? skb_shinfo(pkt_dev->skb)->nr_frags : -1;
  2678. if (!pkt_dev->running) {
  2679. pr_warn("interface: %s is already stopped\n",
  2680. pkt_dev->odevname);
  2681. return -EINVAL;
  2682. }
  2683. pkt_dev->running = 0;
  2684. kfree_skb(pkt_dev->skb);
  2685. pkt_dev->skb = NULL;
  2686. pkt_dev->stopped_at = ktime_get();
  2687. show_results(pkt_dev, nr_frags);
  2688. return 0;
  2689. }
  2690. static struct pktgen_dev *next_to_run(struct pktgen_thread *t)
  2691. {
  2692. struct pktgen_dev *pkt_dev, *best = NULL;
  2693. rcu_read_lock();
  2694. list_for_each_entry_rcu(pkt_dev, &t->if_list, list) {
  2695. if (!pkt_dev->running)
  2696. continue;
  2697. if (best == NULL)
  2698. best = pkt_dev;
  2699. else if (ktime_compare(pkt_dev->next_tx, best->next_tx) < 0)
  2700. best = pkt_dev;
  2701. }
  2702. rcu_read_unlock();
  2703. return best;
  2704. }
  2705. static void pktgen_stop(struct pktgen_thread *t)
  2706. {
  2707. struct pktgen_dev *pkt_dev;
  2708. func_enter();
  2709. rcu_read_lock();
  2710. list_for_each_entry_rcu(pkt_dev, &t->if_list, list) {
  2711. pktgen_stop_device(pkt_dev);
  2712. }
  2713. rcu_read_unlock();
  2714. }
  2715. /*
  2716. * one of our devices needs to be removed - find it
  2717. * and remove it
  2718. */
  2719. static void pktgen_rem_one_if(struct pktgen_thread *t)
  2720. {
  2721. struct list_head *q, *n;
  2722. struct pktgen_dev *cur;
  2723. func_enter();
  2724. list_for_each_safe(q, n, &t->if_list) {
  2725. cur = list_entry(q, struct pktgen_dev, list);
  2726. if (!cur->removal_mark)
  2727. continue;
  2728. kfree_skb(cur->skb);
  2729. cur->skb = NULL;
  2730. pktgen_remove_device(t, cur);
  2731. break;
  2732. }
  2733. }
  2734. static void pktgen_rem_all_ifs(struct pktgen_thread *t)
  2735. {
  2736. struct list_head *q, *n;
  2737. struct pktgen_dev *cur;
  2738. func_enter();
  2739. /* Remove all devices, free mem */
  2740. list_for_each_safe(q, n, &t->if_list) {
  2741. cur = list_entry(q, struct pktgen_dev, list);
  2742. kfree_skb(cur->skb);
  2743. cur->skb = NULL;
  2744. pktgen_remove_device(t, cur);
  2745. }
  2746. }
  2747. static void pktgen_rem_thread(struct pktgen_thread *t)
  2748. {
  2749. /* Remove from the thread list */
  2750. remove_proc_entry(t->tsk->comm, t->net->proc_dir);
  2751. }
  2752. static void pktgen_resched(struct pktgen_dev *pkt_dev)
  2753. {
  2754. ktime_t idle_start = ktime_get();
  2755. schedule();
  2756. pkt_dev->idle_acc += ktime_to_ns(ktime_sub(ktime_get(), idle_start));
  2757. }
  2758. static void pktgen_wait_for_skb(struct pktgen_dev *pkt_dev)
  2759. {
  2760. ktime_t idle_start = ktime_get();
  2761. while (refcount_read(&(pkt_dev->skb->users)) != 1) {
  2762. if (signal_pending(current))
  2763. break;
  2764. if (need_resched())
  2765. pktgen_resched(pkt_dev);
  2766. else
  2767. cpu_relax();
  2768. }
  2769. pkt_dev->idle_acc += ktime_to_ns(ktime_sub(ktime_get(), idle_start));
  2770. }
  2771. static void pktgen_xmit(struct pktgen_dev *pkt_dev)
  2772. {
  2773. unsigned int burst = READ_ONCE(pkt_dev->burst);
  2774. struct net_device *odev = pkt_dev->odev;
  2775. struct netdev_queue *txq;
  2776. struct sk_buff *skb;
  2777. int ret;
  2778. /* If device is offline, then don't send */
  2779. if (unlikely(!netif_running(odev) || !netif_carrier_ok(odev))) {
  2780. pktgen_stop_device(pkt_dev);
  2781. return;
  2782. }
  2783. /* This is max DELAY, this has special meaning of
  2784. * "never transmit"
  2785. */
  2786. if (unlikely(pkt_dev->delay == ULLONG_MAX)) {
  2787. pkt_dev->next_tx = ktime_add_ns(ktime_get(), ULONG_MAX);
  2788. return;
  2789. }
  2790. /* If no skb or clone count exhausted then get new one */
  2791. if (!pkt_dev->skb || (pkt_dev->last_ok &&
  2792. ++pkt_dev->clone_count >= pkt_dev->clone_skb)) {
  2793. /* build a new pkt */
  2794. kfree_skb(pkt_dev->skb);
  2795. pkt_dev->skb = fill_packet(odev, pkt_dev);
  2796. if (pkt_dev->skb == NULL) {
  2797. pr_err("ERROR: couldn't allocate skb in fill_packet\n");
  2798. schedule();
  2799. pkt_dev->clone_count--; /* back out increment, OOM */
  2800. return;
  2801. }
  2802. pkt_dev->last_pkt_size = pkt_dev->skb->len;
  2803. pkt_dev->clone_count = 0; /* reset counter */
  2804. }
  2805. if (pkt_dev->delay && pkt_dev->last_ok)
  2806. spin(pkt_dev, pkt_dev->next_tx);
  2807. if (pkt_dev->xmit_mode == M_NETIF_RECEIVE) {
  2808. skb = pkt_dev->skb;
  2809. skb->protocol = eth_type_trans(skb, skb->dev);
  2810. refcount_add(burst, &skb->users);
  2811. local_bh_disable();
  2812. do {
  2813. ret = netif_receive_skb(skb);
  2814. if (ret == NET_RX_DROP)
  2815. pkt_dev->errors++;
  2816. pkt_dev->sofar++;
  2817. pkt_dev->seq_num++;
  2818. if (refcount_read(&skb->users) != burst) {
  2819. /* skb was queued by rps/rfs or taps,
  2820. * so cannot reuse this skb
  2821. */
  2822. WARN_ON(refcount_sub_and_test(burst - 1, &skb->users));
  2823. /* get out of the loop and wait
  2824. * until skb is consumed
  2825. */
  2826. break;
  2827. }
  2828. /* skb was 'freed' by stack, so clean few
  2829. * bits and reuse it
  2830. */
  2831. skb_reset_redirect(skb);
  2832. } while (--burst > 0);
  2833. goto out; /* Skips xmit_mode M_START_XMIT */
  2834. } else if (pkt_dev->xmit_mode == M_QUEUE_XMIT) {
  2835. local_bh_disable();
  2836. refcount_inc(&pkt_dev->skb->users);
  2837. ret = dev_queue_xmit(pkt_dev->skb);
  2838. switch (ret) {
  2839. case NET_XMIT_SUCCESS:
  2840. pkt_dev->sofar++;
  2841. pkt_dev->seq_num++;
  2842. pkt_dev->tx_bytes += pkt_dev->last_pkt_size;
  2843. break;
  2844. case NET_XMIT_DROP:
  2845. case NET_XMIT_CN:
  2846. /* These are all valid return codes for a qdisc but
  2847. * indicate packets are being dropped or will likely
  2848. * be dropped soon.
  2849. */
  2850. case NETDEV_TX_BUSY:
  2851. /* qdisc may call dev_hard_start_xmit directly in cases
  2852. * where no queues exist e.g. loopback device, virtual
  2853. * devices, etc. In this case we need to handle
  2854. * NETDEV_TX_ codes.
  2855. */
  2856. default:
  2857. pkt_dev->errors++;
  2858. net_info_ratelimited("%s xmit error: %d\n",
  2859. pkt_dev->odevname, ret);
  2860. break;
  2861. }
  2862. goto out;
  2863. }
  2864. txq = skb_get_tx_queue(odev, pkt_dev->skb);
  2865. local_bh_disable();
  2866. HARD_TX_LOCK(odev, txq, smp_processor_id());
  2867. if (unlikely(netif_xmit_frozen_or_drv_stopped(txq))) {
  2868. pkt_dev->last_ok = 0;
  2869. goto unlock;
  2870. }
  2871. refcount_add(burst, &pkt_dev->skb->users);
  2872. xmit_more:
  2873. ret = netdev_start_xmit(pkt_dev->skb, odev, txq, --burst > 0);
  2874. switch (ret) {
  2875. case NETDEV_TX_OK:
  2876. pkt_dev->last_ok = 1;
  2877. pkt_dev->sofar++;
  2878. pkt_dev->seq_num++;
  2879. pkt_dev->tx_bytes += pkt_dev->last_pkt_size;
  2880. if (burst > 0 && !netif_xmit_frozen_or_drv_stopped(txq))
  2881. goto xmit_more;
  2882. break;
  2883. case NET_XMIT_DROP:
  2884. case NET_XMIT_CN:
  2885. /* skb has been consumed */
  2886. pkt_dev->errors++;
  2887. break;
  2888. default: /* Drivers are not supposed to return other values! */
  2889. net_info_ratelimited("%s xmit error: %d\n",
  2890. pkt_dev->odevname, ret);
  2891. pkt_dev->errors++;
  2892. /* fall through */
  2893. case NETDEV_TX_BUSY:
  2894. /* Retry it next time */
  2895. refcount_dec(&(pkt_dev->skb->users));
  2896. pkt_dev->last_ok = 0;
  2897. }
  2898. if (unlikely(burst))
  2899. WARN_ON(refcount_sub_and_test(burst, &pkt_dev->skb->users));
  2900. unlock:
  2901. HARD_TX_UNLOCK(odev, txq);
  2902. out:
  2903. local_bh_enable();
  2904. /* If pkt_dev->count is zero, then run forever */
  2905. if ((pkt_dev->count != 0) && (pkt_dev->sofar >= pkt_dev->count)) {
  2906. pktgen_wait_for_skb(pkt_dev);
  2907. /* Done with this */
  2908. pktgen_stop_device(pkt_dev);
  2909. }
  2910. }
  2911. /*
  2912. * Main loop of the thread goes here
  2913. */
  2914. static int pktgen_thread_worker(void *arg)
  2915. {
  2916. DEFINE_WAIT(wait);
  2917. struct pktgen_thread *t = arg;
  2918. struct pktgen_dev *pkt_dev = NULL;
  2919. int cpu = t->cpu;
  2920. BUG_ON(smp_processor_id() != cpu);
  2921. init_waitqueue_head(&t->queue);
  2922. complete(&t->start_done);
  2923. pr_debug("starting pktgen/%d: pid=%d\n", cpu, task_pid_nr(current));
  2924. set_freezable();
  2925. while (!kthread_should_stop()) {
  2926. pkt_dev = next_to_run(t);
  2927. if (unlikely(!pkt_dev && t->control == 0)) {
  2928. if (t->net->pktgen_exiting)
  2929. break;
  2930. wait_event_interruptible_timeout(t->queue,
  2931. t->control != 0,
  2932. HZ/10);
  2933. try_to_freeze();
  2934. continue;
  2935. }
  2936. if (likely(pkt_dev)) {
  2937. pktgen_xmit(pkt_dev);
  2938. if (need_resched())
  2939. pktgen_resched(pkt_dev);
  2940. else
  2941. cpu_relax();
  2942. }
  2943. if (t->control & T_STOP) {
  2944. pktgen_stop(t);
  2945. t->control &= ~(T_STOP);
  2946. }
  2947. if (t->control & T_RUN) {
  2948. pktgen_run(t);
  2949. t->control &= ~(T_RUN);
  2950. }
  2951. if (t->control & T_REMDEVALL) {
  2952. pktgen_rem_all_ifs(t);
  2953. t->control &= ~(T_REMDEVALL);
  2954. }
  2955. if (t->control & T_REMDEV) {
  2956. pktgen_rem_one_if(t);
  2957. t->control &= ~(T_REMDEV);
  2958. }
  2959. try_to_freeze();
  2960. }
  2961. pr_debug("%s stopping all device\n", t->tsk->comm);
  2962. pktgen_stop(t);
  2963. pr_debug("%s removing all device\n", t->tsk->comm);
  2964. pktgen_rem_all_ifs(t);
  2965. pr_debug("%s removing thread\n", t->tsk->comm);
  2966. pktgen_rem_thread(t);
  2967. return 0;
  2968. }
  2969. static struct pktgen_dev *pktgen_find_dev(struct pktgen_thread *t,
  2970. const char *ifname, bool exact)
  2971. {
  2972. struct pktgen_dev *p, *pkt_dev = NULL;
  2973. size_t len = strlen(ifname);
  2974. rcu_read_lock();
  2975. list_for_each_entry_rcu(p, &t->if_list, list)
  2976. if (strncmp(p->odevname, ifname, len) == 0) {
  2977. if (p->odevname[len]) {
  2978. if (exact || p->odevname[len] != '@')
  2979. continue;
  2980. }
  2981. pkt_dev = p;
  2982. break;
  2983. }
  2984. rcu_read_unlock();
  2985. pr_debug("find_dev(%s) returning %p\n", ifname, pkt_dev);
  2986. return pkt_dev;
  2987. }
  2988. /*
  2989. * Adds a dev at front of if_list.
  2990. */
  2991. static int add_dev_to_thread(struct pktgen_thread *t,
  2992. struct pktgen_dev *pkt_dev)
  2993. {
  2994. int rv = 0;
  2995. /* This function cannot be called concurrently, as its called
  2996. * under pktgen_thread_lock mutex, but it can run from
  2997. * userspace on another CPU than the kthread. The if_lock()
  2998. * is used here to sync with concurrent instances of
  2999. * _rem_dev_from_if_list() invoked via kthread, which is also
  3000. * updating the if_list */
  3001. if_lock(t);
  3002. if (pkt_dev->pg_thread) {
  3003. pr_err("ERROR: already assigned to a thread\n");
  3004. rv = -EBUSY;
  3005. goto out;
  3006. }
  3007. pkt_dev->running = 0;
  3008. pkt_dev->pg_thread = t;
  3009. list_add_rcu(&pkt_dev->list, &t->if_list);
  3010. out:
  3011. if_unlock(t);
  3012. return rv;
  3013. }
  3014. /* Called under thread lock */
  3015. static int pktgen_add_device(struct pktgen_thread *t, const char *ifname)
  3016. {
  3017. struct pktgen_dev *pkt_dev;
  3018. int err;
  3019. int node = cpu_to_node(t->cpu);
  3020. /* We don't allow a device to be on several threads */
  3021. pkt_dev = __pktgen_NN_threads(t->net, ifname, FIND);
  3022. if (pkt_dev) {
  3023. pr_err("ERROR: interface already used\n");
  3024. return -EBUSY;
  3025. }
  3026. pkt_dev = kzalloc_node(sizeof(struct pktgen_dev), GFP_KERNEL, node);
  3027. if (!pkt_dev)
  3028. return -ENOMEM;
  3029. strcpy(pkt_dev->odevname, ifname);
  3030. pkt_dev->flows = vzalloc_node(array_size(MAX_CFLOWS,
  3031. sizeof(struct flow_state)),
  3032. node);
  3033. if (pkt_dev->flows == NULL) {
  3034. kfree(pkt_dev);
  3035. return -ENOMEM;
  3036. }
  3037. pkt_dev->removal_mark = 0;
  3038. pkt_dev->nfrags = 0;
  3039. pkt_dev->delay = pg_delay_d;
  3040. pkt_dev->count = pg_count_d;
  3041. pkt_dev->sofar = 0;
  3042. pkt_dev->udp_src_min = 9; /* sink port */
  3043. pkt_dev->udp_src_max = 9;
  3044. pkt_dev->udp_dst_min = 9;
  3045. pkt_dev->udp_dst_max = 9;
  3046. pkt_dev->vlan_p = 0;
  3047. pkt_dev->vlan_cfi = 0;
  3048. pkt_dev->vlan_id = 0xffff;
  3049. pkt_dev->svlan_p = 0;
  3050. pkt_dev->svlan_cfi = 0;
  3051. pkt_dev->svlan_id = 0xffff;
  3052. pkt_dev->burst = 1;
  3053. pkt_dev->node = NUMA_NO_NODE;
  3054. err = pktgen_setup_dev(t->net, pkt_dev, ifname);
  3055. if (err)
  3056. goto out1;
  3057. if (pkt_dev->odev->priv_flags & IFF_TX_SKB_SHARING)
  3058. pkt_dev->clone_skb = pg_clone_skb_d;
  3059. pkt_dev->entry = proc_create_data(ifname, 0600, t->net->proc_dir,
  3060. &pktgen_if_proc_ops, pkt_dev);
  3061. if (!pkt_dev->entry) {
  3062. pr_err("cannot create %s/%s procfs entry\n",
  3063. PG_PROC_DIR, ifname);
  3064. err = -EINVAL;
  3065. goto out2;
  3066. }
  3067. #ifdef CONFIG_XFRM
  3068. pkt_dev->ipsmode = XFRM_MODE_TRANSPORT;
  3069. pkt_dev->ipsproto = IPPROTO_ESP;
  3070. /* xfrm tunnel mode needs additional dst to extract outter
  3071. * ip header protocol/ttl/id field, here creat a phony one.
  3072. * instead of looking for a valid rt, which definitely hurting
  3073. * performance under such circumstance.
  3074. */
  3075. pkt_dev->dstops.family = AF_INET;
  3076. pkt_dev->xdst.u.dst.dev = pkt_dev->odev;
  3077. dst_init_metrics(&pkt_dev->xdst.u.dst, pktgen_dst_metrics, false);
  3078. pkt_dev->xdst.child = &pkt_dev->xdst.u.dst;
  3079. pkt_dev->xdst.u.dst.ops = &pkt_dev->dstops;
  3080. #endif
  3081. return add_dev_to_thread(t, pkt_dev);
  3082. out2:
  3083. dev_put(pkt_dev->odev);
  3084. out1:
  3085. #ifdef CONFIG_XFRM
  3086. free_SAs(pkt_dev);
  3087. #endif
  3088. vfree(pkt_dev->flows);
  3089. kfree(pkt_dev);
  3090. return err;
  3091. }
  3092. static int __net_init pktgen_create_thread(int cpu, struct pktgen_net *pn)
  3093. {
  3094. struct pktgen_thread *t;
  3095. struct proc_dir_entry *pe;
  3096. struct task_struct *p;
  3097. t = kzalloc_node(sizeof(struct pktgen_thread), GFP_KERNEL,
  3098. cpu_to_node(cpu));
  3099. if (!t) {
  3100. pr_err("ERROR: out of memory, can't create new thread\n");
  3101. return -ENOMEM;
  3102. }
  3103. mutex_init(&t->if_lock);
  3104. t->cpu = cpu;
  3105. INIT_LIST_HEAD(&t->if_list);
  3106. list_add_tail(&t->th_list, &pn->pktgen_threads);
  3107. init_completion(&t->start_done);
  3108. p = kthread_create_on_node(pktgen_thread_worker,
  3109. t,
  3110. cpu_to_node(cpu),
  3111. "kpktgend_%d", cpu);
  3112. if (IS_ERR(p)) {
  3113. pr_err("kernel_thread() failed for cpu %d\n", t->cpu);
  3114. list_del(&t->th_list);
  3115. kfree(t);
  3116. return PTR_ERR(p);
  3117. }
  3118. kthread_bind(p, cpu);
  3119. t->tsk = p;
  3120. pe = proc_create_data(t->tsk->comm, 0600, pn->proc_dir,
  3121. &pktgen_thread_proc_ops, t);
  3122. if (!pe) {
  3123. pr_err("cannot create %s/%s procfs entry\n",
  3124. PG_PROC_DIR, t->tsk->comm);
  3125. kthread_stop(p);
  3126. list_del(&t->th_list);
  3127. kfree(t);
  3128. return -EINVAL;
  3129. }
  3130. t->net = pn;
  3131. get_task_struct(p);
  3132. wake_up_process(p);
  3133. wait_for_completion(&t->start_done);
  3134. return 0;
  3135. }
  3136. /*
  3137. * Removes a device from the thread if_list.
  3138. */
  3139. static void _rem_dev_from_if_list(struct pktgen_thread *t,
  3140. struct pktgen_dev *pkt_dev)
  3141. {
  3142. struct list_head *q, *n;
  3143. struct pktgen_dev *p;
  3144. if_lock(t);
  3145. list_for_each_safe(q, n, &t->if_list) {
  3146. p = list_entry(q, struct pktgen_dev, list);
  3147. if (p == pkt_dev)
  3148. list_del_rcu(&p->list);
  3149. }
  3150. if_unlock(t);
  3151. }
  3152. static int pktgen_remove_device(struct pktgen_thread *t,
  3153. struct pktgen_dev *pkt_dev)
  3154. {
  3155. pr_debug("remove_device pkt_dev=%p\n", pkt_dev);
  3156. if (pkt_dev->running) {
  3157. pr_warn("WARNING: trying to remove a running interface, stopping it now\n");
  3158. pktgen_stop_device(pkt_dev);
  3159. }
  3160. /* Dis-associate from the interface */
  3161. if (pkt_dev->odev) {
  3162. dev_put(pkt_dev->odev);
  3163. pkt_dev->odev = NULL;
  3164. }
  3165. /* Remove proc before if_list entry, because add_device uses
  3166. * list to determine if interface already exist, avoid race
  3167. * with proc_create_data() */
  3168. proc_remove(pkt_dev->entry);
  3169. /* And update the thread if_list */
  3170. _rem_dev_from_if_list(t, pkt_dev);
  3171. #ifdef CONFIG_XFRM
  3172. free_SAs(pkt_dev);
  3173. #endif
  3174. vfree(pkt_dev->flows);
  3175. if (pkt_dev->page)
  3176. put_page(pkt_dev->page);
  3177. kfree_rcu(pkt_dev, rcu);
  3178. return 0;
  3179. }
  3180. static int __net_init pg_net_init(struct net *net)
  3181. {
  3182. struct pktgen_net *pn = net_generic(net, pg_net_id);
  3183. struct proc_dir_entry *pe;
  3184. int cpu, ret = 0;
  3185. pn->net = net;
  3186. INIT_LIST_HEAD(&pn->pktgen_threads);
  3187. pn->pktgen_exiting = false;
  3188. pn->proc_dir = proc_mkdir(PG_PROC_DIR, pn->net->proc_net);
  3189. if (!pn->proc_dir) {
  3190. pr_warn("cannot create /proc/net/%s\n", PG_PROC_DIR);
  3191. return -ENODEV;
  3192. }
  3193. pe = proc_create(PGCTRL, 0600, pn->proc_dir, &pktgen_proc_ops);
  3194. if (pe == NULL) {
  3195. pr_err("cannot create %s procfs entry\n", PGCTRL);
  3196. ret = -EINVAL;
  3197. goto remove;
  3198. }
  3199. for_each_online_cpu(cpu) {
  3200. int err;
  3201. err = pktgen_create_thread(cpu, pn);
  3202. if (err)
  3203. pr_warn("Cannot create thread for cpu %d (%d)\n",
  3204. cpu, err);
  3205. }
  3206. if (list_empty(&pn->pktgen_threads)) {
  3207. pr_err("Initialization failed for all threads\n");
  3208. ret = -ENODEV;
  3209. goto remove_entry;
  3210. }
  3211. return 0;
  3212. remove_entry:
  3213. remove_proc_entry(PGCTRL, pn->proc_dir);
  3214. remove:
  3215. remove_proc_entry(PG_PROC_DIR, pn->net->proc_net);
  3216. return ret;
  3217. }
  3218. static void __net_exit pg_net_exit(struct net *net)
  3219. {
  3220. struct pktgen_net *pn = net_generic(net, pg_net_id);
  3221. struct pktgen_thread *t;
  3222. struct list_head *q, *n;
  3223. LIST_HEAD(list);
  3224. /* Stop all interfaces & threads */
  3225. pn->pktgen_exiting = true;
  3226. mutex_lock(&pktgen_thread_lock);
  3227. list_splice_init(&pn->pktgen_threads, &list);
  3228. mutex_unlock(&pktgen_thread_lock);
  3229. list_for_each_safe(q, n, &list) {
  3230. t = list_entry(q, struct pktgen_thread, th_list);
  3231. list_del(&t->th_list);
  3232. kthread_stop(t->tsk);
  3233. put_task_struct(t->tsk);
  3234. kfree(t);
  3235. }
  3236. remove_proc_entry(PGCTRL, pn->proc_dir);
  3237. remove_proc_entry(PG_PROC_DIR, pn->net->proc_net);
  3238. }
  3239. static struct pernet_operations pg_net_ops = {
  3240. .init = pg_net_init,
  3241. .exit = pg_net_exit,
  3242. .id = &pg_net_id,
  3243. .size = sizeof(struct pktgen_net),
  3244. };
  3245. static int __init pg_init(void)
  3246. {
  3247. int ret = 0;
  3248. pr_info("%s", version);
  3249. ret = register_pernet_subsys(&pg_net_ops);
  3250. if (ret)
  3251. return ret;
  3252. ret = register_netdevice_notifier(&pktgen_notifier_block);
  3253. if (ret)
  3254. unregister_pernet_subsys(&pg_net_ops);
  3255. return ret;
  3256. }
  3257. static void __exit pg_cleanup(void)
  3258. {
  3259. unregister_netdevice_notifier(&pktgen_notifier_block);
  3260. unregister_pernet_subsys(&pg_net_ops);
  3261. /* Don't need rcu_barrier() due to use of kfree_rcu() */
  3262. }
  3263. module_init(pg_init);
  3264. module_exit(pg_cleanup);
  3265. MODULE_AUTHOR("Robert Olsson <robert.olsson@its.uu.se>");
  3266. MODULE_DESCRIPTION("Packet Generator tool");
  3267. MODULE_LICENSE("GPL");
  3268. MODULE_VERSION(VERSION);
  3269. module_param(pg_count_d, int, 0);
  3270. MODULE_PARM_DESC(pg_count_d, "Default number of packets to inject");
  3271. module_param(pg_delay_d, int, 0);
  3272. MODULE_PARM_DESC(pg_delay_d, "Default delay between packets (nanoseconds)");
  3273. module_param(pg_clone_skb_d, int, 0);
  3274. MODULE_PARM_DESC(pg_clone_skb_d, "Default number of copies of the same packet");
  3275. module_param(debug, int, 0);
  3276. MODULE_PARM_DESC(debug, "Enable debugging of pktgen module");