PageRenderTime 57ms CodeModel.GetById 15ms RepoModel.GetById 0ms app.codeStats 1ms

/drivers/net/ethernet/atheros/atlx/atl1.c

http://github.com/mirrors/linux
C | 3643 lines | 2638 code | 466 blank | 539 comment | 381 complexity | 0e7b4c625f87d6dde0202f8ca5339d63 MD5 | raw file
Possible License(s): AGPL-1.0, GPL-2.0, LGPL-2.0
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * Copyright(c) 2005 - 2006 Attansic Corporation. All rights reserved.
  4. * Copyright(c) 2006 - 2007 Chris Snook <csnook@redhat.com>
  5. * Copyright(c) 2006 - 2008 Jay Cliburn <jcliburn@gmail.com>
  6. *
  7. * Derived from Intel e1000 driver
  8. * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
  9. *
  10. * Contact Information:
  11. * Xiong Huang <xiong.huang@atheros.com>
  12. * Jie Yang <jie.yang@atheros.com>
  13. * Chris Snook <csnook@redhat.com>
  14. * Jay Cliburn <jcliburn@gmail.com>
  15. *
  16. * This version is adapted from the Attansic reference driver.
  17. *
  18. * TODO:
  19. * Add more ethtool functions.
  20. * Fix abstruse irq enable/disable condition described here:
  21. * http://marc.theaimsgroup.com/?l=linux-netdev&m=116398508500553&w=2
  22. *
  23. * NEEDS TESTING:
  24. * VLAN
  25. * multicast
  26. * promiscuous mode
  27. * interrupt coalescing
  28. * SMP torture testing
  29. */
  30. #include <linux/atomic.h>
  31. #include <asm/byteorder.h>
  32. #include <linux/compiler.h>
  33. #include <linux/crc32.h>
  34. #include <linux/delay.h>
  35. #include <linux/dma-mapping.h>
  36. #include <linux/etherdevice.h>
  37. #include <linux/hardirq.h>
  38. #include <linux/if_ether.h>
  39. #include <linux/if_vlan.h>
  40. #include <linux/in.h>
  41. #include <linux/interrupt.h>
  42. #include <linux/ip.h>
  43. #include <linux/irqflags.h>
  44. #include <linux/irqreturn.h>
  45. #include <linux/jiffies.h>
  46. #include <linux/mii.h>
  47. #include <linux/module.h>
  48. #include <linux/net.h>
  49. #include <linux/netdevice.h>
  50. #include <linux/pci.h>
  51. #include <linux/pci_ids.h>
  52. #include <linux/pm.h>
  53. #include <linux/skbuff.h>
  54. #include <linux/slab.h>
  55. #include <linux/spinlock.h>
  56. #include <linux/string.h>
  57. #include <linux/tcp.h>
  58. #include <linux/timer.h>
  59. #include <linux/types.h>
  60. #include <linux/workqueue.h>
  61. #include <net/checksum.h>
  62. #include "atl1.h"
  63. MODULE_AUTHOR("Xiong Huang <xiong.huang@atheros.com>, "
  64. "Chris Snook <csnook@redhat.com>, "
  65. "Jay Cliburn <jcliburn@gmail.com>");
  66. MODULE_LICENSE("GPL");
  67. /* Temporary hack for merging atl1 and atl2 */
  68. #include "atlx.c"
  69. static const struct ethtool_ops atl1_ethtool_ops;
  70. /*
  71. * This is the only thing that needs to be changed to adjust the
  72. * maximum number of ports that the driver can manage.
  73. */
  74. #define ATL1_MAX_NIC 4
  75. #define OPTION_UNSET -1
  76. #define OPTION_DISABLED 0
  77. #define OPTION_ENABLED 1
  78. #define ATL1_PARAM_INIT { [0 ... ATL1_MAX_NIC] = OPTION_UNSET }
  79. /*
  80. * Interrupt Moderate Timer in units of 2 us
  81. *
  82. * Valid Range: 10-65535
  83. *
  84. * Default Value: 100 (200us)
  85. */
  86. static int int_mod_timer[ATL1_MAX_NIC+1] = ATL1_PARAM_INIT;
  87. static unsigned int num_int_mod_timer;
  88. module_param_array_named(int_mod_timer, int_mod_timer, int,
  89. &num_int_mod_timer, 0);
  90. MODULE_PARM_DESC(int_mod_timer, "Interrupt moderator timer");
  91. #define DEFAULT_INT_MOD_CNT 100 /* 200us */
  92. #define MAX_INT_MOD_CNT 65000
  93. #define MIN_INT_MOD_CNT 50
  94. struct atl1_option {
  95. enum { enable_option, range_option, list_option } type;
  96. char *name;
  97. char *err;
  98. int def;
  99. union {
  100. struct { /* range_option info */
  101. int min;
  102. int max;
  103. } r;
  104. struct { /* list_option info */
  105. int nr;
  106. struct atl1_opt_list {
  107. int i;
  108. char *str;
  109. } *p;
  110. } l;
  111. } arg;
  112. };
  113. static int atl1_validate_option(int *value, struct atl1_option *opt,
  114. struct pci_dev *pdev)
  115. {
  116. if (*value == OPTION_UNSET) {
  117. *value = opt->def;
  118. return 0;
  119. }
  120. switch (opt->type) {
  121. case enable_option:
  122. switch (*value) {
  123. case OPTION_ENABLED:
  124. dev_info(&pdev->dev, "%s enabled\n", opt->name);
  125. return 0;
  126. case OPTION_DISABLED:
  127. dev_info(&pdev->dev, "%s disabled\n", opt->name);
  128. return 0;
  129. }
  130. break;
  131. case range_option:
  132. if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
  133. dev_info(&pdev->dev, "%s set to %i\n", opt->name,
  134. *value);
  135. return 0;
  136. }
  137. break;
  138. case list_option:{
  139. int i;
  140. struct atl1_opt_list *ent;
  141. for (i = 0; i < opt->arg.l.nr; i++) {
  142. ent = &opt->arg.l.p[i];
  143. if (*value == ent->i) {
  144. if (ent->str[0] != '\0')
  145. dev_info(&pdev->dev, "%s\n",
  146. ent->str);
  147. return 0;
  148. }
  149. }
  150. }
  151. break;
  152. default:
  153. break;
  154. }
  155. dev_info(&pdev->dev, "invalid %s specified (%i) %s\n",
  156. opt->name, *value, opt->err);
  157. *value = opt->def;
  158. return -1;
  159. }
  160. /**
  161. * atl1_check_options - Range Checking for Command Line Parameters
  162. * @adapter: board private structure
  163. *
  164. * This routine checks all command line parameters for valid user
  165. * input. If an invalid value is given, or if no user specified
  166. * value exists, a default value is used. The final value is stored
  167. * in a variable in the adapter structure.
  168. */
  169. static void atl1_check_options(struct atl1_adapter *adapter)
  170. {
  171. struct pci_dev *pdev = adapter->pdev;
  172. int bd = adapter->bd_number;
  173. if (bd >= ATL1_MAX_NIC) {
  174. dev_notice(&pdev->dev, "no configuration for board#%i\n", bd);
  175. dev_notice(&pdev->dev, "using defaults for all values\n");
  176. }
  177. { /* Interrupt Moderate Timer */
  178. struct atl1_option opt = {
  179. .type = range_option,
  180. .name = "Interrupt Moderator Timer",
  181. .err = "using default of "
  182. __MODULE_STRING(DEFAULT_INT_MOD_CNT),
  183. .def = DEFAULT_INT_MOD_CNT,
  184. .arg = {.r = {.min = MIN_INT_MOD_CNT,
  185. .max = MAX_INT_MOD_CNT} }
  186. };
  187. int val;
  188. if (num_int_mod_timer > bd) {
  189. val = int_mod_timer[bd];
  190. atl1_validate_option(&val, &opt, pdev);
  191. adapter->imt = (u16) val;
  192. } else
  193. adapter->imt = (u16) (opt.def);
  194. }
  195. }
  196. /*
  197. * atl1_pci_tbl - PCI Device ID Table
  198. */
  199. static const struct pci_device_id atl1_pci_tbl[] = {
  200. {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1)},
  201. /* required last entry */
  202. {0,}
  203. };
  204. MODULE_DEVICE_TABLE(pci, atl1_pci_tbl);
  205. static const u32 atl1_default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
  206. NETIF_MSG_LINK | NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP;
  207. static int debug = -1;
  208. module_param(debug, int, 0);
  209. MODULE_PARM_DESC(debug, "Message level (0=none,...,16=all)");
  210. /*
  211. * Reset the transmit and receive units; mask and clear all interrupts.
  212. * hw - Struct containing variables accessed by shared code
  213. * return : 0 or idle status (if error)
  214. */
  215. static s32 atl1_reset_hw(struct atl1_hw *hw)
  216. {
  217. struct pci_dev *pdev = hw->back->pdev;
  218. struct atl1_adapter *adapter = hw->back;
  219. u32 icr;
  220. int i;
  221. /*
  222. * Clear Interrupt mask to stop board from generating
  223. * interrupts & Clear any pending interrupt events
  224. */
  225. /*
  226. * atlx_irq_disable(adapter);
  227. * iowrite32(0xffffffff, hw->hw_addr + REG_ISR);
  228. */
  229. /*
  230. * Issue Soft Reset to the MAC. This will reset the chip's
  231. * transmit, receive, DMA. It will not effect
  232. * the current PCI configuration. The global reset bit is self-
  233. * clearing, and should clear within a microsecond.
  234. */
  235. iowrite32(MASTER_CTRL_SOFT_RST, hw->hw_addr + REG_MASTER_CTRL);
  236. ioread32(hw->hw_addr + REG_MASTER_CTRL);
  237. iowrite16(1, hw->hw_addr + REG_PHY_ENABLE);
  238. ioread16(hw->hw_addr + REG_PHY_ENABLE);
  239. /* delay about 1ms */
  240. msleep(1);
  241. /* Wait at least 10ms for All module to be Idle */
  242. for (i = 0; i < 10; i++) {
  243. icr = ioread32(hw->hw_addr + REG_IDLE_STATUS);
  244. if (!icr)
  245. break;
  246. /* delay 1 ms */
  247. msleep(1);
  248. /* FIXME: still the right way to do this? */
  249. cpu_relax();
  250. }
  251. if (icr) {
  252. if (netif_msg_hw(adapter))
  253. dev_dbg(&pdev->dev, "ICR = 0x%x\n", icr);
  254. return icr;
  255. }
  256. return 0;
  257. }
  258. /* function about EEPROM
  259. *
  260. * check_eeprom_exist
  261. * return 0 if eeprom exist
  262. */
  263. static int atl1_check_eeprom_exist(struct atl1_hw *hw)
  264. {
  265. u32 value;
  266. value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
  267. if (value & SPI_FLASH_CTRL_EN_VPD) {
  268. value &= ~SPI_FLASH_CTRL_EN_VPD;
  269. iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
  270. }
  271. value = ioread16(hw->hw_addr + REG_PCIE_CAP_LIST);
  272. return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
  273. }
  274. static bool atl1_read_eeprom(struct atl1_hw *hw, u32 offset, u32 *p_value)
  275. {
  276. int i;
  277. u32 control;
  278. if (offset & 3)
  279. /* address do not align */
  280. return false;
  281. iowrite32(0, hw->hw_addr + REG_VPD_DATA);
  282. control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
  283. iowrite32(control, hw->hw_addr + REG_VPD_CAP);
  284. ioread32(hw->hw_addr + REG_VPD_CAP);
  285. for (i = 0; i < 10; i++) {
  286. msleep(2);
  287. control = ioread32(hw->hw_addr + REG_VPD_CAP);
  288. if (control & VPD_CAP_VPD_FLAG)
  289. break;
  290. }
  291. if (control & VPD_CAP_VPD_FLAG) {
  292. *p_value = ioread32(hw->hw_addr + REG_VPD_DATA);
  293. return true;
  294. }
  295. /* timeout */
  296. return false;
  297. }
  298. /*
  299. * Reads the value from a PHY register
  300. * hw - Struct containing variables accessed by shared code
  301. * reg_addr - address of the PHY register to read
  302. */
  303. static s32 atl1_read_phy_reg(struct atl1_hw *hw, u16 reg_addr, u16 *phy_data)
  304. {
  305. u32 val;
  306. int i;
  307. val = ((u32) (reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
  308. MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | MDIO_CLK_25_4 <<
  309. MDIO_CLK_SEL_SHIFT;
  310. iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
  311. ioread32(hw->hw_addr + REG_MDIO_CTRL);
  312. for (i = 0; i < MDIO_WAIT_TIMES; i++) {
  313. udelay(2);
  314. val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
  315. if (!(val & (MDIO_START | MDIO_BUSY)))
  316. break;
  317. }
  318. if (!(val & (MDIO_START | MDIO_BUSY))) {
  319. *phy_data = (u16) val;
  320. return 0;
  321. }
  322. return ATLX_ERR_PHY;
  323. }
  324. #define CUSTOM_SPI_CS_SETUP 2
  325. #define CUSTOM_SPI_CLK_HI 2
  326. #define CUSTOM_SPI_CLK_LO 2
  327. #define CUSTOM_SPI_CS_HOLD 2
  328. #define CUSTOM_SPI_CS_HI 3
  329. static bool atl1_spi_read(struct atl1_hw *hw, u32 addr, u32 *buf)
  330. {
  331. int i;
  332. u32 value;
  333. iowrite32(0, hw->hw_addr + REG_SPI_DATA);
  334. iowrite32(addr, hw->hw_addr + REG_SPI_ADDR);
  335. value = SPI_FLASH_CTRL_WAIT_READY |
  336. (CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
  337. SPI_FLASH_CTRL_CS_SETUP_SHIFT | (CUSTOM_SPI_CLK_HI &
  338. SPI_FLASH_CTRL_CLK_HI_MASK) <<
  339. SPI_FLASH_CTRL_CLK_HI_SHIFT | (CUSTOM_SPI_CLK_LO &
  340. SPI_FLASH_CTRL_CLK_LO_MASK) <<
  341. SPI_FLASH_CTRL_CLK_LO_SHIFT | (CUSTOM_SPI_CS_HOLD &
  342. SPI_FLASH_CTRL_CS_HOLD_MASK) <<
  343. SPI_FLASH_CTRL_CS_HOLD_SHIFT | (CUSTOM_SPI_CS_HI &
  344. SPI_FLASH_CTRL_CS_HI_MASK) <<
  345. SPI_FLASH_CTRL_CS_HI_SHIFT | (1 & SPI_FLASH_CTRL_INS_MASK) <<
  346. SPI_FLASH_CTRL_INS_SHIFT;
  347. iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
  348. value |= SPI_FLASH_CTRL_START;
  349. iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
  350. ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
  351. for (i = 0; i < 10; i++) {
  352. msleep(1);
  353. value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
  354. if (!(value & SPI_FLASH_CTRL_START))
  355. break;
  356. }
  357. if (value & SPI_FLASH_CTRL_START)
  358. return false;
  359. *buf = ioread32(hw->hw_addr + REG_SPI_DATA);
  360. return true;
  361. }
  362. /*
  363. * get_permanent_address
  364. * return 0 if get valid mac address,
  365. */
  366. static int atl1_get_permanent_address(struct atl1_hw *hw)
  367. {
  368. u32 addr[2];
  369. u32 i, control;
  370. u16 reg;
  371. u8 eth_addr[ETH_ALEN];
  372. bool key_valid;
  373. if (is_valid_ether_addr(hw->perm_mac_addr))
  374. return 0;
  375. /* init */
  376. addr[0] = addr[1] = 0;
  377. if (!atl1_check_eeprom_exist(hw)) {
  378. reg = 0;
  379. key_valid = false;
  380. /* Read out all EEPROM content */
  381. i = 0;
  382. while (1) {
  383. if (atl1_read_eeprom(hw, i + 0x100, &control)) {
  384. if (key_valid) {
  385. if (reg == REG_MAC_STA_ADDR)
  386. addr[0] = control;
  387. else if (reg == (REG_MAC_STA_ADDR + 4))
  388. addr[1] = control;
  389. key_valid = false;
  390. } else if ((control & 0xff) == 0x5A) {
  391. key_valid = true;
  392. reg = (u16) (control >> 16);
  393. } else
  394. break;
  395. } else
  396. /* read error */
  397. break;
  398. i += 4;
  399. }
  400. *(u32 *) &eth_addr[2] = swab32(addr[0]);
  401. *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
  402. if (is_valid_ether_addr(eth_addr)) {
  403. memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
  404. return 0;
  405. }
  406. }
  407. /* see if SPI FLAGS exist ? */
  408. addr[0] = addr[1] = 0;
  409. reg = 0;
  410. key_valid = false;
  411. i = 0;
  412. while (1) {
  413. if (atl1_spi_read(hw, i + 0x1f000, &control)) {
  414. if (key_valid) {
  415. if (reg == REG_MAC_STA_ADDR)
  416. addr[0] = control;
  417. else if (reg == (REG_MAC_STA_ADDR + 4))
  418. addr[1] = control;
  419. key_valid = false;
  420. } else if ((control & 0xff) == 0x5A) {
  421. key_valid = true;
  422. reg = (u16) (control >> 16);
  423. } else
  424. /* data end */
  425. break;
  426. } else
  427. /* read error */
  428. break;
  429. i += 4;
  430. }
  431. *(u32 *) &eth_addr[2] = swab32(addr[0]);
  432. *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
  433. if (is_valid_ether_addr(eth_addr)) {
  434. memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
  435. return 0;
  436. }
  437. /*
  438. * On some motherboards, the MAC address is written by the
  439. * BIOS directly to the MAC register during POST, and is
  440. * not stored in eeprom. If all else thus far has failed
  441. * to fetch the permanent MAC address, try reading it directly.
  442. */
  443. addr[0] = ioread32(hw->hw_addr + REG_MAC_STA_ADDR);
  444. addr[1] = ioread16(hw->hw_addr + (REG_MAC_STA_ADDR + 4));
  445. *(u32 *) &eth_addr[2] = swab32(addr[0]);
  446. *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
  447. if (is_valid_ether_addr(eth_addr)) {
  448. memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
  449. return 0;
  450. }
  451. return 1;
  452. }
  453. /*
  454. * Reads the adapter's MAC address from the EEPROM
  455. * hw - Struct containing variables accessed by shared code
  456. */
  457. static s32 atl1_read_mac_addr(struct atl1_hw *hw)
  458. {
  459. s32 ret = 0;
  460. u16 i;
  461. if (atl1_get_permanent_address(hw)) {
  462. eth_random_addr(hw->perm_mac_addr);
  463. ret = 1;
  464. }
  465. for (i = 0; i < ETH_ALEN; i++)
  466. hw->mac_addr[i] = hw->perm_mac_addr[i];
  467. return ret;
  468. }
  469. /*
  470. * Hashes an address to determine its location in the multicast table
  471. * hw - Struct containing variables accessed by shared code
  472. * mc_addr - the multicast address to hash
  473. *
  474. * atl1_hash_mc_addr
  475. * purpose
  476. * set hash value for a multicast address
  477. * hash calcu processing :
  478. * 1. calcu 32bit CRC for multicast address
  479. * 2. reverse crc with MSB to LSB
  480. */
  481. static u32 atl1_hash_mc_addr(struct atl1_hw *hw, u8 *mc_addr)
  482. {
  483. u32 crc32, value = 0;
  484. int i;
  485. crc32 = ether_crc_le(6, mc_addr);
  486. for (i = 0; i < 32; i++)
  487. value |= (((crc32 >> i) & 1) << (31 - i));
  488. return value;
  489. }
  490. /*
  491. * Sets the bit in the multicast table corresponding to the hash value.
  492. * hw - Struct containing variables accessed by shared code
  493. * hash_value - Multicast address hash value
  494. */
  495. static void atl1_hash_set(struct atl1_hw *hw, u32 hash_value)
  496. {
  497. u32 hash_bit, hash_reg;
  498. u32 mta;
  499. /*
  500. * The HASH Table is a register array of 2 32-bit registers.
  501. * It is treated like an array of 64 bits. We want to set
  502. * bit BitArray[hash_value]. So we figure out what register
  503. * the bit is in, read it, OR in the new bit, then write
  504. * back the new value. The register is determined by the
  505. * upper 7 bits of the hash value and the bit within that
  506. * register are determined by the lower 5 bits of the value.
  507. */
  508. hash_reg = (hash_value >> 31) & 0x1;
  509. hash_bit = (hash_value >> 26) & 0x1F;
  510. mta = ioread32((hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
  511. mta |= (1 << hash_bit);
  512. iowrite32(mta, (hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
  513. }
  514. /*
  515. * Writes a value to a PHY register
  516. * hw - Struct containing variables accessed by shared code
  517. * reg_addr - address of the PHY register to write
  518. * data - data to write to the PHY
  519. */
  520. static s32 atl1_write_phy_reg(struct atl1_hw *hw, u32 reg_addr, u16 phy_data)
  521. {
  522. int i;
  523. u32 val;
  524. val = ((u32) (phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
  525. (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
  526. MDIO_SUP_PREAMBLE |
  527. MDIO_START | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
  528. iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
  529. ioread32(hw->hw_addr + REG_MDIO_CTRL);
  530. for (i = 0; i < MDIO_WAIT_TIMES; i++) {
  531. udelay(2);
  532. val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
  533. if (!(val & (MDIO_START | MDIO_BUSY)))
  534. break;
  535. }
  536. if (!(val & (MDIO_START | MDIO_BUSY)))
  537. return 0;
  538. return ATLX_ERR_PHY;
  539. }
  540. /*
  541. * Make L001's PHY out of Power Saving State (bug)
  542. * hw - Struct containing variables accessed by shared code
  543. * when power on, L001's PHY always on Power saving State
  544. * (Gigabit Link forbidden)
  545. */
  546. static s32 atl1_phy_leave_power_saving(struct atl1_hw *hw)
  547. {
  548. s32 ret;
  549. ret = atl1_write_phy_reg(hw, 29, 0x0029);
  550. if (ret)
  551. return ret;
  552. return atl1_write_phy_reg(hw, 30, 0);
  553. }
  554. /*
  555. * Resets the PHY and make all config validate
  556. * hw - Struct containing variables accessed by shared code
  557. *
  558. * Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
  559. */
  560. static s32 atl1_phy_reset(struct atl1_hw *hw)
  561. {
  562. struct pci_dev *pdev = hw->back->pdev;
  563. struct atl1_adapter *adapter = hw->back;
  564. s32 ret_val;
  565. u16 phy_data;
  566. if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
  567. hw->media_type == MEDIA_TYPE_1000M_FULL)
  568. phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
  569. else {
  570. switch (hw->media_type) {
  571. case MEDIA_TYPE_100M_FULL:
  572. phy_data =
  573. MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
  574. MII_CR_RESET;
  575. break;
  576. case MEDIA_TYPE_100M_HALF:
  577. phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
  578. break;
  579. case MEDIA_TYPE_10M_FULL:
  580. phy_data =
  581. MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
  582. break;
  583. default:
  584. /* MEDIA_TYPE_10M_HALF: */
  585. phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
  586. break;
  587. }
  588. }
  589. ret_val = atl1_write_phy_reg(hw, MII_BMCR, phy_data);
  590. if (ret_val) {
  591. u32 val;
  592. int i;
  593. /* pcie serdes link may be down! */
  594. if (netif_msg_hw(adapter))
  595. dev_dbg(&pdev->dev, "pcie phy link down\n");
  596. for (i = 0; i < 25; i++) {
  597. msleep(1);
  598. val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
  599. if (!(val & (MDIO_START | MDIO_BUSY)))
  600. break;
  601. }
  602. if ((val & (MDIO_START | MDIO_BUSY)) != 0) {
  603. if (netif_msg_hw(adapter))
  604. dev_warn(&pdev->dev,
  605. "pcie link down at least 25ms\n");
  606. return ret_val;
  607. }
  608. }
  609. return 0;
  610. }
  611. /*
  612. * Configures PHY autoneg and flow control advertisement settings
  613. * hw - Struct containing variables accessed by shared code
  614. */
  615. static s32 atl1_phy_setup_autoneg_adv(struct atl1_hw *hw)
  616. {
  617. s32 ret_val;
  618. s16 mii_autoneg_adv_reg;
  619. s16 mii_1000t_ctrl_reg;
  620. /* Read the MII Auto-Neg Advertisement Register (Address 4). */
  621. mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
  622. /* Read the MII 1000Base-T Control Register (Address 9). */
  623. mii_1000t_ctrl_reg = MII_ATLX_CR_1000T_DEFAULT_CAP_MASK;
  624. /*
  625. * First we clear all the 10/100 mb speed bits in the Auto-Neg
  626. * Advertisement Register (Address 4) and the 1000 mb speed bits in
  627. * the 1000Base-T Control Register (Address 9).
  628. */
  629. mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
  630. mii_1000t_ctrl_reg &= ~MII_ATLX_CR_1000T_SPEED_MASK;
  631. /*
  632. * Need to parse media_type and set up
  633. * the appropriate PHY registers.
  634. */
  635. switch (hw->media_type) {
  636. case MEDIA_TYPE_AUTO_SENSOR:
  637. mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS |
  638. MII_AR_10T_FD_CAPS |
  639. MII_AR_100TX_HD_CAPS |
  640. MII_AR_100TX_FD_CAPS);
  641. mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
  642. break;
  643. case MEDIA_TYPE_1000M_FULL:
  644. mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
  645. break;
  646. case MEDIA_TYPE_100M_FULL:
  647. mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
  648. break;
  649. case MEDIA_TYPE_100M_HALF:
  650. mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
  651. break;
  652. case MEDIA_TYPE_10M_FULL:
  653. mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
  654. break;
  655. default:
  656. mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
  657. break;
  658. }
  659. /* flow control fixed to enable all */
  660. mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
  661. hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
  662. hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg;
  663. ret_val = atl1_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
  664. if (ret_val)
  665. return ret_val;
  666. ret_val = atl1_write_phy_reg(hw, MII_ATLX_CR, mii_1000t_ctrl_reg);
  667. if (ret_val)
  668. return ret_val;
  669. return 0;
  670. }
  671. /*
  672. * Configures link settings.
  673. * hw - Struct containing variables accessed by shared code
  674. * Assumes the hardware has previously been reset and the
  675. * transmitter and receiver are not enabled.
  676. */
  677. static s32 atl1_setup_link(struct atl1_hw *hw)
  678. {
  679. struct pci_dev *pdev = hw->back->pdev;
  680. struct atl1_adapter *adapter = hw->back;
  681. s32 ret_val;
  682. /*
  683. * Options:
  684. * PHY will advertise value(s) parsed from
  685. * autoneg_advertised and fc
  686. * no matter what autoneg is , We will not wait link result.
  687. */
  688. ret_val = atl1_phy_setup_autoneg_adv(hw);
  689. if (ret_val) {
  690. if (netif_msg_link(adapter))
  691. dev_dbg(&pdev->dev,
  692. "error setting up autonegotiation\n");
  693. return ret_val;
  694. }
  695. /* SW.Reset , En-Auto-Neg if needed */
  696. ret_val = atl1_phy_reset(hw);
  697. if (ret_val) {
  698. if (netif_msg_link(adapter))
  699. dev_dbg(&pdev->dev, "error resetting phy\n");
  700. return ret_val;
  701. }
  702. hw->phy_configured = true;
  703. return ret_val;
  704. }
  705. static void atl1_init_flash_opcode(struct atl1_hw *hw)
  706. {
  707. if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
  708. /* Atmel */
  709. hw->flash_vendor = 0;
  710. /* Init OP table */
  711. iowrite8(flash_table[hw->flash_vendor].cmd_program,
  712. hw->hw_addr + REG_SPI_FLASH_OP_PROGRAM);
  713. iowrite8(flash_table[hw->flash_vendor].cmd_sector_erase,
  714. hw->hw_addr + REG_SPI_FLASH_OP_SC_ERASE);
  715. iowrite8(flash_table[hw->flash_vendor].cmd_chip_erase,
  716. hw->hw_addr + REG_SPI_FLASH_OP_CHIP_ERASE);
  717. iowrite8(flash_table[hw->flash_vendor].cmd_rdid,
  718. hw->hw_addr + REG_SPI_FLASH_OP_RDID);
  719. iowrite8(flash_table[hw->flash_vendor].cmd_wren,
  720. hw->hw_addr + REG_SPI_FLASH_OP_WREN);
  721. iowrite8(flash_table[hw->flash_vendor].cmd_rdsr,
  722. hw->hw_addr + REG_SPI_FLASH_OP_RDSR);
  723. iowrite8(flash_table[hw->flash_vendor].cmd_wrsr,
  724. hw->hw_addr + REG_SPI_FLASH_OP_WRSR);
  725. iowrite8(flash_table[hw->flash_vendor].cmd_read,
  726. hw->hw_addr + REG_SPI_FLASH_OP_READ);
  727. }
  728. /*
  729. * Performs basic configuration of the adapter.
  730. * hw - Struct containing variables accessed by shared code
  731. * Assumes that the controller has previously been reset and is in a
  732. * post-reset uninitialized state. Initializes multicast table,
  733. * and Calls routines to setup link
  734. * Leaves the transmit and receive units disabled and uninitialized.
  735. */
  736. static s32 atl1_init_hw(struct atl1_hw *hw)
  737. {
  738. u32 ret_val = 0;
  739. /* Zero out the Multicast HASH table */
  740. iowrite32(0, hw->hw_addr + REG_RX_HASH_TABLE);
  741. /* clear the old settings from the multicast hash table */
  742. iowrite32(0, (hw->hw_addr + REG_RX_HASH_TABLE) + (1 << 2));
  743. atl1_init_flash_opcode(hw);
  744. if (!hw->phy_configured) {
  745. /* enable GPHY LinkChange Interrupt */
  746. ret_val = atl1_write_phy_reg(hw, 18, 0xC00);
  747. if (ret_val)
  748. return ret_val;
  749. /* make PHY out of power-saving state */
  750. ret_val = atl1_phy_leave_power_saving(hw);
  751. if (ret_val)
  752. return ret_val;
  753. /* Call a subroutine to configure the link */
  754. ret_val = atl1_setup_link(hw);
  755. }
  756. return ret_val;
  757. }
  758. /*
  759. * Detects the current speed and duplex settings of the hardware.
  760. * hw - Struct containing variables accessed by shared code
  761. * speed - Speed of the connection
  762. * duplex - Duplex setting of the connection
  763. */
  764. static s32 atl1_get_speed_and_duplex(struct atl1_hw *hw, u16 *speed, u16 *duplex)
  765. {
  766. struct pci_dev *pdev = hw->back->pdev;
  767. struct atl1_adapter *adapter = hw->back;
  768. s32 ret_val;
  769. u16 phy_data;
  770. /* ; --- Read PHY Specific Status Register (17) */
  771. ret_val = atl1_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
  772. if (ret_val)
  773. return ret_val;
  774. if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
  775. return ATLX_ERR_PHY_RES;
  776. switch (phy_data & MII_ATLX_PSSR_SPEED) {
  777. case MII_ATLX_PSSR_1000MBS:
  778. *speed = SPEED_1000;
  779. break;
  780. case MII_ATLX_PSSR_100MBS:
  781. *speed = SPEED_100;
  782. break;
  783. case MII_ATLX_PSSR_10MBS:
  784. *speed = SPEED_10;
  785. break;
  786. default:
  787. if (netif_msg_hw(adapter))
  788. dev_dbg(&pdev->dev, "error getting speed\n");
  789. return ATLX_ERR_PHY_SPEED;
  790. }
  791. if (phy_data & MII_ATLX_PSSR_DPLX)
  792. *duplex = FULL_DUPLEX;
  793. else
  794. *duplex = HALF_DUPLEX;
  795. return 0;
  796. }
  797. static void atl1_set_mac_addr(struct atl1_hw *hw)
  798. {
  799. u32 value;
  800. /*
  801. * 00-0B-6A-F6-00-DC
  802. * 0: 6AF600DC 1: 000B
  803. * low dword
  804. */
  805. value = (((u32) hw->mac_addr[2]) << 24) |
  806. (((u32) hw->mac_addr[3]) << 16) |
  807. (((u32) hw->mac_addr[4]) << 8) | (((u32) hw->mac_addr[5]));
  808. iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
  809. /* high dword */
  810. value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
  811. iowrite32(value, (hw->hw_addr + REG_MAC_STA_ADDR) + (1 << 2));
  812. }
  813. /**
  814. * atl1_sw_init - Initialize general software structures (struct atl1_adapter)
  815. * @adapter: board private structure to initialize
  816. *
  817. * atl1_sw_init initializes the Adapter private data structure.
  818. * Fields are initialized based on PCI device information and
  819. * OS network device settings (MTU size).
  820. */
  821. static int atl1_sw_init(struct atl1_adapter *adapter)
  822. {
  823. struct atl1_hw *hw = &adapter->hw;
  824. struct net_device *netdev = adapter->netdev;
  825. hw->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
  826. hw->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
  827. adapter->wol = 0;
  828. device_set_wakeup_enable(&adapter->pdev->dev, false);
  829. adapter->rx_buffer_len = (hw->max_frame_size + 7) & ~7;
  830. adapter->ict = 50000; /* 100ms */
  831. adapter->link_speed = SPEED_0; /* hardware init */
  832. adapter->link_duplex = FULL_DUPLEX;
  833. hw->phy_configured = false;
  834. hw->preamble_len = 7;
  835. hw->ipgt = 0x60;
  836. hw->min_ifg = 0x50;
  837. hw->ipgr1 = 0x40;
  838. hw->ipgr2 = 0x60;
  839. hw->max_retry = 0xf;
  840. hw->lcol = 0x37;
  841. hw->jam_ipg = 7;
  842. hw->rfd_burst = 8;
  843. hw->rrd_burst = 8;
  844. hw->rfd_fetch_gap = 1;
  845. hw->rx_jumbo_th = adapter->rx_buffer_len / 8;
  846. hw->rx_jumbo_lkah = 1;
  847. hw->rrd_ret_timer = 16;
  848. hw->tpd_burst = 4;
  849. hw->tpd_fetch_th = 16;
  850. hw->txf_burst = 0x100;
  851. hw->tx_jumbo_task_th = (hw->max_frame_size + 7) >> 3;
  852. hw->tpd_fetch_gap = 1;
  853. hw->rcb_value = atl1_rcb_64;
  854. hw->dma_ord = atl1_dma_ord_enh;
  855. hw->dmar_block = atl1_dma_req_256;
  856. hw->dmaw_block = atl1_dma_req_256;
  857. hw->cmb_rrd = 4;
  858. hw->cmb_tpd = 4;
  859. hw->cmb_rx_timer = 1; /* about 2us */
  860. hw->cmb_tx_timer = 1; /* about 2us */
  861. hw->smb_timer = 100000; /* about 200ms */
  862. spin_lock_init(&adapter->lock);
  863. spin_lock_init(&adapter->mb_lock);
  864. return 0;
  865. }
  866. static int mdio_read(struct net_device *netdev, int phy_id, int reg_num)
  867. {
  868. struct atl1_adapter *adapter = netdev_priv(netdev);
  869. u16 result;
  870. atl1_read_phy_reg(&adapter->hw, reg_num & 0x1f, &result);
  871. return result;
  872. }
  873. static void mdio_write(struct net_device *netdev, int phy_id, int reg_num,
  874. int val)
  875. {
  876. struct atl1_adapter *adapter = netdev_priv(netdev);
  877. atl1_write_phy_reg(&adapter->hw, reg_num, val);
  878. }
  879. static int atl1_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
  880. {
  881. struct atl1_adapter *adapter = netdev_priv(netdev);
  882. unsigned long flags;
  883. int retval;
  884. if (!netif_running(netdev))
  885. return -EINVAL;
  886. spin_lock_irqsave(&adapter->lock, flags);
  887. retval = generic_mii_ioctl(&adapter->mii, if_mii(ifr), cmd, NULL);
  888. spin_unlock_irqrestore(&adapter->lock, flags);
  889. return retval;
  890. }
  891. /**
  892. * atl1_setup_mem_resources - allocate Tx / RX descriptor resources
  893. * @adapter: board private structure
  894. *
  895. * Return 0 on success, negative on failure
  896. */
  897. static s32 atl1_setup_ring_resources(struct atl1_adapter *adapter)
  898. {
  899. struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
  900. struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
  901. struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
  902. struct atl1_ring_header *ring_header = &adapter->ring_header;
  903. struct pci_dev *pdev = adapter->pdev;
  904. int size;
  905. u8 offset = 0;
  906. size = sizeof(struct atl1_buffer) * (tpd_ring->count + rfd_ring->count);
  907. tpd_ring->buffer_info = kzalloc(size, GFP_KERNEL);
  908. if (unlikely(!tpd_ring->buffer_info)) {
  909. if (netif_msg_drv(adapter))
  910. dev_err(&pdev->dev, "kzalloc failed , size = D%d\n",
  911. size);
  912. goto err_nomem;
  913. }
  914. rfd_ring->buffer_info =
  915. (tpd_ring->buffer_info + tpd_ring->count);
  916. /*
  917. * real ring DMA buffer
  918. * each ring/block may need up to 8 bytes for alignment, hence the
  919. * additional 40 bytes tacked onto the end.
  920. */
  921. ring_header->size = size =
  922. sizeof(struct tx_packet_desc) * tpd_ring->count
  923. + sizeof(struct rx_free_desc) * rfd_ring->count
  924. + sizeof(struct rx_return_desc) * rrd_ring->count
  925. + sizeof(struct coals_msg_block)
  926. + sizeof(struct stats_msg_block)
  927. + 40;
  928. ring_header->desc = pci_alloc_consistent(pdev, ring_header->size,
  929. &ring_header->dma);
  930. if (unlikely(!ring_header->desc)) {
  931. if (netif_msg_drv(adapter))
  932. dev_err(&pdev->dev, "pci_alloc_consistent failed\n");
  933. goto err_nomem;
  934. }
  935. /* init TPD ring */
  936. tpd_ring->dma = ring_header->dma;
  937. offset = (tpd_ring->dma & 0x7) ? (8 - (ring_header->dma & 0x7)) : 0;
  938. tpd_ring->dma += offset;
  939. tpd_ring->desc = (u8 *) ring_header->desc + offset;
  940. tpd_ring->size = sizeof(struct tx_packet_desc) * tpd_ring->count;
  941. /* init RFD ring */
  942. rfd_ring->dma = tpd_ring->dma + tpd_ring->size;
  943. offset = (rfd_ring->dma & 0x7) ? (8 - (rfd_ring->dma & 0x7)) : 0;
  944. rfd_ring->dma += offset;
  945. rfd_ring->desc = (u8 *) tpd_ring->desc + (tpd_ring->size + offset);
  946. rfd_ring->size = sizeof(struct rx_free_desc) * rfd_ring->count;
  947. /* init RRD ring */
  948. rrd_ring->dma = rfd_ring->dma + rfd_ring->size;
  949. offset = (rrd_ring->dma & 0x7) ? (8 - (rrd_ring->dma & 0x7)) : 0;
  950. rrd_ring->dma += offset;
  951. rrd_ring->desc = (u8 *) rfd_ring->desc + (rfd_ring->size + offset);
  952. rrd_ring->size = sizeof(struct rx_return_desc) * rrd_ring->count;
  953. /* init CMB */
  954. adapter->cmb.dma = rrd_ring->dma + rrd_ring->size;
  955. offset = (adapter->cmb.dma & 0x7) ? (8 - (adapter->cmb.dma & 0x7)) : 0;
  956. adapter->cmb.dma += offset;
  957. adapter->cmb.cmb = (struct coals_msg_block *)
  958. ((u8 *) rrd_ring->desc + (rrd_ring->size + offset));
  959. /* init SMB */
  960. adapter->smb.dma = adapter->cmb.dma + sizeof(struct coals_msg_block);
  961. offset = (adapter->smb.dma & 0x7) ? (8 - (adapter->smb.dma & 0x7)) : 0;
  962. adapter->smb.dma += offset;
  963. adapter->smb.smb = (struct stats_msg_block *)
  964. ((u8 *) adapter->cmb.cmb +
  965. (sizeof(struct coals_msg_block) + offset));
  966. return 0;
  967. err_nomem:
  968. kfree(tpd_ring->buffer_info);
  969. return -ENOMEM;
  970. }
  971. static void atl1_init_ring_ptrs(struct atl1_adapter *adapter)
  972. {
  973. struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
  974. struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
  975. struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
  976. atomic_set(&tpd_ring->next_to_use, 0);
  977. atomic_set(&tpd_ring->next_to_clean, 0);
  978. rfd_ring->next_to_clean = 0;
  979. atomic_set(&rfd_ring->next_to_use, 0);
  980. rrd_ring->next_to_use = 0;
  981. atomic_set(&rrd_ring->next_to_clean, 0);
  982. }
  983. /**
  984. * atl1_clean_rx_ring - Free RFD Buffers
  985. * @adapter: board private structure
  986. */
  987. static void atl1_clean_rx_ring(struct atl1_adapter *adapter)
  988. {
  989. struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
  990. struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
  991. struct atl1_buffer *buffer_info;
  992. struct pci_dev *pdev = adapter->pdev;
  993. unsigned long size;
  994. unsigned int i;
  995. /* Free all the Rx ring sk_buffs */
  996. for (i = 0; i < rfd_ring->count; i++) {
  997. buffer_info = &rfd_ring->buffer_info[i];
  998. if (buffer_info->dma) {
  999. pci_unmap_page(pdev, buffer_info->dma,
  1000. buffer_info->length, PCI_DMA_FROMDEVICE);
  1001. buffer_info->dma = 0;
  1002. }
  1003. if (buffer_info->skb) {
  1004. dev_kfree_skb(buffer_info->skb);
  1005. buffer_info->skb = NULL;
  1006. }
  1007. }
  1008. size = sizeof(struct atl1_buffer) * rfd_ring->count;
  1009. memset(rfd_ring->buffer_info, 0, size);
  1010. /* Zero out the descriptor ring */
  1011. memset(rfd_ring->desc, 0, rfd_ring->size);
  1012. rfd_ring->next_to_clean = 0;
  1013. atomic_set(&rfd_ring->next_to_use, 0);
  1014. rrd_ring->next_to_use = 0;
  1015. atomic_set(&rrd_ring->next_to_clean, 0);
  1016. }
  1017. /**
  1018. * atl1_clean_tx_ring - Free Tx Buffers
  1019. * @adapter: board private structure
  1020. */
  1021. static void atl1_clean_tx_ring(struct atl1_adapter *adapter)
  1022. {
  1023. struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
  1024. struct atl1_buffer *buffer_info;
  1025. struct pci_dev *pdev = adapter->pdev;
  1026. unsigned long size;
  1027. unsigned int i;
  1028. /* Free all the Tx ring sk_buffs */
  1029. for (i = 0; i < tpd_ring->count; i++) {
  1030. buffer_info = &tpd_ring->buffer_info[i];
  1031. if (buffer_info->dma) {
  1032. pci_unmap_page(pdev, buffer_info->dma,
  1033. buffer_info->length, PCI_DMA_TODEVICE);
  1034. buffer_info->dma = 0;
  1035. }
  1036. }
  1037. for (i = 0; i < tpd_ring->count; i++) {
  1038. buffer_info = &tpd_ring->buffer_info[i];
  1039. if (buffer_info->skb) {
  1040. dev_kfree_skb_any(buffer_info->skb);
  1041. buffer_info->skb = NULL;
  1042. }
  1043. }
  1044. size = sizeof(struct atl1_buffer) * tpd_ring->count;
  1045. memset(tpd_ring->buffer_info, 0, size);
  1046. /* Zero out the descriptor ring */
  1047. memset(tpd_ring->desc, 0, tpd_ring->size);
  1048. atomic_set(&tpd_ring->next_to_use, 0);
  1049. atomic_set(&tpd_ring->next_to_clean, 0);
  1050. }
  1051. /**
  1052. * atl1_free_ring_resources - Free Tx / RX descriptor Resources
  1053. * @adapter: board private structure
  1054. *
  1055. * Free all transmit software resources
  1056. */
  1057. static void atl1_free_ring_resources(struct atl1_adapter *adapter)
  1058. {
  1059. struct pci_dev *pdev = adapter->pdev;
  1060. struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
  1061. struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
  1062. struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
  1063. struct atl1_ring_header *ring_header = &adapter->ring_header;
  1064. atl1_clean_tx_ring(adapter);
  1065. atl1_clean_rx_ring(adapter);
  1066. kfree(tpd_ring->buffer_info);
  1067. pci_free_consistent(pdev, ring_header->size, ring_header->desc,
  1068. ring_header->dma);
  1069. tpd_ring->buffer_info = NULL;
  1070. tpd_ring->desc = NULL;
  1071. tpd_ring->dma = 0;
  1072. rfd_ring->buffer_info = NULL;
  1073. rfd_ring->desc = NULL;
  1074. rfd_ring->dma = 0;
  1075. rrd_ring->desc = NULL;
  1076. rrd_ring->dma = 0;
  1077. adapter->cmb.dma = 0;
  1078. adapter->cmb.cmb = NULL;
  1079. adapter->smb.dma = 0;
  1080. adapter->smb.smb = NULL;
  1081. }
  1082. static void atl1_setup_mac_ctrl(struct atl1_adapter *adapter)
  1083. {
  1084. u32 value;
  1085. struct atl1_hw *hw = &adapter->hw;
  1086. struct net_device *netdev = adapter->netdev;
  1087. /* Config MAC CTRL Register */
  1088. value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN;
  1089. /* duplex */
  1090. if (FULL_DUPLEX == adapter->link_duplex)
  1091. value |= MAC_CTRL_DUPLX;
  1092. /* speed */
  1093. value |= ((u32) ((SPEED_1000 == adapter->link_speed) ?
  1094. MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) <<
  1095. MAC_CTRL_SPEED_SHIFT);
  1096. /* flow control */
  1097. value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
  1098. /* PAD & CRC */
  1099. value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
  1100. /* preamble length */
  1101. value |= (((u32) adapter->hw.preamble_len
  1102. & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
  1103. /* vlan */
  1104. __atlx_vlan_mode(netdev->features, &value);
  1105. /* rx checksum
  1106. if (adapter->rx_csum)
  1107. value |= MAC_CTRL_RX_CHKSUM_EN;
  1108. */
  1109. /* filter mode */
  1110. value |= MAC_CTRL_BC_EN;
  1111. if (netdev->flags & IFF_PROMISC)
  1112. value |= MAC_CTRL_PROMIS_EN;
  1113. else if (netdev->flags & IFF_ALLMULTI)
  1114. value |= MAC_CTRL_MC_ALL_EN;
  1115. /* value |= MAC_CTRL_LOOPBACK; */
  1116. iowrite32(value, hw->hw_addr + REG_MAC_CTRL);
  1117. }
  1118. static u32 atl1_check_link(struct atl1_adapter *adapter)
  1119. {
  1120. struct atl1_hw *hw = &adapter->hw;
  1121. struct net_device *netdev = adapter->netdev;
  1122. u32 ret_val;
  1123. u16 speed, duplex, phy_data;
  1124. int reconfig = 0;
  1125. /* MII_BMSR must read twice */
  1126. atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
  1127. atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
  1128. if (!(phy_data & BMSR_LSTATUS)) {
  1129. /* link down */
  1130. if (netif_carrier_ok(netdev)) {
  1131. /* old link state: Up */
  1132. if (netif_msg_link(adapter))
  1133. dev_info(&adapter->pdev->dev, "link is down\n");
  1134. adapter->link_speed = SPEED_0;
  1135. netif_carrier_off(netdev);
  1136. }
  1137. return 0;
  1138. }
  1139. /* Link Up */
  1140. ret_val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
  1141. if (ret_val)
  1142. return ret_val;
  1143. switch (hw->media_type) {
  1144. case MEDIA_TYPE_1000M_FULL:
  1145. if (speed != SPEED_1000 || duplex != FULL_DUPLEX)
  1146. reconfig = 1;
  1147. break;
  1148. case MEDIA_TYPE_100M_FULL:
  1149. if (speed != SPEED_100 || duplex != FULL_DUPLEX)
  1150. reconfig = 1;
  1151. break;
  1152. case MEDIA_TYPE_100M_HALF:
  1153. if (speed != SPEED_100 || duplex != HALF_DUPLEX)
  1154. reconfig = 1;
  1155. break;
  1156. case MEDIA_TYPE_10M_FULL:
  1157. if (speed != SPEED_10 || duplex != FULL_DUPLEX)
  1158. reconfig = 1;
  1159. break;
  1160. case MEDIA_TYPE_10M_HALF:
  1161. if (speed != SPEED_10 || duplex != HALF_DUPLEX)
  1162. reconfig = 1;
  1163. break;
  1164. }
  1165. /* link result is our setting */
  1166. if (!reconfig) {
  1167. if (adapter->link_speed != speed ||
  1168. adapter->link_duplex != duplex) {
  1169. adapter->link_speed = speed;
  1170. adapter->link_duplex = duplex;
  1171. atl1_setup_mac_ctrl(adapter);
  1172. if (netif_msg_link(adapter))
  1173. dev_info(&adapter->pdev->dev,
  1174. "%s link is up %d Mbps %s\n",
  1175. netdev->name, adapter->link_speed,
  1176. adapter->link_duplex == FULL_DUPLEX ?
  1177. "full duplex" : "half duplex");
  1178. }
  1179. if (!netif_carrier_ok(netdev)) {
  1180. /* Link down -> Up */
  1181. netif_carrier_on(netdev);
  1182. }
  1183. return 0;
  1184. }
  1185. /* change original link status */
  1186. if (netif_carrier_ok(netdev)) {
  1187. adapter->link_speed = SPEED_0;
  1188. netif_carrier_off(netdev);
  1189. netif_stop_queue(netdev);
  1190. }
  1191. if (hw->media_type != MEDIA_TYPE_AUTO_SENSOR &&
  1192. hw->media_type != MEDIA_TYPE_1000M_FULL) {
  1193. switch (hw->media_type) {
  1194. case MEDIA_TYPE_100M_FULL:
  1195. phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
  1196. MII_CR_RESET;
  1197. break;
  1198. case MEDIA_TYPE_100M_HALF:
  1199. phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
  1200. break;
  1201. case MEDIA_TYPE_10M_FULL:
  1202. phy_data =
  1203. MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
  1204. break;
  1205. default:
  1206. /* MEDIA_TYPE_10M_HALF: */
  1207. phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
  1208. break;
  1209. }
  1210. atl1_write_phy_reg(hw, MII_BMCR, phy_data);
  1211. return 0;
  1212. }
  1213. /* auto-neg, insert timer to re-config phy */
  1214. if (!adapter->phy_timer_pending) {
  1215. adapter->phy_timer_pending = true;
  1216. mod_timer(&adapter->phy_config_timer,
  1217. round_jiffies(jiffies + 3 * HZ));
  1218. }
  1219. return 0;
  1220. }
  1221. static void set_flow_ctrl_old(struct atl1_adapter *adapter)
  1222. {
  1223. u32 hi, lo, value;
  1224. /* RFD Flow Control */
  1225. value = adapter->rfd_ring.count;
  1226. hi = value / 16;
  1227. if (hi < 2)
  1228. hi = 2;
  1229. lo = value * 7 / 8;
  1230. value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
  1231. ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
  1232. iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
  1233. /* RRD Flow Control */
  1234. value = adapter->rrd_ring.count;
  1235. lo = value / 16;
  1236. hi = value * 7 / 8;
  1237. if (lo < 2)
  1238. lo = 2;
  1239. value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
  1240. ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
  1241. iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
  1242. }
  1243. static void set_flow_ctrl_new(struct atl1_hw *hw)
  1244. {
  1245. u32 hi, lo, value;
  1246. /* RXF Flow Control */
  1247. value = ioread32(hw->hw_addr + REG_SRAM_RXF_LEN);
  1248. lo = value / 16;
  1249. if (lo < 192)
  1250. lo = 192;
  1251. hi = value * 7 / 8;
  1252. if (hi < lo)
  1253. hi = lo + 16;
  1254. value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
  1255. ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
  1256. iowrite32(value, hw->hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
  1257. /* RRD Flow Control */
  1258. value = ioread32(hw->hw_addr + REG_SRAM_RRD_LEN);
  1259. lo = value / 8;
  1260. hi = value * 7 / 8;
  1261. if (lo < 2)
  1262. lo = 2;
  1263. if (hi < lo)
  1264. hi = lo + 3;
  1265. value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
  1266. ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
  1267. iowrite32(value, hw->hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
  1268. }
  1269. /**
  1270. * atl1_configure - Configure Transmit&Receive Unit after Reset
  1271. * @adapter: board private structure
  1272. *
  1273. * Configure the Tx /Rx unit of the MAC after a reset.
  1274. */
  1275. static u32 atl1_configure(struct atl1_adapter *adapter)
  1276. {
  1277. struct atl1_hw *hw = &adapter->hw;
  1278. u32 value;
  1279. /* clear interrupt status */
  1280. iowrite32(0xffffffff, adapter->hw.hw_addr + REG_ISR);
  1281. /* set MAC Address */
  1282. value = (((u32) hw->mac_addr[2]) << 24) |
  1283. (((u32) hw->mac_addr[3]) << 16) |
  1284. (((u32) hw->mac_addr[4]) << 8) |
  1285. (((u32) hw->mac_addr[5]));
  1286. iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
  1287. value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
  1288. iowrite32(value, hw->hw_addr + (REG_MAC_STA_ADDR + 4));
  1289. /* tx / rx ring */
  1290. /* HI base address */
  1291. iowrite32((u32) ((adapter->tpd_ring.dma & 0xffffffff00000000ULL) >> 32),
  1292. hw->hw_addr + REG_DESC_BASE_ADDR_HI);
  1293. /* LO base address */
  1294. iowrite32((u32) (adapter->rfd_ring.dma & 0x00000000ffffffffULL),
  1295. hw->hw_addr + REG_DESC_RFD_ADDR_LO);
  1296. iowrite32((u32) (adapter->rrd_ring.dma & 0x00000000ffffffffULL),
  1297. hw->hw_addr + REG_DESC_RRD_ADDR_LO);
  1298. iowrite32((u32) (adapter->tpd_ring.dma & 0x00000000ffffffffULL),
  1299. hw->hw_addr + REG_DESC_TPD_ADDR_LO);
  1300. iowrite32((u32) (adapter->cmb.dma & 0x00000000ffffffffULL),
  1301. hw->hw_addr + REG_DESC_CMB_ADDR_LO);
  1302. iowrite32((u32) (adapter->smb.dma & 0x00000000ffffffffULL),
  1303. hw->hw_addr + REG_DESC_SMB_ADDR_LO);
  1304. /* element count */
  1305. value = adapter->rrd_ring.count;
  1306. value <<= 16;
  1307. value += adapter->rfd_ring.count;
  1308. iowrite32(value, hw->hw_addr + REG_DESC_RFD_RRD_RING_SIZE);
  1309. iowrite32(adapter->tpd_ring.count, hw->hw_addr +
  1310. REG_DESC_TPD_RING_SIZE);
  1311. /* Load Ptr */
  1312. iowrite32(1, hw->hw_addr + REG_LOAD_PTR);
  1313. /* config Mailbox */
  1314. value = ((atomic_read(&adapter->tpd_ring.next_to_use)
  1315. & MB_TPD_PROD_INDX_MASK) << MB_TPD_PROD_INDX_SHIFT) |
  1316. ((atomic_read(&adapter->rrd_ring.next_to_clean)
  1317. & MB_RRD_CONS_INDX_MASK) << MB_RRD_CONS_INDX_SHIFT) |
  1318. ((atomic_read(&adapter->rfd_ring.next_to_use)
  1319. & MB_RFD_PROD_INDX_MASK) << MB_RFD_PROD_INDX_SHIFT);
  1320. iowrite32(value, hw->hw_addr + REG_MAILBOX);
  1321. /* config IPG/IFG */
  1322. value = (((u32) hw->ipgt & MAC_IPG_IFG_IPGT_MASK)
  1323. << MAC_IPG_IFG_IPGT_SHIFT) |
  1324. (((u32) hw->min_ifg & MAC_IPG_IFG_MIFG_MASK)
  1325. << MAC_IPG_IFG_MIFG_SHIFT) |
  1326. (((u32) hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK)
  1327. << MAC_IPG_IFG_IPGR1_SHIFT) |
  1328. (((u32) hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK)
  1329. << MAC_IPG_IFG_IPGR2_SHIFT);
  1330. iowrite32(value, hw->hw_addr + REG_MAC_IPG_IFG);
  1331. /* config Half-Duplex Control */
  1332. value = ((u32) hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
  1333. (((u32) hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK)
  1334. << MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
  1335. MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
  1336. (0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
  1337. (((u32) hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK)
  1338. << MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
  1339. iowrite32(value, hw->hw_addr + REG_MAC_HALF_DUPLX_CTRL);
  1340. /* set Interrupt Moderator Timer */
  1341. iowrite16(adapter->imt, hw->hw_addr + REG_IRQ_MODU_TIMER_INIT);
  1342. iowrite32(MASTER_CTRL_ITIMER_EN, hw->hw_addr + REG_MASTER_CTRL);
  1343. /* set Interrupt Clear Timer */
  1344. iowrite16(adapter->ict, hw->hw_addr + REG_CMBDISDMA_TIMER);
  1345. /* set max frame size hw will accept */
  1346. iowrite32(hw->max_frame_size, hw->hw_addr + REG_MTU);
  1347. /* jumbo size & rrd retirement timer */
  1348. value = (((u32) hw->rx_jumbo_th & RXQ_JMBOSZ_TH_MASK)
  1349. << RXQ_JMBOSZ_TH_SHIFT) |
  1350. (((u32) hw->rx_jumbo_lkah & RXQ_JMBO_LKAH_MASK)
  1351. << RXQ_JMBO_LKAH_SHIFT) |
  1352. (((u32) hw->rrd_ret_timer & RXQ_RRD_TIMER_MASK)
  1353. << RXQ_RRD_TIMER_SHIFT);
  1354. iowrite32(value, hw->hw_addr + REG_RXQ_JMBOSZ_RRDTIM);
  1355. /* Flow Control */
  1356. switch (hw->dev_rev) {
  1357. case 0x8001:
  1358. case 0x9001:
  1359. case 0x9002:
  1360. case 0x9003:
  1361. set_flow_ctrl_old(adapter);
  1362. break;
  1363. default:
  1364. set_flow_ctrl_new(hw);
  1365. break;
  1366. }
  1367. /* config TXQ */
  1368. value = (((u32) hw->tpd_burst & TXQ_CTRL_TPD_BURST_NUM_MASK)
  1369. << TXQ_CTRL_TPD_BURST_NUM_SHIFT) |
  1370. (((u32) hw->txf_burst & TXQ_CTRL_TXF_BURST_NUM_MASK)
  1371. << TXQ_CTRL_TXF_BURST_NUM_SHIFT) |
  1372. (((u32) hw->tpd_fetch_th & TXQ_CTRL_TPD_FETCH_TH_MASK)
  1373. << TXQ_CTRL_TPD_FETCH_TH_SHIFT) | TXQ_CTRL_ENH_MODE |
  1374. TXQ_CTRL_EN;
  1375. iowrite32(value, hw->hw_addr + REG_TXQ_CTRL);
  1376. /* min tpd fetch gap & tx jumbo packet size threshold for taskoffload */
  1377. value = (((u32) hw->tx_jumbo_task_th & TX_JUMBO_TASK_TH_MASK)
  1378. << TX_JUMBO_TASK_TH_SHIFT) |
  1379. (((u32) hw->tpd_fetch_gap & TX_TPD_MIN_IPG_MASK)
  1380. << TX_TPD_MIN_IPG_SHIFT);
  1381. iowrite32(value, hw->hw_addr + REG_TX_JUMBO_TASK_TH_TPD_IPG);
  1382. /* config RXQ */
  1383. value = (((u32) hw->rfd_burst & RXQ_CTRL_RFD_BURST_NUM_MASK)
  1384. << RXQ_CTRL_RFD_BURST_NUM_SHIFT) |
  1385. (((u32) hw->rrd_burst & RXQ_CTRL_RRD_BURST_THRESH_MASK)
  1386. << RXQ_CTRL_RRD_BURST_THRESH_SHIFT) |
  1387. (((u32) hw->rfd_fetch_gap & RXQ_CTRL_RFD_PREF_MIN_IPG_MASK)
  1388. << RXQ_CTRL_RFD_PREF_MIN_IPG_SHIFT) | RXQ_CTRL_CUT_THRU_EN |
  1389. RXQ_CTRL_EN;
  1390. iowrite32(value, hw->hw_addr + REG_RXQ_CTRL);
  1391. /* config DMA Engine */
  1392. value = ((((u32) hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK)
  1393. << DMA_CTRL_DMAR_BURST_LEN_SHIFT) |
  1394. ((((u32) hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK)
  1395. << DMA_CTRL_DMAW_BURST_LEN_SHIFT) | DMA_CTRL_DMAR_EN |
  1396. DMA_CTRL_DMAW_EN;
  1397. value |= (u32) hw->dma_ord;
  1398. if (atl1_rcb_128 == hw->rcb_value)
  1399. value |= DMA_CTRL_RCB_VALUE;
  1400. iowrite32(value, hw->hw_addr + REG_DMA_CTRL);
  1401. /* config CMB / SMB */
  1402. value = (hw->cmb_tpd > adapter->tpd_ring.count) ?
  1403. hw->cmb_tpd : adapter->tpd_ring.count;
  1404. value <<= 16;
  1405. value |= hw->cmb_rrd;
  1406. iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TH);
  1407. value = hw->cmb_rx_timer | ((u32) hw->cmb_tx_timer << 16);
  1408. iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TIMER);
  1409. iowrite32(hw->smb_timer, hw->hw_addr + REG_SMB_TIMER);
  1410. /* --- enable CMB / SMB */
  1411. value = CSMB_CTRL_CMB_EN | CSMB_CTRL_SMB_EN;
  1412. iowrite32(value, hw->hw_addr + REG_CSMB_CTRL);
  1413. value = ioread32(adapter->hw.hw_addr + REG_ISR);
  1414. if (unlikely((value & ISR_PHY_LINKDOWN) != 0))
  1415. value = 1; /* config failed */
  1416. else
  1417. value = 0;
  1418. /* clear all interrupt status */
  1419. iowrite32(0x3fffffff, adapter->hw.hw_addr + REG_ISR);
  1420. iowrite32(0, adapter->hw.hw_addr + REG_ISR);
  1421. return value;
  1422. }
  1423. /*
  1424. * atl1_pcie_patch - Patch for PCIE module
  1425. */
  1426. static void atl1_pcie_patch(struct atl1_adapter *adapter)
  1427. {
  1428. u32 value;
  1429. /* much vendor magic here */
  1430. value = 0x6500;
  1431. iowrite32(value, adapter->hw.hw_addr + 0x12FC);
  1432. /* pcie flow control mode change */
  1433. value = ioread32(adapter->hw.hw_addr + 0x1008);
  1434. value |= 0x8000;
  1435. iowrite32(value, adapter->hw.hw_addr + 0x1008);
  1436. }
  1437. /*
  1438. * When ACPI resume on some VIA MotherBoard, the Interrupt Disable bit/0x400
  1439. * on PCI Command register is disable.
  1440. * The function enable this bit.
  1441. * Brackett, 2006/03/15
  1442. */
  1443. static void atl1_via_workaround(struct atl1_adapter *adapter)
  1444. {
  1445. unsigned long value;
  1446. value = ioread16(adapter->hw.hw_addr + PCI_COMMAND);
  1447. if (value & PCI_COMMAND_INTX_DISABLE)
  1448. value &= ~PCI_COMMAND_INTX_DISABLE;
  1449. iowrite32(value, adapter->hw.hw_addr + PCI_COMMAND);
  1450. }
  1451. static void atl1_inc_smb(struct atl1_adapter *adapter)
  1452. {
  1453. struct net_device *netdev = adapter->netdev;
  1454. struct stats_msg_block *smb = adapter->smb.smb;
  1455. u64 new_rx_errors = smb->rx_frag +
  1456. smb->rx_fcs_err +
  1457. smb->rx_len_err +
  1458. smb->rx_sz_ov +
  1459. smb->rx_rxf_ov +
  1460. smb->rx_rrd_ov +
  1461. smb->rx_align_err;
  1462. u64 new_tx_errors = smb->tx_late_col +
  1463. smb->tx_abort_col +
  1464. smb->tx_underrun +
  1465. smb->tx_trunc;
  1466. /* Fill out the OS statistics structure */
  1467. adapter->soft_stats.rx_packets += smb->rx_ok + new_rx_errors;
  1468. adapter->soft_stats.tx_packets += smb->tx_ok + new_tx_errors;
  1469. adapter->soft_stats.rx_bytes += smb->rx_byte_cnt;
  1470. adapter->soft_stats.tx_bytes += smb->tx_byte_cnt;
  1471. adapter->soft_stats.multicast += smb->rx_mcast;
  1472. adapter->soft_stats.collisions += smb->tx_1_col +
  1473. smb->tx_2_col +
  1474. smb->tx_late_col +
  1475. smb->tx_abort_col;
  1476. /* Rx Errors */
  1477. adapter->soft_stats.rx_errors += new_rx_errors;
  1478. adapter->soft_stats.rx_fifo_errors += smb->rx_rxf_ov;
  1479. adapter->soft_stats.rx_length_errors += smb->rx_len_err;
  1480. adapter->soft_stats.rx_crc_errors += smb->rx_fcs_err;
  1481. adapter->soft_stats.rx_frame_errors += smb->rx_align_err;
  1482. adapter->soft_stats.rx_pause += smb->rx_pause;
  1483. adapter->soft_stats.rx_rrd_ov += smb->rx_rrd_ov;
  1484. adapter->soft_stats.rx_trunc += smb->rx_sz_ov;
  1485. /* Tx Errors */
  1486. adapter->soft_stats.tx_errors += new_tx_errors;
  1487. adapter->soft_stats.tx_fifo_errors += smb->tx_underrun;
  1488. adapter->soft_stats.tx_aborted_errors += smb->tx_abort_col;
  1489. adapter->soft_stats.tx_window_errors += smb->tx_late_col;
  1490. adapter->soft_stats.excecol += smb->tx_abort_col;
  1491. adapter->soft_stats.deffer += smb->tx_defer;
  1492. adapter->soft_stats.scc += smb->tx_1_col;
  1493. adapter->soft_stats.mcc += smb->tx_2_col;
  1494. adapter->soft_stats.latecol += smb->tx_late_col;
  1495. adapter->soft_stats.tx_underrun += smb->tx_underrun;
  1496. adapter->soft_stats.tx_trunc += smb->tx_trunc;
  1497. adapter->soft_stats.tx_pause += smb->tx_pause;
  1498. netdev->stats.rx_bytes = adapter->soft_stats.rx_bytes;
  1499. netdev->stats.tx_bytes = adapter->soft_stats.tx_bytes;
  1500. netdev->stats.multicast = adapter->soft_stats.multicast;
  1501. netdev->stats.collisions = adapter->soft_stats.collisions;
  1502. netdev->stats.rx_errors = adapter->soft_stats.rx_errors;
  1503. netdev->stats.rx_length_errors =
  1504. adapter->soft_stats.rx_length_errors;
  1505. netdev->stats.rx_crc_errors = adapter->soft_stats.rx_crc_errors;
  1506. netdev->stats.rx_frame_errors =
  1507. adapter->soft_stats.rx_frame_errors;
  1508. netdev->stats.rx_fifo_errors = adapter->soft_stats.rx_fifo_errors;
  1509. netdev->stats.rx_dropped = adapter->soft_stats.rx_rrd_ov;
  1510. netdev->stats.tx_errors = adapter->soft_stats.tx_errors;
  1511. netdev->stats.tx_fifo_errors = adapter->soft_stats.tx_fifo_errors;
  1512. netdev->stats.tx_aborted_errors =
  1513. adapter->soft_stats.tx_aborted_errors;
  1514. netdev->stats.tx_window_errors =
  1515. adapter->soft_stats.tx_window_errors;
  1516. netdev->stats.tx_carrier_errors =
  1517. adapter->soft_stats.tx_carrier_errors;
  1518. netdev->stats.rx_packets = adapter->soft_stats.rx_packets;
  1519. netdev->stats.tx_packets = adapter->soft_stats.tx_packets;
  1520. }
  1521. static void atl1_update_mailbox(struct atl1_adapter *adapter)
  1522. {
  1523. unsigned long flags;
  1524. u32 tpd_next_to_use;
  1525. u32 rfd_next_to_use;
  1526. u32 rrd_next_to_clean;
  1527. u32 value;
  1528. spin_lock_irqsave(&adapter->mb_lock, flags);
  1529. tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
  1530. rfd_next_to_use = atomic_read(&adapter->rfd_ring.next_to_use);
  1531. rrd_next_to_clean = atomic_read(&adapter->rrd_ring.next_to_clean);
  1532. value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
  1533. MB_RFD_PROD_INDX_SHIFT) |
  1534. ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
  1535. MB_RRD_CONS_INDX_SHIFT) |
  1536. ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
  1537. MB_TPD_PROD_INDX_SHIFT);
  1538. iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
  1539. spin_unlock_irqrestore(&adapter->mb_lock, flags);
  1540. }
  1541. static void atl1_clean_alloc_flag(struct atl1_adapter *adapter,
  1542. struct rx_return_desc *rrd, u16 offset)
  1543. {
  1544. struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
  1545. while (rfd_ring->next_to_clean != (rrd->buf_indx + offset)) {
  1546. rfd_ring->buffer_info[rfd_ring->next_to_clean].alloced = 0;
  1547. if (++rfd_ring->next_to_clean == rfd_ring->count) {
  1548. rfd_ring->next_to_clean = 0;
  1549. }
  1550. }
  1551. }
  1552. static void atl1_update_rfd_index(struct atl1_adapter *adapter,
  1553. struct rx_return_desc *rrd)
  1554. {
  1555. u16 num_buf;
  1556. num_buf = (rrd->xsz.xsum_sz.pkt_size + adapter->rx_buffer_len - 1) /
  1557. adapter->rx_buffer_len;
  1558. if (rrd->num_buf == num_buf)
  1559. /* clean alloc flag for bad rrd */
  1560. atl1_clean_alloc_flag(adapter, rrd, num_buf);
  1561. }
  1562. static void atl1_rx_checksum(struct atl1_adapter *adapter,
  1563. struct rx_return_desc *rrd, struct sk_buff *skb)
  1564. {
  1565. struct pci_dev *pdev = adapter->pdev;
  1566. /*
  1567. * The L1 hardware contains a bug that erroneously sets the
  1568. * PACKET_FLAG_ERR and ERR_FLAG_L4_CHKSUM bits whenever a
  1569. * fragmented IP packet is received, even though the packet
  1570. * is perfectly valid and its checksum is correct. There's
  1571. * no way to distinguish between one of these good packets
  1572. * and a packet that actually contains a TCP/UDP checksum
  1573. * error, so all we can do is allow it to be handed up to
  1574. * the higher layers and let it be sorted out there.
  1575. */
  1576. skb_checksum_none_assert(skb);
  1577. if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
  1578. if (rrd->err_flg & (ERR_FLAG_CRC | ERR_FLAG_TRUNC |
  1579. ERR_FLAG_CODE | ERR_FLAG_OV)) {
  1580. adapter->hw_csum_err++;
  1581. if (netif_msg_rx_err(adapter))
  1582. dev_printk(KERN_DEBUG, &pdev->dev,
  1583. "rx checksum error\n");
  1584. return;
  1585. }
  1586. }
  1587. /* not IPv4 */
  1588. if (!(rrd->pkt_flg & PACKET_FLAG_IPV4))
  1589. /* checksum is invalid, but it's not an IPv4 pkt, so ok */
  1590. return;
  1591. /* IPv4 packet */
  1592. if (likely(!(rrd->err_flg &
  1593. (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM)))) {
  1594. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1595. adapter->hw_csum_good++;
  1596. return;
  1597. }
  1598. }
  1599. /**
  1600. * atl1_alloc_rx_buffers - Replace used receive buffers
  1601. * @adapter: address of board private structure
  1602. */
  1603. static u16 atl1_alloc_rx_buffers(struct atl1_adapter *adapter)
  1604. {
  1605. struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
  1606. struct pci_dev *pdev = adapter->pdev;
  1607. struct page *page;
  1608. unsigned long offset;
  1609. struct atl1_buffer *buffer_info, *next_info;
  1610. struct sk_buff *skb;
  1611. u16 num_alloc = 0;
  1612. u16 rfd_next_to_use, next_next;
  1613. struct rx_free_desc *rfd_desc;
  1614. next_next = rfd_next_to_use = atomic_read(&rfd_ring->next_to_use);
  1615. if (++next_next == rfd_ring->count)
  1616. next_next = 0;
  1617. buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
  1618. next_info = &rfd_ring->buffer_info[next_next];
  1619. while (!buffer_info->alloced && !next_info->alloced) {
  1620. if (buffer_info->skb) {
  1621. buffer_info->alloced = 1;
  1622. goto next;
  1623. }
  1624. rfd_desc = ATL1_RFD_DESC(rfd_ring, rfd_next_to_use);
  1625. skb = netdev_alloc_skb_ip_align(adapter->netdev,
  1626. adapter->rx_buffer_len);
  1627. if (unlikely(!skb)) {
  1628. /* Better luck next round */
  1629. adapter->soft_stats.rx_dropped++;
  1630. break;
  1631. }
  1632. buffer_info->alloced = 1;
  1633. buffer_info->skb = skb;
  1634. buffer_info->length = (u16) adapter->rx_buffer_len;
  1635. page = virt_to_page(skb->data);
  1636. offset = offset_in_page(skb->data);
  1637. buffer_info->dma = pci_map_page(pdev, page, offset,
  1638. adapter->rx_buffer_len,
  1639. PCI_DMA_FROMDEVICE);
  1640. rfd_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
  1641. rfd_desc->buf_len = cpu_to_le16(adapter->rx_buffer_len);
  1642. rfd_desc->coalese = 0;
  1643. next:
  1644. rfd_next_to_use = next_next;
  1645. if (unlikely(++next_next == rfd_ring->count))
  1646. next_next = 0;
  1647. buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
  1648. next_info = &rfd_ring->buffer_info[next_next];
  1649. num_alloc++;
  1650. }
  1651. if (num_alloc) {
  1652. /*
  1653. * Force memory writes to complete before letting h/w
  1654. * know there are new descriptors to fetch. (Only
  1655. * applicable for weak-ordered memory model archs,
  1656. * such as IA-64).
  1657. */
  1658. wmb();
  1659. atomic_set(&rfd_ring->next_to_use, (int)rfd_next_to_use);
  1660. }
  1661. return num_alloc;
  1662. }
  1663. static int atl1_intr_rx(struct atl1_adapter *adapter, int budget)
  1664. {
  1665. int i, count;
  1666. u16 length;
  1667. u16 rrd_next_to_clean;
  1668. u32 value;
  1669. struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
  1670. struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
  1671. struct atl1_buffer *buffer_info;
  1672. struct rx_return_desc *rrd;
  1673. struct sk_buff *skb;
  1674. count = 0;
  1675. rrd_next_to_clean = atomic_read(&rrd_ring->next_to_clean);
  1676. while (count < budget) {
  1677. rrd = ATL1_RRD_DESC(rrd_ring, rrd_next_to_clean);
  1678. i = 1;
  1679. if (likely(rrd->xsz.valid)) { /* packet valid */
  1680. chk_rrd:
  1681. /* check rrd status */
  1682. if (likely(rrd->num_buf == 1))
  1683. goto rrd_ok;
  1684. else if (netif_msg_rx_err(adapter)) {
  1685. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1686. "unexpected RRD buffer count\n");
  1687. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1688. "rx_buf_len = %d\n",
  1689. adapter->rx_buffer_len);
  1690. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1691. "RRD num_buf = %d\n",
  1692. rrd->num_buf);
  1693. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1694. "RRD pkt_len = %d\n",
  1695. rrd->xsz.xsum_sz.pkt_size);
  1696. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1697. "RRD pkt_flg = 0x%08X\n",
  1698. rrd->pkt_flg);
  1699. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1700. "RRD err_flg = 0x%08X\n",
  1701. rrd->err_flg);
  1702. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1703. "RRD vlan_tag = 0x%08X\n",
  1704. rrd->vlan_tag);
  1705. }
  1706. /* rrd seems to be bad */
  1707. if (unlikely(i-- > 0)) {
  1708. /* rrd may not be DMAed completely */
  1709. udelay(1);
  1710. goto chk_rrd;
  1711. }
  1712. /* bad rrd */
  1713. if (netif_msg_rx_err(adapter))
  1714. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1715. "bad RRD\n");
  1716. /* see if update RFD index */
  1717. if (rrd->num_buf > 1)
  1718. atl1_update_rfd_index(adapter, rrd);
  1719. /* update rrd */
  1720. rrd->xsz.valid = 0;
  1721. if (++rrd_next_to_clean == rrd_ring->count)
  1722. rrd_next_to_clean = 0;
  1723. count++;
  1724. continue;
  1725. } else { /* current rrd still not be updated */
  1726. break;
  1727. }
  1728. rrd_ok:
  1729. /* clean alloc flag for bad rrd */
  1730. atl1_clean_alloc_flag(adapter, rrd, 0);
  1731. buffer_info = &rfd_ring->buffer_info[rrd->buf_indx];
  1732. if (++rfd_ring->next_to_clean == rfd_ring->count)
  1733. rfd_ring->next_to_clean = 0;
  1734. /* update rrd next to clean */
  1735. if (++rrd_next_to_clean == rrd_ring->count)
  1736. rrd_next_to_clean = 0;
  1737. count++;
  1738. if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
  1739. if (!(rrd->err_flg &
  1740. (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM
  1741. | ERR_FLAG_LEN))) {
  1742. /* packet error, don't need upstream */
  1743. buffer_info->alloced = 0;
  1744. rrd->xsz.valid = 0;
  1745. continue;
  1746. }
  1747. }
  1748. /* Good Receive */
  1749. pci_unmap_page(adapter->pdev, buffer_info->dma,
  1750. buffer_info->length, PCI_DMA_FROMDEVICE);
  1751. buffer_info->dma = 0;
  1752. skb = buffer_info->skb;
  1753. length = le16_to_cpu(rrd->xsz.xsum_sz.pkt_size);
  1754. skb_put(skb, length - ETH_FCS_LEN);
  1755. /* Receive Checksum Offload */
  1756. atl1_rx_checksum(adapter, rrd, skb);
  1757. skb->protocol = eth_type_trans(skb, adapter->netdev);
  1758. if (rrd->pkt_flg & PACKET_FLAG_VLAN_INS) {
  1759. u16 vlan_tag = (rrd->vlan_tag >> 4) |
  1760. ((rrd->vlan_tag & 7) << 13) |
  1761. ((rrd->vlan_tag & 8) << 9);
  1762. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
  1763. }
  1764. netif_receive_skb(skb);
  1765. /* let protocol layer free skb */
  1766. buffer_info->skb = NULL;
  1767. buffer_info->alloced = 0;
  1768. rrd->xsz.valid = 0;
  1769. }
  1770. atomic_set(&rrd_ring->next_to_clean, rrd_next_to_clean);
  1771. atl1_alloc_rx_buffers(adapter);
  1772. /* update mailbox ? */
  1773. if (count) {
  1774. u32 tpd_next_to_use;
  1775. u32 rfd_next_to_use;
  1776. spin_lock(&adapter->mb_lock);
  1777. tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
  1778. rfd_next_to_use =
  1779. atomic_read(&adapter->rfd_ring.next_to_use);
  1780. rrd_next_to_clean =
  1781. atomic_read(&adapter->rrd_ring.next_to_clean);
  1782. value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
  1783. MB_RFD_PROD_INDX_SHIFT) |
  1784. ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
  1785. MB_RRD_CONS_INDX_SHIFT) |
  1786. ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
  1787. MB_TPD_PROD_INDX_SHIFT);
  1788. iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
  1789. spin_unlock(&adapter->mb_lock);
  1790. }
  1791. return count;
  1792. }
  1793. static int atl1_intr_tx(struct atl1_adapter *adapter)
  1794. {
  1795. struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
  1796. struct atl1_buffer *buffer_info;
  1797. u16 sw_tpd_next_to_clean;
  1798. u16 cmb_tpd_next_to_clean;
  1799. int count = 0;
  1800. sw_tpd_next_to_clean = atomic_read(&tpd_ring->next_to_clean);
  1801. cmb_tpd_next_to_clean = le16_to_cpu(adapter->cmb.cmb->tpd_cons_idx);
  1802. while (cmb_tpd_next_to_clean != sw_tpd_next_to_clean) {
  1803. buffer_info = &tpd_ring->buffer_info[sw_tpd_next_to_clean];
  1804. if (buffer_info->dma) {
  1805. pci_unmap_page(adapter->pdev, buffer_info->dma,
  1806. buffer_info->length, PCI_DMA_TODEVICE);
  1807. buffer_info->dma = 0;
  1808. }
  1809. if (buffer_info->skb) {
  1810. dev_consume_skb_irq(buffer_info->skb);
  1811. buffer_info->skb = NULL;
  1812. }
  1813. if (++sw_tpd_next_to_clean == tpd_ring->count)
  1814. sw_tpd_next_to_clean = 0;
  1815. count++;
  1816. }
  1817. atomic_set(&tpd_ring->next_to_clean, sw_tpd_next_to_clean);
  1818. if (netif_queue_stopped(adapter->netdev) &&
  1819. netif_carrier_ok(adapter->netdev))
  1820. netif_wake_queue(adapter->netdev);
  1821. return count;
  1822. }
  1823. static u16 atl1_tpd_avail(struct atl1_tpd_ring *tpd_ring)
  1824. {
  1825. u16 next_to_clean = atomic_read(&tpd_ring->next_to_clean);
  1826. u16 next_to_use = atomic_read(&tpd_ring->next_to_use);
  1827. return (next_to_clean > next_to_use) ?
  1828. next_to_clean - next_to_use - 1 :
  1829. tpd_ring->count + next_to_clean - next_to_use - 1;
  1830. }
  1831. static int atl1_tso(struct atl1_adapter *adapter, struct sk_buff *skb,
  1832. struct tx_packet_desc *ptpd)
  1833. {
  1834. u8 hdr_len, ip_off;
  1835. u32 real_len;
  1836. if (skb_shinfo(skb)->gso_size) {
  1837. int err;
  1838. err = skb_cow_head(skb, 0);
  1839. if (err < 0)
  1840. return err;
  1841. if (skb->protocol == htons(ETH_P_IP)) {
  1842. struct iphdr *iph = ip_hdr(skb);
  1843. real_len = (((unsigned char *)iph - skb->data) +
  1844. ntohs(iph->tot_len));
  1845. if (real_len < skb->len)
  1846. pskb_trim(skb, real_len);
  1847. hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb));
  1848. if (skb->len == hdr_len) {
  1849. iph->check = 0;
  1850. tcp_hdr(skb)->check =
  1851. ~csum_tcpudp_magic(iph->saddr,
  1852. iph->daddr, tcp_hdrlen(skb),
  1853. IPPROTO_TCP, 0);
  1854. ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
  1855. TPD_IPHL_SHIFT;
  1856. ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
  1857. TPD_TCPHDRLEN_MASK) <<
  1858. TPD_TCPHDRLEN_SHIFT;
  1859. ptpd->word3 |= 1 << TPD_IP_CSUM_SHIFT;
  1860. ptpd->word3 |= 1 << TPD_TCP_CSUM_SHIFT;
  1861. return 1;
  1862. }
  1863. iph->check = 0;
  1864. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  1865. iph->daddr, 0, IPPROTO_TCP, 0);
  1866. ip_off = (unsigned char *)iph -
  1867. (unsigned char *) skb_network_header(skb);
  1868. if (ip_off == 8) /* 802.3-SNAP frame */
  1869. ptpd->word3 |= 1 << TPD_ETHTYPE_SHIFT;
  1870. else if (ip_off != 0)
  1871. return -2;
  1872. ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
  1873. TPD_IPHL_SHIFT;
  1874. ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
  1875. TPD_TCPHDRLEN_MASK) << TPD_TCPHDRLEN_SHIFT;
  1876. ptpd->word3 |= (skb_shinfo(skb)->gso_size &
  1877. TPD_MSS_MASK) << TPD_MSS_SHIFT;
  1878. ptpd->word3 |= 1 << TPD_SEGMENT_EN_SHIFT;
  1879. return 3;
  1880. }
  1881. }
  1882. return 0;
  1883. }
  1884. static int atl1_tx_csum(struct atl1_adapter *adapter, struct sk_buff *skb,
  1885. struct tx_packet_desc *ptpd)
  1886. {
  1887. u8 css, cso;
  1888. if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
  1889. css = skb_checksum_start_offset(skb);
  1890. cso = css + (u8) skb->csum_offset;
  1891. if (unlikely(css & 0x1)) {
  1892. /* L1 hardware requires an even number here */
  1893. if (netif_msg_tx_err(adapter))
  1894. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1895. "payload offset not an even number\n");
  1896. return -1;
  1897. }
  1898. ptpd->word3 |= (css & TPD_PLOADOFFSET_MASK) <<
  1899. TPD_PLOADOFFSET_SHIFT;
  1900. ptpd->word3 |= (cso & TPD_CCSUMOFFSET_MASK) <<
  1901. TPD_CCSUMOFFSET_SHIFT;
  1902. ptpd->word3 |= 1 << TPD_CUST_CSUM_EN_SHIFT;
  1903. return true;
  1904. }
  1905. return 0;
  1906. }
  1907. static void atl1_tx_map(struct atl1_adapter *adapter, struct sk_buff *skb,
  1908. struct tx_packet_desc *ptpd)
  1909. {
  1910. struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
  1911. struct atl1_buffer *buffer_info;
  1912. u16 buf_len = skb->len;
  1913. struct page *page;
  1914. unsigned long offset;
  1915. unsigned int nr_frags;
  1916. unsigned int f;
  1917. int retval;
  1918. u16 next_to_use;
  1919. u16 data_len;
  1920. u8 hdr_len;
  1921. buf_len -= skb->data_len;
  1922. nr_frags = skb_shinfo(skb)->nr_frags;
  1923. next_to_use = atomic_read(&tpd_ring->next_to_use);
  1924. buffer_info = &tpd_ring->buffer_info[next_to_use];
  1925. BUG_ON(buffer_info->skb);
  1926. /* put skb in last TPD */
  1927. buffer_info->skb = NULL;
  1928. retval = (ptpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK;
  1929. if (retval) {
  1930. /* TSO */
  1931. hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
  1932. buffer_info->length = hdr_len;
  1933. page = virt_to_page(skb->data);
  1934. offset = offset_in_page(skb->data);
  1935. buffer_info->dma = pci_map_page(adapter->pdev, page,
  1936. offset, hdr_len,
  1937. PCI_DMA_TODEVICE);
  1938. if (++next_to_use == tpd_ring->count)
  1939. next_to_use = 0;
  1940. if (buf_len > hdr_len) {
  1941. int i, nseg;
  1942. data_len = buf_len - hdr_len;
  1943. nseg = (data_len + ATL1_MAX_TX_BUF_LEN - 1) /
  1944. ATL1_MAX_TX_BUF_LEN;
  1945. for (i = 0; i < nseg; i++) {
  1946. buffer_info =
  1947. &tpd_ring->buffer_info[next_to_use];
  1948. buffer_info->skb = NULL;
  1949. buffer_info->length =
  1950. (ATL1_MAX_TX_BUF_LEN >=
  1951. data_len) ? ATL1_MAX_TX_BUF_LEN : data_len;
  1952. data_len -= buffer_info->length;
  1953. page = virt_to_page(skb->data +
  1954. (hdr_len + i * ATL1_MAX_TX_BUF_LEN));
  1955. offset = offset_in_page(skb->data +
  1956. (hdr_len + i * ATL1_MAX_TX_BUF_LEN));
  1957. buffer_info->dma = pci_map_page(adapter->pdev,
  1958. page, offset, buffer_info->length,
  1959. PCI_DMA_TODEVICE);
  1960. if (++next_to_use == tpd_ring->count)
  1961. next_to_use = 0;
  1962. }
  1963. }
  1964. } else {
  1965. /* not TSO */
  1966. buffer_info->length = buf_len;
  1967. page = virt_to_page(skb->data);
  1968. offset = offset_in_page(skb->data);
  1969. buffer_info->dma = pci_map_page(adapter->pdev, page,
  1970. offset, buf_len, PCI_DMA_TODEVICE);
  1971. if (++next_to_use == tpd_ring->count)
  1972. next_to_use = 0;
  1973. }
  1974. for (f = 0; f < nr_frags; f++) {
  1975. const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
  1976. u16 i, nseg;
  1977. buf_len = skb_frag_size(frag);
  1978. nseg = (buf_len + ATL1_MAX_TX_BUF_LEN - 1) /
  1979. ATL1_MAX_TX_BUF_LEN;
  1980. for (i = 0; i < nseg; i++) {
  1981. buffer_info = &tpd_ring->buffer_info[next_to_use];
  1982. BUG_ON(buffer_info->skb);
  1983. buffer_info->skb = NULL;
  1984. buffer_info->length = (buf_len > ATL1_MAX_TX_BUF_LEN) ?
  1985. ATL1_MAX_TX_BUF_LEN : buf_len;
  1986. buf_len -= buffer_info->length;
  1987. buffer_info->dma = skb_frag_dma_map(&adapter->pdev->dev,
  1988. frag, i * ATL1_MAX_TX_BUF_LEN,
  1989. buffer_info->length, DMA_TO_DEVICE);
  1990. if (++next_to_use == tpd_ring->count)
  1991. next_to_use = 0;
  1992. }
  1993. }
  1994. /* last tpd's buffer-info */
  1995. buffer_info->skb = skb;
  1996. }
  1997. static void atl1_tx_queue(struct atl1_adapter *adapter, u16 count,
  1998. struct tx_packet_desc *ptpd)
  1999. {
  2000. struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
  2001. struct atl1_buffer *buffer_info;
  2002. struct tx_packet_desc *tpd;
  2003. u16 j;
  2004. u32 val;
  2005. u16 next_to_use = (u16) atomic_read(&tpd_ring->next_to_use);
  2006. for (j = 0; j < count; j++) {
  2007. buffer_info = &tpd_ring->buffer_info[next_to_use];
  2008. tpd = ATL1_TPD_DESC(&adapter->tpd_ring, next_to_use);
  2009. if (tpd != ptpd)
  2010. memcpy(tpd, ptpd, sizeof(struct tx_packet_desc));
  2011. tpd->buffer_addr = cpu_to_le64(buffer_info->dma);
  2012. tpd->word2 &= ~(TPD_BUFLEN_MASK << TPD_BUFLEN_SHIFT);
  2013. tpd->word2 |= (cpu_to_le16(buffer_info->length) &
  2014. TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT;
  2015. /*
  2016. * if this is the first packet in a TSO chain, set
  2017. * TPD_HDRFLAG, otherwise, clear it.
  2018. */
  2019. val = (tpd->word3 >> TPD_SEGMENT_EN_SHIFT) &
  2020. TPD_SEGMENT_EN_MASK;
  2021. if (val) {
  2022. if (!j)
  2023. tpd->word3 |= 1 << TPD_HDRFLAG_SHIFT;
  2024. else
  2025. tpd->word3 &= ~(1 << TPD_HDRFLAG_SHIFT);
  2026. }
  2027. if (j == (count - 1))
  2028. tpd->word3 |= 1 << TPD_EOP_SHIFT;
  2029. if (++next_to_use == tpd_ring->count)
  2030. next_to_use = 0;
  2031. }
  2032. /*
  2033. * Force memory writes to complete before letting h/w
  2034. * know there are new descriptors to fetch. (Only
  2035. * applicable for weak-ordered memory model archs,
  2036. * such as IA-64).
  2037. */
  2038. wmb();
  2039. atomic_set(&tpd_ring->next_to_use, next_to_use);
  2040. }
  2041. static netdev_tx_t atl1_xmit_frame(struct sk_buff *skb,
  2042. struct net_device *netdev)
  2043. {
  2044. struct atl1_adapter *adapter = netdev_priv(netdev);
  2045. struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
  2046. int len;
  2047. int tso;
  2048. int count = 1;
  2049. int ret_val;
  2050. struct tx_packet_desc *ptpd;
  2051. u16 vlan_tag;
  2052. unsigned int nr_frags = 0;
  2053. unsigned int mss = 0;
  2054. unsigned int f;
  2055. unsigned int proto_hdr_len;
  2056. len = skb_headlen(skb);
  2057. if (unlikely(skb->len <= 0)) {
  2058. dev_kfree_skb_any(skb);
  2059. return NETDEV_TX_OK;
  2060. }
  2061. nr_frags = skb_shinfo(skb)->nr_frags;
  2062. for (f = 0; f < nr_frags; f++) {
  2063. unsigned int f_size = skb_frag_size(&skb_shinfo(skb)->frags[f]);
  2064. count += (f_size + ATL1_MAX_TX_BUF_LEN - 1) /
  2065. ATL1_MAX_TX_BUF_LEN;
  2066. }
  2067. mss = skb_shinfo(skb)->gso_size;
  2068. if (mss) {
  2069. if (skb->protocol == htons(ETH_P_IP)) {
  2070. proto_hdr_len = (skb_transport_offset(skb) +
  2071. tcp_hdrlen(skb));
  2072. if (unlikely(proto_hdr_len > len)) {
  2073. dev_kfree_skb_any(skb);
  2074. return NETDEV_TX_OK;
  2075. }
  2076. /* need additional TPD ? */
  2077. if (proto_hdr_len != len)
  2078. count += (len - proto_hdr_len +
  2079. ATL1_MAX_TX_BUF_LEN - 1) /
  2080. ATL1_MAX_TX_BUF_LEN;
  2081. }
  2082. }
  2083. if (atl1_tpd_avail(&adapter->tpd_ring) < count) {
  2084. /* not enough descriptors */
  2085. netif_stop_queue(netdev);
  2086. if (netif_msg_tx_queued(adapter))
  2087. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  2088. "tx busy\n");
  2089. return NETDEV_TX_BUSY;
  2090. }
  2091. ptpd = ATL1_TPD_DESC(tpd_ring,
  2092. (u16) atomic_read(&tpd_ring->next_to_use));
  2093. memset(ptpd, 0, sizeof(struct tx_packet_desc));
  2094. if (skb_vlan_tag_present(skb)) {
  2095. vlan_tag = skb_vlan_tag_get(skb);
  2096. vlan_tag = (vlan_tag << 4) | (vlan_tag >> 13) |
  2097. ((vlan_tag >> 9) & 0x8);
  2098. ptpd->word3 |= 1 << TPD_INS_VL_TAG_SHIFT;
  2099. ptpd->word2 |= (vlan_tag & TPD_VLANTAG_MASK) <<
  2100. TPD_VLANTAG_SHIFT;
  2101. }
  2102. tso = atl1_tso(adapter, skb, ptpd);
  2103. if (tso < 0) {
  2104. dev_kfree_skb_any(skb);
  2105. return NETDEV_TX_OK;
  2106. }
  2107. if (!tso) {
  2108. ret_val = atl1_tx_csum(adapter, skb, ptpd);
  2109. if (ret_val < 0) {
  2110. dev_kfree_skb_any(skb);
  2111. return NETDEV_TX_OK;
  2112. }
  2113. }
  2114. atl1_tx_map(adapter, skb, ptpd);
  2115. atl1_tx_queue(adapter, count, ptpd);
  2116. atl1_update_mailbox(adapter);
  2117. return NETDEV_TX_OK;
  2118. }
  2119. static int atl1_rings_clean(struct napi_struct *napi, int budget)
  2120. {
  2121. struct atl1_adapter *adapter = container_of(napi, struct atl1_adapter, napi);
  2122. int work_done = atl1_intr_rx(adapter, budget);
  2123. if (atl1_intr_tx(adapter))
  2124. work_done = budget;
  2125. /* Let's come again to process some more packets */
  2126. if (work_done >= budget)
  2127. return work_done;
  2128. napi_complete_done(napi, work_done);
  2129. /* re-enable Interrupt */
  2130. if (likely(adapter->int_enabled))
  2131. atlx_imr_set(adapter, IMR_NORMAL_MASK);
  2132. return work_done;
  2133. }
  2134. static inline int atl1_sched_rings_clean(struct atl1_adapter* adapter)
  2135. {
  2136. if (!napi_schedule_prep(&adapter->napi))
  2137. /* It is possible in case even the RX/TX ints are disabled via IMR
  2138. * register the ISR bits are set anyway (but do not produce IRQ).
  2139. * To handle such situation the napi functions used to check is
  2140. * something scheduled or not.
  2141. */
  2142. return 0;
  2143. __napi_schedule(&adapter->napi);
  2144. /*
  2145. * Disable RX/TX ints via IMR register if it is
  2146. * allowed. NAPI handler must reenable them in same
  2147. * way.
  2148. */
  2149. if (!adapter->int_enabled)
  2150. return 1;
  2151. atlx_imr_set(adapter, IMR_NORXTX_MASK);
  2152. return 1;
  2153. }
  2154. /**
  2155. * atl1_intr - Interrupt Handler
  2156. * @irq: interrupt number
  2157. * @data: pointer to a network interface device structure
  2158. */
  2159. static irqreturn_t atl1_intr(int irq, void *data)
  2160. {
  2161. struct atl1_adapter *adapter = netdev_priv(data);
  2162. u32 status;
  2163. status = adapter->cmb.cmb->int_stats;
  2164. if (!status)
  2165. return IRQ_NONE;
  2166. /* clear CMB interrupt status at once,
  2167. * but leave rx/tx interrupt status in case it should be dropped
  2168. * only if rx/tx processing queued. In other case interrupt
  2169. * can be lost.
  2170. */
  2171. adapter->cmb.cmb->int_stats = status & (ISR_CMB_TX | ISR_CMB_RX);
  2172. if (status & ISR_GPHY) /* clear phy status */
  2173. atlx_clear_phy_int(adapter);
  2174. /* clear ISR status, and Enable CMB DMA/Disable Interrupt */
  2175. iowrite32(status | ISR_DIS_INT, adapter->hw.hw_addr + REG_ISR);
  2176. /* check if SMB intr */
  2177. if (status & ISR_SMB)
  2178. atl1_inc_smb(adapter);
  2179. /* check if PCIE PHY Link down */
  2180. if (status & ISR_PHY_LINKDOWN) {
  2181. if (netif_msg_intr(adapter))
  2182. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  2183. "pcie phy link down %x\n", status);
  2184. if (netif_running(adapter->netdev)) { /* reset MAC */
  2185. atlx_irq_disable(adapter);
  2186. schedule_work(&adapter->reset_dev_task);
  2187. return IRQ_HANDLED;
  2188. }
  2189. }
  2190. /* check if DMA read/write error ? */
  2191. if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
  2192. if (netif_msg_intr(adapter))
  2193. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  2194. "pcie DMA r/w error (status = 0x%x)\n",
  2195. status);
  2196. atlx_irq_disable(adapter);
  2197. schedule_work(&adapter->reset_dev_task);
  2198. return IRQ_HANDLED;
  2199. }
  2200. /* link event */
  2201. if (status & ISR_GPHY) {
  2202. adapter->soft_stats.tx_carrier_errors++;
  2203. atl1_check_for_link(adapter);
  2204. }
  2205. /* transmit or receive event */
  2206. if (status & (ISR_CMB_TX | ISR_CMB_RX) &&
  2207. atl1_sched_rings_clean(adapter))
  2208. adapter->cmb.cmb->int_stats = adapter->cmb.cmb->int_stats &
  2209. ~(ISR_CMB_TX | ISR_CMB_RX);
  2210. /* rx exception */
  2211. if (unlikely(status & (ISR_RXF_OV | ISR_RFD_UNRUN |
  2212. ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
  2213. ISR_HOST_RRD_OV))) {
  2214. if (netif_msg_intr(adapter))
  2215. dev_printk(KERN_DEBUG,
  2216. &adapter->pdev->dev,
  2217. "rx exception, ISR = 0x%x\n",
  2218. status);
  2219. atl1_sched_rings_clean(adapter);
  2220. }
  2221. /* re-enable Interrupt */
  2222. iowrite32(ISR_DIS_SMB | ISR_DIS_DMA, adapter->hw.hw_addr + REG_ISR);
  2223. return IRQ_HANDLED;
  2224. }
  2225. /**
  2226. * atl1_phy_config - Timer Call-back
  2227. * @data: pointer to netdev cast into an unsigned long
  2228. */
  2229. static void atl1_phy_config(struct timer_list *t)
  2230. {
  2231. struct atl1_adapter *adapter = from_timer(adapter, t,
  2232. phy_config_timer);
  2233. struct atl1_hw *hw = &adapter->hw;
  2234. unsigned long flags;
  2235. spin_lock_irqsave(&adapter->lock, flags);
  2236. adapter->phy_timer_pending = false;
  2237. atl1_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
  2238. atl1_write_phy_reg(hw, MII_ATLX_CR, hw->mii_1000t_ctrl_reg);
  2239. atl1_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN);
  2240. spin_unlock_irqrestore(&adapter->lock, flags);
  2241. }
  2242. /*
  2243. * Orphaned vendor comment left intact here:
  2244. * <vendor comment>
  2245. * If TPD Buffer size equal to 0, PCIE DMAR_TO_INT
  2246. * will assert. We do soft reset <0x1400=1> according
  2247. * with the SPEC. BUT, it seemes that PCIE or DMA
  2248. * state-machine will not be reset. DMAR_TO_INT will
  2249. * assert again and again.
  2250. * </vendor comment>
  2251. */
  2252. static int atl1_reset(struct atl1_adapter *adapter)
  2253. {
  2254. int ret;
  2255. ret = atl1_reset_hw(&adapter->hw);
  2256. if (ret)
  2257. return ret;
  2258. return atl1_init_hw(&adapter->hw);
  2259. }
  2260. static s32 atl1_up(struct atl1_adapter *adapter)
  2261. {
  2262. struct net_device *netdev = adapter->netdev;
  2263. int err;
  2264. int irq_flags = 0;
  2265. /* hardware has been reset, we need to reload some things */
  2266. atlx_set_multi(netdev);
  2267. atl1_init_ring_ptrs(adapter);
  2268. atlx_restore_vlan(adapter);
  2269. err = atl1_alloc_rx_buffers(adapter);
  2270. if (unlikely(!err))
  2271. /* no RX BUFFER allocated */
  2272. return -ENOMEM;
  2273. if (unlikely(atl1_configure(adapter))) {
  2274. err = -EIO;
  2275. goto err_up;
  2276. }
  2277. err = pci_enable_msi(adapter->pdev);
  2278. if (err) {
  2279. if (netif_msg_ifup(adapter))
  2280. dev_info(&adapter->pdev->dev,
  2281. "Unable to enable MSI: %d\n", err);
  2282. irq_flags |= IRQF_SHARED;
  2283. }
  2284. err = request_irq(adapter->pdev->irq, atl1_intr, irq_flags,
  2285. netdev->name, netdev);
  2286. if (unlikely(err))
  2287. goto err_up;
  2288. napi_enable(&adapter->napi);
  2289. atlx_irq_enable(adapter);
  2290. atl1_check_link(adapter);
  2291. netif_start_queue(netdev);
  2292. return 0;
  2293. err_up:
  2294. pci_disable_msi(adapter->pdev);
  2295. /* free rx_buffers */
  2296. atl1_clean_rx_ring(adapter);
  2297. return err;
  2298. }
  2299. static void atl1_down(struct atl1_adapter *adapter)
  2300. {
  2301. struct net_device *netdev = adapter->netdev;
  2302. napi_disable(&adapter->napi);
  2303. netif_stop_queue(netdev);
  2304. del_timer_sync(&adapter->phy_config_timer);
  2305. adapter->phy_timer_pending = false;
  2306. atlx_irq_disable(adapter);
  2307. free_irq(adapter->pdev->irq, netdev);
  2308. pci_disable_msi(adapter->pdev);
  2309. atl1_reset_hw(&adapter->hw);
  2310. adapter->cmb.cmb->int_stats = 0;
  2311. adapter->link_speed = SPEED_0;
  2312. adapter->link_duplex = -1;
  2313. netif_carrier_off(netdev);
  2314. atl1_clean_tx_ring(adapter);
  2315. atl1_clean_rx_ring(adapter);
  2316. }
  2317. static void atl1_reset_dev_task(struct work_struct *work)
  2318. {
  2319. struct atl1_adapter *adapter =
  2320. container_of(work, struct atl1_adapter, reset_dev_task);
  2321. struct net_device *netdev = adapter->netdev;
  2322. netif_device_detach(netdev);
  2323. atl1_down(adapter);
  2324. atl1_up(adapter);
  2325. netif_device_attach(netdev);
  2326. }
  2327. /**
  2328. * atl1_change_mtu - Change the Maximum Transfer Unit
  2329. * @netdev: network interface device structure
  2330. * @new_mtu: new value for maximum frame size
  2331. *
  2332. * Returns 0 on success, negative on failure
  2333. */
  2334. static int atl1_change_mtu(struct net_device *netdev, int new_mtu)
  2335. {
  2336. struct atl1_adapter *adapter = netdev_priv(netdev);
  2337. int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
  2338. adapter->hw.max_frame_size = max_frame;
  2339. adapter->hw.tx_jumbo_task_th = (max_frame + 7) >> 3;
  2340. adapter->rx_buffer_len = (max_frame + 7) & ~7;
  2341. adapter->hw.rx_jumbo_th = adapter->rx_buffer_len / 8;
  2342. netdev->mtu = new_mtu;
  2343. if (netif_running(netdev)) {
  2344. atl1_down(adapter);
  2345. atl1_up(adapter);
  2346. }
  2347. return 0;
  2348. }
  2349. /**
  2350. * atl1_open - Called when a network interface is made active
  2351. * @netdev: network interface device structure
  2352. *
  2353. * Returns 0 on success, negative value on failure
  2354. *
  2355. * The open entry point is called when a network interface is made
  2356. * active by the system (IFF_UP). At this point all resources needed
  2357. * for transmit and receive operations are allocated, the interrupt
  2358. * handler is registered with the OS, the watchdog timer is started,
  2359. * and the stack is notified that the interface is ready.
  2360. */
  2361. static int atl1_open(struct net_device *netdev)
  2362. {
  2363. struct atl1_adapter *adapter = netdev_priv(netdev);
  2364. int err;
  2365. netif_carrier_off(netdev);
  2366. /* allocate transmit descriptors */
  2367. err = atl1_setup_ring_resources(adapter);
  2368. if (err)
  2369. return err;
  2370. err = atl1_up(adapter);
  2371. if (err)
  2372. goto err_up;
  2373. return 0;
  2374. err_up:
  2375. atl1_reset(adapter);
  2376. return err;
  2377. }
  2378. /**
  2379. * atl1_close - Disables a network interface
  2380. * @netdev: network interface device structure
  2381. *
  2382. * Returns 0, this is not allowed to fail
  2383. *
  2384. * The close entry point is called when an interface is de-activated
  2385. * by the OS. The hardware is still under the drivers control, but
  2386. * needs to be disabled. A global MAC reset is issued to stop the
  2387. * hardware, and all transmit and receive resources are freed.
  2388. */
  2389. static int atl1_close(struct net_device *netdev)
  2390. {
  2391. struct atl1_adapter *adapter = netdev_priv(netdev);
  2392. atl1_down(adapter);
  2393. atl1_free_ring_resources(adapter);
  2394. return 0;
  2395. }
  2396. #ifdef CONFIG_PM_SLEEP
  2397. static int atl1_suspend(struct device *dev)
  2398. {
  2399. struct net_device *netdev = dev_get_drvdata(dev);
  2400. struct atl1_adapter *adapter = netdev_priv(netdev);
  2401. struct atl1_hw *hw = &adapter->hw;
  2402. u32 ctrl = 0;
  2403. u32 wufc = adapter->wol;
  2404. u32 val;
  2405. u16 speed;
  2406. u16 duplex;
  2407. netif_device_detach(netdev);
  2408. if (netif_running(netdev))
  2409. atl1_down(adapter);
  2410. atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
  2411. atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
  2412. val = ctrl & BMSR_LSTATUS;
  2413. if (val)
  2414. wufc &= ~ATLX_WUFC_LNKC;
  2415. if (!wufc)
  2416. goto disable_wol;
  2417. if (val) {
  2418. val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
  2419. if (val) {
  2420. if (netif_msg_ifdown(adapter))
  2421. dev_printk(KERN_DEBUG, dev,
  2422. "error getting speed/duplex\n");
  2423. goto disable_wol;
  2424. }
  2425. ctrl = 0;
  2426. /* enable magic packet WOL */
  2427. if (wufc & ATLX_WUFC_MAG)
  2428. ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN);
  2429. iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
  2430. ioread32(hw->hw_addr + REG_WOL_CTRL);
  2431. /* configure the mac */
  2432. ctrl = MAC_CTRL_RX_EN;
  2433. ctrl |= ((u32)((speed == SPEED_1000) ? MAC_CTRL_SPEED_1000 :
  2434. MAC_CTRL_SPEED_10_100) << MAC_CTRL_SPEED_SHIFT);
  2435. if (duplex == FULL_DUPLEX)
  2436. ctrl |= MAC_CTRL_DUPLX;
  2437. ctrl |= (((u32)adapter->hw.preamble_len &
  2438. MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
  2439. __atlx_vlan_mode(netdev->features, &ctrl);
  2440. if (wufc & ATLX_WUFC_MAG)
  2441. ctrl |= MAC_CTRL_BC_EN;
  2442. iowrite32(ctrl, hw->hw_addr + REG_MAC_CTRL);
  2443. ioread32(hw->hw_addr + REG_MAC_CTRL);
  2444. /* poke the PHY */
  2445. ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
  2446. ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
  2447. iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
  2448. ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
  2449. } else {
  2450. ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
  2451. iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
  2452. ioread32(hw->hw_addr + REG_WOL_CTRL);
  2453. iowrite32(0, hw->hw_addr + REG_MAC_CTRL);
  2454. ioread32(hw->hw_addr + REG_MAC_CTRL);
  2455. hw->phy_configured = false;
  2456. }
  2457. return 0;
  2458. disable_wol:
  2459. iowrite32(0, hw->hw_addr + REG_WOL_CTRL);
  2460. ioread32(hw->hw_addr + REG_WOL_CTRL);
  2461. ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
  2462. ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
  2463. iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
  2464. ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
  2465. hw->phy_configured = false;
  2466. return 0;
  2467. }
  2468. static int atl1_resume(struct device *dev)
  2469. {
  2470. struct net_device *netdev = dev_get_drvdata(dev);
  2471. struct atl1_adapter *adapter = netdev_priv(netdev);
  2472. iowrite32(0, adapter->hw.hw_addr + REG_WOL_CTRL);
  2473. atl1_reset_hw(&adapter->hw);
  2474. if (netif_running(netdev)) {
  2475. adapter->cmb.cmb->int_stats = 0;
  2476. atl1_up(adapter);
  2477. }
  2478. netif_device_attach(netdev);
  2479. return 0;
  2480. }
  2481. #endif
  2482. static SIMPLE_DEV_PM_OPS(atl1_pm_ops, atl1_suspend, atl1_resume);
  2483. static void atl1_shutdown(struct pci_dev *pdev)
  2484. {
  2485. struct net_device *netdev = pci_get_drvdata(pdev);
  2486. struct atl1_adapter *adapter = netdev_priv(netdev);
  2487. #ifdef CONFIG_PM_SLEEP
  2488. atl1_suspend(&pdev->dev);
  2489. #endif
  2490. pci_wake_from_d3(pdev, adapter->wol);
  2491. pci_set_power_state(pdev, PCI_D3hot);
  2492. }
  2493. #ifdef CONFIG_NET_POLL_CONTROLLER
  2494. static void atl1_poll_controller(struct net_device *netdev)
  2495. {
  2496. disable_irq(netdev->irq);
  2497. atl1_intr(netdev->irq, netdev);
  2498. enable_irq(netdev->irq);
  2499. }
  2500. #endif
  2501. static const struct net_device_ops atl1_netdev_ops = {
  2502. .ndo_open = atl1_open,
  2503. .ndo_stop = atl1_close,
  2504. .ndo_start_xmit = atl1_xmit_frame,
  2505. .ndo_set_rx_mode = atlx_set_multi,
  2506. .ndo_validate_addr = eth_validate_addr,
  2507. .ndo_set_mac_address = atl1_set_mac,
  2508. .ndo_change_mtu = atl1_change_mtu,
  2509. .ndo_fix_features = atlx_fix_features,
  2510. .ndo_set_features = atlx_set_features,
  2511. .ndo_do_ioctl = atlx_ioctl,
  2512. .ndo_tx_timeout = atlx_tx_timeout,
  2513. #ifdef CONFIG_NET_POLL_CONTROLLER
  2514. .ndo_poll_controller = atl1_poll_controller,
  2515. #endif
  2516. };
  2517. /**
  2518. * atl1_probe - Device Initialization Routine
  2519. * @pdev: PCI device information struct
  2520. * @ent: entry in atl1_pci_tbl
  2521. *
  2522. * Returns 0 on success, negative on failure
  2523. *
  2524. * atl1_probe initializes an adapter identified by a pci_dev structure.
  2525. * The OS initialization, configuring of the adapter private structure,
  2526. * and a hardware reset occur.
  2527. */
  2528. static int atl1_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
  2529. {
  2530. struct net_device *netdev;
  2531. struct atl1_adapter *adapter;
  2532. static int cards_found = 0;
  2533. int err;
  2534. err = pci_enable_device(pdev);
  2535. if (err)
  2536. return err;
  2537. /*
  2538. * The atl1 chip can DMA to 64-bit addresses, but it uses a single
  2539. * shared register for the high 32 bits, so only a single, aligned,
  2540. * 4 GB physical address range can be used at a time.
  2541. *
  2542. * Supporting 64-bit DMA on this hardware is more trouble than it's
  2543. * worth. It is far easier to limit to 32-bit DMA than update
  2544. * various kernel subsystems to support the mechanics required by a
  2545. * fixed-high-32-bit system.
  2546. */
  2547. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  2548. if (err) {
  2549. dev_err(&pdev->dev, "no usable DMA configuration\n");
  2550. goto err_dma;
  2551. }
  2552. /*
  2553. * Mark all PCI regions associated with PCI device
  2554. * pdev as being reserved by owner atl1_driver_name
  2555. */
  2556. err = pci_request_regions(pdev, ATLX_DRIVER_NAME);
  2557. if (err)
  2558. goto err_request_regions;
  2559. /*
  2560. * Enables bus-mastering on the device and calls
  2561. * pcibios_set_master to do the needed arch specific settings
  2562. */
  2563. pci_set_master(pdev);
  2564. netdev = alloc_etherdev(sizeof(struct atl1_adapter));
  2565. if (!netdev) {
  2566. err = -ENOMEM;
  2567. goto err_alloc_etherdev;
  2568. }
  2569. SET_NETDEV_DEV(netdev, &pdev->dev);
  2570. pci_set_drvdata(pdev, netdev);
  2571. adapter = netdev_priv(netdev);
  2572. adapter->netdev = netdev;
  2573. adapter->pdev = pdev;
  2574. adapter->hw.back = adapter;
  2575. adapter->msg_enable = netif_msg_init(debug, atl1_default_msg);
  2576. adapter->hw.hw_addr = pci_iomap(pdev, 0, 0);
  2577. if (!adapter->hw.hw_addr) {
  2578. err = -EIO;
  2579. goto err_pci_iomap;
  2580. }
  2581. /* get device revision number */
  2582. adapter->hw.dev_rev = ioread16(adapter->hw.hw_addr +
  2583. (REG_MASTER_CTRL + 2));
  2584. /* set default ring resource counts */
  2585. adapter->rfd_ring.count = adapter->rrd_ring.count = ATL1_DEFAULT_RFD;
  2586. adapter->tpd_ring.count = ATL1_DEFAULT_TPD;
  2587. adapter->mii.dev = netdev;
  2588. adapter->mii.mdio_read = mdio_read;
  2589. adapter->mii.mdio_write = mdio_write;
  2590. adapter->mii.phy_id_mask = 0x1f;
  2591. adapter->mii.reg_num_mask = 0x1f;
  2592. netdev->netdev_ops = &atl1_netdev_ops;
  2593. netdev->watchdog_timeo = 5 * HZ;
  2594. netif_napi_add(netdev, &adapter->napi, atl1_rings_clean, 64);
  2595. netdev->ethtool_ops = &atl1_ethtool_ops;
  2596. adapter->bd_number = cards_found;
  2597. /* setup the private structure */
  2598. err = atl1_sw_init(adapter);
  2599. if (err)
  2600. goto err_common;
  2601. netdev->features = NETIF_F_HW_CSUM;
  2602. netdev->features |= NETIF_F_SG;
  2603. netdev->features |= (NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX);
  2604. netdev->hw_features = NETIF_F_HW_CSUM | NETIF_F_SG | NETIF_F_TSO |
  2605. NETIF_F_HW_VLAN_CTAG_RX;
  2606. /* is this valid? see atl1_setup_mac_ctrl() */
  2607. netdev->features |= NETIF_F_RXCSUM;
  2608. /* MTU range: 42 - 10218 */
  2609. netdev->min_mtu = ETH_ZLEN - (ETH_HLEN + VLAN_HLEN);
  2610. netdev->max_mtu = MAX_JUMBO_FRAME_SIZE -
  2611. (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
  2612. /*
  2613. * patch for some L1 of old version,
  2614. * the final version of L1 may not need these
  2615. * patches
  2616. */
  2617. /* atl1_pcie_patch(adapter); */
  2618. /* really reset GPHY core */
  2619. iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
  2620. /*
  2621. * reset the controller to
  2622. * put the device in a known good starting state
  2623. */
  2624. if (atl1_reset_hw(&adapter->hw)) {
  2625. err = -EIO;
  2626. goto err_common;
  2627. }
  2628. /* copy the MAC address out of the EEPROM */
  2629. if (atl1_read_mac_addr(&adapter->hw)) {
  2630. /* mark random mac */
  2631. netdev->addr_assign_type = NET_ADDR_RANDOM;
  2632. }
  2633. memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
  2634. if (!is_valid_ether_addr(netdev->dev_addr)) {
  2635. err = -EIO;
  2636. goto err_common;
  2637. }
  2638. atl1_check_options(adapter);
  2639. /* pre-init the MAC, and setup link */
  2640. err = atl1_init_hw(&adapter->hw);
  2641. if (err) {
  2642. err = -EIO;
  2643. goto err_common;
  2644. }
  2645. atl1_pcie_patch(adapter);
  2646. /* assume we have no link for now */
  2647. netif_carrier_off(netdev);
  2648. timer_setup(&adapter->phy_config_timer, atl1_phy_config, 0);
  2649. adapter->phy_timer_pending = false;
  2650. INIT_WORK(&adapter->reset_dev_task, atl1_reset_dev_task);
  2651. INIT_WORK(&adapter->link_chg_task, atlx_link_chg_task);
  2652. err = register_netdev(netdev);
  2653. if (err)
  2654. goto err_common;
  2655. cards_found++;
  2656. atl1_via_workaround(adapter);
  2657. return 0;
  2658. err_common:
  2659. pci_iounmap(pdev, adapter->hw.hw_addr);
  2660. err_pci_iomap:
  2661. free_netdev(netdev);
  2662. err_alloc_etherdev:
  2663. pci_release_regions(pdev);
  2664. err_dma:
  2665. err_request_regions:
  2666. pci_disable_device(pdev);
  2667. return err;
  2668. }
  2669. /**
  2670. * atl1_remove - Device Removal Routine
  2671. * @pdev: PCI device information struct
  2672. *
  2673. * atl1_remove is called by the PCI subsystem to alert the driver
  2674. * that it should release a PCI device. The could be caused by a
  2675. * Hot-Plug event, or because the driver is going to be removed from
  2676. * memory.
  2677. */
  2678. static void atl1_remove(struct pci_dev *pdev)
  2679. {
  2680. struct net_device *netdev = pci_get_drvdata(pdev);
  2681. struct atl1_adapter *adapter;
  2682. /* Device not available. Return. */
  2683. if (!netdev)
  2684. return;
  2685. adapter = netdev_priv(netdev);
  2686. /*
  2687. * Some atl1 boards lack persistent storage for their MAC, and get it
  2688. * from the BIOS during POST. If we've been messing with the MAC
  2689. * address, we need to save the permanent one.
  2690. */
  2691. if (!ether_addr_equal_unaligned(adapter->hw.mac_addr,
  2692. adapter->hw.perm_mac_addr)) {
  2693. memcpy(adapter->hw.mac_addr, adapter->hw.perm_mac_addr,
  2694. ETH_ALEN);
  2695. atl1_set_mac_addr(&adapter->hw);
  2696. }
  2697. iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
  2698. unregister_netdev(netdev);
  2699. pci_iounmap(pdev, adapter->hw.hw_addr);
  2700. pci_release_regions(pdev);
  2701. free_netdev(netdev);
  2702. pci_disable_device(pdev);
  2703. }
  2704. static struct pci_driver atl1_driver = {
  2705. .name = ATLX_DRIVER_NAME,
  2706. .id_table = atl1_pci_tbl,
  2707. .probe = atl1_probe,
  2708. .remove = atl1_remove,
  2709. .shutdown = atl1_shutdown,
  2710. .driver.pm = &atl1_pm_ops,
  2711. };
  2712. struct atl1_stats {
  2713. char stat_string[ETH_GSTRING_LEN];
  2714. int sizeof_stat;
  2715. int stat_offset;
  2716. };
  2717. #define ATL1_STAT(m) \
  2718. sizeof(((struct atl1_adapter *)0)->m), offsetof(struct atl1_adapter, m)
  2719. static struct atl1_stats atl1_gstrings_stats[] = {
  2720. {"rx_packets", ATL1_STAT(soft_stats.rx_packets)},
  2721. {"tx_packets", ATL1_STAT(soft_stats.tx_packets)},
  2722. {"rx_bytes", ATL1_STAT(soft_stats.rx_bytes)},
  2723. {"tx_bytes", ATL1_STAT(soft_stats.tx_bytes)},
  2724. {"rx_errors", ATL1_STAT(soft_stats.rx_errors)},
  2725. {"tx_errors", ATL1_STAT(soft_stats.tx_errors)},
  2726. {"multicast", ATL1_STAT(soft_stats.multicast)},
  2727. {"collisions", ATL1_STAT(soft_stats.collisions)},
  2728. {"rx_length_errors", ATL1_STAT(soft_stats.rx_length_errors)},
  2729. {"rx_over_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
  2730. {"rx_crc_errors", ATL1_STAT(soft_stats.rx_crc_errors)},
  2731. {"rx_frame_errors", ATL1_STAT(soft_stats.rx_frame_errors)},
  2732. {"rx_fifo_errors", ATL1_STAT(soft_stats.rx_fifo_errors)},
  2733. {"rx_missed_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
  2734. {"tx_aborted_errors", ATL1_STAT(soft_stats.tx_aborted_errors)},
  2735. {"tx_carrier_errors", ATL1_STAT(soft_stats.tx_carrier_errors)},
  2736. {"tx_fifo_errors", ATL1_STAT(soft_stats.tx_fifo_errors)},
  2737. {"tx_window_errors", ATL1_STAT(soft_stats.tx_window_errors)},
  2738. {"tx_abort_exce_coll", ATL1_STAT(soft_stats.excecol)},
  2739. {"tx_abort_late_coll", ATL1_STAT(soft_stats.latecol)},
  2740. {"tx_deferred_ok", ATL1_STAT(soft_stats.deffer)},
  2741. {"tx_single_coll_ok", ATL1_STAT(soft_stats.scc)},
  2742. {"tx_multi_coll_ok", ATL1_STAT(soft_stats.mcc)},
  2743. {"tx_underrun", ATL1_STAT(soft_stats.tx_underrun)},
  2744. {"tx_trunc", ATL1_STAT(soft_stats.tx_trunc)},
  2745. {"tx_pause", ATL1_STAT(soft_stats.tx_pause)},
  2746. {"rx_pause", ATL1_STAT(soft_stats.rx_pause)},
  2747. {"rx_rrd_ov", ATL1_STAT(soft_stats.rx_rrd_ov)},
  2748. {"rx_trunc", ATL1_STAT(soft_stats.rx_trunc)}
  2749. };
  2750. static void atl1_get_ethtool_stats(struct net_device *netdev,
  2751. struct ethtool_stats *stats, u64 *data)
  2752. {
  2753. struct atl1_adapter *adapter = netdev_priv(netdev);
  2754. int i;
  2755. char *p;
  2756. for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
  2757. p = (char *)adapter+atl1_gstrings_stats[i].stat_offset;
  2758. data[i] = (atl1_gstrings_stats[i].sizeof_stat ==
  2759. sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
  2760. }
  2761. }
  2762. static int atl1_get_sset_count(struct net_device *netdev, int sset)
  2763. {
  2764. switch (sset) {
  2765. case ETH_SS_STATS:
  2766. return ARRAY_SIZE(atl1_gstrings_stats);
  2767. default:
  2768. return -EOPNOTSUPP;
  2769. }
  2770. }
  2771. static int atl1_get_link_ksettings(struct net_device *netdev,
  2772. struct ethtool_link_ksettings *cmd)
  2773. {
  2774. struct atl1_adapter *adapter = netdev_priv(netdev);
  2775. struct atl1_hw *hw = &adapter->hw;
  2776. u32 supported, advertising;
  2777. supported = (SUPPORTED_10baseT_Half |
  2778. SUPPORTED_10baseT_Full |
  2779. SUPPORTED_100baseT_Half |
  2780. SUPPORTED_100baseT_Full |
  2781. SUPPORTED_1000baseT_Full |
  2782. SUPPORTED_Autoneg | SUPPORTED_TP);
  2783. advertising = ADVERTISED_TP;
  2784. if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
  2785. hw->media_type == MEDIA_TYPE_1000M_FULL) {
  2786. advertising |= ADVERTISED_Autoneg;
  2787. if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR) {
  2788. advertising |= ADVERTISED_Autoneg;
  2789. advertising |=
  2790. (ADVERTISED_10baseT_Half |
  2791. ADVERTISED_10baseT_Full |
  2792. ADVERTISED_100baseT_Half |
  2793. ADVERTISED_100baseT_Full |
  2794. ADVERTISED_1000baseT_Full);
  2795. } else
  2796. advertising |= (ADVERTISED_1000baseT_Full);
  2797. }
  2798. cmd->base.port = PORT_TP;
  2799. cmd->base.phy_address = 0;
  2800. if (netif_carrier_ok(adapter->netdev)) {
  2801. u16 link_speed, link_duplex;
  2802. atl1_get_speed_and_duplex(hw, &link_speed, &link_duplex);
  2803. cmd->base.speed = link_speed;
  2804. if (link_duplex == FULL_DUPLEX)
  2805. cmd->base.duplex = DUPLEX_FULL;
  2806. else
  2807. cmd->base.duplex = DUPLEX_HALF;
  2808. } else {
  2809. cmd->base.speed = SPEED_UNKNOWN;
  2810. cmd->base.duplex = DUPLEX_UNKNOWN;
  2811. }
  2812. if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
  2813. hw->media_type == MEDIA_TYPE_1000M_FULL)
  2814. cmd->base.autoneg = AUTONEG_ENABLE;
  2815. else
  2816. cmd->base.autoneg = AUTONEG_DISABLE;
  2817. ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
  2818. supported);
  2819. ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
  2820. advertising);
  2821. return 0;
  2822. }
  2823. static int atl1_set_link_ksettings(struct net_device *netdev,
  2824. const struct ethtool_link_ksettings *cmd)
  2825. {
  2826. struct atl1_adapter *adapter = netdev_priv(netdev);
  2827. struct atl1_hw *hw = &adapter->hw;
  2828. u16 phy_data;
  2829. int ret_val = 0;
  2830. u16 old_media_type = hw->media_type;
  2831. if (netif_running(adapter->netdev)) {
  2832. if (netif_msg_link(adapter))
  2833. dev_dbg(&adapter->pdev->dev,
  2834. "ethtool shutting down adapter\n");
  2835. atl1_down(adapter);
  2836. }
  2837. if (cmd->base.autoneg == AUTONEG_ENABLE)
  2838. hw->media_type = MEDIA_TYPE_AUTO_SENSOR;
  2839. else {
  2840. u32 speed = cmd->base.speed;
  2841. if (speed == SPEED_1000) {
  2842. if (cmd->base.duplex != DUPLEX_FULL) {
  2843. if (netif_msg_link(adapter))
  2844. dev_warn(&adapter->pdev->dev,
  2845. "1000M half is invalid\n");
  2846. ret_val = -EINVAL;
  2847. goto exit_sset;
  2848. }
  2849. hw->media_type = MEDIA_TYPE_1000M_FULL;
  2850. } else if (speed == SPEED_100) {
  2851. if (cmd->base.duplex == DUPLEX_FULL)
  2852. hw->media_type = MEDIA_TYPE_100M_FULL;
  2853. else
  2854. hw->media_type = MEDIA_TYPE_100M_HALF;
  2855. } else {
  2856. if (cmd->base.duplex == DUPLEX_FULL)
  2857. hw->media_type = MEDIA_TYPE_10M_FULL;
  2858. else
  2859. hw->media_type = MEDIA_TYPE_10M_HALF;
  2860. }
  2861. }
  2862. if (atl1_phy_setup_autoneg_adv(hw)) {
  2863. ret_val = -EINVAL;
  2864. if (netif_msg_link(adapter))
  2865. dev_warn(&adapter->pdev->dev,
  2866. "invalid ethtool speed/duplex setting\n");
  2867. goto exit_sset;
  2868. }
  2869. if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
  2870. hw->media_type == MEDIA_TYPE_1000M_FULL)
  2871. phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
  2872. else {
  2873. switch (hw->media_type) {
  2874. case MEDIA_TYPE_100M_FULL:
  2875. phy_data =
  2876. MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
  2877. MII_CR_RESET;
  2878. break;
  2879. case MEDIA_TYPE_100M_HALF:
  2880. phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
  2881. break;
  2882. case MEDIA_TYPE_10M_FULL:
  2883. phy_data =
  2884. MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
  2885. break;
  2886. default:
  2887. /* MEDIA_TYPE_10M_HALF: */
  2888. phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
  2889. break;
  2890. }
  2891. }
  2892. atl1_write_phy_reg(hw, MII_BMCR, phy_data);
  2893. exit_sset:
  2894. if (ret_val)
  2895. hw->media_type = old_media_type;
  2896. if (netif_running(adapter->netdev)) {
  2897. if (netif_msg_link(adapter))
  2898. dev_dbg(&adapter->pdev->dev,
  2899. "ethtool starting adapter\n");
  2900. atl1_up(adapter);
  2901. } else if (!ret_val) {
  2902. if (netif_msg_link(adapter))
  2903. dev_dbg(&adapter->pdev->dev,
  2904. "ethtool resetting adapter\n");
  2905. atl1_reset(adapter);
  2906. }
  2907. return ret_val;
  2908. }
  2909. static void atl1_get_drvinfo(struct net_device *netdev,
  2910. struct ethtool_drvinfo *drvinfo)
  2911. {
  2912. struct atl1_adapter *adapter = netdev_priv(netdev);
  2913. strlcpy(drvinfo->driver, ATLX_DRIVER_NAME, sizeof(drvinfo->driver));
  2914. strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
  2915. sizeof(drvinfo->bus_info));
  2916. }
  2917. static void atl1_get_wol(struct net_device *netdev,
  2918. struct ethtool_wolinfo *wol)
  2919. {
  2920. struct atl1_adapter *adapter = netdev_priv(netdev);
  2921. wol->supported = WAKE_MAGIC;
  2922. wol->wolopts = 0;
  2923. if (adapter->wol & ATLX_WUFC_MAG)
  2924. wol->wolopts |= WAKE_MAGIC;
  2925. }
  2926. static int atl1_set_wol(struct net_device *netdev,
  2927. struct ethtool_wolinfo *wol)
  2928. {
  2929. struct atl1_adapter *adapter = netdev_priv(netdev);
  2930. if (wol->wolopts & (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
  2931. WAKE_ARP | WAKE_MAGICSECURE))
  2932. return -EOPNOTSUPP;
  2933. adapter->wol = 0;
  2934. if (wol->wolopts & WAKE_MAGIC)
  2935. adapter->wol |= ATLX_WUFC_MAG;
  2936. device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
  2937. return 0;
  2938. }
  2939. static u32 atl1_get_msglevel(struct net_device *netdev)
  2940. {
  2941. struct atl1_adapter *adapter = netdev_priv(netdev);
  2942. return adapter->msg_enable;
  2943. }
  2944. static void atl1_set_msglevel(struct net_device *netdev, u32 value)
  2945. {
  2946. struct atl1_adapter *adapter = netdev_priv(netdev);
  2947. adapter->msg_enable = value;
  2948. }
  2949. static int atl1_get_regs_len(struct net_device *netdev)
  2950. {
  2951. return ATL1_REG_COUNT * sizeof(u32);
  2952. }
  2953. static void atl1_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
  2954. void *p)
  2955. {
  2956. struct atl1_adapter *adapter = netdev_priv(netdev);
  2957. struct atl1_hw *hw = &adapter->hw;
  2958. unsigned int i;
  2959. u32 *regbuf = p;
  2960. for (i = 0; i < ATL1_REG_COUNT; i++) {
  2961. /*
  2962. * This switch statement avoids reserved regions
  2963. * of register space.
  2964. */
  2965. switch (i) {
  2966. case 6 ... 9:
  2967. case 14:
  2968. case 29 ... 31:
  2969. case 34 ... 63:
  2970. case 75 ... 127:
  2971. case 136 ... 1023:
  2972. case 1027 ... 1087:
  2973. case 1091 ... 1151:
  2974. case 1194 ... 1195:
  2975. case 1200 ... 1201:
  2976. case 1206 ... 1213:
  2977. case 1216 ... 1279:
  2978. case 1290 ... 1311:
  2979. case 1323 ... 1343:
  2980. case 1358 ... 1359:
  2981. case 1368 ... 1375:
  2982. case 1378 ... 1383:
  2983. case 1388 ... 1391:
  2984. case 1393 ... 1395:
  2985. case 1402 ... 1403:
  2986. case 1410 ... 1471:
  2987. case 1522 ... 1535:
  2988. /* reserved region; don't read it */
  2989. regbuf[i] = 0;
  2990. break;
  2991. default:
  2992. /* unreserved region */
  2993. regbuf[i] = ioread32(hw->hw_addr + (i * sizeof(u32)));
  2994. }
  2995. }
  2996. }
  2997. static void atl1_get_ringparam(struct net_device *netdev,
  2998. struct ethtool_ringparam *ring)
  2999. {
  3000. struct atl1_adapter *adapter = netdev_priv(netdev);
  3001. struct atl1_tpd_ring *txdr = &adapter->tpd_ring;
  3002. struct atl1_rfd_ring *rxdr = &adapter->rfd_ring;
  3003. ring->rx_max_pending = ATL1_MAX_RFD;
  3004. ring->tx_max_pending = ATL1_MAX_TPD;
  3005. ring->rx_pending = rxdr->count;
  3006. ring->tx_pending = txdr->count;
  3007. }
  3008. static int atl1_set_ringparam(struct net_device *netdev,
  3009. struct ethtool_ringparam *ring)
  3010. {
  3011. struct atl1_adapter *adapter = netdev_priv(netdev);
  3012. struct atl1_tpd_ring *tpdr = &adapter->tpd_ring;
  3013. struct atl1_rrd_ring *rrdr = &adapter->rrd_ring;
  3014. struct atl1_rfd_ring *rfdr = &adapter->rfd_ring;
  3015. struct atl1_tpd_ring tpd_old, tpd_new;
  3016. struct atl1_rfd_ring rfd_old, rfd_new;
  3017. struct atl1_rrd_ring rrd_old, rrd_new;
  3018. struct atl1_ring_header rhdr_old, rhdr_new;
  3019. struct atl1_smb smb;
  3020. struct atl1_cmb cmb;
  3021. int err;
  3022. tpd_old = adapter->tpd_ring;
  3023. rfd_old = adapter->rfd_ring;
  3024. rrd_old = adapter->rrd_ring;
  3025. rhdr_old = adapter->ring_header;
  3026. if (netif_running(adapter->netdev))
  3027. atl1_down(adapter);
  3028. rfdr->count = (u16) max(ring->rx_pending, (u32) ATL1_MIN_RFD);
  3029. rfdr->count = rfdr->count > ATL1_MAX_RFD ? ATL1_MAX_RFD :
  3030. rfdr->count;
  3031. rfdr->count = (rfdr->count + 3) & ~3;
  3032. rrdr->count = rfdr->count;
  3033. tpdr->count = (u16) max(ring->tx_pending, (u32) ATL1_MIN_TPD);
  3034. tpdr->count = tpdr->count > ATL1_MAX_TPD ? ATL1_MAX_TPD :
  3035. tpdr->count;
  3036. tpdr->count = (tpdr->count + 3) & ~3;
  3037. if (netif_running(adapter->netdev)) {
  3038. /* try to get new resources before deleting old */
  3039. err = atl1_setup_ring_resources(adapter);
  3040. if (err)
  3041. goto err_setup_ring;
  3042. /*
  3043. * save the new, restore the old in order to free it,
  3044. * then restore the new back again
  3045. */
  3046. rfd_new = adapter->rfd_ring;
  3047. rrd_new = adapter->rrd_ring;
  3048. tpd_new = adapter->tpd_ring;
  3049. rhdr_new = adapter->ring_header;
  3050. adapter->rfd_ring = rfd_old;
  3051. adapter->rrd_ring = rrd_old;
  3052. adapter->tpd_ring = tpd_old;
  3053. adapter->ring_header = rhdr_old;
  3054. /*
  3055. * Save SMB and CMB, since atl1_free_ring_resources
  3056. * will clear them.
  3057. */
  3058. smb = adapter->smb;
  3059. cmb = adapter->cmb;
  3060. atl1_free_ring_resources(adapter);
  3061. adapter->rfd_ring = rfd_new;
  3062. adapter->rrd_ring = rrd_new;
  3063. adapter->tpd_ring = tpd_new;
  3064. adapter->ring_header = rhdr_new;
  3065. adapter->smb = smb;
  3066. adapter->cmb = cmb;
  3067. err = atl1_up(adapter);
  3068. if (err)
  3069. return err;
  3070. }
  3071. return 0;
  3072. err_setup_ring:
  3073. adapter->rfd_ring = rfd_old;
  3074. adapter->rrd_ring = rrd_old;
  3075. adapter->tpd_ring = tpd_old;
  3076. adapter->ring_header = rhdr_old;
  3077. atl1_up(adapter);
  3078. return err;
  3079. }
  3080. static void atl1_get_pauseparam(struct net_device *netdev,
  3081. struct ethtool_pauseparam *epause)
  3082. {
  3083. struct atl1_adapter *adapter = netdev_priv(netdev);
  3084. struct atl1_hw *hw = &adapter->hw;
  3085. if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
  3086. hw->media_type == MEDIA_TYPE_1000M_FULL) {
  3087. epause->autoneg = AUTONEG_ENABLE;
  3088. } else {
  3089. epause->autoneg = AUTONEG_DISABLE;
  3090. }
  3091. epause->rx_pause = 1;
  3092. epause->tx_pause = 1;
  3093. }
  3094. static int atl1_set_pauseparam(struct net_device *netdev,
  3095. struct ethtool_pauseparam *epause)
  3096. {
  3097. struct atl1_adapter *adapter = netdev_priv(netdev);
  3098. struct atl1_hw *hw = &adapter->hw;
  3099. if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
  3100. hw->media_type == MEDIA_TYPE_1000M_FULL) {
  3101. epause->autoneg = AUTONEG_ENABLE;
  3102. } else {
  3103. epause->autoneg = AUTONEG_DISABLE;
  3104. }
  3105. epause->rx_pause = 1;
  3106. epause->tx_pause = 1;
  3107. return 0;
  3108. }
  3109. static void atl1_get_strings(struct net_device *netdev, u32 stringset,
  3110. u8 *data)
  3111. {
  3112. u8 *p = data;
  3113. int i;
  3114. switch (stringset) {
  3115. case ETH_SS_STATS:
  3116. for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
  3117. memcpy(p, atl1_gstrings_stats[i].stat_string,
  3118. ETH_GSTRING_LEN);
  3119. p += ETH_GSTRING_LEN;
  3120. }
  3121. break;
  3122. }
  3123. }
  3124. static int atl1_nway_reset(struct net_device *netdev)
  3125. {
  3126. struct atl1_adapter *adapter = netdev_priv(netdev);
  3127. struct atl1_hw *hw = &adapter->hw;
  3128. if (netif_running(netdev)) {
  3129. u16 phy_data;
  3130. atl1_down(adapter);
  3131. if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
  3132. hw->media_type == MEDIA_TYPE_1000M_FULL) {
  3133. phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
  3134. } else {
  3135. switch (hw->media_type) {
  3136. case MEDIA_TYPE_100M_FULL:
  3137. phy_data = MII_CR_FULL_DUPLEX |
  3138. MII_CR_SPEED_100 | MII_CR_RESET;
  3139. break;
  3140. case MEDIA_TYPE_100M_HALF:
  3141. phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
  3142. break;
  3143. case MEDIA_TYPE_10M_FULL:
  3144. phy_data = MII_CR_FULL_DUPLEX |
  3145. MII_CR_SPEED_10 | MII_CR_RESET;
  3146. break;
  3147. default:
  3148. /* MEDIA_TYPE_10M_HALF */
  3149. phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
  3150. }
  3151. }
  3152. atl1_write_phy_reg(hw, MII_BMCR, phy_data);
  3153. atl1_up(adapter);
  3154. }
  3155. return 0;
  3156. }
  3157. static const struct ethtool_ops atl1_ethtool_ops = {
  3158. .get_drvinfo = atl1_get_drvinfo,
  3159. .get_wol = atl1_get_wol,
  3160. .set_wol = atl1_set_wol,
  3161. .get_msglevel = atl1_get_msglevel,
  3162. .set_msglevel = atl1_set_msglevel,
  3163. .get_regs_len = atl1_get_regs_len,
  3164. .get_regs = atl1_get_regs,
  3165. .get_ringparam = atl1_get_ringparam,
  3166. .set_ringparam = atl1_set_ringparam,
  3167. .get_pauseparam = atl1_get_pauseparam,
  3168. .set_pauseparam = atl1_set_pauseparam,
  3169. .get_link = ethtool_op_get_link,
  3170. .get_strings = atl1_get_strings,
  3171. .nway_reset = atl1_nway_reset,
  3172. .get_ethtool_stats = atl1_get_ethtool_stats,
  3173. .get_sset_count = atl1_get_sset_count,
  3174. .get_link_ksettings = atl1_get_link_ksettings,
  3175. .set_link_ksettings = atl1_set_link_ksettings,
  3176. };
  3177. module_pci_driver(atl1_driver);