PageRenderTime 146ms CodeModel.GetById 23ms RepoModel.GetById 0ms app.codeStats 1ms

/drivers/net/ethernet/broadcom/tg3.c

http://github.com/mirrors/linux
C | 18321 lines | 13829 code | 3121 blank | 1371 comment | 3395 complexity | f576d86aef186712610d2eaffa15f544 MD5 | raw file
Possible License(s): AGPL-1.0, GPL-2.0, LGPL-2.0
  1. /*
  2. * tg3.c: Broadcom Tigon3 ethernet driver.
  3. *
  4. * Copyright (C) 2001, 2002, 2003, 2004 David S. Miller (davem@redhat.com)
  5. * Copyright (C) 2001, 2002, 2003 Jeff Garzik (jgarzik@pobox.com)
  6. * Copyright (C) 2004 Sun Microsystems Inc.
  7. * Copyright (C) 2005-2016 Broadcom Corporation.
  8. * Copyright (C) 2016-2017 Broadcom Limited.
  9. * Copyright (C) 2018 Broadcom. All Rights Reserved. The term "Broadcom"
  10. * refers to Broadcom Inc. and/or its subsidiaries.
  11. *
  12. * Firmware is:
  13. * Derived from proprietary unpublished source code,
  14. * Copyright (C) 2000-2016 Broadcom Corporation.
  15. * Copyright (C) 2016-2017 Broadcom Ltd.
  16. * Copyright (C) 2018 Broadcom. All Rights Reserved. The term "Broadcom"
  17. * refers to Broadcom Inc. and/or its subsidiaries.
  18. *
  19. * Permission is hereby granted for the distribution of this firmware
  20. * data in hexadecimal or equivalent format, provided this copyright
  21. * notice is accompanying it.
  22. */
  23. #include <linux/module.h>
  24. #include <linux/moduleparam.h>
  25. #include <linux/stringify.h>
  26. #include <linux/kernel.h>
  27. #include <linux/sched/signal.h>
  28. #include <linux/types.h>
  29. #include <linux/compiler.h>
  30. #include <linux/slab.h>
  31. #include <linux/delay.h>
  32. #include <linux/in.h>
  33. #include <linux/interrupt.h>
  34. #include <linux/ioport.h>
  35. #include <linux/pci.h>
  36. #include <linux/netdevice.h>
  37. #include <linux/etherdevice.h>
  38. #include <linux/skbuff.h>
  39. #include <linux/ethtool.h>
  40. #include <linux/mdio.h>
  41. #include <linux/mii.h>
  42. #include <linux/phy.h>
  43. #include <linux/brcmphy.h>
  44. #include <linux/if.h>
  45. #include <linux/if_vlan.h>
  46. #include <linux/ip.h>
  47. #include <linux/tcp.h>
  48. #include <linux/workqueue.h>
  49. #include <linux/prefetch.h>
  50. #include <linux/dma-mapping.h>
  51. #include <linux/firmware.h>
  52. #include <linux/ssb/ssb_driver_gige.h>
  53. #include <linux/hwmon.h>
  54. #include <linux/hwmon-sysfs.h>
  55. #include <linux/crc32poly.h>
  56. #include <net/checksum.h>
  57. #include <net/ip.h>
  58. #include <linux/io.h>
  59. #include <asm/byteorder.h>
  60. #include <linux/uaccess.h>
  61. #include <uapi/linux/net_tstamp.h>
  62. #include <linux/ptp_clock_kernel.h>
  63. #define BAR_0 0
  64. #define BAR_2 2
  65. #include "tg3.h"
  66. /* Functions & macros to verify TG3_FLAGS types */
  67. static inline int _tg3_flag(enum TG3_FLAGS flag, unsigned long *bits)
  68. {
  69. return test_bit(flag, bits);
  70. }
  71. static inline void _tg3_flag_set(enum TG3_FLAGS flag, unsigned long *bits)
  72. {
  73. set_bit(flag, bits);
  74. }
  75. static inline void _tg3_flag_clear(enum TG3_FLAGS flag, unsigned long *bits)
  76. {
  77. clear_bit(flag, bits);
  78. }
  79. #define tg3_flag(tp, flag) \
  80. _tg3_flag(TG3_FLAG_##flag, (tp)->tg3_flags)
  81. #define tg3_flag_set(tp, flag) \
  82. _tg3_flag_set(TG3_FLAG_##flag, (tp)->tg3_flags)
  83. #define tg3_flag_clear(tp, flag) \
  84. _tg3_flag_clear(TG3_FLAG_##flag, (tp)->tg3_flags)
  85. #define DRV_MODULE_NAME "tg3"
  86. /* DO NOT UPDATE TG3_*_NUM defines */
  87. #define TG3_MAJ_NUM 3
  88. #define TG3_MIN_NUM 137
  89. #define RESET_KIND_SHUTDOWN 0
  90. #define RESET_KIND_INIT 1
  91. #define RESET_KIND_SUSPEND 2
  92. #define TG3_DEF_RX_MODE 0
  93. #define TG3_DEF_TX_MODE 0
  94. #define TG3_DEF_MSG_ENABLE \
  95. (NETIF_MSG_DRV | \
  96. NETIF_MSG_PROBE | \
  97. NETIF_MSG_LINK | \
  98. NETIF_MSG_TIMER | \
  99. NETIF_MSG_IFDOWN | \
  100. NETIF_MSG_IFUP | \
  101. NETIF_MSG_RX_ERR | \
  102. NETIF_MSG_TX_ERR)
  103. #define TG3_GRC_LCLCTL_PWRSW_DELAY 100
  104. /* length of time before we decide the hardware is borked,
  105. * and dev->tx_timeout() should be called to fix the problem
  106. */
  107. #define TG3_TX_TIMEOUT (5 * HZ)
  108. /* hardware minimum and maximum for a single frame's data payload */
  109. #define TG3_MIN_MTU ETH_ZLEN
  110. #define TG3_MAX_MTU(tp) \
  111. (tg3_flag(tp, JUMBO_CAPABLE) ? 9000 : 1500)
  112. /* These numbers seem to be hard coded in the NIC firmware somehow.
  113. * You can't change the ring sizes, but you can change where you place
  114. * them in the NIC onboard memory.
  115. */
  116. #define TG3_RX_STD_RING_SIZE(tp) \
  117. (tg3_flag(tp, LRG_PROD_RING_CAP) ? \
  118. TG3_RX_STD_MAX_SIZE_5717 : TG3_RX_STD_MAX_SIZE_5700)
  119. #define TG3_DEF_RX_RING_PENDING 200
  120. #define TG3_RX_JMB_RING_SIZE(tp) \
  121. (tg3_flag(tp, LRG_PROD_RING_CAP) ? \
  122. TG3_RX_JMB_MAX_SIZE_5717 : TG3_RX_JMB_MAX_SIZE_5700)
  123. #define TG3_DEF_RX_JUMBO_RING_PENDING 100
  124. /* Do not place this n-ring entries value into the tp struct itself,
  125. * we really want to expose these constants to GCC so that modulo et
  126. * al. operations are done with shifts and masks instead of with
  127. * hw multiply/modulo instructions. Another solution would be to
  128. * replace things like '% foo' with '& (foo - 1)'.
  129. */
  130. #define TG3_TX_RING_SIZE 512
  131. #define TG3_DEF_TX_RING_PENDING (TG3_TX_RING_SIZE - 1)
  132. #define TG3_RX_STD_RING_BYTES(tp) \
  133. (sizeof(struct tg3_rx_buffer_desc) * TG3_RX_STD_RING_SIZE(tp))
  134. #define TG3_RX_JMB_RING_BYTES(tp) \
  135. (sizeof(struct tg3_ext_rx_buffer_desc) * TG3_RX_JMB_RING_SIZE(tp))
  136. #define TG3_RX_RCB_RING_BYTES(tp) \
  137. (sizeof(struct tg3_rx_buffer_desc) * (tp->rx_ret_ring_mask + 1))
  138. #define TG3_TX_RING_BYTES (sizeof(struct tg3_tx_buffer_desc) * \
  139. TG3_TX_RING_SIZE)
  140. #define NEXT_TX(N) (((N) + 1) & (TG3_TX_RING_SIZE - 1))
  141. #define TG3_DMA_BYTE_ENAB 64
  142. #define TG3_RX_STD_DMA_SZ 1536
  143. #define TG3_RX_JMB_DMA_SZ 9046
  144. #define TG3_RX_DMA_TO_MAP_SZ(x) ((x) + TG3_DMA_BYTE_ENAB)
  145. #define TG3_RX_STD_MAP_SZ TG3_RX_DMA_TO_MAP_SZ(TG3_RX_STD_DMA_SZ)
  146. #define TG3_RX_JMB_MAP_SZ TG3_RX_DMA_TO_MAP_SZ(TG3_RX_JMB_DMA_SZ)
  147. #define TG3_RX_STD_BUFF_RING_SIZE(tp) \
  148. (sizeof(struct ring_info) * TG3_RX_STD_RING_SIZE(tp))
  149. #define TG3_RX_JMB_BUFF_RING_SIZE(tp) \
  150. (sizeof(struct ring_info) * TG3_RX_JMB_RING_SIZE(tp))
  151. /* Due to a hardware bug, the 5701 can only DMA to memory addresses
  152. * that are at least dword aligned when used in PCIX mode. The driver
  153. * works around this bug by double copying the packet. This workaround
  154. * is built into the normal double copy length check for efficiency.
  155. *
  156. * However, the double copy is only necessary on those architectures
  157. * where unaligned memory accesses are inefficient. For those architectures
  158. * where unaligned memory accesses incur little penalty, we can reintegrate
  159. * the 5701 in the normal rx path. Doing so saves a device structure
  160. * dereference by hardcoding the double copy threshold in place.
  161. */
  162. #define TG3_RX_COPY_THRESHOLD 256
  163. #if NET_IP_ALIGN == 0 || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
  164. #define TG3_RX_COPY_THRESH(tp) TG3_RX_COPY_THRESHOLD
  165. #else
  166. #define TG3_RX_COPY_THRESH(tp) ((tp)->rx_copy_thresh)
  167. #endif
  168. #if (NET_IP_ALIGN != 0)
  169. #define TG3_RX_OFFSET(tp) ((tp)->rx_offset)
  170. #else
  171. #define TG3_RX_OFFSET(tp) (NET_SKB_PAD)
  172. #endif
  173. /* minimum number of free TX descriptors required to wake up TX process */
  174. #define TG3_TX_WAKEUP_THRESH(tnapi) ((tnapi)->tx_pending / 4)
  175. #define TG3_TX_BD_DMA_MAX_2K 2048
  176. #define TG3_TX_BD_DMA_MAX_4K 4096
  177. #define TG3_RAW_IP_ALIGN 2
  178. #define TG3_MAX_UCAST_ADDR(tp) (tg3_flag((tp), ENABLE_ASF) ? 2 : 3)
  179. #define TG3_UCAST_ADDR_IDX(tp) (tg3_flag((tp), ENABLE_ASF) ? 2 : 1)
  180. #define TG3_FW_UPDATE_TIMEOUT_SEC 5
  181. #define TG3_FW_UPDATE_FREQ_SEC (TG3_FW_UPDATE_TIMEOUT_SEC / 2)
  182. #define FIRMWARE_TG3 "tigon/tg3.bin"
  183. #define FIRMWARE_TG357766 "tigon/tg357766.bin"
  184. #define FIRMWARE_TG3TSO "tigon/tg3_tso.bin"
  185. #define FIRMWARE_TG3TSO5 "tigon/tg3_tso5.bin"
  186. MODULE_AUTHOR("David S. Miller (davem@redhat.com) and Jeff Garzik (jgarzik@pobox.com)");
  187. MODULE_DESCRIPTION("Broadcom Tigon3 ethernet driver");
  188. MODULE_LICENSE("GPL");
  189. MODULE_FIRMWARE(FIRMWARE_TG3);
  190. MODULE_FIRMWARE(FIRMWARE_TG3TSO);
  191. MODULE_FIRMWARE(FIRMWARE_TG3TSO5);
  192. static int tg3_debug = -1; /* -1 == use TG3_DEF_MSG_ENABLE as value */
  193. module_param(tg3_debug, int, 0);
  194. MODULE_PARM_DESC(tg3_debug, "Tigon3 bitmapped debugging message enable value");
  195. #define TG3_DRV_DATA_FLAG_10_100_ONLY 0x0001
  196. #define TG3_DRV_DATA_FLAG_5705_10_100 0x0002
  197. static const struct pci_device_id tg3_pci_tbl[] = {
  198. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5700)},
  199. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5701)},
  200. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5702)},
  201. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5703)},
  202. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5704)},
  203. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5702FE)},
  204. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5705)},
  205. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5705_2)},
  206. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5705M)},
  207. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5705M_2)},
  208. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5702X)},
  209. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5703X)},
  210. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5704S)},
  211. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5702A3)},
  212. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5703A3)},
  213. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5782)},
  214. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5788)},
  215. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5789)},
  216. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5901),
  217. .driver_data = TG3_DRV_DATA_FLAG_10_100_ONLY |
  218. TG3_DRV_DATA_FLAG_5705_10_100},
  219. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5901_2),
  220. .driver_data = TG3_DRV_DATA_FLAG_10_100_ONLY |
  221. TG3_DRV_DATA_FLAG_5705_10_100},
  222. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5704S_2)},
  223. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5705F),
  224. .driver_data = TG3_DRV_DATA_FLAG_10_100_ONLY |
  225. TG3_DRV_DATA_FLAG_5705_10_100},
  226. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5721)},
  227. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5722)},
  228. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5750)},
  229. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5751)},
  230. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5751M)},
  231. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5751F),
  232. .driver_data = TG3_DRV_DATA_FLAG_10_100_ONLY},
  233. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5752)},
  234. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5752M)},
  235. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5753)},
  236. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5753M)},
  237. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5753F),
  238. .driver_data = TG3_DRV_DATA_FLAG_10_100_ONLY},
  239. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5754)},
  240. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5754M)},
  241. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5755)},
  242. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5755M)},
  243. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5756)},
  244. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5786)},
  245. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5787)},
  246. {PCI_DEVICE_SUB(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_5787M,
  247. PCI_VENDOR_ID_LENOVO,
  248. TG3PCI_SUBDEVICE_ID_LENOVO_5787M),
  249. .driver_data = TG3_DRV_DATA_FLAG_10_100_ONLY},
  250. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5787M)},
  251. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5787F),
  252. .driver_data = TG3_DRV_DATA_FLAG_10_100_ONLY},
  253. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5714)},
  254. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5714S)},
  255. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5715)},
  256. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5715S)},
  257. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5780)},
  258. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5780S)},
  259. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5781)},
  260. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5906)},
  261. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5906M)},
  262. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5784)},
  263. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5764)},
  264. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5723)},
  265. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5761)},
  266. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_TIGON3_5761E)},
  267. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_5761S)},
  268. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_5761SE)},
  269. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_5785_G)},
  270. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_5785_F)},
  271. {PCI_DEVICE_SUB(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57780,
  272. PCI_VENDOR_ID_AI, TG3PCI_SUBDEVICE_ID_ACER_57780_A),
  273. .driver_data = TG3_DRV_DATA_FLAG_10_100_ONLY},
  274. {PCI_DEVICE_SUB(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57780,
  275. PCI_VENDOR_ID_AI, TG3PCI_SUBDEVICE_ID_ACER_57780_B),
  276. .driver_data = TG3_DRV_DATA_FLAG_10_100_ONLY},
  277. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57780)},
  278. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57760)},
  279. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57790),
  280. .driver_data = TG3_DRV_DATA_FLAG_10_100_ONLY},
  281. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57788)},
  282. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_5717)},
  283. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_5717_C)},
  284. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_5718)},
  285. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57781)},
  286. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57785)},
  287. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57761)},
  288. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57765)},
  289. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57791),
  290. .driver_data = TG3_DRV_DATA_FLAG_10_100_ONLY},
  291. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57795),
  292. .driver_data = TG3_DRV_DATA_FLAG_10_100_ONLY},
  293. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_5719)},
  294. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_5720)},
  295. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57762)},
  296. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57766)},
  297. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_5762)},
  298. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_5725)},
  299. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_5727)},
  300. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57764)},
  301. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57767)},
  302. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57787)},
  303. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57782)},
  304. {PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, TG3PCI_DEVICE_TIGON3_57786)},
  305. {PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_9DXX)},
  306. {PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_9MXX)},
  307. {PCI_DEVICE(PCI_VENDOR_ID_ALTIMA, PCI_DEVICE_ID_ALTIMA_AC1000)},
  308. {PCI_DEVICE(PCI_VENDOR_ID_ALTIMA, PCI_DEVICE_ID_ALTIMA_AC1001)},
  309. {PCI_DEVICE(PCI_VENDOR_ID_ALTIMA, PCI_DEVICE_ID_ALTIMA_AC1003)},
  310. {PCI_DEVICE(PCI_VENDOR_ID_ALTIMA, PCI_DEVICE_ID_ALTIMA_AC9100)},
  311. {PCI_DEVICE(PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_TIGON3)},
  312. {PCI_DEVICE(0x10cf, 0x11a2)}, /* Fujitsu 1000base-SX with BCM5703SKHB */
  313. {}
  314. };
  315. MODULE_DEVICE_TABLE(pci, tg3_pci_tbl);
  316. static const struct {
  317. const char string[ETH_GSTRING_LEN];
  318. } ethtool_stats_keys[] = {
  319. { "rx_octets" },
  320. { "rx_fragments" },
  321. { "rx_ucast_packets" },
  322. { "rx_mcast_packets" },
  323. { "rx_bcast_packets" },
  324. { "rx_fcs_errors" },
  325. { "rx_align_errors" },
  326. { "rx_xon_pause_rcvd" },
  327. { "rx_xoff_pause_rcvd" },
  328. { "rx_mac_ctrl_rcvd" },
  329. { "rx_xoff_entered" },
  330. { "rx_frame_too_long_errors" },
  331. { "rx_jabbers" },
  332. { "rx_undersize_packets" },
  333. { "rx_in_length_errors" },
  334. { "rx_out_length_errors" },
  335. { "rx_64_or_less_octet_packets" },
  336. { "rx_65_to_127_octet_packets" },
  337. { "rx_128_to_255_octet_packets" },
  338. { "rx_256_to_511_octet_packets" },
  339. { "rx_512_to_1023_octet_packets" },
  340. { "rx_1024_to_1522_octet_packets" },
  341. { "rx_1523_to_2047_octet_packets" },
  342. { "rx_2048_to_4095_octet_packets" },
  343. { "rx_4096_to_8191_octet_packets" },
  344. { "rx_8192_to_9022_octet_packets" },
  345. { "tx_octets" },
  346. { "tx_collisions" },
  347. { "tx_xon_sent" },
  348. { "tx_xoff_sent" },
  349. { "tx_flow_control" },
  350. { "tx_mac_errors" },
  351. { "tx_single_collisions" },
  352. { "tx_mult_collisions" },
  353. { "tx_deferred" },
  354. { "tx_excessive_collisions" },
  355. { "tx_late_collisions" },
  356. { "tx_collide_2times" },
  357. { "tx_collide_3times" },
  358. { "tx_collide_4times" },
  359. { "tx_collide_5times" },
  360. { "tx_collide_6times" },
  361. { "tx_collide_7times" },
  362. { "tx_collide_8times" },
  363. { "tx_collide_9times" },
  364. { "tx_collide_10times" },
  365. { "tx_collide_11times" },
  366. { "tx_collide_12times" },
  367. { "tx_collide_13times" },
  368. { "tx_collide_14times" },
  369. { "tx_collide_15times" },
  370. { "tx_ucast_packets" },
  371. { "tx_mcast_packets" },
  372. { "tx_bcast_packets" },
  373. { "tx_carrier_sense_errors" },
  374. { "tx_discards" },
  375. { "tx_errors" },
  376. { "dma_writeq_full" },
  377. { "dma_write_prioq_full" },
  378. { "rxbds_empty" },
  379. { "rx_discards" },
  380. { "rx_errors" },
  381. { "rx_threshold_hit" },
  382. { "dma_readq_full" },
  383. { "dma_read_prioq_full" },
  384. { "tx_comp_queue_full" },
  385. { "ring_set_send_prod_index" },
  386. { "ring_status_update" },
  387. { "nic_irqs" },
  388. { "nic_avoided_irqs" },
  389. { "nic_tx_threshold_hit" },
  390. { "mbuf_lwm_thresh_hit" },
  391. };
  392. #define TG3_NUM_STATS ARRAY_SIZE(ethtool_stats_keys)
  393. #define TG3_NVRAM_TEST 0
  394. #define TG3_LINK_TEST 1
  395. #define TG3_REGISTER_TEST 2
  396. #define TG3_MEMORY_TEST 3
  397. #define TG3_MAC_LOOPB_TEST 4
  398. #define TG3_PHY_LOOPB_TEST 5
  399. #define TG3_EXT_LOOPB_TEST 6
  400. #define TG3_INTERRUPT_TEST 7
  401. static const struct {
  402. const char string[ETH_GSTRING_LEN];
  403. } ethtool_test_keys[] = {
  404. [TG3_NVRAM_TEST] = { "nvram test (online) " },
  405. [TG3_LINK_TEST] = { "link test (online) " },
  406. [TG3_REGISTER_TEST] = { "register test (offline)" },
  407. [TG3_MEMORY_TEST] = { "memory test (offline)" },
  408. [TG3_MAC_LOOPB_TEST] = { "mac loopback test (offline)" },
  409. [TG3_PHY_LOOPB_TEST] = { "phy loopback test (offline)" },
  410. [TG3_EXT_LOOPB_TEST] = { "ext loopback test (offline)" },
  411. [TG3_INTERRUPT_TEST] = { "interrupt test (offline)" },
  412. };
  413. #define TG3_NUM_TEST ARRAY_SIZE(ethtool_test_keys)
  414. static void tg3_write32(struct tg3 *tp, u32 off, u32 val)
  415. {
  416. writel(val, tp->regs + off);
  417. }
  418. static u32 tg3_read32(struct tg3 *tp, u32 off)
  419. {
  420. return readl(tp->regs + off);
  421. }
  422. static void tg3_ape_write32(struct tg3 *tp, u32 off, u32 val)
  423. {
  424. writel(val, tp->aperegs + off);
  425. }
  426. static u32 tg3_ape_read32(struct tg3 *tp, u32 off)
  427. {
  428. return readl(tp->aperegs + off);
  429. }
  430. static void tg3_write_indirect_reg32(struct tg3 *tp, u32 off, u32 val)
  431. {
  432. unsigned long flags;
  433. spin_lock_irqsave(&tp->indirect_lock, flags);
  434. pci_write_config_dword(tp->pdev, TG3PCI_REG_BASE_ADDR, off);
  435. pci_write_config_dword(tp->pdev, TG3PCI_REG_DATA, val);
  436. spin_unlock_irqrestore(&tp->indirect_lock, flags);
  437. }
  438. static void tg3_write_flush_reg32(struct tg3 *tp, u32 off, u32 val)
  439. {
  440. writel(val, tp->regs + off);
  441. readl(tp->regs + off);
  442. }
  443. static u32 tg3_read_indirect_reg32(struct tg3 *tp, u32 off)
  444. {
  445. unsigned long flags;
  446. u32 val;
  447. spin_lock_irqsave(&tp->indirect_lock, flags);
  448. pci_write_config_dword(tp->pdev, TG3PCI_REG_BASE_ADDR, off);
  449. pci_read_config_dword(tp->pdev, TG3PCI_REG_DATA, &val);
  450. spin_unlock_irqrestore(&tp->indirect_lock, flags);
  451. return val;
  452. }
  453. static void tg3_write_indirect_mbox(struct tg3 *tp, u32 off, u32 val)
  454. {
  455. unsigned long flags;
  456. if (off == (MAILBOX_RCVRET_CON_IDX_0 + TG3_64BIT_REG_LOW)) {
  457. pci_write_config_dword(tp->pdev, TG3PCI_RCV_RET_RING_CON_IDX +
  458. TG3_64BIT_REG_LOW, val);
  459. return;
  460. }
  461. if (off == TG3_RX_STD_PROD_IDX_REG) {
  462. pci_write_config_dword(tp->pdev, TG3PCI_STD_RING_PROD_IDX +
  463. TG3_64BIT_REG_LOW, val);
  464. return;
  465. }
  466. spin_lock_irqsave(&tp->indirect_lock, flags);
  467. pci_write_config_dword(tp->pdev, TG3PCI_REG_BASE_ADDR, off + 0x5600);
  468. pci_write_config_dword(tp->pdev, TG3PCI_REG_DATA, val);
  469. spin_unlock_irqrestore(&tp->indirect_lock, flags);
  470. /* In indirect mode when disabling interrupts, we also need
  471. * to clear the interrupt bit in the GRC local ctrl register.
  472. */
  473. if ((off == (MAILBOX_INTERRUPT_0 + TG3_64BIT_REG_LOW)) &&
  474. (val == 0x1)) {
  475. pci_write_config_dword(tp->pdev, TG3PCI_MISC_LOCAL_CTRL,
  476. tp->grc_local_ctrl|GRC_LCLCTRL_CLEARINT);
  477. }
  478. }
  479. static u32 tg3_read_indirect_mbox(struct tg3 *tp, u32 off)
  480. {
  481. unsigned long flags;
  482. u32 val;
  483. spin_lock_irqsave(&tp->indirect_lock, flags);
  484. pci_write_config_dword(tp->pdev, TG3PCI_REG_BASE_ADDR, off + 0x5600);
  485. pci_read_config_dword(tp->pdev, TG3PCI_REG_DATA, &val);
  486. spin_unlock_irqrestore(&tp->indirect_lock, flags);
  487. return val;
  488. }
  489. /* usec_wait specifies the wait time in usec when writing to certain registers
  490. * where it is unsafe to read back the register without some delay.
  491. * GRC_LOCAL_CTRL is one example if the GPIOs are toggled to switch power.
  492. * TG3PCI_CLOCK_CTRL is another example if the clock frequencies are changed.
  493. */
  494. static void _tw32_flush(struct tg3 *tp, u32 off, u32 val, u32 usec_wait)
  495. {
  496. if (tg3_flag(tp, PCIX_TARGET_HWBUG) || tg3_flag(tp, ICH_WORKAROUND))
  497. /* Non-posted methods */
  498. tp->write32(tp, off, val);
  499. else {
  500. /* Posted method */
  501. tg3_write32(tp, off, val);
  502. if (usec_wait)
  503. udelay(usec_wait);
  504. tp->read32(tp, off);
  505. }
  506. /* Wait again after the read for the posted method to guarantee that
  507. * the wait time is met.
  508. */
  509. if (usec_wait)
  510. udelay(usec_wait);
  511. }
  512. static inline void tw32_mailbox_flush(struct tg3 *tp, u32 off, u32 val)
  513. {
  514. tp->write32_mbox(tp, off, val);
  515. if (tg3_flag(tp, FLUSH_POSTED_WRITES) ||
  516. (!tg3_flag(tp, MBOX_WRITE_REORDER) &&
  517. !tg3_flag(tp, ICH_WORKAROUND)))
  518. tp->read32_mbox(tp, off);
  519. }
  520. static void tg3_write32_tx_mbox(struct tg3 *tp, u32 off, u32 val)
  521. {
  522. void __iomem *mbox = tp->regs + off;
  523. writel(val, mbox);
  524. if (tg3_flag(tp, TXD_MBOX_HWBUG))
  525. writel(val, mbox);
  526. if (tg3_flag(tp, MBOX_WRITE_REORDER) ||
  527. tg3_flag(tp, FLUSH_POSTED_WRITES))
  528. readl(mbox);
  529. }
  530. static u32 tg3_read32_mbox_5906(struct tg3 *tp, u32 off)
  531. {
  532. return readl(tp->regs + off + GRCMBOX_BASE);
  533. }
  534. static void tg3_write32_mbox_5906(struct tg3 *tp, u32 off, u32 val)
  535. {
  536. writel(val, tp->regs + off + GRCMBOX_BASE);
  537. }
  538. #define tw32_mailbox(reg, val) tp->write32_mbox(tp, reg, val)
  539. #define tw32_mailbox_f(reg, val) tw32_mailbox_flush(tp, (reg), (val))
  540. #define tw32_rx_mbox(reg, val) tp->write32_rx_mbox(tp, reg, val)
  541. #define tw32_tx_mbox(reg, val) tp->write32_tx_mbox(tp, reg, val)
  542. #define tr32_mailbox(reg) tp->read32_mbox(tp, reg)
  543. #define tw32(reg, val) tp->write32(tp, reg, val)
  544. #define tw32_f(reg, val) _tw32_flush(tp, (reg), (val), 0)
  545. #define tw32_wait_f(reg, val, us) _tw32_flush(tp, (reg), (val), (us))
  546. #define tr32(reg) tp->read32(tp, reg)
  547. static void tg3_write_mem(struct tg3 *tp, u32 off, u32 val)
  548. {
  549. unsigned long flags;
  550. if (tg3_asic_rev(tp) == ASIC_REV_5906 &&
  551. (off >= NIC_SRAM_STATS_BLK) && (off < NIC_SRAM_TX_BUFFER_DESC))
  552. return;
  553. spin_lock_irqsave(&tp->indirect_lock, flags);
  554. if (tg3_flag(tp, SRAM_USE_CONFIG)) {
  555. pci_write_config_dword(tp->pdev, TG3PCI_MEM_WIN_BASE_ADDR, off);
  556. pci_write_config_dword(tp->pdev, TG3PCI_MEM_WIN_DATA, val);
  557. /* Always leave this as zero. */
  558. pci_write_config_dword(tp->pdev, TG3PCI_MEM_WIN_BASE_ADDR, 0);
  559. } else {
  560. tw32_f(TG3PCI_MEM_WIN_BASE_ADDR, off);
  561. tw32_f(TG3PCI_MEM_WIN_DATA, val);
  562. /* Always leave this as zero. */
  563. tw32_f(TG3PCI_MEM_WIN_BASE_ADDR, 0);
  564. }
  565. spin_unlock_irqrestore(&tp->indirect_lock, flags);
  566. }
  567. static void tg3_read_mem(struct tg3 *tp, u32 off, u32 *val)
  568. {
  569. unsigned long flags;
  570. if (tg3_asic_rev(tp) == ASIC_REV_5906 &&
  571. (off >= NIC_SRAM_STATS_BLK) && (off < NIC_SRAM_TX_BUFFER_DESC)) {
  572. *val = 0;
  573. return;
  574. }
  575. spin_lock_irqsave(&tp->indirect_lock, flags);
  576. if (tg3_flag(tp, SRAM_USE_CONFIG)) {
  577. pci_write_config_dword(tp->pdev, TG3PCI_MEM_WIN_BASE_ADDR, off);
  578. pci_read_config_dword(tp->pdev, TG3PCI_MEM_WIN_DATA, val);
  579. /* Always leave this as zero. */
  580. pci_write_config_dword(tp->pdev, TG3PCI_MEM_WIN_BASE_ADDR, 0);
  581. } else {
  582. tw32_f(TG3PCI_MEM_WIN_BASE_ADDR, off);
  583. *val = tr32(TG3PCI_MEM_WIN_DATA);
  584. /* Always leave this as zero. */
  585. tw32_f(TG3PCI_MEM_WIN_BASE_ADDR, 0);
  586. }
  587. spin_unlock_irqrestore(&tp->indirect_lock, flags);
  588. }
  589. static void tg3_ape_lock_init(struct tg3 *tp)
  590. {
  591. int i;
  592. u32 regbase, bit;
  593. if (tg3_asic_rev(tp) == ASIC_REV_5761)
  594. regbase = TG3_APE_LOCK_GRANT;
  595. else
  596. regbase = TG3_APE_PER_LOCK_GRANT;
  597. /* Make sure the driver hasn't any stale locks. */
  598. for (i = TG3_APE_LOCK_PHY0; i <= TG3_APE_LOCK_GPIO; i++) {
  599. switch (i) {
  600. case TG3_APE_LOCK_PHY0:
  601. case TG3_APE_LOCK_PHY1:
  602. case TG3_APE_LOCK_PHY2:
  603. case TG3_APE_LOCK_PHY3:
  604. bit = APE_LOCK_GRANT_DRIVER;
  605. break;
  606. default:
  607. if (!tp->pci_fn)
  608. bit = APE_LOCK_GRANT_DRIVER;
  609. else
  610. bit = 1 << tp->pci_fn;
  611. }
  612. tg3_ape_write32(tp, regbase + 4 * i, bit);
  613. }
  614. }
  615. static int tg3_ape_lock(struct tg3 *tp, int locknum)
  616. {
  617. int i, off;
  618. int ret = 0;
  619. u32 status, req, gnt, bit;
  620. if (!tg3_flag(tp, ENABLE_APE))
  621. return 0;
  622. switch (locknum) {
  623. case TG3_APE_LOCK_GPIO:
  624. if (tg3_asic_rev(tp) == ASIC_REV_5761)
  625. return 0;
  626. /* fall through */
  627. case TG3_APE_LOCK_GRC:
  628. case TG3_APE_LOCK_MEM:
  629. if (!tp->pci_fn)
  630. bit = APE_LOCK_REQ_DRIVER;
  631. else
  632. bit = 1 << tp->pci_fn;
  633. break;
  634. case TG3_APE_LOCK_PHY0:
  635. case TG3_APE_LOCK_PHY1:
  636. case TG3_APE_LOCK_PHY2:
  637. case TG3_APE_LOCK_PHY3:
  638. bit = APE_LOCK_REQ_DRIVER;
  639. break;
  640. default:
  641. return -EINVAL;
  642. }
  643. if (tg3_asic_rev(tp) == ASIC_REV_5761) {
  644. req = TG3_APE_LOCK_REQ;
  645. gnt = TG3_APE_LOCK_GRANT;
  646. } else {
  647. req = TG3_APE_PER_LOCK_REQ;
  648. gnt = TG3_APE_PER_LOCK_GRANT;
  649. }
  650. off = 4 * locknum;
  651. tg3_ape_write32(tp, req + off, bit);
  652. /* Wait for up to 1 millisecond to acquire lock. */
  653. for (i = 0; i < 100; i++) {
  654. status = tg3_ape_read32(tp, gnt + off);
  655. if (status == bit)
  656. break;
  657. if (pci_channel_offline(tp->pdev))
  658. break;
  659. udelay(10);
  660. }
  661. if (status != bit) {
  662. /* Revoke the lock request. */
  663. tg3_ape_write32(tp, gnt + off, bit);
  664. ret = -EBUSY;
  665. }
  666. return ret;
  667. }
  668. static void tg3_ape_unlock(struct tg3 *tp, int locknum)
  669. {
  670. u32 gnt, bit;
  671. if (!tg3_flag(tp, ENABLE_APE))
  672. return;
  673. switch (locknum) {
  674. case TG3_APE_LOCK_GPIO:
  675. if (tg3_asic_rev(tp) == ASIC_REV_5761)
  676. return;
  677. /* fall through */
  678. case TG3_APE_LOCK_GRC:
  679. case TG3_APE_LOCK_MEM:
  680. if (!tp->pci_fn)
  681. bit = APE_LOCK_GRANT_DRIVER;
  682. else
  683. bit = 1 << tp->pci_fn;
  684. break;
  685. case TG3_APE_LOCK_PHY0:
  686. case TG3_APE_LOCK_PHY1:
  687. case TG3_APE_LOCK_PHY2:
  688. case TG3_APE_LOCK_PHY3:
  689. bit = APE_LOCK_GRANT_DRIVER;
  690. break;
  691. default:
  692. return;
  693. }
  694. if (tg3_asic_rev(tp) == ASIC_REV_5761)
  695. gnt = TG3_APE_LOCK_GRANT;
  696. else
  697. gnt = TG3_APE_PER_LOCK_GRANT;
  698. tg3_ape_write32(tp, gnt + 4 * locknum, bit);
  699. }
  700. static int tg3_ape_event_lock(struct tg3 *tp, u32 timeout_us)
  701. {
  702. u32 apedata;
  703. while (timeout_us) {
  704. if (tg3_ape_lock(tp, TG3_APE_LOCK_MEM))
  705. return -EBUSY;
  706. apedata = tg3_ape_read32(tp, TG3_APE_EVENT_STATUS);
  707. if (!(apedata & APE_EVENT_STATUS_EVENT_PENDING))
  708. break;
  709. tg3_ape_unlock(tp, TG3_APE_LOCK_MEM);
  710. udelay(10);
  711. timeout_us -= (timeout_us > 10) ? 10 : timeout_us;
  712. }
  713. return timeout_us ? 0 : -EBUSY;
  714. }
  715. #ifdef CONFIG_TIGON3_HWMON
  716. static int tg3_ape_wait_for_event(struct tg3 *tp, u32 timeout_us)
  717. {
  718. u32 i, apedata;
  719. for (i = 0; i < timeout_us / 10; i++) {
  720. apedata = tg3_ape_read32(tp, TG3_APE_EVENT_STATUS);
  721. if (!(apedata & APE_EVENT_STATUS_EVENT_PENDING))
  722. break;
  723. udelay(10);
  724. }
  725. return i == timeout_us / 10;
  726. }
  727. static int tg3_ape_scratchpad_read(struct tg3 *tp, u32 *data, u32 base_off,
  728. u32 len)
  729. {
  730. int err;
  731. u32 i, bufoff, msgoff, maxlen, apedata;
  732. if (!tg3_flag(tp, APE_HAS_NCSI))
  733. return 0;
  734. apedata = tg3_ape_read32(tp, TG3_APE_SEG_SIG);
  735. if (apedata != APE_SEG_SIG_MAGIC)
  736. return -ENODEV;
  737. apedata = tg3_ape_read32(tp, TG3_APE_FW_STATUS);
  738. if (!(apedata & APE_FW_STATUS_READY))
  739. return -EAGAIN;
  740. bufoff = tg3_ape_read32(tp, TG3_APE_SEG_MSG_BUF_OFF) +
  741. TG3_APE_SHMEM_BASE;
  742. msgoff = bufoff + 2 * sizeof(u32);
  743. maxlen = tg3_ape_read32(tp, TG3_APE_SEG_MSG_BUF_LEN);
  744. while (len) {
  745. u32 length;
  746. /* Cap xfer sizes to scratchpad limits. */
  747. length = (len > maxlen) ? maxlen : len;
  748. len -= length;
  749. apedata = tg3_ape_read32(tp, TG3_APE_FW_STATUS);
  750. if (!(apedata & APE_FW_STATUS_READY))
  751. return -EAGAIN;
  752. /* Wait for up to 1 msec for APE to service previous event. */
  753. err = tg3_ape_event_lock(tp, 1000);
  754. if (err)
  755. return err;
  756. apedata = APE_EVENT_STATUS_DRIVER_EVNT |
  757. APE_EVENT_STATUS_SCRTCHPD_READ |
  758. APE_EVENT_STATUS_EVENT_PENDING;
  759. tg3_ape_write32(tp, TG3_APE_EVENT_STATUS, apedata);
  760. tg3_ape_write32(tp, bufoff, base_off);
  761. tg3_ape_write32(tp, bufoff + sizeof(u32), length);
  762. tg3_ape_unlock(tp, TG3_APE_LOCK_MEM);
  763. tg3_ape_write32(tp, TG3_APE_EVENT, APE_EVENT_1);
  764. base_off += length;
  765. if (tg3_ape_wait_for_event(tp, 30000))
  766. return -EAGAIN;
  767. for (i = 0; length; i += 4, length -= 4) {
  768. u32 val = tg3_ape_read32(tp, msgoff + i);
  769. memcpy(data, &val, sizeof(u32));
  770. data++;
  771. }
  772. }
  773. return 0;
  774. }
  775. #endif
  776. static int tg3_ape_send_event(struct tg3 *tp, u32 event)
  777. {
  778. int err;
  779. u32 apedata;
  780. apedata = tg3_ape_read32(tp, TG3_APE_SEG_SIG);
  781. if (apedata != APE_SEG_SIG_MAGIC)
  782. return -EAGAIN;
  783. apedata = tg3_ape_read32(tp, TG3_APE_FW_STATUS);
  784. if (!(apedata & APE_FW_STATUS_READY))
  785. return -EAGAIN;
  786. /* Wait for up to 20 millisecond for APE to service previous event. */
  787. err = tg3_ape_event_lock(tp, 20000);
  788. if (err)
  789. return err;
  790. tg3_ape_write32(tp, TG3_APE_EVENT_STATUS,
  791. event | APE_EVENT_STATUS_EVENT_PENDING);
  792. tg3_ape_unlock(tp, TG3_APE_LOCK_MEM);
  793. tg3_ape_write32(tp, TG3_APE_EVENT, APE_EVENT_1);
  794. return 0;
  795. }
  796. static void tg3_ape_driver_state_change(struct tg3 *tp, int kind)
  797. {
  798. u32 event;
  799. u32 apedata;
  800. if (!tg3_flag(tp, ENABLE_APE))
  801. return;
  802. switch (kind) {
  803. case RESET_KIND_INIT:
  804. tg3_ape_write32(tp, TG3_APE_HOST_HEARTBEAT_COUNT, tp->ape_hb++);
  805. tg3_ape_write32(tp, TG3_APE_HOST_SEG_SIG,
  806. APE_HOST_SEG_SIG_MAGIC);
  807. tg3_ape_write32(tp, TG3_APE_HOST_SEG_LEN,
  808. APE_HOST_SEG_LEN_MAGIC);
  809. apedata = tg3_ape_read32(tp, TG3_APE_HOST_INIT_COUNT);
  810. tg3_ape_write32(tp, TG3_APE_HOST_INIT_COUNT, ++apedata);
  811. tg3_ape_write32(tp, TG3_APE_HOST_DRIVER_ID,
  812. APE_HOST_DRIVER_ID_MAGIC(TG3_MAJ_NUM, TG3_MIN_NUM));
  813. tg3_ape_write32(tp, TG3_APE_HOST_BEHAVIOR,
  814. APE_HOST_BEHAV_NO_PHYLOCK);
  815. tg3_ape_write32(tp, TG3_APE_HOST_DRVR_STATE,
  816. TG3_APE_HOST_DRVR_STATE_START);
  817. event = APE_EVENT_STATUS_STATE_START;
  818. break;
  819. case RESET_KIND_SHUTDOWN:
  820. if (device_may_wakeup(&tp->pdev->dev) &&
  821. tg3_flag(tp, WOL_ENABLE)) {
  822. tg3_ape_write32(tp, TG3_APE_HOST_WOL_SPEED,
  823. TG3_APE_HOST_WOL_SPEED_AUTO);
  824. apedata = TG3_APE_HOST_DRVR_STATE_WOL;
  825. } else
  826. apedata = TG3_APE_HOST_DRVR_STATE_UNLOAD;
  827. tg3_ape_write32(tp, TG3_APE_HOST_DRVR_STATE, apedata);
  828. event = APE_EVENT_STATUS_STATE_UNLOAD;
  829. break;
  830. default:
  831. return;
  832. }
  833. event |= APE_EVENT_STATUS_DRIVER_EVNT | APE_EVENT_STATUS_STATE_CHNGE;
  834. tg3_ape_send_event(tp, event);
  835. }
  836. static void tg3_send_ape_heartbeat(struct tg3 *tp,
  837. unsigned long interval)
  838. {
  839. /* Check if hb interval has exceeded */
  840. if (!tg3_flag(tp, ENABLE_APE) ||
  841. time_before(jiffies, tp->ape_hb_jiffies + interval))
  842. return;
  843. tg3_ape_write32(tp, TG3_APE_HOST_HEARTBEAT_COUNT, tp->ape_hb++);
  844. tp->ape_hb_jiffies = jiffies;
  845. }
  846. static void tg3_disable_ints(struct tg3 *tp)
  847. {
  848. int i;
  849. tw32(TG3PCI_MISC_HOST_CTRL,
  850. (tp->misc_host_ctrl | MISC_HOST_CTRL_MASK_PCI_INT));
  851. for (i = 0; i < tp->irq_max; i++)
  852. tw32_mailbox_f(tp->napi[i].int_mbox, 0x00000001);
  853. }
  854. static void tg3_enable_ints(struct tg3 *tp)
  855. {
  856. int i;
  857. tp->irq_sync = 0;
  858. wmb();
  859. tw32(TG3PCI_MISC_HOST_CTRL,
  860. (tp->misc_host_ctrl & ~MISC_HOST_CTRL_MASK_PCI_INT));
  861. tp->coal_now = tp->coalesce_mode | HOSTCC_MODE_ENABLE;
  862. for (i = 0; i < tp->irq_cnt; i++) {
  863. struct tg3_napi *tnapi = &tp->napi[i];
  864. tw32_mailbox_f(tnapi->int_mbox, tnapi->last_tag << 24);
  865. if (tg3_flag(tp, 1SHOT_MSI))
  866. tw32_mailbox_f(tnapi->int_mbox, tnapi->last_tag << 24);
  867. tp->coal_now |= tnapi->coal_now;
  868. }
  869. /* Force an initial interrupt */
  870. if (!tg3_flag(tp, TAGGED_STATUS) &&
  871. (tp->napi[0].hw_status->status & SD_STATUS_UPDATED))
  872. tw32(GRC_LOCAL_CTRL, tp->grc_local_ctrl | GRC_LCLCTRL_SETINT);
  873. else
  874. tw32(HOSTCC_MODE, tp->coal_now);
  875. tp->coal_now &= ~(tp->napi[0].coal_now | tp->napi[1].coal_now);
  876. }
  877. static inline unsigned int tg3_has_work(struct tg3_napi *tnapi)
  878. {
  879. struct tg3 *tp = tnapi->tp;
  880. struct tg3_hw_status *sblk = tnapi->hw_status;
  881. unsigned int work_exists = 0;
  882. /* check for phy events */
  883. if (!(tg3_flag(tp, USE_LINKCHG_REG) || tg3_flag(tp, POLL_SERDES))) {
  884. if (sblk->status & SD_STATUS_LINK_CHG)
  885. work_exists = 1;
  886. }
  887. /* check for TX work to do */
  888. if (sblk->idx[0].tx_consumer != tnapi->tx_cons)
  889. work_exists = 1;
  890. /* check for RX work to do */
  891. if (tnapi->rx_rcb_prod_idx &&
  892. *(tnapi->rx_rcb_prod_idx) != tnapi->rx_rcb_ptr)
  893. work_exists = 1;
  894. return work_exists;
  895. }
  896. /* tg3_int_reenable
  897. * similar to tg3_enable_ints, but it accurately determines whether there
  898. * is new work pending and can return without flushing the PIO write
  899. * which reenables interrupts
  900. */
  901. static void tg3_int_reenable(struct tg3_napi *tnapi)
  902. {
  903. struct tg3 *tp = tnapi->tp;
  904. tw32_mailbox(tnapi->int_mbox, tnapi->last_tag << 24);
  905. /* When doing tagged status, this work check is unnecessary.
  906. * The last_tag we write above tells the chip which piece of
  907. * work we've completed.
  908. */
  909. if (!tg3_flag(tp, TAGGED_STATUS) && tg3_has_work(tnapi))
  910. tw32(HOSTCC_MODE, tp->coalesce_mode |
  911. HOSTCC_MODE_ENABLE | tnapi->coal_now);
  912. }
  913. static void tg3_switch_clocks(struct tg3 *tp)
  914. {
  915. u32 clock_ctrl;
  916. u32 orig_clock_ctrl;
  917. if (tg3_flag(tp, CPMU_PRESENT) || tg3_flag(tp, 5780_CLASS))
  918. return;
  919. clock_ctrl = tr32(TG3PCI_CLOCK_CTRL);
  920. orig_clock_ctrl = clock_ctrl;
  921. clock_ctrl &= (CLOCK_CTRL_FORCE_CLKRUN |
  922. CLOCK_CTRL_CLKRUN_OENABLE |
  923. 0x1f);
  924. tp->pci_clock_ctrl = clock_ctrl;
  925. if (tg3_flag(tp, 5705_PLUS)) {
  926. if (orig_clock_ctrl & CLOCK_CTRL_625_CORE) {
  927. tw32_wait_f(TG3PCI_CLOCK_CTRL,
  928. clock_ctrl | CLOCK_CTRL_625_CORE, 40);
  929. }
  930. } else if ((orig_clock_ctrl & CLOCK_CTRL_44MHZ_CORE) != 0) {
  931. tw32_wait_f(TG3PCI_CLOCK_CTRL,
  932. clock_ctrl |
  933. (CLOCK_CTRL_44MHZ_CORE | CLOCK_CTRL_ALTCLK),
  934. 40);
  935. tw32_wait_f(TG3PCI_CLOCK_CTRL,
  936. clock_ctrl | (CLOCK_CTRL_ALTCLK),
  937. 40);
  938. }
  939. tw32_wait_f(TG3PCI_CLOCK_CTRL, clock_ctrl, 40);
  940. }
  941. #define PHY_BUSY_LOOPS 5000
  942. static int __tg3_readphy(struct tg3 *tp, unsigned int phy_addr, int reg,
  943. u32 *val)
  944. {
  945. u32 frame_val;
  946. unsigned int loops;
  947. int ret;
  948. if ((tp->mi_mode & MAC_MI_MODE_AUTO_POLL) != 0) {
  949. tw32_f(MAC_MI_MODE,
  950. (tp->mi_mode & ~MAC_MI_MODE_AUTO_POLL));
  951. udelay(80);
  952. }
  953. tg3_ape_lock(tp, tp->phy_ape_lock);
  954. *val = 0x0;
  955. frame_val = ((phy_addr << MI_COM_PHY_ADDR_SHIFT) &
  956. MI_COM_PHY_ADDR_MASK);
  957. frame_val |= ((reg << MI_COM_REG_ADDR_SHIFT) &
  958. MI_COM_REG_ADDR_MASK);
  959. frame_val |= (MI_COM_CMD_READ | MI_COM_START);
  960. tw32_f(MAC_MI_COM, frame_val);
  961. loops = PHY_BUSY_LOOPS;
  962. while (loops != 0) {
  963. udelay(10);
  964. frame_val = tr32(MAC_MI_COM);
  965. if ((frame_val & MI_COM_BUSY) == 0) {
  966. udelay(5);
  967. frame_val = tr32(MAC_MI_COM);
  968. break;
  969. }
  970. loops -= 1;
  971. }
  972. ret = -EBUSY;
  973. if (loops != 0) {
  974. *val = frame_val & MI_COM_DATA_MASK;
  975. ret = 0;
  976. }
  977. if ((tp->mi_mode & MAC_MI_MODE_AUTO_POLL) != 0) {
  978. tw32_f(MAC_MI_MODE, tp->mi_mode);
  979. udelay(80);
  980. }
  981. tg3_ape_unlock(tp, tp->phy_ape_lock);
  982. return ret;
  983. }
  984. static int tg3_readphy(struct tg3 *tp, int reg, u32 *val)
  985. {
  986. return __tg3_readphy(tp, tp->phy_addr, reg, val);
  987. }
  988. static int __tg3_writephy(struct tg3 *tp, unsigned int phy_addr, int reg,
  989. u32 val)
  990. {
  991. u32 frame_val;
  992. unsigned int loops;
  993. int ret;
  994. if ((tp->phy_flags & TG3_PHYFLG_IS_FET) &&
  995. (reg == MII_CTRL1000 || reg == MII_TG3_AUX_CTRL))
  996. return 0;
  997. if ((tp->mi_mode & MAC_MI_MODE_AUTO_POLL) != 0) {
  998. tw32_f(MAC_MI_MODE,
  999. (tp->mi_mode & ~MAC_MI_MODE_AUTO_POLL));
  1000. udelay(80);
  1001. }
  1002. tg3_ape_lock(tp, tp->phy_ape_lock);
  1003. frame_val = ((phy_addr << MI_COM_PHY_ADDR_SHIFT) &
  1004. MI_COM_PHY_ADDR_MASK);
  1005. frame_val |= ((reg << MI_COM_REG_ADDR_SHIFT) &
  1006. MI_COM_REG_ADDR_MASK);
  1007. frame_val |= (val & MI_COM_DATA_MASK);
  1008. frame_val |= (MI_COM_CMD_WRITE | MI_COM_START);
  1009. tw32_f(MAC_MI_COM, frame_val);
  1010. loops = PHY_BUSY_LOOPS;
  1011. while (loops != 0) {
  1012. udelay(10);
  1013. frame_val = tr32(MAC_MI_COM);
  1014. if ((frame_val & MI_COM_BUSY) == 0) {
  1015. udelay(5);
  1016. frame_val = tr32(MAC_MI_COM);
  1017. break;
  1018. }
  1019. loops -= 1;
  1020. }
  1021. ret = -EBUSY;
  1022. if (loops != 0)
  1023. ret = 0;
  1024. if ((tp->mi_mode & MAC_MI_MODE_AUTO_POLL) != 0) {
  1025. tw32_f(MAC_MI_MODE, tp->mi_mode);
  1026. udelay(80);
  1027. }
  1028. tg3_ape_unlock(tp, tp->phy_ape_lock);
  1029. return ret;
  1030. }
  1031. static int tg3_writephy(struct tg3 *tp, int reg, u32 val)
  1032. {
  1033. return __tg3_writephy(tp, tp->phy_addr, reg, val);
  1034. }
  1035. static int tg3_phy_cl45_write(struct tg3 *tp, u32 devad, u32 addr, u32 val)
  1036. {
  1037. int err;
  1038. err = tg3_writephy(tp, MII_TG3_MMD_CTRL, devad);
  1039. if (err)
  1040. goto done;
  1041. err = tg3_writephy(tp, MII_TG3_MMD_ADDRESS, addr);
  1042. if (err)
  1043. goto done;
  1044. err = tg3_writephy(tp, MII_TG3_MMD_CTRL,
  1045. MII_TG3_MMD_CTRL_DATA_NOINC | devad);
  1046. if (err)
  1047. goto done;
  1048. err = tg3_writephy(tp, MII_TG3_MMD_ADDRESS, val);
  1049. done:
  1050. return err;
  1051. }
  1052. static int tg3_phy_cl45_read(struct tg3 *tp, u32 devad, u32 addr, u32 *val)
  1053. {
  1054. int err;
  1055. err = tg3_writephy(tp, MII_TG3_MMD_CTRL, devad);
  1056. if (err)
  1057. goto done;
  1058. err = tg3_writephy(tp, MII_TG3_MMD_ADDRESS, addr);
  1059. if (err)
  1060. goto done;
  1061. err = tg3_writephy(tp, MII_TG3_MMD_CTRL,
  1062. MII_TG3_MMD_CTRL_DATA_NOINC | devad);
  1063. if (err)
  1064. goto done;
  1065. err = tg3_readphy(tp, MII_TG3_MMD_ADDRESS, val);
  1066. done:
  1067. return err;
  1068. }
  1069. static int tg3_phydsp_read(struct tg3 *tp, u32 reg, u32 *val)
  1070. {
  1071. int err;
  1072. err = tg3_writephy(tp, MII_TG3_DSP_ADDRESS, reg);
  1073. if (!err)
  1074. err = tg3_readphy(tp, MII_TG3_DSP_RW_PORT, val);
  1075. return err;
  1076. }
  1077. static int tg3_phydsp_write(struct tg3 *tp, u32 reg, u32 val)
  1078. {
  1079. int err;
  1080. err = tg3_writephy(tp, MII_TG3_DSP_ADDRESS, reg);
  1081. if (!err)
  1082. err = tg3_writephy(tp, MII_TG3_DSP_RW_PORT, val);
  1083. return err;
  1084. }
  1085. static int tg3_phy_auxctl_read(struct tg3 *tp, int reg, u32 *val)
  1086. {
  1087. int err;
  1088. err = tg3_writephy(tp, MII_TG3_AUX_CTRL,
  1089. (reg << MII_TG3_AUXCTL_MISC_RDSEL_SHIFT) |
  1090. MII_TG3_AUXCTL_SHDWSEL_MISC);
  1091. if (!err)
  1092. err = tg3_readphy(tp, MII_TG3_AUX_CTRL, val);
  1093. return err;
  1094. }
  1095. static int tg3_phy_auxctl_write(struct tg3 *tp, int reg, u32 set)
  1096. {
  1097. if (reg == MII_TG3_AUXCTL_SHDWSEL_MISC)
  1098. set |= MII_TG3_AUXCTL_MISC_WREN;
  1099. return tg3_writephy(tp, MII_TG3_AUX_CTRL, set | reg);
  1100. }
  1101. static int tg3_phy_toggle_auxctl_smdsp(struct tg3 *tp, bool enable)
  1102. {
  1103. u32 val;
  1104. int err;
  1105. err = tg3_phy_auxctl_read(tp, MII_TG3_AUXCTL_SHDWSEL_AUXCTL, &val);
  1106. if (err)
  1107. return err;
  1108. if (enable)
  1109. val |= MII_TG3_AUXCTL_ACTL_SMDSP_ENA;
  1110. else
  1111. val &= ~MII_TG3_AUXCTL_ACTL_SMDSP_ENA;
  1112. err = tg3_phy_auxctl_write((tp), MII_TG3_AUXCTL_SHDWSEL_AUXCTL,
  1113. val | MII_TG3_AUXCTL_ACTL_TX_6DB);
  1114. return err;
  1115. }
  1116. static int tg3_phy_shdw_write(struct tg3 *tp, int reg, u32 val)
  1117. {
  1118. return tg3_writephy(tp, MII_TG3_MISC_SHDW,
  1119. reg | val | MII_TG3_MISC_SHDW_WREN);
  1120. }
  1121. static int tg3_bmcr_reset(struct tg3 *tp)
  1122. {
  1123. u32 phy_control;
  1124. int limit, err;
  1125. /* OK, reset it, and poll the BMCR_RESET bit until it
  1126. * clears or we time out.
  1127. */
  1128. phy_control = BMCR_RESET;
  1129. err = tg3_writephy(tp, MII_BMCR, phy_control);
  1130. if (err != 0)
  1131. return -EBUSY;
  1132. limit = 5000;
  1133. while (limit--) {
  1134. err = tg3_readphy(tp, MII_BMCR, &phy_control);
  1135. if (err != 0)
  1136. return -EBUSY;
  1137. if ((phy_control & BMCR_RESET) == 0) {
  1138. udelay(40);
  1139. break;
  1140. }
  1141. udelay(10);
  1142. }
  1143. if (limit < 0)
  1144. return -EBUSY;
  1145. return 0;
  1146. }
  1147. static int tg3_mdio_read(struct mii_bus *bp, int mii_id, int reg)
  1148. {
  1149. struct tg3 *tp = bp->priv;
  1150. u32 val;
  1151. spin_lock_bh(&tp->lock);
  1152. if (__tg3_readphy(tp, mii_id, reg, &val))
  1153. val = -EIO;
  1154. spin_unlock_bh(&tp->lock);
  1155. return val;
  1156. }
  1157. static int tg3_mdio_write(struct mii_bus *bp, int mii_id, int reg, u16 val)
  1158. {
  1159. struct tg3 *tp = bp->priv;
  1160. u32 ret = 0;
  1161. spin_lock_bh(&tp->lock);
  1162. if (__tg3_writephy(tp, mii_id, reg, val))
  1163. ret = -EIO;
  1164. spin_unlock_bh(&tp->lock);
  1165. return ret;
  1166. }
  1167. static void tg3_mdio_config_5785(struct tg3 *tp)
  1168. {
  1169. u32 val;
  1170. struct phy_device *phydev;
  1171. phydev = mdiobus_get_phy(tp->mdio_bus, tp->phy_addr);
  1172. switch (phydev->drv->phy_id & phydev->drv->phy_id_mask) {
  1173. case PHY_ID_BCM50610:
  1174. case PHY_ID_BCM50610M:
  1175. val = MAC_PHYCFG2_50610_LED_MODES;
  1176. break;
  1177. case PHY_ID_BCMAC131:
  1178. val = MAC_PHYCFG2_AC131_LED_MODES;
  1179. break;
  1180. case PHY_ID_RTL8211C:
  1181. val = MAC_PHYCFG2_RTL8211C_LED_MODES;
  1182. break;
  1183. case PHY_ID_RTL8201E:
  1184. val = MAC_PHYCFG2_RTL8201E_LED_MODES;
  1185. break;
  1186. default:
  1187. return;
  1188. }
  1189. if (phydev->interface != PHY_INTERFACE_MODE_RGMII) {
  1190. tw32(MAC_PHYCFG2, val);
  1191. val = tr32(MAC_PHYCFG1);
  1192. val &= ~(MAC_PHYCFG1_RGMII_INT |
  1193. MAC_PHYCFG1_RXCLK_TO_MASK | MAC_PHYCFG1_TXCLK_TO_MASK);
  1194. val |= MAC_PHYCFG1_RXCLK_TIMEOUT | MAC_PHYCFG1_TXCLK_TIMEOUT;
  1195. tw32(MAC_PHYCFG1, val);
  1196. return;
  1197. }
  1198. if (!tg3_flag(tp, RGMII_INBAND_DISABLE))
  1199. val |= MAC_PHYCFG2_EMODE_MASK_MASK |
  1200. MAC_PHYCFG2_FMODE_MASK_MASK |
  1201. MAC_PHYCFG2_GMODE_MASK_MASK |
  1202. MAC_PHYCFG2_ACT_MASK_MASK |
  1203. MAC_PHYCFG2_QUAL_MASK_MASK |
  1204. MAC_PHYCFG2_INBAND_ENABLE;
  1205. tw32(MAC_PHYCFG2, val);
  1206. val = tr32(MAC_PHYCFG1);
  1207. val &= ~(MAC_PHYCFG1_RXCLK_TO_MASK | MAC_PHYCFG1_TXCLK_TO_MASK |
  1208. MAC_PHYCFG1_RGMII_EXT_RX_DEC | MAC_PHYCFG1_RGMII_SND_STAT_EN);
  1209. if (!tg3_flag(tp, RGMII_INBAND_DISABLE)) {
  1210. if (tg3_flag(tp, RGMII_EXT_IBND_RX_EN))
  1211. val |= MAC_PHYCFG1_RGMII_EXT_RX_DEC;
  1212. if (tg3_flag(tp, RGMII_EXT_IBND_TX_EN))
  1213. val |= MAC_PHYCFG1_RGMII_SND_STAT_EN;
  1214. }
  1215. val |= MAC_PHYCFG1_RXCLK_TIMEOUT | MAC_PHYCFG1_TXCLK_TIMEOUT |
  1216. MAC_PHYCFG1_RGMII_INT | MAC_PHYCFG1_TXC_DRV;
  1217. tw32(MAC_PHYCFG1, val);
  1218. val = tr32(MAC_EXT_RGMII_MODE);
  1219. val &= ~(MAC_RGMII_MODE_RX_INT_B |
  1220. MAC_RGMII_MODE_RX_QUALITY |
  1221. MAC_RGMII_MODE_RX_ACTIVITY |
  1222. MAC_RGMII_MODE_RX_ENG_DET |
  1223. MAC_RGMII_MODE_TX_ENABLE |
  1224. MAC_RGMII_MODE_TX_LOWPWR |
  1225. MAC_RGMII_MODE_TX_RESET);
  1226. if (!tg3_flag(tp, RGMII_INBAND_DISABLE)) {
  1227. if (tg3_flag(tp, RGMII_EXT_IBND_RX_EN))
  1228. val |= MAC_RGMII_MODE_RX_INT_B |
  1229. MAC_RGMII_MODE_RX_QUALITY |
  1230. MAC_RGMII_MODE_RX_ACTIVITY |
  1231. MAC_RGMII_MODE_RX_ENG_DET;
  1232. if (tg3_flag(tp, RGMII_EXT_IBND_TX_EN))
  1233. val |= MAC_RGMII_MODE_TX_ENABLE |
  1234. MAC_RGMII_MODE_TX_LOWPWR |
  1235. MAC_RGMII_MODE_TX_RESET;
  1236. }
  1237. tw32(MAC_EXT_RGMII_MODE, val);
  1238. }
  1239. static void tg3_mdio_start(struct tg3 *tp)
  1240. {
  1241. tp->mi_mode &= ~MAC_MI_MODE_AUTO_POLL;
  1242. tw32_f(MAC_MI_MODE, tp->mi_mode);
  1243. udelay(80);
  1244. if (tg3_flag(tp, MDIOBUS_INITED) &&
  1245. tg3_asic_rev(tp) == ASIC_REV_5785)
  1246. tg3_mdio_config_5785(tp);
  1247. }
  1248. static int tg3_mdio_init(struct tg3 *tp)
  1249. {
  1250. int i;
  1251. u32 reg;
  1252. struct phy_device *phydev;
  1253. if (tg3_flag(tp, 5717_PLUS)) {
  1254. u32 is_serdes;
  1255. tp->phy_addr = tp->pci_fn + 1;
  1256. if (tg3_chip_rev_id(tp) != CHIPREV_ID_5717_A0)
  1257. is_serdes = tr32(SG_DIG_STATUS) & SG_DIG_IS_SERDES;
  1258. else
  1259. is_serdes = tr32(TG3_CPMU_PHY_STRAP) &
  1260. TG3_CPMU_PHY_STRAP_IS_SERDES;
  1261. if (is_serdes)
  1262. tp->phy_addr += 7;
  1263. } else if (tg3_flag(tp, IS_SSB_CORE) && tg3_flag(tp, ROBOSWITCH)) {
  1264. int addr;
  1265. addr = ssb_gige_get_phyaddr(tp->pdev);
  1266. if (addr < 0)
  1267. return addr;
  1268. tp->phy_addr = addr;
  1269. } else
  1270. tp->phy_addr = TG3_PHY_MII_ADDR;
  1271. tg3_mdio_start(tp);
  1272. if (!tg3_flag(tp, USE_PHYLIB) || tg3_flag(tp, MDIOBUS_INITED))
  1273. return 0;
  1274. tp->mdio_bus = mdiobus_alloc();
  1275. if (tp->mdio_bus == NULL)
  1276. return -ENOMEM;
  1277. tp->mdio_bus->name = "tg3 mdio bus";
  1278. snprintf(tp->mdio_bus->id, MII_BUS_ID_SIZE, "%x",
  1279. (tp->pdev->bus->number << 8) | tp->pdev->devfn);
  1280. tp->mdio_bus->priv = tp;
  1281. tp->mdio_bus->parent = &tp->pdev->dev;
  1282. tp->mdio_bus->read = &tg3_mdio_read;
  1283. tp->mdio_bus->write = &tg3_mdio_write;
  1284. tp->mdio_bus->phy_mask = ~(1 << tp->phy_addr);
  1285. /* The bus registration will look for all the PHYs on the mdio bus.
  1286. * Unfortunately, it does not ensure the PHY is powered up before
  1287. * accessing the PHY ID registers. A chip reset is the
  1288. * quickest way to bring the device back to an operational state..
  1289. */
  1290. if (tg3_readphy(tp, MII_BMCR, &reg) || (reg & BMCR_PDOWN))
  1291. tg3_bmcr_reset(tp);
  1292. i = mdiobus_register(tp->mdio_bus);
  1293. if (i) {
  1294. dev_warn(&tp->pdev->dev, "mdiobus_reg failed (0x%x)\n", i);
  1295. mdiobus_free(tp->mdio_bus);
  1296. return i;
  1297. }
  1298. phydev = mdiobus_get_phy(tp->mdio_bus, tp->phy_addr);
  1299. if (!phydev || !phydev->drv) {
  1300. dev_warn(&tp->pdev->dev, "No PHY devices\n");
  1301. mdiobus_unregister(tp->mdio_bus);
  1302. mdiobus_free(tp->mdio_bus);
  1303. return -ENODEV;
  1304. }
  1305. switch (phydev->drv->phy_id & phydev->drv->phy_id_mask) {
  1306. case PHY_ID_BCM57780:
  1307. phydev->interface = PHY_INTERFACE_MODE_GMII;
  1308. phydev->dev_flags |= PHY_BRCM_AUTO_PWRDWN_ENABLE;
  1309. break;
  1310. case PHY_ID_BCM50610:
  1311. case PHY_ID_BCM50610M:
  1312. phydev->dev_flags |= PHY_BRCM_CLEAR_RGMII_MODE |
  1313. PHY_BRCM_RX_REFCLK_UNUSED |
  1314. PHY_BRCM_DIS_TXCRXC_NOENRGY |
  1315. PHY_BRCM_AUTO_PWRDWN_ENABLE;
  1316. if (tg3_flag(tp, RGMII_INBAND_DISABLE))
  1317. phydev->dev_flags |= PHY_BRCM_STD_IBND_DISABLE;
  1318. if (tg3_flag(tp, RGMII_EXT_IBND_RX_EN))
  1319. phydev->dev_flags |= PHY_BRCM_EXT_IBND_RX_ENABLE;
  1320. if (tg3_flag(tp, RGMII_EXT_IBND_TX_EN))
  1321. phydev->dev_flags |= PHY_BRCM_EXT_IBND_TX_ENABLE;
  1322. /* fall through */
  1323. case PHY_ID_RTL8211C:
  1324. phydev->interface = PHY_INTERFACE_MODE_RGMII;
  1325. break;
  1326. case PHY_ID_RTL8201E:
  1327. case PHY_ID_BCMAC131:
  1328. phydev->interface = PHY_INTERFACE_MODE_MII;
  1329. phydev->dev_flags |= PHY_BRCM_AUTO_PWRDWN_ENABLE;
  1330. tp->phy_flags |= TG3_PHYFLG_IS_FET;
  1331. break;
  1332. }
  1333. tg3_flag_set(tp, MDIOBUS_INITED);
  1334. if (tg3_asic_rev(tp) == ASIC_REV_5785)
  1335. tg3_mdio_config_5785(tp);
  1336. return 0;
  1337. }
  1338. static void tg3_mdio_fini(struct tg3 *tp)
  1339. {
  1340. if (tg3_flag(tp, MDIOBUS_INITED)) {
  1341. tg3_flag_clear(tp, MDIOBUS_INITED);
  1342. mdiobus_unregister(tp->mdio_bus);
  1343. mdiobus_free(tp->mdio_bus);
  1344. }
  1345. }
  1346. /* tp->lock is held. */
  1347. static inline void tg3_generate_fw_event(struct tg3 *tp)
  1348. {
  1349. u32 val;
  1350. val = tr32(GRC_RX_CPU_EVENT);
  1351. val |= GRC_RX_CPU_DRIVER_EVENT;
  1352. tw32_f(GRC_RX_CPU_EVENT, val);
  1353. tp->last_event_jiffies = jiffies;
  1354. }
  1355. #define TG3_FW_EVENT_TIMEOUT_USEC 2500
  1356. /* tp->lock is held. */
  1357. static void tg3_wait_for_event_ack(struct tg3 *tp)
  1358. {
  1359. int i;
  1360. unsigned int delay_cnt;
  1361. long time_remain;
  1362. /* If enough time has passed, no wait is necessary. */
  1363. time_remain = (long)(tp->last_event_jiffies + 1 +
  1364. usecs_to_jiffies(TG3_FW_EVENT_TIMEOUT_USEC)) -
  1365. (long)jiffies;
  1366. if (time_remain < 0)
  1367. return;
  1368. /* Check if we can shorten the wait time. */
  1369. delay_cnt = jiffies_to_usecs(time_remain);
  1370. if (delay_cnt > TG3_FW_EVENT_TIMEOUT_USEC)
  1371. delay_cnt = TG3_FW_EVENT_TIMEOUT_USEC;
  1372. delay_cnt = (delay_cnt >> 3) + 1;
  1373. for (i = 0; i < delay_cnt; i++) {
  1374. if (!(tr32(GRC_RX_CPU_EVENT) & GRC_RX_CPU_DRIVER_EVENT))
  1375. break;
  1376. if (pci_channel_offline(tp->pdev))
  1377. break;
  1378. udelay(8);
  1379. }
  1380. }
  1381. /* tp->lock is held. */
  1382. static void tg3_phy_gather_ump_data(struct tg3 *tp, u32 *data)
  1383. {
  1384. u32 reg, val;
  1385. val = 0;
  1386. if (!tg3_readphy(tp, MII_BMCR, &reg))
  1387. val = reg << 16;
  1388. if (!tg3_readphy(tp, MII_BMSR, &reg))
  1389. val |= (reg & 0xffff);
  1390. *data++ = val;
  1391. val = 0;
  1392. if (!tg3_readphy(tp, MII_ADVERTISE, &reg))
  1393. val = reg << 16;
  1394. if (!tg3_readphy(tp, MII_LPA, &reg))
  1395. val |= (reg & 0xffff);
  1396. *data++ = val;
  1397. val = 0;
  1398. if (!(tp->phy_flags & TG3_PHYFLG_MII_SERDES)) {
  1399. if (!tg3_readphy(tp, MII_CTRL1000, &reg))
  1400. val = reg << 16;
  1401. if (!tg3_readphy(tp, MII_STAT1000, &reg))
  1402. val |= (reg & 0xffff);
  1403. }
  1404. *data++ = val;
  1405. if (!tg3_readphy(tp, MII_PHYADDR, &reg))
  1406. val = reg << 16;
  1407. else
  1408. val = 0;
  1409. *data++ = val;
  1410. }
  1411. /* tp->lock is held. */
  1412. static void tg3_ump_link_report(struct tg3 *tp)
  1413. {
  1414. u32 data[4];
  1415. if (!tg3_flag(tp, 5780_CLASS) || !tg3_flag(tp, ENABLE_ASF))
  1416. return;
  1417. tg3_phy_gather_ump_data(tp, data);
  1418. tg3_wait_for_event_ack(tp);
  1419. tg3_write_mem(tp, NIC_SRAM_FW_CMD_MBOX, FWCMD_NICDRV_LINK_UPDATE);
  1420. tg3_write_mem(tp, NIC_SRAM_FW_CMD_LEN_MBOX, 14);
  1421. tg3_write_mem(tp, NIC_SRAM_FW_CMD_DATA_MBOX + 0x0, data[0]);
  1422. tg3_write_mem(tp, NIC_SRAM_FW_CMD_DATA_MBOX + 0x4, data[1]);
  1423. tg3_write_mem(tp, NIC_SRAM_FW_CMD_DATA_MBOX + 0x8, data[2]);
  1424. tg3_write_mem(tp, NIC_SRAM_FW_CMD_DATA_MBOX + 0xc, data[3]);
  1425. tg3_generate_fw_event(tp);
  1426. }
  1427. /* tp->lock is held. */
  1428. static void tg3_stop_fw(struct tg3 *tp)
  1429. {
  1430. if (tg3_flag(tp, ENABLE_ASF) && !tg3_flag(tp, ENABLE_APE)) {
  1431. /* Wait for RX cpu to ACK the previous event. */
  1432. tg3_wait_for_event_ack(tp);
  1433. tg3_write_mem(tp, NIC_SRAM_FW_CMD_MBOX, FWCMD_NICDRV_PAUSE_FW);
  1434. tg3_generate_fw_event(tp);
  1435. /* Wait for RX cpu to ACK this event. */
  1436. tg3_wait_for_event_ack(tp);
  1437. }
  1438. }
  1439. /* tp->lock is held. */
  1440. static void tg3_write_sig_pre_reset(struct tg3 *tp, int kind)
  1441. {
  1442. tg3_write_mem(tp, NIC_SRAM_FIRMWARE_MBOX,
  1443. NIC_SRAM_FIRMWARE_MBOX_MAGIC1);
  1444. if (tg3_flag(tp, ASF_NEW_HANDSHAKE)) {
  1445. switch (kind) {
  1446. case RESET_KIND_INIT:
  1447. tg3_write_mem(tp, NIC_SRAM_FW_DRV_STATE_MBOX,
  1448. DRV_STATE_START);
  1449. break;
  1450. case RESET_KIND_SHUTDOWN:
  1451. tg3_write_mem(tp, NIC_SRAM_FW_DRV_STATE_MBOX,
  1452. DRV_STATE_UNLOAD);
  1453. break;
  1454. case RESET_KIND_SUSPEND:
  1455. tg3_write_mem(tp, NIC_SRAM_FW_DRV_STATE_MBOX,
  1456. DRV_STATE_SUSPEND);
  1457. break;
  1458. default:
  1459. break;
  1460. }
  1461. }
  1462. }
  1463. /* tp->lock is held. */
  1464. static void tg3_write_sig_post_reset(struct tg3 *tp, int kind)
  1465. {
  1466. if (tg3_flag(tp, ASF_NEW_HANDSHAKE)) {
  1467. switch (kind) {
  1468. case RESET_KIND_INIT:
  1469. tg3_write_mem(tp, NIC_SRAM_FW_DRV_STATE_MBOX,
  1470. DRV_STATE_START_DONE);
  1471. break;
  1472. case RESET_KIND_SHUTDOWN:
  1473. tg3_write_mem(tp, NIC_SRAM_FW_DRV_STATE_MBOX,
  1474. DRV_STATE_UNLOAD_DONE);
  1475. break;
  1476. default:
  1477. break;
  1478. }
  1479. }
  1480. }
  1481. /* tp->lock is held. */
  1482. static void tg3_write_sig_legacy(struct tg3 *tp, int kind)
  1483. {
  1484. if (tg3_flag(tp, ENABLE_ASF)) {
  1485. switch (kind) {
  1486. case RESET_KIND_INIT:
  1487. tg3_write_mem(tp, NIC_SRAM_FW_DRV_STATE_MBOX,
  1488. DRV_STATE_START);
  1489. break;
  1490. case RESET_KIND_SHUTDOWN:
  1491. tg3_write_mem(tp, NIC_SRAM_FW_DRV_STATE_MBOX,
  1492. DRV_STATE_UNLOAD);
  1493. break;
  1494. case RESET_KIND_SUSPEND:
  1495. tg3_write_mem(tp, NIC_SRAM_FW_DRV_STATE_MBOX,
  1496. DRV_STATE_SUSPEND);
  1497. break;
  1498. default:
  1499. break;
  1500. }
  1501. }
  1502. }
  1503. static int tg3_poll_fw(struct tg3 *tp)
  1504. {
  1505. int i;
  1506. u32 val;
  1507. if (tg3_flag(tp, NO_FWARE_REPORTED))
  1508. return 0;
  1509. if (tg3_flag(tp, IS_SSB_CORE)) {
  1510. /* We don't use firmware. */
  1511. return 0;
  1512. }
  1513. if (tg3_asic_rev(tp) == ASIC_REV_5906) {
  1514. /* Wait up to 20ms for init done. */
  1515. for (i = 0; i < 200; i++) {
  1516. if (tr32(VCPU_STATUS) & VCPU_STATUS_INIT_DONE)
  1517. return 0;
  1518. if (pci_channel_offline(tp->pdev))
  1519. return -ENODEV;
  1520. udelay(100);
  1521. }
  1522. return -ENODEV;
  1523. }
  1524. /* Wait for firmware initialization to complete. */
  1525. for (i = 0; i < 100000; i++) {
  1526. tg3_read_mem(tp, NIC_SRAM_FIRMWARE_MBOX, &val);
  1527. if (val == ~NIC_SRAM_FIRMWARE_MBOX_MAGIC1)
  1528. break;
  1529. if (pci_channel_offline(tp->pdev)) {
  1530. if (!tg3_flag(tp, NO_FWARE_REPORTED)) {
  1531. tg3_flag_set(tp, NO_FWARE_REPORTED);
  1532. netdev_info(tp->dev, "No firmware running\n");
  1533. }
  1534. break;
  1535. }
  1536. udelay(10);
  1537. }
  1538. /* Chip might not be fitted with firmware. Some Sun onboard
  1539. * parts are configured like that. So don't signal the timeout
  1540. * of the above loop as an error, but do report the lack of
  1541. * running firmware once.
  1542. */
  1543. if (i >= 100000 && !tg3_flag(tp, NO_FWARE_REPORTED)) {
  1544. tg3_flag_set(tp, NO_FWARE_REPORTED);
  1545. netdev_info(tp->dev, "No firmware running\n");
  1546. }
  1547. if (tg3_chip_rev_id(tp) == CHIPREV_ID_57765_A0) {
  1548. /* The 57765 A0 needs a little more
  1549. * time to do some important work.
  1550. */
  1551. mdelay(10);
  1552. }
  1553. return 0;
  1554. }
  1555. static void tg3_link_report(struct tg3 *tp)
  1556. {
  1557. if (!netif_carrier_ok(tp->dev)) {
  1558. netif_info(tp, link, tp->dev, "Link is down\n");
  1559. tg3_ump_link_report(tp);
  1560. } else if (netif_msg_link(tp)) {
  1561. netdev_info(tp->dev, "Link is up at %d Mbps, %s duplex\n",
  1562. (tp->link_config.active_speed == SPEED_1000 ?
  1563. 1000 :
  1564. (tp->link_config.active_speed == SPEED_100 ?
  1565. 100 : 10)),
  1566. (tp->link_config.active_duplex == DUPLEX_FULL ?
  1567. "full" : "half"));
  1568. netdev_info(tp->dev, "Flow control is %s for TX and %s for RX\n",
  1569. (tp->link_config.active_flowctrl & FLOW_CTRL_TX) ?
  1570. "on" : "off",
  1571. (tp->link_config.active_flowctrl & FLOW_CTRL_RX) ?
  1572. "on" : "off");
  1573. if (tp->phy_flags & TG3_PHYFLG_EEE_CAP)
  1574. netdev_info(tp->dev, "EEE is %s\n",
  1575. tp->setlpicnt ? "enabled" : "disabled");
  1576. tg3_ump_link_report(tp);
  1577. }
  1578. tp->link_up = netif_carrier_ok(tp->dev);
  1579. }
  1580. static u32 tg3_decode_flowctrl_1000T(u32 adv)
  1581. {
  1582. u32 flowctrl = 0;
  1583. if (adv & ADVERTISE_PAUSE_CAP) {
  1584. flowctrl |= FLOW_CTRL_RX;
  1585. if (!(adv & ADVERTISE_PAUSE_ASYM))
  1586. flowctrl |= FLOW_CTRL_TX;
  1587. } else if (adv & ADVERTISE_PAUSE_ASYM)
  1588. flowctrl |= FLOW_CTRL_TX;
  1589. return flowctrl;
  1590. }
  1591. static u16 tg3_advert_flowctrl_1000X(u8 flow_ctrl)
  1592. {
  1593. u16 miireg;
  1594. if ((flow_ctrl & FLOW_CTRL_TX) && (flow_ctrl & FLOW_CTRL_RX))
  1595. miireg = ADVERTISE_1000XPAUSE;
  1596. else if (flow_ctrl & FLOW_CTRL_TX)
  1597. miireg = ADVERTISE_1000XPSE_ASYM;
  1598. else if (flow_ctrl & FLOW_CTRL_RX)
  1599. miireg = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
  1600. else
  1601. miireg = 0;
  1602. return miireg;
  1603. }
  1604. static u32 tg3_decode_flowctrl_1000X(u32 adv)
  1605. {
  1606. u32 flowctrl = 0;
  1607. if (adv & ADVERTISE_1000XPAUSE) {
  1608. flowctrl |= FLOW_CTRL_RX;
  1609. if (!(adv & ADVERTISE_1000XPSE_ASYM))
  1610. flowctrl |= FLOW_CTRL_TX;
  1611. } else if (adv & ADVERTISE_1000XPSE_ASYM)
  1612. flowctrl |= FLOW_CTRL_TX;
  1613. return flowctrl;
  1614. }
  1615. static u8 tg3_resolve_flowctrl_1000X(u16 lcladv, u16 rmtadv)
  1616. {
  1617. u8 cap = 0;
  1618. if (lcladv & rmtadv & ADVERTISE_1000XPAUSE) {
  1619. cap = FLOW_CTRL_TX | FLOW_CTRL_RX;
  1620. } else if (lcladv & rmtadv & ADVERTISE_1000XPSE_ASYM) {
  1621. if (lcladv & ADVERTISE_1000XPAUSE)
  1622. cap = FLOW_CTRL_RX;
  1623. if (rmtadv & ADVERTISE_1000XPAUSE)
  1624. cap = FLOW_CTRL_TX;
  1625. }
  1626. return cap;
  1627. }
  1628. static void tg3_setup_flow_control(struct tg3 *tp, u32 lcladv, u32 rmtadv)
  1629. {
  1630. u8 autoneg;
  1631. u8 flowctrl = 0;
  1632. u32 old_rx_mode = tp->rx_mode;
  1633. u32 old_tx_mode = tp->tx_mode;
  1634. if (tg3_flag(tp, USE_PHYLIB))
  1635. autoneg = mdiobus_get_phy(tp->mdio_bus, tp->phy_addr)->autoneg;
  1636. else
  1637. autoneg = tp->link_config.autoneg;
  1638. if (autoneg == AUTONEG_ENABLE && tg3_flag(tp, PAUSE_AUTONEG)) {
  1639. if (tp->phy_flags & TG3_PHYFLG_ANY_SERDES)
  1640. flowctrl = tg3_resolve_flowctrl_1000X(lcladv, rmtadv);
  1641. else
  1642. flowctrl = mii_resolve_flowctrl_fdx(lcladv, rmtadv);
  1643. } else
  1644. flowctrl = tp->link_config.flowctrl;
  1645. tp->link_config.active_flowctrl = flowctrl;
  1646. if (flowctrl & FLOW_CTRL_RX)
  1647. tp->rx_mode |= RX_MODE_FLOW_CTRL_ENABLE;
  1648. else
  1649. tp->rx_mode &= ~RX_MODE_FLOW_CTRL_ENABLE;
  1650. if (old_rx_mode != tp->rx_mode)
  1651. tw32_f(MAC_RX_MODE, tp->rx_mode);
  1652. if (flowctrl & FLOW_CTRL_TX)
  1653. tp->tx_mode |= TX_MODE_FLOW_CTRL_ENABLE;
  1654. else
  1655. tp->tx_mode &= ~TX_MODE_FLOW_CTRL_ENABLE;
  1656. if (old_tx_mode != tp->tx_mode)
  1657. tw32_f(MAC_TX_MODE, tp->tx_mode);
  1658. }
  1659. static void tg3_adjust_link(struct net_device *dev)
  1660. {
  1661. u8 oldflowctrl, linkmesg = 0;
  1662. u32 mac_mode, lcl_adv, rmt_adv;
  1663. struct tg3 *tp = netdev_priv(dev);
  1664. struct phy_device *phydev = mdiobus_get_phy(tp->mdio_bus, tp->phy_addr);
  1665. spin_lock_bh(&tp->lock);
  1666. mac_mode = tp->mac_mode & ~(MAC_MODE_PORT_MODE_MASK |
  1667. MAC_MODE_HALF_DUPLEX);
  1668. oldflowctrl = tp->link_config.active_flowctrl;
  1669. if (phydev->link) {
  1670. lcl_adv = 0;
  1671. rmt_adv = 0;
  1672. if (phydev->speed == SPEED_100 || phydev->speed == SPEED_10)
  1673. mac_mode |= MAC_MODE_PORT_MODE_MII;
  1674. else if (phydev->speed == SPEED_1000 ||
  1675. tg3_asic_rev(tp) != ASIC_REV_5785)
  1676. mac_mode |= MAC_MODE_PORT_MODE_GMII;
  1677. else
  1678. mac_mode |= MAC_MODE_PORT_MODE_MII;
  1679. if (phydev->duplex == DUPLEX_HALF)
  1680. mac_mode |= MAC_MODE_HALF_DUPLEX;
  1681. else {
  1682. lcl_adv = mii_advertise_flowctrl(
  1683. tp->link_config.flowctrl);
  1684. if (phydev->pause)
  1685. rmt_adv = LPA_PAUSE_CAP;
  1686. if (phydev->asym_pause)
  1687. rmt_adv |= LPA_PAUSE_ASYM;
  1688. }
  1689. tg3_setup_flow_control(tp, lcl_adv, rmt_adv);
  1690. } else
  1691. mac_mode |= MAC_MODE_PORT_MODE_GMII;
  1692. if (mac_mode != tp->mac_mode) {
  1693. tp->mac_mode = mac_mode;
  1694. tw32_f(MAC_MODE, tp->mac_mode);
  1695. udelay(40);
  1696. }
  1697. if (tg3_asic_rev(tp) == ASIC_REV_5785) {
  1698. if (phydev->speed == SPEED_10)
  1699. tw32(MAC_MI_STAT,
  1700. MAC_MI_STAT_10MBPS_MODE |
  1701. MAC_MI_STAT_LNKSTAT_ATTN_ENAB);
  1702. else
  1703. tw32(MAC_MI_STAT, MAC_MI_STAT_LNKSTAT_ATTN_ENAB);
  1704. }
  1705. if (phydev->speed == SPEED_1000 && phydev->duplex == DUPLEX_HALF)
  1706. tw32(MAC_TX_LENGTHS,
  1707. ((2 << TX_LENGTHS_IPG_CRS_SHIFT) |
  1708. (6 << TX_LENGTHS_IPG_SHIFT) |
  1709. (0xff << TX_LENGTHS_SLOT_TIME_SHIFT)));
  1710. else
  1711. tw32(MAC_TX_LENGTHS,
  1712. ((2 << TX_LENGTHS_IPG_CRS_SHIFT) |
  1713. (6 << TX_LENGTHS_IPG_SHIFT) |
  1714. (32 << TX_LENGTHS_SLOT_TIME_SHIFT)));
  1715. if (phydev->link != tp->old_link ||
  1716. phydev->speed != tp->link_config.active_speed ||
  1717. phydev->duplex != tp->link_config.active_duplex ||
  1718. oldflowctrl != tp->link_config.active_flowctrl)
  1719. linkmesg = 1;
  1720. tp->old_link = phydev->link;
  1721. tp->link_config.active_speed = phydev->speed;
  1722. tp->link_config.active_duplex = phydev->duplex;
  1723. spin_unlock_bh(&tp->lock);
  1724. if (linkmesg)
  1725. tg3_link_report(tp);
  1726. }
  1727. static int tg3_phy_init(struct tg3 *tp)
  1728. {
  1729. struct phy_device *phydev;
  1730. if (tp->phy_flags & TG3_PHYFLG_IS_CONNECTED)
  1731. return 0;
  1732. /* Bring the PHY back to a known state. */
  1733. tg3_bmcr_reset(tp);
  1734. phydev = mdiobus_get_phy(tp->mdio_bus, tp->phy_addr);
  1735. /* Attach the MAC to the PHY. */
  1736. phydev = phy_connect(tp->dev, phydev_name(phydev),
  1737. tg3_adjust_link, phydev->interface);
  1738. if (IS_ERR(phydev)) {
  1739. dev_err(&tp->pdev->dev, "Could not attach to PHY\n");
  1740. return PTR_ERR(phydev);
  1741. }
  1742. /* Mask with MAC supported features. */
  1743. switch (phydev->interface) {
  1744. case PHY_INTERFACE_MODE_GMII:
  1745. case PHY_INTERFACE_MODE_RGMII:
  1746. if (!(tp->phy_flags & TG3_PHYFLG_10_100_ONLY)) {
  1747. phy_set_max_speed(phydev, SPEED_1000);
  1748. phy_support_asym_pause(phydev);
  1749. break;
  1750. }
  1751. /* fall through */
  1752. case PHY_INTERFACE_MODE_MII:
  1753. phy_set_max_speed(phydev, SPEED_100);
  1754. phy_support_asym_pause(phydev);
  1755. break;
  1756. default:
  1757. phy_disconnect(mdiobus_get_phy(tp->mdio_bus, tp->phy_addr));
  1758. return -EINVAL;
  1759. }
  1760. tp->phy_flags |= TG3_PHYFLG_IS_CONNECTED;
  1761. phy_attached_info(phydev);
  1762. return 0;
  1763. }
  1764. static void tg3_phy_start(struct tg3 *tp)
  1765. {
  1766. struct phy_device *phydev;
  1767. if (!(tp->phy_flags & TG3_PHYFLG_IS_CONNECTED))
  1768. return;
  1769. phydev = mdiobus_get_phy(tp->mdio_bus, tp->phy_addr);
  1770. if (tp->phy_flags & TG3_PHYFLG_IS_LOW_POWER) {
  1771. tp->phy_flags &= ~TG3_PHYFLG_IS_LOW_POWER;
  1772. phydev->speed = tp->link_config.speed;
  1773. phydev->duplex = tp->link_config.duplex;
  1774. phydev->autoneg = tp->link_config.autoneg;
  1775. ethtool_convert_legacy_u32_to_link_mode(
  1776. phydev->advertising, tp->link_config.advertising);
  1777. }
  1778. phy_start(phydev);
  1779. phy_start_aneg(phydev);
  1780. }
  1781. static void tg3_phy_stop(struct tg3 *tp)
  1782. {
  1783. if (!(tp->phy_flags & TG3_PHYFLG_IS_CONNECTED))
  1784. return;
  1785. phy_stop(mdiobus_get_phy(tp->mdio_bus, tp->phy_addr));
  1786. }
  1787. static void tg3_phy_fini(struct tg3 *tp)
  1788. {
  1789. if (tp->phy_flags & TG3_PHYFLG_IS_CONNECTED) {
  1790. phy_disconnect(mdiobus_get_phy(tp->mdio_bus, tp->phy_addr));
  1791. tp->phy_flags &= ~TG3_PHYFLG_IS_CONNECTED;
  1792. }
  1793. }
  1794. static int tg3_phy_set_extloopbk(struct tg3 *tp)
  1795. {
  1796. int err;
  1797. u32 val;
  1798. if (tp->phy_flags & TG3_PHYFLG_IS_FET)
  1799. return 0;
  1800. if ((tp->phy_id & TG3_PHY_ID_MASK) == TG3_PHY_ID_BCM5401) {
  1801. /* Cannot do read-modify-write on 5401 */
  1802. err = tg3_phy_auxctl_write(tp,
  1803. MII_TG3_AUXCTL_SHDWSEL_AUXCTL,
  1804. MII_TG3_AUXCTL_ACTL_EXTLOOPBK |
  1805. 0x4c20);
  1806. goto done;
  1807. }
  1808. err = tg3_phy_auxctl_read(tp,
  1809. MII_TG3_AUXCTL_SHDWSEL_AUXCTL, &val);
  1810. if (err)
  1811. return err;
  1812. val |= MII_TG3_AUXCTL_ACTL_EXTLOOPBK;
  1813. err = tg3_phy_auxctl_write(tp,
  1814. MII_TG3_AUXCTL_SHDWSEL_AUXCTL, val);
  1815. done:
  1816. return err;
  1817. }
  1818. static void tg3_phy_fet_toggle_apd(struct tg3 *tp, bool enable)
  1819. {
  1820. u32 phytest;
  1821. if (!tg3_readphy(tp, MII_TG3_FET_TEST, &phytest)) {
  1822. u32 phy;
  1823. tg3_writephy(tp, MII_TG3_FET_TEST,
  1824. phytest | MII_TG3_FET_SHADOW_EN);
  1825. if (!tg3_readphy(tp, MII_TG3_FET_SHDW_AUXSTAT2, &phy)) {
  1826. if (enable)
  1827. phy |= MII_TG3_FET_SHDW_AUXSTAT2_APD;
  1828. else
  1829. phy &= ~MII_TG3_FET_SHDW_AUXSTAT2_APD;
  1830. tg3_writephy(tp, MII_TG3_FET_SHDW_AUXSTAT2, phy);
  1831. }
  1832. tg3_writephy(tp, MII_TG3_FET_TEST, phytest);
  1833. }
  1834. }
  1835. static void tg3_phy_toggle_apd(struct tg3 *tp, bool enable)
  1836. {
  1837. u32 reg;
  1838. if (!tg3_flag(tp, 5705_PLUS) ||
  1839. (tg3_flag(tp, 5717_PLUS) &&
  1840. (tp->phy_flags & TG3_PHYFLG_MII_SERDES)))
  1841. return;
  1842. if (tp->phy_flags & TG3_PHYFLG_IS_FET) {
  1843. tg3_phy_fet_toggle_apd(tp, enable);
  1844. return;
  1845. }
  1846. reg = MII_TG3_MISC_SHDW_SCR5_LPED |
  1847. MII_TG3_MISC_SHDW_SCR5_DLPTLM |
  1848. MII_TG3_MISC_SHDW_SCR5_SDTL |
  1849. MII_TG3_MISC_SHDW_SCR5_C125OE;
  1850. if (tg3_asic_rev(tp) != ASIC_REV_5784 || !enable)
  1851. reg |= MII_TG3_MISC_SHDW_SCR5_DLLAPD;
  1852. tg3_phy_shdw_write(tp, MII_TG3_MISC_SHDW_SCR5_SEL, reg);
  1853. reg = MII_TG3_MISC_SHDW_APD_WKTM_84MS;
  1854. if (enable)
  1855. reg |= MII_TG3_MISC_SHDW_APD_ENABLE;
  1856. tg3_phy_shdw_write(tp, MII_TG3_MISC_SHDW_APD_SEL, reg);
  1857. }
  1858. static void tg3_phy_toggle_automdix(struct tg3 *tp, bool enable)
  1859. {
  1860. u32 phy;
  1861. if (!tg3_flag(tp, 5705_PLUS) ||
  1862. (tp->phy_flags & TG3_PHYFLG_ANY_SERDES))
  1863. return;
  1864. if (tp->phy_flags & TG3_PHYFLG_IS_FET) {
  1865. u32 ephy;
  1866. if (!tg3_readphy(tp, MII_TG3_FET_TEST, &ephy)) {
  1867. u32 reg = MII_TG3_FET_SHDW_MISCCTRL;
  1868. tg3_writephy(tp, MII_TG3_FET_TEST,
  1869. ephy | MII_TG3_FET_SHADOW_EN);
  1870. if (!tg3_readphy(tp, reg, &phy)) {
  1871. if (enable)
  1872. phy |= MII_TG3_FET_SHDW_MISCCTRL_MDIX;
  1873. else
  1874. phy &= ~MII_TG3_FET_SHDW_MISCCTRL_MDIX;
  1875. tg3_writephy(tp, reg, phy);
  1876. }
  1877. tg3_writephy(tp, MII_TG3_FET_TEST, ephy);
  1878. }
  1879. } else {
  1880. int ret;
  1881. ret = tg3_phy_auxctl_read(tp,
  1882. MII_TG3_AUXCTL_SHDWSEL_MISC, &phy);
  1883. if (!ret) {
  1884. if (enable)
  1885. phy |= MII_TG3_AUXCTL_MISC_FORCE_AMDIX;
  1886. else
  1887. phy &= ~MII_TG3_AUXCTL_MISC_FORCE_AMDIX;
  1888. tg3_phy_auxctl_write(tp,
  1889. MII_TG3_AUXCTL_SHDWSEL_MISC, phy);
  1890. }
  1891. }
  1892. }
  1893. static void tg3_phy_set_wirespeed(struct tg3 *tp)
  1894. {
  1895. int ret;
  1896. u32 val;
  1897. if (tp->phy_flags & TG3_PHYFLG_NO_ETH_WIRE_SPEED)
  1898. return;
  1899. ret = tg3_phy_auxctl_read(tp, MII_TG3_AUXCTL_SHDWSEL_MISC, &val);
  1900. if (!ret)
  1901. tg3_phy_auxctl_write(tp, MII_TG3_AUXCTL_SHDWSEL_MISC,
  1902. val | MII_TG3_AUXCTL_MISC_WIRESPD_EN);
  1903. }
  1904. static void tg3_phy_apply_otp(struct tg3 *tp)
  1905. {
  1906. u32 otp, phy;
  1907. if (!tp->phy_otp)
  1908. return;
  1909. otp = tp->phy_otp;
  1910. if (tg3_phy_toggle_auxctl_smdsp(tp, true))
  1911. return;
  1912. phy = ((otp & TG3_OTP_AGCTGT_MASK) >> TG3_OTP_AGCTGT_SHIFT);
  1913. phy |= MII_TG3_DSP_TAP1_AGCTGT_DFLT;
  1914. tg3_phydsp_write(tp, MII_TG3_DSP_TAP1, phy);
  1915. phy = ((otp & TG3_OTP_HPFFLTR_MASK) >> TG3_OTP_HPFFLTR_SHIFT) |
  1916. ((otp & TG3_OTP_HPFOVER_MASK) >> TG3_OTP_HPFOVER_SHIFT);
  1917. tg3_phydsp_write(tp, MII_TG3_DSP_AADJ1CH0, phy);
  1918. phy = ((otp & TG3_OTP_LPFDIS_MASK) >> TG3_OTP_LPFDIS_SHIFT);
  1919. phy |= MII_TG3_DSP_AADJ1CH3_ADCCKADJ;
  1920. tg3_phydsp_write(tp, MII_TG3_DSP_AADJ1CH3, phy);
  1921. phy = ((otp & TG3_OTP_VDAC_MASK) >> TG3_OTP_VDAC_SHIFT);
  1922. tg3_phydsp_write(tp, MII_TG3_DSP_EXP75, phy);
  1923. phy = ((otp & TG3_OTP_10BTAMP_MASK) >> TG3_OTP_10BTAMP_SHIFT);
  1924. tg3_phydsp_write(tp, MII_TG3_DSP_EXP96, phy);
  1925. phy = ((otp & TG3_OTP_ROFF_MASK) >> TG3_OTP_ROFF_SHIFT) |
  1926. ((otp & TG3_OTP_RCOFF_MASK) >> TG3_OTP_RCOFF_SHIFT);
  1927. tg3_phydsp_write(tp, MII_TG3_DSP_EXP97, phy);
  1928. tg3_phy_toggle_auxctl_smdsp(tp, false);
  1929. }
  1930. static void tg3_eee_pull_config(struct tg3 *tp, struct ethtool_eee *eee)
  1931. {
  1932. u32 val;
  1933. struct ethtool_eee *dest = &tp->eee;
  1934. if (!(tp->phy_flags & TG3_PHYFLG_EEE_CAP))
  1935. return;
  1936. if (eee)
  1937. dest = eee;
  1938. if (tg3_phy_cl45_read(tp, MDIO_MMD_AN, TG3_CL45_D7_EEERES_STAT, &val))
  1939. return;
  1940. /* Pull eee_active */
  1941. if (val == TG3_CL45_D7_EEERES_STAT_LP_1000T ||
  1942. val == TG3_CL45_D7_EEERES_STAT_LP_100TX) {
  1943. dest->eee_active = 1;
  1944. } else
  1945. dest->eee_active = 0;
  1946. /* Pull lp advertised settings */
  1947. if (tg3_phy_cl45_read(tp, MDIO_MMD_AN, MDIO_AN_EEE_LPABLE, &val))
  1948. return;
  1949. dest->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(val);
  1950. /* Pull advertised and eee_enabled settings */
  1951. if (tg3_phy_cl45_read(tp, MDIO_MMD_AN, MDIO_AN_EEE_ADV, &val))
  1952. return;
  1953. dest->eee_enabled = !!val;
  1954. dest->advertised = mmd_eee_adv_to_ethtool_adv_t(val);
  1955. /* Pull tx_lpi_enabled */
  1956. val = tr32(TG3_CPMU_EEE_MODE);
  1957. dest->tx_lpi_enabled = !!(val & TG3_CPMU_EEEMD_LPI_IN_TX);
  1958. /* Pull lpi timer value */
  1959. dest->tx_lpi_timer = tr32(TG3_CPMU_EEE_DBTMR1) & 0xffff;
  1960. }
  1961. static void tg3_phy_eee_adjust(struct tg3 *tp, bool current_link_up)
  1962. {
  1963. u32 val;
  1964. if (!(tp->phy_flags & TG3_PHYFLG_EEE_CAP))
  1965. return;
  1966. tp->setlpicnt = 0;
  1967. if (tp->link_config.autoneg == AUTONEG_ENABLE &&
  1968. current_link_up &&
  1969. tp->link_config.active_duplex == DUPLEX_FULL &&
  1970. (tp->link_config.active_speed == SPEED_100 ||
  1971. tp->link_config.active_speed == SPEED_1000)) {
  1972. u32 eeectl;
  1973. if (tp->link_config.active_speed == SPEED_1000)
  1974. eeectl = TG3_CPMU_EEE_CTRL_EXIT_16_5_US;
  1975. else
  1976. eeectl = TG3_CPMU_EEE_CTRL_EXIT_36_US;
  1977. tw32(TG3_CPMU_EEE_CTRL, eeectl);
  1978. tg3_eee_pull_config(tp, NULL);
  1979. if (tp->eee.eee_active)
  1980. tp->setlpicnt = 2;
  1981. }
  1982. if (!tp->setlpicnt) {
  1983. if (current_link_up &&
  1984. !tg3_phy_toggle_auxctl_smdsp(tp, true)) {
  1985. tg3_phydsp_write(tp, MII_TG3_DSP_TAP26, 0x0000);
  1986. tg3_phy_toggle_auxctl_smdsp(tp, false);
  1987. }
  1988. val = tr32(TG3_CPMU_EEE_MODE);
  1989. tw32(TG3_CPMU_EEE_MODE, val & ~TG3_CPMU_EEEMD_LPI_ENABLE);
  1990. }
  1991. }
  1992. static void tg3_phy_eee_enable(struct tg3 *tp)
  1993. {
  1994. u32 val;
  1995. if (tp->link_config.active_speed == SPEED_1000 &&
  1996. (tg3_asic_rev(tp) == ASIC_REV_5717 ||
  1997. tg3_asic_rev(tp) == ASIC_REV_5719 ||
  1998. tg3_flag(tp, 57765_CLASS)) &&
  1999. !tg3_phy_toggle_auxctl_smdsp(tp, true)) {
  2000. val = MII_TG3_DSP_TAP26_ALNOKO |
  2001. MII_TG3_DSP_TAP26_RMRXSTO;
  2002. tg3_phydsp_write(tp, MII_TG3_DSP_TAP26, val);
  2003. tg3_phy_toggle_auxctl_smdsp(tp, false);
  2004. }
  2005. val = tr32(TG3_CPMU_EEE_MODE);
  2006. tw32(TG3_CPMU_EEE_MODE, val | TG3_CPMU_EEEMD_LPI_ENABLE);
  2007. }
  2008. static int tg3_wait_macro_done(struct tg3 *tp)
  2009. {
  2010. int limit = 100;
  2011. while (limit--) {
  2012. u32 tmp32;
  2013. if (!tg3_readphy(tp, MII_TG3_DSP_CONTROL, &tmp32)) {
  2014. if ((tmp32 & 0x1000) == 0)
  2015. break;
  2016. }
  2017. }
  2018. if (limit < 0)
  2019. return -EBUSY;
  2020. return 0;
  2021. }
  2022. static int tg3_phy_write_and_check_testpat(struct tg3 *tp, int *resetp)
  2023. {
  2024. static const u32 test_pat[4][6] = {
  2025. { 0x00005555, 0x00000005, 0x00002aaa, 0x0000000a, 0x00003456, 0x00000003 },
  2026. { 0x00002aaa, 0x0000000a, 0x00003333, 0x00000003, 0x0000789a, 0x00000005 },
  2027. { 0x00005a5a, 0x00000005, 0x00002a6a, 0x0000000a, 0x00001bcd, 0x00000003 },
  2028. { 0x00002a5a, 0x0000000a, 0x000033c3, 0x00000003, 0x00002ef1, 0x00000005 }
  2029. };
  2030. int chan;
  2031. for (chan = 0; chan < 4; chan++) {
  2032. int i;
  2033. tg3_writephy(tp, MII_TG3_DSP_ADDRESS,
  2034. (chan * 0x2000) | 0x0200);
  2035. tg3_writephy(tp, MII_TG3_DSP_CONTROL, 0x0002);
  2036. for (i = 0; i < 6; i++)
  2037. tg3_writephy(tp, MII_TG3_DSP_RW_PORT,
  2038. test_pat[chan][i]);
  2039. tg3_writephy(tp, MII_TG3_DSP_CONTROL, 0x0202);
  2040. if (tg3_wait_macro_done(tp)) {
  2041. *resetp = 1;
  2042. return -EBUSY;
  2043. }
  2044. tg3_writephy(tp, MII_TG3_DSP_ADDRESS,
  2045. (chan * 0x2000) | 0x0200);
  2046. tg3_writephy(tp, MII_TG3_DSP_CONTROL, 0x0082);
  2047. if (tg3_wait_macro_done(tp)) {
  2048. *resetp = 1;
  2049. return -EBUSY;
  2050. }
  2051. tg3_writephy(tp, MII_TG3_DSP_CONTROL, 0x0802);
  2052. if (tg3_wait_macro_done(tp)) {
  2053. *resetp = 1;
  2054. return -EBUSY;
  2055. }
  2056. for (i = 0; i < 6; i += 2) {
  2057. u32 low, high;
  2058. if (tg3_readphy(tp, MII_TG3_DSP_RW_PORT, &low) ||
  2059. tg3_readphy(tp, MII_TG3_DSP_RW_PORT, &high) ||
  2060. tg3_wait_macro_done(tp)) {
  2061. *resetp = 1;
  2062. return -EBUSY;
  2063. }
  2064. low &= 0x7fff;
  2065. high &= 0x000f;
  2066. if (low != test_pat[chan][i] ||
  2067. high != test_pat[chan][i+1]) {
  2068. tg3_writephy(tp, MII_TG3_DSP_ADDRESS, 0x000b);
  2069. tg3_writephy(tp, MII_TG3_DSP_RW_PORT, 0x4001);
  2070. tg3_writephy(tp, MII_TG3_DSP_RW_PORT, 0x4005);
  2071. return -EBUSY;
  2072. }
  2073. }
  2074. }
  2075. return 0;
  2076. }
  2077. static int tg3_phy_reset_chanpat(struct tg3 *tp)
  2078. {
  2079. int chan;
  2080. for (chan = 0; chan < 4; chan++) {
  2081. int i;
  2082. tg3_writephy(tp, MII_TG3_DSP_ADDRESS,
  2083. (chan * 0x2000) | 0x0200);
  2084. tg3_writephy(tp, MII_TG3_DSP_CONTROL, 0x0002);
  2085. for (i = 0; i < 6; i++)
  2086. tg3_writephy(tp, MII_TG3_DSP_RW_PORT, 0x000);
  2087. tg3_writephy(tp, MII_TG3_DSP_CONTROL, 0x0202);
  2088. if (tg3_wait_macro_done(tp))
  2089. return -EBUSY;
  2090. }
  2091. return 0;
  2092. }
  2093. static int tg3_phy_reset_5703_4_5(struct tg3 *tp)
  2094. {
  2095. u32 reg32, phy9_orig;
  2096. int retries, do_phy_reset, err;
  2097. retries = 10;
  2098. do_phy_reset = 1;
  2099. do {
  2100. if (do_phy_reset) {
  2101. err = tg3_bmcr_reset(tp);
  2102. if (err)
  2103. return err;
  2104. do_phy_reset = 0;
  2105. }
  2106. /* Disable transmitter and interrupt. */
  2107. if (tg3_readphy(tp, MII_TG3_EXT_CTRL, &reg32))
  2108. continue;
  2109. reg32 |= 0x3000;
  2110. tg3_writephy(tp, MII_TG3_EXT_CTRL, reg32);
  2111. /* Set full-duplex, 1000 mbps. */
  2112. tg3_writephy(tp, MII_BMCR,
  2113. BMCR_FULLDPLX | BMCR_SPEED1000);
  2114. /* Set to master mode. */
  2115. if (tg3_readphy(tp, MII_CTRL1000, &phy9_orig))
  2116. continue;
  2117. tg3_writephy(tp, MII_CTRL1000,
  2118. CTL1000_AS_MASTER | CTL1000_ENABLE_MASTER);
  2119. err = tg3_phy_toggle_auxctl_smdsp(tp, true);
  2120. if (err)
  2121. return err;
  2122. /* Block the PHY control access. */
  2123. tg3_phydsp_write(tp, 0x8005, 0x0800);
  2124. err = tg3_phy_write_and_check_testpat(tp, &do_phy_reset);
  2125. if (!err)
  2126. break;
  2127. } while (--retries);
  2128. err = tg3_phy_reset_chanpat(tp);
  2129. if (err)
  2130. return err;
  2131. tg3_phydsp_write(tp, 0x8005, 0x0000);
  2132. tg3_writephy(tp, MII_TG3_DSP_ADDRESS, 0x8200);
  2133. tg3_writephy(tp, MII_TG3_DSP_CONTROL, 0x0000);
  2134. tg3_phy_toggle_auxctl_smdsp(tp, false);
  2135. tg3_writephy(tp, MII_CTRL1000, phy9_orig);
  2136. err = tg3_readphy(tp, MII_TG3_EXT_CTRL, &reg32);
  2137. if (err)
  2138. return err;
  2139. reg32 &= ~0x3000;
  2140. tg3_writephy(tp, MII_TG3_EXT_CTRL, reg32);
  2141. return 0;
  2142. }
  2143. static void tg3_carrier_off(struct tg3 *tp)
  2144. {
  2145. netif_carrier_off(tp->dev);
  2146. tp->link_up = false;
  2147. }
  2148. static void tg3_warn_mgmt_link_flap(struct tg3 *tp)
  2149. {
  2150. if (tg3_flag(tp, ENABLE_ASF))
  2151. netdev_warn(tp->dev,
  2152. "Management side-band traffic will be interrupted during phy settings change\n");
  2153. }
  2154. /* This will reset the tigon3 PHY if there is no valid
  2155. * link unless the FORCE argument is non-zero.
  2156. */
  2157. static int tg3_phy_reset(struct tg3 *tp)
  2158. {
  2159. u32 val, cpmuctrl;
  2160. int err;
  2161. if (tg3_asic_rev(tp) == ASIC_REV_5906) {
  2162. val = tr32(GRC_MISC_CFG);
  2163. tw32_f(GRC_MISC_CFG, val & ~GRC_MISC_CFG_EPHY_IDDQ);
  2164. udelay(40);
  2165. }
  2166. err = tg3_readphy(tp, MII_BMSR, &val);
  2167. err |= tg3_readphy(tp, MII_BMSR, &val);
  2168. if (err != 0)
  2169. return -EBUSY;
  2170. if (netif_running(tp->dev) && tp->link_up) {
  2171. netif_carrier_off(tp->dev);
  2172. tg3_link_report(tp);
  2173. }
  2174. if (tg3_asic_rev(tp) == ASIC_REV_5703 ||
  2175. tg3_asic_rev(tp) == ASIC_REV_5704 ||
  2176. tg3_asic_rev(tp) == ASIC_REV_5705) {
  2177. err = tg3_phy_reset_5703_4_5(tp);
  2178. if (err)
  2179. return err;
  2180. goto out;
  2181. }
  2182. cpmuctrl = 0;
  2183. if (tg3_asic_rev(tp) == ASIC_REV_5784 &&
  2184. tg3_chip_rev(tp) != CHIPREV_5784_AX) {
  2185. cpmuctrl = tr32(TG3_CPMU_CTRL);
  2186. if (cpmuctrl & CPMU_CTRL_GPHY_10MB_RXONLY)
  2187. tw32(TG3_CPMU_CTRL,
  2188. cpmuctrl & ~CPMU_CTRL_GPHY_10MB_RXONLY);
  2189. }
  2190. err = tg3_bmcr_reset(tp);
  2191. if (err)
  2192. return err;
  2193. if (cpmuctrl & CPMU_CTRL_GPHY_10MB_RXONLY) {
  2194. val = MII_TG3_DSP_EXP8_AEDW | MII_TG3_DSP_EXP8_REJ2MHz;
  2195. tg3_phydsp_write(tp, MII_TG3_DSP_EXP8, val);
  2196. tw32(TG3_CPMU_CTRL, cpmuctrl);
  2197. }
  2198. if (tg3_chip_rev(tp) == CHIPREV_5784_AX ||
  2199. tg3_chip_rev(tp) == CHIPREV_5761_AX) {
  2200. val = tr32(TG3_CPMU_LSPD_1000MB_CLK);
  2201. if ((val & CPMU_LSPD_1000MB_MACCLK_MASK) ==
  2202. CPMU_LSPD_1000MB_MACCLK_12_5) {
  2203. val &= ~CPMU_LSPD_1000MB_MACCLK_MASK;
  2204. udelay(40);
  2205. tw32_f(TG3_CPMU_LSPD_1000MB_CLK, val);
  2206. }
  2207. }
  2208. if (tg3_flag(tp, 5717_PLUS) &&
  2209. (tp->phy_flags & TG3_PHYFLG_MII_SERDES))
  2210. return 0;
  2211. tg3_phy_apply_otp(tp);
  2212. if (tp->phy_flags & TG3_PHYFLG_ENABLE_APD)
  2213. tg3_phy_toggle_apd(tp, true);
  2214. else
  2215. tg3_phy_toggle_apd(tp, false);
  2216. out:
  2217. if ((tp->phy_flags & TG3_PHYFLG_ADC_BUG) &&
  2218. !tg3_phy_toggle_auxctl_smdsp(tp, true)) {
  2219. tg3_phydsp_write(tp, 0x201f, 0x2aaa);
  2220. tg3_phydsp_write(tp, 0x000a, 0x0323);
  2221. tg3_phy_toggle_auxctl_smdsp(tp, false);
  2222. }
  2223. if (tp->phy_flags & TG3_PHYFLG_5704_A0_BUG) {
  2224. tg3_writephy(tp, MII_TG3_MISC_SHDW, 0x8d68);
  2225. tg3_writephy(tp, MII_TG3_MISC_SHDW, 0x8d68);
  2226. }
  2227. if (tp->phy_flags & TG3_PHYFLG_BER_BUG) {
  2228. if (!tg3_phy_toggle_auxctl_smdsp(tp, true)) {
  2229. tg3_phydsp_write(tp, 0x000a, 0x310b);
  2230. tg3_phydsp_write(tp, 0x201f, 0x9506);
  2231. tg3_phydsp_write(tp, 0x401f, 0x14e2);
  2232. tg3_phy_toggle_auxctl_smdsp(tp, false);
  2233. }
  2234. } else if (tp->phy_flags & TG3_PHYFLG_JITTER_BUG) {
  2235. if (!tg3_phy_toggle_auxctl_smdsp(tp, true)) {
  2236. tg3_writephy(tp, MII_TG3_DSP_ADDRESS, 0x000a);
  2237. if (tp->phy_flags & TG3_PHYFLG_ADJUST_TRIM) {
  2238. tg3_writephy(tp, MII_TG3_DSP_RW_PORT, 0x110b);
  2239. tg3_writephy(tp, MII_TG3_TEST1,
  2240. MII_TG3_TEST1_TRIM_EN | 0x4);
  2241. } else
  2242. tg3_writephy(tp, MII_TG3_DSP_RW_PORT, 0x010b);
  2243. tg3_phy_toggle_auxctl_smdsp(tp, false);
  2244. }
  2245. }
  2246. /* Set Extended packet length bit (bit 14) on all chips that */
  2247. /* support jumbo frames */
  2248. if ((tp->phy_id & TG3_PHY_ID_MASK) == TG3_PHY_ID_BCM5401) {
  2249. /* Cannot do read-modify-write on 5401 */
  2250. tg3_phy_auxctl_write(tp, MII_TG3_AUXCTL_SHDWSEL_AUXCTL, 0x4c20);
  2251. } else if (tg3_flag(tp, JUMBO_CAPABLE)) {
  2252. /* Set bit 14 with read-modify-write to preserve other bits */
  2253. err = tg3_phy_auxctl_read(tp,
  2254. MII_TG3_AUXCTL_SHDWSEL_AUXCTL, &val);
  2255. if (!err)
  2256. tg3_phy_auxctl_write(tp, MII_TG3_AUXCTL_SHDWSEL_AUXCTL,
  2257. val | MII_TG3_AUXCTL_ACTL_EXTPKTLEN);
  2258. }
  2259. /* Set phy register 0x10 bit 0 to high fifo elasticity to support
  2260. * jumbo frames transmission.
  2261. */
  2262. if (tg3_flag(tp, JUMBO_CAPABLE)) {
  2263. if (!tg3_readphy(tp, MII_TG3_EXT_CTRL, &val))
  2264. tg3_writephy(tp, MII_TG3_EXT_CTRL,
  2265. val | MII_TG3_EXT_CTRL_FIFO_ELASTIC);
  2266. }
  2267. if (tg3_asic_rev(tp) == ASIC_REV_5906) {
  2268. /* adjust output voltage */
  2269. tg3_writephy(tp, MII_TG3_FET_PTEST, 0x12);
  2270. }
  2271. if (tg3_chip_rev_id(tp) == CHIPREV_ID_5762_A0)
  2272. tg3_phydsp_write(tp, 0xffb, 0x4000);
  2273. tg3_phy_toggle_automdix(tp, true);
  2274. tg3_phy_set_wirespeed(tp);
  2275. return 0;
  2276. }
  2277. #define TG3_GPIO_MSG_DRVR_PRES 0x00000001
  2278. #define TG3_GPIO_MSG_NEED_VAUX 0x00000002
  2279. #define TG3_GPIO_MSG_MASK (TG3_GPIO_MSG_DRVR_PRES | \
  2280. TG3_GPIO_MSG_NEED_VAUX)
  2281. #define TG3_GPIO_MSG_ALL_DRVR_PRES_MASK \
  2282. ((TG3_GPIO_MSG_DRVR_PRES << 0) | \
  2283. (TG3_GPIO_MSG_DRVR_PRES << 4) | \
  2284. (TG3_GPIO_MSG_DRVR_PRES << 8) | \
  2285. (TG3_GPIO_MSG_DRVR_PRES << 12))
  2286. #define TG3_GPIO_MSG_ALL_NEED_VAUX_MASK \
  2287. ((TG3_GPIO_MSG_NEED_VAUX << 0) | \
  2288. (TG3_GPIO_MSG_NEED_VAUX << 4) | \
  2289. (TG3_GPIO_MSG_NEED_VAUX << 8) | \
  2290. (TG3_GPIO_MSG_NEED_VAUX << 12))
  2291. static inline u32 tg3_set_function_status(struct tg3 *tp, u32 newstat)
  2292. {
  2293. u32 status, shift;
  2294. if (tg3_asic_rev(tp) == ASIC_REV_5717 ||
  2295. tg3_asic_rev(tp) == ASIC_REV_5719)
  2296. status = tg3_ape_read32(tp, TG3_APE_GPIO_MSG);
  2297. else
  2298. status = tr32(TG3_CPMU_DRV_STATUS);
  2299. shift = TG3_APE_GPIO_MSG_SHIFT + 4 * tp->pci_fn;
  2300. status &= ~(TG3_GPIO_MSG_MASK << shift);
  2301. status |= (newstat << shift);
  2302. if (tg3_asic_rev(tp) == ASIC_REV_5717 ||
  2303. tg3_asic_rev(tp) == ASIC_REV_5719)
  2304. tg3_ape_write32(tp, TG3_APE_GPIO_MSG, status);
  2305. else
  2306. tw32(TG3_CPMU_DRV_STATUS, status);
  2307. return status >> TG3_APE_GPIO_MSG_SHIFT;
  2308. }
  2309. static inline int tg3_pwrsrc_switch_to_vmain(struct tg3 *tp)
  2310. {
  2311. if (!tg3_flag(tp, IS_NIC))
  2312. return 0;
  2313. if (tg3_asic_rev(tp) == ASIC_REV_5717 ||
  2314. tg3_asic_rev(tp) == ASIC_REV_5719 ||
  2315. tg3_asic_rev(tp) == ASIC_REV_5720) {
  2316. if (tg3_ape_lock(tp, TG3_APE_LOCK_GPIO))
  2317. return -EIO;
  2318. tg3_set_function_status(tp, TG3_GPIO_MSG_DRVR_PRES);
  2319. tw32_wait_f(GRC_LOCAL_CTRL, tp->grc_local_ctrl,
  2320. TG3_GRC_LCLCTL_PWRSW_DELAY);
  2321. tg3_ape_unlock(tp, TG3_APE_LOCK_GPIO);
  2322. } else {
  2323. tw32_wait_f(GRC_LOCAL_CTRL, tp->grc_local_ctrl,
  2324. TG3_GRC_LCLCTL_PWRSW_DELAY);
  2325. }
  2326. return 0;
  2327. }
  2328. static void tg3_pwrsrc_die_with_vmain(struct tg3 *tp)
  2329. {
  2330. u32 grc_local_ctrl;
  2331. if (!tg3_flag(tp, IS_NIC) ||
  2332. tg3_asic_rev(tp) == ASIC_REV_5700 ||
  2333. tg3_asic_rev(tp) == ASIC_REV_5701)
  2334. return;
  2335. grc_local_ctrl = tp->grc_local_ctrl | GRC_LCLCTRL_GPIO_OE1;
  2336. tw32_wait_f(GRC_LOCAL_CTRL,
  2337. grc_local_ctrl | GRC_LCLCTRL_GPIO_OUTPUT1,
  2338. TG3_GRC_LCLCTL_PWRSW_DELAY);
  2339. tw32_wait_f(GRC_LOCAL_CTRL,
  2340. grc_local_ctrl,
  2341. TG3_GRC_LCLCTL_PWRSW_DELAY);
  2342. tw32_wait_f(GRC_LOCAL_CTRL,
  2343. grc_local_ctrl | GRC_LCLCTRL_GPIO_OUTPUT1,
  2344. TG3_GRC_LCLCTL_PWRSW_DELAY);
  2345. }
  2346. static void tg3_pwrsrc_switch_to_vaux(struct tg3 *tp)
  2347. {
  2348. if (!tg3_flag(tp, IS_NIC))
  2349. return;
  2350. if (tg3_asic_rev(tp) == ASIC_REV_5700 ||
  2351. tg3_asic_rev(tp) == ASIC_REV_5701) {
  2352. tw32_wait_f(GRC_LOCAL_CTRL, tp->grc_local_ctrl |
  2353. (GRC_LCLCTRL_GPIO_OE0 |
  2354. GRC_LCLCTRL_GPIO_OE1 |
  2355. GRC_LCLCTRL_GPIO_OE2 |
  2356. GRC_LCLCTRL_GPIO_OUTPUT0 |
  2357. GRC_LCLCTRL_GPIO_OUTPUT1),
  2358. TG3_GRC_LCLCTL_PWRSW_DELAY);
  2359. } else if (tp->pdev->device == PCI_DEVICE_ID_TIGON3_5761 ||
  2360. tp->pdev->device == TG3PCI_DEVICE_TIGON3_5761S) {
  2361. /* The 5761 non-e device swaps GPIO 0 and GPIO 2. */
  2362. u32 grc_local_ctrl = GRC_LCLCTRL_GPIO_OE0 |
  2363. GRC_LCLCTRL_GPIO_OE1 |
  2364. GRC_LCLCTRL_GPIO_OE2 |
  2365. GRC_LCLCTRL_GPIO_OUTPUT0 |
  2366. GRC_LCLCTRL_GPIO_OUTPUT1 |
  2367. tp->grc_local_ctrl;
  2368. tw32_wait_f(GRC_LOCAL_CTRL, grc_local_ctrl,
  2369. TG3_GRC_LCLCTL_PWRSW_DELAY);
  2370. grc_local_ctrl |= GRC_LCLCTRL_GPIO_OUTPUT2;
  2371. tw32_wait_f(GRC_LOCAL_CTRL, grc_local_ctrl,
  2372. TG3_GRC_LCLCTL_PWRSW_DELAY);
  2373. grc_local_ctrl &= ~GRC_LCLCTRL_GPIO_OUTPUT0;
  2374. tw32_wait_f(GRC_LOCAL_CTRL, grc_local_ctrl,
  2375. TG3_GRC_LCLCTL_PWRSW_DELAY);
  2376. } else {
  2377. u32 no_gpio2;
  2378. u32 grc_local_ctrl = 0;
  2379. /* Workaround to prevent overdrawing Amps. */
  2380. if (tg3_asic_rev(tp) == ASIC_REV_5714) {
  2381. grc_local_ctrl |= GRC_LCLCTRL_GPIO_OE3;
  2382. tw32_wait_f(GRC_LOCAL_CTRL, tp->grc_local_ctrl |
  2383. grc_local_ctrl,
  2384. TG3_GRC_LCLCTL_PWRSW_DELAY);
  2385. }
  2386. /* On 5753 and variants, GPIO2 cannot be used. */
  2387. no_gpio2 = tp->nic_sram_data_cfg &
  2388. NIC_SRAM_DATA_CFG_NO_GPIO2;
  2389. grc_local_ctrl |= GRC_LCLCTRL_GPIO_OE0 |
  2390. GRC_LCLCTRL_GPIO_OE1 |
  2391. GRC_LCLCTRL_GPIO_OE2 |
  2392. GRC_LCLCTRL_GPIO_OUTPUT1 |
  2393. GRC_LCLCTRL_GPIO_OUTPUT2;
  2394. if (no_gpio2) {
  2395. grc_local_ctrl &= ~(GRC_LCLCTRL_GPIO_OE2 |
  2396. GRC_LCLCTRL_GPIO_OUTPUT2);
  2397. }
  2398. tw32_wait_f(GRC_LOCAL_CTRL,
  2399. tp->grc_local_ctrl | grc_local_ctrl,
  2400. TG3_GRC_LCLCTL_PWRSW_DELAY);
  2401. grc_local_ctrl |= GRC_LCLCTRL_GPIO_OUTPUT0;
  2402. tw32_wait_f(GRC_LOCAL_CTRL,
  2403. tp->grc_local_ctrl | grc_local_ctrl,
  2404. TG3_GRC_LCLCTL_PWRSW_DELAY);
  2405. if (!no_gpio2) {
  2406. grc_local_ctrl &= ~GRC_LCLCTRL_GPIO_OUTPUT2;
  2407. tw32_wait_f(GRC_LOCAL_CTRL,
  2408. tp->grc_local_ctrl | grc_local_ctrl,
  2409. TG3_GRC_LCLCTL_PWRSW_DELAY);
  2410. }
  2411. }
  2412. }
  2413. static void tg3_frob_aux_power_5717(struct tg3 *tp, bool wol_enable)
  2414. {
  2415. u32 msg = 0;
  2416. /* Serialize power state transitions */
  2417. if (tg3_ape_lock(tp, TG3_APE_LOCK_GPIO))
  2418. return;
  2419. if (tg3_flag(tp, ENABLE_ASF) || tg3_flag(tp, ENABLE_APE) || wol_enable)
  2420. msg = TG3_GPIO_MSG_NEED_VAUX;
  2421. msg = tg3_set_function_status(tp, msg);
  2422. if (msg & TG3_GPIO_MSG_ALL_DRVR_PRES_MASK)
  2423. goto done;
  2424. if (msg & TG3_GPIO_MSG_ALL_NEED_VAUX_MASK)
  2425. tg3_pwrsrc_switch_to_vaux(tp);
  2426. else
  2427. tg3_pwrsrc_die_with_vmain(tp);
  2428. done:
  2429. tg3_ape_unlock(tp, TG3_APE_LOCK_GPIO);
  2430. }
  2431. static void tg3_frob_aux_power(struct tg3 *tp, bool include_wol)
  2432. {
  2433. bool need_vaux = false;
  2434. /* The GPIOs do something completely different on 57765. */
  2435. if (!tg3_flag(tp, IS_NIC) || tg3_flag(tp, 57765_CLASS))
  2436. return;
  2437. if (tg3_asic_rev(tp) == ASIC_REV_5717 ||
  2438. tg3_asic_rev(tp) == ASIC_REV_5719 ||
  2439. tg3_asic_rev(tp) == ASIC_REV_5720) {
  2440. tg3_frob_aux_power_5717(tp, include_wol ?
  2441. tg3_flag(tp, WOL_ENABLE) != 0 : 0);
  2442. return;
  2443. }
  2444. if (tp->pdev_peer && tp->pdev_peer != tp->pdev) {
  2445. struct net_device *dev_peer;
  2446. dev_peer = pci_get_drvdata(tp->pdev_peer);
  2447. /* remove_one() may have been run on the peer. */
  2448. if (dev_peer) {
  2449. struct tg3 *tp_peer = netdev_priv(dev_peer);
  2450. if (tg3_flag(tp_peer, INIT_COMPLETE))
  2451. return;
  2452. if ((include_wol && tg3_flag(tp_peer, WOL_ENABLE)) ||
  2453. tg3_flag(tp_peer, ENABLE_ASF))
  2454. need_vaux = true;
  2455. }
  2456. }
  2457. if ((include_wol && tg3_flag(tp, WOL_ENABLE)) ||
  2458. tg3_flag(tp, ENABLE_ASF))
  2459. need_vaux = true;
  2460. if (need_vaux)
  2461. tg3_pwrsrc_switch_to_vaux(tp);
  2462. else
  2463. tg3_pwrsrc_die_with_vmain(tp);
  2464. }
  2465. static int tg3_5700_link_polarity(struct tg3 *tp, u32 speed)
  2466. {
  2467. if (tp->led_ctrl == LED_CTRL_MODE_PHY_2)
  2468. return 1;
  2469. else if ((tp->phy_id & TG3_PHY_ID_MASK) == TG3_PHY_ID_BCM5411) {
  2470. if (speed != SPEED_10)
  2471. return 1;
  2472. } else if (speed == SPEED_10)
  2473. return 1;
  2474. return 0;
  2475. }
  2476. static bool tg3_phy_power_bug(struct tg3 *tp)
  2477. {
  2478. switch (tg3_asic_rev(tp)) {
  2479. case ASIC_REV_5700:
  2480. case ASIC_REV_5704:
  2481. return true;
  2482. case ASIC_REV_5780:
  2483. if (tp->phy_flags & TG3_PHYFLG_MII_SERDES)
  2484. return true;
  2485. return false;
  2486. case ASIC_REV_5717:
  2487. if (!tp->pci_fn)
  2488. return true;
  2489. return false;
  2490. case ASIC_REV_5719:
  2491. case ASIC_REV_5720:
  2492. if ((tp->phy_flags & TG3_PHYFLG_PHY_SERDES) &&
  2493. !tp->pci_fn)
  2494. return true;
  2495. return false;
  2496. }
  2497. return false;
  2498. }
  2499. static bool tg3_phy_led_bug(struct tg3 *tp)
  2500. {
  2501. switch (tg3_asic_rev(tp)) {
  2502. case ASIC_REV_5719:
  2503. case ASIC_REV_5720:
  2504. if ((tp->phy_flags & TG3_PHYFLG_MII_SERDES) &&
  2505. !tp->pci_fn)
  2506. return true;
  2507. return false;
  2508. }
  2509. return false;
  2510. }
  2511. static void tg3_power_down_phy(struct tg3 *tp, bool do_low_power)
  2512. {
  2513. u32 val;
  2514. if (tp->phy_flags & TG3_PHYFLG_KEEP_LINK_ON_PWRDN)
  2515. return;
  2516. if (tp->phy_flags & TG3_PHYFLG_PHY_SERDES) {
  2517. if (tg3_asic_rev(tp) == ASIC_REV_5704) {
  2518. u32 sg_dig_ctrl = tr32(SG_DIG_CTRL);
  2519. u32 serdes_cfg = tr32(MAC_SERDES_CFG);
  2520. sg_dig_ctrl |=
  2521. SG_DIG_USING_HW_AUTONEG | SG_DIG_SOFT_RESET;
  2522. tw32(SG_DIG_CTRL, sg_dig_ctrl);
  2523. tw32(MAC_SERDES_CFG, serdes_cfg | (1 << 15));
  2524. }
  2525. return;
  2526. }
  2527. if (tg3_asic_rev(tp) == ASIC_REV_5906) {
  2528. tg3_bmcr_reset(tp);
  2529. val = tr32(GRC_MISC_CFG);
  2530. tw32_f(GRC_MISC_CFG, val | GRC_MISC_CFG_EPHY_IDDQ);
  2531. udelay(40);
  2532. return;
  2533. } else if (tp->phy_flags & TG3_PHYFLG_IS_FET) {
  2534. u32 phytest;
  2535. if (!tg3_readphy(tp, MII_TG3_FET_TEST, &phytest)) {
  2536. u32 phy;
  2537. tg3_writephy(tp, MII_ADVERTISE, 0);
  2538. tg3_writephy(tp, MII_BMCR,
  2539. BMCR_ANENABLE | BMCR_ANRESTART);
  2540. tg3_writephy(tp, MII_TG3_FET_TEST,
  2541. phytest | MII_TG3_FET_SHADOW_EN);
  2542. if (!tg3_readphy(tp, MII_TG3_FET_SHDW_AUXMODE4, &phy)) {
  2543. phy |= MII_TG3_FET_SHDW_AUXMODE4_SBPD;
  2544. tg3_writephy(tp,
  2545. MII_TG3_FET_SHDW_AUXMODE4,
  2546. phy);
  2547. }
  2548. tg3_writephy(tp, MII_TG3_FET_TEST, phytest);
  2549. }
  2550. return;
  2551. } else if (do_low_power) {
  2552. if (!tg3_phy_led_bug(tp))
  2553. tg3_writephy(tp, MII_TG3_EXT_CTRL,
  2554. MII_TG3_EXT_CTRL_FORCE_LED_OFF);
  2555. val = MII_TG3_AUXCTL_PCTL_100TX_LPWR |
  2556. MII_TG3_AUXCTL_PCTL_SPR_ISOLATE |
  2557. MII_TG3_AUXCTL_PCTL_VREG_11V;
  2558. tg3_phy_auxctl_write(tp, MII_TG3_AUXCTL_SHDWSEL_PWRCTL, val);
  2559. }
  2560. /* The PHY should not be powered down on some chips because
  2561. * of bugs.
  2562. */
  2563. if (tg3_phy_power_bug(tp))
  2564. return;
  2565. if (tg3_chip_rev(tp) == CHIPREV_5784_AX ||
  2566. tg3_chip_rev(tp) == CHIPREV_5761_AX) {
  2567. val = tr32(TG3_CPMU_LSPD_1000MB_CLK);
  2568. val &= ~CPMU_LSPD_1000MB_MACCLK_MASK;
  2569. val |= CPMU_LSPD_1000MB_MACCLK_12_5;
  2570. tw32_f(TG3_CPMU_LSPD_1000MB_CLK, val);
  2571. }
  2572. tg3_writephy(tp, MII_BMCR, BMCR_PDOWN);
  2573. }
  2574. /* tp->lock is held. */
  2575. static int tg3_nvram_lock(struct tg3 *tp)
  2576. {
  2577. if (tg3_flag(tp, NVRAM)) {
  2578. int i;
  2579. if (tp->nvram_lock_cnt == 0) {
  2580. tw32(NVRAM_SWARB, SWARB_REQ_SET1);
  2581. for (i = 0; i < 8000; i++) {
  2582. if (tr32(NVRAM_SWARB) & SWARB_GNT1)
  2583. break;
  2584. udelay(20);
  2585. }
  2586. if (i == 8000) {
  2587. tw32(NVRAM_SWARB, SWARB_REQ_CLR1);
  2588. return -ENODEV;
  2589. }
  2590. }
  2591. tp->nvram_lock_cnt++;
  2592. }
  2593. return 0;
  2594. }
  2595. /* tp->lock is held. */
  2596. static void tg3_nvram_unlock(struct tg3 *tp)
  2597. {
  2598. if (tg3_flag(tp, NVRAM)) {
  2599. if (tp->nvram_lock_cnt > 0)
  2600. tp->nvram_lock_cnt--;
  2601. if (tp->nvram_lock_cnt == 0)
  2602. tw32_f(NVRAM_SWARB, SWARB_REQ_CLR1);
  2603. }
  2604. }
  2605. /* tp->lock is held. */
  2606. static void tg3_enable_nvram_access(struct tg3 *tp)
  2607. {
  2608. if (tg3_flag(tp, 5750_PLUS) && !tg3_flag(tp, PROTECTED_NVRAM)) {
  2609. u32 nvaccess = tr32(NVRAM_ACCESS);
  2610. tw32(NVRAM_ACCESS, nvaccess | ACCESS_ENABLE);
  2611. }
  2612. }
  2613. /* tp->lock is held. */
  2614. static void tg3_disable_nvram_access(struct tg3 *tp)
  2615. {
  2616. if (tg3_flag(tp, 5750_PLUS) && !tg3_flag(tp, PROTECTED_NVRAM)) {
  2617. u32 nvaccess = tr32(NVRAM_ACCESS);
  2618. tw32(NVRAM_ACCESS, nvaccess & ~ACCESS_ENABLE);
  2619. }
  2620. }
  2621. static int tg3_nvram_read_using_eeprom(struct tg3 *tp,
  2622. u32 offset, u32 *val)
  2623. {
  2624. u32 tmp;
  2625. int i;
  2626. if (offset > EEPROM_ADDR_ADDR_MASK || (offset % 4) != 0)
  2627. return -EINVAL;
  2628. tmp = tr32(GRC_EEPROM_ADDR) & ~(EEPROM_ADDR_ADDR_MASK |
  2629. EEPROM_ADDR_DEVID_MASK |
  2630. EEPROM_ADDR_READ);
  2631. tw32(GRC_EEPROM_ADDR,
  2632. tmp |
  2633. (0 << EEPROM_ADDR_DEVID_SHIFT) |
  2634. ((offset << EEPROM_ADDR_ADDR_SHIFT) &
  2635. EEPROM_ADDR_ADDR_MASK) |
  2636. EEPROM_ADDR_READ | EEPROM_ADDR_START);
  2637. for (i = 0; i < 1000; i++) {
  2638. tmp = tr32(GRC_EEPROM_ADDR);
  2639. if (tmp & EEPROM_ADDR_COMPLETE)
  2640. break;
  2641. msleep(1);
  2642. }
  2643. if (!(tmp & EEPROM_ADDR_COMPLETE))
  2644. return -EBUSY;
  2645. tmp = tr32(GRC_EEPROM_DATA);
  2646. /*
  2647. * The data will always be opposite the native endian
  2648. * format. Perform a blind byteswap to compensate.
  2649. */
  2650. *val = swab32(tmp);
  2651. return 0;
  2652. }
  2653. #define NVRAM_CMD_TIMEOUT 10000
  2654. static int tg3_nvram_exec_cmd(struct tg3 *tp, u32 nvram_cmd)
  2655. {
  2656. int i;
  2657. tw32(NVRAM_CMD, nvram_cmd);
  2658. for (i = 0; i < NVRAM_CMD_TIMEOUT; i++) {
  2659. usleep_range(10, 40);
  2660. if (tr32(NVRAM_CMD) & NVRAM_CMD_DONE) {
  2661. udelay(10);
  2662. break;
  2663. }
  2664. }
  2665. if (i == NVRAM_CMD_TIMEOUT)
  2666. return -EBUSY;
  2667. return 0;
  2668. }
  2669. static u32 tg3_nvram_phys_addr(struct tg3 *tp, u32 addr)
  2670. {
  2671. if (tg3_flag(tp, NVRAM) &&
  2672. tg3_flag(tp, NVRAM_BUFFERED) &&
  2673. tg3_flag(tp, FLASH) &&
  2674. !tg3_flag(tp, NO_NVRAM_ADDR_TRANS) &&
  2675. (tp->nvram_jedecnum == JEDEC_ATMEL))
  2676. addr = ((addr / tp->nvram_pagesize) <<
  2677. ATMEL_AT45DB0X1B_PAGE_POS) +
  2678. (addr % tp->nvram_pagesize);
  2679. return addr;
  2680. }
  2681. static u32 tg3_nvram_logical_addr(struct tg3 *tp, u32 addr)
  2682. {
  2683. if (tg3_flag(tp, NVRAM) &&
  2684. tg3_flag(tp, NVRAM_BUFFERED) &&
  2685. tg3_flag(tp, FLASH) &&
  2686. !tg3_flag(tp, NO_NVRAM_ADDR_TRANS) &&
  2687. (tp->nvram_jedecnum == JEDEC_ATMEL))
  2688. addr = ((addr >> ATMEL_AT45DB0X1B_PAGE_POS) *
  2689. tp->nvram_pagesize) +
  2690. (addr & ((1 << ATMEL_AT45DB0X1B_PAGE_POS) - 1));
  2691. return addr;
  2692. }
  2693. /* NOTE: Data read in from NVRAM is byteswapped according to
  2694. * the byteswapping settings for all other register accesses.
  2695. * tg3 devices are BE devices, so on a BE machine, the data
  2696. * returned will be exactly as it is seen in NVRAM. On a LE
  2697. * machine, the 32-bit value will be byteswapped.
  2698. */
  2699. static int tg3_nvram_read(struct tg3 *tp, u32 offset, u32 *val)
  2700. {
  2701. int ret;
  2702. if (!tg3_flag(tp, NVRAM))
  2703. return tg3_nvram_read_using_eeprom(tp, offset, val);
  2704. offset = tg3_nvram_phys_addr(tp, offset);
  2705. if (offset > NVRAM_ADDR_MSK)
  2706. return -EINVAL;
  2707. ret = tg3_nvram_lock(tp);
  2708. if (ret)
  2709. return ret;
  2710. tg3_enable_nvram_access(tp);
  2711. tw32(NVRAM_ADDR, offset);
  2712. ret = tg3_nvram_exec_cmd(tp, NVRAM_CMD_RD | NVRAM_CMD_GO |
  2713. NVRAM_CMD_FIRST | NVRAM_CMD_LAST | NVRAM_CMD_DONE);
  2714. if (ret == 0)
  2715. *val = tr32(NVRAM_RDDATA);
  2716. tg3_disable_nvram_access(tp);
  2717. tg3_nvram_unlock(tp);
  2718. return ret;
  2719. }
  2720. /* Ensures NVRAM data is in bytestream format. */
  2721. static int tg3_nvram_read_be32(struct tg3 *tp, u32 offset, __be32 *val)
  2722. {
  2723. u32 v;
  2724. int res = tg3_nvram_read(tp, offset, &v);
  2725. if (!res)
  2726. *val = cpu_to_be32(v);
  2727. return res;
  2728. }
  2729. static int tg3_nvram_write_block_using_eeprom(struct tg3 *tp,
  2730. u32 offset, u32 len, u8 *buf)
  2731. {
  2732. int i, j, rc = 0;
  2733. u32 val;
  2734. for (i = 0; i < len; i += 4) {
  2735. u32 addr;
  2736. __be32 data;
  2737. addr = offset + i;
  2738. memcpy(&data, buf + i, 4);
  2739. /*
  2740. * The SEEPROM interface expects the data to always be opposite
  2741. * the native endian format. We accomplish this by reversing
  2742. * all the operations that would have been performed on the
  2743. * data from a call to tg3_nvram_read_be32().
  2744. */
  2745. tw32(GRC_EEPROM_DATA, swab32(be32_to_cpu(data)));
  2746. val = tr32(GRC_EEPROM_ADDR);
  2747. tw32(GRC_EEPROM_ADDR, val | EEPROM_ADDR_COMPLETE);
  2748. val &= ~(EEPROM_ADDR_ADDR_MASK | EEPROM_ADDR_DEVID_MASK |
  2749. EEPROM_ADDR_READ);
  2750. tw32(GRC_EEPROM_ADDR, val |
  2751. (0 << EEPROM_ADDR_DEVID_SHIFT) |
  2752. (addr & EEPROM_ADDR_ADDR_MASK) |
  2753. EEPROM_ADDR_START |
  2754. EEPROM_ADDR_WRITE);
  2755. for (j = 0; j < 1000; j++) {
  2756. val = tr32(GRC_EEPROM_ADDR);
  2757. if (val & EEPROM_ADDR_COMPLETE)
  2758. break;
  2759. msleep(1);
  2760. }
  2761. if (!(val & EEPROM_ADDR_COMPLETE)) {
  2762. rc = -EBUSY;
  2763. break;
  2764. }
  2765. }
  2766. return rc;
  2767. }
  2768. /* offset and length are dword aligned */
  2769. static int tg3_nvram_write_block_unbuffered(struct tg3 *tp, u32 offset, u32 len,
  2770. u8 *buf)
  2771. {
  2772. int ret = 0;
  2773. u32 pagesize = tp->nvram_pagesize;
  2774. u32 pagemask = pagesize - 1;
  2775. u32 nvram_cmd;
  2776. u8 *tmp;
  2777. tmp = kmalloc(pagesize, GFP_KERNEL);
  2778. if (tmp == NULL)
  2779. return -ENOMEM;
  2780. while (len) {
  2781. int j;
  2782. u32 phy_addr, page_off, size;
  2783. phy_addr = offset & ~pagemask;
  2784. for (j = 0; j < pagesize; j += 4) {
  2785. ret = tg3_nvram_read_be32(tp, phy_addr + j,
  2786. (__be32 *) (tmp + j));
  2787. if (ret)
  2788. break;
  2789. }
  2790. if (ret)
  2791. break;
  2792. page_off = offset & pagemask;
  2793. size = pagesize;
  2794. if (len < size)
  2795. size = len;
  2796. len -= size;
  2797. memcpy(tmp + page_off, buf, size);
  2798. offset = offset + (pagesize - page_off);
  2799. tg3_enable_nvram_access(tp);
  2800. /*
  2801. * Before we can erase the flash page, we need
  2802. * to issue a special "write enable" command.
  2803. */
  2804. nvram_cmd = NVRAM_CMD_WREN | NVRAM_CMD_GO | NVRAM_CMD_DONE;
  2805. if (tg3_nvram_exec_cmd(tp, nvram_cmd))
  2806. break;
  2807. /* Erase the target page */
  2808. tw32(NVRAM_ADDR, phy_addr);
  2809. nvram_cmd = NVRAM_CMD_GO | NVRAM_CMD_DONE | NVRAM_CMD_WR |
  2810. NVRAM_CMD_FIRST | NVRAM_CMD_LAST | NVRAM_CMD_ERASE;
  2811. if (tg3_nvram_exec_cmd(tp, nvram_cmd))
  2812. break;
  2813. /* Issue another write enable to start the write. */
  2814. nvram_cmd = NVRAM_CMD_WREN | NVRAM_CMD_GO | NVRAM_CMD_DONE;
  2815. if (tg3_nvram_exec_cmd(tp, nvram_cmd))
  2816. break;
  2817. for (j = 0; j < pagesize; j += 4) {
  2818. __be32 data;
  2819. data = *((__be32 *) (tmp + j));
  2820. tw32(NVRAM_WRDATA, be32_to_cpu(data));
  2821. tw32(NVRAM_ADDR, phy_addr + j);
  2822. nvram_cmd = NVRAM_CMD_GO | NVRAM_CMD_DONE |
  2823. NVRAM_CMD_WR;
  2824. if (j == 0)
  2825. nvram_cmd |= NVRAM_CMD_FIRST;
  2826. else if (j == (pagesize - 4))
  2827. nvram_cmd |= NVRAM_CMD_LAST;
  2828. ret = tg3_nvram_exec_cmd(tp, nvram_cmd);
  2829. if (ret)
  2830. break;
  2831. }
  2832. if (ret)
  2833. break;
  2834. }
  2835. nvram_cmd = NVRAM_CMD_WRDI | NVRAM_CMD_GO | NVRAM_CMD_DONE;
  2836. tg3_nvram_exec_cmd(tp, nvram_cmd);
  2837. kfree(tmp);
  2838. return ret;
  2839. }
  2840. /* offset and length are dword aligned */
  2841. static int tg3_nvram_write_block_buffered(struct tg3 *tp, u32 offset, u32 len,
  2842. u8 *buf)
  2843. {
  2844. int i, ret = 0;
  2845. for (i = 0; i < len; i += 4, offset += 4) {
  2846. u32 page_off, phy_addr, nvram_cmd;
  2847. __be32 data;
  2848. memcpy(&data, buf + i, 4);
  2849. tw32(NVRAM_WRDATA, be32_to_cpu(data));
  2850. page_off = offset % tp->nvram_pagesize;
  2851. phy_addr = tg3_nvram_phys_addr(tp, offset);
  2852. nvram_cmd = NVRAM_CMD_GO | NVRAM_CMD_DONE | NVRAM_CMD_WR;
  2853. if (page_off == 0 || i == 0)
  2854. nvram_cmd |= NVRAM_CMD_FIRST;
  2855. if (page_off == (tp->nvram_pagesize - 4))
  2856. nvram_cmd |= NVRAM_CMD_LAST;
  2857. if (i == (len - 4))
  2858. nvram_cmd |= NVRAM_CMD_LAST;
  2859. if ((nvram_cmd & NVRAM_CMD_FIRST) ||
  2860. !tg3_flag(tp, FLASH) ||
  2861. !tg3_flag(tp, 57765_PLUS))
  2862. tw32(NVRAM_ADDR, phy_addr);
  2863. if (tg3_asic_rev(tp) != ASIC_REV_5752 &&
  2864. !tg3_flag(tp, 5755_PLUS) &&
  2865. (tp->nvram_jedecnum == JEDEC_ST) &&
  2866. (nvram_cmd & NVRAM_CMD_FIRST)) {
  2867. u32 cmd;
  2868. cmd = NVRAM_CMD_WREN | NVRAM_CMD_GO | NVRAM_CMD_DONE;
  2869. ret = tg3_nvram_exec_cmd(tp, cmd);
  2870. if (ret)
  2871. break;
  2872. }
  2873. if (!tg3_flag(tp, FLASH)) {
  2874. /* We always do complete word writes to eeprom. */
  2875. nvram_cmd |= (NVRAM_CMD_FIRST | NVRAM_CMD_LAST);
  2876. }
  2877. ret = tg3_nvram_exec_cmd(tp, nvram_cmd);
  2878. if (ret)
  2879. break;
  2880. }
  2881. return ret;
  2882. }
  2883. /* offset and length are dword aligned */
  2884. static int tg3_nvram_write_block(struct tg3 *tp, u32 offset, u32 len, u8 *buf)
  2885. {
  2886. int ret;
  2887. if (tg3_flag(tp, EEPROM_WRITE_PROT)) {
  2888. tw32_f(GRC_LOCAL_CTRL, tp->grc_local_ctrl &
  2889. ~GRC_LCLCTRL_GPIO_OUTPUT1);
  2890. udelay(40);
  2891. }
  2892. if (!tg3_flag(tp, NVRAM)) {
  2893. ret = tg3_nvram_write_block_using_eeprom(tp, offset, len, buf);
  2894. } else {
  2895. u32 grc_mode;
  2896. ret = tg3_nvram_lock(tp);
  2897. if (ret)
  2898. return ret;
  2899. tg3_enable_nvram_access(tp);
  2900. if (tg3_flag(tp, 5750_PLUS) && !tg3_flag(tp, PROTECTED_NVRAM))
  2901. tw32(NVRAM_WRITE1, 0x406);
  2902. grc_mode = tr32(GRC_MODE);
  2903. tw32(GRC_MODE, grc_mode | GRC_MODE_NVRAM_WR_ENABLE);
  2904. if (tg3_flag(tp, NVRAM_BUFFERED) || !tg3_flag(tp, FLASH)) {
  2905. ret = tg3_nvram_write_block_buffered(tp, offset, len,
  2906. buf);
  2907. } else {
  2908. ret = tg3_nvram_write_block_unbuffered(tp, offset, len,
  2909. buf);
  2910. }
  2911. grc_mode = tr32(GRC_MODE);
  2912. tw32(GRC_MODE, grc_mode & ~GRC_MODE_NVRAM_WR_ENABLE);
  2913. tg3_disable_nvram_access(tp);
  2914. tg3_nvram_unlock(tp);
  2915. }
  2916. if (tg3_flag(tp, EEPROM_WRITE_PROT)) {
  2917. tw32_f(GRC_LOCAL_CTRL, tp->grc_local_ctrl);
  2918. udelay(40);
  2919. }
  2920. return ret;
  2921. }
  2922. #define RX_CPU_SCRATCH_BASE 0x30000
  2923. #define RX_CPU_SCRATCH_SIZE 0x04000
  2924. #define TX_CPU_SCRATCH_BASE 0x34000
  2925. #define TX_CPU_SCRATCH_SIZE 0x04000
  2926. /* tp->lock is held. */
  2927. static int tg3_pause_cpu(struct tg3 *tp, u32 cpu_base)
  2928. {
  2929. int i;
  2930. const int iters = 10000;
  2931. for (i = 0; i < iters; i++) {
  2932. tw32(cpu_base + CPU_STATE, 0xffffffff);
  2933. tw32(cpu_base + CPU_MODE, CPU_MODE_HALT);
  2934. if (tr32(cpu_base + CPU_MODE) & CPU_MODE_HALT)
  2935. break;
  2936. if (pci_channel_offline(tp->pdev))
  2937. return -EBUSY;
  2938. }
  2939. return (i == iters) ? -EBUSY : 0;
  2940. }
  2941. /* tp->lock is held. */
  2942. static int tg3_rxcpu_pause(struct tg3 *tp)
  2943. {
  2944. int rc = tg3_pause_cpu(tp, RX_CPU_BASE);
  2945. tw32(RX_CPU_BASE + CPU_STATE, 0xffffffff);
  2946. tw32_f(RX_CPU_BASE + CPU_MODE, CPU_MODE_HALT);
  2947. udelay(10);
  2948. return rc;
  2949. }
  2950. /* tp->lock is held. */
  2951. static int tg3_txcpu_pause(struct tg3 *tp)
  2952. {
  2953. return tg3_pause_cpu(tp, TX_CPU_BASE);
  2954. }
  2955. /* tp->lock is held. */
  2956. static void tg3_resume_cpu(struct tg3 *tp, u32 cpu_base)
  2957. {
  2958. tw32(cpu_base + CPU_STATE, 0xffffffff);
  2959. tw32_f(cpu_base + CPU_MODE, 0x00000000);
  2960. }
  2961. /* tp->lock is held. */
  2962. static void tg3_rxcpu_resume(struct tg3 *tp)
  2963. {
  2964. tg3_resume_cpu(tp, RX_CPU_BASE);
  2965. }
  2966. /* tp->lock is held. */
  2967. static int tg3_halt_cpu(struct tg3 *tp, u32 cpu_base)
  2968. {
  2969. int rc;
  2970. BUG_ON(cpu_base == TX_CPU_BASE && tg3_flag(tp, 5705_PLUS));
  2971. if (tg3_asic_rev(tp) == ASIC_REV_5906) {
  2972. u32 val = tr32(GRC_VCPU_EXT_CTRL);
  2973. tw32(GRC_VCPU_EXT_CTRL, val | GRC_VCPU_EXT_CTRL_HALT_CPU);
  2974. return 0;
  2975. }
  2976. if (cpu_base == RX_CPU_BASE) {
  2977. rc = tg3_rxcpu_pause(tp);
  2978. } else {
  2979. /*
  2980. * There is only an Rx CPU for the 5750 derivative in the
  2981. * BCM4785.
  2982. */
  2983. if (tg3_flag(tp, IS_SSB_CORE))
  2984. return 0;
  2985. rc = tg3_txcpu_pause(tp);
  2986. }
  2987. if (rc) {
  2988. netdev_err(tp->dev, "%s timed out, %s CPU\n",
  2989. __func__, cpu_base == RX_CPU_BASE ? "RX" : "TX");
  2990. return -ENODEV;
  2991. }
  2992. /* Clear firmware's nvram arbitration. */
  2993. if (tg3_flag(tp, NVRAM))
  2994. tw32(NVRAM_SWARB, SWARB_REQ_CLR0);
  2995. return 0;
  2996. }
  2997. static int tg3_fw_data_len(struct tg3 *tp,
  2998. const struct tg3_firmware_hdr *fw_hdr)
  2999. {
  3000. int fw_len;
  3001. /* Non fragmented firmware have one firmware header followed by a
  3002. * contiguous chunk of data to be written. The length field in that
  3003. * header is not the length of data to be written but the complete
  3004. * length of the bss. The data length is determined based on
  3005. * tp->fw->size minus headers.
  3006. *
  3007. * Fragmented firmware have a main header followed by multiple
  3008. * fragments. Each fragment is identical to non fragmented firmware
  3009. * with a firmware header followed by a contiguous chunk of data. In
  3010. * the main header, the length field is unused and set to 0xffffffff.
  3011. * In each fragment header the length is the entire size of that
  3012. * fragment i.e. fragment data + header length. Data length is
  3013. * therefore length field in the header minus TG3_FW_HDR_LEN.
  3014. */
  3015. if (tp->fw_len == 0xffffffff)
  3016. fw_len = be32_to_cpu(fw_hdr->len);
  3017. else
  3018. fw_len = tp->fw->size;
  3019. return (fw_len - TG3_FW_HDR_LEN) / sizeof(u32);
  3020. }
  3021. /* tp->lock is held. */
  3022. static int tg3_load_firmware_cpu(struct tg3 *tp, u32 cpu_base,
  3023. u32 cpu_scratch_base, int cpu_scratch_size,
  3024. const struct tg3_firmware_hdr *fw_hdr)
  3025. {
  3026. int err, i;
  3027. void (*write_op)(struct tg3 *, u32, u32);
  3028. int total_len = tp->fw->size;
  3029. if (cpu_base == TX_CPU_BASE && tg3_flag(tp, 5705_PLUS)) {
  3030. netdev_err(tp->dev,
  3031. "%s: Trying to load TX cpu firmware which is 5705\n",
  3032. __func__);
  3033. return -EINVAL;
  3034. }
  3035. if (tg3_flag(tp, 5705_PLUS) && tg3_asic_rev(tp) != ASIC_REV_57766)
  3036. write_op = tg3_write_mem;
  3037. else
  3038. write_op = tg3_write_indirect_reg32;
  3039. if (tg3_asic_rev(tp) != ASIC_REV_57766) {
  3040. /* It is possible that bootcode is still loading at this point.
  3041. * Get the nvram lock first before halting the cpu.
  3042. */
  3043. int lock_err = tg3_nvram_lock(tp);
  3044. err = tg3_halt_cpu(tp, cpu_base);
  3045. if (!lock_err)
  3046. tg3_nvram_unlock(tp);
  3047. if (err)
  3048. goto out;
  3049. for (i = 0; i < cpu_scratch_size; i += sizeof(u32))
  3050. write_op(tp, cpu_scratch_base + i, 0);
  3051. tw32(cpu_base + CPU_STATE, 0xffffffff);
  3052. tw32(cpu_base + CPU_MODE,
  3053. tr32(cpu_base + CPU_MODE) | CPU_MODE_HALT);
  3054. } else {
  3055. /* Subtract additional main header for fragmented firmware and
  3056. * advance to the first fragment
  3057. */
  3058. total_len -= TG3_FW_HDR_LEN;
  3059. fw_hdr++;
  3060. }
  3061. do {
  3062. u32 *fw_data = (u32 *)(fw_hdr + 1);
  3063. for (i = 0; i < tg3_fw_data_len(tp, fw_hdr); i++)
  3064. write_op(tp, cpu_scratch_base +
  3065. (be32_to_cpu(fw_hdr->base_addr) & 0xffff) +
  3066. (i * sizeof(u32)),
  3067. be32_to_cpu(fw_data[i]));
  3068. total_len -= be32_to_cpu(fw_hdr->len);
  3069. /* Advance to next fragment */
  3070. fw_hdr = (struct tg3_firmware_hdr *)
  3071. ((void *)fw_hdr + be32_to_cpu(fw_hdr->len));
  3072. } while (total_len > 0);
  3073. err = 0;
  3074. out:
  3075. return err;
  3076. }
  3077. /* tp->lock is held. */
  3078. static int tg3_pause_cpu_and_set_pc(struct tg3 *tp, u32 cpu_base, u32 pc)
  3079. {
  3080. int i;
  3081. const int iters = 5;
  3082. tw32(cpu_base + CPU_STATE, 0xffffffff);
  3083. tw32_f(cpu_base + CPU_PC, pc);
  3084. for (i = 0; i < iters; i++) {
  3085. if (tr32(cpu_base + CPU_PC) == pc)
  3086. break;
  3087. tw32(cpu_base + CPU_STATE, 0xffffffff);
  3088. tw32(cpu_base + CPU_MODE, CPU_MODE_HALT);
  3089. tw32_f(cpu_base + CPU_PC, pc);
  3090. udelay(1000);
  3091. }
  3092. return (i == iters) ? -EBUSY : 0;
  3093. }
  3094. /* tp->lock is held. */
  3095. static int tg3_load_5701_a0_firmware_fix(struct tg3 *tp)
  3096. {
  3097. const struct tg3_firmware_hdr *fw_hdr;
  3098. int err;
  3099. fw_hdr = (struct tg3_firmware_hdr *)tp->fw->data;
  3100. /* Firmware blob starts with version numbers, followed by
  3101. start address and length. We are setting complete length.
  3102. length = end_address_of_bss - start_address_of_text.
  3103. Remainder is the blob to be loaded contiguously
  3104. from start address. */
  3105. err = tg3_load_firmware_cpu(tp, RX_CPU_BASE,
  3106. RX_CPU_SCRATCH_BASE, RX_CPU_SCRATCH_SIZE,
  3107. fw_hdr);
  3108. if (err)
  3109. return err;
  3110. err = tg3_load_firmware_cpu(tp, TX_CPU_BASE,
  3111. TX_CPU_SCRATCH_BASE, TX_CPU_SCRATCH_SIZE,
  3112. fw_hdr);
  3113. if (err)
  3114. return err;
  3115. /* Now startup only the RX cpu. */
  3116. err = tg3_pause_cpu_and_set_pc(tp, RX_CPU_BASE,
  3117. be32_to_cpu(fw_hdr->base_addr));
  3118. if (err) {
  3119. netdev_err(tp->dev, "%s fails to set RX CPU PC, is %08x "
  3120. "should be %08x\n", __func__,
  3121. tr32(RX_CPU_BASE + CPU_PC),
  3122. be32_to_cpu(fw_hdr->base_addr));
  3123. return -ENODEV;
  3124. }
  3125. tg3_rxcpu_resume(tp);
  3126. return 0;
  3127. }
  3128. static int tg3_validate_rxcpu_state(struct tg3 *tp)
  3129. {
  3130. const int iters = 1000;
  3131. int i;
  3132. u32 val;
  3133. /* Wait for boot code to complete initialization and enter service
  3134. * loop. It is then safe to download service patches
  3135. */
  3136. for (i = 0; i < iters; i++) {
  3137. if (tr32(RX_CPU_HWBKPT) == TG3_SBROM_IN_SERVICE_LOOP)
  3138. break;
  3139. udelay(10);
  3140. }
  3141. if (i == iters) {
  3142. netdev_err(tp->dev, "Boot code not ready for service patches\n");
  3143. return -EBUSY;
  3144. }
  3145. val = tg3_read_indirect_reg32(tp, TG3_57766_FW_HANDSHAKE);
  3146. if (val & 0xff) {
  3147. netdev_warn(tp->dev,
  3148. "Other patches exist. Not downloading EEE patch\n");
  3149. return -EEXIST;
  3150. }
  3151. return 0;
  3152. }
  3153. /* tp->lock is held. */
  3154. static void tg3_load_57766_firmware(struct tg3 *tp)
  3155. {
  3156. struct tg3_firmware_hdr *fw_hdr;
  3157. if (!tg3_flag(tp, NO_NVRAM))
  3158. return;
  3159. if (tg3_validate_rxcpu_state(tp))
  3160. return;
  3161. if (!tp->fw)
  3162. return;
  3163. /* This firmware blob has a different format than older firmware
  3164. * releases as given below. The main difference is we have fragmented
  3165. * data to be written to non-contiguous locations.
  3166. *
  3167. * In the beginning we have a firmware header identical to other
  3168. * firmware which consists of version, base addr and length. The length
  3169. * here is unused and set to 0xffffffff.
  3170. *
  3171. * This is followed by a series of firmware fragments which are
  3172. * individually identical to previous firmware. i.e. they have the
  3173. * firmware header and followed by data for that fragment. The version
  3174. * field of the individual fragment header is unused.
  3175. */
  3176. fw_hdr = (struct tg3_firmware_hdr *)tp->fw->data;
  3177. if (be32_to_cpu(fw_hdr->base_addr) != TG3_57766_FW_BASE_ADDR)
  3178. return;
  3179. if (tg3_rxcpu_pause(tp))
  3180. return;
  3181. /* tg3_load_firmware_cpu() will always succeed for the 57766 */
  3182. tg3_load_firmware_cpu(tp, 0, TG3_57766_FW_BASE_ADDR, 0, fw_hdr);
  3183. tg3_rxcpu_resume(tp);
  3184. }
  3185. /* tp->lock is held. */
  3186. static int tg3_load_tso_firmware(struct tg3 *tp)
  3187. {
  3188. const struct tg3_firmware_hdr *fw_hdr;
  3189. unsigned long cpu_base, cpu_scratch_base, cpu_scratch_size;
  3190. int err;
  3191. if (!tg3_flag(tp, FW_TSO))
  3192. return 0;
  3193. fw_hdr = (struct tg3_firmware_hdr *)tp->fw->data;
  3194. /* Firmware blob starts with version numbers, followed by
  3195. start address and length. We are setting complete length.
  3196. length = end_address_of_bss - start_address_of_text.
  3197. Remainder is the blob to be loaded contiguously
  3198. from start address. */
  3199. cpu_scratch_size = tp->fw_len;
  3200. if (tg3_asic_rev(tp) == ASIC_REV_5705) {
  3201. cpu_base = RX_CPU_BASE;
  3202. cpu_scratch_base = NIC_SRAM_MBUF_POOL_BASE5705;
  3203. } else {
  3204. cpu_base = TX_CPU_BASE;
  3205. cpu_scratch_base = TX_CPU_SCRATCH_BASE;
  3206. cpu_scratch_size = TX_CPU_SCRATCH_SIZE;
  3207. }
  3208. err = tg3_load_firmware_cpu(tp, cpu_base,
  3209. cpu_scratch_base, cpu_scratch_size,
  3210. fw_hdr);
  3211. if (err)
  3212. return err;
  3213. /* Now startup the cpu. */
  3214. err = tg3_pause_cpu_and_set_pc(tp, cpu_base,
  3215. be32_to_cpu(fw_hdr->base_addr));
  3216. if (err) {
  3217. netdev_err(tp->dev,
  3218. "%s fails to set CPU PC, is %08x should be %08x\n",
  3219. __func__, tr32(cpu_base + CPU_PC),
  3220. be32_to_cpu(fw_hdr->base_addr));
  3221. return -ENODEV;
  3222. }
  3223. tg3_resume_cpu(tp, cpu_base);
  3224. return 0;
  3225. }
  3226. /* tp->lock is held. */
  3227. static void __tg3_set_one_mac_addr(struct tg3 *tp, u8 *mac_addr, int index)
  3228. {
  3229. u32 addr_high, addr_low;
  3230. addr_high = ((mac_addr[0] << 8) | mac_addr[1]);
  3231. addr_low = ((mac_addr[2] << 24) | (mac_addr[3] << 16) |
  3232. (mac_addr[4] << 8) | mac_addr[5]);
  3233. if (index < 4) {
  3234. tw32(MAC_ADDR_0_HIGH + (index * 8), addr_high);
  3235. tw32(MAC_ADDR_0_LOW + (index * 8), addr_low);
  3236. } else {
  3237. index -= 4;
  3238. tw32(MAC_EXTADDR_0_HIGH + (index * 8), addr_high);
  3239. tw32(MAC_EXTADDR_0_LOW + (index * 8), addr_low);
  3240. }
  3241. }
  3242. /* tp->lock is held. */
  3243. static void __tg3_set_mac_addr(struct tg3 *tp, bool skip_mac_1)
  3244. {
  3245. u32 addr_high;
  3246. int i;
  3247. for (i = 0; i < 4; i++) {
  3248. if (i == 1 && skip_mac_1)
  3249. continue;
  3250. __tg3_set_one_mac_addr(tp, tp->dev->dev_addr, i);
  3251. }
  3252. if (tg3_asic_rev(tp) == ASIC_REV_5703 ||
  3253. tg3_asic_rev(tp) == ASIC_REV_5704) {
  3254. for (i = 4; i < 16; i++)
  3255. __tg3_set_one_mac_addr(tp, tp->dev->dev_addr, i);
  3256. }
  3257. addr_high = (tp->dev->dev_addr[0] +
  3258. tp->dev->dev_addr[1] +
  3259. tp->dev->dev_addr[2] +
  3260. tp->dev->dev_addr[3] +
  3261. tp->dev->dev_addr[4] +
  3262. tp->dev->dev_addr[5]) &
  3263. TX_BACKOFF_SEED_MASK;
  3264. tw32(MAC_TX_BACKOFF_SEED, addr_high);
  3265. }
  3266. static void tg3_enable_register_access(struct tg3 *tp)
  3267. {
  3268. /*
  3269. * Make sure register accesses (indirect or otherwise) will function
  3270. * correctly.
  3271. */
  3272. pci_write_config_dword(tp->pdev,
  3273. TG3PCI_MISC_HOST_CTRL, tp->misc_host_ctrl);
  3274. }
  3275. static int tg3_power_up(struct tg3 *tp)
  3276. {
  3277. int err;
  3278. tg3_enable_register_access(tp);
  3279. err = pci_set_power_state(tp->pdev, PCI_D0);
  3280. if (!err) {
  3281. /* Switch out of Vaux if it is a NIC */
  3282. tg3_pwrsrc_switch_to_vmain(tp);
  3283. } else {
  3284. netdev_err(tp->dev, "Transition to D0 failed\n");
  3285. }
  3286. return err;
  3287. }
  3288. static int tg3_setup_phy(struct tg3 *, bool);
  3289. static int tg3_power_down_prepare(struct tg3 *tp)
  3290. {
  3291. u32 misc_host_ctrl;
  3292. bool device_should_wake, do_low_power;
  3293. tg3_enable_register_access(tp);
  3294. /* Restore the CLKREQ setting. */
  3295. if (tg3_flag(tp, CLKREQ_BUG))
  3296. pcie_capability_set_word(tp->pdev, PCI_EXP_LNKCTL,
  3297. PCI_EXP_LNKCTL_CLKREQ_EN);
  3298. misc_host_ctrl = tr32(TG3PCI_MISC_HOST_CTRL);
  3299. tw32(TG3PCI_MISC_HOST_CTRL,
  3300. misc_host_ctrl | MISC_HOST_CTRL_MASK_PCI_INT);
  3301. device_should_wake = device_may_wakeup(&tp->pdev->dev) &&
  3302. tg3_flag(tp, WOL_ENABLE);
  3303. if (tg3_flag(tp, USE_PHYLIB)) {
  3304. do_low_power = false;
  3305. if ((tp->phy_flags & TG3_PHYFLG_IS_CONNECTED) &&
  3306. !(tp->phy_flags & TG3_PHYFLG_IS_LOW_POWER)) {
  3307. __ETHTOOL_DECLARE_LINK_MODE_MASK(advertising) = { 0, };
  3308. struct phy_device *phydev;
  3309. u32 phyid;
  3310. phydev = mdiobus_get_phy(tp->mdio_bus, tp->phy_addr);
  3311. tp->phy_flags |= TG3_PHYFLG_IS_LOW_POWER;
  3312. tp->link_config.speed = phydev->speed;
  3313. tp->link_config.duplex = phydev->duplex;
  3314. tp->link_config.autoneg = phydev->autoneg;
  3315. ethtool_convert_link_mode_to_legacy_u32(
  3316. &tp->link_config.advertising,
  3317. phydev->advertising);
  3318. linkmode_set_bit(ETHTOOL_LINK_MODE_TP_BIT, advertising);
  3319. linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT,
  3320. advertising);
  3321. linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
  3322. advertising);
  3323. linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT,
  3324. advertising);
  3325. if (tg3_flag(tp, ENABLE_ASF) || device_should_wake) {
  3326. if (tg3_flag(tp, WOL_SPEED_100MB)) {
  3327. linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT,
  3328. advertising);
  3329. linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT,
  3330. advertising);
  3331. linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT,
  3332. advertising);
  3333. } else {
  3334. linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT,
  3335. advertising);
  3336. }
  3337. }
  3338. linkmode_copy(phydev->advertising, advertising);
  3339. phy_start_aneg(phydev);
  3340. phyid = phydev->drv->phy_id & phydev->drv->phy_id_mask;
  3341. if (phyid != PHY_ID_BCMAC131) {
  3342. phyid &= PHY_BCM_OUI_MASK;
  3343. if (phyid == PHY_BCM_OUI_1 ||
  3344. phyid == PHY_BCM_OUI_2 ||
  3345. phyid == PHY_BCM_OUI_3)
  3346. do_low_power = true;
  3347. }
  3348. }
  3349. } else {
  3350. do_low_power = true;
  3351. if (!(tp->phy_flags & TG3_PHYFLG_IS_LOW_POWER))
  3352. tp->phy_flags |= TG3_PHYFLG_IS_LOW_POWER;
  3353. if (!(tp->phy_flags & TG3_PHYFLG_ANY_SERDES))
  3354. tg3_setup_phy(tp, false);
  3355. }
  3356. if (tg3_asic_rev(tp) == ASIC_REV_5906) {
  3357. u32 val;
  3358. val = tr32(GRC_VCPU_EXT_CTRL);
  3359. tw32(GRC_VCPU_EXT_CTRL, val | GRC_VCPU_EXT_CTRL_DISABLE_WOL);
  3360. } else if (!tg3_flag(tp, ENABLE_ASF)) {
  3361. int i;
  3362. u32 val;
  3363. for (i = 0; i < 200; i++) {
  3364. tg3_read_mem(tp, NIC_SRAM_FW_ASF_STATUS_MBOX, &val);
  3365. if (val == ~NIC_SRAM_FIRMWARE_MBOX_MAGIC1)
  3366. break;
  3367. msleep(1);
  3368. }
  3369. }
  3370. if (tg3_flag(tp, WOL_CAP))
  3371. tg3_write_mem(tp, NIC_SRAM_WOL_MBOX, WOL_SIGNATURE |
  3372. WOL_DRV_STATE_SHUTDOWN |
  3373. WOL_DRV_WOL |
  3374. WOL_SET_MAGIC_PKT);
  3375. if (device_should_wake) {
  3376. u32 mac_mode;
  3377. if (!(tp->phy_flags & TG3_PHYFLG_PHY_SERDES)) {
  3378. if (do_low_power &&
  3379. !(tp->phy_flags & TG3_PHYFLG_IS_FET)) {
  3380. tg3_phy_auxctl_write(tp,
  3381. MII_TG3_AUXCTL_SHDWSEL_PWRCTL,
  3382. MII_TG3_AUXCTL_PCTL_WOL_EN |
  3383. MII_TG3_AUXCTL_PCTL_100TX_LPWR |
  3384. MII_TG3_AUXCTL_PCTL_CL_AB_TXDAC);
  3385. udelay(40);
  3386. }
  3387. if (tp->phy_flags & TG3_PHYFLG_MII_SERDES)
  3388. mac_mode = MAC_MODE_PORT_MODE_GMII;
  3389. else if (tp->phy_flags &
  3390. TG3_PHYFLG_KEEP_LINK_ON_PWRDN) {
  3391. if (tp->link_config.active_speed == SPEED_1000)
  3392. mac_mode = MAC_MODE_PORT_MODE_GMII;
  3393. else
  3394. mac_mode = MAC_MODE_PORT_MODE_MII;
  3395. } else
  3396. mac_mode = MAC_MODE_PORT_MODE_MII;
  3397. mac_mode |= tp->mac_mode & MAC_MODE_LINK_POLARITY;
  3398. if (tg3_asic_rev(tp) == ASIC_REV_5700) {
  3399. u32 speed = tg3_flag(tp, WOL_SPEED_100MB) ?
  3400. SPEED_100 : SPEED_10;
  3401. if (tg3_5700_link_polarity(tp, speed))
  3402. mac_mode |= MAC_MODE_LINK_POLARITY;
  3403. else
  3404. mac_mode &= ~MAC_MODE_LINK_POLARITY;
  3405. }
  3406. } else {
  3407. mac_mode = MAC_MODE_PORT_MODE_TBI;
  3408. }
  3409. if (!tg3_flag(tp, 5750_PLUS))
  3410. tw32(MAC_LED_CTRL, tp->led_ctrl);
  3411. mac_mode |= MAC_MODE_MAGIC_PKT_ENABLE;
  3412. if ((tg3_flag(tp, 5705_PLUS) && !tg3_flag(tp, 5780_CLASS)) &&
  3413. (tg3_flag(tp, ENABLE_ASF) || tg3_flag(tp, ENABLE_APE)))
  3414. mac_mode |= MAC_MODE_KEEP_FRAME_IN_WOL;
  3415. if (tg3_flag(tp, ENABLE_APE))
  3416. mac_mode |= MAC_MODE_APE_TX_EN |
  3417. MAC_MODE_APE_RX_EN |
  3418. MAC_MODE_TDE_ENABLE;
  3419. tw32_f(MAC_MODE, mac_mode);
  3420. udelay(100);
  3421. tw32_f(MAC_RX_MODE, RX_MODE_ENABLE);
  3422. udelay(10);
  3423. }
  3424. if (!tg3_flag(tp, WOL_SPEED_100MB) &&
  3425. (tg3_asic_rev(tp) == ASIC_REV_5700 ||
  3426. tg3_asic_rev(tp) == ASIC_REV_5701)) {
  3427. u32 base_val;
  3428. base_val = tp->pci_clock_ctrl;
  3429. base_val |= (CLOCK_CTRL_RXCLK_DISABLE |
  3430. CLOCK_CTRL_TXCLK_DISABLE);
  3431. tw32_wait_f(TG3PCI_CLOCK_CTRL, base_val | CLOCK_CTRL_ALTCLK |
  3432. CLOCK_CTRL_PWRDOWN_PLL133, 40);
  3433. } else if (tg3_flag(tp, 5780_CLASS) ||
  3434. tg3_flag(tp, CPMU_PRESENT) ||
  3435. tg3_asic_rev(tp) == ASIC_REV_5906) {
  3436. /* do nothing */
  3437. } else if (!(tg3_flag(tp, 5750_PLUS) && tg3_flag(tp, ENABLE_ASF))) {
  3438. u32 newbits1, newbits2;
  3439. if (tg3_asic_rev(tp) == ASIC_REV_5700 ||
  3440. tg3_asic_rev(tp) == ASIC_REV_5701) {
  3441. newbits1 = (CLOCK_CTRL_RXCLK_DISABLE |
  3442. CLOCK_CTRL_TXCLK_DISABLE |
  3443. CLOCK_CTRL_ALTCLK);
  3444. newbits2 = newbits1 | CLOCK_CTRL_44MHZ_CORE;
  3445. } else if (tg3_flag(tp, 5705_PLUS)) {
  3446. newbits1 = CLOCK_CTRL_625_CORE;
  3447. newbits2 = newbits1 | CLOCK_CTRL_ALTCLK;
  3448. } else {
  3449. newbits1 = CLOCK_CTRL_ALTCLK;
  3450. newbits2 = newbits1 | CLOCK_CTRL_44MHZ_CORE;
  3451. }
  3452. tw32_wait_f(TG3PCI_CLOCK_CTRL, tp->pci_clock_ctrl | newbits1,
  3453. 40);
  3454. tw32_wait_f(TG3PCI_CLOCK_CTRL, tp->pci_clock_ctrl | newbits2,
  3455. 40);
  3456. if (!tg3_flag(tp, 5705_PLUS)) {
  3457. u32 newbits3;
  3458. if (tg3_asic_rev(tp) == ASIC_REV_5700 ||
  3459. tg3_asic_rev(tp) == ASIC_REV_5701) {
  3460. newbits3 = (CLOCK_CTRL_RXCLK_DISABLE |
  3461. CLOCK_CTRL_TXCLK_DISABLE |
  3462. CLOCK_CTRL_44MHZ_CORE);
  3463. } else {
  3464. newbits3 = CLOCK_CTRL_44MHZ_CORE;
  3465. }
  3466. tw32_wait_f(TG3PCI_CLOCK_CTRL,
  3467. tp->pci_clock_ctrl | newbits3, 40);
  3468. }
  3469. }
  3470. if (!(device_should_wake) && !tg3_flag(tp, ENABLE_ASF))
  3471. tg3_power_down_phy(tp, do_low_power);
  3472. tg3_frob_aux_power(tp, true);
  3473. /* Workaround for unstable PLL clock */
  3474. if ((!tg3_flag(tp, IS_SSB_CORE)) &&
  3475. ((tg3_chip_rev(tp) == CHIPREV_5750_AX) ||
  3476. (tg3_chip_rev(tp) == CHIPREV_5750_BX))) {
  3477. u32 val = tr32(0x7d00);
  3478. val &= ~((1 << 16) | (1 << 4) | (1 << 2) | (1 << 1) | 1);
  3479. tw32(0x7d00, val);
  3480. if (!tg3_flag(tp, ENABLE_ASF)) {
  3481. int err;
  3482. err = tg3_nvram_lock(tp);
  3483. tg3_halt_cpu(tp, RX_CPU_BASE);
  3484. if (!err)
  3485. tg3_nvram_unlock(tp);
  3486. }
  3487. }
  3488. tg3_write_sig_post_reset(tp, RESET_KIND_SHUTDOWN);
  3489. tg3_ape_driver_state_change(tp, RESET_KIND_SHUTDOWN);
  3490. return 0;
  3491. }
  3492. static void tg3_power_down(struct tg3 *tp)
  3493. {
  3494. pci_wake_from_d3(tp->pdev, tg3_flag(tp, WOL_ENABLE));
  3495. pci_set_power_state(tp->pdev, PCI_D3hot);
  3496. }
  3497. static void tg3_aux_stat_to_speed_duplex(struct tg3 *tp, u32 val, u32 *speed, u8 *duplex)
  3498. {
  3499. switch (val & MII_TG3_AUX_STAT_SPDMASK) {
  3500. case MII_TG3_AUX_STAT_10HALF:
  3501. *speed = SPEED_10;
  3502. *duplex = DUPLEX_HALF;
  3503. break;
  3504. case MII_TG3_AUX_STAT_10FULL:
  3505. *speed = SPEED_10;
  3506. *duplex = DUPLEX_FULL;
  3507. break;
  3508. case MII_TG3_AUX_STAT_100HALF:
  3509. *speed = SPEED_100;
  3510. *duplex = DUPLEX_HALF;
  3511. break;
  3512. case MII_TG3_AUX_STAT_100FULL:
  3513. *speed = SPEED_100;
  3514. *duplex = DUPLEX_FULL;
  3515. break;
  3516. case MII_TG3_AUX_STAT_1000HALF:
  3517. *speed = SPEED_1000;
  3518. *duplex = DUPLEX_HALF;
  3519. break;
  3520. case MII_TG3_AUX_STAT_1000FULL:
  3521. *speed = SPEED_1000;
  3522. *duplex = DUPLEX_FULL;
  3523. break;
  3524. default:
  3525. if (tp->phy_flags & TG3_PHYFLG_IS_FET) {
  3526. *speed = (val & MII_TG3_AUX_STAT_100) ? SPEED_100 :
  3527. SPEED_10;
  3528. *duplex = (val & MII_TG3_AUX_STAT_FULL) ? DUPLEX_FULL :
  3529. DUPLEX_HALF;
  3530. break;
  3531. }
  3532. *speed = SPEED_UNKNOWN;
  3533. *duplex = DUPLEX_UNKNOWN;
  3534. break;
  3535. }
  3536. }
  3537. static int tg3_phy_autoneg_cfg(struct tg3 *tp, u32 advertise, u32 flowctrl)
  3538. {
  3539. int err = 0;
  3540. u32 val, new_adv;
  3541. new_adv = ADVERTISE_CSMA;
  3542. new_adv |= ethtool_adv_to_mii_adv_t(advertise) & ADVERTISE_ALL;
  3543. new_adv |= mii_advertise_flowctrl(flowctrl);
  3544. err = tg3_writephy(tp, MII_ADVERTISE, new_adv);
  3545. if (err)
  3546. goto done;
  3547. if (!(tp->phy_flags & TG3_PHYFLG_10_100_ONLY)) {
  3548. new_adv = ethtool_adv_to_mii_ctrl1000_t(advertise);
  3549. if (tg3_chip_rev_id(tp) == CHIPREV_ID_5701_A0 ||
  3550. tg3_chip_rev_id(tp) == CHIPREV_ID_5701_B0)
  3551. new_adv |= CTL1000_AS_MASTER | CTL1000_ENABLE_MASTER;
  3552. err = tg3_writephy(tp, MII_CTRL1000, new_adv);
  3553. if (err)
  3554. goto done;
  3555. }
  3556. if (!(tp->phy_flags & TG3_PHYFLG_EEE_CAP))
  3557. goto done;
  3558. tw32(TG3_CPMU_EEE_MODE,
  3559. tr32(TG3_CPMU_EEE_MODE) & ~TG3_CPMU_EEEMD_LPI_ENABLE);
  3560. err = tg3_phy_toggle_auxctl_smdsp(tp, true);
  3561. if (!err) {
  3562. u32 err2;
  3563. val = 0;
  3564. /* Advertise 100-BaseTX EEE ability */
  3565. if (advertise & ADVERTISED_100baseT_Full)
  3566. val |= MDIO_AN_EEE_ADV_100TX;
  3567. /* Advertise 1000-BaseT EEE ability */
  3568. if (advertise & ADVERTISED_1000baseT_Full)
  3569. val |= MDIO_AN_EEE_ADV_1000T;
  3570. if (!tp->eee.eee_enabled) {
  3571. val = 0;
  3572. tp->eee.advertised = 0;
  3573. } else {
  3574. tp->eee.advertised = advertise &
  3575. (ADVERTISED_100baseT_Full |
  3576. ADVERTISED_1000baseT_Full);
  3577. }
  3578. err = tg3_phy_cl45_write(tp, MDIO_MMD_AN, MDIO_AN_EEE_ADV, val);
  3579. if (err)
  3580. val = 0;
  3581. switch (tg3_asic_rev(tp)) {
  3582. case ASIC_REV_5717:
  3583. case ASIC_REV_57765:
  3584. case ASIC_REV_57766:
  3585. case ASIC_REV_5719:
  3586. /* If we advertised any eee advertisements above... */
  3587. if (val)
  3588. val = MII_TG3_DSP_TAP26_ALNOKO |
  3589. MII_TG3_DSP_TAP26_RMRXSTO |
  3590. MII_TG3_DSP_TAP26_OPCSINPT;
  3591. tg3_phydsp_write(tp, MII_TG3_DSP_TAP26, val);
  3592. /* Fall through */
  3593. case ASIC_REV_5720:
  3594. case ASIC_REV_5762:
  3595. if (!tg3_phydsp_read(tp, MII_TG3_DSP_CH34TP2, &val))
  3596. tg3_phydsp_write(tp, MII_TG3_DSP_CH34TP2, val |
  3597. MII_TG3_DSP_CH34TP2_HIBW01);
  3598. }
  3599. err2 = tg3_phy_toggle_auxctl_smdsp(tp, false);
  3600. if (!err)
  3601. err = err2;
  3602. }
  3603. done:
  3604. return err;
  3605. }
  3606. static void tg3_phy_copper_begin(struct tg3 *tp)
  3607. {
  3608. if (tp->link_config.autoneg == AUTONEG_ENABLE ||
  3609. (tp->phy_flags & TG3_PHYFLG_IS_LOW_POWER)) {
  3610. u32 adv, fc;
  3611. if ((tp->phy_flags & TG3_PHYFLG_IS_LOW_POWER) &&
  3612. !(tp->phy_flags & TG3_PHYFLG_KEEP_LINK_ON_PWRDN)) {
  3613. adv = ADVERTISED_10baseT_Half |
  3614. ADVERTISED_10baseT_Full;
  3615. if (tg3_flag(tp, WOL_SPEED_100MB))
  3616. adv |= ADVERTISED_100baseT_Half |
  3617. ADVERTISED_100baseT_Full;
  3618. if (tp->phy_flags & TG3_PHYFLG_1G_ON_VAUX_OK) {
  3619. if (!(tp->phy_flags &
  3620. TG3_PHYFLG_DISABLE_1G_HD_ADV))
  3621. adv |= ADVERTISED_1000baseT_Half;
  3622. adv |= ADVERTISED_1000baseT_Full;
  3623. }
  3624. fc = FLOW_CTRL_TX | FLOW_CTRL_RX;
  3625. } else {
  3626. adv = tp->link_config.advertising;
  3627. if (tp->phy_flags & TG3_PHYFLG_10_100_ONLY)
  3628. adv &= ~(ADVERTISED_1000baseT_Half |
  3629. ADVERTISED_1000baseT_Full);
  3630. fc = tp->link_config.flowctrl;
  3631. }
  3632. tg3_phy_autoneg_cfg(tp, adv, fc);
  3633. if ((tp->phy_flags & TG3_PHYFLG_IS_LOW_POWER) &&
  3634. (tp->phy_flags & TG3_PHYFLG_KEEP_LINK_ON_PWRDN)) {
  3635. /* Normally during power down we want to autonegotiate
  3636. * the lowest possible speed for WOL. However, to avoid
  3637. * link flap, we leave it untouched.
  3638. */
  3639. return;
  3640. }
  3641. tg3_writephy(tp, MII_BMCR,
  3642. BMCR_ANENABLE | BMCR_ANRESTART);
  3643. } else {
  3644. int i;
  3645. u32 bmcr, orig_bmcr;
  3646. tp->link_config.active_speed = tp->link_config.speed;
  3647. tp->link_config.active_duplex = tp->link_config.duplex;
  3648. if (tg3_asic_rev(tp) == ASIC_REV_5714) {
  3649. /* With autoneg disabled, 5715 only links up when the
  3650. * advertisement register has the configured speed
  3651. * enabled.
  3652. */
  3653. tg3_writephy(tp, MII_ADVERTISE, ADVERTISE_ALL);
  3654. }
  3655. bmcr = 0;
  3656. switch (tp->link_config.speed) {
  3657. default:
  3658. case SPEED_10:
  3659. break;
  3660. case SPEED_100:
  3661. bmcr |= BMCR_SPEED100;
  3662. break;
  3663. case SPEED_1000:
  3664. bmcr |= BMCR_SPEED1000;
  3665. break;
  3666. }
  3667. if (tp->link_config.duplex == DUPLEX_FULL)
  3668. bmcr |= BMCR_FULLDPLX;
  3669. if (!tg3_readphy(tp, MII_BMCR, &orig_bmcr) &&
  3670. (bmcr != orig_bmcr)) {
  3671. tg3_writephy(tp, MII_BMCR, BMCR_LOOPBACK);
  3672. for (i = 0; i < 1500; i++) {
  3673. u32 tmp;
  3674. udelay(10);
  3675. if (tg3_readphy(tp, MII_BMSR, &tmp) ||
  3676. tg3_readphy(tp, MII_BMSR, &tmp))
  3677. continue;
  3678. if (!(tmp & BMSR_LSTATUS)) {
  3679. udelay(40);
  3680. break;
  3681. }
  3682. }
  3683. tg3_writephy(tp, MII_BMCR, bmcr);
  3684. udelay(40);
  3685. }
  3686. }
  3687. }
  3688. static int tg3_phy_pull_config(struct tg3 *tp)
  3689. {
  3690. int err;
  3691. u32 val;
  3692. err = tg3_readphy(tp, MII_BMCR, &val);
  3693. if (err)
  3694. goto done;
  3695. if (!(val & BMCR_ANENABLE)) {
  3696. tp->link_config.autoneg = AUTONEG_DISABLE;
  3697. tp->link_config.advertising = 0;
  3698. tg3_flag_clear(tp, PAUSE_AUTONEG);
  3699. err = -EIO;
  3700. switch (val & (BMCR_SPEED1000 | BMCR_SPEED100)) {
  3701. case 0:
  3702. if (tp->phy_flags & TG3_PHYFLG_ANY_SERDES)
  3703. goto done;
  3704. tp->link_config.speed = SPEED_10;
  3705. break;
  3706. case BMCR_SPEED100:
  3707. if (tp->phy_flags & TG3_PHYFLG_ANY_SERDES)
  3708. goto done;
  3709. tp->link_config.speed = SPEED_100;
  3710. break;
  3711. case BMCR_SPEED1000:
  3712. if (!(tp->phy_flags & TG3_PHYFLG_10_100_ONLY)) {
  3713. tp->link_config.speed = SPEED_1000;
  3714. break;
  3715. }
  3716. /* Fall through */
  3717. default:
  3718. goto done;
  3719. }
  3720. if (val & BMCR_FULLDPLX)
  3721. tp->link_config.duplex = DUPLEX_FULL;
  3722. else
  3723. tp->link_config.duplex = DUPLEX_HALF;
  3724. tp->link_config.flowctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
  3725. err = 0;
  3726. goto done;
  3727. }
  3728. tp->link_config.autoneg = AUTONEG_ENABLE;
  3729. tp->link_config.advertising = ADVERTISED_Autoneg;
  3730. tg3_flag_set(tp, PAUSE_AUTONEG);
  3731. if (!(tp->phy_flags & TG3_PHYFLG_ANY_SERDES)) {
  3732. u32 adv;
  3733. err = tg3_readphy(tp, MII_ADVERTISE, &val);
  3734. if (err)
  3735. goto done;
  3736. adv = mii_adv_to_ethtool_adv_t(val & ADVERTISE_ALL);
  3737. tp->link_config.advertising |= adv | ADVERTISED_TP;
  3738. tp->link_config.flowctrl = tg3_decode_flowctrl_1000T(val);
  3739. } else {
  3740. tp->link_config.advertising |= ADVERTISED_FIBRE;
  3741. }
  3742. if (!(tp->phy_flags & TG3_PHYFLG_10_100_ONLY)) {
  3743. u32 adv;
  3744. if (!(tp->phy_flags & TG3_PHYFLG_ANY_SERDES)) {
  3745. err = tg3_readphy(tp, MII_CTRL1000, &val);
  3746. if (err)
  3747. goto done;
  3748. adv = mii_ctrl1000_to_ethtool_adv_t(val);
  3749. } else {
  3750. err = tg3_readphy(tp, MII_ADVERTISE, &val);
  3751. if (err)
  3752. goto done;
  3753. adv = tg3_decode_flowctrl_1000X(val);
  3754. tp->link_config.flowctrl = adv;
  3755. val &= (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL);
  3756. adv = mii_adv_to_ethtool_adv_x(val);
  3757. }
  3758. tp->link_config.advertising |= adv;
  3759. }
  3760. done:
  3761. return err;
  3762. }
  3763. static int tg3_init_5401phy_dsp(struct tg3 *tp)
  3764. {
  3765. int err;
  3766. /* Turn off tap power management. */
  3767. /* Set Extended packet length bit */
  3768. err = tg3_phy_auxctl_write(tp, MII_TG3_AUXCTL_SHDWSEL_AUXCTL, 0x4c20);
  3769. err |= tg3_phydsp_write(tp, 0x0012, 0x1804);
  3770. err |= tg3_phydsp_write(tp, 0x0013, 0x1204);
  3771. err |= tg3_phydsp_write(tp, 0x8006, 0x0132);
  3772. err |= tg3_phydsp_write(tp, 0x8006, 0x0232);
  3773. err |= tg3_phydsp_write(tp, 0x201f, 0x0a20);
  3774. udelay(40);
  3775. return err;
  3776. }
  3777. static bool tg3_phy_eee_config_ok(struct tg3 *tp)
  3778. {
  3779. struct ethtool_eee eee;
  3780. if (!(tp->phy_flags & TG3_PHYFLG_EEE_CAP))
  3781. return true;
  3782. tg3_eee_pull_config(tp, &eee);
  3783. if (tp->eee.eee_enabled) {
  3784. if (tp->eee.advertised != eee.advertised ||
  3785. tp->eee.tx_lpi_timer != eee.tx_lpi_timer ||
  3786. tp->eee.tx_lpi_enabled != eee.tx_lpi_enabled)
  3787. return false;
  3788. } else {
  3789. /* EEE is disabled but we're advertising */
  3790. if (eee.advertised)
  3791. return false;
  3792. }
  3793. return true;
  3794. }
  3795. static bool tg3_phy_copper_an_config_ok(struct tg3 *tp, u32 *lcladv)
  3796. {
  3797. u32 advmsk, tgtadv, advertising;
  3798. advertising = tp->link_config.advertising;
  3799. tgtadv = ethtool_adv_to_mii_adv_t(advertising) & ADVERTISE_ALL;
  3800. advmsk = ADVERTISE_ALL;
  3801. if (tp->link_config.active_duplex == DUPLEX_FULL) {
  3802. tgtadv |= mii_advertise_flowctrl(tp->link_config.flowctrl);
  3803. advmsk |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3804. }
  3805. if (tg3_readphy(tp, MII_ADVERTISE, lcladv))
  3806. return false;
  3807. if ((*lcladv & advmsk) != tgtadv)
  3808. return false;
  3809. if (!(tp->phy_flags & TG3_PHYFLG_10_100_ONLY)) {
  3810. u32 tg3_ctrl;
  3811. tgtadv = ethtool_adv_to_mii_ctrl1000_t(advertising);
  3812. if (tg3_readphy(tp, MII_CTRL1000, &tg3_ctrl))
  3813. return false;
  3814. if (tgtadv &&
  3815. (tg3_chip_rev_id(tp) == CHIPREV_ID_5701_A0 ||
  3816. tg3_chip_rev_id(tp) == CHIPREV_ID_5701_B0)) {
  3817. tgtadv |= CTL1000_AS_MASTER | CTL1000_ENABLE_MASTER;
  3818. tg3_ctrl &= (ADVERTISE_1000HALF | ADVERTISE_1000FULL |
  3819. CTL1000_AS_MASTER | CTL1000_ENABLE_MASTER);
  3820. } else {
  3821. tg3_ctrl &= (ADVERTISE_1000HALF | ADVERTISE_1000FULL);
  3822. }
  3823. if (tg3_ctrl != tgtadv)
  3824. return false;
  3825. }
  3826. return true;
  3827. }
  3828. static bool tg3_phy_copper_fetch_rmtadv(struct tg3 *tp, u32 *rmtadv)
  3829. {
  3830. u32 lpeth = 0;
  3831. if (!(tp->phy_flags & TG3_PHYFLG_10_100_ONLY)) {
  3832. u32 val;
  3833. if (tg3_readphy(tp, MII_STAT1000, &val))
  3834. return false;
  3835. lpeth = mii_stat1000_to_ethtool_lpa_t(val);
  3836. }
  3837. if (tg3_readphy(tp, MII_LPA, rmtadv))
  3838. return false;
  3839. lpeth |= mii_lpa_to_ethtool_lpa_t(*rmtadv);
  3840. tp->link_config.rmt_adv = lpeth;
  3841. return true;
  3842. }
  3843. static bool tg3_test_and_report_link_chg(struct tg3 *tp, bool curr_link_up)
  3844. {
  3845. if (curr_link_up != tp->link_up) {
  3846. if (curr_link_up) {
  3847. netif_carrier_on(tp->dev);
  3848. } else {
  3849. netif_carrier_off(tp->dev);
  3850. if (tp->phy_flags & TG3_PHYFLG_MII_SERDES)
  3851. tp->phy_flags &= ~TG3_PHYFLG_PARALLEL_DETECT;
  3852. }
  3853. tg3_link_report(tp);
  3854. return true;
  3855. }
  3856. return false;
  3857. }
  3858. static void tg3_clear_mac_status(struct tg3 *tp)
  3859. {
  3860. tw32(MAC_EVENT, 0);
  3861. tw32_f(MAC_STATUS,
  3862. MAC_STATUS_SYNC_CHANGED |
  3863. MAC_STATUS_CFG_CHANGED |
  3864. MAC_STATUS_MI_COMPLETION |
  3865. MAC_STATUS_LNKSTATE_CHANGED);
  3866. udelay(40);
  3867. }
  3868. static void tg3_setup_eee(struct tg3 *tp)
  3869. {
  3870. u32 val;
  3871. val = TG3_CPMU_EEE_LNKIDL_PCIE_NL0 |
  3872. TG3_CPMU_EEE_LNKIDL_UART_IDL;
  3873. if (tg3_chip_rev_id(tp) == CHIPREV_ID_57765_A0)
  3874. val |= TG3_CPMU_EEE_LNKIDL_APE_TX_MT;
  3875. tw32_f(TG3_CPMU_EEE_LNKIDL_CTRL, val);
  3876. tw32_f(TG3_CPMU_EEE_CTRL,
  3877. TG3_CPMU_EEE_CTRL_EXIT_20_1_US);
  3878. val = TG3_CPMU_EEEMD_ERLY_L1_XIT_DET |
  3879. (tp->eee.tx_lpi_enabled ? TG3_CPMU_EEEMD_LPI_IN_TX : 0) |
  3880. TG3_CPMU_EEEMD_LPI_IN_RX |
  3881. TG3_CPMU_EEEMD_EEE_ENABLE;
  3882. if (tg3_asic_rev(tp) != ASIC_REV_5717)
  3883. val |= TG3_CPMU_EEEMD_SND_IDX_DET_EN;
  3884. if (tg3_flag(tp, ENABLE_APE))
  3885. val |= TG3_CPMU_EEEMD_APE_TX_DET_EN;
  3886. tw32_f(TG3_CPMU_EEE_MODE, tp->eee.eee_enabled ? val : 0);
  3887. tw32_f(TG3_CPMU_EEE_DBTMR1,
  3888. TG3_CPMU_DBTMR1_PCIEXIT_2047US |
  3889. (tp->eee.tx_lpi_timer & 0xffff));
  3890. tw32_f(TG3_CPMU_EEE_DBTMR2,
  3891. TG3_CPMU_DBTMR2_APE_TX_2047US |
  3892. TG3_CPMU_DBTMR2_TXIDXEQ_2047US);
  3893. }
  3894. static int tg3_setup_copper_phy(struct tg3 *tp, bool force_reset)
  3895. {
  3896. bool current_link_up;
  3897. u32 bmsr, val;
  3898. u32 lcl_adv, rmt_adv;
  3899. u32 current_speed;
  3900. u8 current_duplex;
  3901. int i, err;
  3902. tg3_clear_mac_status(tp);
  3903. if ((tp->mi_mode & MAC_MI_MODE_AUTO_POLL) != 0) {
  3904. tw32_f(MAC_MI_MODE,
  3905. (tp->mi_mode & ~MAC_MI_MODE_AUTO_POLL));
  3906. udelay(80);
  3907. }
  3908. tg3_phy_auxctl_write(tp, MII_TG3_AUXCTL_SHDWSEL_PWRCTL, 0);
  3909. /* Some third-party PHYs need to be reset on link going
  3910. * down.
  3911. */
  3912. if ((tg3_asic_rev(tp) == ASIC_REV_5703 ||
  3913. tg3_asic_rev(tp) == ASIC_REV_5704 ||
  3914. tg3_asic_rev(tp) == ASIC_REV_5705) &&
  3915. tp->link_up) {
  3916. tg3_readphy(tp, MII_BMSR, &bmsr);
  3917. if (!tg3_readphy(tp, MII_BMSR, &bmsr) &&
  3918. !(bmsr & BMSR_LSTATUS))
  3919. force_reset = true;
  3920. }
  3921. if (force_reset)
  3922. tg3_phy_reset(tp);
  3923. if ((tp->phy_id & TG3_PHY_ID_MASK) == TG3_PHY_ID_BCM5401) {
  3924. tg3_readphy(tp, MII_BMSR, &bmsr);
  3925. if (tg3_readphy(tp, MII_BMSR, &bmsr) ||
  3926. !tg3_flag(tp, INIT_COMPLETE))
  3927. bmsr = 0;
  3928. if (!(bmsr & BMSR_LSTATUS)) {
  3929. err = tg3_init_5401phy_dsp(tp);
  3930. if (err)
  3931. return err;
  3932. tg3_readphy(tp, MII_BMSR, &bmsr);
  3933. for (i = 0; i < 1000; i++) {
  3934. udelay(10);
  3935. if (!tg3_readphy(tp, MII_BMSR, &bmsr) &&
  3936. (bmsr & BMSR_LSTATUS)) {
  3937. udelay(40);
  3938. break;
  3939. }
  3940. }
  3941. if ((tp->phy_id & TG3_PHY_ID_REV_MASK) ==
  3942. TG3_PHY_REV_BCM5401_B0 &&
  3943. !(bmsr & BMSR_LSTATUS) &&
  3944. tp->link_config.active_speed == SPEED_1000) {
  3945. err = tg3_phy_reset(tp);
  3946. if (!err)
  3947. err = tg3_init_5401phy_dsp(tp);
  3948. if (err)
  3949. return err;
  3950. }
  3951. }
  3952. } else if (tg3_chip_rev_id(tp) == CHIPREV_ID_5701_A0 ||
  3953. tg3_chip_rev_id(tp) == CHIPREV_ID_5701_B0) {
  3954. /* 5701 {A0,B0} CRC bug workaround */
  3955. tg3_writephy(tp, 0x15, 0x0a75);
  3956. tg3_writephy(tp, MII_TG3_MISC_SHDW, 0x8c68);
  3957. tg3_writephy(tp, MII_TG3_MISC_SHDW, 0x8d68);
  3958. tg3_writephy(tp, MII_TG3_MISC_SHDW, 0x8c68);
  3959. }
  3960. /* Clear pending interrupts... */
  3961. tg3_readphy(tp, MII_TG3_ISTAT, &val);
  3962. tg3_readphy(tp, MII_TG3_ISTAT, &val);
  3963. if (tp->phy_flags & TG3_PHYFLG_USE_MI_INTERRUPT)
  3964. tg3_writephy(tp, MII_TG3_IMASK, ~MII_TG3_INT_LINKCHG);
  3965. else if (!(tp->phy_flags & TG3_PHYFLG_IS_FET))
  3966. tg3_writephy(tp, MII_TG3_IMASK, ~0);
  3967. if (tg3_asic_rev(tp) == ASIC_REV_5700 ||
  3968. tg3_asic_rev(tp) == ASIC_REV_5701) {
  3969. if (tp->led_ctrl == LED_CTRL_MODE_PHY_1)
  3970. tg3_writephy(tp, MII_TG3_EXT_CTRL,
  3971. MII_TG3_EXT_CTRL_LNK3_LED_MODE);
  3972. else
  3973. tg3_writephy(tp, MII_TG3_EXT_CTRL, 0);
  3974. }
  3975. current_link_up = false;
  3976. current_speed = SPEED_UNKNOWN;
  3977. current_duplex = DUPLEX_UNKNOWN;
  3978. tp->phy_flags &= ~TG3_PHYFLG_MDIX_STATE;
  3979. tp->link_config.rmt_adv = 0;
  3980. if (tp->phy_flags & TG3_PHYFLG_CAPACITIVE_COUPLING) {
  3981. err = tg3_phy_auxctl_read(tp,
  3982. MII_TG3_AUXCTL_SHDWSEL_MISCTEST,
  3983. &val);
  3984. if (!err && !(val & (1 << 10))) {
  3985. tg3_phy_auxctl_write(tp,
  3986. MII_TG3_AUXCTL_SHDWSEL_MISCTEST,
  3987. val | (1 << 10));
  3988. goto relink;
  3989. }
  3990. }
  3991. bmsr = 0;
  3992. for (i = 0; i < 100; i++) {
  3993. tg3_readphy(tp, MII_BMSR, &bmsr);
  3994. if (!tg3_readphy(tp, MII_BMSR, &bmsr) &&
  3995. (bmsr & BMSR_LSTATUS))
  3996. break;
  3997. udelay(40);
  3998. }
  3999. if (bmsr & BMSR_LSTATUS) {
  4000. u32 aux_stat, bmcr;
  4001. tg3_readphy(tp, MII_TG3_AUX_STAT, &aux_stat);
  4002. for (i = 0; i < 2000; i++) {
  4003. udelay(10);
  4004. if (!tg3_readphy(tp, MII_TG3_AUX_STAT, &aux_stat) &&
  4005. aux_stat)
  4006. break;
  4007. }
  4008. tg3_aux_stat_to_speed_duplex(tp, aux_stat,
  4009. &current_speed,
  4010. &current_duplex);
  4011. bmcr = 0;
  4012. for (i = 0; i < 200; i++) {
  4013. tg3_readphy(tp, MII_BMCR, &bmcr);
  4014. if (tg3_readphy(tp, MII_BMCR, &bmcr))
  4015. continue;
  4016. if (bmcr && bmcr != 0x7fff)
  4017. break;
  4018. udelay(10);
  4019. }
  4020. lcl_adv = 0;
  4021. rmt_adv = 0;
  4022. tp->link_config.active_speed = current_speed;
  4023. tp->link_config.active_duplex = current_duplex;
  4024. if (tp->link_config.autoneg == AUTONEG_ENABLE) {
  4025. bool eee_config_ok = tg3_phy_eee_config_ok(tp);
  4026. if ((bmcr & BMCR_ANENABLE) &&
  4027. eee_config_ok &&
  4028. tg3_phy_copper_an_config_ok(tp, &lcl_adv) &&
  4029. tg3_phy_copper_fetch_rmtadv(tp, &rmt_adv))
  4030. current_link_up = true;
  4031. /* EEE settings changes take effect only after a phy
  4032. * reset. If we have skipped a reset due to Link Flap
  4033. * Avoidance being enabled, do it now.
  4034. */
  4035. if (!eee_config_ok &&
  4036. (tp->phy_flags & TG3_PHYFLG_KEEP_LINK_ON_PWRDN) &&
  4037. !force_reset) {
  4038. tg3_setup_eee(tp);
  4039. tg3_phy_reset(tp);
  4040. }
  4041. } else {
  4042. if (!(bmcr & BMCR_ANENABLE) &&
  4043. tp->link_config.speed == current_speed &&
  4044. tp->link_config.duplex == current_duplex) {
  4045. current_link_up = true;
  4046. }
  4047. }
  4048. if (current_link_up &&
  4049. tp->link_config.active_duplex == DUPLEX_FULL) {
  4050. u32 reg, bit;
  4051. if (tp->phy_flags & TG3_PHYFLG_IS_FET) {
  4052. reg = MII_TG3_FET_GEN_STAT;
  4053. bit = MII_TG3_FET_GEN_STAT_MDIXSTAT;
  4054. } else {
  4055. reg = MII_TG3_EXT_STAT;
  4056. bit = MII_TG3_EXT_STAT_MDIX;
  4057. }
  4058. if (!tg3_readphy(tp, reg, &val) && (val & bit))
  4059. tp->phy_flags |= TG3_PHYFLG_MDIX_STATE;
  4060. tg3_setup_flow_control(tp, lcl_adv, rmt_adv);
  4061. }
  4062. }
  4063. relink:
  4064. if (!current_link_up || (tp->phy_flags & TG3_PHYFLG_IS_LOW_POWER)) {
  4065. tg3_phy_copper_begin(tp);
  4066. if (tg3_flag(tp, ROBOSWITCH)) {
  4067. current_link_up = true;
  4068. /* FIXME: when BCM5325 switch is used use 100 MBit/s */
  4069. current_speed = SPEED_1000;
  4070. current_duplex = DUPLEX_FULL;
  4071. tp->link_config.active_speed = current_speed;
  4072. tp->link_config.active_duplex = current_duplex;
  4073. }
  4074. tg3_readphy(tp, MII_BMSR, &bmsr);
  4075. if ((!tg3_readphy(tp, MII_BMSR, &bmsr) && (bmsr & BMSR_LSTATUS)) ||
  4076. (tp->mac_mode & MAC_MODE_PORT_INT_LPBACK))
  4077. current_link_up = true;
  4078. }
  4079. tp->mac_mode &= ~MAC_MODE_PORT_MODE_MASK;
  4080. if (current_link_up) {
  4081. if (tp->link_config.active_speed == SPEED_100 ||
  4082. tp->link_config.active_speed == SPEED_10)
  4083. tp->mac_mode |= MAC_MODE_PORT_MODE_MII;
  4084. else
  4085. tp->mac_mode |= MAC_MODE_PORT_MODE_GMII;
  4086. } else if (tp->phy_flags & TG3_PHYFLG_IS_FET)
  4087. tp->mac_mode |= MAC_MODE_PORT_MODE_MII;
  4088. else
  4089. tp->mac_mode |= MAC_MODE_PORT_MODE_GMII;
  4090. /* In order for the 5750 core in BCM4785 chip to work properly
  4091. * in RGMII mode, the Led Control Register must be set up.
  4092. */
  4093. if (tg3_flag(tp, RGMII_MODE)) {
  4094. u32 led_ctrl = tr32(MAC_LED_CTRL);
  4095. led_ctrl &= ~(LED_CTRL_1000MBPS_ON | LED_CTRL_100MBPS_ON);
  4096. if (tp->link_config.active_speed == SPEED_10)
  4097. led_ctrl |= LED_CTRL_LNKLED_OVERRIDE;
  4098. else if (tp->link_config.active_speed == SPEED_100)
  4099. led_ctrl |= (LED_CTRL_LNKLED_OVERRIDE |
  4100. LED_CTRL_100MBPS_ON);
  4101. else if (tp->link_config.active_speed == SPEED_1000)
  4102. led_ctrl |= (LED_CTRL_LNKLED_OVERRIDE |
  4103. LED_CTRL_1000MBPS_ON);
  4104. tw32(MAC_LED_CTRL, led_ctrl);
  4105. udelay(40);
  4106. }
  4107. tp->mac_mode &= ~MAC_MODE_HALF_DUPLEX;
  4108. if (tp->link_config.active_duplex == DUPLEX_HALF)
  4109. tp->mac_mode |= MAC_MODE_HALF_DUPLEX;
  4110. if (tg3_asic_rev(tp) == ASIC_REV_5700) {
  4111. if (current_link_up &&
  4112. tg3_5700_link_polarity(tp, tp->link_config.active_speed))
  4113. tp->mac_mode |= MAC_MODE_LINK_POLARITY;
  4114. else
  4115. tp->mac_mode &= ~MAC_MODE_LINK_POLARITY;
  4116. }
  4117. /* ??? Without this setting Netgear GA302T PHY does not
  4118. * ??? send/receive packets...
  4119. */
  4120. if ((tp->phy_id & TG3_PHY_ID_MASK) == TG3_PHY_ID_BCM5411 &&
  4121. tg3_chip_rev_id(tp) == CHIPREV_ID_5700_ALTIMA) {
  4122. tp->mi_mode |= MAC_MI_MODE_AUTO_POLL;
  4123. tw32_f(MAC_MI_MODE, tp->mi_mode);
  4124. udelay(80);
  4125. }
  4126. tw32_f(MAC_MODE, tp->mac_mode);
  4127. udelay(40);
  4128. tg3_phy_eee_adjust(tp, current_link_up);
  4129. if (tg3_flag(tp, USE_LINKCHG_REG)) {
  4130. /* Polled via timer. */
  4131. tw32_f(MAC_EVENT, 0);
  4132. } else {
  4133. tw32_f(MAC_EVENT, MAC_EVENT_LNKSTATE_CHANGED);
  4134. }
  4135. udelay(40);
  4136. if (tg3_asic_rev(tp) == ASIC_REV_5700 &&
  4137. current_link_up &&
  4138. tp->link_config.active_speed == SPEED_1000 &&
  4139. (tg3_flag(tp, PCIX_MODE) || tg3_flag(tp, PCI_HIGH_SPEED))) {
  4140. udelay(120);
  4141. tw32_f(MAC_STATUS,
  4142. (MAC_STATUS_SYNC_CHANGED |
  4143. MAC_STATUS_CFG_CHANGED));
  4144. udelay(40);
  4145. tg3_write_mem(tp,
  4146. NIC_SRAM_FIRMWARE_MBOX,
  4147. NIC_SRAM_FIRMWARE_MBOX_MAGIC2);
  4148. }
  4149. /* Prevent send BD corruption. */
  4150. if (tg3_flag(tp, CLKREQ_BUG)) {
  4151. if (tp->link_config.active_speed == SPEED_100 ||
  4152. tp->link_config.active_speed == SPEED_10)
  4153. pcie_capability_clear_word(tp->pdev, PCI_EXP_LNKCTL,
  4154. PCI_EXP_LNKCTL_CLKREQ_EN);
  4155. else
  4156. pcie_capability_set_word(tp->pdev, PCI_EXP_LNKCTL,
  4157. PCI_EXP_LNKCTL_CLKREQ_EN);
  4158. }
  4159. tg3_test_and_report_link_chg(tp, current_link_up);
  4160. return 0;
  4161. }
  4162. struct tg3_fiber_aneginfo {
  4163. int state;
  4164. #define ANEG_STATE_UNKNOWN 0
  4165. #define ANEG_STATE_AN_ENABLE 1
  4166. #define ANEG_STATE_RESTART_INIT 2
  4167. #define ANEG_STATE_RESTART 3
  4168. #define ANEG_STATE_DISABLE_LINK_OK 4
  4169. #define ANEG_STATE_ABILITY_DETECT_INIT 5
  4170. #define ANEG_STATE_ABILITY_DETECT 6
  4171. #define ANEG_STATE_ACK_DETECT_INIT 7
  4172. #define ANEG_STATE_ACK_DETECT 8
  4173. #define ANEG_STATE_COMPLETE_ACK_INIT 9
  4174. #define ANEG_STATE_COMPLETE_ACK 10
  4175. #define ANEG_STATE_IDLE_DETECT_INIT 11
  4176. #define ANEG_STATE_IDLE_DETECT 12
  4177. #define ANEG_STATE_LINK_OK 13
  4178. #define ANEG_STATE_NEXT_PAGE_WAIT_INIT 14
  4179. #define ANEG_STATE_NEXT_PAGE_WAIT 15
  4180. u32 flags;
  4181. #define MR_AN_ENABLE 0x00000001
  4182. #define MR_RESTART_AN 0x00000002
  4183. #define MR_AN_COMPLETE 0x00000004
  4184. #define MR_PAGE_RX 0x00000008
  4185. #define MR_NP_LOADED 0x00000010
  4186. #define MR_TOGGLE_TX 0x00000020
  4187. #define MR_LP_ADV_FULL_DUPLEX 0x00000040
  4188. #define MR_LP_ADV_HALF_DUPLEX 0x00000080
  4189. #define MR_LP_ADV_SYM_PAUSE 0x00000100
  4190. #define MR_LP_ADV_ASYM_PAUSE 0x00000200
  4191. #define MR_LP_ADV_REMOTE_FAULT1 0x00000400
  4192. #define MR_LP_ADV_REMOTE_FAULT2 0x00000800
  4193. #define MR_LP_ADV_NEXT_PAGE 0x00001000
  4194. #define MR_TOGGLE_RX 0x00002000
  4195. #define MR_NP_RX 0x00004000
  4196. #define MR_LINK_OK 0x80000000
  4197. unsigned long link_time, cur_time;
  4198. u32 ability_match_cfg;
  4199. int ability_match_count;
  4200. char ability_match, idle_match, ack_match;
  4201. u32 txconfig, rxconfig;
  4202. #define ANEG_CFG_NP 0x00000080
  4203. #define ANEG_CFG_ACK 0x00000040
  4204. #define ANEG_CFG_RF2 0x00000020
  4205. #define ANEG_CFG_RF1 0x00000010
  4206. #define ANEG_CFG_PS2 0x00000001
  4207. #define ANEG_CFG_PS1 0x00008000
  4208. #define ANEG_CFG_HD 0x00004000
  4209. #define ANEG_CFG_FD 0x00002000
  4210. #define ANEG_CFG_INVAL 0x00001f06
  4211. };
  4212. #define ANEG_OK 0
  4213. #define ANEG_DONE 1
  4214. #define ANEG_TIMER_ENAB 2
  4215. #define ANEG_FAILED -1
  4216. #define ANEG_STATE_SETTLE_TIME 10000
  4217. static int tg3_fiber_aneg_smachine(struct tg3 *tp,
  4218. struct tg3_fiber_aneginfo *ap)
  4219. {
  4220. u16 flowctrl;
  4221. unsigned long delta;
  4222. u32 rx_cfg_reg;
  4223. int ret;
  4224. if (ap->state == ANEG_STATE_UNKNOWN) {
  4225. ap->rxconfig = 0;
  4226. ap->link_time = 0;
  4227. ap->cur_time = 0;
  4228. ap->ability_match_cfg = 0;
  4229. ap->ability_match_count = 0;
  4230. ap->ability_match = 0;
  4231. ap->idle_match = 0;
  4232. ap->ack_match = 0;
  4233. }
  4234. ap->cur_time++;
  4235. if (tr32(MAC_STATUS) & MAC_STATUS_RCVD_CFG) {
  4236. rx_cfg_reg = tr32(MAC_RX_AUTO_NEG);
  4237. if (rx_cfg_reg != ap->ability_match_cfg) {
  4238. ap->ability_match_cfg = rx_cfg_reg;
  4239. ap->ability_match = 0;
  4240. ap->ability_match_count = 0;
  4241. } else {
  4242. if (++ap->ability_match_count > 1) {
  4243. ap->ability_match = 1;
  4244. ap->ability_match_cfg = rx_cfg_reg;
  4245. }
  4246. }
  4247. if (rx_cfg_reg & ANEG_CFG_ACK)
  4248. ap->ack_match = 1;
  4249. else
  4250. ap->ack_match = 0;
  4251. ap->idle_match = 0;
  4252. } else {
  4253. ap->idle_match = 1;
  4254. ap->ability_match_cfg = 0;
  4255. ap->ability_match_count = 0;
  4256. ap->ability_match = 0;
  4257. ap->ack_match = 0;
  4258. rx_cfg_reg = 0;
  4259. }
  4260. ap->rxconfig = rx_cfg_reg;
  4261. ret = ANEG_OK;
  4262. switch (ap->state) {
  4263. case ANEG_STATE_UNKNOWN:
  4264. if (ap->flags & (MR_AN_ENABLE | MR_RESTART_AN))
  4265. ap->state = ANEG_STATE_AN_ENABLE;
  4266. /* fall through */
  4267. case ANEG_STATE_AN_ENABLE:
  4268. ap->flags &= ~(MR_AN_COMPLETE | MR_PAGE_RX);
  4269. if (ap->flags & MR_AN_ENABLE) {
  4270. ap->link_time = 0;
  4271. ap->cur_time = 0;
  4272. ap->ability_match_cfg = 0;
  4273. ap->ability_match_count = 0;
  4274. ap->ability_match = 0;
  4275. ap->idle_match = 0;
  4276. ap->ack_match = 0;
  4277. ap->state = ANEG_STATE_RESTART_INIT;
  4278. } else {
  4279. ap->state = ANEG_STATE_DISABLE_LINK_OK;
  4280. }
  4281. break;
  4282. case ANEG_STATE_RESTART_INIT:
  4283. ap->link_time = ap->cur_time;
  4284. ap->flags &= ~(MR_NP_LOADED);
  4285. ap->txconfig = 0;
  4286. tw32(MAC_TX_AUTO_NEG, 0);
  4287. tp->mac_mode |= MAC_MODE_SEND_CONFIGS;
  4288. tw32_f(MAC_MODE, tp->mac_mode);
  4289. udelay(40);
  4290. ret = ANEG_TIMER_ENAB;
  4291. ap->state = ANEG_STATE_RESTART;
  4292. /* fall through */
  4293. case ANEG_STATE_RESTART:
  4294. delta = ap->cur_time - ap->link_time;
  4295. if (delta > ANEG_STATE_SETTLE_TIME)
  4296. ap->state = ANEG_STATE_ABILITY_DETECT_INIT;
  4297. else
  4298. ret = ANEG_TIMER_ENAB;
  4299. break;
  4300. case ANEG_STATE_DISABLE_LINK_OK:
  4301. ret = ANEG_DONE;
  4302. break;
  4303. case ANEG_STATE_ABILITY_DETECT_INIT:
  4304. ap->flags &= ~(MR_TOGGLE_TX);
  4305. ap->txconfig = ANEG_CFG_FD;
  4306. flowctrl = tg3_advert_flowctrl_1000X(tp->link_config.flowctrl);
  4307. if (flowctrl & ADVERTISE_1000XPAUSE)
  4308. ap->txconfig |= ANEG_CFG_PS1;
  4309. if (flowctrl & ADVERTISE_1000XPSE_ASYM)
  4310. ap->txconfig |= ANEG_CFG_PS2;
  4311. tw32(MAC_TX_AUTO_NEG, ap->txconfig);
  4312. tp->mac_mode |= MAC_MODE_SEND_CONFIGS;
  4313. tw32_f(MAC_MODE, tp->mac_mode);
  4314. udelay(40);
  4315. ap->state = ANEG_STATE_ABILITY_DETECT;
  4316. break;
  4317. case ANEG_STATE_ABILITY_DETECT:
  4318. if (ap->ability_match != 0 && ap->rxconfig != 0)
  4319. ap->state = ANEG_STATE_ACK_DETECT_INIT;
  4320. break;
  4321. case ANEG_STATE_ACK_DETECT_INIT:
  4322. ap->txconfig |= ANEG_CFG_ACK;
  4323. tw32(MAC_TX_AUTO_NEG, ap->txconfig);
  4324. tp->mac_mode |= MAC_MODE_SEND_CONFIGS;
  4325. tw32_f(MAC_MODE, tp->mac_mode);
  4326. udelay(40);
  4327. ap->state = ANEG_STATE_ACK_DETECT;
  4328. /* fall through */
  4329. case ANEG_STATE_ACK_DETECT:
  4330. if (ap->ack_match != 0) {
  4331. if ((ap->rxconfig & ~ANEG_CFG_ACK) ==
  4332. (ap->ability_match_cfg & ~ANEG_CFG_ACK)) {
  4333. ap->state = ANEG_STATE_COMPLETE_ACK_INIT;
  4334. } else {
  4335. ap->state = ANEG_STATE_AN_ENABLE;
  4336. }
  4337. } else if (ap->ability_match != 0 &&
  4338. ap->rxconfig == 0) {
  4339. ap->state = ANEG_STATE_AN_ENABLE;
  4340. }
  4341. break;
  4342. case ANEG_STATE_COMPLETE_ACK_INIT:
  4343. if (ap->rxconfig & ANEG_CFG_INVAL) {
  4344. ret = ANEG_FAILED;
  4345. break;
  4346. }
  4347. ap->flags &= ~(MR_LP_ADV_FULL_DUPLEX |
  4348. MR_LP_ADV_HALF_DUPLEX |
  4349. MR_LP_ADV_SYM_PAUSE |
  4350. MR_LP_ADV_ASYM_PAUSE |
  4351. MR_LP_ADV_REMOTE_FAULT1 |
  4352. MR_LP_ADV_REMOTE_FAULT2 |
  4353. MR_LP_ADV_NEXT_PAGE |
  4354. MR_TOGGLE_RX |
  4355. MR_NP_RX);
  4356. if (ap->rxconfig & ANEG_CFG_FD)
  4357. ap->flags |= MR_LP_ADV_FULL_DUPLEX;
  4358. if (ap->rxconfig & ANEG_CFG_HD)
  4359. ap->flags |= MR_LP_ADV_HALF_DUPLEX;
  4360. if (ap->rxconfig & ANEG_CFG_PS1)
  4361. ap->flags |= MR_LP_ADV_SYM_PAUSE;
  4362. if (ap->rxconfig & ANEG_CFG_PS2)
  4363. ap->flags |= MR_LP_ADV_ASYM_PAUSE;
  4364. if (ap->rxconfig & ANEG_CFG_RF1)
  4365. ap->flags |= MR_LP_ADV_REMOTE_FAULT1;
  4366. if (ap->rxconfig & ANEG_CFG_RF2)
  4367. ap->flags |= MR_LP_ADV_REMOTE_FAULT2;
  4368. if (ap->rxconfig & ANEG_CFG_NP)
  4369. ap->flags |= MR_LP_ADV_NEXT_PAGE;
  4370. ap->link_time = ap->cur_time;
  4371. ap->flags ^= (MR_TOGGLE_TX);
  4372. if (ap->rxconfig & 0x0008)
  4373. ap->flags |= MR_TOGGLE_RX;
  4374. if (ap->rxconfig & ANEG_CFG_NP)
  4375. ap->flags |= MR_NP_RX;
  4376. ap->flags |= MR_PAGE_RX;
  4377. ap->state = ANEG_STATE_COMPLETE_ACK;
  4378. ret = ANEG_TIMER_ENAB;
  4379. break;
  4380. case ANEG_STATE_COMPLETE_ACK:
  4381. if (ap->ability_match != 0 &&
  4382. ap->rxconfig == 0) {
  4383. ap->state = ANEG_STATE_AN_ENABLE;
  4384. break;
  4385. }
  4386. delta = ap->cur_time - ap->link_time;
  4387. if (delta > ANEG_STATE_SETTLE_TIME) {
  4388. if (!(ap->flags & (MR_LP_ADV_NEXT_PAGE))) {
  4389. ap->state = ANEG_STATE_IDLE_DETECT_INIT;
  4390. } else {
  4391. if ((ap->txconfig & ANEG_CFG_NP) == 0 &&
  4392. !(ap->flags & MR_NP_RX)) {
  4393. ap->state = ANEG_STATE_IDLE_DETECT_INIT;
  4394. } else {
  4395. ret = ANEG_FAILED;
  4396. }
  4397. }
  4398. }
  4399. break;
  4400. case ANEG_STATE_IDLE_DETECT_INIT:
  4401. ap->link_time = ap->cur_time;
  4402. tp->mac_mode &= ~MAC_MODE_SEND_CONFIGS;
  4403. tw32_f(MAC_MODE, tp->mac_mode);
  4404. udelay(40);
  4405. ap->state = ANEG_STATE_IDLE_DETECT;
  4406. ret = ANEG_TIMER_ENAB;
  4407. break;
  4408. case ANEG_STATE_IDLE_DETECT:
  4409. if (ap->ability_match != 0 &&
  4410. ap->rxconfig == 0) {
  4411. ap->state = ANEG_STATE_AN_ENABLE;
  4412. break;
  4413. }
  4414. delta = ap->cur_time - ap->link_time;
  4415. if (delta > ANEG_STATE_SETTLE_TIME) {
  4416. /* XXX another gem from the Broadcom driver :( */
  4417. ap->state = ANEG_STATE_LINK_OK;
  4418. }
  4419. break;
  4420. case ANEG_STATE_LINK_OK:
  4421. ap->flags |= (MR_AN_COMPLETE | MR_LINK_OK);
  4422. ret = ANEG_DONE;
  4423. break;
  4424. case ANEG_STATE_NEXT_PAGE_WAIT_INIT:
  4425. /* ??? unimplemented */
  4426. break;
  4427. case ANEG_STATE_NEXT_PAGE_WAIT:
  4428. /* ??? unimplemented */
  4429. break;
  4430. default:
  4431. ret = ANEG_FAILED;
  4432. break;
  4433. }
  4434. return ret;
  4435. }
  4436. static int fiber_autoneg(struct tg3 *tp, u32 *txflags, u32 *rxflags)
  4437. {
  4438. int res = 0;
  4439. struct tg3_fiber_aneginfo aninfo;
  4440. int status = ANEG_FAILED;
  4441. unsigned int tick;
  4442. u32 tmp;
  4443. tw32_f(MAC_TX_AUTO_NEG, 0);
  4444. tmp = tp->mac_mode & ~MAC_MODE_PORT_MODE_MASK;
  4445. tw32_f(MAC_MODE, tmp | MAC_MODE_PORT_MODE_GMII);
  4446. udelay(40);
  4447. tw32_f(MAC_MODE, tp->mac_mode | MAC_MODE_SEND_CONFIGS);
  4448. udelay(40);
  4449. memset(&aninfo, 0, sizeof(aninfo));
  4450. aninfo.flags |= MR_AN_ENABLE;
  4451. aninfo.state = ANEG_STATE_UNKNOWN;
  4452. aninfo.cur_time = 0;
  4453. tick = 0;
  4454. while (++tick < 195000) {
  4455. status = tg3_fiber_aneg_smachine(tp, &aninfo);
  4456. if (status == ANEG_DONE || status == ANEG_FAILED)
  4457. break;
  4458. udelay(1);
  4459. }
  4460. tp->mac_mode &= ~MAC_MODE_SEND_CONFIGS;
  4461. tw32_f(MAC_MODE, tp->mac_mode);
  4462. udelay(40);
  4463. *txflags = aninfo.txconfig;
  4464. *rxflags = aninfo.flags;
  4465. if (status == ANEG_DONE &&
  4466. (aninfo.flags & (MR_AN_COMPLETE | MR_LINK_OK |
  4467. MR_LP_ADV_FULL_DUPLEX)))
  4468. res = 1;
  4469. return res;
  4470. }
  4471. static void tg3_init_bcm8002(struct tg3 *tp)
  4472. {
  4473. u32 mac_status = tr32(MAC_STATUS);
  4474. int i;
  4475. /* Reset when initting first time or we have a link. */
  4476. if (tg3_flag(tp, INIT_COMPLETE) &&
  4477. !(mac_status & MAC_STATUS_PCS_SYNCED))
  4478. return;
  4479. /* Set PLL lock range. */
  4480. tg3_writephy(tp, 0x16, 0x8007);
  4481. /* SW reset */
  4482. tg3_writephy(tp, MII_BMCR, BMCR_RESET);
  4483. /* Wait for reset to complete. */
  4484. /* XXX schedule_timeout() ... */
  4485. for (i = 0; i < 500; i++)
  4486. udelay(10);
  4487. /* Config mode; select PMA/Ch 1 regs. */
  4488. tg3_writephy(tp, 0x10, 0x8411);
  4489. /* Enable auto-lock and comdet, select txclk for tx. */
  4490. tg3_writephy(tp, 0x11, 0x0a10);
  4491. tg3_writephy(tp, 0x18, 0x00a0);
  4492. tg3_writephy(tp, 0x16, 0x41ff);
  4493. /* Assert and deassert POR. */
  4494. tg3_writephy(tp, 0x13, 0x0400);
  4495. udelay(40);
  4496. tg3_writephy(tp, 0x13, 0x0000);
  4497. tg3_writephy(tp, 0x11, 0x0a50);
  4498. udelay(40);
  4499. tg3_writephy(tp, 0x11, 0x0a10);
  4500. /* Wait for signal to stabilize */
  4501. /* XXX schedule_timeout() ... */
  4502. for (i = 0; i < 15000; i++)
  4503. udelay(10);
  4504. /* Deselect the channel register so we can read the PHYID
  4505. * later.
  4506. */
  4507. tg3_writephy(tp, 0x10, 0x8011);
  4508. }
  4509. static bool tg3_setup_fiber_hw_autoneg(struct tg3 *tp, u32 mac_status)
  4510. {
  4511. u16 flowctrl;
  4512. bool current_link_up;
  4513. u32 sg_dig_ctrl, sg_dig_status;
  4514. u32 serdes_cfg, expected_sg_dig_ctrl;
  4515. int workaround, port_a;
  4516. serdes_cfg = 0;
  4517. expected_sg_dig_ctrl = 0;
  4518. workaround = 0;
  4519. port_a = 1;
  4520. current_link_up = false;
  4521. if (tg3_chip_rev_id(tp) != CHIPREV_ID_5704_A0 &&
  4522. tg3_chip_rev_id(tp) != CHIPREV_ID_5704_A1) {
  4523. workaround = 1;
  4524. if (tr32(TG3PCI_DUAL_MAC_CTRL) & DUAL_MAC_CTRL_ID)
  4525. port_a = 0;
  4526. /* preserve bits 0-11,13,14 for signal pre-emphasis */
  4527. /* preserve bits 20-23 for voltage regulator */
  4528. serdes_cfg = tr32(MAC_SERDES_CFG) & 0x00f06fff;
  4529. }
  4530. sg_dig_ctrl = tr32(SG_DIG_CTRL);
  4531. if (tp->link_config.autoneg != AUTONEG_ENABLE) {
  4532. if (sg_dig_ctrl & SG_DIG_USING_HW_AUTONEG) {
  4533. if (workaround) {
  4534. u32 val = serdes_cfg;
  4535. if (port_a)
  4536. val |= 0xc010000;
  4537. else
  4538. val |= 0x4010000;
  4539. tw32_f(MAC_SERDES_CFG, val);
  4540. }
  4541. tw32_f(SG_DIG_CTRL, SG_DIG_COMMON_SETUP);
  4542. }
  4543. if (mac_status & MAC_STATUS_PCS_SYNCED) {
  4544. tg3_setup_flow_control(tp, 0, 0);
  4545. current_link_up = true;
  4546. }
  4547. goto out;
  4548. }
  4549. /* Want auto-negotiation. */
  4550. expected_sg_dig_ctrl = SG_DIG_USING_HW_AUTONEG | SG_DIG_COMMON_SETUP;
  4551. flowctrl = tg3_advert_flowctrl_1000X(tp->link_config.flowctrl);
  4552. if (flowctrl & ADVERTISE_1000XPAUSE)
  4553. expected_sg_dig_ctrl |= SG_DIG_PAUSE_CAP;
  4554. if (flowctrl & ADVERTISE_1000XPSE_ASYM)
  4555. expected_sg_dig_ctrl |= SG_DIG_ASYM_PAUSE;
  4556. if (sg_dig_ctrl != expected_sg_dig_ctrl) {
  4557. if ((tp->phy_flags & TG3_PHYFLG_PARALLEL_DETECT) &&
  4558. tp->serdes_counter &&
  4559. ((mac_status & (MAC_STATUS_PCS_SYNCED |
  4560. MAC_STATUS_RCVD_CFG)) ==
  4561. MAC_STATUS_PCS_SYNCED)) {
  4562. tp->serdes_counter--;
  4563. current_link_up = true;
  4564. goto out;
  4565. }
  4566. restart_autoneg:
  4567. if (workaround)
  4568. tw32_f(MAC_SERDES_CFG, serdes_cfg | 0xc011000);
  4569. tw32_f(SG_DIG_CTRL, expected_sg_dig_ctrl | SG_DIG_SOFT_RESET);
  4570. udelay(5);
  4571. tw32_f(SG_DIG_CTRL, expected_sg_dig_ctrl);
  4572. tp->serdes_counter = SERDES_AN_TIMEOUT_5704S;
  4573. tp->phy_flags &= ~TG3_PHYFLG_PARALLEL_DETECT;
  4574. } else if (mac_status & (MAC_STATUS_PCS_SYNCED |
  4575. MAC_STATUS_SIGNAL_DET)) {
  4576. sg_dig_status = tr32(SG_DIG_STATUS);
  4577. mac_status = tr32(MAC_STATUS);
  4578. if ((sg_dig_status & SG_DIG_AUTONEG_COMPLETE) &&
  4579. (mac_status & MAC_STATUS_PCS_SYNCED)) {
  4580. u32 local_adv = 0, remote_adv = 0;
  4581. if (sg_dig_ctrl & SG_DIG_PAUSE_CAP)
  4582. local_adv |= ADVERTISE_1000XPAUSE;
  4583. if (sg_dig_ctrl & SG_DIG_ASYM_PAUSE)
  4584. local_adv |= ADVERTISE_1000XPSE_ASYM;
  4585. if (sg_dig_status & SG_DIG_PARTNER_PAUSE_CAPABLE)
  4586. remote_adv |= LPA_1000XPAUSE;
  4587. if (sg_dig_status & SG_DIG_PARTNER_ASYM_PAUSE)
  4588. remote_adv |= LPA_1000XPAUSE_ASYM;
  4589. tp->link_config.rmt_adv =
  4590. mii_adv_to_ethtool_adv_x(remote_adv);
  4591. tg3_setup_flow_control(tp, local_adv, remote_adv);
  4592. current_link_up = true;
  4593. tp->serdes_counter = 0;
  4594. tp->phy_flags &= ~TG3_PHYFLG_PARALLEL_DETECT;
  4595. } else if (!(sg_dig_status & SG_DIG_AUTONEG_COMPLETE)) {
  4596. if (tp->serdes_counter)
  4597. tp->serdes_counter--;
  4598. else {
  4599. if (workaround) {
  4600. u32 val = serdes_cfg;
  4601. if (port_a)
  4602. val |= 0xc010000;
  4603. else
  4604. val |= 0x4010000;
  4605. tw32_f(MAC_SERDES_CFG, val);
  4606. }
  4607. tw32_f(SG_DIG_CTRL, SG_DIG_COMMON_SETUP);
  4608. udelay(40);
  4609. /* Link parallel detection - link is up */
  4610. /* only if we have PCS_SYNC and not */
  4611. /* receiving config code words */
  4612. mac_status = tr32(MAC_STATUS);
  4613. if ((mac_status & MAC_STATUS_PCS_SYNCED) &&
  4614. !(mac_status & MAC_STATUS_RCVD_CFG)) {
  4615. tg3_setup_flow_control(tp, 0, 0);
  4616. current_link_up = true;
  4617. tp->phy_flags |=
  4618. TG3_PHYFLG_PARALLEL_DETECT;
  4619. tp->serdes_counter =
  4620. SERDES_PARALLEL_DET_TIMEOUT;
  4621. } else
  4622. goto restart_autoneg;
  4623. }
  4624. }
  4625. } else {
  4626. tp->serdes_counter = SERDES_AN_TIMEOUT_5704S;
  4627. tp->phy_flags &= ~TG3_PHYFLG_PARALLEL_DETECT;
  4628. }
  4629. out:
  4630. return current_link_up;
  4631. }
  4632. static bool tg3_setup_fiber_by_hand(struct tg3 *tp, u32 mac_status)
  4633. {
  4634. bool current_link_up = false;
  4635. if (!(mac_status & MAC_STATUS_PCS_SYNCED))
  4636. goto out;
  4637. if (tp->link_config.autoneg == AUTONEG_ENABLE) {
  4638. u32 txflags, rxflags;
  4639. int i;
  4640. if (fiber_autoneg(tp, &txflags, &rxflags)) {
  4641. u32 local_adv = 0, remote_adv = 0;
  4642. if (txflags & ANEG_CFG_PS1)
  4643. local_adv |= ADVERTISE_1000XPAUSE;
  4644. if (txflags & ANEG_CFG_PS2)
  4645. local_adv |= ADVERTISE_1000XPSE_ASYM;
  4646. if (rxflags & MR_LP_ADV_SYM_PAUSE)
  4647. remote_adv |= LPA_1000XPAUSE;
  4648. if (rxflags & MR_LP_ADV_ASYM_PAUSE)
  4649. remote_adv |= LPA_1000XPAUSE_ASYM;
  4650. tp->link_config.rmt_adv =
  4651. mii_adv_to_ethtool_adv_x(remote_adv);
  4652. tg3_setup_flow_control(tp, local_adv, remote_adv);
  4653. current_link_up = true;
  4654. }
  4655. for (i = 0; i < 30; i++) {
  4656. udelay(20);
  4657. tw32_f(MAC_STATUS,
  4658. (MAC_STATUS_SYNC_CHANGED |
  4659. MAC_STATUS_CFG_CHANGED));
  4660. udelay(40);
  4661. if ((tr32(MAC_STATUS) &
  4662. (MAC_STATUS_SYNC_CHANGED |
  4663. MAC_STATUS_CFG_CHANGED)) == 0)
  4664. break;
  4665. }
  4666. mac_status = tr32(MAC_STATUS);
  4667. if (!current_link_up &&
  4668. (mac_status & MAC_STATUS_PCS_SYNCED) &&
  4669. !(mac_status & MAC_STATUS_RCVD_CFG))
  4670. current_link_up = true;
  4671. } else {
  4672. tg3_setup_flow_control(tp, 0, 0);
  4673. /* Forcing 1000FD link up. */
  4674. current_link_up = true;
  4675. tw32_f(MAC_MODE, (tp->mac_mode | MAC_MODE_SEND_CONFIGS));
  4676. udelay(40);
  4677. tw32_f(MAC_MODE, tp->mac_mode);
  4678. udelay(40);
  4679. }
  4680. out:
  4681. return current_link_up;
  4682. }
  4683. static int tg3_setup_fiber_phy(struct tg3 *tp, bool force_reset)
  4684. {
  4685. u32 orig_pause_cfg;
  4686. u32 orig_active_speed;
  4687. u8 orig_active_duplex;
  4688. u32 mac_status;
  4689. bool current_link_up;
  4690. int i;
  4691. orig_pause_cfg = tp->link_config.active_flowctrl;
  4692. orig_active_speed = tp->link_config.active_speed;
  4693. orig_active_duplex = tp->link_config.active_duplex;
  4694. if (!tg3_flag(tp, HW_AUTONEG) &&
  4695. tp->link_up &&
  4696. tg3_flag(tp, INIT_COMPLETE)) {
  4697. mac_status = tr32(MAC_STATUS);
  4698. mac_status &= (MAC_STATUS_PCS_SYNCED |
  4699. MAC_STATUS_SIGNAL_DET |
  4700. MAC_STATUS_CFG_CHANGED |
  4701. MAC_STATUS_RCVD_CFG);
  4702. if (mac_status == (MAC_STATUS_PCS_SYNCED |
  4703. MAC_STATUS_SIGNAL_DET)) {
  4704. tw32_f(MAC_STATUS, (MAC_STATUS_SYNC_CHANGED |
  4705. MAC_STATUS_CFG_CHANGED));
  4706. return 0;
  4707. }
  4708. }
  4709. tw32_f(MAC_TX_AUTO_NEG, 0);
  4710. tp->mac_mode &= ~(MAC_MODE_PORT_MODE_MASK | MAC_MODE_HALF_DUPLEX);
  4711. tp->mac_mode |= MAC_MODE_PORT_MODE_TBI;
  4712. tw32_f(MAC_MODE, tp->mac_mode);
  4713. udelay(40);
  4714. if (tp->phy_id == TG3_PHY_ID_BCM8002)
  4715. tg3_init_bcm8002(tp);
  4716. /* Enable link change event even when serdes polling. */
  4717. tw32_f(MAC_EVENT, MAC_EVENT_LNKSTATE_CHANGED);
  4718. udelay(40);
  4719. current_link_up = false;
  4720. tp->link_config.rmt_adv = 0;
  4721. mac_status = tr32(MAC_STATUS);
  4722. if (tg3_flag(tp, HW_AUTONEG))
  4723. current_link_up = tg3_setup_fiber_hw_autoneg(tp, mac_status);
  4724. else
  4725. current_link_up = tg3_setup_fiber_by_hand(tp, mac_status);
  4726. tp->napi[0].hw_status->status =
  4727. (SD_STATUS_UPDATED |
  4728. (tp->napi[0].hw_status->status & ~SD_STATUS_LINK_CHG));
  4729. for (i = 0; i < 100; i++) {
  4730. tw32_f(MAC_STATUS, (MAC_STATUS_SYNC_CHANGED |
  4731. MAC_STATUS_CFG_CHANGED));
  4732. udelay(5);
  4733. if ((tr32(MAC_STATUS) & (MAC_STATUS_SYNC_CHANGED |
  4734. MAC_STATUS_CFG_CHANGED |
  4735. MAC_STATUS_LNKSTATE_CHANGED)) == 0)
  4736. break;
  4737. }
  4738. mac_status = tr32(MAC_STATUS);
  4739. if ((mac_status & MAC_STATUS_PCS_SYNCED) == 0) {
  4740. current_link_up = false;
  4741. if (tp->link_config.autoneg == AUTONEG_ENABLE &&
  4742. tp->serdes_counter == 0) {
  4743. tw32_f(MAC_MODE, (tp->mac_mode |
  4744. MAC_MODE_SEND_CONFIGS));
  4745. udelay(1);
  4746. tw32_f(MAC_MODE, tp->mac_mode);
  4747. }
  4748. }
  4749. if (current_link_up) {
  4750. tp->link_config.active_speed = SPEED_1000;
  4751. tp->link_config.active_duplex = DUPLEX_FULL;
  4752. tw32(MAC_LED_CTRL, (tp->led_ctrl |
  4753. LED_CTRL_LNKLED_OVERRIDE |
  4754. LED_CTRL_1000MBPS_ON));
  4755. } else {
  4756. tp->link_config.active_speed = SPEED_UNKNOWN;
  4757. tp->link_config.active_duplex = DUPLEX_UNKNOWN;
  4758. tw32(MAC_LED_CTRL, (tp->led_ctrl |
  4759. LED_CTRL_LNKLED_OVERRIDE |
  4760. LED_CTRL_TRAFFIC_OVERRIDE));
  4761. }
  4762. if (!tg3_test_and_report_link_chg(tp, current_link_up)) {
  4763. u32 now_pause_cfg = tp->link_config.active_flowctrl;
  4764. if (orig_pause_cfg != now_pause_cfg ||
  4765. orig_active_speed != tp->link_config.active_speed ||
  4766. orig_active_duplex != tp->link_config.active_duplex)
  4767. tg3_link_report(tp);
  4768. }
  4769. return 0;
  4770. }
  4771. static int tg3_setup_fiber_mii_phy(struct tg3 *tp, bool force_reset)
  4772. {
  4773. int err = 0;
  4774. u32 bmsr, bmcr;
  4775. u32 current_speed = SPEED_UNKNOWN;
  4776. u8 current_duplex = DUPLEX_UNKNOWN;
  4777. bool current_link_up = false;
  4778. u32 local_adv, remote_adv, sgsr;
  4779. if ((tg3_asic_rev(tp) == ASIC_REV_5719 ||
  4780. tg3_asic_rev(tp) == ASIC_REV_5720) &&
  4781. !tg3_readphy(tp, SERDES_TG3_1000X_STATUS, &sgsr) &&
  4782. (sgsr & SERDES_TG3_SGMII_MODE)) {
  4783. if (force_reset)
  4784. tg3_phy_reset(tp);
  4785. tp->mac_mode &= ~MAC_MODE_PORT_MODE_MASK;
  4786. if (!(sgsr & SERDES_TG3_LINK_UP)) {
  4787. tp->mac_mode |= MAC_MODE_PORT_MODE_GMII;
  4788. } else {
  4789. current_link_up = true;
  4790. if (sgsr & SERDES_TG3_SPEED_1000) {
  4791. current_speed = SPEED_1000;
  4792. tp->mac_mode |= MAC_MODE_PORT_MODE_GMII;
  4793. } else if (sgsr & SERDES_TG3_SPEED_100) {
  4794. current_speed = SPEED_100;
  4795. tp->mac_mode |= MAC_MODE_PORT_MODE_MII;
  4796. } else {
  4797. current_speed = SPEED_10;
  4798. tp->mac_mode |= MAC_MODE_PORT_MODE_MII;
  4799. }
  4800. if (sgsr & SERDES_TG3_FULL_DUPLEX)
  4801. current_duplex = DUPLEX_FULL;
  4802. else
  4803. current_duplex = DUPLEX_HALF;
  4804. }
  4805. tw32_f(MAC_MODE, tp->mac_mode);
  4806. udelay(40);
  4807. tg3_clear_mac_status(tp);
  4808. goto fiber_setup_done;
  4809. }
  4810. tp->mac_mode |= MAC_MODE_PORT_MODE_GMII;
  4811. tw32_f(MAC_MODE, tp->mac_mode);
  4812. udelay(40);
  4813. tg3_clear_mac_status(tp);
  4814. if (force_reset)
  4815. tg3_phy_reset(tp);
  4816. tp->link_config.rmt_adv = 0;
  4817. err |= tg3_readphy(tp, MII_BMSR, &bmsr);
  4818. err |= tg3_readphy(tp, MII_BMSR, &bmsr);
  4819. if (tg3_asic_rev(tp) == ASIC_REV_5714) {
  4820. if (tr32(MAC_TX_STATUS) & TX_STATUS_LINK_UP)
  4821. bmsr |= BMSR_LSTATUS;
  4822. else
  4823. bmsr &= ~BMSR_LSTATUS;
  4824. }
  4825. err |= tg3_readphy(tp, MII_BMCR, &bmcr);
  4826. if ((tp->link_config.autoneg == AUTONEG_ENABLE) && !force_reset &&
  4827. (tp->phy_flags & TG3_PHYFLG_PARALLEL_DETECT)) {
  4828. /* do nothing, just check for link up at the end */
  4829. } else if (tp->link_config.autoneg == AUTONEG_ENABLE) {
  4830. u32 adv, newadv;
  4831. err |= tg3_readphy(tp, MII_ADVERTISE, &adv);
  4832. newadv = adv & ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF |
  4833. ADVERTISE_1000XPAUSE |
  4834. ADVERTISE_1000XPSE_ASYM |
  4835. ADVERTISE_SLCT);
  4836. newadv |= tg3_advert_flowctrl_1000X(tp->link_config.flowctrl);
  4837. newadv |= ethtool_adv_to_mii_adv_x(tp->link_config.advertising);
  4838. if ((newadv != adv) || !(bmcr & BMCR_ANENABLE)) {
  4839. tg3_writephy(tp, MII_ADVERTISE, newadv);
  4840. bmcr |= BMCR_ANENABLE | BMCR_ANRESTART;
  4841. tg3_writephy(tp, MII_BMCR, bmcr);
  4842. tw32_f(MAC_EVENT, MAC_EVENT_LNKSTATE_CHANGED);
  4843. tp->serdes_counter = SERDES_AN_TIMEOUT_5714S;
  4844. tp->phy_flags &= ~TG3_PHYFLG_PARALLEL_DETECT;
  4845. return err;
  4846. }
  4847. } else {
  4848. u32 new_bmcr;
  4849. bmcr &= ~BMCR_SPEED1000;
  4850. new_bmcr = bmcr & ~(BMCR_ANENABLE | BMCR_FULLDPLX);
  4851. if (tp->link_config.duplex == DUPLEX_FULL)
  4852. new_bmcr |= BMCR_FULLDPLX;
  4853. if (new_bmcr != bmcr) {
  4854. /* BMCR_SPEED1000 is a reserved bit that needs
  4855. * to be set on write.
  4856. */
  4857. new_bmcr |= BMCR_SPEED1000;
  4858. /* Force a linkdown */
  4859. if (tp->link_up) {
  4860. u32 adv;
  4861. err |= tg3_readphy(tp, MII_ADVERTISE, &adv);
  4862. adv &= ~(ADVERTISE_1000XFULL |
  4863. ADVERTISE_1000XHALF |
  4864. ADVERTISE_SLCT);
  4865. tg3_writephy(tp, MII_ADVERTISE, adv);
  4866. tg3_writephy(tp, MII_BMCR, bmcr |
  4867. BMCR_ANRESTART |
  4868. BMCR_ANENABLE);
  4869. udelay(10);
  4870. tg3_carrier_off(tp);
  4871. }
  4872. tg3_writephy(tp, MII_BMCR, new_bmcr);
  4873. bmcr = new_bmcr;
  4874. err |= tg3_readphy(tp, MII_BMSR, &bmsr);
  4875. err |= tg3_readphy(tp, MII_BMSR, &bmsr);
  4876. if (tg3_asic_rev(tp) == ASIC_REV_5714) {
  4877. if (tr32(MAC_TX_STATUS) & TX_STATUS_LINK_UP)
  4878. bmsr |= BMSR_LSTATUS;
  4879. else
  4880. bmsr &= ~BMSR_LSTATUS;
  4881. }
  4882. tp->phy_flags &= ~TG3_PHYFLG_PARALLEL_DETECT;
  4883. }
  4884. }
  4885. if (bmsr & BMSR_LSTATUS) {
  4886. current_speed = SPEED_1000;
  4887. current_link_up = true;
  4888. if (bmcr & BMCR_FULLDPLX)
  4889. current_duplex = DUPLEX_FULL;
  4890. else
  4891. current_duplex = DUPLEX_HALF;
  4892. local_adv = 0;
  4893. remote_adv = 0;
  4894. if (bmcr & BMCR_ANENABLE) {
  4895. u32 common;
  4896. err |= tg3_readphy(tp, MII_ADVERTISE, &local_adv);
  4897. err |= tg3_readphy(tp, MII_LPA, &remote_adv);
  4898. common = local_adv & remote_adv;
  4899. if (common & (ADVERTISE_1000XHALF |
  4900. ADVERTISE_1000XFULL)) {
  4901. if (common & ADVERTISE_1000XFULL)
  4902. current_duplex = DUPLEX_FULL;
  4903. else
  4904. current_duplex = DUPLEX_HALF;
  4905. tp->link_config.rmt_adv =
  4906. mii_adv_to_ethtool_adv_x(remote_adv);
  4907. } else if (!tg3_flag(tp, 5780_CLASS)) {
  4908. /* Link is up via parallel detect */
  4909. } else {
  4910. current_link_up = false;
  4911. }
  4912. }
  4913. }
  4914. fiber_setup_done:
  4915. if (current_link_up && current_duplex == DUPLEX_FULL)
  4916. tg3_setup_flow_control(tp, local_adv, remote_adv);
  4917. tp->mac_mode &= ~MAC_MODE_HALF_DUPLEX;
  4918. if (tp->link_config.active_duplex == DUPLEX_HALF)
  4919. tp->mac_mode |= MAC_MODE_HALF_DUPLEX;
  4920. tw32_f(MAC_MODE, tp->mac_mode);
  4921. udelay(40);
  4922. tw32_f(MAC_EVENT, MAC_EVENT_LNKSTATE_CHANGED);
  4923. tp->link_config.active_speed = current_speed;
  4924. tp->link_config.active_duplex = current_duplex;
  4925. tg3_test_and_report_link_chg(tp, current_link_up);
  4926. return err;
  4927. }
  4928. static void tg3_serdes_parallel_detect(struct tg3 *tp)
  4929. {
  4930. if (tp->serdes_counter) {
  4931. /* Give autoneg time to complete. */
  4932. tp->serdes_counter--;
  4933. return;
  4934. }
  4935. if (!tp->link_up &&
  4936. (tp->link_config.autoneg == AUTONEG_ENABLE)) {
  4937. u32 bmcr;
  4938. tg3_readphy(tp, MII_BMCR, &bmcr);
  4939. if (bmcr & BMCR_ANENABLE) {
  4940. u32 phy1, phy2;
  4941. /* Select shadow register 0x1f */
  4942. tg3_writephy(tp, MII_TG3_MISC_SHDW, 0x7c00);
  4943. tg3_readphy(tp, MII_TG3_MISC_SHDW, &phy1);
  4944. /* Select expansion interrupt status register */
  4945. tg3_writephy(tp, MII_TG3_DSP_ADDRESS,
  4946. MII_TG3_DSP_EXP1_INT_STAT);
  4947. tg3_readphy(tp, MII_TG3_DSP_RW_PORT, &phy2);
  4948. tg3_readphy(tp, MII_TG3_DSP_RW_PORT, &phy2);
  4949. if ((phy1 & 0x10) && !(phy2 & 0x20)) {
  4950. /* We have signal detect and not receiving
  4951. * config code words, link is up by parallel
  4952. * detection.
  4953. */
  4954. bmcr &= ~BMCR_ANENABLE;
  4955. bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
  4956. tg3_writephy(tp, MII_BMCR, bmcr);
  4957. tp->phy_flags |= TG3_PHYFLG_PARALLEL_DETECT;
  4958. }
  4959. }
  4960. } else if (tp->link_up &&
  4961. (tp->link_config.autoneg == AUTONEG_ENABLE) &&
  4962. (tp->phy_flags & TG3_PHYFLG_PARALLEL_DETECT)) {
  4963. u32 phy2;
  4964. /* Select expansion interrupt status register */
  4965. tg3_writephy(tp, MII_TG3_DSP_ADDRESS,
  4966. MII_TG3_DSP_EXP1_INT_STAT);
  4967. tg3_readphy(tp, MII_TG3_DSP_RW_PORT, &phy2);
  4968. if (phy2 & 0x20) {
  4969. u32 bmcr;
  4970. /* Config code words received, turn on autoneg. */
  4971. tg3_readphy(tp, MII_BMCR, &bmcr);
  4972. tg3_writephy(tp, MII_BMCR, bmcr | BMCR_ANENABLE);
  4973. tp->phy_flags &= ~TG3_PHYFLG_PARALLEL_DETECT;
  4974. }
  4975. }
  4976. }
  4977. static int tg3_setup_phy(struct tg3 *tp, bool force_reset)
  4978. {
  4979. u32 val;
  4980. int err;
  4981. if (tp->phy_flags & TG3_PHYFLG_PHY_SERDES)
  4982. err = tg3_setup_fiber_phy(tp, force_reset);
  4983. else if (tp->phy_flags & TG3_PHYFLG_MII_SERDES)
  4984. err = tg3_setup_fiber_mii_phy(tp, force_reset);
  4985. else
  4986. err = tg3_setup_copper_phy(tp, force_reset);
  4987. if (tg3_chip_rev(tp) == CHIPREV_5784_AX) {
  4988. u32 scale;
  4989. val = tr32(TG3_CPMU_CLCK_STAT) & CPMU_CLCK_STAT_MAC_CLCK_MASK;
  4990. if (val == CPMU_CLCK_STAT_MAC_CLCK_62_5)
  4991. scale = 65;
  4992. else if (val == CPMU_CLCK_STAT_MAC_CLCK_6_25)
  4993. scale = 6;
  4994. else
  4995. scale = 12;
  4996. val = tr32(GRC_MISC_CFG) & ~GRC_MISC_CFG_PRESCALAR_MASK;
  4997. val |= (scale << GRC_MISC_CFG_PRESCALAR_SHIFT);
  4998. tw32(GRC_MISC_CFG, val);
  4999. }
  5000. val = (2 << TX_LENGTHS_IPG_CRS_SHIFT) |
  5001. (6 << TX_LENGTHS_IPG_SHIFT);
  5002. if (tg3_asic_rev(tp) == ASIC_REV_5720 ||
  5003. tg3_asic_rev(tp) == ASIC_REV_5762)
  5004. val |= tr32(MAC_TX_LENGTHS) &
  5005. (TX_LENGTHS_JMB_FRM_LEN_MSK |
  5006. TX_LENGTHS_CNT_DWN_VAL_MSK);
  5007. if (tp->link_config.active_speed == SPEED_1000 &&
  5008. tp->link_config.active_duplex == DUPLEX_HALF)
  5009. tw32(MAC_TX_LENGTHS, val |
  5010. (0xff << TX_LENGTHS_SLOT_TIME_SHIFT));
  5011. else
  5012. tw32(MAC_TX_LENGTHS, val |
  5013. (32 << TX_LENGTHS_SLOT_TIME_SHIFT));
  5014. if (!tg3_flag(tp, 5705_PLUS)) {
  5015. if (tp->link_up) {
  5016. tw32(HOSTCC_STAT_COAL_TICKS,
  5017. tp->coal.stats_block_coalesce_usecs);
  5018. } else {
  5019. tw32(HOSTCC_STAT_COAL_TICKS, 0);
  5020. }
  5021. }
  5022. if (tg3_flag(tp, ASPM_WORKAROUND)) {
  5023. val = tr32(PCIE_PWR_MGMT_THRESH);
  5024. if (!tp->link_up)
  5025. val = (val & ~PCIE_PWR_MGMT_L1_THRESH_MSK) |
  5026. tp->pwrmgmt_thresh;
  5027. else
  5028. val |= PCIE_PWR_MGMT_L1_THRESH_MSK;
  5029. tw32(PCIE_PWR_MGMT_THRESH, val);
  5030. }
  5031. return err;
  5032. }
  5033. /* tp->lock must be held */
  5034. static u64 tg3_refclk_read(struct tg3 *tp, struct ptp_system_timestamp *sts)
  5035. {
  5036. u64 stamp;
  5037. ptp_read_system_prets(sts);
  5038. stamp = tr32(TG3_EAV_REF_CLCK_LSB);
  5039. ptp_read_system_postts(sts);
  5040. stamp |= (u64)tr32(TG3_EAV_REF_CLCK_MSB) << 32;
  5041. return stamp;
  5042. }
  5043. /* tp->lock must be held */
  5044. static void tg3_refclk_write(struct tg3 *tp, u64 newval)
  5045. {
  5046. u32 clock_ctl = tr32(TG3_EAV_REF_CLCK_CTL);
  5047. tw32(TG3_EAV_REF_CLCK_CTL, clock_ctl | TG3_EAV_REF_CLCK_CTL_STOP);
  5048. tw32(TG3_EAV_REF_CLCK_LSB, newval & 0xffffffff);
  5049. tw32(TG3_EAV_REF_CLCK_MSB, newval >> 32);
  5050. tw32_f(TG3_EAV_REF_CLCK_CTL, clock_ctl | TG3_EAV_REF_CLCK_CTL_RESUME);
  5051. }
  5052. static inline void tg3_full_lock(struct tg3 *tp, int irq_sync);
  5053. static inline void tg3_full_unlock(struct tg3 *tp);
  5054. static int tg3_get_ts_info(struct net_device *dev, struct ethtool_ts_info *info)
  5055. {
  5056. struct tg3 *tp = netdev_priv(dev);
  5057. info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
  5058. SOF_TIMESTAMPING_RX_SOFTWARE |
  5059. SOF_TIMESTAMPING_SOFTWARE;
  5060. if (tg3_flag(tp, PTP_CAPABLE)) {
  5061. info->so_timestamping |= SOF_TIMESTAMPING_TX_HARDWARE |
  5062. SOF_TIMESTAMPING_RX_HARDWARE |
  5063. SOF_TIMESTAMPING_RAW_HARDWARE;
  5064. }
  5065. if (tp->ptp_clock)
  5066. info->phc_index = ptp_clock_index(tp->ptp_clock);
  5067. else
  5068. info->phc_index = -1;
  5069. info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
  5070. info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
  5071. (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
  5072. (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
  5073. (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT);
  5074. return 0;
  5075. }
  5076. static int tg3_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
  5077. {
  5078. struct tg3 *tp = container_of(ptp, struct tg3, ptp_info);
  5079. bool neg_adj = false;
  5080. u32 correction = 0;
  5081. if (ppb < 0) {
  5082. neg_adj = true;
  5083. ppb = -ppb;
  5084. }
  5085. /* Frequency adjustment is performed using hardware with a 24 bit
  5086. * accumulator and a programmable correction value. On each clk, the
  5087. * correction value gets added to the accumulator and when it
  5088. * overflows, the time counter is incremented/decremented.
  5089. *
  5090. * So conversion from ppb to correction value is
  5091. * ppb * (1 << 24) / 1000000000
  5092. */
  5093. correction = div_u64((u64)ppb * (1 << 24), 1000000000ULL) &
  5094. TG3_EAV_REF_CLK_CORRECT_MASK;
  5095. tg3_full_lock(tp, 0);
  5096. if (correction)
  5097. tw32(TG3_EAV_REF_CLK_CORRECT_CTL,
  5098. TG3_EAV_REF_CLK_CORRECT_EN |
  5099. (neg_adj ? TG3_EAV_REF_CLK_CORRECT_NEG : 0) | correction);
  5100. else
  5101. tw32(TG3_EAV_REF_CLK_CORRECT_CTL, 0);
  5102. tg3_full_unlock(tp);
  5103. return 0;
  5104. }
  5105. static int tg3_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
  5106. {
  5107. struct tg3 *tp = container_of(ptp, struct tg3, ptp_info);
  5108. tg3_full_lock(tp, 0);
  5109. tp->ptp_adjust += delta;
  5110. tg3_full_unlock(tp);
  5111. return 0;
  5112. }
  5113. static int tg3_ptp_gettimex(struct ptp_clock_info *ptp, struct timespec64 *ts,
  5114. struct ptp_system_timestamp *sts)
  5115. {
  5116. u64 ns;
  5117. struct tg3 *tp = container_of(ptp, struct tg3, ptp_info);
  5118. tg3_full_lock(tp, 0);
  5119. ns = tg3_refclk_read(tp, sts);
  5120. ns += tp->ptp_adjust;
  5121. tg3_full_unlock(tp);
  5122. *ts = ns_to_timespec64(ns);
  5123. return 0;
  5124. }
  5125. static int tg3_ptp_settime(struct ptp_clock_info *ptp,
  5126. const struct timespec64 *ts)
  5127. {
  5128. u64 ns;
  5129. struct tg3 *tp = container_of(ptp, struct tg3, ptp_info);
  5130. ns = timespec64_to_ns(ts);
  5131. tg3_full_lock(tp, 0);
  5132. tg3_refclk_write(tp, ns);
  5133. tp->ptp_adjust = 0;
  5134. tg3_full_unlock(tp);
  5135. return 0;
  5136. }
  5137. static int tg3_ptp_enable(struct ptp_clock_info *ptp,
  5138. struct ptp_clock_request *rq, int on)
  5139. {
  5140. struct tg3 *tp = container_of(ptp, struct tg3, ptp_info);
  5141. u32 clock_ctl;
  5142. int rval = 0;
  5143. switch (rq->type) {
  5144. case PTP_CLK_REQ_PEROUT:
  5145. /* Reject requests with unsupported flags */
  5146. if (rq->perout.flags)
  5147. return -EOPNOTSUPP;
  5148. if (rq->perout.index != 0)
  5149. return -EINVAL;
  5150. tg3_full_lock(tp, 0);
  5151. clock_ctl = tr32(TG3_EAV_REF_CLCK_CTL);
  5152. clock_ctl &= ~TG3_EAV_CTL_TSYNC_GPIO_MASK;
  5153. if (on) {
  5154. u64 nsec;
  5155. nsec = rq->perout.start.sec * 1000000000ULL +
  5156. rq->perout.start.nsec;
  5157. if (rq->perout.period.sec || rq->perout.period.nsec) {
  5158. netdev_warn(tp->dev,
  5159. "Device supports only a one-shot timesync output, period must be 0\n");
  5160. rval = -EINVAL;
  5161. goto err_out;
  5162. }
  5163. if (nsec & (1ULL << 63)) {
  5164. netdev_warn(tp->dev,
  5165. "Start value (nsec) is over limit. Maximum size of start is only 63 bits\n");
  5166. rval = -EINVAL;
  5167. goto err_out;
  5168. }
  5169. tw32(TG3_EAV_WATCHDOG0_LSB, (nsec & 0xffffffff));
  5170. tw32(TG3_EAV_WATCHDOG0_MSB,
  5171. TG3_EAV_WATCHDOG0_EN |
  5172. ((nsec >> 32) & TG3_EAV_WATCHDOG_MSB_MASK));
  5173. tw32(TG3_EAV_REF_CLCK_CTL,
  5174. clock_ctl | TG3_EAV_CTL_TSYNC_WDOG0);
  5175. } else {
  5176. tw32(TG3_EAV_WATCHDOG0_MSB, 0);
  5177. tw32(TG3_EAV_REF_CLCK_CTL, clock_ctl);
  5178. }
  5179. err_out:
  5180. tg3_full_unlock(tp);
  5181. return rval;
  5182. default:
  5183. break;
  5184. }
  5185. return -EOPNOTSUPP;
  5186. }
  5187. static const struct ptp_clock_info tg3_ptp_caps = {
  5188. .owner = THIS_MODULE,
  5189. .name = "tg3 clock",
  5190. .max_adj = 250000000,
  5191. .n_alarm = 0,
  5192. .n_ext_ts = 0,
  5193. .n_per_out = 1,
  5194. .n_pins = 0,
  5195. .pps = 0,
  5196. .adjfreq = tg3_ptp_adjfreq,
  5197. .adjtime = tg3_ptp_adjtime,
  5198. .gettimex64 = tg3_ptp_gettimex,
  5199. .settime64 = tg3_ptp_settime,
  5200. .enable = tg3_ptp_enable,
  5201. };
  5202. static void tg3_hwclock_to_timestamp(struct tg3 *tp, u64 hwclock,
  5203. struct skb_shared_hwtstamps *timestamp)
  5204. {
  5205. memset(timestamp, 0, sizeof(struct skb_shared_hwtstamps));
  5206. timestamp->hwtstamp = ns_to_ktime((hwclock & TG3_TSTAMP_MASK) +
  5207. tp->ptp_adjust);
  5208. }
  5209. /* tp->lock must be held */
  5210. static void tg3_ptp_init(struct tg3 *tp)
  5211. {
  5212. if (!tg3_flag(tp, PTP_CAPABLE))
  5213. return;
  5214. /* Initialize the hardware clock to the system time. */
  5215. tg3_refclk_write(tp, ktime_to_ns(ktime_get_real()));
  5216. tp->ptp_adjust = 0;
  5217. tp->ptp_info = tg3_ptp_caps;
  5218. }
  5219. /* tp->lock must be held */
  5220. static void tg3_ptp_resume(struct tg3 *tp)
  5221. {
  5222. if (!tg3_flag(tp, PTP_CAPABLE))
  5223. return;
  5224. tg3_refclk_write(tp, ktime_to_ns(ktime_get_real()) + tp->ptp_adjust);
  5225. tp->ptp_adjust = 0;
  5226. }
  5227. static void tg3_ptp_fini(struct tg3 *tp)
  5228. {
  5229. if (!tg3_flag(tp, PTP_CAPABLE) || !tp->ptp_clock)
  5230. return;
  5231. ptp_clock_unregister(tp->ptp_clock);
  5232. tp->ptp_clock = NULL;
  5233. tp->ptp_adjust = 0;
  5234. }
  5235. static inline int tg3_irq_sync(struct tg3 *tp)
  5236. {
  5237. return tp->irq_sync;
  5238. }
  5239. static inline void tg3_rd32_loop(struct tg3 *tp, u32 *dst, u32 off, u32 len)
  5240. {
  5241. int i;
  5242. dst = (u32 *)((u8 *)dst + off);
  5243. for (i = 0; i < len; i += sizeof(u32))
  5244. *dst++ = tr32(off + i);
  5245. }
  5246. static void tg3_dump_legacy_regs(struct tg3 *tp, u32 *regs)
  5247. {
  5248. tg3_rd32_loop(tp, regs, TG3PCI_VENDOR, 0xb0);
  5249. tg3_rd32_loop(tp, regs, MAILBOX_INTERRUPT_0, 0x200);
  5250. tg3_rd32_loop(tp, regs, MAC_MODE, 0x4f0);
  5251. tg3_rd32_loop(tp, regs, SNDDATAI_MODE, 0xe0);
  5252. tg3_rd32_loop(tp, regs, SNDDATAC_MODE, 0x04);
  5253. tg3_rd32_loop(tp, regs, SNDBDS_MODE, 0x80);
  5254. tg3_rd32_loop(tp, regs, SNDBDI_MODE, 0x48);
  5255. tg3_rd32_loop(tp, regs, SNDBDC_MODE, 0x04);
  5256. tg3_rd32_loop(tp, regs, RCVLPC_MODE, 0x20);
  5257. tg3_rd32_loop(tp, regs, RCVLPC_SELLST_BASE, 0x15c);
  5258. tg3_rd32_loop(tp, regs, RCVDBDI_MODE, 0x0c);
  5259. tg3_rd32_loop(tp, regs, RCVDBDI_JUMBO_BD, 0x3c);
  5260. tg3_rd32_loop(tp, regs, RCVDBDI_BD_PROD_IDX_0, 0x44);
  5261. tg3_rd32_loop(tp, regs, RCVDCC_MODE, 0x04);
  5262. tg3_rd32_loop(tp, regs, RCVBDI_MODE, 0x20);
  5263. tg3_rd32_loop(tp, regs, RCVCC_MODE, 0x14);
  5264. tg3_rd32_loop(tp, regs, RCVLSC_MODE, 0x08);
  5265. tg3_rd32_loop(tp, regs, MBFREE_MODE, 0x08);
  5266. tg3_rd32_loop(tp, regs, HOSTCC_MODE, 0x100);
  5267. if (tg3_flag(tp, SUPPORT_MSIX))
  5268. tg3_rd32_loop(tp, regs, HOSTCC_RXCOL_TICKS_VEC1, 0x180);
  5269. tg3_rd32_loop(tp, regs, MEMARB_MODE, 0x10);
  5270. tg3_rd32_loop(tp, regs, BUFMGR_MODE, 0x58);
  5271. tg3_rd32_loop(tp, regs, RDMAC_MODE, 0x08);
  5272. tg3_rd32_loop(tp, regs, WDMAC_MODE, 0x08);
  5273. tg3_rd32_loop(tp, regs, RX_CPU_MODE, 0x04);
  5274. tg3_rd32_loop(tp, regs, RX_CPU_STATE, 0x04);
  5275. tg3_rd32_loop(tp, regs, RX_CPU_PGMCTR, 0x04);
  5276. tg3_rd32_loop(tp, regs, RX_CPU_HWBKPT, 0x04);
  5277. if (!tg3_flag(tp, 5705_PLUS)) {
  5278. tg3_rd32_loop(tp, regs, TX_CPU_MODE, 0x04);
  5279. tg3_rd32_loop(tp, regs, TX_CPU_STATE, 0x04);
  5280. tg3_rd32_loop(tp, regs, TX_CPU_PGMCTR, 0x04);
  5281. }
  5282. tg3_rd32_loop(tp, regs, GRCMBOX_INTERRUPT_0, 0x110);
  5283. tg3_rd32_loop(tp, regs, FTQ_RESET, 0x120);
  5284. tg3_rd32_loop(tp, regs, MSGINT_MODE, 0x0c);
  5285. tg3_rd32_loop(tp, regs, DMAC_MODE, 0x04);
  5286. tg3_rd32_loop(tp, regs, GRC_MODE, 0x4c);
  5287. if (tg3_flag(tp, NVRAM))
  5288. tg3_rd32_loop(tp, regs, NVRAM_CMD, 0x24);
  5289. }
  5290. static void tg3_dump_state(struct tg3 *tp)
  5291. {
  5292. int i;
  5293. u32 *regs;
  5294. regs = kzalloc(TG3_REG_BLK_SIZE, GFP_ATOMIC);
  5295. if (!regs)
  5296. return;
  5297. if (tg3_flag(tp, PCI_EXPRESS)) {
  5298. /* Read up to but not including private PCI registers */
  5299. for (i = 0; i < TG3_PCIE_TLDLPL_PORT; i += sizeof(u32))
  5300. regs[i / sizeof(u32)] = tr32(i);
  5301. } else
  5302. tg3_dump_legacy_regs(tp, regs);
  5303. for (i = 0; i < TG3_REG_BLK_SIZE / sizeof(u32); i += 4) {
  5304. if (!regs[i + 0] && !regs[i + 1] &&
  5305. !regs[i + 2] && !regs[i + 3])
  5306. continue;
  5307. netdev_err(tp->dev, "0x%08x: 0x%08x, 0x%08x, 0x%08x, 0x%08x\n",
  5308. i * 4,
  5309. regs[i + 0], regs[i + 1], regs[i + 2], regs[i + 3]);
  5310. }
  5311. kfree(regs);
  5312. for (i = 0; i < tp->irq_cnt; i++) {
  5313. struct tg3_napi *tnapi = &tp->napi[i];
  5314. /* SW status block */
  5315. netdev_err(tp->dev,
  5316. "%d: Host status block [%08x:%08x:(%04x:%04x:%04x):(%04x:%04x)]\n",
  5317. i,
  5318. tnapi->hw_status->status,
  5319. tnapi->hw_status->status_tag,
  5320. tnapi->hw_status->rx_jumbo_consumer,
  5321. tnapi->hw_status->rx_consumer,
  5322. tnapi->hw_status->rx_mini_consumer,
  5323. tnapi->hw_status->idx[0].rx_producer,
  5324. tnapi->hw_status->idx[0].tx_consumer);
  5325. netdev_err(tp->dev,
  5326. "%d: NAPI info [%08x:%08x:(%04x:%04x:%04x):%04x:(%04x:%04x:%04x:%04x)]\n",
  5327. i,
  5328. tnapi->last_tag, tnapi->last_irq_tag,
  5329. tnapi->tx_prod, tnapi->tx_cons, tnapi->tx_pending,
  5330. tnapi->rx_rcb_ptr,
  5331. tnapi->prodring.rx_std_prod_idx,
  5332. tnapi->prodring.rx_std_cons_idx,
  5333. tnapi->prodring.rx_jmb_prod_idx,
  5334. tnapi->prodring.rx_jmb_cons_idx);
  5335. }
  5336. }
  5337. /* This is called whenever we suspect that the system chipset is re-
  5338. * ordering the sequence of MMIO to the tx send mailbox. The symptom
  5339. * is bogus tx completions. We try to recover by setting the
  5340. * TG3_FLAG_MBOX_WRITE_REORDER flag and resetting the chip later
  5341. * in the workqueue.
  5342. */
  5343. static void tg3_tx_recover(struct tg3 *tp)
  5344. {
  5345. BUG_ON(tg3_flag(tp, MBOX_WRITE_REORDER) ||
  5346. tp->write32_tx_mbox == tg3_write_indirect_mbox);
  5347. netdev_warn(tp->dev,
  5348. "The system may be re-ordering memory-mapped I/O "
  5349. "cycles to the network device, attempting to recover. "
  5350. "Please report the problem to the driver maintainer "
  5351. "and include system chipset information.\n");
  5352. tg3_flag_set(tp, TX_RECOVERY_PENDING);
  5353. }
  5354. static inline u32 tg3_tx_avail(struct tg3_napi *tnapi)
  5355. {
  5356. /* Tell compiler to fetch tx indices from memory. */
  5357. barrier();
  5358. return tnapi->tx_pending -
  5359. ((tnapi->tx_prod - tnapi->tx_cons) & (TG3_TX_RING_SIZE - 1));
  5360. }
  5361. /* Tigon3 never reports partial packet sends. So we do not
  5362. * need special logic to handle SKBs that have not had all
  5363. * of their frags sent yet, like SunGEM does.
  5364. */
  5365. static void tg3_tx(struct tg3_napi *tnapi)
  5366. {
  5367. struct tg3 *tp = tnapi->tp;
  5368. u32 hw_idx = tnapi->hw_status->idx[0].tx_consumer;
  5369. u32 sw_idx = tnapi->tx_cons;
  5370. struct netdev_queue *txq;
  5371. int index = tnapi - tp->napi;
  5372. unsigned int pkts_compl = 0, bytes_compl = 0;
  5373. if (tg3_flag(tp, ENABLE_TSS))
  5374. index--;
  5375. txq = netdev_get_tx_queue(tp->dev, index);
  5376. while (sw_idx != hw_idx) {
  5377. struct tg3_tx_ring_info *ri = &tnapi->tx_buffers[sw_idx];
  5378. struct sk_buff *skb = ri->skb;
  5379. int i, tx_bug = 0;
  5380. if (unlikely(skb == NULL)) {
  5381. tg3_tx_recover(tp);
  5382. return;
  5383. }
  5384. if (tnapi->tx_ring[sw_idx].len_flags & TXD_FLAG_HWTSTAMP) {
  5385. struct skb_shared_hwtstamps timestamp;
  5386. u64 hwclock = tr32(TG3_TX_TSTAMP_LSB);
  5387. hwclock |= (u64)tr32(TG3_TX_TSTAMP_MSB) << 32;
  5388. tg3_hwclock_to_timestamp(tp, hwclock, &timestamp);
  5389. skb_tstamp_tx(skb, &timestamp);
  5390. }
  5391. pci_unmap_single(tp->pdev,
  5392. dma_unmap_addr(ri, mapping),
  5393. skb_headlen(skb),
  5394. PCI_DMA_TODEVICE);
  5395. ri->skb = NULL;
  5396. while (ri->fragmented) {
  5397. ri->fragmented = false;
  5398. sw_idx = NEXT_TX(sw_idx);
  5399. ri = &tnapi->tx_buffers[sw_idx];
  5400. }
  5401. sw_idx = NEXT_TX(sw_idx);
  5402. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  5403. ri = &tnapi->tx_buffers[sw_idx];
  5404. if (unlikely(ri->skb != NULL || sw_idx == hw_idx))
  5405. tx_bug = 1;
  5406. pci_unmap_page(tp->pdev,
  5407. dma_unmap_addr(ri, mapping),
  5408. skb_frag_size(&skb_shinfo(skb)->frags[i]),
  5409. PCI_DMA_TODEVICE);
  5410. while (ri->fragmented) {
  5411. ri->fragmented = false;
  5412. sw_idx = NEXT_TX(sw_idx);
  5413. ri = &tnapi->tx_buffers[sw_idx];
  5414. }
  5415. sw_idx = NEXT_TX(sw_idx);
  5416. }
  5417. pkts_compl++;
  5418. bytes_compl += skb->len;
  5419. dev_consume_skb_any(skb);
  5420. if (unlikely(tx_bug)) {
  5421. tg3_tx_recover(tp);
  5422. return;
  5423. }
  5424. }
  5425. netdev_tx_completed_queue(txq, pkts_compl, bytes_compl);
  5426. tnapi->tx_cons = sw_idx;
  5427. /* Need to make the tx_cons update visible to tg3_start_xmit()
  5428. * before checking for netif_queue_stopped(). Without the
  5429. * memory barrier, there is a small possibility that tg3_start_xmit()
  5430. * will miss it and cause the queue to be stopped forever.
  5431. */
  5432. smp_mb();
  5433. if (unlikely(netif_tx_queue_stopped(txq) &&
  5434. (tg3_tx_avail(tnapi) > TG3_TX_WAKEUP_THRESH(tnapi)))) {
  5435. __netif_tx_lock(txq, smp_processor_id());
  5436. if (netif_tx_queue_stopped(txq) &&
  5437. (tg3_tx_avail(tnapi) > TG3_TX_WAKEUP_THRESH(tnapi)))
  5438. netif_tx_wake_queue(txq);
  5439. __netif_tx_unlock(txq);
  5440. }
  5441. }
  5442. static void tg3_frag_free(bool is_frag, void *data)
  5443. {
  5444. if (is_frag)
  5445. skb_free_frag(data);
  5446. else
  5447. kfree(data);
  5448. }
  5449. static void tg3_rx_data_free(struct tg3 *tp, struct ring_info *ri, u32 map_sz)
  5450. {
  5451. unsigned int skb_size = SKB_DATA_ALIGN(map_sz + TG3_RX_OFFSET(tp)) +
  5452. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  5453. if (!ri->data)
  5454. return;
  5455. pci_unmap_single(tp->pdev, dma_unmap_addr(ri, mapping),
  5456. map_sz, PCI_DMA_FROMDEVICE);
  5457. tg3_frag_free(skb_size <= PAGE_SIZE, ri->data);
  5458. ri->data = NULL;
  5459. }
  5460. /* Returns size of skb allocated or < 0 on error.
  5461. *
  5462. * We only need to fill in the address because the other members
  5463. * of the RX descriptor are invariant, see tg3_init_rings.
  5464. *
  5465. * Note the purposeful assymetry of cpu vs. chip accesses. For
  5466. * posting buffers we only dirty the first cache line of the RX
  5467. * descriptor (containing the address). Whereas for the RX status
  5468. * buffers the cpu only reads the last cacheline of the RX descriptor
  5469. * (to fetch the error flags, vlan tag, checksum, and opaque cookie).
  5470. */
  5471. static int tg3_alloc_rx_data(struct tg3 *tp, struct tg3_rx_prodring_set *tpr,
  5472. u32 opaque_key, u32 dest_idx_unmasked,
  5473. unsigned int *frag_size)
  5474. {
  5475. struct tg3_rx_buffer_desc *desc;
  5476. struct ring_info *map;
  5477. u8 *data;
  5478. dma_addr_t mapping;
  5479. int skb_size, data_size, dest_idx;
  5480. switch (opaque_key) {
  5481. case RXD_OPAQUE_RING_STD:
  5482. dest_idx = dest_idx_unmasked & tp->rx_std_ring_mask;
  5483. desc = &tpr->rx_std[dest_idx];
  5484. map = &tpr->rx_std_buffers[dest_idx];
  5485. data_size = tp->rx_pkt_map_sz;
  5486. break;
  5487. case RXD_OPAQUE_RING_JUMBO:
  5488. dest_idx = dest_idx_unmasked & tp->rx_jmb_ring_mask;
  5489. desc = &tpr->rx_jmb[dest_idx].std;
  5490. map = &tpr->rx_jmb_buffers[dest_idx];
  5491. data_size = TG3_RX_JMB_MAP_SZ;
  5492. break;
  5493. default:
  5494. return -EINVAL;
  5495. }
  5496. /* Do not overwrite any of the map or rp information
  5497. * until we are sure we can commit to a new buffer.
  5498. *
  5499. * Callers depend upon this behavior and assume that
  5500. * we leave everything unchanged if we fail.
  5501. */
  5502. skb_size = SKB_DATA_ALIGN(data_size + TG3_RX_OFFSET(tp)) +
  5503. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  5504. if (skb_size <= PAGE_SIZE) {
  5505. data = napi_alloc_frag(skb_size);
  5506. *frag_size = skb_size;
  5507. } else {
  5508. data = kmalloc(skb_size, GFP_ATOMIC);
  5509. *frag_size = 0;
  5510. }
  5511. if (!data)
  5512. return -ENOMEM;
  5513. mapping = pci_map_single(tp->pdev,
  5514. data + TG3_RX_OFFSET(tp),
  5515. data_size,
  5516. PCI_DMA_FROMDEVICE);
  5517. if (unlikely(pci_dma_mapping_error(tp->pdev, mapping))) {
  5518. tg3_frag_free(skb_size <= PAGE_SIZE, data);
  5519. return -EIO;
  5520. }
  5521. map->data = data;
  5522. dma_unmap_addr_set(map, mapping, mapping);
  5523. desc->addr_hi = ((u64)mapping >> 32);
  5524. desc->addr_lo = ((u64)mapping & 0xffffffff);
  5525. return data_size;
  5526. }
  5527. /* We only need to move over in the address because the other
  5528. * members of the RX descriptor are invariant. See notes above
  5529. * tg3_alloc_rx_data for full details.
  5530. */
  5531. static void tg3_recycle_rx(struct tg3_napi *tnapi,
  5532. struct tg3_rx_prodring_set *dpr,
  5533. u32 opaque_key, int src_idx,
  5534. u32 dest_idx_unmasked)
  5535. {
  5536. struct tg3 *tp = tnapi->tp;
  5537. struct tg3_rx_buffer_desc *src_desc, *dest_desc;
  5538. struct ring_info *src_map, *dest_map;
  5539. struct tg3_rx_prodring_set *spr = &tp->napi[0].prodring;
  5540. int dest_idx;
  5541. switch (opaque_key) {
  5542. case RXD_OPAQUE_RING_STD:
  5543. dest_idx = dest_idx_unmasked & tp->rx_std_ring_mask;
  5544. dest_desc = &dpr->rx_std[dest_idx];
  5545. dest_map = &dpr->rx_std_buffers[dest_idx];
  5546. src_desc = &spr->rx_std[src_idx];
  5547. src_map = &spr->rx_std_buffers[src_idx];
  5548. break;
  5549. case RXD_OPAQUE_RING_JUMBO:
  5550. dest_idx = dest_idx_unmasked & tp->rx_jmb_ring_mask;
  5551. dest_desc = &dpr->rx_jmb[dest_idx].std;
  5552. dest_map = &dpr->rx_jmb_buffers[dest_idx];
  5553. src_desc = &spr->rx_jmb[src_idx].std;
  5554. src_map = &spr->rx_jmb_buffers[src_idx];
  5555. break;
  5556. default:
  5557. return;
  5558. }
  5559. dest_map->data = src_map->data;
  5560. dma_unmap_addr_set(dest_map, mapping,
  5561. dma_unmap_addr(src_map, mapping));
  5562. dest_desc->addr_hi = src_desc->addr_hi;
  5563. dest_desc->addr_lo = src_desc->addr_lo;
  5564. /* Ensure that the update to the skb happens after the physical
  5565. * addresses have been transferred to the new BD location.
  5566. */
  5567. smp_wmb();
  5568. src_map->data = NULL;
  5569. }
  5570. /* The RX ring scheme is composed of multiple rings which post fresh
  5571. * buffers to the chip, and one special ring the chip uses to report
  5572. * status back to the host.
  5573. *
  5574. * The special ring reports the status of received packets to the
  5575. * host. The chip does not write into the original descriptor the
  5576. * RX buffer was obtained from. The chip simply takes the original
  5577. * descriptor as provided by the host, updates the status and length
  5578. * field, then writes this into the next status ring entry.
  5579. *
  5580. * Each ring the host uses to post buffers to the chip is described
  5581. * by a TG3_BDINFO entry in the chips SRAM area. When a packet arrives,
  5582. * it is first placed into the on-chip ram. When the packet's length
  5583. * is known, it walks down the TG3_BDINFO entries to select the ring.
  5584. * Each TG3_BDINFO specifies a MAXLEN field and the first TG3_BDINFO
  5585. * which is within the range of the new packet's length is chosen.
  5586. *
  5587. * The "separate ring for rx status" scheme may sound queer, but it makes
  5588. * sense from a cache coherency perspective. If only the host writes
  5589. * to the buffer post rings, and only the chip writes to the rx status
  5590. * rings, then cache lines never move beyond shared-modified state.
  5591. * If both the host and chip were to write into the same ring, cache line
  5592. * eviction could occur since both entities want it in an exclusive state.
  5593. */
  5594. static int tg3_rx(struct tg3_napi *tnapi, int budget)
  5595. {
  5596. struct tg3 *tp = tnapi->tp;
  5597. u32 work_mask, rx_std_posted = 0;
  5598. u32 std_prod_idx, jmb_prod_idx;
  5599. u32 sw_idx = tnapi->rx_rcb_ptr;
  5600. u16 hw_idx;
  5601. int received;
  5602. struct tg3_rx_prodring_set *tpr = &tnapi->prodring;
  5603. hw_idx = *(tnapi->rx_rcb_prod_idx);
  5604. /*
  5605. * We need to order the read of hw_idx and the read of
  5606. * the opaque cookie.
  5607. */
  5608. rmb();
  5609. work_mask = 0;
  5610. received = 0;
  5611. std_prod_idx = tpr->rx_std_prod_idx;
  5612. jmb_prod_idx = tpr->rx_jmb_prod_idx;
  5613. while (sw_idx != hw_idx && budget > 0) {
  5614. struct ring_info *ri;
  5615. struct tg3_rx_buffer_desc *desc = &tnapi->rx_rcb[sw_idx];
  5616. unsigned int len;
  5617. struct sk_buff *skb;
  5618. dma_addr_t dma_addr;
  5619. u32 opaque_key, desc_idx, *post_ptr;
  5620. u8 *data;
  5621. u64 tstamp = 0;
  5622. desc_idx = desc->opaque & RXD_OPAQUE_INDEX_MASK;
  5623. opaque_key = desc->opaque & RXD_OPAQUE_RING_MASK;
  5624. if (opaque_key == RXD_OPAQUE_RING_STD) {
  5625. ri = &tp->napi[0].prodring.rx_std_buffers[desc_idx];
  5626. dma_addr = dma_unmap_addr(ri, mapping);
  5627. data = ri->data;
  5628. post_ptr = &std_prod_idx;
  5629. rx_std_posted++;
  5630. } else if (opaque_key == RXD_OPAQUE_RING_JUMBO) {
  5631. ri = &tp->napi[0].prodring.rx_jmb_buffers[desc_idx];
  5632. dma_addr = dma_unmap_addr(ri, mapping);
  5633. data = ri->data;
  5634. post_ptr = &jmb_prod_idx;
  5635. } else
  5636. goto next_pkt_nopost;
  5637. work_mask |= opaque_key;
  5638. if (desc->err_vlan & RXD_ERR_MASK) {
  5639. drop_it:
  5640. tg3_recycle_rx(tnapi, tpr, opaque_key,
  5641. desc_idx, *post_ptr);
  5642. drop_it_no_recycle:
  5643. /* Other statistics kept track of by card. */
  5644. tp->rx_dropped++;
  5645. goto next_pkt;
  5646. }
  5647. prefetch(data + TG3_RX_OFFSET(tp));
  5648. len = ((desc->idx_len & RXD_LEN_MASK) >> RXD_LEN_SHIFT) -
  5649. ETH_FCS_LEN;
  5650. if ((desc->type_flags & RXD_FLAG_PTPSTAT_MASK) ==
  5651. RXD_FLAG_PTPSTAT_PTPV1 ||
  5652. (desc->type_flags & RXD_FLAG_PTPSTAT_MASK) ==
  5653. RXD_FLAG_PTPSTAT_PTPV2) {
  5654. tstamp = tr32(TG3_RX_TSTAMP_LSB);
  5655. tstamp |= (u64)tr32(TG3_RX_TSTAMP_MSB) << 32;
  5656. }
  5657. if (len > TG3_RX_COPY_THRESH(tp)) {
  5658. int skb_size;
  5659. unsigned int frag_size;
  5660. skb_size = tg3_alloc_rx_data(tp, tpr, opaque_key,
  5661. *post_ptr, &frag_size);
  5662. if (skb_size < 0)
  5663. goto drop_it;
  5664. pci_unmap_single(tp->pdev, dma_addr, skb_size,
  5665. PCI_DMA_FROMDEVICE);
  5666. /* Ensure that the update to the data happens
  5667. * after the usage of the old DMA mapping.
  5668. */
  5669. smp_wmb();
  5670. ri->data = NULL;
  5671. skb = build_skb(data, frag_size);
  5672. if (!skb) {
  5673. tg3_frag_free(frag_size != 0, data);
  5674. goto drop_it_no_recycle;
  5675. }
  5676. skb_reserve(skb, TG3_RX_OFFSET(tp));
  5677. } else {
  5678. tg3_recycle_rx(tnapi, tpr, opaque_key,
  5679. desc_idx, *post_ptr);
  5680. skb = netdev_alloc_skb(tp->dev,
  5681. len + TG3_RAW_IP_ALIGN);
  5682. if (skb == NULL)
  5683. goto drop_it_no_recycle;
  5684. skb_reserve(skb, TG3_RAW_IP_ALIGN);
  5685. pci_dma_sync_single_for_cpu(tp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
  5686. memcpy(skb->data,
  5687. data + TG3_RX_OFFSET(tp),
  5688. len);
  5689. pci_dma_sync_single_for_device(tp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
  5690. }
  5691. skb_put(skb, len);
  5692. if (tstamp)
  5693. tg3_hwclock_to_timestamp(tp, tstamp,
  5694. skb_hwtstamps(skb));
  5695. if ((tp->dev->features & NETIF_F_RXCSUM) &&
  5696. (desc->type_flags & RXD_FLAG_TCPUDP_CSUM) &&
  5697. (((desc->ip_tcp_csum & RXD_TCPCSUM_MASK)
  5698. >> RXD_TCPCSUM_SHIFT) == 0xffff))
  5699. skb->ip_summed = CHECKSUM_UNNECESSARY;
  5700. else
  5701. skb_checksum_none_assert(skb);
  5702. skb->protocol = eth_type_trans(skb, tp->dev);
  5703. if (len > (tp->dev->mtu + ETH_HLEN) &&
  5704. skb->protocol != htons(ETH_P_8021Q) &&
  5705. skb->protocol != htons(ETH_P_8021AD)) {
  5706. dev_kfree_skb_any(skb);
  5707. goto drop_it_no_recycle;
  5708. }
  5709. if (desc->type_flags & RXD_FLAG_VLAN &&
  5710. !(tp->rx_mode & RX_MODE_KEEP_VLAN_TAG))
  5711. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
  5712. desc->err_vlan & RXD_VLAN_MASK);
  5713. napi_gro_receive(&tnapi->napi, skb);
  5714. received++;
  5715. budget--;
  5716. next_pkt:
  5717. (*post_ptr)++;
  5718. if (unlikely(rx_std_posted >= tp->rx_std_max_post)) {
  5719. tpr->rx_std_prod_idx = std_prod_idx &
  5720. tp->rx_std_ring_mask;
  5721. tw32_rx_mbox(TG3_RX_STD_PROD_IDX_REG,
  5722. tpr->rx_std_prod_idx);
  5723. work_mask &= ~RXD_OPAQUE_RING_STD;
  5724. rx_std_posted = 0;
  5725. }
  5726. next_pkt_nopost:
  5727. sw_idx++;
  5728. sw_idx &= tp->rx_ret_ring_mask;
  5729. /* Refresh hw_idx to see if there is new work */
  5730. if (sw_idx == hw_idx) {
  5731. hw_idx = *(tnapi->rx_rcb_prod_idx);
  5732. rmb();
  5733. }
  5734. }
  5735. /* ACK the status ring. */
  5736. tnapi->rx_rcb_ptr = sw_idx;
  5737. tw32_rx_mbox(tnapi->consmbox, sw_idx);
  5738. /* Refill RX ring(s). */
  5739. if (!tg3_flag(tp, ENABLE_RSS)) {
  5740. /* Sync BD data before updating mailbox */
  5741. wmb();
  5742. if (work_mask & RXD_OPAQUE_RING_STD) {
  5743. tpr->rx_std_prod_idx = std_prod_idx &
  5744. tp->rx_std_ring_mask;
  5745. tw32_rx_mbox(TG3_RX_STD_PROD_IDX_REG,
  5746. tpr->rx_std_prod_idx);
  5747. }
  5748. if (work_mask & RXD_OPAQUE_RING_JUMBO) {
  5749. tpr->rx_jmb_prod_idx = jmb_prod_idx &
  5750. tp->rx_jmb_ring_mask;
  5751. tw32_rx_mbox(TG3_RX_JMB_PROD_IDX_REG,
  5752. tpr->rx_jmb_prod_idx);
  5753. }
  5754. } else if (work_mask) {
  5755. /* rx_std_buffers[] and rx_jmb_buffers[] entries must be
  5756. * updated before the producer indices can be updated.
  5757. */
  5758. smp_wmb();
  5759. tpr->rx_std_prod_idx = std_prod_idx & tp->rx_std_ring_mask;
  5760. tpr->rx_jmb_prod_idx = jmb_prod_idx & tp->rx_jmb_ring_mask;
  5761. if (tnapi != &tp->napi[1]) {
  5762. tp->rx_refill = true;
  5763. napi_schedule(&tp->napi[1].napi);
  5764. }
  5765. }
  5766. return received;
  5767. }
  5768. static void tg3_poll_link(struct tg3 *tp)
  5769. {
  5770. /* handle link change and other phy events */
  5771. if (!(tg3_flag(tp, USE_LINKCHG_REG) || tg3_flag(tp, POLL_SERDES))) {
  5772. struct tg3_hw_status *sblk = tp->napi[0].hw_status;
  5773. if (sblk->status & SD_STATUS_LINK_CHG) {
  5774. sblk->status = SD_STATUS_UPDATED |
  5775. (sblk->status & ~SD_STATUS_LINK_CHG);
  5776. spin_lock(&tp->lock);
  5777. if (tg3_flag(tp, USE_PHYLIB)) {
  5778. tw32_f(MAC_STATUS,
  5779. (MAC_STATUS_SYNC_CHANGED |
  5780. MAC_STATUS_CFG_CHANGED |
  5781. MAC_STATUS_MI_COMPLETION |
  5782. MAC_STATUS_LNKSTATE_CHANGED));
  5783. udelay(40);
  5784. } else
  5785. tg3_setup_phy(tp, false);
  5786. spin_unlock(&tp->lock);
  5787. }
  5788. }
  5789. }
  5790. static int tg3_rx_prodring_xfer(struct tg3 *tp,
  5791. struct tg3_rx_prodring_set *dpr,
  5792. struct tg3_rx_prodring_set *spr)
  5793. {
  5794. u32 si, di, cpycnt, src_prod_idx;
  5795. int i, err = 0;
  5796. while (1) {
  5797. src_prod_idx = spr->rx_std_prod_idx;
  5798. /* Make sure updates to the rx_std_buffers[] entries and the
  5799. * standard producer index are seen in the correct order.
  5800. */
  5801. smp_rmb();
  5802. if (spr->rx_std_cons_idx == src_prod_idx)
  5803. break;
  5804. if (spr->rx_std_cons_idx < src_prod_idx)
  5805. cpycnt = src_prod_idx - spr->rx_std_cons_idx;
  5806. else
  5807. cpycnt = tp->rx_std_ring_mask + 1 -
  5808. spr->rx_std_cons_idx;
  5809. cpycnt = min(cpycnt,
  5810. tp->rx_std_ring_mask + 1 - dpr->rx_std_prod_idx);
  5811. si = spr->rx_std_cons_idx;
  5812. di = dpr->rx_std_prod_idx;
  5813. for (i = di; i < di + cpycnt; i++) {
  5814. if (dpr->rx_std_buffers[i].data) {
  5815. cpycnt = i - di;
  5816. err = -ENOSPC;
  5817. break;
  5818. }
  5819. }
  5820. if (!cpycnt)
  5821. break;
  5822. /* Ensure that updates to the rx_std_buffers ring and the
  5823. * shadowed hardware producer ring from tg3_recycle_skb() are
  5824. * ordered correctly WRT the skb check above.
  5825. */
  5826. smp_rmb();
  5827. memcpy(&dpr->rx_std_buffers[di],
  5828. &spr->rx_std_buffers[si],
  5829. cpycnt * sizeof(struct ring_info));
  5830. for (i = 0; i < cpycnt; i++, di++, si++) {
  5831. struct tg3_rx_buffer_desc *sbd, *dbd;
  5832. sbd = &spr->rx_std[si];
  5833. dbd = &dpr->rx_std[di];
  5834. dbd->addr_hi = sbd->addr_hi;
  5835. dbd->addr_lo = sbd->addr_lo;
  5836. }
  5837. spr->rx_std_cons_idx = (spr->rx_std_cons_idx + cpycnt) &
  5838. tp->rx_std_ring_mask;
  5839. dpr->rx_std_prod_idx = (dpr->rx_std_prod_idx + cpycnt) &
  5840. tp->rx_std_ring_mask;
  5841. }
  5842. while (1) {
  5843. src_prod_idx = spr->rx_jmb_prod_idx;
  5844. /* Make sure updates to the rx_jmb_buffers[] entries and
  5845. * the jumbo producer index are seen in the correct order.
  5846. */
  5847. smp_rmb();
  5848. if (spr->rx_jmb_cons_idx == src_prod_idx)
  5849. break;
  5850. if (spr->rx_jmb_cons_idx < src_prod_idx)
  5851. cpycnt = src_prod_idx - spr->rx_jmb_cons_idx;
  5852. else
  5853. cpycnt = tp->rx_jmb_ring_mask + 1 -
  5854. spr->rx_jmb_cons_idx;
  5855. cpycnt = min(cpycnt,
  5856. tp->rx_jmb_ring_mask + 1 - dpr->rx_jmb_prod_idx);
  5857. si = spr->rx_jmb_cons_idx;
  5858. di = dpr->rx_jmb_prod_idx;
  5859. for (i = di; i < di + cpycnt; i++) {
  5860. if (dpr->rx_jmb_buffers[i].data) {
  5861. cpycnt = i - di;
  5862. err = -ENOSPC;
  5863. break;
  5864. }
  5865. }
  5866. if (!cpycnt)
  5867. break;
  5868. /* Ensure that updates to the rx_jmb_buffers ring and the
  5869. * shadowed hardware producer ring from tg3_recycle_skb() are
  5870. * ordered correctly WRT the skb check above.
  5871. */
  5872. smp_rmb();
  5873. memcpy(&dpr->rx_jmb_buffers[di],
  5874. &spr->rx_jmb_buffers[si],
  5875. cpycnt * sizeof(struct ring_info));
  5876. for (i = 0; i < cpycnt; i++, di++, si++) {
  5877. struct tg3_rx_buffer_desc *sbd, *dbd;
  5878. sbd = &spr->rx_jmb[si].std;
  5879. dbd = &dpr->rx_jmb[di].std;
  5880. dbd->addr_hi = sbd->addr_hi;
  5881. dbd->addr_lo = sbd->addr_lo;
  5882. }
  5883. spr->rx_jmb_cons_idx = (spr->rx_jmb_cons_idx + cpycnt) &
  5884. tp->rx_jmb_ring_mask;
  5885. dpr->rx_jmb_prod_idx = (dpr->rx_jmb_prod_idx + cpycnt) &
  5886. tp->rx_jmb_ring_mask;
  5887. }
  5888. return err;
  5889. }
  5890. static int tg3_poll_work(struct tg3_napi *tnapi, int work_done, int budget)
  5891. {
  5892. struct tg3 *tp = tnapi->tp;
  5893. /* run TX completion thread */
  5894. if (tnapi->hw_status->idx[0].tx_consumer != tnapi->tx_cons) {
  5895. tg3_tx(tnapi);
  5896. if (unlikely(tg3_flag(tp, TX_RECOVERY_PENDING)))
  5897. return work_done;
  5898. }
  5899. if (!tnapi->rx_rcb_prod_idx)
  5900. return work_done;
  5901. /* run RX thread, within the bounds set by NAPI.
  5902. * All RX "locking" is done by ensuring outside
  5903. * code synchronizes with tg3->napi.poll()
  5904. */
  5905. if (*(tnapi->rx_rcb_prod_idx) != tnapi->rx_rcb_ptr)
  5906. work_done += tg3_rx(tnapi, budget - work_done);
  5907. if (tg3_flag(tp, ENABLE_RSS) && tnapi == &tp->napi[1]) {
  5908. struct tg3_rx_prodring_set *dpr = &tp->napi[0].prodring;
  5909. int i, err = 0;
  5910. u32 std_prod_idx = dpr->rx_std_prod_idx;
  5911. u32 jmb_prod_idx = dpr->rx_jmb_prod_idx;
  5912. tp->rx_refill = false;
  5913. for (i = 1; i <= tp->rxq_cnt; i++)
  5914. err |= tg3_rx_prodring_xfer(tp, dpr,
  5915. &tp->napi[i].prodring);
  5916. wmb();
  5917. if (std_prod_idx != dpr->rx_std_prod_idx)
  5918. tw32_rx_mbox(TG3_RX_STD_PROD_IDX_REG,
  5919. dpr->rx_std_prod_idx);
  5920. if (jmb_prod_idx != dpr->rx_jmb_prod_idx)
  5921. tw32_rx_mbox(TG3_RX_JMB_PROD_IDX_REG,
  5922. dpr->rx_jmb_prod_idx);
  5923. if (err)
  5924. tw32_f(HOSTCC_MODE, tp->coal_now);
  5925. }
  5926. return work_done;
  5927. }
  5928. static inline void tg3_reset_task_schedule(struct tg3 *tp)
  5929. {
  5930. if (!test_and_set_bit(TG3_FLAG_RESET_TASK_PENDING, tp->tg3_flags))
  5931. schedule_work(&tp->reset_task);
  5932. }
  5933. static inline void tg3_reset_task_cancel(struct tg3 *tp)
  5934. {
  5935. cancel_work_sync(&tp->reset_task);
  5936. tg3_flag_clear(tp, RESET_TASK_PENDING);
  5937. tg3_flag_clear(tp, TX_RECOVERY_PENDING);
  5938. }
  5939. static int tg3_poll_msix(struct napi_struct *napi, int budget)
  5940. {
  5941. struct tg3_napi *tnapi = container_of(napi, struct tg3_napi, napi);
  5942. struct tg3 *tp = tnapi->tp;
  5943. int work_done = 0;
  5944. struct tg3_hw_status *sblk = tnapi->hw_status;
  5945. while (1) {
  5946. work_done = tg3_poll_work(tnapi, work_done, budget);
  5947. if (unlikely(tg3_flag(tp, TX_RECOVERY_PENDING)))
  5948. goto tx_recovery;
  5949. if (unlikely(work_done >= budget))
  5950. break;
  5951. /* tp->last_tag is used in tg3_int_reenable() below
  5952. * to tell the hw how much work has been processed,
  5953. * so we must read it before checking for more work.
  5954. */
  5955. tnapi->last_tag = sblk->status_tag;
  5956. tnapi->last_irq_tag = tnapi->last_tag;
  5957. rmb();
  5958. /* check for RX/TX work to do */
  5959. if (likely(sblk->idx[0].tx_consumer == tnapi->tx_cons &&
  5960. *(tnapi->rx_rcb_prod_idx) == tnapi->rx_rcb_ptr)) {
  5961. /* This test here is not race free, but will reduce
  5962. * the number of interrupts by looping again.
  5963. */
  5964. if (tnapi == &tp->napi[1] && tp->rx_refill)
  5965. continue;
  5966. napi_complete_done(napi, work_done);
  5967. /* Reenable interrupts. */
  5968. tw32_mailbox(tnapi->int_mbox, tnapi->last_tag << 24);
  5969. /* This test here is synchronized by napi_schedule()
  5970. * and napi_complete() to close the race condition.
  5971. */
  5972. if (unlikely(tnapi == &tp->napi[1] && tp->rx_refill)) {
  5973. tw32(HOSTCC_MODE, tp->coalesce_mode |
  5974. HOSTCC_MODE_ENABLE |
  5975. tnapi->coal_now);
  5976. }
  5977. break;
  5978. }
  5979. }
  5980. tg3_send_ape_heartbeat(tp, TG3_APE_HB_INTERVAL << 1);
  5981. return work_done;
  5982. tx_recovery:
  5983. /* work_done is guaranteed to be less than budget. */
  5984. napi_complete(napi);
  5985. tg3_reset_task_schedule(tp);
  5986. return work_done;
  5987. }
  5988. static void tg3_process_error(struct tg3 *tp)
  5989. {
  5990. u32 val;
  5991. bool real_error = false;
  5992. if (tg3_flag(tp, ERROR_PROCESSED))
  5993. return;
  5994. /* Check Flow Attention register */
  5995. val = tr32(HOSTCC_FLOW_ATTN);
  5996. if (val & ~HOSTCC_FLOW_ATTN_MBUF_LWM) {
  5997. netdev_err(tp->dev, "FLOW Attention error. Resetting chip.\n");
  5998. real_error = true;
  5999. }
  6000. if (tr32(MSGINT_STATUS) & ~MSGINT_STATUS_MSI_REQ) {
  6001. netdev_err(tp->dev, "MSI Status error. Resetting chip.\n");
  6002. real_error = true;
  6003. }
  6004. if (tr32(RDMAC_STATUS) || tr32(WDMAC_STATUS)) {
  6005. netdev_err(tp->dev, "DMA Status error. Resetting chip.\n");
  6006. real_error = true;
  6007. }
  6008. if (!real_error)
  6009. return;
  6010. tg3_dump_state(tp);
  6011. tg3_flag_set(tp, ERROR_PROCESSED);
  6012. tg3_reset_task_schedule(tp);
  6013. }
  6014. static int tg3_poll(struct napi_struct *napi, int budget)
  6015. {
  6016. struct tg3_napi *tnapi = container_of(napi, struct tg3_napi, napi);
  6017. struct tg3 *tp = tnapi->tp;
  6018. int work_done = 0;
  6019. struct tg3_hw_status *sblk = tnapi->hw_status;
  6020. while (1) {
  6021. if (sblk->status & SD_STATUS_ERROR)
  6022. tg3_process_error(tp);
  6023. tg3_poll_link(tp);
  6024. work_done = tg3_poll_work(tnapi, work_done, budget);
  6025. if (unlikely(tg3_flag(tp, TX_RECOVERY_PENDING)))
  6026. goto tx_recovery;
  6027. if (unlikely(work_done >= budget))
  6028. break;
  6029. if (tg3_flag(tp, TAGGED_STATUS)) {
  6030. /* tp->last_tag is used in tg3_int_reenable() below
  6031. * to tell the hw how much work has been processed,
  6032. * so we must read it before checking for more work.
  6033. */
  6034. tnapi->last_tag = sblk->status_tag;
  6035. tnapi->last_irq_tag = tnapi->last_tag;
  6036. rmb();
  6037. } else
  6038. sblk->status &= ~SD_STATUS_UPDATED;
  6039. if (likely(!tg3_has_work(tnapi))) {
  6040. napi_complete_done(napi, work_done);
  6041. tg3_int_reenable(tnapi);
  6042. break;
  6043. }
  6044. }
  6045. tg3_send_ape_heartbeat(tp, TG3_APE_HB_INTERVAL << 1);
  6046. return work_done;
  6047. tx_recovery:
  6048. /* work_done is guaranteed to be less than budget. */
  6049. napi_complete(napi);
  6050. tg3_reset_task_schedule(tp);
  6051. return work_done;
  6052. }
  6053. static void tg3_napi_disable(struct tg3 *tp)
  6054. {
  6055. int i;
  6056. for (i = tp->irq_cnt - 1; i >= 0; i--)
  6057. napi_disable(&tp->napi[i].napi);
  6058. }
  6059. static void tg3_napi_enable(struct tg3 *tp)
  6060. {
  6061. int i;
  6062. for (i = 0; i < tp->irq_cnt; i++)
  6063. napi_enable(&tp->napi[i].napi);
  6064. }
  6065. static void tg3_napi_init(struct tg3 *tp)
  6066. {
  6067. int i;
  6068. netif_napi_add(tp->dev, &tp->napi[0].napi, tg3_poll, 64);
  6069. for (i = 1; i < tp->irq_cnt; i++)
  6070. netif_napi_add(tp->dev, &tp->napi[i].napi, tg3_poll_msix, 64);
  6071. }
  6072. static void tg3_napi_fini(struct tg3 *tp)
  6073. {
  6074. int i;
  6075. for (i = 0; i < tp->irq_cnt; i++)
  6076. netif_napi_del(&tp->napi[i].napi);
  6077. }
  6078. static inline void tg3_netif_stop(struct tg3 *tp)
  6079. {
  6080. netif_trans_update(tp->dev); /* prevent tx timeout */
  6081. tg3_napi_disable(tp);
  6082. netif_carrier_off(tp->dev);
  6083. netif_tx_disable(tp->dev);
  6084. }
  6085. /* tp->lock must be held */
  6086. static inline void tg3_netif_start(struct tg3 *tp)
  6087. {
  6088. tg3_ptp_resume(tp);
  6089. /* NOTE: unconditional netif_tx_wake_all_queues is only
  6090. * appropriate so long as all callers are assured to
  6091. * have free tx slots (such as after tg3_init_hw)
  6092. */
  6093. netif_tx_wake_all_queues(tp->dev);
  6094. if (tp->link_up)
  6095. netif_carrier_on(tp->dev);
  6096. tg3_napi_enable(tp);
  6097. tp->napi[0].hw_status->status |= SD_STATUS_UPDATED;
  6098. tg3_enable_ints(tp);
  6099. }
  6100. static void tg3_irq_quiesce(struct tg3 *tp)
  6101. __releases(tp->lock)
  6102. __acquires(tp->lock)
  6103. {
  6104. int i;
  6105. BUG_ON(tp->irq_sync);
  6106. tp->irq_sync = 1;
  6107. smp_mb();
  6108. spin_unlock_bh(&tp->lock);
  6109. for (i = 0; i < tp->irq_cnt; i++)
  6110. synchronize_irq(tp->napi[i].irq_vec);
  6111. spin_lock_bh(&tp->lock);
  6112. }
  6113. /* Fully shutdown all tg3 driver activity elsewhere in the system.
  6114. * If irq_sync is non-zero, then the IRQ handler must be synchronized
  6115. * with as well. Most of the time, this is not necessary except when
  6116. * shutting down the device.
  6117. */
  6118. static inline void tg3_full_lock(struct tg3 *tp, int irq_sync)
  6119. {
  6120. spin_lock_bh(&tp->lock);
  6121. if (irq_sync)
  6122. tg3_irq_quiesce(tp);
  6123. }
  6124. static inline void tg3_full_unlock(struct tg3 *tp)
  6125. {
  6126. spin_unlock_bh(&tp->lock);
  6127. }
  6128. /* One-shot MSI handler - Chip automatically disables interrupt
  6129. * after sending MSI so driver doesn't have to do it.
  6130. */
  6131. static irqreturn_t tg3_msi_1shot(int irq, void *dev_id)
  6132. {
  6133. struct tg3_napi *tnapi = dev_id;
  6134. struct tg3 *tp = tnapi->tp;
  6135. prefetch(tnapi->hw_status);
  6136. if (tnapi->rx_rcb)
  6137. prefetch(&tnapi->rx_rcb[tnapi->rx_rcb_ptr]);
  6138. if (likely(!tg3_irq_sync(tp)))
  6139. napi_schedule(&tnapi->napi);
  6140. return IRQ_HANDLED;
  6141. }
  6142. /* MSI ISR - No need to check for interrupt sharing and no need to
  6143. * flush status block and interrupt mailbox. PCI ordering rules
  6144. * guarantee that MSI will arrive after the status block.
  6145. */
  6146. static irqreturn_t tg3_msi(int irq, void *dev_id)
  6147. {
  6148. struct tg3_napi *tnapi = dev_id;
  6149. struct tg3 *tp = tnapi->tp;
  6150. prefetch(tnapi->hw_status);
  6151. if (tnapi->rx_rcb)
  6152. prefetch(&tnapi->rx_rcb[tnapi->rx_rcb_ptr]);
  6153. /*
  6154. * Writing any value to intr-mbox-0 clears PCI INTA# and
  6155. * chip-internal interrupt pending events.
  6156. * Writing non-zero to intr-mbox-0 additional tells the
  6157. * NIC to stop sending us irqs, engaging "in-intr-handler"
  6158. * event coalescing.
  6159. */
  6160. tw32_mailbox(tnapi->int_mbox, 0x00000001);
  6161. if (likely(!tg3_irq_sync(tp)))
  6162. napi_schedule(&tnapi->napi);
  6163. return IRQ_RETVAL(1);
  6164. }
  6165. static irqreturn_t tg3_interrupt(int irq, void *dev_id)
  6166. {
  6167. struct tg3_napi *tnapi = dev_id;
  6168. struct tg3 *tp = tnapi->tp;
  6169. struct tg3_hw_status *sblk = tnapi->hw_status;
  6170. unsigned int handled = 1;
  6171. /* In INTx mode, it is possible for the interrupt to arrive at
  6172. * the CPU before the status block posted prior to the interrupt.
  6173. * Reading the PCI State register will confirm whether the
  6174. * interrupt is ours and will flush the status block.
  6175. */
  6176. if (unlikely(!(sblk->status & SD_STATUS_UPDATED))) {
  6177. if (tg3_flag(tp, CHIP_RESETTING) ||
  6178. (tr32(TG3PCI_PCISTATE) & PCISTATE_INT_NOT_ACTIVE)) {
  6179. handled = 0;
  6180. goto out;
  6181. }
  6182. }
  6183. /*
  6184. * Writing any value to intr-mbox-0 clears PCI INTA# and
  6185. * chip-internal interrupt pending events.
  6186. * Writing non-zero to intr-mbox-0 additional tells the
  6187. * NIC to stop sending us irqs, engaging "in-intr-handler"
  6188. * event coalescing.
  6189. *
  6190. * Flush the mailbox to de-assert the IRQ immediately to prevent
  6191. * spurious interrupts. The flush impacts performance but
  6192. * excessive spurious interrupts can be worse in some cases.
  6193. */
  6194. tw32_mailbox_f(MAILBOX_INTERRUPT_0 + TG3_64BIT_REG_LOW, 0x00000001);
  6195. if (tg3_irq_sync(tp))
  6196. goto out;
  6197. sblk->status &= ~SD_STATUS_UPDATED;
  6198. if (likely(tg3_has_work(tnapi))) {
  6199. prefetch(&tnapi->rx_rcb[tnapi->rx_rcb_ptr]);
  6200. napi_schedule(&tnapi->napi);
  6201. } else {
  6202. /* No work, shared interrupt perhaps? re-enable
  6203. * interrupts, and flush that PCI write
  6204. */
  6205. tw32_mailbox_f(MAILBOX_INTERRUPT_0 + TG3_64BIT_REG_LOW,
  6206. 0x00000000);
  6207. }
  6208. out:
  6209. return IRQ_RETVAL(handled);
  6210. }
  6211. static irqreturn_t tg3_interrupt_tagged(int irq, void *dev_id)
  6212. {
  6213. struct tg3_napi *tnapi = dev_id;
  6214. struct tg3 *tp = tnapi->tp;
  6215. struct tg3_hw_status *sblk = tnapi->hw_status;
  6216. unsigned int handled = 1;
  6217. /* In INTx mode, it is possible for the interrupt to arrive at
  6218. * the CPU before the status block posted prior to the interrupt.
  6219. * Reading the PCI State register will confirm whether the
  6220. * interrupt is ours and will flush the status block.
  6221. */
  6222. if (unlikely(sblk->status_tag == tnapi->last_irq_tag)) {
  6223. if (tg3_flag(tp, CHIP_RESETTING) ||
  6224. (tr32(TG3PCI_PCISTATE) & PCISTATE_INT_NOT_ACTIVE)) {
  6225. handled = 0;
  6226. goto out;
  6227. }
  6228. }
  6229. /*
  6230. * writing any value to intr-mbox-0 clears PCI INTA# and
  6231. * chip-internal interrupt pending events.
  6232. * writing non-zero to intr-mbox-0 additional tells the
  6233. * NIC to stop sending us irqs, engaging "in-intr-handler"
  6234. * event coalescing.
  6235. *
  6236. * Flush the mailbox to de-assert the IRQ immediately to prevent
  6237. * spurious interrupts. The flush impacts performance but
  6238. * excessive spurious interrupts can be worse in some cases.
  6239. */
  6240. tw32_mailbox_f(MAILBOX_INTERRUPT_0 + TG3_64BIT_REG_LOW, 0x00000001);
  6241. /*
  6242. * In a shared interrupt configuration, sometimes other devices'
  6243. * interrupts will scream. We record the current status tag here
  6244. * so that the above check can report that the screaming interrupts
  6245. * are unhandled. Eventually they will be silenced.
  6246. */
  6247. tnapi->last_irq_tag = sblk->status_tag;
  6248. if (tg3_irq_sync(tp))
  6249. goto out;
  6250. prefetch(&tnapi->rx_rcb[tnapi->rx_rcb_ptr]);
  6251. napi_schedule(&tnapi->napi);
  6252. out:
  6253. return IRQ_RETVAL(handled);
  6254. }
  6255. /* ISR for interrupt test */
  6256. static irqreturn_t tg3_test_isr(int irq, void *dev_id)
  6257. {
  6258. struct tg3_napi *tnapi = dev_id;
  6259. struct tg3 *tp = tnapi->tp;
  6260. struct tg3_hw_status *sblk = tnapi->hw_status;
  6261. if ((sblk->status & SD_STATUS_UPDATED) ||
  6262. !(tr32(TG3PCI_PCISTATE) & PCISTATE_INT_NOT_ACTIVE)) {
  6263. tg3_disable_ints(tp);
  6264. return IRQ_RETVAL(1);
  6265. }
  6266. return IRQ_RETVAL(0);
  6267. }
  6268. #ifdef CONFIG_NET_POLL_CONTROLLER
  6269. static void tg3_poll_controller(struct net_device *dev)
  6270. {
  6271. int i;
  6272. struct tg3 *tp = netdev_priv(dev);
  6273. if (tg3_irq_sync(tp))
  6274. return;
  6275. for (i = 0; i < tp->irq_cnt; i++)
  6276. tg3_interrupt(tp->napi[i].irq_vec, &tp->napi[i]);
  6277. }
  6278. #endif
  6279. static void tg3_tx_timeout(struct net_device *dev, unsigned int txqueue)
  6280. {
  6281. struct tg3 *tp = netdev_priv(dev);
  6282. if (netif_msg_tx_err(tp)) {
  6283. netdev_err(dev, "transmit timed out, resetting\n");
  6284. tg3_dump_state(tp);
  6285. }
  6286. tg3_reset_task_schedule(tp);
  6287. }
  6288. /* Test for DMA buffers crossing any 4GB boundaries: 4G, 8G, etc */
  6289. static inline int tg3_4g_overflow_test(dma_addr_t mapping, int len)
  6290. {
  6291. u32 base = (u32) mapping & 0xffffffff;
  6292. return base + len + 8 < base;
  6293. }
  6294. /* Test for TSO DMA buffers that cross into regions which are within MSS bytes
  6295. * of any 4GB boundaries: 4G, 8G, etc
  6296. */
  6297. static inline int tg3_4g_tso_overflow_test(struct tg3 *tp, dma_addr_t mapping,
  6298. u32 len, u32 mss)
  6299. {
  6300. if (tg3_asic_rev(tp) == ASIC_REV_5762 && mss) {
  6301. u32 base = (u32) mapping & 0xffffffff;
  6302. return ((base + len + (mss & 0x3fff)) < base);
  6303. }
  6304. return 0;
  6305. }
  6306. /* Test for DMA addresses > 40-bit */
  6307. static inline int tg3_40bit_overflow_test(struct tg3 *tp, dma_addr_t mapping,
  6308. int len)
  6309. {
  6310. #if defined(CONFIG_HIGHMEM) && (BITS_PER_LONG == 64)
  6311. if (tg3_flag(tp, 40BIT_DMA_BUG))
  6312. return ((u64) mapping + len) > DMA_BIT_MASK(40);
  6313. return 0;
  6314. #else
  6315. return 0;
  6316. #endif
  6317. }
  6318. static inline void tg3_tx_set_bd(struct tg3_tx_buffer_desc *txbd,
  6319. dma_addr_t mapping, u32 len, u32 flags,
  6320. u32 mss, u32 vlan)
  6321. {
  6322. txbd->addr_hi = ((u64) mapping >> 32);
  6323. txbd->addr_lo = ((u64) mapping & 0xffffffff);
  6324. txbd->len_flags = (len << TXD_LEN_SHIFT) | (flags & 0x0000ffff);
  6325. txbd->vlan_tag = (mss << TXD_MSS_SHIFT) | (vlan << TXD_VLAN_TAG_SHIFT);
  6326. }
  6327. static bool tg3_tx_frag_set(struct tg3_napi *tnapi, u32 *entry, u32 *budget,
  6328. dma_addr_t map, u32 len, u32 flags,
  6329. u32 mss, u32 vlan)
  6330. {
  6331. struct tg3 *tp = tnapi->tp;
  6332. bool hwbug = false;
  6333. if (tg3_flag(tp, SHORT_DMA_BUG) && len <= 8)
  6334. hwbug = true;
  6335. if (tg3_4g_overflow_test(map, len))
  6336. hwbug = true;
  6337. if (tg3_4g_tso_overflow_test(tp, map, len, mss))
  6338. hwbug = true;
  6339. if (tg3_40bit_overflow_test(tp, map, len))
  6340. hwbug = true;
  6341. if (tp->dma_limit) {
  6342. u32 prvidx = *entry;
  6343. u32 tmp_flag = flags & ~TXD_FLAG_END;
  6344. while (len > tp->dma_limit && *budget) {
  6345. u32 frag_len = tp->dma_limit;
  6346. len -= tp->dma_limit;
  6347. /* Avoid the 8byte DMA problem */
  6348. if (len <= 8) {
  6349. len += tp->dma_limit / 2;
  6350. frag_len = tp->dma_limit / 2;
  6351. }
  6352. tnapi->tx_buffers[*entry].fragmented = true;
  6353. tg3_tx_set_bd(&tnapi->tx_ring[*entry], map,
  6354. frag_len, tmp_flag, mss, vlan);
  6355. *budget -= 1;
  6356. prvidx = *entry;
  6357. *entry = NEXT_TX(*entry);
  6358. map += frag_len;
  6359. }
  6360. if (len) {
  6361. if (*budget) {
  6362. tg3_tx_set_bd(&tnapi->tx_ring[*entry], map,
  6363. len, flags, mss, vlan);
  6364. *budget -= 1;
  6365. *entry = NEXT_TX(*entry);
  6366. } else {
  6367. hwbug = true;
  6368. tnapi->tx_buffers[prvidx].fragmented = false;
  6369. }
  6370. }
  6371. } else {
  6372. tg3_tx_set_bd(&tnapi->tx_ring[*entry], map,
  6373. len, flags, mss, vlan);
  6374. *entry = NEXT_TX(*entry);
  6375. }
  6376. return hwbug;
  6377. }
  6378. static void tg3_tx_skb_unmap(struct tg3_napi *tnapi, u32 entry, int last)
  6379. {
  6380. int i;
  6381. struct sk_buff *skb;
  6382. struct tg3_tx_ring_info *txb = &tnapi->tx_buffers[entry];
  6383. skb = txb->skb;
  6384. txb->skb = NULL;
  6385. pci_unmap_single(tnapi->tp->pdev,
  6386. dma_unmap_addr(txb, mapping),
  6387. skb_headlen(skb),
  6388. PCI_DMA_TODEVICE);
  6389. while (txb->fragmented) {
  6390. txb->fragmented = false;
  6391. entry = NEXT_TX(entry);
  6392. txb = &tnapi->tx_buffers[entry];
  6393. }
  6394. for (i = 0; i <= last; i++) {
  6395. const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  6396. entry = NEXT_TX(entry);
  6397. txb = &tnapi->tx_buffers[entry];
  6398. pci_unmap_page(tnapi->tp->pdev,
  6399. dma_unmap_addr(txb, mapping),
  6400. skb_frag_size(frag), PCI_DMA_TODEVICE);
  6401. while (txb->fragmented) {
  6402. txb->fragmented = false;
  6403. entry = NEXT_TX(entry);
  6404. txb = &tnapi->tx_buffers[entry];
  6405. }
  6406. }
  6407. }
  6408. /* Workaround 4GB and 40-bit hardware DMA bugs. */
  6409. static int tigon3_dma_hwbug_workaround(struct tg3_napi *tnapi,
  6410. struct sk_buff **pskb,
  6411. u32 *entry, u32 *budget,
  6412. u32 base_flags, u32 mss, u32 vlan)
  6413. {
  6414. struct tg3 *tp = tnapi->tp;
  6415. struct sk_buff *new_skb, *skb = *pskb;
  6416. dma_addr_t new_addr = 0;
  6417. int ret = 0;
  6418. if (tg3_asic_rev(tp) != ASIC_REV_5701)
  6419. new_skb = skb_copy(skb, GFP_ATOMIC);
  6420. else {
  6421. int more_headroom = 4 - ((unsigned long)skb->data & 3);
  6422. new_skb = skb_copy_expand(skb,
  6423. skb_headroom(skb) + more_headroom,
  6424. skb_tailroom(skb), GFP_ATOMIC);
  6425. }
  6426. if (!new_skb) {
  6427. ret = -1;
  6428. } else {
  6429. /* New SKB is guaranteed to be linear. */
  6430. new_addr = pci_map_single(tp->pdev, new_skb->data, new_skb->len,
  6431. PCI_DMA_TODEVICE);
  6432. /* Make sure the mapping succeeded */
  6433. if (pci_dma_mapping_error(tp->pdev, new_addr)) {
  6434. dev_kfree_skb_any(new_skb);
  6435. ret = -1;
  6436. } else {
  6437. u32 save_entry = *entry;
  6438. base_flags |= TXD_FLAG_END;
  6439. tnapi->tx_buffers[*entry].skb = new_skb;
  6440. dma_unmap_addr_set(&tnapi->tx_buffers[*entry],
  6441. mapping, new_addr);
  6442. if (tg3_tx_frag_set(tnapi, entry, budget, new_addr,
  6443. new_skb->len, base_flags,
  6444. mss, vlan)) {
  6445. tg3_tx_skb_unmap(tnapi, save_entry, -1);
  6446. dev_kfree_skb_any(new_skb);
  6447. ret = -1;
  6448. }
  6449. }
  6450. }
  6451. dev_consume_skb_any(skb);
  6452. *pskb = new_skb;
  6453. return ret;
  6454. }
  6455. static bool tg3_tso_bug_gso_check(struct tg3_napi *tnapi, struct sk_buff *skb)
  6456. {
  6457. /* Check if we will never have enough descriptors,
  6458. * as gso_segs can be more than current ring size
  6459. */
  6460. return skb_shinfo(skb)->gso_segs < tnapi->tx_pending / 3;
  6461. }
  6462. static netdev_tx_t tg3_start_xmit(struct sk_buff *, struct net_device *);
  6463. /* Use GSO to workaround all TSO packets that meet HW bug conditions
  6464. * indicated in tg3_tx_frag_set()
  6465. */
  6466. static int tg3_tso_bug(struct tg3 *tp, struct tg3_napi *tnapi,
  6467. struct netdev_queue *txq, struct sk_buff *skb)
  6468. {
  6469. u32 frag_cnt_est = skb_shinfo(skb)->gso_segs * 3;
  6470. struct sk_buff *segs, *seg, *next;
  6471. /* Estimate the number of fragments in the worst case */
  6472. if (unlikely(tg3_tx_avail(tnapi) <= frag_cnt_est)) {
  6473. netif_tx_stop_queue(txq);
  6474. /* netif_tx_stop_queue() must be done before checking
  6475. * checking tx index in tg3_tx_avail() below, because in
  6476. * tg3_tx(), we update tx index before checking for
  6477. * netif_tx_queue_stopped().
  6478. */
  6479. smp_mb();
  6480. if (tg3_tx_avail(tnapi) <= frag_cnt_est)
  6481. return NETDEV_TX_BUSY;
  6482. netif_tx_wake_queue(txq);
  6483. }
  6484. segs = skb_gso_segment(skb, tp->dev->features &
  6485. ~(NETIF_F_TSO | NETIF_F_TSO6));
  6486. if (IS_ERR(segs) || !segs)
  6487. goto tg3_tso_bug_end;
  6488. skb_list_walk_safe(segs, seg, next) {
  6489. skb_mark_not_on_list(seg);
  6490. tg3_start_xmit(seg, tp->dev);
  6491. }
  6492. tg3_tso_bug_end:
  6493. dev_consume_skb_any(skb);
  6494. return NETDEV_TX_OK;
  6495. }
  6496. /* hard_start_xmit for all devices */
  6497. static netdev_tx_t tg3_start_xmit(struct sk_buff *skb, struct net_device *dev)
  6498. {
  6499. struct tg3 *tp = netdev_priv(dev);
  6500. u32 len, entry, base_flags, mss, vlan = 0;
  6501. u32 budget;
  6502. int i = -1, would_hit_hwbug;
  6503. dma_addr_t mapping;
  6504. struct tg3_napi *tnapi;
  6505. struct netdev_queue *txq;
  6506. unsigned int last;
  6507. struct iphdr *iph = NULL;
  6508. struct tcphdr *tcph = NULL;
  6509. __sum16 tcp_csum = 0, ip_csum = 0;
  6510. __be16 ip_tot_len = 0;
  6511. txq = netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
  6512. tnapi = &tp->napi[skb_get_queue_mapping(skb)];
  6513. if (tg3_flag(tp, ENABLE_TSS))
  6514. tnapi++;
  6515. budget = tg3_tx_avail(tnapi);
  6516. /* We are running in BH disabled context with netif_tx_lock
  6517. * and TX reclaim runs via tp->napi.poll inside of a software
  6518. * interrupt. Furthermore, IRQ processing runs lockless so we have
  6519. * no IRQ context deadlocks to worry about either. Rejoice!
  6520. */
  6521. if (unlikely(budget <= (skb_shinfo(skb)->nr_frags + 1))) {
  6522. if (!netif_tx_queue_stopped(txq)) {
  6523. netif_tx_stop_queue(txq);
  6524. /* This is a hard error, log it. */
  6525. netdev_err(dev,
  6526. "BUG! Tx Ring full when queue awake!\n");
  6527. }
  6528. return NETDEV_TX_BUSY;
  6529. }
  6530. entry = tnapi->tx_prod;
  6531. base_flags = 0;
  6532. mss = skb_shinfo(skb)->gso_size;
  6533. if (mss) {
  6534. u32 tcp_opt_len, hdr_len;
  6535. if (skb_cow_head(skb, 0))
  6536. goto drop;
  6537. iph = ip_hdr(skb);
  6538. tcp_opt_len = tcp_optlen(skb);
  6539. hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb) - ETH_HLEN;
  6540. /* HW/FW can not correctly segment packets that have been
  6541. * vlan encapsulated.
  6542. */
  6543. if (skb->protocol == htons(ETH_P_8021Q) ||
  6544. skb->protocol == htons(ETH_P_8021AD)) {
  6545. if (tg3_tso_bug_gso_check(tnapi, skb))
  6546. return tg3_tso_bug(tp, tnapi, txq, skb);
  6547. goto drop;
  6548. }
  6549. if (!skb_is_gso_v6(skb)) {
  6550. if (unlikely((ETH_HLEN + hdr_len) > 80) &&
  6551. tg3_flag(tp, TSO_BUG)) {
  6552. if (tg3_tso_bug_gso_check(tnapi, skb))
  6553. return tg3_tso_bug(tp, tnapi, txq, skb);
  6554. goto drop;
  6555. }
  6556. ip_csum = iph->check;
  6557. ip_tot_len = iph->tot_len;
  6558. iph->check = 0;
  6559. iph->tot_len = htons(mss + hdr_len);
  6560. }
  6561. base_flags |= (TXD_FLAG_CPU_PRE_DMA |
  6562. TXD_FLAG_CPU_POST_DMA);
  6563. tcph = tcp_hdr(skb);
  6564. tcp_csum = tcph->check;
  6565. if (tg3_flag(tp, HW_TSO_1) ||
  6566. tg3_flag(tp, HW_TSO_2) ||
  6567. tg3_flag(tp, HW_TSO_3)) {
  6568. tcph->check = 0;
  6569. base_flags &= ~TXD_FLAG_TCPUDP_CSUM;
  6570. } else {
  6571. tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
  6572. 0, IPPROTO_TCP, 0);
  6573. }
  6574. if (tg3_flag(tp, HW_TSO_3)) {
  6575. mss |= (hdr_len & 0xc) << 12;
  6576. if (hdr_len & 0x10)
  6577. base_flags |= 0x00000010;
  6578. base_flags |= (hdr_len & 0x3e0) << 5;
  6579. } else if (tg3_flag(tp, HW_TSO_2))
  6580. mss |= hdr_len << 9;
  6581. else if (tg3_flag(tp, HW_TSO_1) ||
  6582. tg3_asic_rev(tp) == ASIC_REV_5705) {
  6583. if (tcp_opt_len || iph->ihl > 5) {
  6584. int tsflags;
  6585. tsflags = (iph->ihl - 5) + (tcp_opt_len >> 2);
  6586. mss |= (tsflags << 11);
  6587. }
  6588. } else {
  6589. if (tcp_opt_len || iph->ihl > 5) {
  6590. int tsflags;
  6591. tsflags = (iph->ihl - 5) + (tcp_opt_len >> 2);
  6592. base_flags |= tsflags << 12;
  6593. }
  6594. }
  6595. } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
  6596. /* HW/FW can not correctly checksum packets that have been
  6597. * vlan encapsulated.
  6598. */
  6599. if (skb->protocol == htons(ETH_P_8021Q) ||
  6600. skb->protocol == htons(ETH_P_8021AD)) {
  6601. if (skb_checksum_help(skb))
  6602. goto drop;
  6603. } else {
  6604. base_flags |= TXD_FLAG_TCPUDP_CSUM;
  6605. }
  6606. }
  6607. if (tg3_flag(tp, USE_JUMBO_BDFLAG) &&
  6608. !mss && skb->len > VLAN_ETH_FRAME_LEN)
  6609. base_flags |= TXD_FLAG_JMB_PKT;
  6610. if (skb_vlan_tag_present(skb)) {
  6611. base_flags |= TXD_FLAG_VLAN;
  6612. vlan = skb_vlan_tag_get(skb);
  6613. }
  6614. if ((unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) &&
  6615. tg3_flag(tp, TX_TSTAMP_EN)) {
  6616. skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
  6617. base_flags |= TXD_FLAG_HWTSTAMP;
  6618. }
  6619. len = skb_headlen(skb);
  6620. mapping = pci_map_single(tp->pdev, skb->data, len, PCI_DMA_TODEVICE);
  6621. if (pci_dma_mapping_error(tp->pdev, mapping))
  6622. goto drop;
  6623. tnapi->tx_buffers[entry].skb = skb;
  6624. dma_unmap_addr_set(&tnapi->tx_buffers[entry], mapping, mapping);
  6625. would_hit_hwbug = 0;
  6626. if (tg3_flag(tp, 5701_DMA_BUG))
  6627. would_hit_hwbug = 1;
  6628. if (tg3_tx_frag_set(tnapi, &entry, &budget, mapping, len, base_flags |
  6629. ((skb_shinfo(skb)->nr_frags == 0) ? TXD_FLAG_END : 0),
  6630. mss, vlan)) {
  6631. would_hit_hwbug = 1;
  6632. } else if (skb_shinfo(skb)->nr_frags > 0) {
  6633. u32 tmp_mss = mss;
  6634. if (!tg3_flag(tp, HW_TSO_1) &&
  6635. !tg3_flag(tp, HW_TSO_2) &&
  6636. !tg3_flag(tp, HW_TSO_3))
  6637. tmp_mss = 0;
  6638. /* Now loop through additional data
  6639. * fragments, and queue them.
  6640. */
  6641. last = skb_shinfo(skb)->nr_frags - 1;
  6642. for (i = 0; i <= last; i++) {
  6643. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  6644. len = skb_frag_size(frag);
  6645. mapping = skb_frag_dma_map(&tp->pdev->dev, frag, 0,
  6646. len, DMA_TO_DEVICE);
  6647. tnapi->tx_buffers[entry].skb = NULL;
  6648. dma_unmap_addr_set(&tnapi->tx_buffers[entry], mapping,
  6649. mapping);
  6650. if (dma_mapping_error(&tp->pdev->dev, mapping))
  6651. goto dma_error;
  6652. if (!budget ||
  6653. tg3_tx_frag_set(tnapi, &entry, &budget, mapping,
  6654. len, base_flags |
  6655. ((i == last) ? TXD_FLAG_END : 0),
  6656. tmp_mss, vlan)) {
  6657. would_hit_hwbug = 1;
  6658. break;
  6659. }
  6660. }
  6661. }
  6662. if (would_hit_hwbug) {
  6663. tg3_tx_skb_unmap(tnapi, tnapi->tx_prod, i);
  6664. if (mss && tg3_tso_bug_gso_check(tnapi, skb)) {
  6665. /* If it's a TSO packet, do GSO instead of
  6666. * allocating and copying to a large linear SKB
  6667. */
  6668. if (ip_tot_len) {
  6669. iph->check = ip_csum;
  6670. iph->tot_len = ip_tot_len;
  6671. }
  6672. tcph->check = tcp_csum;
  6673. return tg3_tso_bug(tp, tnapi, txq, skb);
  6674. }
  6675. /* If the workaround fails due to memory/mapping
  6676. * failure, silently drop this packet.
  6677. */
  6678. entry = tnapi->tx_prod;
  6679. budget = tg3_tx_avail(tnapi);
  6680. if (tigon3_dma_hwbug_workaround(tnapi, &skb, &entry, &budget,
  6681. base_flags, mss, vlan))
  6682. goto drop_nofree;
  6683. }
  6684. skb_tx_timestamp(skb);
  6685. netdev_tx_sent_queue(txq, skb->len);
  6686. /* Sync BD data before updating mailbox */
  6687. wmb();
  6688. tnapi->tx_prod = entry;
  6689. if (unlikely(tg3_tx_avail(tnapi) <= (MAX_SKB_FRAGS + 1))) {
  6690. netif_tx_stop_queue(txq);
  6691. /* netif_tx_stop_queue() must be done before checking
  6692. * checking tx index in tg3_tx_avail() below, because in
  6693. * tg3_tx(), we update tx index before checking for
  6694. * netif_tx_queue_stopped().
  6695. */
  6696. smp_mb();
  6697. if (tg3_tx_avail(tnapi) > TG3_TX_WAKEUP_THRESH(tnapi))
  6698. netif_tx_wake_queue(txq);
  6699. }
  6700. if (!netdev_xmit_more() || netif_xmit_stopped(txq)) {
  6701. /* Packets are ready, update Tx producer idx on card. */
  6702. tw32_tx_mbox(tnapi->prodmbox, entry);
  6703. }
  6704. return NETDEV_TX_OK;
  6705. dma_error:
  6706. tg3_tx_skb_unmap(tnapi, tnapi->tx_prod, --i);
  6707. tnapi->tx_buffers[tnapi->tx_prod].skb = NULL;
  6708. drop:
  6709. dev_kfree_skb_any(skb);
  6710. drop_nofree:
  6711. tp->tx_dropped++;
  6712. return NETDEV_TX_OK;
  6713. }
  6714. static void tg3_mac_loopback(struct tg3 *tp, bool enable)
  6715. {
  6716. if (enable) {
  6717. tp->mac_mode &= ~(MAC_MODE_HALF_DUPLEX |
  6718. MAC_MODE_PORT_MODE_MASK);
  6719. tp->mac_mode |= MAC_MODE_PORT_INT_LPBACK;
  6720. if (!tg3_flag(tp, 5705_PLUS))
  6721. tp->mac_mode |= MAC_MODE_LINK_POLARITY;
  6722. if (tp->phy_flags & TG3_PHYFLG_10_100_ONLY)
  6723. tp->mac_mode |= MAC_MODE_PORT_MODE_MII;
  6724. else
  6725. tp->mac_mode |= MAC_MODE_PORT_MODE_GMII;
  6726. } else {
  6727. tp->mac_mode &= ~MAC_MODE_PORT_INT_LPBACK;
  6728. if (tg3_flag(tp, 5705_PLUS) ||
  6729. (tp->phy_flags & TG3_PHYFLG_PHY_SERDES) ||
  6730. tg3_asic_rev(tp) == ASIC_REV_5700)
  6731. tp->mac_mode &= ~MAC_MODE_LINK_POLARITY;
  6732. }
  6733. tw32(MAC_MODE, tp->mac_mode);
  6734. udelay(40);
  6735. }
  6736. static int tg3_phy_lpbk_set(struct tg3 *tp, u32 speed, bool extlpbk)
  6737. {
  6738. u32 val, bmcr, mac_mode, ptest = 0;
  6739. tg3_phy_toggle_apd(tp, false);
  6740. tg3_phy_toggle_automdix(tp, false);
  6741. if (extlpbk && tg3_phy_set_extloopbk(tp))
  6742. return -EIO;
  6743. bmcr = BMCR_FULLDPLX;
  6744. switch (speed) {
  6745. case SPEED_10:
  6746. break;
  6747. case SPEED_100:
  6748. bmcr |= BMCR_SPEED100;
  6749. break;
  6750. case SPEED_1000:
  6751. default:
  6752. if (tp->phy_flags & TG3_PHYFLG_IS_FET) {
  6753. speed = SPEED_100;
  6754. bmcr |= BMCR_SPEED100;
  6755. } else {
  6756. speed = SPEED_1000;
  6757. bmcr |= BMCR_SPEED1000;
  6758. }
  6759. }
  6760. if (extlpbk) {
  6761. if (!(tp->phy_flags & TG3_PHYFLG_IS_FET)) {
  6762. tg3_readphy(tp, MII_CTRL1000, &val);
  6763. val |= CTL1000_AS_MASTER |
  6764. CTL1000_ENABLE_MASTER;
  6765. tg3_writephy(tp, MII_CTRL1000, val);
  6766. } else {
  6767. ptest = MII_TG3_FET_PTEST_TRIM_SEL |
  6768. MII_TG3_FET_PTEST_TRIM_2;
  6769. tg3_writephy(tp, MII_TG3_FET_PTEST, ptest);
  6770. }
  6771. } else
  6772. bmcr |= BMCR_LOOPBACK;
  6773. tg3_writephy(tp, MII_BMCR, bmcr);
  6774. /* The write needs to be flushed for the FETs */
  6775. if (tp->phy_flags & TG3_PHYFLG_IS_FET)
  6776. tg3_readphy(tp, MII_BMCR, &bmcr);
  6777. udelay(40);
  6778. if ((tp->phy_flags & TG3_PHYFLG_IS_FET) &&
  6779. tg3_asic_rev(tp) == ASIC_REV_5785) {
  6780. tg3_writephy(tp, MII_TG3_FET_PTEST, ptest |
  6781. MII_TG3_FET_PTEST_FRC_TX_LINK |
  6782. MII_TG3_FET_PTEST_FRC_TX_LOCK);
  6783. /* The write needs to be flushed for the AC131 */
  6784. tg3_readphy(tp, MII_TG3_FET_PTEST, &val);
  6785. }
  6786. /* Reset to prevent losing 1st rx packet intermittently */
  6787. if ((tp->phy_flags & TG3_PHYFLG_MII_SERDES) &&
  6788. tg3_flag(tp, 5780_CLASS)) {
  6789. tw32_f(MAC_RX_MODE, RX_MODE_RESET);
  6790. udelay(10);
  6791. tw32_f(MAC_RX_MODE, tp->rx_mode);
  6792. }
  6793. mac_mode = tp->mac_mode &
  6794. ~(MAC_MODE_PORT_MODE_MASK | MAC_MODE_HALF_DUPLEX);
  6795. if (speed == SPEED_1000)
  6796. mac_mode |= MAC_MODE_PORT_MODE_GMII;
  6797. else
  6798. mac_mode |= MAC_MODE_PORT_MODE_MII;
  6799. if (tg3_asic_rev(tp) == ASIC_REV_5700) {
  6800. u32 masked_phy_id = tp->phy_id & TG3_PHY_ID_MASK;
  6801. if (masked_phy_id == TG3_PHY_ID_BCM5401)
  6802. mac_mode &= ~MAC_MODE_LINK_POLARITY;
  6803. else if (masked_phy_id == TG3_PHY_ID_BCM5411)
  6804. mac_mode |= MAC_MODE_LINK_POLARITY;
  6805. tg3_writephy(tp, MII_TG3_EXT_CTRL,
  6806. MII_TG3_EXT_CTRL_LNK3_LED_MODE);
  6807. }
  6808. tw32(MAC_MODE, mac_mode);
  6809. udelay(40);
  6810. return 0;
  6811. }
  6812. static void tg3_set_loopback(struct net_device *dev, netdev_features_t features)
  6813. {
  6814. struct tg3 *tp = netdev_priv(dev);
  6815. if (features & NETIF_F_LOOPBACK) {
  6816. if (tp->mac_mode & MAC_MODE_PORT_INT_LPBACK)
  6817. return;
  6818. spin_lock_bh(&tp->lock);
  6819. tg3_mac_loopback(tp, true);
  6820. netif_carrier_on(tp->dev);
  6821. spin_unlock_bh(&tp->lock);
  6822. netdev_info(dev, "Internal MAC loopback mode enabled.\n");
  6823. } else {
  6824. if (!(tp->mac_mode & MAC_MODE_PORT_INT_LPBACK))
  6825. return;
  6826. spin_lock_bh(&tp->lock);
  6827. tg3_mac_loopback(tp, false);
  6828. /* Force link status check */
  6829. tg3_setup_phy(tp, true);
  6830. spin_unlock_bh(&tp->lock);
  6831. netdev_info(dev, "Internal MAC loopback mode disabled.\n");
  6832. }
  6833. }
  6834. static netdev_features_t tg3_fix_features(struct net_device *dev,
  6835. netdev_features_t features)
  6836. {
  6837. struct tg3 *tp = netdev_priv(dev);
  6838. if (dev->mtu > ETH_DATA_LEN && tg3_flag(tp, 5780_CLASS))
  6839. features &= ~NETIF_F_ALL_TSO;
  6840. return features;
  6841. }
  6842. static int tg3_set_features(struct net_device *dev, netdev_features_t features)
  6843. {
  6844. netdev_features_t changed = dev->features ^ features;
  6845. if ((changed & NETIF_F_LOOPBACK) && netif_running(dev))
  6846. tg3_set_loopback(dev, features);
  6847. return 0;
  6848. }
  6849. static void tg3_rx_prodring_free(struct tg3 *tp,
  6850. struct tg3_rx_prodring_set *tpr)
  6851. {
  6852. int i;
  6853. if (tpr != &tp->napi[0].prodring) {
  6854. for (i = tpr->rx_std_cons_idx; i != tpr->rx_std_prod_idx;
  6855. i = (i + 1) & tp->rx_std_ring_mask)
  6856. tg3_rx_data_free(tp, &tpr->rx_std_buffers[i],
  6857. tp->rx_pkt_map_sz);
  6858. if (tg3_flag(tp, JUMBO_CAPABLE)) {
  6859. for (i = tpr->rx_jmb_cons_idx;
  6860. i != tpr->rx_jmb_prod_idx;
  6861. i = (i + 1) & tp->rx_jmb_ring_mask) {
  6862. tg3_rx_data_free(tp, &tpr->rx_jmb_buffers[i],
  6863. TG3_RX_JMB_MAP_SZ);
  6864. }
  6865. }
  6866. return;
  6867. }
  6868. for (i = 0; i <= tp->rx_std_ring_mask; i++)
  6869. tg3_rx_data_free(tp, &tpr->rx_std_buffers[i],
  6870. tp->rx_pkt_map_sz);
  6871. if (tg3_flag(tp, JUMBO_CAPABLE) && !tg3_flag(tp, 5780_CLASS)) {
  6872. for (i = 0; i <= tp->rx_jmb_ring_mask; i++)
  6873. tg3_rx_data_free(tp, &tpr->rx_jmb_buffers[i],
  6874. TG3_RX_JMB_MAP_SZ);
  6875. }
  6876. }
  6877. /* Initialize rx rings for packet processing.
  6878. *
  6879. * The chip has been shut down and the driver detached from
  6880. * the networking, so no interrupts or new tx packets will
  6881. * end up in the driver. tp->{tx,}lock are held and thus
  6882. * we may not sleep.
  6883. */
  6884. static int tg3_rx_prodring_alloc(struct tg3 *tp,
  6885. struct tg3_rx_prodring_set *tpr)
  6886. {
  6887. u32 i, rx_pkt_dma_sz;
  6888. tpr->rx_std_cons_idx = 0;
  6889. tpr->rx_std_prod_idx = 0;
  6890. tpr->rx_jmb_cons_idx = 0;
  6891. tpr->rx_jmb_prod_idx = 0;
  6892. if (tpr != &tp->napi[0].prodring) {
  6893. memset(&tpr->rx_std_buffers[0], 0,
  6894. TG3_RX_STD_BUFF_RING_SIZE(tp));
  6895. if (tpr->rx_jmb_buffers)
  6896. memset(&tpr->rx_jmb_buffers[0], 0,
  6897. TG3_RX_JMB_BUFF_RING_SIZE(tp));
  6898. goto done;
  6899. }
  6900. /* Zero out all descriptors. */
  6901. memset(tpr->rx_std, 0, TG3_RX_STD_RING_BYTES(tp));
  6902. rx_pkt_dma_sz = TG3_RX_STD_DMA_SZ;
  6903. if (tg3_flag(tp, 5780_CLASS) &&
  6904. tp->dev->mtu > ETH_DATA_LEN)
  6905. rx_pkt_dma_sz = TG3_RX_JMB_DMA_SZ;
  6906. tp->rx_pkt_map_sz = TG3_RX_DMA_TO_MAP_SZ(rx_pkt_dma_sz);
  6907. /* Initialize invariants of the rings, we only set this
  6908. * stuff once. This works because the card does not
  6909. * write into the rx buffer posting rings.
  6910. */
  6911. for (i = 0; i <= tp->rx_std_ring_mask; i++) {
  6912. struct tg3_rx_buffer_desc *rxd;
  6913. rxd = &tpr->rx_std[i];
  6914. rxd->idx_len = rx_pkt_dma_sz << RXD_LEN_SHIFT;
  6915. rxd->type_flags = (RXD_FLAG_END << RXD_FLAGS_SHIFT);
  6916. rxd->opaque = (RXD_OPAQUE_RING_STD |
  6917. (i << RXD_OPAQUE_INDEX_SHIFT));
  6918. }
  6919. /* Now allocate fresh SKBs for each rx ring. */
  6920. for (i = 0; i < tp->rx_pending; i++) {
  6921. unsigned int frag_size;
  6922. if (tg3_alloc_rx_data(tp, tpr, RXD_OPAQUE_RING_STD, i,
  6923. &frag_size) < 0) {
  6924. netdev_warn(tp->dev,
  6925. "Using a smaller RX standard ring. Only "
  6926. "%d out of %d buffers were allocated "
  6927. "successfully\n", i, tp->rx_pending);
  6928. if (i == 0)
  6929. goto initfail;
  6930. tp->rx_pending = i;
  6931. break;
  6932. }
  6933. }
  6934. if (!tg3_flag(tp, JUMBO_CAPABLE) || tg3_flag(tp, 5780_CLASS))
  6935. goto done;
  6936. memset(tpr->rx_jmb, 0, TG3_RX_JMB_RING_BYTES(tp));
  6937. if (!tg3_flag(tp, JUMBO_RING_ENABLE))
  6938. goto done;
  6939. for (i = 0; i <= tp->rx_jmb_ring_mask; i++) {
  6940. struct tg3_rx_buffer_desc *rxd;
  6941. rxd = &tpr->rx_jmb[i].std;
  6942. rxd->idx_len = TG3_RX_JMB_DMA_SZ << RXD_LEN_SHIFT;
  6943. rxd->type_flags = (RXD_FLAG_END << RXD_FLAGS_SHIFT) |
  6944. RXD_FLAG_JUMBO;
  6945. rxd->opaque = (RXD_OPAQUE_RING_JUMBO |
  6946. (i << RXD_OPAQUE_INDEX_SHIFT));
  6947. }
  6948. for (i = 0; i < tp->rx_jumbo_pending; i++) {
  6949. unsigned int frag_size;
  6950. if (tg3_alloc_rx_data(tp, tpr, RXD_OPAQUE_RING_JUMBO, i,
  6951. &frag_size) < 0) {
  6952. netdev_warn(tp->dev,
  6953. "Using a smaller RX jumbo ring. Only %d "
  6954. "out of %d buffers were allocated "
  6955. "successfully\n", i, tp->rx_jumbo_pending);
  6956. if (i == 0)
  6957. goto initfail;
  6958. tp->rx_jumbo_pending = i;
  6959. break;
  6960. }
  6961. }
  6962. done:
  6963. return 0;
  6964. initfail:
  6965. tg3_rx_prodring_free(tp, tpr);
  6966. return -ENOMEM;
  6967. }
  6968. static void tg3_rx_prodring_fini(struct tg3 *tp,
  6969. struct tg3_rx_prodring_set *tpr)
  6970. {
  6971. kfree(tpr->rx_std_buffers);
  6972. tpr->rx_std_buffers = NULL;
  6973. kfree(tpr->rx_jmb_buffers);
  6974. tpr->rx_jmb_buffers = NULL;
  6975. if (tpr->rx_std) {
  6976. dma_free_coherent(&tp->pdev->dev, TG3_RX_STD_RING_BYTES(tp),
  6977. tpr->rx_std, tpr->rx_std_mapping);
  6978. tpr->rx_std = NULL;
  6979. }
  6980. if (tpr->rx_jmb) {
  6981. dma_free_coherent(&tp->pdev->dev, TG3_RX_JMB_RING_BYTES(tp),
  6982. tpr->rx_jmb, tpr->rx_jmb_mapping);
  6983. tpr->rx_jmb = NULL;
  6984. }
  6985. }
  6986. static int tg3_rx_prodring_init(struct tg3 *tp,
  6987. struct tg3_rx_prodring_set *tpr)
  6988. {
  6989. tpr->rx_std_buffers = kzalloc(TG3_RX_STD_BUFF_RING_SIZE(tp),
  6990. GFP_KERNEL);
  6991. if (!tpr->rx_std_buffers)
  6992. return -ENOMEM;
  6993. tpr->rx_std = dma_alloc_coherent(&tp->pdev->dev,
  6994. TG3_RX_STD_RING_BYTES(tp),
  6995. &tpr->rx_std_mapping,
  6996. GFP_KERNEL);
  6997. if (!tpr->rx_std)
  6998. goto err_out;
  6999. if (tg3_flag(tp, JUMBO_CAPABLE) && !tg3_flag(tp, 5780_CLASS)) {
  7000. tpr->rx_jmb_buffers = kzalloc(TG3_RX_JMB_BUFF_RING_SIZE(tp),
  7001. GFP_KERNEL);
  7002. if (!tpr->rx_jmb_buffers)
  7003. goto err_out;
  7004. tpr->rx_jmb = dma_alloc_coherent(&tp->pdev->dev,
  7005. TG3_RX_JMB_RING_BYTES(tp),
  7006. &tpr->rx_jmb_mapping,
  7007. GFP_KERNEL);
  7008. if (!tpr->rx_jmb)
  7009. goto err_out;
  7010. }
  7011. return 0;
  7012. err_out:
  7013. tg3_rx_prodring_fini(tp, tpr);
  7014. return -ENOMEM;
  7015. }
  7016. /* Free up pending packets in all rx/tx rings.
  7017. *
  7018. * The chip has been shut down and the driver detached from
  7019. * the networking, so no interrupts or new tx packets will
  7020. * end up in the driver. tp->{tx,}lock is not held and we are not
  7021. * in an interrupt context and thus may sleep.
  7022. */
  7023. static void tg3_free_rings(struct tg3 *tp)
  7024. {
  7025. int i, j;
  7026. for (j = 0; j < tp->irq_cnt; j++) {
  7027. struct tg3_napi *tnapi = &tp->napi[j];
  7028. tg3_rx_prodring_free(tp, &tnapi->prodring);
  7029. if (!tnapi->tx_buffers)
  7030. continue;
  7031. for (i = 0; i < TG3_TX_RING_SIZE; i++) {
  7032. struct sk_buff *skb = tnapi->tx_buffers[i].skb;
  7033. if (!skb)
  7034. continue;
  7035. tg3_tx_skb_unmap(tnapi, i,
  7036. skb_shinfo(skb)->nr_frags - 1);
  7037. dev_consume_skb_any(skb);
  7038. }
  7039. netdev_tx_reset_queue(netdev_get_tx_queue(tp->dev, j));
  7040. }
  7041. }
  7042. /* Initialize tx/rx rings for packet processing.
  7043. *
  7044. * The chip has been shut down and the driver detached from
  7045. * the networking, so no interrupts or new tx packets will
  7046. * end up in the driver. tp->{tx,}lock are held and thus
  7047. * we may not sleep.
  7048. */
  7049. static int tg3_init_rings(struct tg3 *tp)
  7050. {
  7051. int i;
  7052. /* Free up all the SKBs. */
  7053. tg3_free_rings(tp);
  7054. for (i = 0; i < tp->irq_cnt; i++) {
  7055. struct tg3_napi *tnapi = &tp->napi[i];
  7056. tnapi->last_tag = 0;
  7057. tnapi->last_irq_tag = 0;
  7058. tnapi->hw_status->status = 0;
  7059. tnapi->hw_status->status_tag = 0;
  7060. memset(tnapi->hw_status, 0, TG3_HW_STATUS_SIZE);
  7061. tnapi->tx_prod = 0;
  7062. tnapi->tx_cons = 0;
  7063. if (tnapi->tx_ring)
  7064. memset(tnapi->tx_ring, 0, TG3_TX_RING_BYTES);
  7065. tnapi->rx_rcb_ptr = 0;
  7066. if (tnapi->rx_rcb)
  7067. memset(tnapi->rx_rcb, 0, TG3_RX_RCB_RING_BYTES(tp));
  7068. if (tnapi->prodring.rx_std &&
  7069. tg3_rx_prodring_alloc(tp, &tnapi->prodring)) {
  7070. tg3_free_rings(tp);
  7071. return -ENOMEM;
  7072. }
  7073. }
  7074. return 0;
  7075. }
  7076. static void tg3_mem_tx_release(struct tg3 *tp)
  7077. {
  7078. int i;
  7079. for (i = 0; i < tp->irq_max; i++) {
  7080. struct tg3_napi *tnapi = &tp->napi[i];
  7081. if (tnapi->tx_ring) {
  7082. dma_free_coherent(&tp->pdev->dev, TG3_TX_RING_BYTES,
  7083. tnapi->tx_ring, tnapi->tx_desc_mapping);
  7084. tnapi->tx_ring = NULL;
  7085. }
  7086. kfree(tnapi->tx_buffers);
  7087. tnapi->tx_buffers = NULL;
  7088. }
  7089. }
  7090. static int tg3_mem_tx_acquire(struct tg3 *tp)
  7091. {
  7092. int i;
  7093. struct tg3_napi *tnapi = &tp->napi[0];
  7094. /* If multivector TSS is enabled, vector 0 does not handle
  7095. * tx interrupts. Don't allocate any resources for it.
  7096. */
  7097. if (tg3_flag(tp, ENABLE_TSS))
  7098. tnapi++;
  7099. for (i = 0; i < tp->txq_cnt; i++, tnapi++) {
  7100. tnapi->tx_buffers = kcalloc(TG3_TX_RING_SIZE,
  7101. sizeof(struct tg3_tx_ring_info),
  7102. GFP_KERNEL);
  7103. if (!tnapi->tx_buffers)
  7104. goto err_out;
  7105. tnapi->tx_ring = dma_alloc_coherent(&tp->pdev->dev,
  7106. TG3_TX_RING_BYTES,
  7107. &tnapi->tx_desc_mapping,
  7108. GFP_KERNEL);
  7109. if (!tnapi->tx_ring)
  7110. goto err_out;
  7111. }
  7112. return 0;
  7113. err_out:
  7114. tg3_mem_tx_release(tp);
  7115. return -ENOMEM;
  7116. }
  7117. static void tg3_mem_rx_release(struct tg3 *tp)
  7118. {
  7119. int i;
  7120. for (i = 0; i < tp->irq_max; i++) {
  7121. struct tg3_napi *tnapi = &tp->napi[i];
  7122. tg3_rx_prodring_fini(tp, &tnapi->prodring);
  7123. if (!tnapi->rx_rcb)
  7124. continue;
  7125. dma_free_coherent(&tp->pdev->dev,
  7126. TG3_RX_RCB_RING_BYTES(tp),
  7127. tnapi->rx_rcb,
  7128. tnapi->rx_rcb_mapping);
  7129. tnapi->rx_rcb = NULL;
  7130. }
  7131. }
  7132. static int tg3_mem_rx_acquire(struct tg3 *tp)
  7133. {
  7134. unsigned int i, limit;
  7135. limit = tp->rxq_cnt;
  7136. /* If RSS is enabled, we need a (dummy) producer ring
  7137. * set on vector zero. This is the true hw prodring.
  7138. */
  7139. if (tg3_flag(tp, ENABLE_RSS))
  7140. limit++;
  7141. for (i = 0; i < limit; i++) {
  7142. struct tg3_napi *tnapi = &tp->napi[i];
  7143. if (tg3_rx_prodring_init(tp, &tnapi->prodring))
  7144. goto err_out;
  7145. /* If multivector RSS is enabled, vector 0
  7146. * does not handle rx or tx interrupts.
  7147. * Don't allocate any resources for it.
  7148. */
  7149. if (!i && tg3_flag(tp, ENABLE_RSS))
  7150. continue;
  7151. tnapi->rx_rcb = dma_alloc_coherent(&tp->pdev->dev,
  7152. TG3_RX_RCB_RING_BYTES(tp),
  7153. &tnapi->rx_rcb_mapping,
  7154. GFP_KERNEL);
  7155. if (!tnapi->rx_rcb)
  7156. goto err_out;
  7157. }
  7158. return 0;
  7159. err_out:
  7160. tg3_mem_rx_release(tp);
  7161. return -ENOMEM;
  7162. }
  7163. /*
  7164. * Must not be invoked with interrupt sources disabled and
  7165. * the hardware shutdown down.
  7166. */
  7167. static void tg3_free_consistent(struct tg3 *tp)
  7168. {
  7169. int i;
  7170. for (i = 0; i < tp->irq_cnt; i++) {
  7171. struct tg3_napi *tnapi = &tp->napi[i];
  7172. if (tnapi->hw_status) {
  7173. dma_free_coherent(&tp->pdev->dev, TG3_HW_STATUS_SIZE,
  7174. tnapi->hw_status,
  7175. tnapi->status_mapping);
  7176. tnapi->hw_status = NULL;
  7177. }
  7178. }
  7179. tg3_mem_rx_release(tp);
  7180. tg3_mem_tx_release(tp);
  7181. /* tp->hw_stats can be referenced safely:
  7182. * 1. under rtnl_lock
  7183. * 2. or under tp->lock if TG3_FLAG_INIT_COMPLETE is set.
  7184. */
  7185. if (tp->hw_stats) {
  7186. dma_free_coherent(&tp->pdev->dev, sizeof(struct tg3_hw_stats),
  7187. tp->hw_stats, tp->stats_mapping);
  7188. tp->hw_stats = NULL;
  7189. }
  7190. }
  7191. /*
  7192. * Must not be invoked with interrupt sources disabled and
  7193. * the hardware shutdown down. Can sleep.
  7194. */
  7195. static int tg3_alloc_consistent(struct tg3 *tp)
  7196. {
  7197. int i;
  7198. tp->hw_stats = dma_alloc_coherent(&tp->pdev->dev,
  7199. sizeof(struct tg3_hw_stats),
  7200. &tp->stats_mapping, GFP_KERNEL);
  7201. if (!tp->hw_stats)
  7202. goto err_out;
  7203. for (i = 0; i < tp->irq_cnt; i++) {
  7204. struct tg3_napi *tnapi = &tp->napi[i];
  7205. struct tg3_hw_status *sblk;
  7206. tnapi->hw_status = dma_alloc_coherent(&tp->pdev->dev,
  7207. TG3_HW_STATUS_SIZE,
  7208. &tnapi->status_mapping,
  7209. GFP_KERNEL);
  7210. if (!tnapi->hw_status)
  7211. goto err_out;
  7212. sblk = tnapi->hw_status;
  7213. if (tg3_flag(tp, ENABLE_RSS)) {
  7214. u16 *prodptr = NULL;
  7215. /*
  7216. * When RSS is enabled, the status block format changes
  7217. * slightly. The "rx_jumbo_consumer", "reserved",
  7218. * and "rx_mini_consumer" members get mapped to the
  7219. * other three rx return ring producer indexes.
  7220. */
  7221. switch (i) {
  7222. case 1:
  7223. prodptr = &sblk->idx[0].rx_producer;
  7224. break;
  7225. case 2:
  7226. prodptr = &sblk->rx_jumbo_consumer;
  7227. break;
  7228. case 3:
  7229. prodptr = &sblk->reserved;
  7230. break;
  7231. case 4:
  7232. prodptr = &sblk->rx_mini_consumer;
  7233. break;
  7234. }
  7235. tnapi->rx_rcb_prod_idx = prodptr;
  7236. } else {
  7237. tnapi->rx_rcb_prod_idx = &sblk->idx[0].rx_producer;
  7238. }
  7239. }
  7240. if (tg3_mem_tx_acquire(tp) || tg3_mem_rx_acquire(tp))
  7241. goto err_out;
  7242. return 0;
  7243. err_out:
  7244. tg3_free_consistent(tp);
  7245. return -ENOMEM;
  7246. }
  7247. #define MAX_WAIT_CNT 1000
  7248. /* To stop a block, clear the enable bit and poll till it
  7249. * clears. tp->lock is held.
  7250. */
  7251. static int tg3_stop_block(struct tg3 *tp, unsigned long ofs, u32 enable_bit, bool silent)
  7252. {
  7253. unsigned int i;
  7254. u32 val;
  7255. if (tg3_flag(tp, 5705_PLUS)) {
  7256. switch (ofs) {
  7257. case RCVLSC_MODE:
  7258. case DMAC_MODE:
  7259. case MBFREE_MODE:
  7260. case BUFMGR_MODE:
  7261. case MEMARB_MODE:
  7262. /* We can't enable/disable these bits of the
  7263. * 5705/5750, just say success.
  7264. */
  7265. return 0;
  7266. default:
  7267. break;
  7268. }
  7269. }
  7270. val = tr32(ofs);
  7271. val &= ~enable_bit;
  7272. tw32_f(ofs, val);
  7273. for (i = 0; i < MAX_WAIT_CNT; i++) {
  7274. if (pci_channel_offline(tp->pdev)) {
  7275. dev_err(&tp->pdev->dev,
  7276. "tg3_stop_block device offline, "
  7277. "ofs=%lx enable_bit=%x\n",
  7278. ofs, enable_bit);
  7279. return -ENODEV;
  7280. }
  7281. udelay(100);
  7282. val = tr32(ofs);
  7283. if ((val & enable_bit) == 0)
  7284. break;
  7285. }
  7286. if (i == MAX_WAIT_CNT && !silent) {
  7287. dev_err(&tp->pdev->dev,
  7288. "tg3_stop_block timed out, ofs=%lx enable_bit=%x\n",
  7289. ofs, enable_bit);
  7290. return -ENODEV;
  7291. }
  7292. return 0;
  7293. }
  7294. /* tp->lock is held. */
  7295. static int tg3_abort_hw(struct tg3 *tp, bool silent)
  7296. {
  7297. int i, err;
  7298. tg3_disable_ints(tp);
  7299. if (pci_channel_offline(tp->pdev)) {
  7300. tp->rx_mode &= ~(RX_MODE_ENABLE | TX_MODE_ENABLE);
  7301. tp->mac_mode &= ~MAC_MODE_TDE_ENABLE;
  7302. err = -ENODEV;
  7303. goto err_no_dev;
  7304. }
  7305. tp->rx_mode &= ~RX_MODE_ENABLE;
  7306. tw32_f(MAC_RX_MODE, tp->rx_mode);
  7307. udelay(10);
  7308. err = tg3_stop_block(tp, RCVBDI_MODE, RCVBDI_MODE_ENABLE, silent);
  7309. err |= tg3_stop_block(tp, RCVLPC_MODE, RCVLPC_MODE_ENABLE, silent);
  7310. err |= tg3_stop_block(tp, RCVLSC_MODE, RCVLSC_MODE_ENABLE, silent);
  7311. err |= tg3_stop_block(tp, RCVDBDI_MODE, RCVDBDI_MODE_ENABLE, silent);
  7312. err |= tg3_stop_block(tp, RCVDCC_MODE, RCVDCC_MODE_ENABLE, silent);
  7313. err |= tg3_stop_block(tp, RCVCC_MODE, RCVCC_MODE_ENABLE, silent);
  7314. err |= tg3_stop_block(tp, SNDBDS_MODE, SNDBDS_MODE_ENABLE, silent);
  7315. err |= tg3_stop_block(tp, SNDBDI_MODE, SNDBDI_MODE_ENABLE, silent);
  7316. err |= tg3_stop_block(tp, SNDDATAI_MODE, SNDDATAI_MODE_ENABLE, silent);
  7317. err |= tg3_stop_block(tp, RDMAC_MODE, RDMAC_MODE_ENABLE, silent);
  7318. err |= tg3_stop_block(tp, SNDDATAC_MODE, SNDDATAC_MODE_ENABLE, silent);
  7319. err |= tg3_stop_block(tp, DMAC_MODE, DMAC_MODE_ENABLE, silent);
  7320. err |= tg3_stop_block(tp, SNDBDC_MODE, SNDBDC_MODE_ENABLE, silent);
  7321. tp->mac_mode &= ~MAC_MODE_TDE_ENABLE;
  7322. tw32_f(MAC_MODE, tp->mac_mode);
  7323. udelay(40);
  7324. tp->tx_mode &= ~TX_MODE_ENABLE;
  7325. tw32_f(MAC_TX_MODE, tp->tx_mode);
  7326. for (i = 0; i < MAX_WAIT_CNT; i++) {
  7327. udelay(100);
  7328. if (!(tr32(MAC_TX_MODE) & TX_MODE_ENABLE))
  7329. break;
  7330. }
  7331. if (i >= MAX_WAIT_CNT) {
  7332. dev_err(&tp->pdev->dev,
  7333. "%s timed out, TX_MODE_ENABLE will not clear "
  7334. "MAC_TX_MODE=%08x\n", __func__, tr32(MAC_TX_MODE));
  7335. err |= -ENODEV;
  7336. }
  7337. err |= tg3_stop_block(tp, HOSTCC_MODE, HOSTCC_MODE_ENABLE, silent);
  7338. err |= tg3_stop_block(tp, WDMAC_MODE, WDMAC_MODE_ENABLE, silent);
  7339. err |= tg3_stop_block(tp, MBFREE_MODE, MBFREE_MODE_ENABLE, silent);
  7340. tw32(FTQ_RESET, 0xffffffff);
  7341. tw32(FTQ_RESET, 0x00000000);
  7342. err |= tg3_stop_block(tp, BUFMGR_MODE, BUFMGR_MODE_ENABLE, silent);
  7343. err |= tg3_stop_block(tp, MEMARB_MODE, MEMARB_MODE_ENABLE, silent);
  7344. err_no_dev:
  7345. for (i = 0; i < tp->irq_cnt; i++) {
  7346. struct tg3_napi *tnapi = &tp->napi[i];
  7347. if (tnapi->hw_status)
  7348. memset(tnapi->hw_status, 0, TG3_HW_STATUS_SIZE);
  7349. }
  7350. return err;
  7351. }
  7352. /* Save PCI command register before chip reset */
  7353. static void tg3_save_pci_state(struct tg3 *tp)
  7354. {
  7355. pci_read_config_word(tp->pdev, PCI_COMMAND, &tp->pci_cmd);
  7356. }
  7357. /* Restore PCI state after chip reset */
  7358. static void tg3_restore_pci_state(struct tg3 *tp)
  7359. {
  7360. u32 val;
  7361. /* Re-enable indirect register accesses. */
  7362. pci_write_config_dword(tp->pdev, TG3PCI_MISC_HOST_CTRL,
  7363. tp->misc_host_ctrl);
  7364. /* Set MAX PCI retry to zero. */
  7365. val = (PCISTATE_ROM_ENABLE | PCISTATE_ROM_RETRY_ENABLE);
  7366. if (tg3_chip_rev_id(tp) == CHIPREV_ID_5704_A0 &&
  7367. tg3_flag(tp, PCIX_MODE))
  7368. val |= PCISTATE_RETRY_SAME_DMA;
  7369. /* Allow reads and writes to the APE register and memory space. */
  7370. if (tg3_flag(tp, ENABLE_APE))
  7371. val |= PCISTATE_ALLOW_APE_CTLSPC_WR |
  7372. PCISTATE_ALLOW_APE_SHMEM_WR |
  7373. PCISTATE_ALLOW_APE_PSPACE_WR;
  7374. pci_write_config_dword(tp->pdev, TG3PCI_PCISTATE, val);
  7375. pci_write_config_word(tp->pdev, PCI_COMMAND, tp->pci_cmd);
  7376. if (!tg3_flag(tp, PCI_EXPRESS)) {
  7377. pci_write_config_byte(tp->pdev, PCI_CACHE_LINE_SIZE,
  7378. tp->pci_cacheline_sz);
  7379. pci_write_config_byte(tp->pdev, PCI_LATENCY_TIMER,
  7380. tp->pci_lat_timer);
  7381. }
  7382. /* Make sure PCI-X relaxed ordering bit is clear. */
  7383. if (tg3_flag(tp, PCIX_MODE)) {
  7384. u16 pcix_cmd;
  7385. pci_read_config_word(tp->pdev, tp->pcix_cap + PCI_X_CMD,
  7386. &pcix_cmd);
  7387. pcix_cmd &= ~PCI_X_CMD_ERO;
  7388. pci_write_config_word(tp->pdev, tp->pcix_cap + PCI_X_CMD,
  7389. pcix_cmd);
  7390. }
  7391. if (tg3_flag(tp, 5780_CLASS)) {
  7392. /* Chip reset on 5780 will reset MSI enable bit,
  7393. * so need to restore it.
  7394. */
  7395. if (tg3_flag(tp, USING_MSI)) {
  7396. u16 ctrl;
  7397. pci_read_config_word(tp->pdev,
  7398. tp->msi_cap + PCI_MSI_FLAGS,
  7399. &ctrl);
  7400. pci_write_config_word(tp->pdev,
  7401. tp->msi_cap + PCI_MSI_FLAGS,
  7402. ctrl | PCI_MSI_FLAGS_ENABLE);
  7403. val = tr32(MSGINT_MODE);
  7404. tw32(MSGINT_MODE, val | MSGINT_MODE_ENABLE);
  7405. }
  7406. }
  7407. }
  7408. static void tg3_override_clk(struct tg3 *tp)
  7409. {
  7410. u32 val;
  7411. switch (tg3_asic_rev(tp)) {
  7412. case ASIC_REV_5717:
  7413. val = tr32(TG3_CPMU_CLCK_ORIDE_ENABLE);
  7414. tw32(TG3_CPMU_CLCK_ORIDE_ENABLE, val |
  7415. TG3_CPMU_MAC_ORIDE_ENABLE);
  7416. break;
  7417. case ASIC_REV_5719:
  7418. case ASIC_REV_5720:
  7419. tw32(TG3_CPMU_CLCK_ORIDE, CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
  7420. break;
  7421. default:
  7422. return;
  7423. }
  7424. }
  7425. static void tg3_restore_clk(struct tg3 *tp)
  7426. {
  7427. u32 val;
  7428. switch (tg3_asic_rev(tp)) {
  7429. case ASIC_REV_5717:
  7430. val = tr32(TG3_CPMU_CLCK_ORIDE_ENABLE);
  7431. tw32(TG3_CPMU_CLCK_ORIDE_ENABLE,
  7432. val & ~TG3_CPMU_MAC_ORIDE_ENABLE);
  7433. break;
  7434. case ASIC_REV_5719:
  7435. case ASIC_REV_5720:
  7436. val = tr32(TG3_CPMU_CLCK_ORIDE);
  7437. tw32(TG3_CPMU_CLCK_ORIDE, val & ~CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
  7438. break;
  7439. default:
  7440. return;
  7441. }
  7442. }
  7443. /* tp->lock is held. */
  7444. static int tg3_chip_reset(struct tg3 *tp)
  7445. __releases(tp->lock)
  7446. __acquires(tp->lock)
  7447. {
  7448. u32 val;
  7449. void (*write_op)(struct tg3 *, u32, u32);
  7450. int i, err;
  7451. if (!pci_device_is_present(tp->pdev))
  7452. return -ENODEV;
  7453. tg3_nvram_lock(tp);
  7454. tg3_ape_lock(tp, TG3_APE_LOCK_GRC);
  7455. /* No matching tg3_nvram_unlock() after this because
  7456. * chip reset below will undo the nvram lock.
  7457. */
  7458. tp->nvram_lock_cnt = 0;
  7459. /* GRC_MISC_CFG core clock reset will clear the memory
  7460. * enable bit in PCI register 4 and the MSI enable bit
  7461. * on some chips, so we save relevant registers here.
  7462. */
  7463. tg3_save_pci_state(tp);
  7464. if (tg3_asic_rev(tp) == ASIC_REV_5752 ||
  7465. tg3_flag(tp, 5755_PLUS))
  7466. tw32(GRC_FASTBOOT_PC, 0);
  7467. /*
  7468. * We must avoid the readl() that normally takes place.
  7469. * It locks machines, causes machine checks, and other
  7470. * fun things. So, temporarily disable the 5701
  7471. * hardware workaround, while we do the reset.
  7472. */
  7473. write_op = tp->write32;
  7474. if (write_op == tg3_write_flush_reg32)
  7475. tp->write32 = tg3_write32;
  7476. /* Prevent the irq handler from reading or writing PCI registers
  7477. * during chip reset when the memory enable bit in the PCI command
  7478. * register may be cleared. The chip does not generate interrupt
  7479. * at this time, but the irq handler may still be called due to irq
  7480. * sharing or irqpoll.
  7481. */
  7482. tg3_flag_set(tp, CHIP_RESETTING);
  7483. for (i = 0; i < tp->irq_cnt; i++) {
  7484. struct tg3_napi *tnapi = &tp->napi[i];
  7485. if (tnapi->hw_status) {
  7486. tnapi->hw_status->status = 0;
  7487. tnapi->hw_status->status_tag = 0;
  7488. }
  7489. tnapi->last_tag = 0;
  7490. tnapi->last_irq_tag = 0;
  7491. }
  7492. smp_mb();
  7493. tg3_full_unlock(tp);
  7494. for (i = 0; i < tp->irq_cnt; i++)
  7495. synchronize_irq(tp->napi[i].irq_vec);
  7496. tg3_full_lock(tp, 0);
  7497. if (tg3_asic_rev(tp) == ASIC_REV_57780) {
  7498. val = tr32(TG3_PCIE_LNKCTL) & ~TG3_PCIE_LNKCTL_L1_PLL_PD_EN;
  7499. tw32(TG3_PCIE_LNKCTL, val | TG3_PCIE_LNKCTL_L1_PLL_PD_DIS);
  7500. }
  7501. /* do the reset */
  7502. val = GRC_MISC_CFG_CORECLK_RESET;
  7503. if (tg3_flag(tp, PCI_EXPRESS)) {
  7504. /* Force PCIe 1.0a mode */
  7505. if (tg3_asic_rev(tp) != ASIC_REV_5785 &&
  7506. !tg3_flag(tp, 57765_PLUS) &&
  7507. tr32(TG3_PCIE_PHY_TSTCTL) ==
  7508. (TG3_PCIE_PHY_TSTCTL_PCIE10 | TG3_PCIE_PHY_TSTCTL_PSCRAM))
  7509. tw32(TG3_PCIE_PHY_TSTCTL, TG3_PCIE_PHY_TSTCTL_PSCRAM);
  7510. if (tg3_chip_rev_id(tp) != CHIPREV_ID_5750_A0) {
  7511. tw32(GRC_MISC_CFG, (1 << 29));
  7512. val |= (1 << 29);
  7513. }
  7514. }
  7515. if (tg3_asic_rev(tp) == ASIC_REV_5906) {
  7516. tw32(VCPU_STATUS, tr32(VCPU_STATUS) | VCPU_STATUS_DRV_RESET);
  7517. tw32(GRC_VCPU_EXT_CTRL,
  7518. tr32(GRC_VCPU_EXT_CTRL) & ~GRC_VCPU_EXT_CTRL_HALT_CPU);
  7519. }
  7520. /* Set the clock to the highest frequency to avoid timeouts. With link
  7521. * aware mode, the clock speed could be slow and bootcode does not
  7522. * complete within the expected time. Override the clock to allow the
  7523. * bootcode to finish sooner and then restore it.
  7524. */
  7525. tg3_override_clk(tp);
  7526. /* Manage gphy power for all CPMU absent PCIe devices. */
  7527. if (tg3_flag(tp, 5705_PLUS) && !tg3_flag(tp, CPMU_PRESENT))
  7528. val |= GRC_MISC_CFG_KEEP_GPHY_POWER;
  7529. tw32(GRC_MISC_CFG, val);
  7530. /* restore 5701 hardware bug workaround write method */
  7531. tp->write32 = write_op;
  7532. /* Unfortunately, we have to delay before the PCI read back.
  7533. * Some 575X chips even will not respond to a PCI cfg access
  7534. * when the reset command is given to the chip.
  7535. *
  7536. * How do these hardware designers expect things to work
  7537. * properly if the PCI write is posted for a long period
  7538. * of time? It is always necessary to have some method by
  7539. * which a register read back can occur to push the write
  7540. * out which does the reset.
  7541. *
  7542. * For most tg3 variants the trick below was working.
  7543. * Ho hum...
  7544. */
  7545. udelay(120);
  7546. /* Flush PCI posted writes. The normal MMIO registers
  7547. * are inaccessible at this time so this is the only
  7548. * way to make this reliably (actually, this is no longer
  7549. * the case, see above). I tried to use indirect
  7550. * register read/write but this upset some 5701 variants.
  7551. */
  7552. pci_read_config_dword(tp->pdev, PCI_COMMAND, &val);
  7553. udelay(120);
  7554. if (tg3_flag(tp, PCI_EXPRESS) && pci_is_pcie(tp->pdev)) {
  7555. u16 val16;
  7556. if (tg3_chip_rev_id(tp) == CHIPREV_ID_5750_A0) {
  7557. int j;
  7558. u32 cfg_val;
  7559. /* Wait for link training to complete. */
  7560. for (j = 0; j < 5000; j++)
  7561. udelay(100);
  7562. pci_read_config_dword(tp->pdev, 0xc4, &cfg_val);
  7563. pci_write_config_dword(tp->pdev, 0xc4,
  7564. cfg_val | (1 << 15));
  7565. }
  7566. /* Clear the "no snoop" and "relaxed ordering" bits. */
  7567. val16 = PCI_EXP_DEVCTL_RELAX_EN | PCI_EXP_DEVCTL_NOSNOOP_EN;
  7568. /*
  7569. * Older PCIe devices only support the 128 byte
  7570. * MPS setting. Enforce the restriction.
  7571. */
  7572. if (!tg3_flag(tp, CPMU_PRESENT))
  7573. val16 |= PCI_EXP_DEVCTL_PAYLOAD;
  7574. pcie_capability_clear_word(tp->pdev, PCI_EXP_DEVCTL, val16);
  7575. /* Clear error status */
  7576. pcie_capability_write_word(tp->pdev, PCI_EXP_DEVSTA,
  7577. PCI_EXP_DEVSTA_CED |
  7578. PCI_EXP_DEVSTA_NFED |
  7579. PCI_EXP_DEVSTA_FED |
  7580. PCI_EXP_DEVSTA_URD);
  7581. }
  7582. tg3_restore_pci_state(tp);
  7583. tg3_flag_clear(tp, CHIP_RESETTING);
  7584. tg3_flag_clear(tp, ERROR_PROCESSED);
  7585. val = 0;
  7586. if (tg3_flag(tp, 5780_CLASS))
  7587. val = tr32(MEMARB_MODE);
  7588. tw32(MEMARB_MODE, val | MEMARB_MODE_ENABLE);
  7589. if (tg3_chip_rev_id(tp) == CHIPREV_ID_5750_A3) {
  7590. tg3_stop_fw(tp);
  7591. tw32(0x5000, 0x400);
  7592. }
  7593. if (tg3_flag(tp, IS_SSB_CORE)) {
  7594. /*
  7595. * BCM4785: In order to avoid repercussions from using
  7596. * potentially defective internal ROM, stop the Rx RISC CPU,
  7597. * which is not required.
  7598. */
  7599. tg3_stop_fw(tp);
  7600. tg3_halt_cpu(tp, RX_CPU_BASE);
  7601. }
  7602. err = tg3_poll_fw(tp);
  7603. if (err)
  7604. return err;
  7605. tw32(GRC_MODE, tp->grc_mode);
  7606. if (tg3_chip_rev_id(tp) == CHIPREV_ID_5705_A0) {
  7607. val = tr32(0xc4);
  7608. tw32(0xc4, val | (1 << 15));
  7609. }
  7610. if ((tp->nic_sram_data_cfg & NIC_SRAM_DATA_CFG_MINI_PCI) != 0 &&
  7611. tg3_asic_rev(tp) == ASIC_REV_5705) {
  7612. tp->pci_clock_ctrl |= CLOCK_CTRL_CLKRUN_OENABLE;
  7613. if (tg3_chip_rev_id(tp) == CHIPREV_ID_5705_A0)
  7614. tp->pci_clock_ctrl |= CLOCK_CTRL_FORCE_CLKRUN;
  7615. tw32(TG3PCI_CLOCK_CTRL, tp->pci_clock_ctrl);
  7616. }
  7617. if (tp->phy_flags & TG3_PHYFLG_PHY_SERDES) {
  7618. tp->mac_mode = MAC_MODE_PORT_MODE_TBI;
  7619. val = tp->mac_mode;
  7620. } else if (tp->phy_flags & TG3_PHYFLG_MII_SERDES) {
  7621. tp->mac_mode = MAC_MODE_PORT_MODE_GMII;
  7622. val = tp->mac_mode;
  7623. } else
  7624. val = 0;
  7625. tw32_f(MAC_MODE, val);
  7626. udelay(40);
  7627. tg3_ape_unlock(tp, TG3_APE_LOCK_GRC);
  7628. tg3_mdio_start(tp);
  7629. if (tg3_flag(tp, PCI_EXPRESS) &&
  7630. tg3_chip_rev_id(tp) != CHIPREV_ID_5750_A0 &&
  7631. tg3_asic_rev(tp) != ASIC_REV_5785 &&
  7632. !tg3_flag(tp, 57765_PLUS)) {
  7633. val = tr32(0x7c00);
  7634. tw32(0x7c00, val | (1 << 25));
  7635. }
  7636. tg3_restore_clk(tp);
  7637. /* Increase the core clock speed to fix tx timeout issue for 5762
  7638. * with 100Mbps link speed.
  7639. */
  7640. if (tg3_asic_rev(tp) == ASIC_REV_5762) {
  7641. val = tr32(TG3_CPMU_CLCK_ORIDE_ENABLE);
  7642. tw32(TG3_CPMU_CLCK_ORIDE_ENABLE, val |
  7643. TG3_CPMU_MAC_ORIDE_ENABLE);
  7644. }
  7645. /* Reprobe ASF enable state. */
  7646. tg3_flag_clear(tp, ENABLE_ASF);
  7647. tp->phy_flags &= ~(TG3_PHYFLG_1G_ON_VAUX_OK |
  7648. TG3_PHYFLG_KEEP_LINK_ON_PWRDN);
  7649. tg3_flag_clear(tp, ASF_NEW_HANDSHAKE);
  7650. tg3_read_mem(tp, NIC_SRAM_DATA_SIG, &val);
  7651. if (val == NIC_SRAM_DATA_SIG_MAGIC) {
  7652. u32 nic_cfg;
  7653. tg3_read_mem(tp, NIC_SRAM_DATA_CFG, &nic_cfg);
  7654. if (nic_cfg & NIC_SRAM_DATA_CFG_ASF_ENABLE) {
  7655. tg3_flag_set(tp, ENABLE_ASF);
  7656. tp->last_event_jiffies = jiffies;
  7657. if (tg3_flag(tp, 5750_PLUS))
  7658. tg3_flag_set(tp, ASF_NEW_HANDSHAKE);
  7659. tg3_read_mem(tp, NIC_SRAM_DATA_CFG_3, &nic_cfg);
  7660. if (nic_cfg & NIC_SRAM_1G_ON_VAUX_OK)
  7661. tp->phy_flags |= TG3_PHYFLG_1G_ON_VAUX_OK;
  7662. if (nic_cfg & NIC_SRAM_LNK_FLAP_AVOID)
  7663. tp->phy_flags |= TG3_PHYFLG_KEEP_LINK_ON_PWRDN;
  7664. }
  7665. }
  7666. return 0;
  7667. }
  7668. static void tg3_get_nstats(struct tg3 *, struct rtnl_link_stats64 *);
  7669. static void tg3_get_estats(struct tg3 *, struct tg3_ethtool_stats *);
  7670. static void __tg3_set_rx_mode(struct net_device *);
  7671. /* tp->lock is held. */
  7672. static int tg3_halt(struct tg3 *tp, int kind, bool silent)
  7673. {
  7674. int err;
  7675. tg3_stop_fw(tp);
  7676. tg3_write_sig_pre_reset(tp, kind);
  7677. tg3_abort_hw(tp, silent);
  7678. err = tg3_chip_reset(tp);
  7679. __tg3_set_mac_addr(tp, false);
  7680. tg3_write_sig_legacy(tp, kind);
  7681. tg3_write_sig_post_reset(tp, kind);
  7682. if (tp->hw_stats) {
  7683. /* Save the stats across chip resets... */
  7684. tg3_get_nstats(tp, &tp->net_stats_prev);
  7685. tg3_get_estats(tp, &tp->estats_prev);
  7686. /* And make sure the next sample is new data */
  7687. memset(tp->hw_stats, 0, sizeof(struct tg3_hw_stats));
  7688. }
  7689. return err;
  7690. }
  7691. static int tg3_set_mac_addr(struct net_device *dev, void *p)
  7692. {
  7693. struct tg3 *tp = netdev_priv(dev);
  7694. struct sockaddr *addr = p;
  7695. int err = 0;
  7696. bool skip_mac_1 = false;
  7697. if (!is_valid_ether_addr(addr->sa_data))
  7698. return -EADDRNOTAVAIL;
  7699. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  7700. if (!netif_running(dev))
  7701. return 0;
  7702. if (tg3_flag(tp, ENABLE_ASF)) {
  7703. u32 addr0_high, addr0_low, addr1_high, addr1_low;
  7704. addr0_high = tr32(MAC_ADDR_0_HIGH);
  7705. addr0_low = tr32(MAC_ADDR_0_LOW);
  7706. addr1_high = tr32(MAC_ADDR_1_HIGH);
  7707. addr1_low = tr32(MAC_ADDR_1_LOW);
  7708. /* Skip MAC addr 1 if ASF is using it. */
  7709. if ((addr0_high != addr1_high || addr0_low != addr1_low) &&
  7710. !(addr1_high == 0 && addr1_low == 0))
  7711. skip_mac_1 = true;
  7712. }
  7713. spin_lock_bh(&tp->lock);
  7714. __tg3_set_mac_addr(tp, skip_mac_1);
  7715. __tg3_set_rx_mode(dev);
  7716. spin_unlock_bh(&tp->lock);
  7717. return err;
  7718. }
  7719. /* tp->lock is held. */
  7720. static void tg3_set_bdinfo(struct tg3 *tp, u32 bdinfo_addr,
  7721. dma_addr_t mapping, u32 maxlen_flags,
  7722. u32 nic_addr)
  7723. {
  7724. tg3_write_mem(tp,
  7725. (bdinfo_addr + TG3_BDINFO_HOST_ADDR + TG3_64BIT_REG_HIGH),
  7726. ((u64) mapping >> 32));
  7727. tg3_write_mem(tp,
  7728. (bdinfo_addr + TG3_BDINFO_HOST_ADDR + TG3_64BIT_REG_LOW),
  7729. ((u64) mapping & 0xffffffff));
  7730. tg3_write_mem(tp,
  7731. (bdinfo_addr + TG3_BDINFO_MAXLEN_FLAGS),
  7732. maxlen_flags);
  7733. if (!tg3_flag(tp, 5705_PLUS))
  7734. tg3_write_mem(tp,
  7735. (bdinfo_addr + TG3_BDINFO_NIC_ADDR),
  7736. nic_addr);
  7737. }
  7738. static void tg3_coal_tx_init(struct tg3 *tp, struct ethtool_coalesce *ec)
  7739. {
  7740. int i = 0;
  7741. if (!tg3_flag(tp, ENABLE_TSS)) {
  7742. tw32(HOSTCC_TXCOL_TICKS, ec->tx_coalesce_usecs);
  7743. tw32(HOSTCC_TXMAX_FRAMES, ec->tx_max_coalesced_frames);
  7744. tw32(HOSTCC_TXCOAL_MAXF_INT, ec->tx_max_coalesced_frames_irq);
  7745. } else {
  7746. tw32(HOSTCC_TXCOL_TICKS, 0);
  7747. tw32(HOSTCC_TXMAX_FRAMES, 0);
  7748. tw32(HOSTCC_TXCOAL_MAXF_INT, 0);
  7749. for (; i < tp->txq_cnt; i++) {
  7750. u32 reg;
  7751. reg = HOSTCC_TXCOL_TICKS_VEC1 + i * 0x18;
  7752. tw32(reg, ec->tx_coalesce_usecs);
  7753. reg = HOSTCC_TXMAX_FRAMES_VEC1 + i * 0x18;
  7754. tw32(reg, ec->tx_max_coalesced_frames);
  7755. reg = HOSTCC_TXCOAL_MAXF_INT_VEC1 + i * 0x18;
  7756. tw32(reg, ec->tx_max_coalesced_frames_irq);
  7757. }
  7758. }
  7759. for (; i < tp->irq_max - 1; i++) {
  7760. tw32(HOSTCC_TXCOL_TICKS_VEC1 + i * 0x18, 0);
  7761. tw32(HOSTCC_TXMAX_FRAMES_VEC1 + i * 0x18, 0);
  7762. tw32(HOSTCC_TXCOAL_MAXF_INT_VEC1 + i * 0x18, 0);
  7763. }
  7764. }
  7765. static void tg3_coal_rx_init(struct tg3 *tp, struct ethtool_coalesce *ec)
  7766. {
  7767. int i = 0;
  7768. u32 limit = tp->rxq_cnt;
  7769. if (!tg3_flag(tp, ENABLE_RSS)) {
  7770. tw32(HOSTCC_RXCOL_TICKS, ec->rx_coalesce_usecs);
  7771. tw32(HOSTCC_RXMAX_FRAMES, ec->rx_max_coalesced_frames);
  7772. tw32(HOSTCC_RXCOAL_MAXF_INT, ec->rx_max_coalesced_frames_irq);
  7773. limit--;
  7774. } else {
  7775. tw32(HOSTCC_RXCOL_TICKS, 0);
  7776. tw32(HOSTCC_RXMAX_FRAMES, 0);
  7777. tw32(HOSTCC_RXCOAL_MAXF_INT, 0);
  7778. }
  7779. for (; i < limit; i++) {
  7780. u32 reg;
  7781. reg = HOSTCC_RXCOL_TICKS_VEC1 + i * 0x18;
  7782. tw32(reg, ec->rx_coalesce_usecs);
  7783. reg = HOSTCC_RXMAX_FRAMES_VEC1 + i * 0x18;
  7784. tw32(reg, ec->rx_max_coalesced_frames);
  7785. reg = HOSTCC_RXCOAL_MAXF_INT_VEC1 + i * 0x18;
  7786. tw32(reg, ec->rx_max_coalesced_frames_irq);
  7787. }
  7788. for (; i < tp->irq_max - 1; i++) {
  7789. tw32(HOSTCC_RXCOL_TICKS_VEC1 + i * 0x18, 0);
  7790. tw32(HOSTCC_RXMAX_FRAMES_VEC1 + i * 0x18, 0);
  7791. tw32(HOSTCC_RXCOAL_MAXF_INT_VEC1 + i * 0x18, 0);
  7792. }
  7793. }
  7794. static void __tg3_set_coalesce(struct tg3 *tp, struct ethtool_coalesce *ec)
  7795. {
  7796. tg3_coal_tx_init(tp, ec);
  7797. tg3_coal_rx_init(tp, ec);
  7798. if (!tg3_flag(tp, 5705_PLUS)) {
  7799. u32 val = ec->stats_block_coalesce_usecs;
  7800. tw32(HOSTCC_RXCOAL_TICK_INT, ec->rx_coalesce_usecs_irq);
  7801. tw32(HOSTCC_TXCOAL_TICK_INT, ec->tx_coalesce_usecs_irq);
  7802. if (!tp->link_up)
  7803. val = 0;
  7804. tw32(HOSTCC_STAT_COAL_TICKS, val);
  7805. }
  7806. }
  7807. /* tp->lock is held. */
  7808. static void tg3_tx_rcbs_disable(struct tg3 *tp)
  7809. {
  7810. u32 txrcb, limit;
  7811. /* Disable all transmit rings but the first. */
  7812. if (!tg3_flag(tp, 5705_PLUS))
  7813. limit = NIC_SRAM_SEND_RCB + TG3_BDINFO_SIZE * 16;
  7814. else if (tg3_flag(tp, 5717_PLUS))
  7815. limit = NIC_SRAM_SEND_RCB + TG3_BDINFO_SIZE * 4;
  7816. else if (tg3_flag(tp, 57765_CLASS) ||
  7817. tg3_asic_rev(tp) == ASIC_REV_5762)
  7818. limit = NIC_SRAM_SEND_RCB + TG3_BDINFO_SIZE * 2;
  7819. else
  7820. limit = NIC_SRAM_SEND_RCB + TG3_BDINFO_SIZE;
  7821. for (txrcb = NIC_SRAM_SEND_RCB + TG3_BDINFO_SIZE;
  7822. txrcb < limit; txrcb += TG3_BDINFO_SIZE)
  7823. tg3_write_mem(tp, txrcb + TG3_BDINFO_MAXLEN_FLAGS,
  7824. BDINFO_FLAGS_DISABLED);
  7825. }
  7826. /* tp->lock is held. */
  7827. static void tg3_tx_rcbs_init(struct tg3 *tp)
  7828. {
  7829. int i = 0;
  7830. u32 txrcb = NIC_SRAM_SEND_RCB;
  7831. if (tg3_flag(tp, ENABLE_TSS))
  7832. i++;
  7833. for (; i < tp->irq_max; i++, txrcb += TG3_BDINFO_SIZE) {
  7834. struct tg3_napi *tnapi = &tp->napi[i];
  7835. if (!tnapi->tx_ring)
  7836. continue;
  7837. tg3_set_bdinfo(tp, txrcb, tnapi->tx_desc_mapping,
  7838. (TG3_TX_RING_SIZE << BDINFO_FLAGS_MAXLEN_SHIFT),
  7839. NIC_SRAM_TX_BUFFER_DESC);
  7840. }
  7841. }
  7842. /* tp->lock is held. */
  7843. static void tg3_rx_ret_rcbs_disable(struct tg3 *tp)
  7844. {
  7845. u32 rxrcb, limit;
  7846. /* Disable all receive return rings but the first. */
  7847. if (tg3_flag(tp, 5717_PLUS))
  7848. limit = NIC_SRAM_RCV_RET_RCB + TG3_BDINFO_SIZE * 17;
  7849. else if (!tg3_flag(tp, 5705_PLUS))
  7850. limit = NIC_SRAM_RCV_RET_RCB + TG3_BDINFO_SIZE * 16;
  7851. else if (tg3_asic_rev(tp) == ASIC_REV_5755 ||
  7852. tg3_asic_rev(tp) == ASIC_REV_5762 ||
  7853. tg3_flag(tp, 57765_CLASS))
  7854. limit = NIC_SRAM_RCV_RET_RCB + TG3_BDINFO_SIZE * 4;
  7855. else
  7856. limit = NIC_SRAM_RCV_RET_RCB + TG3_BDINFO_SIZE;
  7857. for (rxrcb = NIC_SRAM_RCV_RET_RCB + TG3_BDINFO_SIZE;
  7858. rxrcb < limit; rxrcb += TG3_BDINFO_SIZE)
  7859. tg3_write_mem(tp, rxrcb + TG3_BDINFO_MAXLEN_FLAGS,
  7860. BDINFO_FLAGS_DISABLED);
  7861. }
  7862. /* tp->lock is held. */
  7863. static void tg3_rx_ret_rcbs_init(struct tg3 *tp)
  7864. {
  7865. int i = 0;
  7866. u32 rxrcb = NIC_SRAM_RCV_RET_RCB;
  7867. if (tg3_flag(tp, ENABLE_RSS))
  7868. i++;
  7869. for (; i < tp->irq_max; i++, rxrcb += TG3_BDINFO_SIZE) {
  7870. struct tg3_napi *tnapi = &tp->napi[i];
  7871. if (!tnapi->rx_rcb)
  7872. continue;
  7873. tg3_set_bdinfo(tp, rxrcb, tnapi->rx_rcb_mapping,
  7874. (tp->rx_ret_ring_mask + 1) <<
  7875. BDINFO_FLAGS_MAXLEN_SHIFT, 0);
  7876. }
  7877. }
  7878. /* tp->lock is held. */
  7879. static void tg3_rings_reset(struct tg3 *tp)
  7880. {
  7881. int i;
  7882. u32 stblk;
  7883. struct tg3_napi *tnapi = &tp->napi[0];
  7884. tg3_tx_rcbs_disable(tp);
  7885. tg3_rx_ret_rcbs_disable(tp);
  7886. /* Disable interrupts */
  7887. tw32_mailbox_f(tp->napi[0].int_mbox, 1);
  7888. tp->napi[0].chk_msi_cnt = 0;
  7889. tp->napi[0].last_rx_cons = 0;
  7890. tp->napi[0].last_tx_cons = 0;
  7891. /* Zero mailbox registers. */
  7892. if (tg3_flag(tp, SUPPORT_MSIX)) {
  7893. for (i = 1; i < tp->irq_max; i++) {
  7894. tp->napi[i].tx_prod = 0;
  7895. tp->napi[i].tx_cons = 0;
  7896. if (tg3_flag(tp, ENABLE_TSS))
  7897. tw32_mailbox(tp->napi[i].prodmbox, 0);
  7898. tw32_rx_mbox(tp->napi[i].consmbox, 0);
  7899. tw32_mailbox_f(tp->napi[i].int_mbox, 1);
  7900. tp->napi[i].chk_msi_cnt = 0;
  7901. tp->napi[i].last_rx_cons = 0;
  7902. tp->napi[i].last_tx_cons = 0;
  7903. }
  7904. if (!tg3_flag(tp, ENABLE_TSS))
  7905. tw32_mailbox(tp->napi[0].prodmbox, 0);
  7906. } else {
  7907. tp->napi[0].tx_prod = 0;
  7908. tp->napi[0].tx_cons = 0;
  7909. tw32_mailbox(tp->napi[0].prodmbox, 0);
  7910. tw32_rx_mbox(tp->napi[0].consmbox, 0);
  7911. }
  7912. /* Make sure the NIC-based send BD rings are disabled. */
  7913. if (!tg3_flag(tp, 5705_PLUS)) {
  7914. u32 mbox = MAILBOX_SNDNIC_PROD_IDX_0 + TG3_64BIT_REG_LOW;
  7915. for (i = 0; i < 16; i++)
  7916. tw32_tx_mbox(mbox + i * 8, 0);
  7917. }
  7918. /* Clear status block in ram. */
  7919. memset(tnapi->hw_status, 0, TG3_HW_STATUS_SIZE);
  7920. /* Set status block DMA address */
  7921. tw32(HOSTCC_STATUS_BLK_HOST_ADDR + TG3_64BIT_REG_HIGH,
  7922. ((u64) tnapi->status_mapping >> 32));
  7923. tw32(HOSTCC_STATUS_BLK_HOST_ADDR + TG3_64BIT_REG_LOW,
  7924. ((u64) tnapi->status_mapping & 0xffffffff));
  7925. stblk = HOSTCC_STATBLCK_RING1;
  7926. for (i = 1, tnapi++; i < tp->irq_cnt; i++, tnapi++) {
  7927. u64 mapping = (u64)tnapi->status_mapping;
  7928. tw32(stblk + TG3_64BIT_REG_HIGH, mapping >> 32);
  7929. tw32(stblk + TG3_64BIT_REG_LOW, mapping & 0xffffffff);
  7930. stblk += 8;
  7931. /* Clear status block in ram. */
  7932. memset(tnapi->hw_status, 0, TG3_HW_STATUS_SIZE);
  7933. }
  7934. tg3_tx_rcbs_init(tp);
  7935. tg3_rx_ret_rcbs_init(tp);
  7936. }
  7937. static void tg3_setup_rxbd_thresholds(struct tg3 *tp)
  7938. {
  7939. u32 val, bdcache_maxcnt, host_rep_thresh, nic_rep_thresh;
  7940. if (!tg3_flag(tp, 5750_PLUS) ||
  7941. tg3_flag(tp, 5780_CLASS) ||
  7942. tg3_asic_rev(tp) == ASIC_REV_5750 ||
  7943. tg3_asic_rev(tp) == ASIC_REV_5752 ||
  7944. tg3_flag(tp, 57765_PLUS))
  7945. bdcache_maxcnt = TG3_SRAM_RX_STD_BDCACHE_SIZE_5700;
  7946. else if (tg3_asic_rev(tp) == ASIC_REV_5755 ||
  7947. tg3_asic_rev(tp) == ASIC_REV_5787)
  7948. bdcache_maxcnt = TG3_SRAM_RX_STD_BDCACHE_SIZE_5755;
  7949. else
  7950. bdcache_maxcnt = TG3_SRAM_RX_STD_BDCACHE_SIZE_5906;
  7951. nic_rep_thresh = min(bdcache_maxcnt / 2, tp->rx_std_max_post);
  7952. host_rep_thresh = max_t(u32, tp->rx_pending / 8, 1);
  7953. val = min(nic_rep_thresh, host_rep_thresh);
  7954. tw32(RCVBDI_STD_THRESH, val);
  7955. if (tg3_flag(tp, 57765_PLUS))
  7956. tw32(STD_REPLENISH_LWM, bdcache_maxcnt);
  7957. if (!tg3_flag(tp, JUMBO_CAPABLE) || tg3_flag(tp, 5780_CLASS))
  7958. return;
  7959. bdcache_maxcnt = TG3_SRAM_RX_JMB_BDCACHE_SIZE_5700;
  7960. host_rep_thresh = max_t(u32, tp->rx_jumbo_pending / 8, 1);
  7961. val = min(bdcache_maxcnt / 2, host_rep_thresh);
  7962. tw32(RCVBDI_JUMBO_THRESH, val);
  7963. if (tg3_flag(tp, 57765_PLUS))
  7964. tw32(JMB_REPLENISH_LWM, bdcache_maxcnt);
  7965. }
  7966. static inline u32 calc_crc(unsigned char *buf, int len)
  7967. {
  7968. u32 reg;
  7969. u32 tmp;
  7970. int j, k;
  7971. reg = 0xffffffff;
  7972. for (j = 0; j < len; j++) {
  7973. reg ^= buf[j];
  7974. for (k = 0; k < 8; k++) {
  7975. tmp = reg & 0x01;
  7976. reg >>= 1;
  7977. if (tmp)
  7978. reg ^= CRC32_POLY_LE;
  7979. }
  7980. }
  7981. return ~reg;
  7982. }
  7983. static void tg3_set_multi(struct tg3 *tp, unsigned int accept_all)
  7984. {
  7985. /* accept or reject all multicast frames */
  7986. tw32(MAC_HASH_REG_0, accept_all ? 0xffffffff : 0);
  7987. tw32(MAC_HASH_REG_1, accept_all ? 0xffffffff : 0);
  7988. tw32(MAC_HASH_REG_2, accept_all ? 0xffffffff : 0);
  7989. tw32(MAC_HASH_REG_3, accept_all ? 0xffffffff : 0);
  7990. }
  7991. static void __tg3_set_rx_mode(struct net_device *dev)
  7992. {
  7993. struct tg3 *tp = netdev_priv(dev);
  7994. u32 rx_mode;
  7995. rx_mode = tp->rx_mode & ~(RX_MODE_PROMISC |
  7996. RX_MODE_KEEP_VLAN_TAG);
  7997. #if !defined(CONFIG_VLAN_8021Q) && !defined(CONFIG_VLAN_8021Q_MODULE)
  7998. /* When ASF is in use, we always keep the RX_MODE_KEEP_VLAN_TAG
  7999. * flag clear.
  8000. */
  8001. if (!tg3_flag(tp, ENABLE_ASF))
  8002. rx_mode |= RX_MODE_KEEP_VLAN_TAG;
  8003. #endif
  8004. if (dev->flags & IFF_PROMISC) {
  8005. /* Promiscuous mode. */
  8006. rx_mode |= RX_MODE_PROMISC;
  8007. } else if (dev->flags & IFF_ALLMULTI) {
  8008. /* Accept all multicast. */
  8009. tg3_set_multi(tp, 1);
  8010. } else if (netdev_mc_empty(dev)) {
  8011. /* Reject all multicast. */
  8012. tg3_set_multi(tp, 0);
  8013. } else {
  8014. /* Accept one or more multicast(s). */
  8015. struct netdev_hw_addr *ha;
  8016. u32 mc_filter[4] = { 0, };
  8017. u32 regidx;
  8018. u32 bit;
  8019. u32 crc;
  8020. netdev_for_each_mc_addr(ha, dev) {
  8021. crc = calc_crc(ha->addr, ETH_ALEN);
  8022. bit = ~crc & 0x7f;
  8023. regidx = (bit & 0x60) >> 5;
  8024. bit &= 0x1f;
  8025. mc_filter[regidx] |= (1 << bit);
  8026. }
  8027. tw32(MAC_HASH_REG_0, mc_filter[0]);
  8028. tw32(MAC_HASH_REG_1, mc_filter[1]);
  8029. tw32(MAC_HASH_REG_2, mc_filter[2]);
  8030. tw32(MAC_HASH_REG_3, mc_filter[3]);
  8031. }
  8032. if (netdev_uc_count(dev) > TG3_MAX_UCAST_ADDR(tp)) {
  8033. rx_mode |= RX_MODE_PROMISC;
  8034. } else if (!(dev->flags & IFF_PROMISC)) {
  8035. /* Add all entries into to the mac addr filter list */
  8036. int i = 0;
  8037. struct netdev_hw_addr *ha;
  8038. netdev_for_each_uc_addr(ha, dev) {
  8039. __tg3_set_one_mac_addr(tp, ha->addr,
  8040. i + TG3_UCAST_ADDR_IDX(tp));
  8041. i++;
  8042. }
  8043. }
  8044. if (rx_mode != tp->rx_mode) {
  8045. tp->rx_mode = rx_mode;
  8046. tw32_f(MAC_RX_MODE, rx_mode);
  8047. udelay(10);
  8048. }
  8049. }
  8050. static void tg3_rss_init_dflt_indir_tbl(struct tg3 *tp, u32 qcnt)
  8051. {
  8052. int i;
  8053. for (i = 0; i < TG3_RSS_INDIR_TBL_SIZE; i++)
  8054. tp->rss_ind_tbl[i] = ethtool_rxfh_indir_default(i, qcnt);
  8055. }
  8056. static void tg3_rss_check_indir_tbl(struct tg3 *tp)
  8057. {
  8058. int i;
  8059. if (!tg3_flag(tp, SUPPORT_MSIX))
  8060. return;
  8061. if (tp->rxq_cnt == 1) {
  8062. memset(&tp->rss_ind_tbl[0], 0, sizeof(tp->rss_ind_tbl));
  8063. return;
  8064. }
  8065. /* Validate table against current IRQ count */
  8066. for (i = 0; i < TG3_RSS_INDIR_TBL_SIZE; i++) {
  8067. if (tp->rss_ind_tbl[i] >= tp->rxq_cnt)
  8068. break;
  8069. }
  8070. if (i != TG3_RSS_INDIR_TBL_SIZE)
  8071. tg3_rss_init_dflt_indir_tbl(tp, tp->rxq_cnt);
  8072. }
  8073. static void tg3_rss_write_indir_tbl(struct tg3 *tp)
  8074. {
  8075. int i = 0;
  8076. u32 reg = MAC_RSS_INDIR_TBL_0;
  8077. while (i < TG3_RSS_INDIR_TBL_SIZE) {
  8078. u32 val = tp->rss_ind_tbl[i];
  8079. i++;
  8080. for (; i % 8; i++) {
  8081. val <<= 4;
  8082. val |= tp->rss_ind_tbl[i];
  8083. }
  8084. tw32(reg, val);
  8085. reg += 4;
  8086. }
  8087. }
  8088. static inline u32 tg3_lso_rd_dma_workaround_bit(struct tg3 *tp)
  8089. {
  8090. if (tg3_asic_rev(tp) == ASIC_REV_5719)
  8091. return TG3_LSO_RD_DMA_TX_LENGTH_WA_5719;
  8092. else
  8093. return TG3_LSO_RD_DMA_TX_LENGTH_WA_5720;
  8094. }
  8095. /* tp->lock is held. */
  8096. static int tg3_reset_hw(struct tg3 *tp, bool reset_phy)
  8097. {
  8098. u32 val, rdmac_mode;
  8099. int i, err, limit;
  8100. struct tg3_rx_prodring_set *tpr = &tp->napi[0].prodring;
  8101. tg3_disable_ints(tp);
  8102. tg3_stop_fw(tp);
  8103. tg3_write_sig_pre_reset(tp, RESET_KIND_INIT);
  8104. if (tg3_flag(tp, INIT_COMPLETE))
  8105. tg3_abort_hw(tp, 1);
  8106. if ((tp->phy_flags & TG3_PHYFLG_KEEP_LINK_ON_PWRDN) &&
  8107. !(tp->phy_flags & TG3_PHYFLG_USER_CONFIGURED)) {
  8108. tg3_phy_pull_config(tp);
  8109. tg3_eee_pull_config(tp, NULL);
  8110. tp->phy_flags |= TG3_PHYFLG_USER_CONFIGURED;
  8111. }
  8112. /* Enable MAC control of LPI */
  8113. if (tp->phy_flags & TG3_PHYFLG_EEE_CAP)
  8114. tg3_setup_eee(tp);
  8115. if (reset_phy)
  8116. tg3_phy_reset(tp);
  8117. err = tg3_chip_reset(tp);
  8118. if (err)
  8119. return err;
  8120. tg3_write_sig_legacy(tp, RESET_KIND_INIT);
  8121. if (tg3_chip_rev(tp) == CHIPREV_5784_AX) {
  8122. val = tr32(TG3_CPMU_CTRL);
  8123. val &= ~(CPMU_CTRL_LINK_AWARE_MODE | CPMU_CTRL_LINK_IDLE_MODE);
  8124. tw32(TG3_CPMU_CTRL, val);
  8125. val = tr32(TG3_CPMU_LSPD_10MB_CLK);
  8126. val &= ~CPMU_LSPD_10MB_MACCLK_MASK;
  8127. val |= CPMU_LSPD_10MB_MACCLK_6_25;
  8128. tw32(TG3_CPMU_LSPD_10MB_CLK, val);
  8129. val = tr32(TG3_CPMU_LNK_AWARE_PWRMD);
  8130. val &= ~CPMU_LNK_AWARE_MACCLK_MASK;
  8131. val |= CPMU_LNK_AWARE_MACCLK_6_25;
  8132. tw32(TG3_CPMU_LNK_AWARE_PWRMD, val);
  8133. val = tr32(TG3_CPMU_HST_ACC);
  8134. val &= ~CPMU_HST_ACC_MACCLK_MASK;
  8135. val |= CPMU_HST_ACC_MACCLK_6_25;
  8136. tw32(TG3_CPMU_HST_ACC, val);
  8137. }
  8138. if (tg3_asic_rev(tp) == ASIC_REV_57780) {
  8139. val = tr32(PCIE_PWR_MGMT_THRESH) & ~PCIE_PWR_MGMT_L1_THRESH_MSK;
  8140. val |= PCIE_PWR_MGMT_EXT_ASPM_TMR_EN |
  8141. PCIE_PWR_MGMT_L1_THRESH_4MS;
  8142. tw32(PCIE_PWR_MGMT_THRESH, val);
  8143. val = tr32(TG3_PCIE_EIDLE_DELAY) & ~TG3_PCIE_EIDLE_DELAY_MASK;
  8144. tw32(TG3_PCIE_EIDLE_DELAY, val | TG3_PCIE_EIDLE_DELAY_13_CLKS);
  8145. tw32(TG3_CORR_ERR_STAT, TG3_CORR_ERR_STAT_CLEAR);
  8146. val = tr32(TG3_PCIE_LNKCTL) & ~TG3_PCIE_LNKCTL_L1_PLL_PD_EN;
  8147. tw32(TG3_PCIE_LNKCTL, val | TG3_PCIE_LNKCTL_L1_PLL_PD_DIS);
  8148. }
  8149. if (tg3_flag(tp, L1PLLPD_EN)) {
  8150. u32 grc_mode = tr32(GRC_MODE);
  8151. /* Access the lower 1K of PL PCIE block registers. */
  8152. val = grc_mode & ~GRC_MODE_PCIE_PORT_MASK;
  8153. tw32(GRC_MODE, val | GRC_MODE_PCIE_PL_SEL);
  8154. val = tr32(TG3_PCIE_TLDLPL_PORT + TG3_PCIE_PL_LO_PHYCTL1);
  8155. tw32(TG3_PCIE_TLDLPL_PORT + TG3_PCIE_PL_LO_PHYCTL1,
  8156. val | TG3_PCIE_PL_LO_PHYCTL1_L1PLLPD_EN);
  8157. tw32(GRC_MODE, grc_mode);
  8158. }
  8159. if (tg3_flag(tp, 57765_CLASS)) {
  8160. if (tg3_chip_rev_id(tp) == CHIPREV_ID_57765_A0) {
  8161. u32 grc_mode = tr32(GRC_MODE);
  8162. /* Access the lower 1K of PL PCIE block registers. */
  8163. val = grc_mode & ~GRC_MODE_PCIE_PORT_MASK;
  8164. tw32(GRC_MODE, val | GRC_MODE_PCIE_PL_SEL);
  8165. val = tr32(TG3_PCIE_TLDLPL_PORT +
  8166. TG3_PCIE_PL_LO_PHYCTL5);
  8167. tw32(TG3_PCIE_TLDLPL_PORT + TG3_PCIE_PL_LO_PHYCTL5,
  8168. val | TG3_PCIE_PL_LO_PHYCTL5_DIS_L2CLKREQ);
  8169. tw32(GRC_MODE, grc_mode);
  8170. }
  8171. if (tg3_chip_rev(tp) != CHIPREV_57765_AX) {
  8172. u32 grc_mode;
  8173. /* Fix transmit hangs */
  8174. val = tr32(TG3_CPMU_PADRNG_CTL);
  8175. val |= TG3_CPMU_PADRNG_CTL_RDIV2;
  8176. tw32(TG3_CPMU_PADRNG_CTL, val);
  8177. grc_mode = tr32(GRC_MODE);
  8178. /* Access the lower 1K of DL PCIE block registers. */
  8179. val = grc_mode & ~GRC_MODE_PCIE_PORT_MASK;
  8180. tw32(GRC_MODE, val | GRC_MODE_PCIE_DL_SEL);
  8181. val = tr32(TG3_PCIE_TLDLPL_PORT +
  8182. TG3_PCIE_DL_LO_FTSMAX);
  8183. val &= ~TG3_PCIE_DL_LO_FTSMAX_MSK;
  8184. tw32(TG3_PCIE_TLDLPL_PORT + TG3_PCIE_DL_LO_FTSMAX,
  8185. val | TG3_PCIE_DL_LO_FTSMAX_VAL);
  8186. tw32(GRC_MODE, grc_mode);
  8187. }
  8188. val = tr32(TG3_CPMU_LSPD_10MB_CLK);
  8189. val &= ~CPMU_LSPD_10MB_MACCLK_MASK;
  8190. val |= CPMU_LSPD_10MB_MACCLK_6_25;
  8191. tw32(TG3_CPMU_LSPD_10MB_CLK, val);
  8192. }
  8193. /* This works around an issue with Athlon chipsets on
  8194. * B3 tigon3 silicon. This bit has no effect on any
  8195. * other revision. But do not set this on PCI Express
  8196. * chips and don't even touch the clocks if the CPMU is present.
  8197. */
  8198. if (!tg3_flag(tp, CPMU_PRESENT)) {
  8199. if (!tg3_flag(tp, PCI_EXPRESS))
  8200. tp->pci_clock_ctrl |= CLOCK_CTRL_DELAY_PCI_GRANT;
  8201. tw32_f(TG3PCI_CLOCK_CTRL, tp->pci_clock_ctrl);
  8202. }
  8203. if (tg3_chip_rev_id(tp) == CHIPREV_ID_5704_A0 &&
  8204. tg3_flag(tp, PCIX_MODE)) {
  8205. val = tr32(TG3PCI_PCISTATE);
  8206. val |= PCISTATE_RETRY_SAME_DMA;
  8207. tw32(TG3PCI_PCISTATE, val);
  8208. }
  8209. if (tg3_flag(tp, ENABLE_APE)) {
  8210. /* Allow reads and writes to the
  8211. * APE register and memory space.
  8212. */
  8213. val = tr32(TG3PCI_PCISTATE);
  8214. val |= PCISTATE_ALLOW_APE_CTLSPC_WR |
  8215. PCISTATE_ALLOW_APE_SHMEM_WR |
  8216. PCISTATE_ALLOW_APE_PSPACE_WR;
  8217. tw32(TG3PCI_PCISTATE, val);
  8218. }
  8219. if (tg3_chip_rev(tp) == CHIPREV_5704_BX) {
  8220. /* Enable some hw fixes. */
  8221. val = tr32(TG3PCI_MSI_DATA);
  8222. val |= (1 << 26) | (1 << 28) | (1 << 29);
  8223. tw32(TG3PCI_MSI_DATA, val);
  8224. }
  8225. /* Descriptor ring init may make accesses to the
  8226. * NIC SRAM area to setup the TX descriptors, so we
  8227. * can only do this after the hardware has been
  8228. * successfully reset.
  8229. */
  8230. err = tg3_init_rings(tp);
  8231. if (err)
  8232. return err;
  8233. if (tg3_flag(tp, 57765_PLUS)) {
  8234. val = tr32(TG3PCI_DMA_RW_CTRL) &
  8235. ~DMA_RWCTRL_DIS_CACHE_ALIGNMENT;
  8236. if (tg3_chip_rev_id(tp) == CHIPREV_ID_57765_A0)
  8237. val &= ~DMA_RWCTRL_CRDRDR_RDMA_MRRS_MSK;
  8238. if (!tg3_flag(tp, 57765_CLASS) &&
  8239. tg3_asic_rev(tp) != ASIC_REV_5717 &&
  8240. tg3_asic_rev(tp) != ASIC_REV_5762)
  8241. val |= DMA_RWCTRL_TAGGED_STAT_WA;
  8242. tw32(TG3PCI_DMA_RW_CTRL, val | tp->dma_rwctrl);
  8243. } else if (tg3_asic_rev(tp) != ASIC_REV_5784 &&
  8244. tg3_asic_rev(tp) != ASIC_REV_5761) {
  8245. /* This value is determined during the probe time DMA
  8246. * engine test, tg3_test_dma.
  8247. */
  8248. tw32(TG3PCI_DMA_RW_CTRL, tp->dma_rwctrl);
  8249. }
  8250. tp->grc_mode &= ~(GRC_MODE_HOST_SENDBDS |
  8251. GRC_MODE_4X_NIC_SEND_RINGS |
  8252. GRC_MODE_NO_TX_PHDR_CSUM |
  8253. GRC_MODE_NO_RX_PHDR_CSUM);
  8254. tp->grc_mode |= GRC_MODE_HOST_SENDBDS;
  8255. /* Pseudo-header checksum is done by hardware logic and not
  8256. * the offload processers, so make the chip do the pseudo-
  8257. * header checksums on receive. For transmit it is more
  8258. * convenient to do the pseudo-header checksum in software
  8259. * as Linux does that on transmit for us in all cases.
  8260. */
  8261. tp->grc_mode |= GRC_MODE_NO_TX_PHDR_CSUM;
  8262. val = GRC_MODE_IRQ_ON_MAC_ATTN | GRC_MODE_HOST_STACKUP;
  8263. if (tp->rxptpctl)
  8264. tw32(TG3_RX_PTP_CTL,
  8265. tp->rxptpctl | TG3_RX_PTP_CTL_HWTS_INTERLOCK);
  8266. if (tg3_flag(tp, PTP_CAPABLE))
  8267. val |= GRC_MODE_TIME_SYNC_ENABLE;
  8268. tw32(GRC_MODE, tp->grc_mode | val);
  8269. /* On one of the AMD platform, MRRS is restricted to 4000 because of
  8270. * south bridge limitation. As a workaround, Driver is setting MRRS
  8271. * to 2048 instead of default 4096.
  8272. */
  8273. if (tp->pdev->subsystem_vendor == PCI_VENDOR_ID_DELL &&
  8274. tp->pdev->subsystem_device == TG3PCI_SUBDEVICE_ID_DELL_5762) {
  8275. val = tr32(TG3PCI_DEV_STATUS_CTRL) & ~MAX_READ_REQ_MASK;
  8276. tw32(TG3PCI_DEV_STATUS_CTRL, val | MAX_READ_REQ_SIZE_2048);
  8277. }
  8278. /* Setup the timer prescalar register. Clock is always 66Mhz. */
  8279. val = tr32(GRC_MISC_CFG);
  8280. val &= ~0xff;
  8281. val |= (65 << GRC_MISC_CFG_PRESCALAR_SHIFT);
  8282. tw32(GRC_MISC_CFG, val);
  8283. /* Initialize MBUF/DESC pool. */
  8284. if (tg3_flag(tp, 5750_PLUS)) {
  8285. /* Do nothing. */
  8286. } else if (tg3_asic_rev(tp) != ASIC_REV_5705) {
  8287. tw32(BUFMGR_MB_POOL_ADDR, NIC_SRAM_MBUF_POOL_BASE);
  8288. if (tg3_asic_rev(tp) == ASIC_REV_5704)
  8289. tw32(BUFMGR_MB_POOL_SIZE, NIC_SRAM_MBUF_POOL_SIZE64);
  8290. else
  8291. tw32(BUFMGR_MB_POOL_SIZE, NIC_SRAM_MBUF_POOL_SIZE96);
  8292. tw32(BUFMGR_DMA_DESC_POOL_ADDR, NIC_SRAM_DMA_DESC_POOL_BASE);
  8293. tw32(BUFMGR_DMA_DESC_POOL_SIZE, NIC_SRAM_DMA_DESC_POOL_SIZE);
  8294. } else if (tg3_flag(tp, TSO_CAPABLE)) {
  8295. int fw_len;
  8296. fw_len = tp->fw_len;
  8297. fw_len = (fw_len + (0x80 - 1)) & ~(0x80 - 1);
  8298. tw32(BUFMGR_MB_POOL_ADDR,
  8299. NIC_SRAM_MBUF_POOL_BASE5705 + fw_len);
  8300. tw32(BUFMGR_MB_POOL_SIZE,
  8301. NIC_SRAM_MBUF_POOL_SIZE5705 - fw_len - 0xa00);
  8302. }
  8303. if (tp->dev->mtu <= ETH_DATA_LEN) {
  8304. tw32(BUFMGR_MB_RDMA_LOW_WATER,
  8305. tp->bufmgr_config.mbuf_read_dma_low_water);
  8306. tw32(BUFMGR_MB_MACRX_LOW_WATER,
  8307. tp->bufmgr_config.mbuf_mac_rx_low_water);
  8308. tw32(BUFMGR_MB_HIGH_WATER,
  8309. tp->bufmgr_config.mbuf_high_water);
  8310. } else {
  8311. tw32(BUFMGR_MB_RDMA_LOW_WATER,
  8312. tp->bufmgr_config.mbuf_read_dma_low_water_jumbo);
  8313. tw32(BUFMGR_MB_MACRX_LOW_WATER,
  8314. tp->bufmgr_config.mbuf_mac_rx_low_water_jumbo);
  8315. tw32(BUFMGR_MB_HIGH_WATER,
  8316. tp->bufmgr_config.mbuf_high_water_jumbo);
  8317. }
  8318. tw32(BUFMGR_DMA_LOW_WATER,
  8319. tp->bufmgr_config.dma_low_water);
  8320. tw32(BUFMGR_DMA_HIGH_WATER,
  8321. tp->bufmgr_config.dma_high_water);
  8322. val = BUFMGR_MODE_ENABLE | BUFMGR_MODE_ATTN_ENABLE;
  8323. if (tg3_asic_rev(tp) == ASIC_REV_5719)
  8324. val |= BUFMGR_MODE_NO_TX_UNDERRUN;
  8325. if (tg3_asic_rev(tp) == ASIC_REV_5717 ||
  8326. tg3_asic_rev(tp) == ASIC_REV_5762 ||
  8327. tg3_chip_rev_id(tp) == CHIPREV_ID_5719_A0 ||
  8328. tg3_chip_rev_id(tp) == CHIPREV_ID_5720_A0)
  8329. val |= BUFMGR_MODE_MBLOW_ATTN_ENAB;
  8330. tw32(BUFMGR_MODE, val);
  8331. for (i = 0; i < 2000; i++) {
  8332. if (tr32(BUFMGR_MODE) & BUFMGR_MODE_ENABLE)
  8333. break;
  8334. udelay(10);
  8335. }
  8336. if (i >= 2000) {
  8337. netdev_err(tp->dev, "%s cannot enable BUFMGR\n", __func__);
  8338. return -ENODEV;
  8339. }
  8340. if (tg3_chip_rev_id(tp) == CHIPREV_ID_5906_A1)
  8341. tw32(ISO_PKT_TX, (tr32(ISO_PKT_TX) & ~0x3) | 0x2);
  8342. tg3_setup_rxbd_thresholds(tp);
  8343. /* Initialize TG3_BDINFO's at:
  8344. * RCVDBDI_STD_BD: standard eth size rx ring
  8345. * RCVDBDI_JUMBO_BD: jumbo frame rx ring
  8346. * RCVDBDI_MINI_BD: small frame rx ring (??? does not work)
  8347. *
  8348. * like so:
  8349. * TG3_BDINFO_HOST_ADDR: high/low parts of DMA address of ring
  8350. * TG3_BDINFO_MAXLEN_FLAGS: (rx max buffer size << 16) |
  8351. * ring attribute flags
  8352. * TG3_BDINFO_NIC_ADDR: location of descriptors in nic SRAM
  8353. *
  8354. * Standard receive ring @ NIC_SRAM_RX_BUFFER_DESC, 512 entries.
  8355. * Jumbo receive ring @ NIC_SRAM_RX_JUMBO_BUFFER_DESC, 256 entries.
  8356. *
  8357. * The size of each ring is fixed in the firmware, but the location is
  8358. * configurable.
  8359. */
  8360. tw32(RCVDBDI_STD_BD + TG3_BDINFO_HOST_ADDR + TG3_64BIT_REG_HIGH,
  8361. ((u64) tpr->rx_std_mapping >> 32));
  8362. tw32(RCVDBDI_STD_BD + TG3_BDINFO_HOST_ADDR + TG3_64BIT_REG_LOW,
  8363. ((u64) tpr->rx_std_mapping & 0xffffffff));
  8364. if (!tg3_flag(tp, 5717_PLUS))
  8365. tw32(RCVDBDI_STD_BD + TG3_BDINFO_NIC_ADDR,
  8366. NIC_SRAM_RX_BUFFER_DESC);
  8367. /* Disable the mini ring */
  8368. if (!tg3_flag(tp, 5705_PLUS))
  8369. tw32(RCVDBDI_MINI_BD + TG3_BDINFO_MAXLEN_FLAGS,
  8370. BDINFO_FLAGS_DISABLED);
  8371. /* Program the jumbo buffer descriptor ring control
  8372. * blocks on those devices that have them.
  8373. */
  8374. if (tg3_chip_rev_id(tp) == CHIPREV_ID_5719_A0 ||
  8375. (tg3_flag(tp, JUMBO_CAPABLE) && !tg3_flag(tp, 5780_CLASS))) {
  8376. if (tg3_flag(tp, JUMBO_RING_ENABLE)) {
  8377. tw32(RCVDBDI_JUMBO_BD + TG3_BDINFO_HOST_ADDR + TG3_64BIT_REG_HIGH,
  8378. ((u64) tpr->rx_jmb_mapping >> 32));
  8379. tw32(RCVDBDI_JUMBO_BD + TG3_BDINFO_HOST_ADDR + TG3_64BIT_REG_LOW,
  8380. ((u64) tpr->rx_jmb_mapping & 0xffffffff));
  8381. val = TG3_RX_JMB_RING_SIZE(tp) <<
  8382. BDINFO_FLAGS_MAXLEN_SHIFT;
  8383. tw32(RCVDBDI_JUMBO_BD + TG3_BDINFO_MAXLEN_FLAGS,
  8384. val | BDINFO_FLAGS_USE_EXT_RECV);
  8385. if (!tg3_flag(tp, USE_JUMBO_BDFLAG) ||
  8386. tg3_flag(tp, 57765_CLASS) ||
  8387. tg3_asic_rev(tp) == ASIC_REV_5762)
  8388. tw32(RCVDBDI_JUMBO_BD + TG3_BDINFO_NIC_ADDR,
  8389. NIC_SRAM_RX_JUMBO_BUFFER_DESC);
  8390. } else {
  8391. tw32(RCVDBDI_JUMBO_BD + TG3_BDINFO_MAXLEN_FLAGS,
  8392. BDINFO_FLAGS_DISABLED);
  8393. }
  8394. if (tg3_flag(tp, 57765_PLUS)) {
  8395. val = TG3_RX_STD_RING_SIZE(tp);
  8396. val <<= BDINFO_FLAGS_MAXLEN_SHIFT;
  8397. val |= (TG3_RX_STD_DMA_SZ << 2);
  8398. } else
  8399. val = TG3_RX_STD_DMA_SZ << BDINFO_FLAGS_MAXLEN_SHIFT;
  8400. } else
  8401. val = TG3_RX_STD_MAX_SIZE_5700 << BDINFO_FLAGS_MAXLEN_SHIFT;
  8402. tw32(RCVDBDI_STD_BD + TG3_BDINFO_MAXLEN_FLAGS, val);
  8403. tpr->rx_std_prod_idx = tp->rx_pending;
  8404. tw32_rx_mbox(TG3_RX_STD_PROD_IDX_REG, tpr->rx_std_prod_idx);
  8405. tpr->rx_jmb_prod_idx =
  8406. tg3_flag(tp, JUMBO_RING_ENABLE) ? tp->rx_jumbo_pending : 0;
  8407. tw32_rx_mbox(TG3_RX_JMB_PROD_IDX_REG, tpr->rx_jmb_prod_idx);
  8408. tg3_rings_reset(tp);
  8409. /* Initialize MAC address and backoff seed. */
  8410. __tg3_set_mac_addr(tp, false);
  8411. /* MTU + ethernet header + FCS + optional VLAN tag */
  8412. tw32(MAC_RX_MTU_SIZE,
  8413. tp->dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
  8414. /* The slot time is changed by tg3_setup_phy if we
  8415. * run at gigabit with half duplex.
  8416. */
  8417. val = (2 << TX_LENGTHS_IPG_CRS_SHIFT) |
  8418. (6 << TX_LENGTHS_IPG_SHIFT) |
  8419. (32 << TX_LENGTHS_SLOT_TIME_SHIFT);
  8420. if (tg3_asic_rev(tp) == ASIC_REV_5720 ||
  8421. tg3_asic_rev(tp) == ASIC_REV_5762)
  8422. val |= tr32(MAC_TX_LENGTHS) &
  8423. (TX_LENGTHS_JMB_FRM_LEN_MSK |
  8424. TX_LENGTHS_CNT_DWN_VAL_MSK);
  8425. tw32(MAC_TX_LENGTHS, val);
  8426. /* Receive rules. */
  8427. tw32(MAC_RCV_RULE_CFG, RCV_RULE_CFG_DEFAULT_CLASS);
  8428. tw32(RCVLPC_CONFIG, 0x0181);
  8429. /* Calculate RDMAC_MODE setting early, we need it to determine
  8430. * the RCVLPC_STATE_ENABLE mask.
  8431. */
  8432. rdmac_mode = (RDMAC_MODE_ENABLE | RDMAC_MODE_TGTABORT_ENAB |
  8433. RDMAC_MODE_MSTABORT_ENAB | RDMAC_MODE_PARITYERR_ENAB |
  8434. RDMAC_MODE_ADDROFLOW_ENAB | RDMAC_MODE_FIFOOFLOW_ENAB |
  8435. RDMAC_MODE_FIFOURUN_ENAB | RDMAC_MODE_FIFOOREAD_ENAB |
  8436. RDMAC_MODE_LNGREAD_ENAB);
  8437. if (tg3_asic_rev(tp) == ASIC_REV_5717)
  8438. rdmac_mode |= RDMAC_MODE_MULT_DMA_RD_DIS;
  8439. if (tg3_asic_rev(tp) == ASIC_REV_5784 ||
  8440. tg3_asic_rev(tp) == ASIC_REV_5785 ||
  8441. tg3_asic_rev(tp) == ASIC_REV_57780)
  8442. rdmac_mode |= RDMAC_MODE_BD_SBD_CRPT_ENAB |
  8443. RDMAC_MODE_MBUF_RBD_CRPT_ENAB |
  8444. RDMAC_MODE_MBUF_SBD_CRPT_ENAB;
  8445. if (tg3_asic_rev(tp) == ASIC_REV_5705 &&
  8446. tg3_chip_rev_id(tp) != CHIPREV_ID_5705_A0) {
  8447. if (tg3_flag(tp, TSO_CAPABLE) &&
  8448. tg3_asic_rev(tp) == ASIC_REV_5705) {
  8449. rdmac_mode |= RDMAC_MODE_FIFO_SIZE_128;
  8450. } else if (!(tr32(TG3PCI_PCISTATE) & PCISTATE_BUS_SPEED_HIGH) &&
  8451. !tg3_flag(tp, IS_5788)) {
  8452. rdmac_mode |= RDMAC_MODE_FIFO_LONG_BURST;
  8453. }
  8454. }
  8455. if (tg3_flag(tp, PCI_EXPRESS))
  8456. rdmac_mode |= RDMAC_MODE_FIFO_LONG_BURST;
  8457. if (tg3_asic_rev(tp) == ASIC_REV_57766) {
  8458. tp->dma_limit = 0;
  8459. if (tp->dev->mtu <= ETH_DATA_LEN) {
  8460. rdmac_mode |= RDMAC_MODE_JMB_2K_MMRR;
  8461. tp->dma_limit = TG3_TX_BD_DMA_MAX_2K;
  8462. }
  8463. }
  8464. if (tg3_flag(tp, HW_TSO_1) ||
  8465. tg3_flag(tp, HW_TSO_2) ||
  8466. tg3_flag(tp, HW_TSO_3))
  8467. rdmac_mode |= RDMAC_MODE_IPV4_LSO_EN;
  8468. if (tg3_flag(tp, 57765_PLUS) ||
  8469. tg3_asic_rev(tp) == ASIC_REV_5785 ||
  8470. tg3_asic_rev(tp) == ASIC_REV_57780)
  8471. rdmac_mode |= RDMAC_MODE_IPV6_LSO_EN;
  8472. if (tg3_asic_rev(tp) == ASIC_REV_5720 ||
  8473. tg3_asic_rev(tp) == ASIC_REV_5762)
  8474. rdmac_mode |= tr32(RDMAC_MODE) & RDMAC_MODE_H2BNC_VLAN_DET;
  8475. if (tg3_asic_rev(tp) == ASIC_REV_5761 ||
  8476. tg3_asic_rev(tp) == ASIC_REV_5784 ||
  8477. tg3_asic_rev(tp) == ASIC_REV_5785 ||
  8478. tg3_asic_rev(tp) == ASIC_REV_57780 ||
  8479. tg3_flag(tp, 57765_PLUS)) {
  8480. u32 tgtreg;
  8481. if (tg3_asic_rev(tp) == ASIC_REV_5762)
  8482. tgtreg = TG3_RDMA_RSRVCTRL_REG2;
  8483. else
  8484. tgtreg = TG3_RDMA_RSRVCTRL_REG;
  8485. val = tr32(tgtreg);
  8486. if (tg3_chip_rev_id(tp) == CHIPREV_ID_5719_A0 ||
  8487. tg3_asic_rev(tp) == ASIC_REV_5762) {
  8488. val &= ~(TG3_RDMA_RSRVCTRL_TXMRGN_MASK |
  8489. TG3_RDMA_RSRVCTRL_FIFO_LWM_MASK |
  8490. TG3_RDMA_RSRVCTRL_FIFO_HWM_MASK);
  8491. val |= TG3_RDMA_RSRVCTRL_TXMRGN_320B |
  8492. TG3_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
  8493. TG3_RDMA_RSRVCTRL_FIFO_HWM_1_5K;
  8494. }
  8495. tw32(tgtreg, val | TG3_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
  8496. }
  8497. if (tg3_asic_rev(tp) == ASIC_REV_5719 ||
  8498. tg3_asic_rev(tp) == ASIC_REV_5720 ||
  8499. tg3_asic_rev(tp) == ASIC_REV_5762) {
  8500. u32 tgtreg;
  8501. if (tg3_asic_rev(tp) == ASIC_REV_5762)
  8502. tgtreg = TG3_LSO_RD_DMA_CRPTEN_CTRL2;
  8503. else
  8504. tgtreg = TG3_LSO_RD_DMA_CRPTEN_CTRL;
  8505. val = tr32(tgtreg);
  8506. tw32(tgtreg, val |
  8507. TG3_LSO_RD_DMA_CRPTEN_CTRL_BLEN_BD_4K |
  8508. TG3_LSO_RD_DMA_CRPTEN_CTRL_BLEN_LSO_4K);
  8509. }
  8510. /* Receive/send statistics. */
  8511. if (tg3_flag(tp, 5750_PLUS)) {
  8512. val = tr32(RCVLPC_STATS_ENABLE);
  8513. val &= ~RCVLPC_STATSENAB_DACK_FIX;
  8514. tw32(RCVLPC_STATS_ENABLE, val);
  8515. } else if ((rdmac_mode & RDMAC_MODE_FIFO_SIZE_128) &&
  8516. tg3_flag(tp, TSO_CAPABLE)) {
  8517. val = tr32(RCVLPC_STATS_ENABLE);
  8518. val &= ~RCVLPC_STATSENAB_LNGBRST_RFIX;
  8519. tw32(RCVLPC_STATS_ENABLE, val);
  8520. } else {
  8521. tw32(RCVLPC_STATS_ENABLE, 0xffffff);
  8522. }
  8523. tw32(RCVLPC_STATSCTRL, RCVLPC_STATSCTRL_ENABLE);
  8524. tw32(SNDDATAI_STATSENAB, 0xffffff);
  8525. tw32(SNDDATAI_STATSCTRL,
  8526. (SNDDATAI_SCTRL_ENABLE |
  8527. SNDDATAI_SCTRL_FASTUPD));
  8528. /* Setup host coalescing engine. */
  8529. tw32(HOSTCC_MODE, 0);
  8530. for (i = 0; i < 2000; i++) {
  8531. if (!(tr32(HOSTCC_MODE) & HOSTCC_MODE_ENABLE))
  8532. break;
  8533. udelay(10);
  8534. }
  8535. __tg3_set_coalesce(tp, &tp->coal);
  8536. if (!tg3_flag(tp, 5705_PLUS)) {
  8537. /* Status/statistics block address. See tg3_timer,
  8538. * the tg3_periodic_fetch_stats call there, and
  8539. * tg3_get_stats to see how this works for 5705/5750 chips.
  8540. */
  8541. tw32(HOSTCC_STATS_BLK_HOST_ADDR + TG3_64BIT_REG_HIGH,
  8542. ((u64) tp->stats_mapping >> 32));
  8543. tw32(HOSTCC_STATS_BLK_HOST_ADDR + TG3_64BIT_REG_LOW,
  8544. ((u64) tp->stats_mapping & 0xffffffff));
  8545. tw32(HOSTCC_STATS_BLK_NIC_ADDR, NIC_SRAM_STATS_BLK);
  8546. tw32(HOSTCC_STATUS_BLK_NIC_ADDR, NIC_SRAM_STATUS_BLK);
  8547. /* Clear statistics and status block memory areas */
  8548. for (i = NIC_SRAM_STATS_BLK;
  8549. i < NIC_SRAM_STATUS_BLK + TG3_HW_STATUS_SIZE;
  8550. i += sizeof(u32)) {
  8551. tg3_write_mem(tp, i, 0);
  8552. udelay(40);
  8553. }
  8554. }
  8555. tw32(HOSTCC_MODE, HOSTCC_MODE_ENABLE | tp->coalesce_mode);
  8556. tw32(RCVCC_MODE, RCVCC_MODE_ENABLE | RCVCC_MODE_ATTN_ENABLE);
  8557. tw32(RCVLPC_MODE, RCVLPC_MODE_ENABLE);
  8558. if (!tg3_flag(tp, 5705_PLUS))
  8559. tw32(RCVLSC_MODE, RCVLSC_MODE_ENABLE | RCVLSC_MODE_ATTN_ENABLE);
  8560. if (tp->phy_flags & TG3_PHYFLG_MII_SERDES) {
  8561. tp->phy_flags &= ~TG3_PHYFLG_PARALLEL_DETECT;
  8562. /* reset to prevent losing 1st rx packet intermittently */
  8563. tw32_f(MAC_RX_MODE, RX_MODE_RESET);
  8564. udelay(10);
  8565. }
  8566. tp->mac_mode |= MAC_MODE_TXSTAT_ENABLE | MAC_MODE_RXSTAT_ENABLE |
  8567. MAC_MODE_TDE_ENABLE | MAC_MODE_RDE_ENABLE |
  8568. MAC_MODE_FHDE_ENABLE;
  8569. if (tg3_flag(tp, ENABLE_APE))
  8570. tp->mac_mode |= MAC_MODE_APE_TX_EN | MAC_MODE_APE_RX_EN;
  8571. if (!tg3_flag(tp, 5705_PLUS) &&
  8572. !(tp->phy_flags & TG3_PHYFLG_PHY_SERDES) &&
  8573. tg3_asic_rev(tp) != ASIC_REV_5700)
  8574. tp->mac_mode |= MAC_MODE_LINK_POLARITY;
  8575. tw32_f(MAC_MODE, tp->mac_mode | MAC_MODE_RXSTAT_CLEAR | MAC_MODE_TXSTAT_CLEAR);
  8576. udelay(40);
  8577. /* tp->grc_local_ctrl is partially set up during tg3_get_invariants().
  8578. * If TG3_FLAG_IS_NIC is zero, we should read the
  8579. * register to preserve the GPIO settings for LOMs. The GPIOs,
  8580. * whether used as inputs or outputs, are set by boot code after
  8581. * reset.
  8582. */
  8583. if (!tg3_flag(tp, IS_NIC)) {
  8584. u32 gpio_mask;
  8585. gpio_mask = GRC_LCLCTRL_GPIO_OE0 | GRC_LCLCTRL_GPIO_OE1 |
  8586. GRC_LCLCTRL_GPIO_OE2 | GRC_LCLCTRL_GPIO_OUTPUT0 |
  8587. GRC_LCLCTRL_GPIO_OUTPUT1 | GRC_LCLCTRL_GPIO_OUTPUT2;
  8588. if (tg3_asic_rev(tp) == ASIC_REV_5752)
  8589. gpio_mask |= GRC_LCLCTRL_GPIO_OE3 |
  8590. GRC_LCLCTRL_GPIO_OUTPUT3;
  8591. if (tg3_asic_rev(tp) == ASIC_REV_5755)
  8592. gpio_mask |= GRC_LCLCTRL_GPIO_UART_SEL;
  8593. tp->grc_local_ctrl &= ~gpio_mask;
  8594. tp->grc_local_ctrl |= tr32(GRC_LOCAL_CTRL) & gpio_mask;
  8595. /* GPIO1 must be driven high for eeprom write protect */
  8596. if (tg3_flag(tp, EEPROM_WRITE_PROT))
  8597. tp->grc_local_ctrl |= (GRC_LCLCTRL_GPIO_OE1 |
  8598. GRC_LCLCTRL_GPIO_OUTPUT1);
  8599. }
  8600. tw32_f(GRC_LOCAL_CTRL, tp->grc_local_ctrl);
  8601. udelay(100);
  8602. if (tg3_flag(tp, USING_MSIX)) {
  8603. val = tr32(MSGINT_MODE);
  8604. val |= MSGINT_MODE_ENABLE;
  8605. if (tp->irq_cnt > 1)
  8606. val |= MSGINT_MODE_MULTIVEC_EN;
  8607. if (!tg3_flag(tp, 1SHOT_MSI))
  8608. val |= MSGINT_MODE_ONE_SHOT_DISABLE;
  8609. tw32(MSGINT_MODE, val);
  8610. }
  8611. if (!tg3_flag(tp, 5705_PLUS)) {
  8612. tw32_f(DMAC_MODE, DMAC_MODE_ENABLE);
  8613. udelay(40);
  8614. }
  8615. val = (WDMAC_MODE_ENABLE | WDMAC_MODE_TGTABORT_ENAB |
  8616. WDMAC_MODE_MSTABORT_ENAB | WDMAC_MODE_PARITYERR_ENAB |
  8617. WDMAC_MODE_ADDROFLOW_ENAB | WDMAC_MODE_FIFOOFLOW_ENAB |
  8618. WDMAC_MODE_FIFOURUN_ENAB | WDMAC_MODE_FIFOOREAD_ENAB |
  8619. WDMAC_MODE_LNGREAD_ENAB);
  8620. if (tg3_asic_rev(tp) == ASIC_REV_5705 &&
  8621. tg3_chip_rev_id(tp) != CHIPREV_ID_5705_A0) {
  8622. if (tg3_flag(tp, TSO_CAPABLE) &&
  8623. (tg3_chip_rev_id(tp) == CHIPREV_ID_5705_A1 ||
  8624. tg3_chip_rev_id(tp) == CHIPREV_ID_5705_A2)) {
  8625. /* nothing */
  8626. } else if (!(tr32(TG3PCI_PCISTATE) & PCISTATE_BUS_SPEED_HIGH) &&
  8627. !tg3_flag(tp, IS_5788)) {
  8628. val |= WDMAC_MODE_RX_ACCEL;
  8629. }
  8630. }
  8631. /* Enable host coalescing bug fix */
  8632. if (tg3_flag(tp, 5755_PLUS))
  8633. val |= WDMAC_MODE_STATUS_TAG_FIX;
  8634. if (tg3_asic_rev(tp) == ASIC_REV_5785)
  8635. val |= WDMAC_MODE_BURST_ALL_DATA;
  8636. tw32_f(WDMAC_MODE, val);
  8637. udelay(40);
  8638. if (tg3_flag(tp, PCIX_MODE)) {
  8639. u16 pcix_cmd;
  8640. pci_read_config_word(tp->pdev, tp->pcix_cap + PCI_X_CMD,
  8641. &pcix_cmd);
  8642. if (tg3_asic_rev(tp) == ASIC_REV_5703) {
  8643. pcix_cmd &= ~PCI_X_CMD_MAX_READ;
  8644. pcix_cmd |= PCI_X_CMD_READ_2K;
  8645. } else if (tg3_asic_rev(tp) == ASIC_REV_5704) {
  8646. pcix_cmd &= ~(PCI_X_CMD_MAX_SPLIT | PCI_X_CMD_MAX_READ);
  8647. pcix_cmd |= PCI_X_CMD_READ_2K;
  8648. }
  8649. pci_write_config_word(tp->pdev, tp->pcix_cap + PCI_X_CMD,
  8650. pcix_cmd);
  8651. }
  8652. tw32_f(RDMAC_MODE, rdmac_mode);
  8653. udelay(40);
  8654. if (tg3_asic_rev(tp) == ASIC_REV_5719 ||
  8655. tg3_asic_rev(tp) == ASIC_REV_5720) {
  8656. for (i = 0; i < TG3_NUM_RDMA_CHANNELS; i++) {
  8657. if (tr32(TG3_RDMA_LENGTH + (i << 2)) > TG3_MAX_MTU(tp))
  8658. break;
  8659. }
  8660. if (i < TG3_NUM_RDMA_CHANNELS) {
  8661. val = tr32(TG3_LSO_RD_DMA_CRPTEN_CTRL);
  8662. val |= tg3_lso_rd_dma_workaround_bit(tp);
  8663. tw32(TG3_LSO_RD_DMA_CRPTEN_CTRL, val);
  8664. tg3_flag_set(tp, 5719_5720_RDMA_BUG);
  8665. }
  8666. }
  8667. tw32(RCVDCC_MODE, RCVDCC_MODE_ENABLE | RCVDCC_MODE_ATTN_ENABLE);
  8668. if (!tg3_flag(tp, 5705_PLUS))
  8669. tw32(MBFREE_MODE, MBFREE_MODE_ENABLE);
  8670. if (tg3_asic_rev(tp) == ASIC_REV_5761)
  8671. tw32(SNDDATAC_MODE,
  8672. SNDDATAC_MODE_ENABLE | SNDDATAC_MODE_CDELAY);
  8673. else
  8674. tw32(SNDDATAC_MODE, SNDDATAC_MODE_ENABLE);
  8675. tw32(SNDBDC_MODE, SNDBDC_MODE_ENABLE | SNDBDC_MODE_ATTN_ENABLE);
  8676. tw32(RCVBDI_MODE, RCVBDI_MODE_ENABLE | RCVBDI_MODE_RCB_ATTN_ENAB);
  8677. val = RCVDBDI_MODE_ENABLE | RCVDBDI_MODE_INV_RING_SZ;
  8678. if (tg3_flag(tp, LRG_PROD_RING_CAP))
  8679. val |= RCVDBDI_MODE_LRG_RING_SZ;
  8680. tw32(RCVDBDI_MODE, val);
  8681. tw32(SNDDATAI_MODE, SNDDATAI_MODE_ENABLE);
  8682. if (tg3_flag(tp, HW_TSO_1) ||
  8683. tg3_flag(tp, HW_TSO_2) ||
  8684. tg3_flag(tp, HW_TSO_3))
  8685. tw32(SNDDATAI_MODE, SNDDATAI_MODE_ENABLE | 0x8);
  8686. val = SNDBDI_MODE_ENABLE | SNDBDI_MODE_ATTN_ENABLE;
  8687. if (tg3_flag(tp, ENABLE_TSS))
  8688. val |= SNDBDI_MODE_MULTI_TXQ_EN;
  8689. tw32(SNDBDI_MODE, val);
  8690. tw32(SNDBDS_MODE, SNDBDS_MODE_ENABLE | SNDBDS_MODE_ATTN_ENABLE);
  8691. if (tg3_chip_rev_id(tp) == CHIPREV_ID_5701_A0) {
  8692. err = tg3_load_5701_a0_firmware_fix(tp);
  8693. if (err)
  8694. return err;
  8695. }
  8696. if (tg3_asic_rev(tp) == ASIC_REV_57766) {
  8697. /* Ignore any errors for the firmware download. If download
  8698. * fails, the device will operate with EEE disabled
  8699. */
  8700. tg3_load_57766_firmware(tp);
  8701. }
  8702. if (tg3_flag(tp, TSO_CAPABLE)) {
  8703. err = tg3_load_tso_firmware(tp);
  8704. if (err)
  8705. return err;
  8706. }
  8707. tp->tx_mode = TX_MODE_ENABLE;
  8708. if (tg3_flag(tp, 5755_PLUS) ||
  8709. tg3_asic_rev(tp) == ASIC_REV_5906)
  8710. tp->tx_mode |= TX_MODE_MBUF_LOCKUP_FIX;
  8711. if (tg3_asic_rev(tp) == ASIC_REV_5720 ||
  8712. tg3_asic_rev(tp) == ASIC_REV_5762) {
  8713. val = TX_MODE_JMB_FRM_LEN | TX_MODE_CNT_DN_MODE;
  8714. tp->tx_mode &= ~val;
  8715. tp->tx_mode |= tr32(MAC_TX_MODE) & val;
  8716. }
  8717. tw32_f(MAC_TX_MODE, tp->tx_mode);
  8718. udelay(100);
  8719. if (tg3_flag(tp, ENABLE_RSS)) {
  8720. u32 rss_key[10];
  8721. tg3_rss_write_indir_tbl(tp);
  8722. netdev_rss_key_fill(rss_key, 10 * sizeof(u32));
  8723. for (i = 0; i < 10 ; i++)
  8724. tw32(MAC_RSS_HASH_KEY_0 + i*4, rss_key[i]);
  8725. }
  8726. tp->rx_mode = RX_MODE_ENABLE;
  8727. if (tg3_flag(tp, 5755_PLUS))
  8728. tp->rx_mode |= RX_MODE_IPV6_CSUM_ENABLE;
  8729. if (tg3_asic_rev(tp) == ASIC_REV_5762)
  8730. tp->rx_mode |= RX_MODE_IPV4_FRAG_FIX;
  8731. if (tg3_flag(tp, ENABLE_RSS))
  8732. tp->rx_mode |= RX_MODE_RSS_ENABLE |
  8733. RX_MODE_RSS_ITBL_HASH_BITS_7 |
  8734. RX_MODE_RSS_IPV6_HASH_EN |
  8735. RX_MODE_RSS_TCP_IPV6_HASH_EN |
  8736. RX_MODE_RSS_IPV4_HASH_EN |
  8737. RX_MODE_RSS_TCP_IPV4_HASH_EN;
  8738. tw32_f(MAC_RX_MODE, tp->rx_mode);
  8739. udelay(10);
  8740. tw32(MAC_LED_CTRL, tp->led_ctrl);
  8741. tw32(MAC_MI_STAT, MAC_MI_STAT_LNKSTAT_ATTN_ENAB);
  8742. if (tp->phy_flags & TG3_PHYFLG_PHY_SERDES) {
  8743. tw32_f(MAC_RX_MODE, RX_MODE_RESET);
  8744. udelay(10);
  8745. }
  8746. tw32_f(MAC_RX_MODE, tp->rx_mode);
  8747. udelay(10);
  8748. if (tp->phy_flags & TG3_PHYFLG_PHY_SERDES) {
  8749. if ((tg3_asic_rev(tp) == ASIC_REV_5704) &&
  8750. !(tp->phy_flags & TG3_PHYFLG_SERDES_PREEMPHASIS)) {
  8751. /* Set drive transmission level to 1.2V */
  8752. /* only if the signal pre-emphasis bit is not set */
  8753. val = tr32(MAC_SERDES_CFG);
  8754. val &= 0xfffff000;
  8755. val |= 0x880;
  8756. tw32(MAC_SERDES_CFG, val);
  8757. }
  8758. if (tg3_chip_rev_id(tp) == CHIPREV_ID_5703_A1)
  8759. tw32(MAC_SERDES_CFG, 0x616000);
  8760. }
  8761. /* Prevent chip from dropping frames when flow control
  8762. * is enabled.
  8763. */
  8764. if (tg3_flag(tp, 57765_CLASS))
  8765. val = 1;
  8766. else
  8767. val = 2;
  8768. tw32_f(MAC_LOW_WMARK_MAX_RX_FRAME, val);
  8769. if (tg3_asic_rev(tp) == ASIC_REV_5704 &&
  8770. (tp->phy_flags & TG3_PHYFLG_PHY_SERDES)) {
  8771. /* Use hardware link auto-negotiation */
  8772. tg3_flag_set(tp, HW_AUTONEG);
  8773. }
  8774. if ((tp->phy_flags & TG3_PHYFLG_MII_SERDES) &&
  8775. tg3_asic_rev(tp) == ASIC_REV_5714) {
  8776. u32 tmp;
  8777. tmp = tr32(SERDES_RX_CTRL);
  8778. tw32(SERDES_RX_CTRL, tmp | SERDES_RX_SIG_DETECT);
  8779. tp->grc_local_ctrl &= ~GRC_LCLCTRL_USE_EXT_SIG_DETECT;
  8780. tp->grc_local_ctrl |= GRC_LCLCTRL_USE_SIG_DETECT;
  8781. tw32(GRC_LOCAL_CTRL, tp->grc_local_ctrl);
  8782. }
  8783. if (!tg3_flag(tp, USE_PHYLIB)) {
  8784. if (tp->phy_flags & TG3_PHYFLG_IS_LOW_POWER)
  8785. tp->phy_flags &= ~TG3_PHYFLG_IS_LOW_POWER;
  8786. err = tg3_setup_phy(tp, false);
  8787. if (err)
  8788. return err;
  8789. if (!(tp->phy_flags & TG3_PHYFLG_PHY_SERDES) &&
  8790. !(tp->phy_flags & TG3_PHYFLG_IS_FET)) {
  8791. u32 tmp;
  8792. /* Clear CRC stats. */
  8793. if (!tg3_readphy(tp, MII_TG3_TEST1, &tmp)) {
  8794. tg3_writephy(tp, MII_TG3_TEST1,
  8795. tmp | MII_TG3_TEST1_CRC_EN);
  8796. tg3_readphy(tp, MII_TG3_RXR_COUNTERS, &tmp);
  8797. }
  8798. }
  8799. }
  8800. __tg3_set_rx_mode(tp->dev);
  8801. /* Initialize receive rules. */
  8802. tw32(MAC_RCV_RULE_0, 0xc2000000 & RCV_RULE_DISABLE_MASK);
  8803. tw32(MAC_RCV_VALUE_0, 0xffffffff & RCV_RULE_DISABLE_MASK);
  8804. tw32(MAC_RCV_RULE_1, 0x86000004 & RCV_RULE_DISABLE_MASK);
  8805. tw32(MAC_RCV_VALUE_1, 0xffffffff & RCV_RULE_DISABLE_MASK);
  8806. if (tg3_flag(tp, 5705_PLUS) && !tg3_flag(tp, 5780_CLASS))
  8807. limit = 8;
  8808. else
  8809. limit = 16;
  8810. if (tg3_flag(tp, ENABLE_ASF))
  8811. limit -= 4;
  8812. switch (limit) {
  8813. case 16:
  8814. tw32(MAC_RCV_RULE_15, 0); tw32(MAC_RCV_VALUE_15, 0);
  8815. /* fall through */
  8816. case 15:
  8817. tw32(MAC_RCV_RULE_14, 0); tw32(MAC_RCV_VALUE_14, 0);
  8818. /* fall through */
  8819. case 14:
  8820. tw32(MAC_RCV_RULE_13, 0); tw32(MAC_RCV_VALUE_13, 0);
  8821. /* fall through */
  8822. case 13:
  8823. tw32(MAC_RCV_RULE_12, 0); tw32(MAC_RCV_VALUE_12, 0);
  8824. /* fall through */
  8825. case 12:
  8826. tw32(MAC_RCV_RULE_11, 0); tw32(MAC_RCV_VALUE_11, 0);
  8827. /* fall through */
  8828. case 11:
  8829. tw32(MAC_RCV_RULE_10, 0); tw32(MAC_RCV_VALUE_10, 0);
  8830. /* fall through */
  8831. case 10:
  8832. tw32(MAC_RCV_RULE_9, 0); tw32(MAC_RCV_VALUE_9, 0);
  8833. /* fall through */
  8834. case 9:
  8835. tw32(MAC_RCV_RULE_8, 0); tw32(MAC_RCV_VALUE_8, 0);
  8836. /* fall through */
  8837. case 8:
  8838. tw32(MAC_RCV_RULE_7, 0); tw32(MAC_RCV_VALUE_7, 0);
  8839. /* fall through */
  8840. case 7:
  8841. tw32(MAC_RCV_RULE_6, 0); tw32(MAC_RCV_VALUE_6, 0);
  8842. /* fall through */
  8843. case 6:
  8844. tw32(MAC_RCV_RULE_5, 0); tw32(MAC_RCV_VALUE_5, 0);
  8845. /* fall through */
  8846. case 5:
  8847. tw32(MAC_RCV_RULE_4, 0); tw32(MAC_RCV_VALUE_4, 0);
  8848. /* fall through */
  8849. case 4:
  8850. /* tw32(MAC_RCV_RULE_3, 0); tw32(MAC_RCV_VALUE_3, 0); */
  8851. case 3:
  8852. /* tw32(MAC_RCV_RULE_2, 0); tw32(MAC_RCV_VALUE_2, 0); */
  8853. case 2:
  8854. case 1:
  8855. default:
  8856. break;
  8857. }
  8858. if (tg3_flag(tp, ENABLE_APE))
  8859. /* Write our heartbeat update interval to APE. */
  8860. tg3_ape_write32(tp, TG3_APE_HOST_HEARTBEAT_INT_MS,
  8861. APE_HOST_HEARTBEAT_INT_5SEC);
  8862. tg3_write_sig_post_reset(tp, RESET_KIND_INIT);
  8863. return 0;
  8864. }
  8865. /* Called at device open time to get the chip ready for
  8866. * packet processing. Invoked with tp->lock held.
  8867. */
  8868. static int tg3_init_hw(struct tg3 *tp, bool reset_phy)
  8869. {
  8870. /* Chip may have been just powered on. If so, the boot code may still
  8871. * be running initialization. Wait for it to finish to avoid races in
  8872. * accessing the hardware.
  8873. */
  8874. tg3_enable_register_access(tp);
  8875. tg3_poll_fw(tp);
  8876. tg3_switch_clocks(tp);
  8877. tw32(TG3PCI_MEM_WIN_BASE_ADDR, 0);
  8878. return tg3_reset_hw(tp, reset_phy);
  8879. }
  8880. #ifdef CONFIG_TIGON3_HWMON
  8881. static void tg3_sd_scan_scratchpad(struct tg3 *tp, struct tg3_ocir *ocir)
  8882. {
  8883. int i;
  8884. for (i = 0; i < TG3_SD_NUM_RECS; i++, ocir++) {
  8885. u32 off = i * TG3_OCIR_LEN, len = TG3_OCIR_LEN;
  8886. tg3_ape_scratchpad_read(tp, (u32 *) ocir, off, len);
  8887. off += len;
  8888. if (ocir->signature != TG3_OCIR_SIG_MAGIC ||
  8889. !(ocir->version_flags & TG3_OCIR_FLAG_ACTIVE))
  8890. memset(ocir, 0, TG3_OCIR_LEN);
  8891. }
  8892. }
  8893. /* sysfs attributes for hwmon */
  8894. static ssize_t tg3_show_temp(struct device *dev,
  8895. struct device_attribute *devattr, char *buf)
  8896. {
  8897. struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
  8898. struct tg3 *tp = dev_get_drvdata(dev);
  8899. u32 temperature;
  8900. spin_lock_bh(&tp->lock);
  8901. tg3_ape_scratchpad_read(tp, &temperature, attr->index,
  8902. sizeof(temperature));
  8903. spin_unlock_bh(&tp->lock);
  8904. return sprintf(buf, "%u\n", temperature * 1000);
  8905. }
  8906. static SENSOR_DEVICE_ATTR(temp1_input, 0444, tg3_show_temp, NULL,
  8907. TG3_TEMP_SENSOR_OFFSET);
  8908. static SENSOR_DEVICE_ATTR(temp1_crit, 0444, tg3_show_temp, NULL,
  8909. TG3_TEMP_CAUTION_OFFSET);
  8910. static SENSOR_DEVICE_ATTR(temp1_max, 0444, tg3_show_temp, NULL,
  8911. TG3_TEMP_MAX_OFFSET);
  8912. static struct attribute *tg3_attrs[] = {
  8913. &sensor_dev_attr_temp1_input.dev_attr.attr,
  8914. &sensor_dev_attr_temp1_crit.dev_attr.attr,
  8915. &sensor_dev_attr_temp1_max.dev_attr.attr,
  8916. NULL
  8917. };
  8918. ATTRIBUTE_GROUPS(tg3);
  8919. static void tg3_hwmon_close(struct tg3 *tp)
  8920. {
  8921. if (tp->hwmon_dev) {
  8922. hwmon_device_unregister(tp->hwmon_dev);
  8923. tp->hwmon_dev = NULL;
  8924. }
  8925. }
  8926. static void tg3_hwmon_open(struct tg3 *tp)
  8927. {
  8928. int i;
  8929. u32 size = 0;
  8930. struct pci_dev *pdev = tp->pdev;
  8931. struct tg3_ocir ocirs[TG3_SD_NUM_RECS];
  8932. tg3_sd_scan_scratchpad(tp, ocirs);
  8933. for (i = 0; i < TG3_SD_NUM_RECS; i++) {
  8934. if (!ocirs[i].src_data_length)
  8935. continue;
  8936. size += ocirs[i].src_hdr_length;
  8937. size += ocirs[i].src_data_length;
  8938. }
  8939. if (!size)
  8940. return;
  8941. tp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev, "tg3",
  8942. tp, tg3_groups);
  8943. if (IS_ERR(tp->hwmon_dev)) {
  8944. tp->hwmon_dev = NULL;
  8945. dev_err(&pdev->dev, "Cannot register hwmon device, aborting\n");
  8946. }
  8947. }
  8948. #else
  8949. static inline void tg3_hwmon_close(struct tg3 *tp) { }
  8950. static inline void tg3_hwmon_open(struct tg3 *tp) { }
  8951. #endif /* CONFIG_TIGON3_HWMON */
  8952. #define TG3_STAT_ADD32(PSTAT, REG) \
  8953. do { u32 __val = tr32(REG); \
  8954. (PSTAT)->low += __val; \
  8955. if ((PSTAT)->low < __val) \
  8956. (PSTAT)->high += 1; \
  8957. } while (0)
  8958. static void tg3_periodic_fetch_stats(struct tg3 *tp)
  8959. {
  8960. struct tg3_hw_stats *sp = tp->hw_stats;
  8961. if (!tp->link_up)
  8962. return;
  8963. TG3_STAT_ADD32(&sp->tx_octets, MAC_TX_STATS_OCTETS);
  8964. TG3_STAT_ADD32(&sp->tx_collisions, MAC_TX_STATS_COLLISIONS);
  8965. TG3_STAT_ADD32(&sp->tx_xon_sent, MAC_TX_STATS_XON_SENT);
  8966. TG3_STAT_ADD32(&sp->tx_xoff_sent, MAC_TX_STATS_XOFF_SENT);
  8967. TG3_STAT_ADD32(&sp->tx_mac_errors, MAC_TX_STATS_MAC_ERRORS);
  8968. TG3_STAT_ADD32(&sp->tx_single_collisions, MAC_TX_STATS_SINGLE_COLLISIONS);
  8969. TG3_STAT_ADD32(&sp->tx_mult_collisions, MAC_TX_STATS_MULT_COLLISIONS);
  8970. TG3_STAT_ADD32(&sp->tx_deferred, MAC_TX_STATS_DEFERRED);
  8971. TG3_STAT_ADD32(&sp->tx_excessive_collisions, MAC_TX_STATS_EXCESSIVE_COL);
  8972. TG3_STAT_ADD32(&sp->tx_late_collisions, MAC_TX_STATS_LATE_COL);
  8973. TG3_STAT_ADD32(&sp->tx_ucast_packets, MAC_TX_STATS_UCAST);
  8974. TG3_STAT_ADD32(&sp->tx_mcast_packets, MAC_TX_STATS_MCAST);
  8975. TG3_STAT_ADD32(&sp->tx_bcast_packets, MAC_TX_STATS_BCAST);
  8976. if (unlikely(tg3_flag(tp, 5719_5720_RDMA_BUG) &&
  8977. (sp->tx_ucast_packets.low + sp->tx_mcast_packets.low +
  8978. sp->tx_bcast_packets.low) > TG3_NUM_RDMA_CHANNELS)) {
  8979. u32 val;
  8980. val = tr32(TG3_LSO_RD_DMA_CRPTEN_CTRL);
  8981. val &= ~tg3_lso_rd_dma_workaround_bit(tp);
  8982. tw32(TG3_LSO_RD_DMA_CRPTEN_CTRL, val);
  8983. tg3_flag_clear(tp, 5719_5720_RDMA_BUG);
  8984. }
  8985. TG3_STAT_ADD32(&sp->rx_octets, MAC_RX_STATS_OCTETS);
  8986. TG3_STAT_ADD32(&sp->rx_fragments, MAC_RX_STATS_FRAGMENTS);
  8987. TG3_STAT_ADD32(&sp->rx_ucast_packets, MAC_RX_STATS_UCAST);
  8988. TG3_STAT_ADD32(&sp->rx_mcast_packets, MAC_RX_STATS_MCAST);
  8989. TG3_STAT_ADD32(&sp->rx_bcast_packets, MAC_RX_STATS_BCAST);
  8990. TG3_STAT_ADD32(&sp->rx_fcs_errors, MAC_RX_STATS_FCS_ERRORS);
  8991. TG3_STAT_ADD32(&sp->rx_align_errors, MAC_RX_STATS_ALIGN_ERRORS);
  8992. TG3_STAT_ADD32(&sp->rx_xon_pause_rcvd, MAC_RX_STATS_XON_PAUSE_RECVD);
  8993. TG3_STAT_ADD32(&sp->rx_xoff_pause_rcvd, MAC_RX_STATS_XOFF_PAUSE_RECVD);
  8994. TG3_STAT_ADD32(&sp->rx_mac_ctrl_rcvd, MAC_RX_STATS_MAC_CTRL_RECVD);
  8995. TG3_STAT_ADD32(&sp->rx_xoff_entered, MAC_RX_STATS_XOFF_ENTERED);
  8996. TG3_STAT_ADD32(&sp->rx_frame_too_long_errors, MAC_RX_STATS_FRAME_TOO_LONG);
  8997. TG3_STAT_ADD32(&sp->rx_jabbers, MAC_RX_STATS_JABBERS);
  8998. TG3_STAT_ADD32(&sp->rx_undersize_packets, MAC_RX_STATS_UNDERSIZE);
  8999. TG3_STAT_ADD32(&sp->rxbds_empty, RCVLPC_NO_RCV_BD_CNT);
  9000. if (tg3_asic_rev(tp) != ASIC_REV_5717 &&
  9001. tg3_asic_rev(tp) != ASIC_REV_5762 &&
  9002. tg3_chip_rev_id(tp) != CHIPREV_ID_5719_A0 &&
  9003. tg3_chip_rev_id(tp) != CHIPREV_ID_5720_A0) {
  9004. TG3_STAT_ADD32(&sp->rx_discards, RCVLPC_IN_DISCARDS_CNT);
  9005. } else {
  9006. u32 val = tr32(HOSTCC_FLOW_ATTN);
  9007. val = (val & HOSTCC_FLOW_ATTN_MBUF_LWM) ? 1 : 0;
  9008. if (val) {
  9009. tw32(HOSTCC_FLOW_ATTN, HOSTCC_FLOW_ATTN_MBUF_LWM);
  9010. sp->rx_discards.low += val;
  9011. if (sp->rx_discards.low < val)
  9012. sp->rx_discards.high += 1;
  9013. }
  9014. sp->mbuf_lwm_thresh_hit = sp->rx_discards;
  9015. }
  9016. TG3_STAT_ADD32(&sp->rx_errors, RCVLPC_IN_ERRORS_CNT);
  9017. }
  9018. static void tg3_chk_missed_msi(struct tg3 *tp)
  9019. {
  9020. u32 i;
  9021. for (i = 0; i < tp->irq_cnt; i++) {
  9022. struct tg3_napi *tnapi = &tp->napi[i];
  9023. if (tg3_has_work(tnapi)) {
  9024. if (tnapi->last_rx_cons == tnapi->rx_rcb_ptr &&
  9025. tnapi->last_tx_cons == tnapi->tx_cons) {
  9026. if (tnapi->chk_msi_cnt < 1) {
  9027. tnapi->chk_msi_cnt++;
  9028. return;
  9029. }
  9030. tg3_msi(0, tnapi);
  9031. }
  9032. }
  9033. tnapi->chk_msi_cnt = 0;
  9034. tnapi->last_rx_cons = tnapi->rx_rcb_ptr;
  9035. tnapi->last_tx_cons = tnapi->tx_cons;
  9036. }
  9037. }
  9038. static void tg3_timer(struct timer_list *t)
  9039. {
  9040. struct tg3 *tp = from_timer(tp, t, timer);
  9041. spin_lock(&tp->lock);
  9042. if (tp->irq_sync || tg3_flag(tp, RESET_TASK_PENDING)) {
  9043. spin_unlock(&tp->lock);
  9044. goto restart_timer;
  9045. }
  9046. if (tg3_asic_rev(tp) == ASIC_REV_5717 ||
  9047. tg3_flag(tp, 57765_CLASS))
  9048. tg3_chk_missed_msi(tp);
  9049. if (tg3_flag(tp, FLUSH_POSTED_WRITES)) {
  9050. /* BCM4785: Flush posted writes from GbE to host memory. */
  9051. tr32(HOSTCC_MODE);
  9052. }
  9053. if (!tg3_flag(tp, TAGGED_STATUS)) {
  9054. /* All of this garbage is because when using non-tagged
  9055. * IRQ status the mailbox/status_block protocol the chip
  9056. * uses with the cpu is race prone.
  9057. */
  9058. if (tp->napi[0].hw_status->status & SD_STATUS_UPDATED) {
  9059. tw32(GRC_LOCAL_CTRL,
  9060. tp->grc_local_ctrl | GRC_LCLCTRL_SETINT);
  9061. } else {
  9062. tw32(HOSTCC_MODE, tp->coalesce_mode |
  9063. HOSTCC_MODE_ENABLE | HOSTCC_MODE_NOW);
  9064. }
  9065. if (!(tr32(WDMAC_MODE) & WDMAC_MODE_ENABLE)) {
  9066. spin_unlock(&tp->lock);
  9067. tg3_reset_task_schedule(tp);
  9068. goto restart_timer;
  9069. }
  9070. }
  9071. /* This part only runs once per second. */
  9072. if (!--tp->timer_counter) {
  9073. if (tg3_flag(tp, 5705_PLUS))
  9074. tg3_periodic_fetch_stats(tp);
  9075. if (tp->setlpicnt && !--tp->setlpicnt)
  9076. tg3_phy_eee_enable(tp);
  9077. if (tg3_flag(tp, USE_LINKCHG_REG)) {
  9078. u32 mac_stat;
  9079. int phy_event;
  9080. mac_stat = tr32(MAC_STATUS);
  9081. phy_event = 0;
  9082. if (tp->phy_flags & TG3_PHYFLG_USE_MI_INTERRUPT) {
  9083. if (mac_stat & MAC_STATUS_MI_INTERRUPT)
  9084. phy_event = 1;
  9085. } else if (mac_stat & MAC_STATUS_LNKSTATE_CHANGED)
  9086. phy_event = 1;
  9087. if (phy_event)
  9088. tg3_setup_phy(tp, false);
  9089. } else if (tg3_flag(tp, POLL_SERDES)) {
  9090. u32 mac_stat = tr32(MAC_STATUS);
  9091. int need_setup = 0;
  9092. if (tp->link_up &&
  9093. (mac_stat & MAC_STATUS_LNKSTATE_CHANGED)) {
  9094. need_setup = 1;
  9095. }
  9096. if (!tp->link_up &&
  9097. (mac_stat & (MAC_STATUS_PCS_SYNCED |
  9098. MAC_STATUS_SIGNAL_DET))) {
  9099. need_setup = 1;
  9100. }
  9101. if (need_setup) {
  9102. if (!tp->serdes_counter) {
  9103. tw32_f(MAC_MODE,
  9104. (tp->mac_mode &
  9105. ~MAC_MODE_PORT_MODE_MASK));
  9106. udelay(40);
  9107. tw32_f(MAC_MODE, tp->mac_mode);
  9108. udelay(40);
  9109. }
  9110. tg3_setup_phy(tp, false);
  9111. }
  9112. } else if ((tp->phy_flags & TG3_PHYFLG_MII_SERDES) &&
  9113. tg3_flag(tp, 5780_CLASS)) {
  9114. tg3_serdes_parallel_detect(tp);
  9115. } else if (tg3_flag(tp, POLL_CPMU_LINK)) {
  9116. u32 cpmu = tr32(TG3_CPMU_STATUS);
  9117. bool link_up = !((cpmu & TG3_CPMU_STATUS_LINK_MASK) ==
  9118. TG3_CPMU_STATUS_LINK_MASK);
  9119. if (link_up != tp->link_up)
  9120. tg3_setup_phy(tp, false);
  9121. }
  9122. tp->timer_counter = tp->timer_multiplier;
  9123. }
  9124. /* Heartbeat is only sent once every 2 seconds.
  9125. *
  9126. * The heartbeat is to tell the ASF firmware that the host
  9127. * driver is still alive. In the event that the OS crashes,
  9128. * ASF needs to reset the hardware to free up the FIFO space
  9129. * that may be filled with rx packets destined for the host.
  9130. * If the FIFO is full, ASF will no longer function properly.
  9131. *
  9132. * Unintended resets have been reported on real time kernels
  9133. * where the timer doesn't run on time. Netpoll will also have
  9134. * same problem.
  9135. *
  9136. * The new FWCMD_NICDRV_ALIVE3 command tells the ASF firmware
  9137. * to check the ring condition when the heartbeat is expiring
  9138. * before doing the reset. This will prevent most unintended
  9139. * resets.
  9140. */
  9141. if (!--tp->asf_counter) {
  9142. if (tg3_flag(tp, ENABLE_ASF) && !tg3_flag(tp, ENABLE_APE)) {
  9143. tg3_wait_for_event_ack(tp);
  9144. tg3_write_mem(tp, NIC_SRAM_FW_CMD_MBOX,
  9145. FWCMD_NICDRV_ALIVE3);
  9146. tg3_write_mem(tp, NIC_SRAM_FW_CMD_LEN_MBOX, 4);
  9147. tg3_write_mem(tp, NIC_SRAM_FW_CMD_DATA_MBOX,
  9148. TG3_FW_UPDATE_TIMEOUT_SEC);
  9149. tg3_generate_fw_event(tp);
  9150. }
  9151. tp->asf_counter = tp->asf_multiplier;
  9152. }
  9153. /* Update the APE heartbeat every 5 seconds.*/
  9154. tg3_send_ape_heartbeat(tp, TG3_APE_HB_INTERVAL);
  9155. spin_unlock(&tp->lock);
  9156. restart_timer:
  9157. tp->timer.expires = jiffies + tp->timer_offset;
  9158. add_timer(&tp->timer);
  9159. }
  9160. static void tg3_timer_init(struct tg3 *tp)
  9161. {
  9162. if (tg3_flag(tp, TAGGED_STATUS) &&
  9163. tg3_asic_rev(tp) != ASIC_REV_5717 &&
  9164. !tg3_flag(tp, 57765_CLASS))
  9165. tp->timer_offset = HZ;
  9166. else
  9167. tp->timer_offset = HZ / 10;
  9168. BUG_ON(tp->timer_offset > HZ);
  9169. tp->timer_multiplier = (HZ / tp->timer_offset);
  9170. tp->asf_multiplier = (HZ / tp->timer_offset) *
  9171. TG3_FW_UPDATE_FREQ_SEC;
  9172. timer_setup(&tp->timer, tg3_timer, 0);
  9173. }
  9174. static void tg3_timer_start(struct tg3 *tp)
  9175. {
  9176. tp->asf_counter = tp->asf_multiplier;
  9177. tp->timer_counter = tp->timer_multiplier;
  9178. tp->timer.expires = jiffies + tp->timer_offset;
  9179. add_timer(&tp->timer);
  9180. }
  9181. static void tg3_timer_stop(struct tg3 *tp)
  9182. {
  9183. del_timer_sync(&tp->timer);
  9184. }
  9185. /* Restart hardware after configuration changes, self-test, etc.
  9186. * Invoked with tp->lock held.
  9187. */
  9188. static int tg3_restart_hw(struct tg3 *tp, bool reset_phy)
  9189. __releases(tp->lock)
  9190. __acquires(tp->lock)
  9191. {
  9192. int err;
  9193. err = tg3_init_hw(tp, reset_phy);
  9194. if (err) {
  9195. netdev_err(tp->dev,
  9196. "Failed to re-initialize device, aborting\n");
  9197. tg3_halt(tp, RESET_KIND_SHUTDOWN, 1);
  9198. tg3_full_unlock(tp);
  9199. tg3_timer_stop(tp);
  9200. tp->irq_sync = 0;
  9201. tg3_napi_enable(tp);
  9202. dev_close(tp->dev);
  9203. tg3_full_lock(tp, 0);
  9204. }
  9205. return err;
  9206. }
  9207. static void tg3_reset_task(struct work_struct *work)
  9208. {
  9209. struct tg3 *tp = container_of(work, struct tg3, reset_task);
  9210. int err;
  9211. rtnl_lock();
  9212. tg3_full_lock(tp, 0);
  9213. if (!netif_running(tp->dev)) {
  9214. tg3_flag_clear(tp, RESET_TASK_PENDING);
  9215. tg3_full_unlock(tp);
  9216. rtnl_unlock();
  9217. return;
  9218. }
  9219. tg3_full_unlock(tp);
  9220. tg3_phy_stop(tp);
  9221. tg3_netif_stop(tp);
  9222. tg3_full_lock(tp, 1);
  9223. if (tg3_flag(tp, TX_RECOVERY_PENDING)) {
  9224. tp->write32_tx_mbox = tg3_write32_tx_mbox;
  9225. tp->write32_rx_mbox = tg3_write_flush_reg32;
  9226. tg3_flag_set(tp, MBOX_WRITE_REORDER);
  9227. tg3_flag_clear(tp, TX_RECOVERY_PENDING);
  9228. }
  9229. tg3_halt(tp, RESET_KIND_SHUTDOWN, 0);
  9230. err = tg3_init_hw(tp, true);
  9231. if (err)
  9232. goto out;
  9233. tg3_netif_start(tp);
  9234. out:
  9235. tg3_full_unlock(tp);
  9236. if (!err)
  9237. tg3_phy_start(tp);
  9238. tg3_flag_clear(tp, RESET_TASK_PENDING);
  9239. rtnl_unlock();
  9240. }
  9241. static int tg3_request_irq(struct tg3 *tp, int irq_num)
  9242. {
  9243. irq_handler_t fn;
  9244. unsigned long flags;
  9245. char *name;
  9246. struct tg3_napi *tnapi = &tp->napi[irq_num];
  9247. if (tp->irq_cnt == 1)
  9248. name = tp->dev->name;
  9249. else {
  9250. name = &tnapi->irq_lbl[0];
  9251. if (tnapi->tx_buffers && tnapi->rx_rcb)
  9252. snprintf(name, IFNAMSIZ,
  9253. "%s-txrx-%d", tp->dev->name, irq_num);
  9254. else if (tnapi->tx_buffers)
  9255. snprintf(name, IFNAMSIZ,
  9256. "%s-tx-%d", tp->dev->name, irq_num);
  9257. else if (tnapi->rx_rcb)
  9258. snprintf(name, IFNAMSIZ,
  9259. "%s-rx-%d", tp->dev->name, irq_num);
  9260. else
  9261. snprintf(name, IFNAMSIZ,
  9262. "%s-%d", tp->dev->name, irq_num);
  9263. name[IFNAMSIZ-1] = 0;
  9264. }
  9265. if (tg3_flag(tp, USING_MSI) || tg3_flag(tp, USING_MSIX)) {
  9266. fn = tg3_msi;
  9267. if (tg3_flag(tp, 1SHOT_MSI))
  9268. fn = tg3_msi_1shot;
  9269. flags = 0;
  9270. } else {
  9271. fn = tg3_interrupt;
  9272. if (tg3_flag(tp, TAGGED_STATUS))
  9273. fn = tg3_interrupt_tagged;
  9274. flags = IRQF_SHARED;
  9275. }
  9276. return request_irq(tnapi->irq_vec, fn, flags, name, tnapi);
  9277. }
  9278. static int tg3_test_interrupt(struct tg3 *tp)
  9279. {
  9280. struct tg3_napi *tnapi = &tp->napi[0];
  9281. struct net_device *dev = tp->dev;
  9282. int err, i, intr_ok = 0;
  9283. u32 val;
  9284. if (!netif_running(dev))
  9285. return -ENODEV;
  9286. tg3_disable_ints(tp);
  9287. free_irq(tnapi->irq_vec, tnapi);
  9288. /*
  9289. * Turn off MSI one shot mode. Otherwise this test has no
  9290. * observable way to know whether the interrupt was delivered.
  9291. */
  9292. if (tg3_flag(tp, 57765_PLUS)) {
  9293. val = tr32(MSGINT_MODE) | MSGINT_MODE_ONE_SHOT_DISABLE;
  9294. tw32(MSGINT_MODE, val);
  9295. }
  9296. err = request_irq(tnapi->irq_vec, tg3_test_isr,
  9297. IRQF_SHARED, dev->name, tnapi);
  9298. if (err)
  9299. return err;
  9300. tnapi->hw_status->status &= ~SD_STATUS_UPDATED;
  9301. tg3_enable_ints(tp);
  9302. tw32_f(HOSTCC_MODE, tp->coalesce_mode | HOSTCC_MODE_ENABLE |
  9303. tnapi->coal_now);
  9304. for (i = 0; i < 5; i++) {
  9305. u32 int_mbox, misc_host_ctrl;
  9306. int_mbox = tr32_mailbox(tnapi->int_mbox);
  9307. misc_host_ctrl = tr32(TG3PCI_MISC_HOST_CTRL);
  9308. if ((int_mbox != 0) ||
  9309. (misc_host_ctrl & MISC_HOST_CTRL_MASK_PCI_INT)) {
  9310. intr_ok = 1;
  9311. break;
  9312. }
  9313. if (tg3_flag(tp, 57765_PLUS) &&
  9314. tnapi->hw_status->status_tag != tnapi->last_tag)
  9315. tw32_mailbox_f(tnapi->int_mbox, tnapi->last_tag << 24);
  9316. msleep(10);
  9317. }
  9318. tg3_disable_ints(tp);
  9319. free_irq(tnapi->irq_vec, tnapi);
  9320. err = tg3_request_irq(tp, 0);
  9321. if (err)
  9322. return err;
  9323. if (intr_ok) {
  9324. /* Reenable MSI one shot mode. */
  9325. if (tg3_flag(tp, 57765_PLUS) && tg3_flag(tp, 1SHOT_MSI)) {
  9326. val = tr32(MSGINT_MODE) & ~MSGINT_MODE_ONE_SHOT_DISABLE;
  9327. tw32(MSGINT_MODE, val);
  9328. }
  9329. return 0;
  9330. }
  9331. return -EIO;
  9332. }
  9333. /* Returns 0 if MSI test succeeds or MSI test fails and INTx mode is
  9334. * successfully restored
  9335. */
  9336. static int tg3_test_msi(struct tg3 *tp)
  9337. {
  9338. int err;
  9339. u16 pci_cmd;
  9340. if (!tg3_flag(tp, USING_MSI))
  9341. return 0;
  9342. /* Turn off SERR reporting in case MSI terminates with Master
  9343. * Abort.
  9344. */
  9345. pci_read_config_word(tp->pdev, PCI_COMMAND, &pci_cmd);
  9346. pci_write_config_word(tp->pdev, PCI_COMMAND,
  9347. pci_cmd & ~PCI_COMMAND_SERR);
  9348. err = tg3_test_interrupt(tp);
  9349. pci_write_config_word(tp->pdev, PCI_COMMAND, pci_cmd);
  9350. if (!err)
  9351. return 0;
  9352. /* other failures */
  9353. if (err != -EIO)
  9354. return err;
  9355. /* MSI test failed, go back to INTx mode */
  9356. netdev_warn(tp->dev, "No interrupt was generated using MSI. Switching "
  9357. "to INTx mode. Please report this failure to the PCI "
  9358. "maintainer and include system chipset information\n");
  9359. free_irq(tp->napi[0].irq_vec, &tp->napi[0]);
  9360. pci_disable_msi(tp->pdev);
  9361. tg3_flag_clear(tp, USING_MSI);
  9362. tp->napi[0].irq_vec = tp->pdev->irq;
  9363. err = tg3_request_irq(tp, 0);
  9364. if (err)
  9365. return err;
  9366. /* Need to reset the chip because the MSI cycle may have terminated
  9367. * with Master Abort.
  9368. */
  9369. tg3_full_lock(tp, 1);
  9370. tg3_halt(tp, RESET_KIND_SHUTDOWN, 1);
  9371. err = tg3_init_hw(tp, true);
  9372. tg3_full_unlock(tp);
  9373. if (err)
  9374. free_irq(tp->napi[0].irq_vec, &tp->napi[0]);
  9375. return err;
  9376. }
  9377. static int tg3_request_firmware(struct tg3 *tp)
  9378. {
  9379. const struct tg3_firmware_hdr *fw_hdr;
  9380. if (request_firmware(&tp->fw, tp->fw_needed, &tp->pdev->dev)) {
  9381. netdev_err(tp->dev, "Failed to load firmware \"%s\"\n",
  9382. tp->fw_needed);
  9383. return -ENOENT;
  9384. }
  9385. fw_hdr = (struct tg3_firmware_hdr *)tp->fw->data;
  9386. /* Firmware blob starts with version numbers, followed by
  9387. * start address and _full_ length including BSS sections
  9388. * (which must be longer than the actual data, of course
  9389. */
  9390. tp->fw_len = be32_to_cpu(fw_hdr->len); /* includes bss */
  9391. if (tp->fw_len < (tp->fw->size - TG3_FW_HDR_LEN)) {
  9392. netdev_err(tp->dev, "bogus length %d in \"%s\"\n",
  9393. tp->fw_len, tp->fw_needed);
  9394. release_firmware(tp->fw);
  9395. tp->fw = NULL;
  9396. return -EINVAL;
  9397. }
  9398. /* We no longer need firmware; we have it. */
  9399. tp->fw_needed = NULL;
  9400. return 0;
  9401. }
  9402. static u32 tg3_irq_count(struct tg3 *tp)
  9403. {
  9404. u32 irq_cnt = max(tp->rxq_cnt, tp->txq_cnt);
  9405. if (irq_cnt > 1) {
  9406. /* We want as many rx rings enabled as there are cpus.
  9407. * In multiqueue MSI-X mode, the first MSI-X vector
  9408. * only deals with link interrupts, etc, so we add
  9409. * one to the number of vectors we are requesting.
  9410. */
  9411. irq_cnt = min_t(unsigned, irq_cnt + 1, tp->irq_max);
  9412. }
  9413. return irq_cnt;
  9414. }
  9415. static bool tg3_enable_msix(struct tg3 *tp)
  9416. {
  9417. int i, rc;
  9418. struct msix_entry msix_ent[TG3_IRQ_MAX_VECS];
  9419. tp->txq_cnt = tp->txq_req;
  9420. tp->rxq_cnt = tp->rxq_req;
  9421. if (!tp->rxq_cnt)
  9422. tp->rxq_cnt = netif_get_num_default_rss_queues();
  9423. if (tp->rxq_cnt > tp->rxq_max)
  9424. tp->rxq_cnt = tp->rxq_max;
  9425. /* Disable multiple TX rings by default. Simple round-robin hardware
  9426. * scheduling of the TX rings can cause starvation of rings with
  9427. * small packets when other rings have TSO or jumbo packets.
  9428. */
  9429. if (!tp->txq_req)
  9430. tp->txq_cnt = 1;
  9431. tp->irq_cnt = tg3_irq_count(tp);
  9432. for (i = 0; i < tp->irq_max; i++) {
  9433. msix_ent[i].entry = i;
  9434. msix_ent[i].vector = 0;
  9435. }
  9436. rc = pci_enable_msix_range(tp->pdev, msix_ent, 1, tp->irq_cnt);
  9437. if (rc < 0) {
  9438. return false;
  9439. } else if (rc < tp->irq_cnt) {
  9440. netdev_notice(tp->dev, "Requested %d MSI-X vectors, received %d\n",
  9441. tp->irq_cnt, rc);
  9442. tp->irq_cnt = rc;
  9443. tp->rxq_cnt = max(rc - 1, 1);
  9444. if (tp->txq_cnt)
  9445. tp->txq_cnt = min(tp->rxq_cnt, tp->txq_max);
  9446. }
  9447. for (i = 0; i < tp->irq_max; i++)
  9448. tp->napi[i].irq_vec = msix_ent[i].vector;
  9449. if (netif_set_real_num_rx_queues(tp->dev, tp->rxq_cnt)) {
  9450. pci_disable_msix(tp->pdev);
  9451. return false;
  9452. }
  9453. if (tp->irq_cnt == 1)
  9454. return true;
  9455. tg3_flag_set(tp, ENABLE_RSS);
  9456. if (tp->txq_cnt > 1)
  9457. tg3_flag_set(tp, ENABLE_TSS);
  9458. netif_set_real_num_tx_queues(tp->dev, tp->txq_cnt);
  9459. return true;
  9460. }
  9461. static void tg3_ints_init(struct tg3 *tp)
  9462. {
  9463. if ((tg3_flag(tp, SUPPORT_MSI) || tg3_flag(tp, SUPPORT_MSIX)) &&
  9464. !tg3_flag(tp, TAGGED_STATUS)) {
  9465. /* All MSI supporting chips should support tagged
  9466. * status. Assert that this is the case.
  9467. */
  9468. netdev_warn(tp->dev,
  9469. "MSI without TAGGED_STATUS? Not using MSI\n");
  9470. goto defcfg;
  9471. }
  9472. if (tg3_flag(tp, SUPPORT_MSIX) && tg3_enable_msix(tp))
  9473. tg3_flag_set(tp, USING_MSIX);
  9474. else if (tg3_flag(tp, SUPPORT_MSI) && pci_enable_msi(tp->pdev) == 0)
  9475. tg3_flag_set(tp, USING_MSI);
  9476. if (tg3_flag(tp, USING_MSI) || tg3_flag(tp, USING_MSIX)) {
  9477. u32 msi_mode = tr32(MSGINT_MODE);
  9478. if (tg3_flag(tp, USING_MSIX) && tp->irq_cnt > 1)
  9479. msi_mode |= MSGINT_MODE_MULTIVEC_EN;
  9480. if (!tg3_flag(tp, 1SHOT_MSI))
  9481. msi_mode |= MSGINT_MODE_ONE_SHOT_DISABLE;
  9482. tw32(MSGINT_MODE, msi_mode | MSGINT_MODE_ENABLE);
  9483. }
  9484. defcfg:
  9485. if (!tg3_flag(tp, USING_MSIX)) {
  9486. tp->irq_cnt = 1;
  9487. tp->napi[0].irq_vec = tp->pdev->irq;
  9488. }
  9489. if (tp->irq_cnt == 1) {
  9490. tp->txq_cnt = 1;
  9491. tp->rxq_cnt = 1;
  9492. netif_set_real_num_tx_queues(tp->dev, 1);
  9493. netif_set_real_num_rx_queues(tp->dev, 1);
  9494. }
  9495. }
  9496. static void tg3_ints_fini(struct tg3 *tp)
  9497. {
  9498. if (tg3_flag(tp, USING_MSIX))
  9499. pci_disable_msix(tp->pdev);
  9500. else if (tg3_flag(tp, USING_MSI))
  9501. pci_disable_msi(tp->pdev);
  9502. tg3_flag_clear(tp, USING_MSI);
  9503. tg3_flag_clear(tp, USING_MSIX);
  9504. tg3_flag_clear(tp, ENABLE_RSS);
  9505. tg3_flag_clear(tp, ENABLE_TSS);
  9506. }
  9507. static int tg3_start(struct tg3 *tp, bool reset_phy, bool test_irq,
  9508. bool init)
  9509. {
  9510. struct net_device *dev = tp->dev;
  9511. int i, err;
  9512. /*
  9513. * Setup interrupts first so we know how
  9514. * many NAPI resources to allocate
  9515. */
  9516. tg3_ints_init(tp);
  9517. tg3_rss_check_indir_tbl(tp);
  9518. /* The placement of this call is tied
  9519. * to the setup and use of Host TX descriptors.
  9520. */
  9521. err = tg3_alloc_consistent(tp);
  9522. if (err)
  9523. goto out_ints_fini;
  9524. tg3_napi_init(tp);
  9525. tg3_napi_enable(tp);
  9526. for (i = 0; i < tp->irq_cnt; i++) {
  9527. err = tg3_request_irq(tp, i);
  9528. if (err) {
  9529. for (i--; i >= 0; i--) {
  9530. struct tg3_napi *tnapi = &tp->napi[i];
  9531. free_irq(tnapi->irq_vec, tnapi);
  9532. }
  9533. goto out_napi_fini;
  9534. }
  9535. }
  9536. tg3_full_lock(tp, 0);
  9537. if (init)
  9538. tg3_ape_driver_state_change(tp, RESET_KIND_INIT);
  9539. err = tg3_init_hw(tp, reset_phy);
  9540. if (err) {
  9541. tg3_halt(tp, RESET_KIND_SHUTDOWN, 1);
  9542. tg3_free_rings(tp);
  9543. }
  9544. tg3_full_unlock(tp);
  9545. if (err)
  9546. goto out_free_irq;
  9547. if (test_irq && tg3_flag(tp, USING_MSI)) {
  9548. err = tg3_test_msi(tp);
  9549. if (err) {
  9550. tg3_full_lock(tp, 0);
  9551. tg3_halt(tp, RESET_KIND_SHUTDOWN, 1);
  9552. tg3_free_rings(tp);
  9553. tg3_full_unlock(tp);
  9554. goto out_napi_fini;
  9555. }
  9556. if (!tg3_flag(tp, 57765_PLUS) && tg3_flag(tp, USING_MSI)) {
  9557. u32 val = tr32(PCIE_TRANSACTION_CFG);
  9558. tw32(PCIE_TRANSACTION_CFG,
  9559. val | PCIE_TRANS_CFG_1SHOT_MSI);
  9560. }
  9561. }
  9562. tg3_phy_start(tp);
  9563. tg3_hwmon_open(tp);
  9564. tg3_full_lock(tp, 0);
  9565. tg3_timer_start(tp);
  9566. tg3_flag_set(tp, INIT_COMPLETE);
  9567. tg3_enable_ints(tp);
  9568. tg3_ptp_resume(tp);
  9569. tg3_full_unlock(tp);
  9570. netif_tx_start_all_queues(dev);
  9571. /*
  9572. * Reset loopback feature if it was turned on while the device was down
  9573. * make sure that it's installed properly now.
  9574. */
  9575. if (dev->features & NETIF_F_LOOPBACK)
  9576. tg3_set_loopback(dev, dev->features);
  9577. return 0;
  9578. out_free_irq:
  9579. for (i = tp->irq_cnt - 1; i >= 0; i--) {
  9580. struct tg3_napi *tnapi = &tp->napi[i];
  9581. free_irq(tnapi->irq_vec, tnapi);
  9582. }
  9583. out_napi_fini:
  9584. tg3_napi_disable(tp);
  9585. tg3_napi_fini(tp);
  9586. tg3_free_consistent(tp);
  9587. out_ints_fini:
  9588. tg3_ints_fini(tp);
  9589. return err;
  9590. }
  9591. static void tg3_stop(struct tg3 *tp)
  9592. {
  9593. int i;
  9594. tg3_reset_task_cancel(tp);
  9595. tg3_netif_stop(tp);
  9596. tg3_timer_stop(tp);
  9597. tg3_hwmon_close(tp);
  9598. tg3_phy_stop(tp);
  9599. tg3_full_lock(tp, 1);
  9600. tg3_disable_ints(tp);
  9601. tg3_halt(tp, RESET_KIND_SHUTDOWN, 1);
  9602. tg3_free_rings(tp);
  9603. tg3_flag_clear(tp, INIT_COMPLETE);
  9604. tg3_full_unlock(tp);
  9605. for (i = tp->irq_cnt - 1; i >= 0; i--) {
  9606. struct tg3_napi *tnapi = &tp->napi[i];
  9607. free_irq(tnapi->irq_vec, tnapi);
  9608. }
  9609. tg3_ints_fini(tp);
  9610. tg3_napi_fini(tp);
  9611. tg3_free_consistent(tp);
  9612. }
  9613. static int tg3_open(struct net_device *dev)
  9614. {
  9615. struct tg3 *tp = netdev_priv(dev);
  9616. int err;
  9617. if (tp->pcierr_recovery) {
  9618. netdev_err(dev, "Failed to open device. PCI error recovery "
  9619. "in progress\n");
  9620. return -EAGAIN;
  9621. }
  9622. if (tp->fw_needed) {
  9623. err = tg3_request_firmware(tp);
  9624. if (tg3_asic_rev(tp) == ASIC_REV_57766) {
  9625. if (err) {
  9626. netdev_warn(tp->dev, "EEE capability disabled\n");
  9627. tp->phy_flags &= ~TG3_PHYFLG_EEE_CAP;
  9628. } else if (!(tp->phy_flags & TG3_PHYFLG_EEE_CAP)) {
  9629. netdev_warn(tp->dev, "EEE capability restored\n");
  9630. tp->phy_flags |= TG3_PHYFLG_EEE_CAP;
  9631. }
  9632. } else if (tg3_chip_rev_id(tp) == CHIPREV_ID_5701_A0) {
  9633. if (err)
  9634. return err;
  9635. } else if (err) {
  9636. netdev_warn(tp->dev, "TSO capability disabled\n");
  9637. tg3_flag_clear(tp, TSO_CAPABLE);
  9638. } else if (!tg3_flag(tp, TSO_CAPABLE)) {
  9639. netdev_notice(tp->dev, "TSO capability restored\n");
  9640. tg3_flag_set(tp, TSO_CAPABLE);
  9641. }
  9642. }
  9643. tg3_carrier_off(tp);
  9644. err = tg3_power_up(tp);
  9645. if (err)
  9646. return err;
  9647. tg3_full_lock(tp, 0);
  9648. tg3_disable_ints(tp);
  9649. tg3_flag_clear(tp, INIT_COMPLETE);
  9650. tg3_full_unlock(tp);
  9651. err = tg3_start(tp,
  9652. !(tp->phy_flags & TG3_PHYFLG_KEEP_LINK_ON_PWRDN),
  9653. true, true);
  9654. if (err) {
  9655. tg3_frob_aux_power(tp, false);
  9656. pci_set_power_state(tp->pdev, PCI_D3hot);
  9657. }
  9658. return err;
  9659. }
  9660. static int tg3_close(struct net_device *dev)
  9661. {
  9662. struct tg3 *tp = netdev_priv(dev);
  9663. if (tp->pcierr_recovery) {
  9664. netdev_err(dev, "Failed to close device. PCI error recovery "
  9665. "in progress\n");
  9666. return -EAGAIN;
  9667. }
  9668. tg3_stop(tp);
  9669. if (pci_device_is_present(tp->pdev)) {
  9670. tg3_power_down_prepare(tp);
  9671. tg3_carrier_off(tp);
  9672. }
  9673. return 0;
  9674. }
  9675. static inline u64 get_stat64(tg3_stat64_t *val)
  9676. {
  9677. return ((u64)val->high << 32) | ((u64)val->low);
  9678. }
  9679. static u64 tg3_calc_crc_errors(struct tg3 *tp)
  9680. {
  9681. struct tg3_hw_stats *hw_stats = tp->hw_stats;
  9682. if (!(tp->phy_flags & TG3_PHYFLG_PHY_SERDES) &&
  9683. (tg3_asic_rev(tp) == ASIC_REV_5700 ||
  9684. tg3_asic_rev(tp) == ASIC_REV_5701)) {
  9685. u32 val;
  9686. if (!tg3_readphy(tp, MII_TG3_TEST1, &val)) {
  9687. tg3_writephy(tp, MII_TG3_TEST1,
  9688. val | MII_TG3_TEST1_CRC_EN);
  9689. tg3_readphy(tp, MII_TG3_RXR_COUNTERS, &val);
  9690. } else
  9691. val = 0;
  9692. tp->phy_crc_errors += val;
  9693. return tp->phy_crc_errors;
  9694. }
  9695. return get_stat64(&hw_stats->rx_fcs_errors);
  9696. }
  9697. #define ESTAT_ADD(member) \
  9698. estats->member = old_estats->member + \
  9699. get_stat64(&hw_stats->member)
  9700. static void tg3_get_estats(struct tg3 *tp, struct tg3_ethtool_stats *estats)
  9701. {
  9702. struct tg3_ethtool_stats *old_estats = &tp->estats_prev;
  9703. struct tg3_hw_stats *hw_stats = tp->hw_stats;
  9704. ESTAT_ADD(rx_octets);
  9705. ESTAT_ADD(rx_fragments);
  9706. ESTAT_ADD(rx_ucast_packets);
  9707. ESTAT_ADD(rx_mcast_packets);
  9708. ESTAT_ADD(rx_bcast_packets);
  9709. ESTAT_ADD(rx_fcs_errors);
  9710. ESTAT_ADD(rx_align_errors);
  9711. ESTAT_ADD(rx_xon_pause_rcvd);
  9712. ESTAT_ADD(rx_xoff_pause_rcvd);
  9713. ESTAT_ADD(rx_mac_ctrl_rcvd);
  9714. ESTAT_ADD(rx_xoff_entered);
  9715. ESTAT_ADD(rx_frame_too_long_errors);
  9716. ESTAT_ADD(rx_jabbers);
  9717. ESTAT_ADD(rx_undersize_packets);
  9718. ESTAT_ADD(rx_in_length_errors);
  9719. ESTAT_ADD(rx_out_length_errors);
  9720. ESTAT_ADD(rx_64_or_less_octet_packets);
  9721. ESTAT_ADD(rx_65_to_127_octet_packets);
  9722. ESTAT_ADD(rx_128_to_255_octet_packets);
  9723. ESTAT_ADD(rx_256_to_511_octet_packets);
  9724. ESTAT_ADD(rx_512_to_1023_octet_packets);
  9725. ESTAT_ADD(rx_1024_to_1522_octet_packets);
  9726. ESTAT_ADD(rx_1523_to_2047_octet_packets);
  9727. ESTAT_ADD(rx_2048_to_4095_octet_packets);
  9728. ESTAT_ADD(rx_4096_to_8191_octet_packets);
  9729. ESTAT_ADD(rx_8192_to_9022_octet_packets);
  9730. ESTAT_ADD(tx_octets);
  9731. ESTAT_ADD(tx_collisions);
  9732. ESTAT_ADD(tx_xon_sent);
  9733. ESTAT_ADD(tx_xoff_sent);
  9734. ESTAT_ADD(tx_flow_control);
  9735. ESTAT_ADD(tx_mac_errors);
  9736. ESTAT_ADD(tx_single_collisions);
  9737. ESTAT_ADD(tx_mult_collisions);
  9738. ESTAT_ADD(tx_deferred);
  9739. ESTAT_ADD(tx_excessive_collisions);
  9740. ESTAT_ADD(tx_late_collisions);
  9741. ESTAT_ADD(tx_collide_2times);
  9742. ESTAT_ADD(tx_collide_3times);
  9743. ESTAT_ADD(tx_collide_4times);
  9744. ESTAT_ADD(tx_collide_5times);
  9745. ESTAT_ADD(tx_collide_6times);
  9746. ESTAT_ADD(tx_collide_7times);
  9747. ESTAT_ADD(tx_collide_8times);
  9748. ESTAT_ADD(tx_collide_9times);
  9749. ESTAT_ADD(tx_collide_10times);
  9750. ESTAT_ADD(tx_collide_11times);
  9751. ESTAT_ADD(tx_collide_12times);
  9752. ESTAT_ADD(tx_collide_13times);
  9753. ESTAT_ADD(tx_collide_14times);
  9754. ESTAT_ADD(tx_collide_15times);
  9755. ESTAT_ADD(tx_ucast_packets);
  9756. ESTAT_ADD(tx_mcast_packets);
  9757. ESTAT_ADD(tx_bcast_packets);
  9758. ESTAT_ADD(tx_carrier_sense_errors);
  9759. ESTAT_ADD(tx_discards);
  9760. ESTAT_ADD(tx_errors);
  9761. ESTAT_ADD(dma_writeq_full);
  9762. ESTAT_ADD(dma_write_prioq_full);
  9763. ESTAT_ADD(rxbds_empty);
  9764. ESTAT_ADD(rx_discards);
  9765. ESTAT_ADD(rx_errors);
  9766. ESTAT_ADD(rx_threshold_hit);
  9767. ESTAT_ADD(dma_readq_full);
  9768. ESTAT_ADD(dma_read_prioq_full);
  9769. ESTAT_ADD(tx_comp_queue_full);
  9770. ESTAT_ADD(ring_set_send_prod_index);
  9771. ESTAT_ADD(ring_status_update);
  9772. ESTAT_ADD(nic_irqs);
  9773. ESTAT_ADD(nic_avoided_irqs);
  9774. ESTAT_ADD(nic_tx_threshold_hit);
  9775. ESTAT_ADD(mbuf_lwm_thresh_hit);
  9776. }
  9777. static void tg3_get_nstats(struct tg3 *tp, struct rtnl_link_stats64 *stats)
  9778. {
  9779. struct rtnl_link_stats64 *old_stats = &tp->net_stats_prev;
  9780. struct tg3_hw_stats *hw_stats = tp->hw_stats;
  9781. stats->rx_packets = old_stats->rx_packets +
  9782. get_stat64(&hw_stats->rx_ucast_packets) +
  9783. get_stat64(&hw_stats->rx_mcast_packets) +
  9784. get_stat64(&hw_stats->rx_bcast_packets);
  9785. stats->tx_packets = old_stats->tx_packets +
  9786. get_stat64(&hw_stats->tx_ucast_packets) +
  9787. get_stat64(&hw_stats->tx_mcast_packets) +
  9788. get_stat64(&hw_stats->tx_bcast_packets);
  9789. stats->rx_bytes = old_stats->rx_bytes +
  9790. get_stat64(&hw_stats->rx_octets);
  9791. stats->tx_bytes = old_stats->tx_bytes +
  9792. get_stat64(&hw_stats->tx_octets);
  9793. stats->rx_errors = old_stats->rx_errors +
  9794. get_stat64(&hw_stats->rx_errors);
  9795. stats->tx_errors = old_stats->tx_errors +
  9796. get_stat64(&hw_stats->tx_errors) +
  9797. get_stat64(&hw_stats->tx_mac_errors) +
  9798. get_stat64(&hw_stats->tx_carrier_sense_errors) +
  9799. get_stat64(&hw_stats->tx_discards);
  9800. stats->multicast = old_stats->multicast +
  9801. get_stat64(&hw_stats->rx_mcast_packets);
  9802. stats->collisions = old_stats->collisions +
  9803. get_stat64(&hw_stats->tx_collisions);
  9804. stats->rx_length_errors = old_stats->rx_length_errors +
  9805. get_stat64(&hw_stats->rx_frame_too_long_errors) +
  9806. get_stat64(&hw_stats->rx_undersize_packets);
  9807. stats->rx_frame_errors = old_stats->rx_frame_errors +
  9808. get_stat64(&hw_stats->rx_align_errors);
  9809. stats->tx_aborted_errors = old_stats->tx_aborted_errors +
  9810. get_stat64(&hw_stats->tx_discards);
  9811. stats->tx_carrier_errors = old_stats->tx_carrier_errors +
  9812. get_stat64(&hw_stats->tx_carrier_sense_errors);
  9813. stats->rx_crc_errors = old_stats->rx_crc_errors +
  9814. tg3_calc_crc_errors(tp);
  9815. stats->rx_missed_errors = old_stats->rx_missed_errors +
  9816. get_stat64(&hw_stats->rx_discards);
  9817. stats->rx_dropped = tp->rx_dropped;
  9818. stats->tx_dropped = tp->tx_dropped;
  9819. }
  9820. static int tg3_get_regs_len(struct net_device *dev)
  9821. {
  9822. return TG3_REG_BLK_SIZE;
  9823. }
  9824. static void tg3_get_regs(struct net_device *dev,
  9825. struct ethtool_regs *regs, void *_p)
  9826. {
  9827. struct tg3 *tp = netdev_priv(dev);
  9828. regs->version = 0;
  9829. memset(_p, 0, TG3_REG_BLK_SIZE);
  9830. if (tp->phy_flags & TG3_PHYFLG_IS_LOW_POWER)
  9831. return;
  9832. tg3_full_lock(tp, 0);
  9833. tg3_dump_legacy_regs(tp, (u32 *)_p);
  9834. tg3_full_unlock(tp);
  9835. }
  9836. static int tg3_get_eeprom_len(struct net_device *dev)
  9837. {
  9838. struct tg3 *tp = netdev_priv(dev);
  9839. return tp->nvram_size;
  9840. }
  9841. static int tg3_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
  9842. {
  9843. struct tg3 *tp = netdev_priv(dev);
  9844. int ret, cpmu_restore = 0;
  9845. u8 *pd;
  9846. u32 i, offset, len, b_offset, b_count, cpmu_val = 0;
  9847. __be32 val;
  9848. if (tg3_flag(tp, NO_NVRAM))
  9849. return -EINVAL;
  9850. offset = eeprom->offset;
  9851. len = eeprom->len;
  9852. eeprom->len = 0;
  9853. eeprom->magic = TG3_EEPROM_MAGIC;
  9854. /* Override clock, link aware and link idle modes */
  9855. if (tg3_flag(tp, CPMU_PRESENT)) {
  9856. cpmu_val = tr32(TG3_CPMU_CTRL);
  9857. if (cpmu_val & (CPMU_CTRL_LINK_AWARE_MODE |
  9858. CPMU_CTRL_LINK_IDLE_MODE)) {
  9859. tw32(TG3_CPMU_CTRL, cpmu_val &
  9860. ~(CPMU_CTRL_LINK_AWARE_MODE |
  9861. CPMU_CTRL_LINK_IDLE_MODE));
  9862. cpmu_restore = 1;
  9863. }
  9864. }
  9865. tg3_override_clk(tp);
  9866. if (offset & 3) {
  9867. /* adjustments to start on required 4 byte boundary */
  9868. b_offset = offset & 3;
  9869. b_count = 4 - b_offset;
  9870. if (b_count > len) {
  9871. /* i.e. offset=1 len=2 */
  9872. b_count = len;
  9873. }
  9874. ret = tg3_nvram_read_be32(tp, offset-b_offset, &val);
  9875. if (ret)
  9876. goto eeprom_done;
  9877. memcpy(data, ((char *)&val) + b_offset, b_count);
  9878. len -= b_count;
  9879. offset += b_count;
  9880. eeprom->len += b_count;
  9881. }
  9882. /* read bytes up to the last 4 byte boundary */
  9883. pd = &data[eeprom->len];
  9884. for (i = 0; i < (len - (len & 3)); i += 4) {
  9885. ret = tg3_nvram_read_be32(tp, offset + i, &val);
  9886. if (ret) {
  9887. if (i)
  9888. i -= 4;
  9889. eeprom->len += i;
  9890. goto eeprom_done;
  9891. }
  9892. memcpy(pd + i, &val, 4);
  9893. if (need_resched()) {
  9894. if (signal_pending(current)) {
  9895. eeprom->len += i;
  9896. ret = -EINTR;
  9897. goto eeprom_done;
  9898. }
  9899. cond_resched();
  9900. }
  9901. }
  9902. eeprom->len += i;
  9903. if (len & 3) {
  9904. /* read last bytes not ending on 4 byte boundary */
  9905. pd = &data[eeprom->len];
  9906. b_count = len & 3;
  9907. b_offset = offset + len - b_count;
  9908. ret = tg3_nvram_read_be32(tp, b_offset, &val);
  9909. if (ret)
  9910. goto eeprom_done;
  9911. memcpy(pd, &val, b_count);
  9912. eeprom->len += b_count;
  9913. }
  9914. ret = 0;
  9915. eeprom_done:
  9916. /* Restore clock, link aware and link idle modes */
  9917. tg3_restore_clk(tp);
  9918. if (cpmu_restore)
  9919. tw32(TG3_CPMU_CTRL, cpmu_val);
  9920. return ret;
  9921. }
  9922. static int tg3_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
  9923. {
  9924. struct tg3 *tp = netdev_priv(dev);
  9925. int ret;
  9926. u32 offset, len, b_offset, odd_len;
  9927. u8 *buf;
  9928. __be32 start = 0, end;
  9929. if (tg3_flag(tp, NO_NVRAM) ||
  9930. eeprom->magic != TG3_EEPROM_MAGIC)
  9931. return -EINVAL;
  9932. offset = eeprom->offset;
  9933. len = eeprom->len;
  9934. if ((b_offset = (offset & 3))) {
  9935. /* adjustments to start on required 4 byte boundary */
  9936. ret = tg3_nvram_read_be32(tp, offset-b_offset, &start);
  9937. if (ret)
  9938. return ret;
  9939. len += b_offset;
  9940. offset &= ~3;
  9941. if (len < 4)
  9942. len = 4;
  9943. }
  9944. odd_len = 0;
  9945. if (len & 3) {
  9946. /* adjustments to end on required 4 byte boundary */
  9947. odd_len = 1;
  9948. len = (len + 3) & ~3;
  9949. ret = tg3_nvram_read_be32(tp, offset+len-4, &end);
  9950. if (ret)
  9951. return ret;
  9952. }
  9953. buf = data;
  9954. if (b_offset || odd_len) {
  9955. buf = kmalloc(len, GFP_KERNEL);
  9956. if (!buf)
  9957. return -ENOMEM;
  9958. if (b_offset)
  9959. memcpy(buf, &start, 4);
  9960. if (odd_len)
  9961. memcpy(buf+len-4, &end, 4);
  9962. memcpy(buf + b_offset, data, eeprom->len);
  9963. }
  9964. ret = tg3_nvram_write_block(tp, offset, len, buf);
  9965. if (buf != data)
  9966. kfree(buf);
  9967. return ret;
  9968. }
  9969. static int tg3_get_link_ksettings(struct net_device *dev,
  9970. struct ethtool_link_ksettings *cmd)
  9971. {
  9972. struct tg3 *tp = netdev_priv(dev);
  9973. u32 supported, advertising;
  9974. if (tg3_flag(tp, USE_PHYLIB)) {
  9975. struct phy_device *phydev;
  9976. if (!(tp->phy_flags & TG3_PHYFLG_IS_CONNECTED))
  9977. return -EAGAIN;
  9978. phydev = mdiobus_get_phy(tp->mdio_bus, tp->phy_addr);
  9979. phy_ethtool_ksettings_get(phydev, cmd);
  9980. return 0;
  9981. }
  9982. supported = (SUPPORTED_Autoneg);
  9983. if (!(tp->phy_flags & TG3_PHYFLG_10_100_ONLY))
  9984. supported |= (SUPPORTED_1000baseT_Half |
  9985. SUPPORTED_1000baseT_Full);
  9986. if (!(tp->phy_flags & TG3_PHYFLG_ANY_SERDES)) {
  9987. supported |= (SUPPORTED_100baseT_Half |
  9988. SUPPORTED_100baseT_Full |
  9989. SUPPORTED_10baseT_Half |
  9990. SUPPORTED_10baseT_Full |
  9991. SUPPORTED_TP);
  9992. cmd->base.port = PORT_TP;
  9993. } else {
  9994. supported |= SUPPORTED_FIBRE;
  9995. cmd->base.port = PORT_FIBRE;
  9996. }
  9997. ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
  9998. supported);
  9999. advertising = tp->link_config.advertising;
  10000. if (tg3_flag(tp, PAUSE_AUTONEG)) {
  10001. if (tp->link_config.flowctrl & FLOW_CTRL_RX) {
  10002. if (tp->link_config.flowctrl & FLOW_CTRL_TX) {
  10003. advertising |= ADVERTISED_Pause;
  10004. } else {
  10005. advertising |= ADVERTISED_Pause |
  10006. ADVERTISED_Asym_Pause;
  10007. }
  10008. } else if (tp->link_config.flowctrl & FLOW_CTRL_TX) {
  10009. advertising |= ADVERTISED_Asym_Pause;
  10010. }
  10011. }
  10012. ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
  10013. advertising);
  10014. if (netif_running(dev) && tp->link_up) {
  10015. cmd->base.speed = tp->link_config.active_speed;
  10016. cmd->base.duplex = tp->link_config.active_duplex;
  10017. ethtool_convert_legacy_u32_to_link_mode(
  10018. cmd->link_modes.lp_advertising,
  10019. tp->link_config.rmt_adv);
  10020. if (!(tp->phy_flags & TG3_PHYFLG_ANY_SERDES)) {
  10021. if (tp->phy_flags & TG3_PHYFLG_MDIX_STATE)
  10022. cmd->base.eth_tp_mdix = ETH_TP_MDI_X;
  10023. else
  10024. cmd->base.eth_tp_mdix = ETH_TP_MDI;
  10025. }
  10026. } else {
  10027. cmd->base.speed = SPEED_UNKNOWN;
  10028. cmd->base.duplex = DUPLEX_UNKNOWN;
  10029. cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
  10030. }
  10031. cmd->base.phy_address = tp->phy_addr;
  10032. cmd->base.autoneg = tp->link_config.autoneg;
  10033. return 0;
  10034. }
  10035. static int tg3_set_link_ksettings(struct net_device *dev,
  10036. const struct ethtool_link_ksettings *cmd)
  10037. {
  10038. struct tg3 *tp = netdev_priv(dev);
  10039. u32 speed = cmd->base.speed;
  10040. u32 advertising;
  10041. if (tg3_flag(tp, USE_PHYLIB)) {
  10042. struct phy_device *phydev;
  10043. if (!(tp->phy_flags & TG3_PHYFLG_IS_CONNECTED))
  10044. return -EAGAIN;
  10045. phydev = mdiobus_get_phy(tp->mdio_bus, tp->phy_addr);
  10046. return phy_ethtool_ksettings_set(phydev, cmd);
  10047. }
  10048. if (cmd->base.autoneg != AUTONEG_ENABLE &&
  10049. cmd->base.autoneg != AUTONEG_DISABLE)
  10050. return -EINVAL;
  10051. if (cmd->base.autoneg == AUTONEG_DISABLE &&
  10052. cmd->base.duplex != DUPLEX_FULL &&
  10053. cmd->base.duplex != DUPLEX_HALF)
  10054. return -EINVAL;
  10055. ethtool_convert_link_mode_to_legacy_u32(&advertising,
  10056. cmd->link_modes.advertising);
  10057. if (cmd->base.autoneg == AUTONEG_ENABLE) {
  10058. u32 mask = ADVERTISED_Autoneg |
  10059. ADVERTISED_Pause |
  10060. ADVERTISED_Asym_Pause;
  10061. if (!(tp->phy_flags & TG3_PHYFLG_10_100_ONLY))
  10062. mask |= ADVERTISED_1000baseT_Half |
  10063. ADVERTISED_1000baseT_Full;
  10064. if (!(tp->phy_flags & TG3_PHYFLG_ANY_SERDES))
  10065. mask |= ADVERTISED_100baseT_Half |
  10066. ADVERTISED_100baseT_Full |
  10067. ADVERTISED_10baseT_Half |
  10068. ADVERTISED_10baseT_Full |
  10069. ADVERTISED_TP;
  10070. else
  10071. mask |= ADVERTISED_FIBRE;
  10072. if (advertising & ~mask)
  10073. return -EINVAL;
  10074. mask &= (ADVERTISED_1000baseT_Half |
  10075. ADVERTISED_1000baseT_Full |
  10076. ADVERTISED_100baseT_Half |
  10077. ADVERTISED_100baseT_Full |
  10078. ADVERTISED_10baseT_Half |
  10079. ADVERTISED_10baseT_Full);
  10080. advertising &= mask;
  10081. } else {
  10082. if (tp->phy_flags & TG3_PHYFLG_ANY_SERDES) {
  10083. if (speed != SPEED_1000)
  10084. return -EINVAL;
  10085. if (cmd->base.duplex != DUPLEX_FULL)
  10086. return -EINVAL;
  10087. } else {
  10088. if (speed != SPEED_100 &&
  10089. speed != SPEED_10)
  10090. return -EINVAL;
  10091. }
  10092. }
  10093. tg3_full_lock(tp, 0);
  10094. tp->link_config.autoneg = cmd->base.autoneg;
  10095. if (cmd->base.autoneg == AUTONEG_ENABLE) {
  10096. tp->link_config.advertising = (advertising |
  10097. ADVERTISED_Autoneg);
  10098. tp->link_config.speed = SPEED_UNKNOWN;
  10099. tp->link_config.duplex = DUPLEX_UNKNOWN;
  10100. } else {
  10101. tp->link_config.advertising = 0;
  10102. tp->link_config.speed = speed;
  10103. tp->link_config.duplex = cmd->base.duplex;
  10104. }
  10105. tp->phy_flags |= TG3_PHYFLG_USER_CONFIGURED;
  10106. tg3_warn_mgmt_link_flap(tp);
  10107. if (netif_running(dev))
  10108. tg3_setup_phy(tp, true);
  10109. tg3_full_unlock(tp);
  10110. return 0;
  10111. }
  10112. static void tg3_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  10113. {
  10114. struct tg3 *tp = netdev_priv(dev);
  10115. strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
  10116. strlcpy(info->fw_version, tp->fw_ver, sizeof(info->fw_version));
  10117. strlcpy(info->bus_info, pci_name(tp->pdev), sizeof(info->bus_info));
  10118. }
  10119. static void tg3_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  10120. {
  10121. struct tg3 *tp = netdev_priv(dev);
  10122. if (tg3_flag(tp, WOL_CAP) && device_can_wakeup(&tp->pdev->dev))
  10123. wol->supported = WAKE_MAGIC;
  10124. else
  10125. wol->supported = 0;
  10126. wol->wolopts = 0;
  10127. if (tg3_flag(tp, WOL_ENABLE) && device_can_wakeup(&tp->pdev->dev))
  10128. wol->wolopts = WAKE_MAGIC;
  10129. memset(&wol->sopass, 0, sizeof(wol->sopass));
  10130. }
  10131. static int tg3_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  10132. {
  10133. struct tg3 *tp = netdev_priv(dev);
  10134. struct device *dp = &tp->pdev->dev;
  10135. if (wol->wolopts & ~WAKE_MAGIC)
  10136. return -EINVAL;
  10137. if ((wol->wolopts & WAKE_MAGIC) &&
  10138. !(tg3_flag(tp, WOL_CAP) && device_can_wakeup(dp)))
  10139. return -EINVAL;
  10140. device_set_wakeup_enable(dp, wol->wolopts & WAKE_MAGIC);
  10141. if (device_may_wakeup(dp))
  10142. tg3_flag_set(tp, WOL_ENABLE);
  10143. else
  10144. tg3_flag_clear(tp, WOL_ENABLE);
  10145. return 0;
  10146. }
  10147. static u32 tg3_get_msglevel(struct net_device *dev)
  10148. {
  10149. struct tg3 *tp = netdev_priv(dev);
  10150. return tp->msg_enable;
  10151. }
  10152. static void tg3_set_msglevel(struct net_device *dev, u32 value)
  10153. {
  10154. struct tg3 *tp = netdev_priv(dev);
  10155. tp->msg_enable = value;
  10156. }
  10157. static int tg3_nway_reset(struct net_device *dev)
  10158. {
  10159. struct tg3 *tp = netdev_priv(dev);
  10160. int r;
  10161. if (!netif_running(dev))
  10162. return -EAGAIN;
  10163. if (tp->phy_flags & TG3_PHYFLG_PHY_SERDES)
  10164. return -EINVAL;
  10165. tg3_warn_mgmt_link_flap(tp);
  10166. if (tg3_flag(tp, USE_PHYLIB)) {
  10167. if (!(tp->phy_flags & TG3_PHYFLG_IS_CONNECTED))
  10168. return -EAGAIN;
  10169. r = phy_start_aneg(mdiobus_get_phy(tp->mdio_bus, tp->phy_addr));
  10170. } else {
  10171. u32 bmcr;
  10172. spin_lock_bh(&tp->lock);
  10173. r = -EINVAL;
  10174. tg3_readphy(tp, MII_BMCR, &bmcr);
  10175. if (!tg3_readphy(tp, MII_BMCR, &bmcr) &&
  10176. ((bmcr & BMCR_ANENABLE) ||
  10177. (tp->phy_flags & TG3_PHYFLG_PARALLEL_DETECT))) {
  10178. tg3_writephy(tp, MII_BMCR, bmcr | BMCR_ANRESTART |
  10179. BMCR_ANENABLE);
  10180. r = 0;
  10181. }
  10182. spin_unlock_bh(&tp->lock);
  10183. }
  10184. return r;
  10185. }
  10186. static void tg3_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  10187. {
  10188. struct tg3 *tp = netdev_priv(dev);
  10189. ering->rx_max_pending = tp->rx_std_ring_mask;
  10190. if (tg3_flag(tp, JUMBO_RING_ENABLE))
  10191. ering->rx_jumbo_max_pending = tp->rx_jmb_ring_mask;
  10192. else
  10193. ering->rx_jumbo_max_pending = 0;
  10194. ering->tx_max_pending = TG3_TX_RING_SIZE - 1;
  10195. ering->rx_pending = tp->rx_pending;
  10196. if (tg3_flag(tp, JUMBO_RING_ENABLE))
  10197. ering->rx_jumbo_pending = tp->rx_jumbo_pending;
  10198. else
  10199. ering->rx_jumbo_pending = 0;
  10200. ering->tx_pending = tp->napi[0].tx_pending;
  10201. }
  10202. static int tg3_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  10203. {
  10204. struct tg3 *tp = netdev_priv(dev);
  10205. int i, irq_sync = 0, err = 0;
  10206. bool reset_phy = false;
  10207. if ((ering->rx_pending > tp->rx_std_ring_mask) ||
  10208. (ering->rx_jumbo_pending > tp->rx_jmb_ring_mask) ||
  10209. (ering->tx_pending > TG3_TX_RING_SIZE - 1) ||
  10210. (ering->tx_pending <= MAX_SKB_FRAGS) ||
  10211. (tg3_flag(tp, TSO_BUG) &&
  10212. (ering->tx_pending <= (MAX_SKB_FRAGS * 3))))
  10213. return -EINVAL;
  10214. if (netif_running(dev)) {
  10215. tg3_phy_stop(tp);
  10216. tg3_netif_stop(tp);
  10217. irq_sync = 1;
  10218. }
  10219. tg3_full_lock(tp, irq_sync);
  10220. tp->rx_pending = ering->rx_pending;
  10221. if (tg3_flag(tp, MAX_RXPEND_64) &&
  10222. tp->rx_pending > 63)
  10223. tp->rx_pending = 63;
  10224. if (tg3_flag(tp, JUMBO_RING_ENABLE))
  10225. tp->rx_jumbo_pending = ering->rx_jumbo_pending;
  10226. for (i = 0; i < tp->irq_max; i++)
  10227. tp->napi[i].tx_pending = ering->tx_pending;
  10228. if (netif_running(dev)) {
  10229. tg3_halt(tp, RESET_KIND_SHUTDOWN, 1);
  10230. /* Reset PHY to avoid PHY lock up */
  10231. if (tg3_asic_rev(tp) == ASIC_REV_5717 ||
  10232. tg3_asic_rev(tp) == ASIC_REV_5719 ||
  10233. tg3_asic_rev(tp) == ASIC_REV_5720)
  10234. reset_phy = true;
  10235. err = tg3_restart_hw(tp, reset_phy);
  10236. if (!err)
  10237. tg3_netif_start(tp);
  10238. }
  10239. tg3_full_unlock(tp);
  10240. if (irq_sync && !err)
  10241. tg3_phy_start(tp);
  10242. return err;
  10243. }
  10244. static void tg3_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  10245. {
  10246. struct tg3 *tp = netdev_priv(dev);
  10247. epause->autoneg = !!tg3_flag(tp, PAUSE_AUTONEG);
  10248. if (tp->link_config.flowctrl & FLOW_CTRL_RX)
  10249. epause->rx_pause = 1;
  10250. else
  10251. epause->rx_pause = 0;
  10252. if (tp->link_config.flowctrl & FLOW_CTRL_TX)
  10253. epause->tx_pause = 1;
  10254. else
  10255. epause->tx_pause = 0;
  10256. }
  10257. static int tg3_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  10258. {
  10259. struct tg3 *tp = netdev_priv(dev);
  10260. int err = 0;
  10261. bool reset_phy = false;
  10262. if (tp->link_config.autoneg == AUTONEG_ENABLE)
  10263. tg3_warn_mgmt_link_flap(tp);
  10264. if (tg3_flag(tp, USE_PHYLIB)) {
  10265. struct phy_device *phydev;
  10266. phydev = mdiobus_get_phy(tp->mdio_bus, tp->phy_addr);
  10267. if (!phy_validate_pause(phydev, epause))
  10268. return -EINVAL;
  10269. tp->link_config.flowctrl = 0;
  10270. phy_set_asym_pause(phydev, epause->rx_pause, epause->tx_pause);
  10271. if (epause->rx_pause) {
  10272. tp->link_config.flowctrl |= FLOW_CTRL_RX;
  10273. if (epause->tx_pause) {
  10274. tp->link_config.flowctrl |= FLOW_CTRL_TX;
  10275. }
  10276. } else if (epause->tx_pause) {
  10277. tp->link_config.flowctrl |= FLOW_CTRL_TX;
  10278. }
  10279. if (epause->autoneg)
  10280. tg3_flag_set(tp, PAUSE_AUTONEG);
  10281. else
  10282. tg3_flag_clear(tp, PAUSE_AUTONEG);
  10283. if (tp->phy_flags & TG3_PHYFLG_IS_CONNECTED) {
  10284. if (phydev->autoneg) {
  10285. /* phy_set_asym_pause() will
  10286. * renegotiate the link to inform our
  10287. * link partner of our flow control
  10288. * settings, even if the flow control
  10289. * is forced. Let tg3_adjust_link()
  10290. * do the final flow control setup.
  10291. */
  10292. return 0;
  10293. }
  10294. if (!epause->autoneg)
  10295. tg3_setup_flow_control(tp, 0, 0);
  10296. }
  10297. } else {
  10298. int irq_sync = 0;
  10299. if (netif_running(dev)) {
  10300. tg3_netif_stop(tp);
  10301. irq_sync = 1;
  10302. }
  10303. tg3_full_lock(tp, irq_sync);
  10304. if (epause->autoneg)
  10305. tg3_flag_set(tp, PAUSE_AUTONEG);
  10306. else
  10307. tg3_flag_clear(tp, PAUSE_AUTONEG);
  10308. if (epause->rx_pause)
  10309. tp->link_config.flowctrl |= FLOW_CTRL_RX;
  10310. else
  10311. tp->link_config.flowctrl &= ~FLOW_CTRL_RX;
  10312. if (epause->tx_pause)
  10313. tp->link_config.flowctrl |= FLOW_CTRL_TX;
  10314. else
  10315. tp->link_config.flowctrl &= ~FLOW_CTRL_TX;
  10316. if (netif_running(dev)) {
  10317. tg3_halt(tp, RESET_KIND_SHUTDOWN, 1);
  10318. /* Reset PHY to avoid PHY lock up */
  10319. if (tg3_asic_rev(tp) == ASIC_REV_5717 ||
  10320. tg3_asic_rev(tp) == ASIC_REV_5719 ||
  10321. tg3_asic_rev(tp) == ASIC_REV_5720)
  10322. reset_phy = true;
  10323. err = tg3_restart_hw(tp, reset_phy);
  10324. if (!err)
  10325. tg3_netif_start(tp);
  10326. }
  10327. tg3_full_unlock(tp);
  10328. }
  10329. tp->phy_flags |= TG3_PHYFLG_USER_CONFIGURED;
  10330. return err;
  10331. }
  10332. static int tg3_get_sset_count(struct net_device *dev, int sset)
  10333. {
  10334. switch (sset) {
  10335. case ETH_SS_TEST:
  10336. return TG3_NUM_TEST;
  10337. case ETH_SS_STATS:
  10338. return TG3_NUM_STATS;
  10339. default:
  10340. return -EOPNOTSUPP;
  10341. }
  10342. }
  10343. static int tg3_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
  10344. u32 *rules __always_unused)
  10345. {
  10346. struct tg3 *tp = netdev_priv(dev);
  10347. if (!tg3_flag(tp, SUPPORT_MSIX))
  10348. return -EOPNOTSUPP;
  10349. switch (info->cmd) {
  10350. case ETHTOOL_GRXRINGS:
  10351. if (netif_running(tp->dev))
  10352. info->data = tp->rxq_cnt;
  10353. else {
  10354. info->data = num_online_cpus();
  10355. if (info->data > TG3_RSS_MAX_NUM_QS)
  10356. info->data = TG3_RSS_MAX_NUM_QS;
  10357. }
  10358. return 0;
  10359. default:
  10360. return -EOPNOTSUPP;
  10361. }
  10362. }
  10363. static u32 tg3_get_rxfh_indir_size(struct net_device *dev)
  10364. {
  10365. u32 size = 0;
  10366. struct tg3 *tp = netdev_priv(dev);
  10367. if (tg3_flag(tp, SUPPORT_MSIX))
  10368. size = TG3_RSS_INDIR_TBL_SIZE;
  10369. return size;
  10370. }
  10371. static int tg3_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, u8 *hfunc)
  10372. {
  10373. struct tg3 *tp = netdev_priv(dev);
  10374. int i;
  10375. if (hfunc)
  10376. *hfunc = ETH_RSS_HASH_TOP;
  10377. if (!indir)
  10378. return 0;
  10379. for (i = 0; i < TG3_RSS_INDIR_TBL_SIZE; i++)
  10380. indir[i] = tp->rss_ind_tbl[i];
  10381. return 0;
  10382. }
  10383. static int tg3_set_rxfh(struct net_device *dev, const u32 *indir, const u8 *key,
  10384. const u8 hfunc)
  10385. {
  10386. struct tg3 *tp = netdev_priv(dev);
  10387. size_t i;
  10388. /* We require at least one supported parameter to be changed and no
  10389. * change in any of the unsupported parameters
  10390. */
  10391. if (key ||
  10392. (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
  10393. return -EOPNOTSUPP;
  10394. if (!indir)
  10395. return 0;
  10396. for (i = 0; i < TG3_RSS_INDIR_TBL_SIZE; i++)
  10397. tp->rss_ind_tbl[i] = indir[i];
  10398. if (!netif_running(dev) || !tg3_flag(tp, ENABLE_RSS))
  10399. return 0;
  10400. /* It is legal to write the indirection
  10401. * table while the device is running.
  10402. */
  10403. tg3_full_lock(tp, 0);
  10404. tg3_rss_write_indir_tbl(tp);
  10405. tg3_full_unlock(tp);
  10406. return 0;
  10407. }
  10408. static void tg3_get_channels(struct net_device *dev,
  10409. struct ethtool_channels *channel)
  10410. {
  10411. struct tg3 *tp = netdev_priv(dev);
  10412. u32 deflt_qs = netif_get_num_default_rss_queues();
  10413. channel->max_rx = tp->rxq_max;
  10414. channel->max_tx = tp->txq_max;
  10415. if (netif_running(dev)) {
  10416. channel->rx_count = tp->rxq_cnt;
  10417. channel->tx_count = tp->txq_cnt;
  10418. } else {
  10419. if (tp->rxq_req)
  10420. channel->rx_count = tp->rxq_req;
  10421. else
  10422. channel->rx_count = min(deflt_qs, tp->rxq_max);
  10423. if (tp->txq_req)
  10424. channel->tx_count = tp->txq_req;
  10425. else
  10426. channel->tx_count = min(deflt_qs, tp->txq_max);
  10427. }
  10428. }
  10429. static int tg3_set_channels(struct net_device *dev,
  10430. struct ethtool_channels *channel)
  10431. {
  10432. struct tg3 *tp = netdev_priv(dev);
  10433. if (!tg3_flag(tp, SUPPORT_MSIX))
  10434. return -EOPNOTSUPP;
  10435. if (channel->rx_count > tp->rxq_max ||
  10436. channel->tx_count > tp->txq_max)
  10437. return -EINVAL;
  10438. tp->rxq_req = channel->rx_count;
  10439. tp->txq_req = channel->tx_count;
  10440. if (!netif_running(dev))
  10441. return 0;
  10442. tg3_stop(tp);
  10443. tg3_carrier_off(tp);
  10444. tg3_start(tp, true, false, false);
  10445. return 0;
  10446. }
  10447. static void tg3_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
  10448. {
  10449. switch (stringset) {
  10450. case ETH_SS_STATS:
  10451. memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
  10452. break;
  10453. case ETH_SS_TEST:
  10454. memcpy(buf, &ethtool_test_keys, sizeof(ethtool_test_keys));
  10455. break;
  10456. default:
  10457. WARN_ON(1); /* we need a WARN() */
  10458. break;
  10459. }
  10460. }
  10461. static int tg3_set_phys_id(struct net_device *dev,
  10462. enum ethtool_phys_id_state state)
  10463. {
  10464. struct tg3 *tp = netdev_priv(dev);
  10465. switch (state) {
  10466. case ETHTOOL_ID_ACTIVE:
  10467. return 1; /* cycle on/off once per second */
  10468. case ETHTOOL_ID_ON:
  10469. tw32(MAC_LED_CTRL, LED_CTRL_LNKLED_OVERRIDE |
  10470. LED_CTRL_1000MBPS_ON |
  10471. LED_CTRL_100MBPS_ON |
  10472. LED_CTRL_10MBPS_ON |
  10473. LED_CTRL_TRAFFIC_OVERRIDE |
  10474. LED_CTRL_TRAFFIC_BLINK |
  10475. LED_CTRL_TRAFFIC_LED);
  10476. break;
  10477. case ETHTOOL_ID_OFF:
  10478. tw32(MAC_LED_CTRL, LED_CTRL_LNKLED_OVERRIDE |
  10479. LED_CTRL_TRAFFIC_OVERRIDE);
  10480. break;
  10481. case ETHTOOL_ID_INACTIVE:
  10482. tw32(MAC_LED_CTRL, tp->led_ctrl);
  10483. break;
  10484. }
  10485. return 0;
  10486. }
  10487. static void tg3_get_ethtool_stats(struct net_device *dev,
  10488. struct ethtool_stats *estats, u64 *tmp_stats)
  10489. {
  10490. struct tg3 *tp = netdev_priv(dev);
  10491. if (tp->hw_stats)
  10492. tg3_get_estats(tp, (struct tg3_ethtool_stats *)tmp_stats);
  10493. else
  10494. memset(tmp_stats, 0, sizeof(struct tg3_ethtool_stats));
  10495. }
  10496. static __be32 *tg3_vpd_readblock(struct tg3 *tp, u32 *vpdlen)
  10497. {
  10498. int i;
  10499. __be32 *buf;
  10500. u32 offset = 0, len = 0;
  10501. u32 magic, val;
  10502. if (tg3_flag(tp, NO_NVRAM) || tg3_nvram_read(tp, 0, &magic))
  10503. return NULL;
  10504. if (magic == TG3_EEPROM_MAGIC) {
  10505. for (offset = TG3_NVM_DIR_START;
  10506. offset < TG3_NVM_DIR_END;
  10507. offset += TG3_NVM_DIRENT_SIZE) {
  10508. if (tg3_nvram_read(tp, offset, &val))
  10509. return NULL;
  10510. if ((val >> TG3_NVM_DIRTYPE_SHIFT) ==
  10511. TG3_NVM_DIRTYPE_EXTVPD)
  10512. break;
  10513. }
  10514. if (offset != TG3_NVM_DIR_END) {
  10515. len = (val & TG3_NVM_DIRTYPE_LENMSK) * 4;
  10516. if (tg3_nvram_read(tp, offset + 4, &offset))
  10517. return NULL;
  10518. offset = tg3_nvram_logical_addr(tp, offset);
  10519. }
  10520. }
  10521. if (!offset || !len) {
  10522. offset = TG3_NVM_VPD_OFF;
  10523. len = TG3_NVM_VPD_LEN;
  10524. }
  10525. buf = kmalloc(len, GFP_KERNEL);
  10526. if (buf == NULL)
  10527. return NULL;
  10528. if (magic == TG3_EEPROM_MAGIC) {
  10529. for (i = 0; i < len; i += 4) {
  10530. /* The data is in little-endian format in NVRAM.
  10531. * Use the big-endian read routines to preserve
  10532. * the byte order as it exists in NVRAM.
  10533. */
  10534. if (tg3_nvram_read_be32(tp, offset + i, &buf[i/4]))
  10535. goto error;
  10536. }
  10537. } else {
  10538. u8 *ptr;
  10539. ssize_t cnt;
  10540. unsigned int pos = 0;
  10541. ptr = (u8 *)&buf[0];
  10542. for (i = 0; pos < len && i < 3; i++, pos += cnt, ptr += cnt) {
  10543. cnt = pci_read_vpd(tp->pdev, pos,
  10544. len - pos, ptr);
  10545. if (cnt == -ETIMEDOUT || cnt == -EINTR)
  10546. cnt = 0;
  10547. else if (cnt < 0)
  10548. goto error;
  10549. }
  10550. if (pos != len)
  10551. goto error;
  10552. }
  10553. *vpdlen = len;
  10554. return buf;
  10555. error:
  10556. kfree(buf);
  10557. return NULL;
  10558. }
  10559. #define NVRAM_TEST_SIZE 0x100
  10560. #define NVRAM_SELFBOOT_FORMAT1_0_SIZE 0x14
  10561. #define NVRAM_SELFBOOT_FORMAT1_2_SIZE 0x18
  10562. #define NVRAM_SELFBOOT_FORMAT1_3_SIZE 0x1c
  10563. #define NVRAM_SELFBOOT_FORMAT1_4_SIZE 0x20
  10564. #define NVRAM_SELFBOOT_FORMAT1_5_SIZE 0x24
  10565. #define NVRAM_SELFBOOT_FORMAT1_6_SIZE 0x50
  10566. #define NVRAM_SELFBOOT_HW_SIZE 0x20
  10567. #define NVRAM_SELFBOOT_DATA_SIZE 0x1c
  10568. static int tg3_test_nvram(struct tg3 *tp)
  10569. {
  10570. u32 csum, magic, len;
  10571. __be32 *buf;
  10572. int i, j, k, err = 0, size;
  10573. if (tg3_flag(tp, NO_NVRAM))
  10574. return 0;
  10575. if (tg3_nvram_read(tp, 0, &magic) != 0)
  10576. return -EIO;
  10577. if (magic == TG3_EEPROM_MAGIC)
  10578. size = NVRAM_TEST_SIZE;
  10579. else if ((magic & TG3_EEPROM_MAGIC_FW_MSK) == TG3_EEPROM_MAGIC_FW) {
  10580. if ((magic & TG3_EEPROM_SB_FORMAT_MASK) ==
  10581. TG3_EEPROM_SB_FORMAT_1) {
  10582. switch (magic & TG3_EEPROM_SB_REVISION_MASK) {
  10583. case TG3_EEPROM_SB_REVISION_0:
  10584. size = NVRAM_SELFBOOT_FORMAT1_0_SIZE;
  10585. break;
  10586. case TG3_EEPROM_SB_REVISION_2:
  10587. size = NVRAM_SELFBOOT_FORMAT1_2_SIZE;
  10588. break;
  10589. case TG3_EEPROM_SB_REVISION_3:
  10590. size = NVRAM_SELFBOOT_FORMAT1_3_SIZE;
  10591. break;
  10592. case TG3_EEPROM_SB_REVISION_4:
  10593. size = NVRAM_SELFBOOT_FORMAT1_4_SIZE;
  10594. break;
  10595. case TG3_EEPROM_SB_REVISION_5:
  10596. size = NVRAM_SELFBOOT_FORMAT1_5_SIZE;
  10597. break;
  10598. case TG3_EEPROM_SB_REVISION_6:
  10599. size = NVRAM_SELFBOOT_FORMAT1_6_SIZE;
  10600. break;
  10601. default:
  10602. return -EIO;
  10603. }
  10604. } else
  10605. return 0;
  10606. } else if ((magic & TG3_EEPROM_MAGIC_HW_MSK) == TG3_EEPROM_MAGIC_HW)
  10607. size = NVRAM_SELFBOOT_HW_SIZE;
  10608. else
  10609. return -EIO;
  10610. buf = kmalloc(size, GFP_KERNEL);
  10611. if (buf == NULL)
  10612. return -ENOMEM;
  10613. err = -EIO;
  10614. for (i = 0, j = 0; i < size; i += 4, j++) {
  10615. err = tg3_nvram_read_be32(tp, i, &buf[j]);
  10616. if (err)
  10617. break;
  10618. }
  10619. if (i < size)
  10620. goto out;
  10621. /* Selfboot format */
  10622. magic = be32_to_cpu(buf[0]);
  10623. if ((magic & TG3_EEPROM_MAGIC_FW_MSK) ==
  10624. TG3_EEPROM_MAGIC_FW) {
  10625. u8 *buf8 = (u8 *) buf, csum8 = 0;
  10626. if ((magic & TG3_EEPROM_SB_REVISION_MASK) ==
  10627. TG3_EEPROM_SB_REVISION_2) {
  10628. /* For rev 2, the csum doesn't include the MBA. */
  10629. for (i = 0; i < TG3_EEPROM_SB_F1R2_MBA_OFF; i++)
  10630. csum8 += buf8[i];
  10631. for (i = TG3_EEPROM_SB_F1R2_MBA_OFF + 4; i < size; i++)
  10632. csum8 += buf8[i];
  10633. } else {
  10634. for (i = 0; i < size; i++)
  10635. csum8 += buf8[i];
  10636. }
  10637. if (csum8 == 0) {
  10638. err = 0;
  10639. goto out;
  10640. }
  10641. err = -EIO;
  10642. goto out;
  10643. }
  10644. if ((magic & TG3_EEPROM_MAGIC_HW_MSK) ==
  10645. TG3_EEPROM_MAGIC_HW) {
  10646. u8 data[NVRAM_SELFBOOT_DATA_SIZE];
  10647. u8 parity[NVRAM_SELFBOOT_DATA_SIZE];
  10648. u8 *buf8 = (u8 *) buf;
  10649. /* Separate the parity bits and the data bytes. */
  10650. for (i = 0, j = 0, k = 0; i < NVRAM_SELFBOOT_HW_SIZE; i++) {
  10651. if ((i == 0) || (i == 8)) {
  10652. int l;
  10653. u8 msk;
  10654. for (l = 0, msk = 0x80; l < 7; l++, msk >>= 1)
  10655. parity[k++] = buf8[i] & msk;
  10656. i++;
  10657. } else if (i == 16) {
  10658. int l;
  10659. u8 msk;
  10660. for (l = 0, msk = 0x20; l < 6; l++, msk >>= 1)
  10661. parity[k++] = buf8[i] & msk;
  10662. i++;
  10663. for (l = 0, msk = 0x80; l < 8; l++, msk >>= 1)
  10664. parity[k++] = buf8[i] & msk;
  10665. i++;
  10666. }
  10667. data[j++] = buf8[i];
  10668. }
  10669. err = -EIO;
  10670. for (i = 0; i < NVRAM_SELFBOOT_DATA_SIZE; i++) {
  10671. u8 hw8 = hweight8(data[i]);
  10672. if ((hw8 & 0x1) && parity[i])
  10673. goto out;
  10674. else if (!(hw8 & 0x1) && !parity[i])
  10675. goto out;
  10676. }
  10677. err = 0;
  10678. goto out;
  10679. }
  10680. err = -EIO;
  10681. /* Bootstrap checksum at offset 0x10 */
  10682. csum = calc_crc((unsigned char *) buf, 0x10);
  10683. if (csum != le32_to_cpu(buf[0x10/4]))
  10684. goto out;
  10685. /* Manufacturing block starts at offset 0x74, checksum at 0xfc */
  10686. csum = calc_crc((unsigned char *) &buf[0x74/4], 0x88);
  10687. if (csum != le32_to_cpu(buf[0xfc/4]))
  10688. goto out;
  10689. kfree(buf);
  10690. buf = tg3_vpd_readblock(tp, &len);
  10691. if (!buf)
  10692. return -ENOMEM;
  10693. i = pci_vpd_find_tag((u8 *)buf, 0, len, PCI_VPD_LRDT_RO_DATA);
  10694. if (i > 0) {
  10695. j = pci_vpd_lrdt_size(&((u8 *)buf)[i]);
  10696. if (j < 0)
  10697. goto out;
  10698. if (i + PCI_VPD_LRDT_TAG_SIZE + j > len)
  10699. goto out;
  10700. i += PCI_VPD_LRDT_TAG_SIZE;
  10701. j = pci_vpd_find_info_keyword((u8 *)buf, i, j,
  10702. PCI_VPD_RO_KEYWORD_CHKSUM);
  10703. if (j > 0) {
  10704. u8 csum8 = 0;
  10705. j += PCI_VPD_INFO_FLD_HDR_SIZE;
  10706. for (i = 0; i <= j; i++)
  10707. csum8 += ((u8 *)buf)[i];
  10708. if (csum8)
  10709. goto out;
  10710. }
  10711. }
  10712. err = 0;
  10713. out:
  10714. kfree(buf);
  10715. return err;
  10716. }
  10717. #define TG3_SERDES_TIMEOUT_SEC 2
  10718. #define TG3_COPPER_TIMEOUT_SEC 6
  10719. static int tg3_test_link(struct tg3 *tp)
  10720. {
  10721. int i, max;
  10722. if (!netif_running(tp->dev))
  10723. return -ENODEV;
  10724. if (tp->phy_flags & TG3_PHYFLG_ANY_SERDES)
  10725. max = TG3_SERDES_TIMEOUT_SEC;
  10726. else
  10727. max = TG3_COPPER_TIMEOUT_SEC;
  10728. for (i = 0; i < max; i++) {
  10729. if (tp->link_up)
  10730. return 0;
  10731. if (msleep_interruptible(1000))
  10732. break;
  10733. }
  10734. return -EIO;
  10735. }
  10736. /* Only test the commonly used registers */
  10737. static int tg3_test_registers(struct tg3 *tp)
  10738. {
  10739. int i, is_5705, is_5750;
  10740. u32 offset, read_mask, write_mask, val, save_val, read_val;
  10741. static struct {
  10742. u16 offset;
  10743. u16 flags;
  10744. #define TG3_FL_5705 0x1
  10745. #define TG3_FL_NOT_5705 0x2
  10746. #define TG3_FL_NOT_5788 0x4
  10747. #define TG3_FL_NOT_5750 0x8
  10748. u32 read_mask;
  10749. u32 write_mask;
  10750. } reg_tbl[] = {
  10751. /* MAC Control Registers */
  10752. { MAC_MODE, TG3_FL_NOT_5705,
  10753. 0x00000000, 0x00ef6f8c },
  10754. { MAC_MODE, TG3_FL_5705,
  10755. 0x00000000, 0x01ef6b8c },
  10756. { MAC_STATUS, TG3_FL_NOT_5705,
  10757. 0x03800107, 0x00000000 },
  10758. { MAC_STATUS, TG3_FL_5705,
  10759. 0x03800100, 0x00000000 },
  10760. { MAC_ADDR_0_HIGH, 0x0000,
  10761. 0x00000000, 0x0000ffff },
  10762. { MAC_ADDR_0_LOW, 0x0000,
  10763. 0x00000000, 0xffffffff },
  10764. { MAC_RX_MTU_SIZE, 0x0000,
  10765. 0x00000000, 0x0000ffff },
  10766. { MAC_TX_MODE, 0x0000,
  10767. 0x00000000, 0x00000070 },
  10768. { MAC_TX_LENGTHS, 0x0000,
  10769. 0x00000000, 0x00003fff },
  10770. { MAC_RX_MODE, TG3_FL_NOT_5705,
  10771. 0x00000000, 0x000007fc },
  10772. { MAC_RX_MODE, TG3_FL_5705,
  10773. 0x00000000, 0x000007dc },
  10774. { MAC_HASH_REG_0, 0x0000,
  10775. 0x00000000, 0xffffffff },
  10776. { MAC_HASH_REG_1, 0x0000,
  10777. 0x00000000, 0xffffffff },
  10778. { MAC_HASH_REG_2, 0x0000,
  10779. 0x00000000, 0xffffffff },
  10780. { MAC_HASH_REG_3, 0x0000,
  10781. 0x00000000, 0xffffffff },
  10782. /* Receive Data and Receive BD Initiator Control Registers. */
  10783. { RCVDBDI_JUMBO_BD+0, TG3_FL_NOT_5705,
  10784. 0x00000000, 0xffffffff },
  10785. { RCVDBDI_JUMBO_BD+4, TG3_FL_NOT_5705,
  10786. 0x00000000, 0xffffffff },
  10787. { RCVDBDI_JUMBO_BD+8, TG3_FL_NOT_5705,
  10788. 0x00000000, 0x00000003 },
  10789. { RCVDBDI_JUMBO_BD+0xc, TG3_FL_NOT_5705,
  10790. 0x00000000, 0xffffffff },
  10791. { RCVDBDI_STD_BD+0, 0x0000,
  10792. 0x00000000, 0xffffffff },
  10793. { RCVDBDI_STD_BD+4, 0x0000,
  10794. 0x00000000, 0xffffffff },
  10795. { RCVDBDI_STD_BD+8, 0x0000,
  10796. 0x00000000, 0xffff0002 },
  10797. { RCVDBDI_STD_BD+0xc, 0x0000,
  10798. 0x00000000, 0xffffffff },
  10799. /* Receive BD Initiator Control Registers. */
  10800. { RCVBDI_STD_THRESH, TG3_FL_NOT_5705,
  10801. 0x00000000, 0xffffffff },
  10802. { RCVBDI_STD_THRESH, TG3_FL_5705,
  10803. 0x00000000, 0x000003ff },
  10804. { RCVBDI_JUMBO_THRESH, TG3_FL_NOT_5705,
  10805. 0x00000000, 0xffffffff },
  10806. /* Host Coalescing Control Registers. */
  10807. { HOSTCC_MODE, TG3_FL_NOT_5705,
  10808. 0x00000000, 0x00000004 },
  10809. { HOSTCC_MODE, TG3_FL_5705,
  10810. 0x00000000, 0x000000f6 },
  10811. { HOSTCC_RXCOL_TICKS, TG3_FL_NOT_5705,
  10812. 0x00000000, 0xffffffff },
  10813. { HOSTCC_RXCOL_TICKS, TG3_FL_5705,
  10814. 0x00000000, 0x000003ff },
  10815. { HOSTCC_TXCOL_TICKS, TG3_FL_NOT_5705,
  10816. 0x00000000, 0xffffffff },
  10817. { HOSTCC_TXCOL_TICKS, TG3_FL_5705,
  10818. 0x00000000, 0x000003ff },
  10819. { HOSTCC_RXMAX_FRAMES, TG3_FL_NOT_5705,
  10820. 0x00000000, 0xffffffff },
  10821. { HOSTCC_RXMAX_FRAMES, TG3_FL_5705 | TG3_FL_NOT_5788,
  10822. 0x00000000, 0x000000ff },
  10823. { HOSTCC_TXMAX_FRAMES, TG3_FL_NOT_5705,
  10824. 0x00000000, 0xffffffff },
  10825. { HOSTCC_TXMAX_FRAMES, TG3_FL_5705 | TG3_FL_NOT_5788,
  10826. 0x00000000, 0x000000ff },
  10827. { HOSTCC_RXCOAL_TICK_INT, TG3_FL_NOT_5705,
  10828. 0x00000000, 0xffffffff },
  10829. { HOSTCC_TXCOAL_TICK_INT, TG3_FL_NOT_5705,
  10830. 0x00000000, 0xffffffff },
  10831. { HOSTCC_RXCOAL_MAXF_INT, TG3_FL_NOT_5705,
  10832. 0x00000000, 0xffffffff },
  10833. { HOSTCC_RXCOAL_MAXF_INT, TG3_FL_5705 | TG3_FL_NOT_5788,
  10834. 0x00000000, 0x000000ff },
  10835. { HOSTCC_TXCOAL_MAXF_INT, TG3_FL_NOT_5705,
  10836. 0x00000000, 0xffffffff },
  10837. { HOSTCC_TXCOAL_MAXF_INT, TG3_FL_5705 | TG3_FL_NOT_5788,
  10838. 0x00000000, 0x000000ff },
  10839. { HOSTCC_STAT_COAL_TICKS, TG3_FL_NOT_5705,
  10840. 0x00000000, 0xffffffff },
  10841. { HOSTCC_STATS_BLK_HOST_ADDR, TG3_FL_NOT_5705,
  10842. 0x00000000, 0xffffffff },
  10843. { HOSTCC_STATS_BLK_HOST_ADDR+4, TG3_FL_NOT_5705,
  10844. 0x00000000, 0xffffffff },
  10845. { HOSTCC_STATUS_BLK_HOST_ADDR, 0x0000,
  10846. 0x00000000, 0xffffffff },
  10847. { HOSTCC_STATUS_BLK_HOST_ADDR+4, 0x0000,
  10848. 0x00000000, 0xffffffff },
  10849. { HOSTCC_STATS_BLK_NIC_ADDR, 0x0000,
  10850. 0xffffffff, 0x00000000 },
  10851. { HOSTCC_STATUS_BLK_NIC_ADDR, 0x0000,
  10852. 0xffffffff, 0x00000000 },
  10853. /* Buffer Manager Control Registers. */
  10854. { BUFMGR_MB_POOL_ADDR, TG3_FL_NOT_5750,
  10855. 0x00000000, 0x007fff80 },
  10856. { BUFMGR_MB_POOL_SIZE, TG3_FL_NOT_5750,
  10857. 0x00000000, 0x007fffff },
  10858. { BUFMGR_MB_RDMA_LOW_WATER, 0x0000,
  10859. 0x00000000, 0x0000003f },
  10860. { BUFMGR_MB_MACRX_LOW_WATER, 0x0000,
  10861. 0x00000000, 0x000001ff },
  10862. { BUFMGR_MB_HIGH_WATER, 0x0000,
  10863. 0x00000000, 0x000001ff },
  10864. { BUFMGR_DMA_DESC_POOL_ADDR, TG3_FL_NOT_5705,
  10865. 0xffffffff, 0x00000000 },
  10866. { BUFMGR_DMA_DESC_POOL_SIZE, TG3_FL_NOT_5705,
  10867. 0xffffffff, 0x00000000 },
  10868. /* Mailbox Registers */
  10869. { GRCMBOX_RCVSTD_PROD_IDX+4, 0x0000,
  10870. 0x00000000, 0x000001ff },
  10871. { GRCMBOX_RCVJUMBO_PROD_IDX+4, TG3_FL_NOT_5705,
  10872. 0x00000000, 0x000001ff },
  10873. { GRCMBOX_RCVRET_CON_IDX_0+4, 0x0000,
  10874. 0x00000000, 0x000007ff },
  10875. { GRCMBOX_SNDHOST_PROD_IDX_0+4, 0x0000,
  10876. 0x00000000, 0x000001ff },
  10877. { 0xffff, 0x0000, 0x00000000, 0x00000000 },
  10878. };
  10879. is_5705 = is_5750 = 0;
  10880. if (tg3_flag(tp, 5705_PLUS)) {
  10881. is_5705 = 1;
  10882. if (tg3_flag(tp, 5750_PLUS))
  10883. is_5750 = 1;
  10884. }
  10885. for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
  10886. if (is_5705 && (reg_tbl[i].flags & TG3_FL_NOT_5705))
  10887. continue;
  10888. if (!is_5705 && (reg_tbl[i].flags & TG3_FL_5705))
  10889. continue;
  10890. if (tg3_flag(tp, IS_5788) &&
  10891. (reg_tbl[i].flags & TG3_FL_NOT_5788))
  10892. continue;
  10893. if (is_5750 && (reg_tbl[i].flags & TG3_FL_NOT_5750))
  10894. continue;
  10895. offset = (u32) reg_tbl[i].offset;
  10896. read_mask = reg_tbl[i].read_mask;
  10897. write_mask = reg_tbl[i].write_mask;
  10898. /* Save the original register content */
  10899. save_val = tr32(offset);
  10900. /* Determine the read-only value. */
  10901. read_val = save_val & read_mask;
  10902. /* Write zero to the register, then make sure the read-only bits
  10903. * are not changed and the read/write bits are all zeros.
  10904. */
  10905. tw32(offset, 0);
  10906. val = tr32(offset);
  10907. /* Test the read-only and read/write bits. */
  10908. if (((val & read_mask) != read_val) || (val & write_mask))
  10909. goto out;
  10910. /* Write ones to all the bits defined by RdMask and WrMask, then
  10911. * make sure the read-only bits are not changed and the
  10912. * read/write bits are all ones.
  10913. */
  10914. tw32(offset, read_mask | write_mask);
  10915. val = tr32(offset);
  10916. /* Test the read-only bits. */
  10917. if ((val & read_mask) != read_val)
  10918. goto out;
  10919. /* Test the read/write bits. */
  10920. if ((val & write_mask) != write_mask)
  10921. goto out;
  10922. tw32(offset, save_val);
  10923. }
  10924. return 0;
  10925. out:
  10926. if (netif_msg_hw(tp))
  10927. netdev_err(tp->dev,
  10928. "Register test failed at offset %x\n", offset);
  10929. tw32(offset, save_val);
  10930. return -EIO;
  10931. }
  10932. static int tg3_do_mem_test(struct tg3 *tp, u32 offset, u32 len)
  10933. {
  10934. static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0xaa55a55a };
  10935. int i;
  10936. u32 j;
  10937. for (i = 0; i < ARRAY_SIZE(test_pattern); i++) {
  10938. for (j = 0; j < len; j += 4) {
  10939. u32 val;
  10940. tg3_write_mem(tp, offset + j, test_pattern[i]);
  10941. tg3_read_mem(tp, offset + j, &val);
  10942. if (val != test_pattern[i])
  10943. return -EIO;
  10944. }
  10945. }
  10946. return 0;
  10947. }
  10948. static int tg3_test_memory(struct tg3 *tp)
  10949. {
  10950. static struct mem_entry {
  10951. u32 offset;
  10952. u32 len;
  10953. } mem_tbl_570x[] = {
  10954. { 0x00000000, 0x00b50},
  10955. { 0x00002000, 0x1c000},
  10956. { 0xffffffff, 0x00000}
  10957. }, mem_tbl_5705[] = {
  10958. { 0x00000100, 0x0000c},
  10959. { 0x00000200, 0x00008},
  10960. { 0x00004000, 0x00800},
  10961. { 0x00006000, 0x01000},
  10962. { 0x00008000, 0x02000},
  10963. { 0x00010000, 0x0e000},
  10964. { 0xffffffff, 0x00000}
  10965. }, mem_tbl_5755[] = {
  10966. { 0x00000200, 0x00008},
  10967. { 0x00004000, 0x00800},
  10968. { 0x00006000, 0x00800},
  10969. { 0x00008000, 0x02000},
  10970. { 0x00010000, 0x0c000},
  10971. { 0xffffffff, 0x00000}
  10972. }, mem_tbl_5906[] = {
  10973. { 0x00000200, 0x00008},
  10974. { 0x00004000, 0x00400},
  10975. { 0x00006000, 0x00400},
  10976. { 0x00008000, 0x01000},
  10977. { 0x00010000, 0x01000},
  10978. { 0xffffffff, 0x00000}
  10979. }, mem_tbl_5717[] = {
  10980. { 0x00000200, 0x00008},
  10981. { 0x00010000, 0x0a000},
  10982. { 0x00020000, 0x13c00},
  10983. { 0xffffffff, 0x00000}
  10984. }, mem_tbl_57765[] = {
  10985. { 0x00000200, 0x00008},
  10986. { 0x00004000, 0x00800},
  10987. { 0x00006000, 0x09800},
  10988. { 0x00010000, 0x0a000},
  10989. { 0xffffffff, 0x00000}
  10990. };
  10991. struct mem_entry *mem_tbl;
  10992. int err = 0;
  10993. int i;
  10994. if (tg3_flag(tp, 5717_PLUS))
  10995. mem_tbl = mem_tbl_5717;
  10996. else if (tg3_flag(tp, 57765_CLASS) ||
  10997. tg3_asic_rev(tp) == ASIC_REV_5762)
  10998. mem_tbl = mem_tbl_57765;
  10999. else if (tg3_flag(tp, 5755_PLUS))
  11000. mem_tbl = mem_tbl_5755;
  11001. else if (tg3_asic_rev(tp) == ASIC_REV_5906)
  11002. mem_tbl = mem_tbl_5906;
  11003. else if (tg3_flag(tp, 5705_PLUS))
  11004. mem_tbl = mem_tbl_5705;
  11005. else
  11006. mem_tbl = mem_tbl_570x;
  11007. for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
  11008. err = tg3_do_mem_test(tp, mem_tbl[i].offset, mem_tbl[i].len);
  11009. if (err)
  11010. break;
  11011. }
  11012. return err;
  11013. }
  11014. #define TG3_TSO_MSS 500
  11015. #define TG3_TSO_IP_HDR_LEN 20
  11016. #define TG3_TSO_TCP_HDR_LEN 20
  11017. #define TG3_TSO_TCP_OPT_LEN 12
  11018. static const u8 tg3_tso_header[] = {
  11019. 0x08, 0x00,
  11020. 0x45, 0x00, 0x00, 0x00,
  11021. 0x00, 0x00, 0x40, 0x00,
  11022. 0x40, 0x06, 0x00, 0x00,
  11023. 0x0a, 0x00, 0x00, 0x01,
  11024. 0x0a, 0x00, 0x00, 0x02,
  11025. 0x0d, 0x00, 0xe0, 0x00,
  11026. 0x00, 0x00, 0x01, 0x00,
  11027. 0x00, 0x00, 0x02, 0x00,
  11028. 0x80, 0x10, 0x10, 0x00,
  11029. 0x14, 0x09, 0x00, 0x00,
  11030. 0x01, 0x01, 0x08, 0x0a,
  11031. 0x11, 0x11, 0x11, 0x11,
  11032. 0x11, 0x11, 0x11, 0x11,
  11033. };
  11034. static int tg3_run_loopback(struct tg3 *tp, u32 pktsz, bool tso_loopback)
  11035. {
  11036. u32 rx_start_idx, rx_idx, tx_idx, opaque_key;
  11037. u32 base_flags = 0, mss = 0, desc_idx, coal_now, data_off, val;
  11038. u32 budget;
  11039. struct sk_buff *skb;
  11040. u8 *tx_data, *rx_data;
  11041. dma_addr_t map;
  11042. int num_pkts, tx_len, rx_len, i, err;
  11043. struct tg3_rx_buffer_desc *desc;
  11044. struct tg3_napi *tnapi, *rnapi;
  11045. struct tg3_rx_prodring_set *tpr = &tp->napi[0].prodring;
  11046. tnapi = &tp->napi[0];
  11047. rnapi = &tp->napi[0];
  11048. if (tp->irq_cnt > 1) {
  11049. if (tg3_flag(tp, ENABLE_RSS))
  11050. rnapi = &tp->napi[1];
  11051. if (tg3_flag(tp, ENABLE_TSS))
  11052. tnapi = &tp->napi[1];
  11053. }
  11054. coal_now = tnapi->coal_now | rnapi->coal_now;
  11055. err = -EIO;
  11056. tx_len = pktsz;
  11057. skb = netdev_alloc_skb(tp->dev, tx_len);
  11058. if (!skb)
  11059. return -ENOMEM;
  11060. tx_data = skb_put(skb, tx_len);
  11061. memcpy(tx_data, tp->dev->dev_addr, ETH_ALEN);
  11062. memset(tx_data + ETH_ALEN, 0x0, 8);
  11063. tw32(MAC_RX_MTU_SIZE, tx_len + ETH_FCS_LEN);
  11064. if (tso_loopback) {
  11065. struct iphdr *iph = (struct iphdr *)&tx_data[ETH_HLEN];
  11066. u32 hdr_len = TG3_TSO_IP_HDR_LEN + TG3_TSO_TCP_HDR_LEN +
  11067. TG3_TSO_TCP_OPT_LEN;
  11068. memcpy(tx_data + ETH_ALEN * 2, tg3_tso_header,
  11069. sizeof(tg3_tso_header));
  11070. mss = TG3_TSO_MSS;
  11071. val = tx_len - ETH_ALEN * 2 - sizeof(tg3_tso_header);
  11072. num_pkts = DIV_ROUND_UP(val, TG3_TSO_MSS);
  11073. /* Set the total length field in the IP header */
  11074. iph->tot_len = htons((u16)(mss + hdr_len));
  11075. base_flags = (TXD_FLAG_CPU_PRE_DMA |
  11076. TXD_FLAG_CPU_POST_DMA);
  11077. if (tg3_flag(tp, HW_TSO_1) ||
  11078. tg3_flag(tp, HW_TSO_2) ||
  11079. tg3_flag(tp, HW_TSO_3)) {
  11080. struct tcphdr *th;
  11081. val = ETH_HLEN + TG3_TSO_IP_HDR_LEN;
  11082. th = (struct tcphdr *)&tx_data[val];
  11083. th->check = 0;
  11084. } else
  11085. base_flags |= TXD_FLAG_TCPUDP_CSUM;
  11086. if (tg3_flag(tp, HW_TSO_3)) {
  11087. mss |= (hdr_len & 0xc) << 12;
  11088. if (hdr_len & 0x10)
  11089. base_flags |= 0x00000010;
  11090. base_flags |= (hdr_len & 0x3e0) << 5;
  11091. } else if (tg3_flag(tp, HW_TSO_2))
  11092. mss |= hdr_len << 9;
  11093. else if (tg3_flag(tp, HW_TSO_1) ||
  11094. tg3_asic_rev(tp) == ASIC_REV_5705) {
  11095. mss |= (TG3_TSO_TCP_OPT_LEN << 9);
  11096. } else {
  11097. base_flags |= (TG3_TSO_TCP_OPT_LEN << 10);
  11098. }
  11099. data_off = ETH_ALEN * 2 + sizeof(tg3_tso_header);
  11100. } else {
  11101. num_pkts = 1;
  11102. data_off = ETH_HLEN;
  11103. if (tg3_flag(tp, USE_JUMBO_BDFLAG) &&
  11104. tx_len > VLAN_ETH_FRAME_LEN)
  11105. base_flags |= TXD_FLAG_JMB_PKT;
  11106. }
  11107. for (i = data_off; i < tx_len; i++)
  11108. tx_data[i] = (u8) (i & 0xff);
  11109. map = pci_map_single(tp->pdev, skb->data, tx_len, PCI_DMA_TODEVICE);
  11110. if (pci_dma_mapping_error(tp->pdev, map)) {
  11111. dev_kfree_skb(skb);
  11112. return -EIO;
  11113. }
  11114. val = tnapi->tx_prod;
  11115. tnapi->tx_buffers[val].skb = skb;
  11116. dma_unmap_addr_set(&tnapi->tx_buffers[val], mapping, map);
  11117. tw32_f(HOSTCC_MODE, tp->coalesce_mode | HOSTCC_MODE_ENABLE |
  11118. rnapi->coal_now);
  11119. udelay(10);
  11120. rx_start_idx = rnapi->hw_status->idx[0].rx_producer;
  11121. budget = tg3_tx_avail(tnapi);
  11122. if (tg3_tx_frag_set(tnapi, &val, &budget, map, tx_len,
  11123. base_flags | TXD_FLAG_END, mss, 0)) {
  11124. tnapi->tx_buffers[val].skb = NULL;
  11125. dev_kfree_skb(skb);
  11126. return -EIO;
  11127. }
  11128. tnapi->tx_prod++;
  11129. /* Sync BD data before updating mailbox */
  11130. wmb();
  11131. tw32_tx_mbox(tnapi->prodmbox, tnapi->tx_prod);
  11132. tr32_mailbox(tnapi->prodmbox);
  11133. udelay(10);
  11134. /* 350 usec to allow enough time on some 10/100 Mbps devices. */
  11135. for (i = 0; i < 35; i++) {
  11136. tw32_f(HOSTCC_MODE, tp->coalesce_mode | HOSTCC_MODE_ENABLE |
  11137. coal_now);
  11138. udelay(10);
  11139. tx_idx = tnapi->hw_status->idx[0].tx_consumer;
  11140. rx_idx = rnapi->hw_status->idx[0].rx_producer;
  11141. if ((tx_idx == tnapi->tx_prod) &&
  11142. (rx_idx == (rx_start_idx + num_pkts)))
  11143. break;
  11144. }
  11145. tg3_tx_skb_unmap(tnapi, tnapi->tx_prod - 1, -1);
  11146. dev_kfree_skb(skb);
  11147. if (tx_idx != tnapi->tx_prod)
  11148. goto out;
  11149. if (rx_idx != rx_start_idx + num_pkts)
  11150. goto out;
  11151. val = data_off;
  11152. while (rx_idx != rx_start_idx) {
  11153. desc = &rnapi->rx_rcb[rx_start_idx++];
  11154. desc_idx = desc->opaque & RXD_OPAQUE_INDEX_MASK;
  11155. opaque_key = desc->opaque & RXD_OPAQUE_RING_MASK;
  11156. if ((desc->err_vlan & RXD_ERR_MASK) != 0 &&
  11157. (desc->err_vlan != RXD_ERR_ODD_NIBBLE_RCVD_MII))
  11158. goto out;
  11159. rx_len = ((desc->idx_len & RXD_LEN_MASK) >> RXD_LEN_SHIFT)
  11160. - ETH_FCS_LEN;
  11161. if (!tso_loopback) {
  11162. if (rx_len != tx_len)
  11163. goto out;
  11164. if (pktsz <= TG3_RX_STD_DMA_SZ - ETH_FCS_LEN) {
  11165. if (opaque_key != RXD_OPAQUE_RING_STD)
  11166. goto out;
  11167. } else {
  11168. if (opaque_key != RXD_OPAQUE_RING_JUMBO)
  11169. goto out;
  11170. }
  11171. } else if ((desc->type_flags & RXD_FLAG_TCPUDP_CSUM) &&
  11172. (desc->ip_tcp_csum & RXD_TCPCSUM_MASK)
  11173. >> RXD_TCPCSUM_SHIFT != 0xffff) {
  11174. goto out;
  11175. }
  11176. if (opaque_key == RXD_OPAQUE_RING_STD) {
  11177. rx_data = tpr->rx_std_buffers[desc_idx].data;
  11178. map = dma_unmap_addr(&tpr->rx_std_buffers[desc_idx],
  11179. mapping);
  11180. } else if (opaque_key == RXD_OPAQUE_RING_JUMBO) {
  11181. rx_data = tpr->rx_jmb_buffers[desc_idx].data;
  11182. map = dma_unmap_addr(&tpr->rx_jmb_buffers[desc_idx],
  11183. mapping);
  11184. } else
  11185. goto out;
  11186. pci_dma_sync_single_for_cpu(tp->pdev, map, rx_len,
  11187. PCI_DMA_FROMDEVICE);
  11188. rx_data += TG3_RX_OFFSET(tp);
  11189. for (i = data_off; i < rx_len; i++, val++) {
  11190. if (*(rx_data + i) != (u8) (val & 0xff))
  11191. goto out;
  11192. }
  11193. }
  11194. err = 0;
  11195. /* tg3_free_rings will unmap and free the rx_data */
  11196. out:
  11197. return err;
  11198. }
  11199. #define TG3_STD_LOOPBACK_FAILED 1
  11200. #define TG3_JMB_LOOPBACK_FAILED 2
  11201. #define TG3_TSO_LOOPBACK_FAILED 4
  11202. #define TG3_LOOPBACK_FAILED \
  11203. (TG3_STD_LOOPBACK_FAILED | \
  11204. TG3_JMB_LOOPBACK_FAILED | \
  11205. TG3_TSO_LOOPBACK_FAILED)
  11206. static int tg3_test_loopback(struct tg3 *tp, u64 *data, bool do_extlpbk)
  11207. {
  11208. int err = -EIO;
  11209. u32 eee_cap;
  11210. u32 jmb_pkt_sz = 9000;
  11211. if (tp->dma_limit)
  11212. jmb_pkt_sz = tp->dma_limit - ETH_HLEN;
  11213. eee_cap = tp->phy_flags & TG3_PHYFLG_EEE_CAP;
  11214. tp->phy_flags &= ~TG3_PHYFLG_EEE_CAP;
  11215. if (!netif_running(tp->dev)) {
  11216. data[TG3_MAC_LOOPB_TEST] = TG3_LOOPBACK_FAILED;
  11217. data[TG3_PHY_LOOPB_TEST] = TG3_LOOPBACK_FAILED;
  11218. if (do_extlpbk)
  11219. data[TG3_EXT_LOOPB_TEST] = TG3_LOOPBACK_FAILED;
  11220. goto done;
  11221. }
  11222. err = tg3_reset_hw(tp, true);
  11223. if (err) {
  11224. data[TG3_MAC_LOOPB_TEST] = TG3_LOOPBACK_FAILED;
  11225. data[TG3_PHY_LOOPB_TEST] = TG3_LOOPBACK_FAILED;
  11226. if (do_extlpbk)
  11227. data[TG3_EXT_LOOPB_TEST] = TG3_LOOPBACK_FAILED;
  11228. goto done;
  11229. }
  11230. if (tg3_flag(tp, ENABLE_RSS)) {
  11231. int i;
  11232. /* Reroute all rx packets to the 1st queue */
  11233. for (i = MAC_RSS_INDIR_TBL_0;
  11234. i < MAC_RSS_INDIR_TBL_0 + TG3_RSS_INDIR_TBL_SIZE; i += 4)
  11235. tw32(i, 0x0);
  11236. }
  11237. /* HW errata - mac loopback fails in some cases on 5780.
  11238. * Normal traffic and PHY loopback are not affected by
  11239. * errata. Also, the MAC loopback test is deprecated for
  11240. * all newer ASIC revisions.
  11241. */
  11242. if (tg3_asic_rev(tp) != ASIC_REV_5780 &&
  11243. !tg3_flag(tp, CPMU_PRESENT)) {
  11244. tg3_mac_loopback(tp, true);
  11245. if (tg3_run_loopback(tp, ETH_FRAME_LEN, false))
  11246. data[TG3_MAC_LOOPB_TEST] |= TG3_STD_LOOPBACK_FAILED;
  11247. if (tg3_flag(tp, JUMBO_RING_ENABLE) &&
  11248. tg3_run_loopback(tp, jmb_pkt_sz + ETH_HLEN, false))
  11249. data[TG3_MAC_LOOPB_TEST] |= TG3_JMB_LOOPBACK_FAILED;
  11250. tg3_mac_loopback(tp, false);
  11251. }
  11252. if (!(tp->phy_flags & TG3_PHYFLG_PHY_SERDES) &&
  11253. !tg3_flag(tp, USE_PHYLIB)) {
  11254. int i;
  11255. tg3_phy_lpbk_set(tp, 0, false);
  11256. /* Wait for link */
  11257. for (i = 0; i < 100; i++) {
  11258. if (tr32(MAC_TX_STATUS) & TX_STATUS_LINK_UP)
  11259. break;
  11260. mdelay(1);
  11261. }
  11262. if (tg3_run_loopback(tp, ETH_FRAME_LEN, false))
  11263. data[TG3_PHY_LOOPB_TEST] |= TG3_STD_LOOPBACK_FAILED;
  11264. if (tg3_flag(tp, TSO_CAPABLE) &&
  11265. tg3_run_loopback(tp, ETH_FRAME_LEN, true))
  11266. data[TG3_PHY_LOOPB_TEST] |= TG3_TSO_LOOPBACK_FAILED;
  11267. if (tg3_flag(tp, JUMBO_RING_ENABLE) &&
  11268. tg3_run_loopback(tp, jmb_pkt_sz + ETH_HLEN, false))
  11269. data[TG3_PHY_LOOPB_TEST] |= TG3_JMB_LOOPBACK_FAILED;
  11270. if (do_extlpbk) {
  11271. tg3_phy_lpbk_set(tp, 0, true);
  11272. /* All link indications report up, but the hardware
  11273. * isn't really ready for about 20 msec. Double it
  11274. * to be sure.
  11275. */
  11276. mdelay(40);
  11277. if (tg3_run_loopback(tp, ETH_FRAME_LEN, false))
  11278. data[TG3_EXT_LOOPB_TEST] |=
  11279. TG3_STD_LOOPBACK_FAILED;
  11280. if (tg3_flag(tp, TSO_CAPABLE) &&
  11281. tg3_run_loopback(tp, ETH_FRAME_LEN, true))
  11282. data[TG3_EXT_LOOPB_TEST] |=
  11283. TG3_TSO_LOOPBACK_FAILED;
  11284. if (tg3_flag(tp, JUMBO_RING_ENABLE) &&
  11285. tg3_run_loopback(tp, jmb_pkt_sz + ETH_HLEN, false))
  11286. data[TG3_EXT_LOOPB_TEST] |=
  11287. TG3_JMB_LOOPBACK_FAILED;
  11288. }
  11289. /* Re-enable gphy autopowerdown. */
  11290. if (tp->phy_flags & TG3_PHYFLG_ENABLE_APD)
  11291. tg3_phy_toggle_apd(tp, true);
  11292. }
  11293. err = (data[TG3_MAC_LOOPB_TEST] | data[TG3_PHY_LOOPB_TEST] |
  11294. data[TG3_EXT_LOOPB_TEST]) ? -EIO : 0;
  11295. done:
  11296. tp->phy_flags |= eee_cap;
  11297. return err;
  11298. }
  11299. static void tg3_self_test(struct net_device *dev, struct ethtool_test *etest,
  11300. u64 *data)
  11301. {
  11302. struct tg3 *tp = netdev_priv(dev);
  11303. bool doextlpbk = etest->flags & ETH_TEST_FL_EXTERNAL_LB;
  11304. if (tp->phy_flags & TG3_PHYFLG_IS_LOW_POWER) {
  11305. if (tg3_power_up(tp)) {
  11306. etest->flags |= ETH_TEST_FL_FAILED;
  11307. memset(data, 1, sizeof(u64) * TG3_NUM_TEST);
  11308. return;
  11309. }
  11310. tg3_ape_driver_state_change(tp, RESET_KIND_INIT);
  11311. }
  11312. memset(data, 0, sizeof(u64) * TG3_NUM_TEST);
  11313. if (tg3_test_nvram(tp) != 0) {
  11314. etest->flags |= ETH_TEST_FL_FAILED;
  11315. data[TG3_NVRAM_TEST] = 1;
  11316. }
  11317. if (!doextlpbk && tg3_test_link(tp)) {
  11318. etest->flags |= ETH_TEST_FL_FAILED;
  11319. data[TG3_LINK_TEST] = 1;
  11320. }
  11321. if (etest->flags & ETH_TEST_FL_OFFLINE) {
  11322. int err, err2 = 0, irq_sync = 0;
  11323. if (netif_running(dev)) {
  11324. tg3_phy_stop(tp);
  11325. tg3_netif_stop(tp);
  11326. irq_sync = 1;
  11327. }
  11328. tg3_full_lock(tp, irq_sync);
  11329. tg3_halt(tp, RESET_KIND_SUSPEND, 1);
  11330. err = tg3_nvram_lock(tp);
  11331. tg3_halt_cpu(tp, RX_CPU_BASE);
  11332. if (!tg3_flag(tp, 5705_PLUS))
  11333. tg3_halt_cpu(tp, TX_CPU_BASE);
  11334. if (!err)
  11335. tg3_nvram_unlock(tp);
  11336. if (tp->phy_flags & TG3_PHYFLG_MII_SERDES)
  11337. tg3_phy_reset(tp);
  11338. if (tg3_test_registers(tp) != 0) {
  11339. etest->flags |= ETH_TEST_FL_FAILED;
  11340. data[TG3_REGISTER_TEST] = 1;
  11341. }
  11342. if (tg3_test_memory(tp) != 0) {
  11343. etest->flags |= ETH_TEST_FL_FAILED;
  11344. data[TG3_MEMORY_TEST] = 1;
  11345. }
  11346. if (doextlpbk)
  11347. etest->flags |= ETH_TEST_FL_EXTERNAL_LB_DONE;
  11348. if (tg3_test_loopback(tp, data, doextlpbk))
  11349. etest->flags |= ETH_TEST_FL_FAILED;
  11350. tg3_full_unlock(tp);
  11351. if (tg3_test_interrupt(tp) != 0) {
  11352. etest->flags |= ETH_TEST_FL_FAILED;
  11353. data[TG3_INTERRUPT_TEST] = 1;
  11354. }
  11355. tg3_full_lock(tp, 0);
  11356. tg3_halt(tp, RESET_KIND_SHUTDOWN, 1);
  11357. if (netif_running(dev)) {
  11358. tg3_flag_set(tp, INIT_COMPLETE);
  11359. err2 = tg3_restart_hw(tp, true);
  11360. if (!err2)
  11361. tg3_netif_start(tp);
  11362. }
  11363. tg3_full_unlock(tp);
  11364. if (irq_sync && !err2)
  11365. tg3_phy_start(tp);
  11366. }
  11367. if (tp->phy_flags & TG3_PHYFLG_IS_LOW_POWER)
  11368. tg3_power_down_prepare(tp);
  11369. }
  11370. static int tg3_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
  11371. {
  11372. struct tg3 *tp = netdev_priv(dev);
  11373. struct hwtstamp_config stmpconf;
  11374. if (!tg3_flag(tp, PTP_CAPABLE))
  11375. return -EOPNOTSUPP;
  11376. if (copy_from_user(&stmpconf, ifr->ifr_data, sizeof(stmpconf)))
  11377. return -EFAULT;
  11378. if (stmpconf.flags)
  11379. return -EINVAL;
  11380. if (stmpconf.tx_type != HWTSTAMP_TX_ON &&
  11381. stmpconf.tx_type != HWTSTAMP_TX_OFF)
  11382. return -ERANGE;
  11383. switch (stmpconf.rx_filter) {
  11384. case HWTSTAMP_FILTER_NONE:
  11385. tp->rxptpctl = 0;
  11386. break;
  11387. case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
  11388. tp->rxptpctl = TG3_RX_PTP_CTL_RX_PTP_V1_EN |
  11389. TG3_RX_PTP_CTL_ALL_V1_EVENTS;
  11390. break;
  11391. case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
  11392. tp->rxptpctl = TG3_RX_PTP_CTL_RX_PTP_V1_EN |
  11393. TG3_RX_PTP_CTL_SYNC_EVNT;
  11394. break;
  11395. case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
  11396. tp->rxptpctl = TG3_RX_PTP_CTL_RX_PTP_V1_EN |
  11397. TG3_RX_PTP_CTL_DELAY_REQ;
  11398. break;
  11399. case HWTSTAMP_FILTER_PTP_V2_EVENT:
  11400. tp->rxptpctl = TG3_RX_PTP_CTL_RX_PTP_V2_EN |
  11401. TG3_RX_PTP_CTL_ALL_V2_EVENTS;
  11402. break;
  11403. case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
  11404. tp->rxptpctl = TG3_RX_PTP_CTL_RX_PTP_V2_L2_EN |
  11405. TG3_RX_PTP_CTL_ALL_V2_EVENTS;
  11406. break;
  11407. case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
  11408. tp->rxptpctl = TG3_RX_PTP_CTL_RX_PTP_V2_L4_EN |
  11409. TG3_RX_PTP_CTL_ALL_V2_EVENTS;
  11410. break;
  11411. case HWTSTAMP_FILTER_PTP_V2_SYNC:
  11412. tp->rxptpctl = TG3_RX_PTP_CTL_RX_PTP_V2_EN |
  11413. TG3_RX_PTP_CTL_SYNC_EVNT;
  11414. break;
  11415. case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
  11416. tp->rxptpctl = TG3_RX_PTP_CTL_RX_PTP_V2_L2_EN |
  11417. TG3_RX_PTP_CTL_SYNC_EVNT;
  11418. break;
  11419. case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
  11420. tp->rxptpctl = TG3_RX_PTP_CTL_RX_PTP_V2_L4_EN |
  11421. TG3_RX_PTP_CTL_SYNC_EVNT;
  11422. break;
  11423. case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
  11424. tp->rxptpctl = TG3_RX_PTP_CTL_RX_PTP_V2_EN |
  11425. TG3_RX_PTP_CTL_DELAY_REQ;
  11426. break;
  11427. case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
  11428. tp->rxptpctl = TG3_RX_PTP_CTL_RX_PTP_V2_L2_EN |
  11429. TG3_RX_PTP_CTL_DELAY_REQ;
  11430. break;
  11431. case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
  11432. tp->rxptpctl = TG3_RX_PTP_CTL_RX_PTP_V2_L4_EN |
  11433. TG3_RX_PTP_CTL_DELAY_REQ;
  11434. break;
  11435. default:
  11436. return -ERANGE;
  11437. }
  11438. if (netif_running(dev) && tp->rxptpctl)
  11439. tw32(TG3_RX_PTP_CTL,
  11440. tp->rxptpctl | TG3_RX_PTP_CTL_HWTS_INTERLOCK);
  11441. if (stmpconf.tx_type == HWTSTAMP_TX_ON)
  11442. tg3_flag_set(tp, TX_TSTAMP_EN);
  11443. else
  11444. tg3_flag_clear(tp, TX_TSTAMP_EN);
  11445. return copy_to_user(ifr->ifr_data, &stmpconf, sizeof(stmpconf)) ?
  11446. -EFAULT : 0;
  11447. }
  11448. static int tg3_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
  11449. {
  11450. struct tg3 *tp = netdev_priv(dev);
  11451. struct hwtstamp_config stmpconf;
  11452. if (!tg3_flag(tp, PTP_CAPABLE))
  11453. return -EOPNOTSUPP;
  11454. stmpconf.flags = 0;
  11455. stmpconf.tx_type = (tg3_flag(tp, TX_TSTAMP_EN) ?
  11456. HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF);
  11457. switch (tp->rxptpctl) {
  11458. case 0:
  11459. stmpconf.rx_filter = HWTSTAMP_FILTER_NONE;
  11460. break;
  11461. case TG3_RX_PTP_CTL_RX_PTP_V1_EN | TG3_RX_PTP_CTL_ALL_V1_EVENTS:
  11462. stmpconf.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
  11463. break;
  11464. case TG3_RX_PTP_CTL_RX_PTP_V1_EN | TG3_RX_PTP_CTL_SYNC_EVNT:
  11465. stmpconf.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
  11466. break;
  11467. case TG3_RX_PTP_CTL_RX_PTP_V1_EN | TG3_RX_PTP_CTL_DELAY_REQ:
  11468. stmpconf.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
  11469. break;
  11470. case TG3_RX_PTP_CTL_RX_PTP_V2_EN | TG3_RX_PTP_CTL_ALL_V2_EVENTS:
  11471. stmpconf.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
  11472. break;
  11473. case TG3_RX_PTP_CTL_RX_PTP_V2_L2_EN | TG3_RX_PTP_CTL_ALL_V2_EVENTS:
  11474. stmpconf.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
  11475. break;
  11476. case TG3_RX_PTP_CTL_RX_PTP_V2_L4_EN | TG3_RX_PTP_CTL_ALL_V2_EVENTS:
  11477. stmpconf.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
  11478. break;
  11479. case TG3_RX_PTP_CTL_RX_PTP_V2_EN | TG3_RX_PTP_CTL_SYNC_EVNT:
  11480. stmpconf.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
  11481. break;
  11482. case TG3_RX_PTP_CTL_RX_PTP_V2_L2_EN | TG3_RX_PTP_CTL_SYNC_EVNT:
  11483. stmpconf.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_SYNC;
  11484. break;
  11485. case TG3_RX_PTP_CTL_RX_PTP_V2_L4_EN | TG3_RX_PTP_CTL_SYNC_EVNT:
  11486. stmpconf.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
  11487. break;
  11488. case TG3_RX_PTP_CTL_RX_PTP_V2_EN | TG3_RX_PTP_CTL_DELAY_REQ:
  11489. stmpconf.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
  11490. break;
  11491. case TG3_RX_PTP_CTL_RX_PTP_V2_L2_EN | TG3_RX_PTP_CTL_DELAY_REQ:
  11492. stmpconf.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ;
  11493. break;
  11494. case TG3_RX_PTP_CTL_RX_PTP_V2_L4_EN | TG3_RX_PTP_CTL_DELAY_REQ:
  11495. stmpconf.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
  11496. break;
  11497. default:
  11498. WARN_ON_ONCE(1);
  11499. return -ERANGE;
  11500. }
  11501. return copy_to_user(ifr->ifr_data, &stmpconf, sizeof(stmpconf)) ?
  11502. -EFAULT : 0;
  11503. }
  11504. static int tg3_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  11505. {
  11506. struct mii_ioctl_data *data = if_mii(ifr);
  11507. struct tg3 *tp = netdev_priv(dev);
  11508. int err;
  11509. if (tg3_flag(tp, USE_PHYLIB)) {
  11510. struct phy_device *phydev;
  11511. if (!(tp->phy_flags & TG3_PHYFLG_IS_CONNECTED))
  11512. return -EAGAIN;
  11513. phydev = mdiobus_get_phy(tp->mdio_bus, tp->phy_addr);
  11514. return phy_mii_ioctl(phydev, ifr, cmd);
  11515. }
  11516. switch (cmd) {
  11517. case SIOCGMIIPHY:
  11518. data->phy_id = tp->phy_addr;
  11519. /* fall through */
  11520. case SIOCGMIIREG: {
  11521. u32 mii_regval;
  11522. if (tp->phy_flags & TG3_PHYFLG_PHY_SERDES)
  11523. break; /* We have no PHY */
  11524. if (!netif_running(dev))
  11525. return -EAGAIN;
  11526. spin_lock_bh(&tp->lock);
  11527. err = __tg3_readphy(tp, data->phy_id & 0x1f,
  11528. data->reg_num & 0x1f, &mii_regval);
  11529. spin_unlock_bh(&tp->lock);
  11530. data->val_out = mii_regval;
  11531. return err;
  11532. }
  11533. case SIOCSMIIREG:
  11534. if (tp->phy_flags & TG3_PHYFLG_PHY_SERDES)
  11535. break; /* We have no PHY */
  11536. if (!netif_running(dev))
  11537. return -EAGAIN;
  11538. spin_lock_bh(&tp->lock);
  11539. err = __tg3_writephy(tp, data->phy_id & 0x1f,
  11540. data->reg_num & 0x1f, data->val_in);
  11541. spin_unlock_bh(&tp->lock);
  11542. return err;
  11543. case SIOCSHWTSTAMP:
  11544. return tg3_hwtstamp_set(dev, ifr);
  11545. case SIOCGHWTSTAMP:
  11546. return tg3_hwtstamp_get(dev, ifr);
  11547. default:
  11548. /* do nothing */
  11549. break;
  11550. }
  11551. return -EOPNOTSUPP;
  11552. }
  11553. static int tg3_get_coalesce(struct net_device *dev, struct ethtool_coalesce *ec)
  11554. {
  11555. struct tg3 *tp = netdev_priv(dev);
  11556. memcpy(ec, &tp->coal, sizeof(*ec));
  11557. return 0;
  11558. }
  11559. static int tg3_set_coalesce(struct net_device *dev, struct ethtool_coalesce *ec)
  11560. {
  11561. struct tg3 *tp = netdev_priv(dev);
  11562. u32 max_rxcoal_tick_int = 0, max_txcoal_tick_int = 0;
  11563. u32 max_stat_coal_ticks = 0, min_stat_coal_ticks = 0;
  11564. if (!tg3_flag(tp, 5705_PLUS)) {
  11565. max_rxcoal_tick_int = MAX_RXCOAL_TICK_INT;
  11566. max_txcoal_tick_int = MAX_TXCOAL_TICK_INT;
  11567. max_stat_coal_ticks = MAX_STAT_COAL_TICKS;
  11568. min_stat_coal_ticks = MIN_STAT_COAL_TICKS;
  11569. }
  11570. if ((ec->rx_coalesce_usecs > MAX_RXCOL_TICKS) ||
  11571. (!ec->rx_coalesce_usecs) ||
  11572. (ec->tx_coalesce_usecs > MAX_TXCOL_TICKS) ||
  11573. (!ec->tx_coalesce_usecs) ||
  11574. (ec->rx_max_coalesced_frames > MAX_RXMAX_FRAMES) ||
  11575. (ec->tx_max_coalesced_frames > MAX_TXMAX_FRAMES) ||
  11576. (ec->rx_coalesce_usecs_irq > max_rxcoal_tick_int) ||
  11577. (ec->tx_coalesce_usecs_irq > max_txcoal_tick_int) ||
  11578. (ec->rx_max_coalesced_frames_irq > MAX_RXCOAL_MAXF_INT) ||
  11579. (ec->tx_max_coalesced_frames_irq > MAX_TXCOAL_MAXF_INT) ||
  11580. (ec->stats_block_coalesce_usecs > max_stat_coal_ticks) ||
  11581. (ec->stats_block_coalesce_usecs < min_stat_coal_ticks))
  11582. return -EINVAL;
  11583. /* Only copy relevant parameters, ignore all others. */
  11584. tp->coal.rx_coalesce_usecs = ec->rx_coalesce_usecs;
  11585. tp->coal.tx_coalesce_usecs = ec->tx_coalesce_usecs;
  11586. tp->coal.rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
  11587. tp->coal.tx_max_coalesced_frames = ec->tx_max_coalesced_frames;
  11588. tp->coal.rx_coalesce_usecs_irq = ec->rx_coalesce_usecs_irq;
  11589. tp->coal.tx_coalesce_usecs_irq = ec->tx_coalesce_usecs_irq;
  11590. tp->coal.rx_max_coalesced_frames_irq = ec->rx_max_coalesced_frames_irq;
  11591. tp->coal.tx_max_coalesced_frames_irq = ec->tx_max_coalesced_frames_irq;
  11592. tp->coal.stats_block_coalesce_usecs = ec->stats_block_coalesce_usecs;
  11593. if (netif_running(dev)) {
  11594. tg3_full_lock(tp, 0);
  11595. __tg3_set_coalesce(tp, &tp->coal);
  11596. tg3_full_unlock(tp);
  11597. }
  11598. return 0;
  11599. }
  11600. static int tg3_set_eee(struct net_device *dev, struct ethtool_eee *edata)
  11601. {
  11602. struct tg3 *tp = netdev_priv(dev);
  11603. if (!(tp->phy_flags & TG3_PHYFLG_EEE_CAP)) {
  11604. netdev_warn(tp->dev, "Board does not support EEE!\n");
  11605. return -EOPNOTSUPP;
  11606. }
  11607. if (edata->advertised != tp->eee.advertised) {
  11608. netdev_warn(tp->dev,
  11609. "Direct manipulation of EEE advertisement is not supported\n");
  11610. return -EINVAL;
  11611. }
  11612. if (edata->tx_lpi_timer > TG3_CPMU_DBTMR1_LNKIDLE_MAX) {
  11613. netdev_warn(tp->dev,
  11614. "Maximal Tx Lpi timer supported is %#x(u)\n",
  11615. TG3_CPMU_DBTMR1_LNKIDLE_MAX);
  11616. return -EINVAL;
  11617. }
  11618. tp->eee = *edata;
  11619. tp->phy_flags |= TG3_PHYFLG_USER_CONFIGURED;
  11620. tg3_warn_mgmt_link_flap(tp);
  11621. if (netif_running(tp->dev)) {
  11622. tg3_full_lock(tp, 0);
  11623. tg3_setup_eee(tp);
  11624. tg3_phy_reset(tp);
  11625. tg3_full_unlock(tp);
  11626. }
  11627. return 0;
  11628. }
  11629. static int tg3_get_eee(struct net_device *dev, struct ethtool_eee *edata)
  11630. {
  11631. struct tg3 *tp = netdev_priv(dev);
  11632. if (!(tp->phy_flags & TG3_PHYFLG_EEE_CAP)) {
  11633. netdev_warn(tp->dev,
  11634. "Board does not support EEE!\n");
  11635. return -EOPNOTSUPP;
  11636. }
  11637. *edata = tp->eee;
  11638. return 0;
  11639. }
  11640. static const struct ethtool_ops tg3_ethtool_ops = {
  11641. .supported_coalesce_params = ETHTOOL_COALESCE_USECS |
  11642. ETHTOOL_COALESCE_MAX_FRAMES |
  11643. ETHTOOL_COALESCE_USECS_IRQ |
  11644. ETHTOOL_COALESCE_MAX_FRAMES_IRQ |
  11645. ETHTOOL_COALESCE_STATS_BLOCK_USECS,
  11646. .get_drvinfo = tg3_get_drvinfo,
  11647. .get_regs_len = tg3_get_regs_len,
  11648. .get_regs = tg3_get_regs,
  11649. .get_wol = tg3_get_wol,
  11650. .set_wol = tg3_set_wol,
  11651. .get_msglevel = tg3_get_msglevel,
  11652. .set_msglevel = tg3_set_msglevel,
  11653. .nway_reset = tg3_nway_reset,
  11654. .get_link = ethtool_op_get_link,
  11655. .get_eeprom_len = tg3_get_eeprom_len,
  11656. .get_eeprom = tg3_get_eeprom,
  11657. .set_eeprom = tg3_set_eeprom,
  11658. .get_ringparam = tg3_get_ringparam,
  11659. .set_ringparam = tg3_set_ringparam,
  11660. .get_pauseparam = tg3_get_pauseparam,
  11661. .set_pauseparam = tg3_set_pauseparam,
  11662. .self_test = tg3_self_test,
  11663. .get_strings = tg3_get_strings,
  11664. .set_phys_id = tg3_set_phys_id,
  11665. .get_ethtool_stats = tg3_get_ethtool_stats,
  11666. .get_coalesce = tg3_get_coalesce,
  11667. .set_coalesce = tg3_set_coalesce,
  11668. .get_sset_count = tg3_get_sset_count,
  11669. .get_rxnfc = tg3_get_rxnfc,
  11670. .get_rxfh_indir_size = tg3_get_rxfh_indir_size,
  11671. .get_rxfh = tg3_get_rxfh,
  11672. .set_rxfh = tg3_set_rxfh,
  11673. .get_channels = tg3_get_channels,
  11674. .set_channels = tg3_set_channels,
  11675. .get_ts_info = tg3_get_ts_info,
  11676. .get_eee = tg3_get_eee,
  11677. .set_eee = tg3_set_eee,
  11678. .get_link_ksettings = tg3_get_link_ksettings,
  11679. .set_link_ksettings = tg3_set_link_ksettings,
  11680. };
  11681. static void tg3_get_stats64(struct net_device *dev,
  11682. struct rtnl_link_stats64 *stats)
  11683. {
  11684. struct tg3 *tp = netdev_priv(dev);
  11685. spin_lock_bh(&tp->lock);
  11686. if (!tp->hw_stats || !tg3_flag(tp, INIT_COMPLETE)) {
  11687. *stats = tp->net_stats_prev;
  11688. spin_unlock_bh(&tp->lock);
  11689. return;
  11690. }
  11691. tg3_get_nstats(tp, stats);
  11692. spin_unlock_bh(&tp->lock);
  11693. }
  11694. static void tg3_set_rx_mode(struct net_device *dev)
  11695. {
  11696. struct tg3 *tp = netdev_priv(dev);
  11697. if (!netif_running(dev))
  11698. return;
  11699. tg3_full_lock(tp, 0);
  11700. __tg3_set_rx_mode(dev);
  11701. tg3_full_unlock(tp);
  11702. }
  11703. static inline void tg3_set_mtu(struct net_device *dev, struct tg3 *tp,
  11704. int new_mtu)
  11705. {
  11706. dev->mtu = new_mtu;
  11707. if (new_mtu > ETH_DATA_LEN) {
  11708. if (tg3_flag(tp, 5780_CLASS)) {
  11709. netdev_update_features(dev);
  11710. tg3_flag_clear(tp, TSO_CAPABLE);
  11711. } else {
  11712. tg3_flag_set(tp, JUMBO_RING_ENABLE);
  11713. }
  11714. } else {
  11715. if (tg3_flag(tp, 5780_CLASS)) {
  11716. tg3_flag_set(tp, TSO_CAPABLE);
  11717. netdev_update_features(dev);
  11718. }
  11719. tg3_flag_clear(tp, JUMBO_RING_ENABLE);
  11720. }
  11721. }
  11722. static int tg3_change_mtu(struct net_device *dev, int new_mtu)
  11723. {
  11724. struct tg3 *tp = netdev_priv(dev);
  11725. int err;
  11726. bool reset_phy = false;
  11727. if (!netif_running(dev)) {
  11728. /* We'll just catch it later when the
  11729. * device is up'd.
  11730. */
  11731. tg3_set_mtu(dev, tp, new_mtu);
  11732. return 0;
  11733. }
  11734. tg3_phy_stop(tp);
  11735. tg3_netif_stop(tp);
  11736. tg3_set_mtu(dev, tp, new_mtu);
  11737. tg3_full_lock(tp, 1);
  11738. tg3_halt(tp, RESET_KIND_SHUTDOWN, 1);
  11739. /* Reset PHY, otherwise the read DMA engine will be in a mode that
  11740. * breaks all requests to 256 bytes.
  11741. */
  11742. if (tg3_asic_rev(tp) == ASIC_REV_57766 ||
  11743. tg3_asic_rev(tp) == ASIC_REV_5717 ||
  11744. tg3_asic_rev(tp) == ASIC_REV_5719 ||
  11745. tg3_asic_rev(tp) == ASIC_REV_5720)
  11746. reset_phy = true;
  11747. err = tg3_restart_hw(tp, reset_phy);
  11748. if (!err)
  11749. tg3_netif_start(tp);
  11750. tg3_full_unlock(tp);
  11751. if (!err)
  11752. tg3_phy_start(tp);
  11753. return err;
  11754. }
  11755. static const struct net_device_ops tg3_netdev_ops = {
  11756. .ndo_open = tg3_open,
  11757. .ndo_stop = tg3_close,
  11758. .ndo_start_xmit = tg3_start_xmit,
  11759. .ndo_get_stats64 = tg3_get_stats64,
  11760. .ndo_validate_addr = eth_validate_addr,
  11761. .ndo_set_rx_mode = tg3_set_rx_mode,
  11762. .ndo_set_mac_address = tg3_set_mac_addr,
  11763. .ndo_do_ioctl = tg3_ioctl,
  11764. .ndo_tx_timeout = tg3_tx_timeout,
  11765. .ndo_change_mtu = tg3_change_mtu,
  11766. .ndo_fix_features = tg3_fix_features,
  11767. .ndo_set_features = tg3_set_features,
  11768. #ifdef CONFIG_NET_POLL_CONTROLLER
  11769. .ndo_poll_controller = tg3_poll_controller,
  11770. #endif
  11771. };
  11772. static void tg3_get_eeprom_size(struct tg3 *tp)
  11773. {
  11774. u32 cursize, val, magic;
  11775. tp->nvram_size = EEPROM_CHIP_SIZE;
  11776. if (tg3_nvram_read(tp, 0, &magic) != 0)
  11777. return;
  11778. if ((magic != TG3_EEPROM_MAGIC) &&
  11779. ((magic & TG3_EEPROM_MAGIC_FW_MSK) != TG3_EEPROM_MAGIC_FW) &&
  11780. ((magic & TG3_EEPROM_MAGIC_HW_MSK) != TG3_EEPROM_MAGIC_HW))
  11781. return;
  11782. /*
  11783. * Size the chip by reading offsets at increasing powers of two.
  11784. * When we encounter our validation signature, we know the addressing
  11785. * has wrapped around, and thus have our chip size.
  11786. */
  11787. cursize = 0x10;
  11788. while (cursize < tp->nvram_size) {
  11789. if (tg3_nvram_read(tp, cursize, &val) != 0)
  11790. return;
  11791. if (val == magic)
  11792. break;
  11793. cursize <<= 1;
  11794. }
  11795. tp->nvram_size = cursize;
  11796. }
  11797. static void tg3_get_nvram_size(struct tg3 *tp)
  11798. {
  11799. u32 val;
  11800. if (tg3_flag(tp, NO_NVRAM) || tg3_nvram_read(tp, 0, &val) != 0)
  11801. return;
  11802. /* Selfboot format */
  11803. if (val != TG3_EEPROM_MAGIC) {
  11804. tg3_get_eeprom_size(tp);
  11805. return;
  11806. }
  11807. if (tg3_nvram_read(tp, 0xf0, &val) == 0) {
  11808. if (val != 0) {
  11809. /* This is confusing. We want to operate on the
  11810. * 16-bit value at offset 0xf2. The tg3_nvram_read()
  11811. * call will read from NVRAM and byteswap the data
  11812. * according to the byteswapping settings for all
  11813. * other register accesses. This ensures the data we
  11814. * want will always reside in the lower 16-bits.
  11815. * However, the data in NVRAM is in LE format, which
  11816. * means the data from the NVRAM read will always be
  11817. * opposite the endianness of the CPU. The 16-bit
  11818. * byteswap then brings the data to CPU endianness.
  11819. */
  11820. tp->nvram_size = swab16((u16)(val & 0x0000ffff)) * 1024;
  11821. return;
  11822. }
  11823. }
  11824. tp->nvram_size = TG3_NVRAM_SIZE_512KB;
  11825. }
  11826. static void tg3_get_nvram_info(struct tg3 *tp)
  11827. {
  11828. u32 nvcfg1;
  11829. nvcfg1 = tr32(NVRAM_CFG1);
  11830. if (nvcfg1 & NVRAM_CFG1_FLASHIF_ENAB) {
  11831. tg3_flag_set(tp, FLASH);
  11832. } else {
  11833. nvcfg1 &= ~NVRAM_CFG1_COMPAT_BYPASS;
  11834. tw32(NVRAM_CFG1, nvcfg1);
  11835. }
  11836. if (tg3_asic_rev(tp) == ASIC_REV_5750 ||
  11837. tg3_flag(tp, 5780_CLASS)) {
  11838. switch (nvcfg1 & NVRAM_CFG1_VENDOR_MASK) {
  11839. case FLASH_VENDOR_ATMEL_FLASH_BUFFERED:
  11840. tp->nvram_jedecnum = JEDEC_ATMEL;
  11841. tp->nvram_pagesize = ATMEL_AT45DB0X1B_PAGE_SIZE;
  11842. tg3_flag_set(tp, NVRAM_BUFFERED);
  11843. break;
  11844. case FLASH_VENDOR_ATMEL_FLASH_UNBUFFERED:
  11845. tp->nvram_jedecnum = JEDEC_ATMEL;
  11846. tp->nvram_pagesize = ATMEL_AT25F512_PAGE_SIZE;
  11847. break;
  11848. case FLASH_VENDOR_ATMEL_EEPROM:
  11849. tp->nvram_jedecnum = JEDEC_ATMEL;
  11850. tp->nvram_pagesize = ATMEL_AT24C512_CHIP_SIZE;
  11851. tg3_flag_set(tp, NVRAM_BUFFERED);
  11852. break;
  11853. case FLASH_VENDOR_ST:
  11854. tp->nvram_jedecnum = JEDEC_ST;
  11855. tp->nvram_pagesize = ST_M45PEX0_PAGE_SIZE;
  11856. tg3_flag_set(tp, NVRAM_BUFFERED);
  11857. break;
  11858. case FLASH_VENDOR_SAIFUN:
  11859. tp->nvram_jedecnum = JEDEC_SAIFUN;
  11860. tp->nvram_pagesize = SAIFUN_SA25F0XX_PAGE_SIZE;
  11861. break;
  11862. case FLASH_VENDOR_SST_SMALL:
  11863. case FLASH_VENDOR_SST_LARGE:
  11864. tp->nvram_jedecnum = JEDEC_SST;
  11865. tp->nvram_pagesize = SST_25VF0X0_PAGE_SIZE;
  11866. break;
  11867. }
  11868. } else {
  11869. tp->nvram_jedecnum = JEDEC_ATMEL;
  11870. tp->nvram_pagesize = ATMEL_AT45DB0X1B_PAGE_SIZE;
  11871. tg3_flag_set(tp, NVRAM_BUFFERED);
  11872. }
  11873. }
  11874. static void tg3_nvram_get_pagesize(struct tg3 *tp, u32 nvmcfg1)
  11875. {
  11876. switch (nvmcfg1 & NVRAM_CFG1_5752PAGE_SIZE_MASK) {
  11877. case FLASH_5752PAGE_SIZE_256:
  11878. tp->nvram_pagesize = 256;
  11879. break;
  11880. case FLASH_5752PAGE_SIZE_512:
  11881. tp->nvram_pagesize = 512;
  11882. break;
  11883. case FLASH_5752PAGE_SIZE_1K:
  11884. tp->nvram_pagesize = 1024;
  11885. break;
  11886. case FLASH_5752PAGE_SIZE_2K:
  11887. tp->nvram_pagesize = 2048;
  11888. break;
  11889. case FLASH_5752PAGE_SIZE_4K:
  11890. tp->nvram_pagesize = 4096;
  11891. break;
  11892. case FLASH_5752PAGE_SIZE_264:
  11893. tp->nvram_pagesize = 264;
  11894. break;
  11895. case FLASH_5752PAGE_SIZE_528:
  11896. tp->nvram_pagesize = 528;
  11897. break;
  11898. }
  11899. }
  11900. static void tg3_get_5752_nvram_info(struct tg3 *tp)
  11901. {
  11902. u32 nvcfg1;
  11903. nvcfg1 = tr32(NVRAM_CFG1);
  11904. /* NVRAM protection for TPM */
  11905. if (nvcfg1 & (1 << 27))
  11906. tg3_flag_set(tp, PROTECTED_NVRAM);
  11907. switch (nvcfg1 & NVRAM_CFG1_5752VENDOR_MASK) {
  11908. case FLASH_5752VENDOR_ATMEL_EEPROM_64KHZ:
  11909. case FLASH_5752VENDOR_ATMEL_EEPROM_376KHZ:
  11910. tp->nvram_jedecnum = JEDEC_ATMEL;
  11911. tg3_flag_set(tp, NVRAM_BUFFERED);
  11912. break;
  11913. case FLASH_5752VENDOR_ATMEL_FLASH_BUFFERED:
  11914. tp->nvram_jedecnum = JEDEC_ATMEL;
  11915. tg3_flag_set(tp, NVRAM_BUFFERED);
  11916. tg3_flag_set(tp, FLASH);
  11917. break;
  11918. case FLASH_5752VENDOR_ST_M45PE10:
  11919. case FLASH_5752VENDOR_ST_M45PE20:
  11920. case FLASH_5752VENDOR_ST_M45PE40:
  11921. tp->nvram_jedecnum = JEDEC_ST;
  11922. tg3_flag_set(tp, NVRAM_BUFFERED);
  11923. tg3_flag_set(tp, FLASH);
  11924. break;
  11925. }
  11926. if (tg3_flag(tp, FLASH)) {
  11927. tg3_nvram_get_pagesize(tp, nvcfg1);
  11928. } else {
  11929. /* For eeprom, set pagesize to maximum eeprom size */
  11930. tp->nvram_pagesize = ATMEL_AT24C512_CHIP_SIZE;
  11931. nvcfg1 &= ~NVRAM_CFG1_COMPAT_BYPASS;
  11932. tw32(NVRAM_CFG1, nvcfg1);
  11933. }
  11934. }
  11935. static void tg3_get_5755_nvram_info(struct tg3 *tp)
  11936. {
  11937. u32 nvcfg1, protect = 0;
  11938. nvcfg1 = tr32(NVRAM_CFG1);
  11939. /* NVRAM protection for TPM */
  11940. if (nvcfg1 & (1 << 27)) {
  11941. tg3_flag_set(tp, PROTECTED_NVRAM);
  11942. protect = 1;
  11943. }
  11944. nvcfg1 &= NVRAM_CFG1_5752VENDOR_MASK;
  11945. switch (nvcfg1) {
  11946. case FLASH_5755VENDOR_ATMEL_FLASH_1:
  11947. case FLASH_5755VENDOR_ATMEL_FLASH_2:
  11948. case FLASH_5755VENDOR_ATMEL_FLASH_3:
  11949. case FLASH_5755VENDOR_ATMEL_FLASH_5:
  11950. tp->nvram_jedecnum = JEDEC_ATMEL;
  11951. tg3_flag_set(tp, NVRAM_BUFFERED);
  11952. tg3_flag_set(tp, FLASH);
  11953. tp->nvram_pagesize = 264;
  11954. if (nvcfg1 == FLASH_5755VENDOR_ATMEL_FLASH_1 ||
  11955. nvcfg1 == FLASH_5755VENDOR_ATMEL_FLASH_5)
  11956. tp->nvram_size = (protect ? 0x3e200 :
  11957. TG3_NVRAM_SIZE_512KB);
  11958. else if (nvcfg1 == FLASH_5755VENDOR_ATMEL_FLASH_2)
  11959. tp->nvram_size = (protect ? 0x1f200 :
  11960. TG3_NVRAM_SIZE_256KB);
  11961. else
  11962. tp->nvram_size = (protect ? 0x1f200 :
  11963. TG3_NVRAM_SIZE_128KB);
  11964. break;
  11965. case FLASH_5752VENDOR_ST_M45PE10:
  11966. case FLASH_5752VENDOR_ST_M45PE20:
  11967. case FLASH_5752VENDOR_ST_M45PE40:
  11968. tp->nvram_jedecnum = JEDEC_ST;
  11969. tg3_flag_set(tp, NVRAM_BUFFERED);
  11970. tg3_flag_set(tp, FLASH);
  11971. tp->nvram_pagesize = 256;
  11972. if (nvcfg1 == FLASH_5752VENDOR_ST_M45PE10)
  11973. tp->nvram_size = (protect ?
  11974. TG3_NVRAM_SIZE_64KB :
  11975. TG3_NVRAM_SIZE_128KB);
  11976. else if (nvcfg1 == FLASH_5752VENDOR_ST_M45PE20)
  11977. tp->nvram_size = (protect ?
  11978. TG3_NVRAM_SIZE_64KB :
  11979. TG3_NVRAM_SIZE_256KB);
  11980. else
  11981. tp->nvram_size = (protect ?
  11982. TG3_NVRAM_SIZE_128KB :
  11983. TG3_NVRAM_SIZE_512KB);
  11984. break;
  11985. }
  11986. }
  11987. static void tg3_get_5787_nvram_info(struct tg3 *tp)
  11988. {
  11989. u32 nvcfg1;
  11990. nvcfg1 = tr32(NVRAM_CFG1);
  11991. switch (nvcfg1 & NVRAM_CFG1_5752VENDOR_MASK) {
  11992. case FLASH_5787VENDOR_ATMEL_EEPROM_64KHZ:
  11993. case FLASH_5787VENDOR_ATMEL_EEPROM_376KHZ:
  11994. case FLASH_5787VENDOR_MICRO_EEPROM_64KHZ:
  11995. case FLASH_5787VENDOR_MICRO_EEPROM_376KHZ:
  11996. tp->nvram_jedecnum = JEDEC_ATMEL;
  11997. tg3_flag_set(tp, NVRAM_BUFFERED);
  11998. tp->nvram_pagesize = ATMEL_AT24C512_CHIP_SIZE;
  11999. nvcfg1 &= ~NVRAM_CFG1_COMPAT_BYPASS;
  12000. tw32(NVRAM_CFG1, nvcfg1);
  12001. break;
  12002. case FLASH_5752VENDOR_ATMEL_FLASH_BUFFERED:
  12003. case FLASH_5755VENDOR_ATMEL_FLASH_1:
  12004. case FLASH_5755VENDOR_ATMEL_FLASH_2:
  12005. case FLASH_5755VENDOR_ATMEL_FLASH_3:
  12006. tp->nvram_jedecnum = JEDEC_ATMEL;
  12007. tg3_flag_set(tp, NVRAM_BUFFERED);
  12008. tg3_flag_set(tp, FLASH);
  12009. tp->nvram_pagesize = 264;
  12010. break;
  12011. case FLASH_5752VENDOR_ST_M45PE10:
  12012. case FLASH_5752VENDOR_ST_M45PE20:
  12013. case FLASH_5752VENDOR_ST_M45PE40:
  12014. tp->nvram_jedecnum = JEDEC_ST;
  12015. tg3_flag_set(tp, NVRAM_BUFFERED);
  12016. tg3_flag_set(tp, FLASH);
  12017. tp->nvram_pagesize = 256;
  12018. break;
  12019. }
  12020. }
  12021. static void tg3_get_5761_nvram_info(struct tg3 *tp)
  12022. {
  12023. u32 nvcfg1, protect = 0;
  12024. nvcfg1 = tr32(NVRAM_CFG1);
  12025. /* NVRAM protection for TPM */
  12026. if (nvcfg1 & (1 << 27)) {
  12027. tg3_flag_set(tp, PROTECTED_NVRAM);
  12028. protect = 1;
  12029. }
  12030. nvcfg1 &= NVRAM_CFG1_5752VENDOR_MASK;
  12031. switch (nvcfg1) {
  12032. case FLASH_5761VENDOR_ATMEL_ADB021D:
  12033. case FLASH_5761VENDOR_ATMEL_ADB041D:
  12034. case FLASH_5761VENDOR_ATMEL_ADB081D:
  12035. case FLASH_5761VENDOR_ATMEL_ADB161D:
  12036. case FLASH_5761VENDOR_ATMEL_MDB021D:
  12037. case FLASH_5761VENDOR_ATMEL_MDB041D:
  12038. case FLASH_5761VENDOR_ATMEL_MDB081D:
  12039. case FLASH_5761VENDOR_ATMEL_MDB161D:
  12040. tp->nvram_jedecnum = JEDEC_ATMEL;
  12041. tg3_flag_set(tp, NVRAM_BUFFERED);
  12042. tg3_flag_set(tp, FLASH);
  12043. tg3_flag_set(tp, NO_NVRAM_ADDR_TRANS);
  12044. tp->nvram_pagesize = 256;
  12045. break;
  12046. case FLASH_5761VENDOR_ST_A_M45PE20:
  12047. case FLASH_5761VENDOR_ST_A_M45PE40:
  12048. case FLASH_5761VENDOR_ST_A_M45PE80:
  12049. case FLASH_5761VENDOR_ST_A_M45PE16:
  12050. case FLASH_5761VENDOR_ST_M_M45PE20:
  12051. case FLASH_5761VENDOR_ST_M_M45PE40:
  12052. case FLASH_5761VENDOR_ST_M_M45PE80:
  12053. case FLASH_5761VENDOR_ST_M_M45PE16:
  12054. tp->nvram_jedecnum = JEDEC_ST;
  12055. tg3_flag_set(tp, NVRAM_BUFFERED);
  12056. tg3_flag_set(tp, FLASH);
  12057. tp->nvram_pagesize = 256;
  12058. break;
  12059. }
  12060. if (protect) {
  12061. tp->nvram_size = tr32(NVRAM_ADDR_LOCKOUT);
  12062. } else {
  12063. switch (nvcfg1) {
  12064. case FLASH_5761VENDOR_ATMEL_ADB161D:
  12065. case FLASH_5761VENDOR_ATMEL_MDB161D:
  12066. case FLASH_5761VENDOR_ST_A_M45PE16:
  12067. case FLASH_5761VENDOR_ST_M_M45PE16:
  12068. tp->nvram_size = TG3_NVRAM_SIZE_2MB;
  12069. break;
  12070. case FLASH_5761VENDOR_ATMEL_ADB081D:
  12071. case FLASH_5761VENDOR_ATMEL_MDB081D:
  12072. case FLASH_5761VENDOR_ST_A_M45PE80:
  12073. case FLASH_5761VENDOR_ST_M_M45PE80:
  12074. tp->nvram_size = TG3_NVRAM_SIZE_1MB;
  12075. break;
  12076. case FLASH_5761VENDOR_ATMEL_ADB041D:
  12077. case FLASH_5761VENDOR_ATMEL_MDB041D:
  12078. case FLASH_5761VENDOR_ST_A_M45PE40:
  12079. case FLASH_5761VENDOR_ST_M_M45PE40:
  12080. tp->nvram_size = TG3_NVRAM_SIZE_512KB;
  12081. break;
  12082. case FLASH_5761VENDOR_ATMEL_ADB021D:
  12083. case FLASH_5761VENDOR_ATMEL_MDB021D:
  12084. case FLASH_5761VENDOR_ST_A_M45PE20:
  12085. case FLASH_5761VENDOR_ST_M_M45PE20:
  12086. tp->nvram_size = TG3_NVRAM_SIZE_256KB;
  12087. break;
  12088. }
  12089. }
  12090. }
  12091. static void tg3_get_5906_nvram_info(struct tg3 *tp)
  12092. {
  12093. tp->nvram_jedecnum = JEDEC_ATMEL;
  12094. tg3_flag_set(tp, NVRAM_BUFFERED);
  12095. tp->nvram_pagesize = ATMEL_AT24C512_CHIP_SIZE;
  12096. }
  12097. static void tg3_get_57780_nvram_info(struct tg3 *tp)
  12098. {
  12099. u32 nvcfg1;
  12100. nvcfg1 = tr32(NVRAM_CFG1);
  12101. switch (nvcfg1 & NVRAM_CFG1_5752VENDOR_MASK) {
  12102. case FLASH_5787VENDOR_ATMEL_EEPROM_376KHZ:
  12103. case FLASH_5787VENDOR_MICRO_EEPROM_376KHZ:
  12104. tp->nvram_jedecnum = JEDEC_ATMEL;
  12105. tg3_flag_set(tp, NVRAM_BUFFERED);
  12106. tp->nvram_pagesize = ATMEL_AT24C512_CHIP_SIZE;
  12107. nvcfg1 &= ~NVRAM_CFG1_COMPAT_BYPASS;
  12108. tw32(NVRAM_CFG1, nvcfg1);
  12109. return;
  12110. case FLASH_5752VENDOR_ATMEL_FLASH_BUFFERED:
  12111. case FLASH_57780VENDOR_ATMEL_AT45DB011D:
  12112. case FLASH_57780VENDOR_ATMEL_AT45DB011B:
  12113. case FLASH_57780VENDOR_ATMEL_AT45DB021D:
  12114. case FLASH_57780VENDOR_ATMEL_AT45DB021B:
  12115. case FLASH_57780VENDOR_ATMEL_AT45DB041D:
  12116. case FLASH_57780VENDOR_ATMEL_AT45DB041B:
  12117. tp->nvram_jedecnum = JEDEC_ATMEL;
  12118. tg3_flag_set(tp, NVRAM_BUFFERED);
  12119. tg3_flag_set(tp, FLASH);
  12120. switch (nvcfg1 & NVRAM_CFG1_5752VENDOR_MASK) {
  12121. case FLASH_5752VENDOR_ATMEL_FLASH_BUFFERED:
  12122. case FLASH_57780VENDOR_ATMEL_AT45DB011D:
  12123. case FLASH_57780VENDOR_ATMEL_AT45DB011B:
  12124. tp->nvram_size = TG3_NVRAM_SIZE_128KB;
  12125. break;
  12126. case FLASH_57780VENDOR_ATMEL_AT45DB021D:
  12127. case FLASH_57780VENDOR_ATMEL_AT45DB021B:
  12128. tp->nvram_size = TG3_NVRAM_SIZE_256KB;
  12129. break;
  12130. case FLASH_57780VENDOR_ATMEL_AT45DB041D:
  12131. case FLASH_57780VENDOR_ATMEL_AT45DB041B:
  12132. tp->nvram_size = TG3_NVRAM_SIZE_512KB;
  12133. break;
  12134. }
  12135. break;
  12136. case FLASH_5752VENDOR_ST_M45PE10:
  12137. case FLASH_5752VENDOR_ST_M45PE20:
  12138. case FLASH_5752VENDOR_ST_M45PE40:
  12139. tp->nvram_jedecnum = JEDEC_ST;
  12140. tg3_flag_set(tp, NVRAM_BUFFERED);
  12141. tg3_flag_set(tp, FLASH);
  12142. switch (nvcfg1 & NVRAM_CFG1_5752VENDOR_MASK) {
  12143. case FLASH_5752VENDOR_ST_M45PE10:
  12144. tp->nvram_size = TG3_NVRAM_SIZE_128KB;
  12145. break;
  12146. case FLASH_5752VENDOR_ST_M45PE20:
  12147. tp->nvram_size = TG3_NVRAM_SIZE_256KB;
  12148. break;
  12149. case FLASH_5752VENDOR_ST_M45PE40:
  12150. tp->nvram_size = TG3_NVRAM_SIZE_512KB;
  12151. break;
  12152. }
  12153. break;
  12154. default:
  12155. tg3_flag_set(tp, NO_NVRAM);
  12156. return;
  12157. }
  12158. tg3_nvram_get_pagesize(tp, nvcfg1);
  12159. if (tp->nvram_pagesize != 264 && tp->nvram_pagesize != 528)
  12160. tg3_flag_set(tp, NO_NVRAM_ADDR_TRANS);
  12161. }
  12162. static void tg3_get_5717_nvram_info(struct tg3 *tp)
  12163. {
  12164. u32 nvcfg1;
  12165. nvcfg1 = tr32(NVRAM_CFG1);
  12166. switch (nvcfg1 & NVRAM_CFG1_5752VENDOR_MASK) {
  12167. case FLASH_5717VENDOR_ATMEL_EEPROM:
  12168. case FLASH_5717VENDOR_MICRO_EEPROM:
  12169. tp->nvram_jedecnum = JEDEC_ATMEL;
  12170. tg3_flag_set(tp, NVRAM_BUFFERED);
  12171. tp->nvram_pagesize = ATMEL_AT24C512_CHIP_SIZE;
  12172. nvcfg1 &= ~NVRAM_CFG1_COMPAT_BYPASS;
  12173. tw32(NVRAM_CFG1, nvcfg1);
  12174. return;
  12175. case FLASH_5717VENDOR_ATMEL_MDB011D:
  12176. case FLASH_5717VENDOR_ATMEL_ADB011B:
  12177. case FLASH_5717VENDOR_ATMEL_ADB011D:
  12178. case FLASH_5717VENDOR_ATMEL_MDB021D:
  12179. case FLASH_5717VENDOR_ATMEL_ADB021B:
  12180. case FLASH_5717VENDOR_ATMEL_ADB021D:
  12181. case FLASH_5717VENDOR_ATMEL_45USPT:
  12182. tp->nvram_jedecnum = JEDEC_ATMEL;
  12183. tg3_flag_set(tp, NVRAM_BUFFERED);
  12184. tg3_flag_set(tp, FLASH);
  12185. switch (nvcfg1 & NVRAM_CFG1_5752VENDOR_MASK) {
  12186. case FLASH_5717VENDOR_ATMEL_MDB021D:
  12187. /* Detect size with tg3_nvram_get_size() */
  12188. break;
  12189. case FLASH_5717VENDOR_ATMEL_ADB021B:
  12190. case FLASH_5717VENDOR_ATMEL_ADB021D:
  12191. tp->nvram_size = TG3_NVRAM_SIZE_256KB;
  12192. break;
  12193. default:
  12194. tp->nvram_size = TG3_NVRAM_SIZE_128KB;
  12195. break;
  12196. }
  12197. break;
  12198. case FLASH_5717VENDOR_ST_M_M25PE10:
  12199. case FLASH_5717VENDOR_ST_A_M25PE10:
  12200. case FLASH_5717VENDOR_ST_M_M45PE10:
  12201. case FLASH_5717VENDOR_ST_A_M45PE10:
  12202. case FLASH_5717VENDOR_ST_M_M25PE20:
  12203. case FLASH_5717VENDOR_ST_A_M25PE20:
  12204. case FLASH_5717VENDOR_ST_M_M45PE20:
  12205. case FLASH_5717VENDOR_ST_A_M45PE20:
  12206. case FLASH_5717VENDOR_ST_25USPT:
  12207. case FLASH_5717VENDOR_ST_45USPT:
  12208. tp->nvram_jedecnum = JEDEC_ST;
  12209. tg3_flag_set(tp, NVRAM_BUFFERED);
  12210. tg3_flag_set(tp, FLASH);
  12211. switch (nvcfg1 & NVRAM_CFG1_5752VENDOR_MASK) {
  12212. case FLASH_5717VENDOR_ST_M_M25PE20:
  12213. case FLASH_5717VENDOR_ST_M_M45PE20:
  12214. /* Detect size with tg3_nvram_get_size() */
  12215. break;
  12216. case FLASH_5717VENDOR_ST_A_M25PE20:
  12217. case FLASH_5717VENDOR_ST_A_M45PE20:
  12218. tp->nvram_size = TG3_NVRAM_SIZE_256KB;
  12219. break;
  12220. default:
  12221. tp->nvram_size = TG3_NVRAM_SIZE_128KB;
  12222. break;
  12223. }
  12224. break;
  12225. default:
  12226. tg3_flag_set(tp, NO_NVRAM);
  12227. return;
  12228. }
  12229. tg3_nvram_get_pagesize(tp, nvcfg1);
  12230. if (tp->nvram_pagesize != 264 && tp->nvram_pagesize != 528)
  12231. tg3_flag_set(tp, NO_NVRAM_ADDR_TRANS);
  12232. }
  12233. static void tg3_get_5720_nvram_info(struct tg3 *tp)
  12234. {
  12235. u32 nvcfg1, nvmpinstrp, nv_status;
  12236. nvcfg1 = tr32(NVRAM_CFG1);
  12237. nvmpinstrp = nvcfg1 & NVRAM_CFG1_5752VENDOR_MASK;
  12238. if (tg3_asic_rev(tp) == ASIC_REV_5762) {
  12239. if (!(nvcfg1 & NVRAM_CFG1_5762VENDOR_MASK)) {
  12240. tg3_flag_set(tp, NO_NVRAM);
  12241. return;
  12242. }
  12243. switch (nvmpinstrp) {
  12244. case FLASH_5762_MX25L_100:
  12245. case FLASH_5762_MX25L_200:
  12246. case FLASH_5762_MX25L_400:
  12247. case FLASH_5762_MX25L_800:
  12248. case FLASH_5762_MX25L_160_320:
  12249. tp->nvram_pagesize = 4096;
  12250. tp->nvram_jedecnum = JEDEC_MACRONIX;
  12251. tg3_flag_set(tp, NVRAM_BUFFERED);
  12252. tg3_flag_set(tp, NO_NVRAM_ADDR_TRANS);
  12253. tg3_flag_set(tp, FLASH);
  12254. nv_status = tr32(NVRAM_AUTOSENSE_STATUS);
  12255. tp->nvram_size =
  12256. (1 << (nv_status >> AUTOSENSE_DEVID &
  12257. AUTOSENSE_DEVID_MASK)
  12258. << AUTOSENSE_SIZE_IN_MB);
  12259. return;
  12260. case FLASH_5762_EEPROM_HD:
  12261. nvmpinstrp = FLASH_5720_EEPROM_HD;
  12262. break;
  12263. case FLASH_5762_EEPROM_LD:
  12264. nvmpinstrp = FLASH_5720_EEPROM_LD;
  12265. break;
  12266. case FLASH_5720VENDOR_M_ST_M45PE20:
  12267. /* This pinstrap supports multiple sizes, so force it
  12268. * to read the actual size from location 0xf0.
  12269. */
  12270. nvmpinstrp = FLASH_5720VENDOR_ST_45USPT;
  12271. break;
  12272. }
  12273. }
  12274. switch (nvmpinstrp) {
  12275. case FLASH_5720_EEPROM_HD:
  12276. case FLASH_5720_EEPROM_LD:
  12277. tp->nvram_jedecnum = JEDEC_ATMEL;
  12278. tg3_flag_set(tp, NVRAM_BUFFERED);
  12279. nvcfg1 &= ~NVRAM_CFG1_COMPAT_BYPASS;
  12280. tw32(NVRAM_CFG1, nvcfg1);
  12281. if (nvmpinstrp == FLASH_5720_EEPROM_HD)
  12282. tp->nvram_pagesize = ATMEL_AT24C512_CHIP_SIZE;
  12283. else
  12284. tp->nvram_pagesize = ATMEL_AT24C02_CHIP_SIZE;
  12285. return;
  12286. case FLASH_5720VENDOR_M_ATMEL_DB011D:
  12287. case FLASH_5720VENDOR_A_ATMEL_DB011B:
  12288. case FLASH_5720VENDOR_A_ATMEL_DB011D:
  12289. case FLASH_5720VENDOR_M_ATMEL_DB021D:
  12290. case FLASH_5720VENDOR_A_ATMEL_DB021B:
  12291. case FLASH_5720VENDOR_A_ATMEL_DB021D:
  12292. case FLASH_5720VENDOR_M_ATMEL_DB041D:
  12293. case FLASH_5720VENDOR_A_ATMEL_DB041B:
  12294. case FLASH_5720VENDOR_A_ATMEL_DB041D:
  12295. case FLASH_5720VENDOR_M_ATMEL_DB081D:
  12296. case FLASH_5720VENDOR_A_ATMEL_DB081D:
  12297. case FLASH_5720VENDOR_ATMEL_45USPT:
  12298. tp->nvram_jedecnum = JEDEC_ATMEL;
  12299. tg3_flag_set(tp, NVRAM_BUFFERED);
  12300. tg3_flag_set(tp, FLASH);
  12301. switch (nvmpinstrp) {
  12302. case FLASH_5720VENDOR_M_ATMEL_DB021D:
  12303. case FLASH_5720VENDOR_A_ATMEL_DB021B:
  12304. case FLASH_5720VENDOR_A_ATMEL_DB021D:
  12305. tp->nvram_size = TG3_NVRAM_SIZE_256KB;
  12306. break;
  12307. case FLASH_5720VENDOR_M_ATMEL_DB041D:
  12308. case FLASH_5720VENDOR_A_ATMEL_DB041B:
  12309. case FLASH_5720VENDOR_A_ATMEL_DB041D:
  12310. tp->nvram_size = TG3_NVRAM_SIZE_512KB;
  12311. break;
  12312. case FLASH_5720VENDOR_M_ATMEL_DB081D:
  12313. case FLASH_5720VENDOR_A_ATMEL_DB081D:
  12314. tp->nvram_size = TG3_NVRAM_SIZE_1MB;
  12315. break;
  12316. default:
  12317. if (tg3_asic_rev(tp) != ASIC_REV_5762)
  12318. tp->nvram_size = TG3_NVRAM_SIZE_128KB;
  12319. break;
  12320. }
  12321. break;
  12322. case FLASH_5720VENDOR_M_ST_M25PE10:
  12323. case FLASH_5720VENDOR_M_ST_M45PE10:
  12324. case FLASH_5720VENDOR_A_ST_M25PE10:
  12325. case FLASH_5720VENDOR_A_ST_M45PE10:
  12326. case FLASH_5720VENDOR_M_ST_M25PE20:
  12327. case FLASH_5720VENDOR_M_ST_M45PE20:
  12328. case FLASH_5720VENDOR_A_ST_M25PE20:
  12329. case FLASH_5720VENDOR_A_ST_M45PE20:
  12330. case FLASH_5720VENDOR_M_ST_M25PE40:
  12331. case FLASH_5720VENDOR_M_ST_M45PE40:
  12332. case FLASH_5720VENDOR_A_ST_M25PE40:
  12333. case FLASH_5720VENDOR_A_ST_M45PE40:
  12334. case FLASH_5720VENDOR_M_ST_M25PE80:
  12335. case FLASH_5720VENDOR_M_ST_M45PE80:
  12336. case FLASH_5720VENDOR_A_ST_M25PE80:
  12337. case FLASH_5720VENDOR_A_ST_M45PE80:
  12338. case FLASH_5720VENDOR_ST_25USPT:
  12339. case FLASH_5720VENDOR_ST_45USPT:
  12340. tp->nvram_jedecnum = JEDEC_ST;
  12341. tg3_flag_set(tp, NVRAM_BUFFERED);
  12342. tg3_flag_set(tp, FLASH);
  12343. switch (nvmpinstrp) {
  12344. case FLASH_5720VENDOR_M_ST_M25PE20:
  12345. case FLASH_5720VENDOR_M_ST_M45PE20:
  12346. case FLASH_5720VENDOR_A_ST_M25PE20:
  12347. case FLASH_5720VENDOR_A_ST_M45PE20:
  12348. tp->nvram_size = TG3_NVRAM_SIZE_256KB;
  12349. break;
  12350. case FLASH_5720VENDOR_M_ST_M25PE40:
  12351. case FLASH_5720VENDOR_M_ST_M45PE40:
  12352. case FLASH_5720VENDOR_A_ST_M25PE40:
  12353. case FLASH_5720VENDOR_A_ST_M45PE40:
  12354. tp->nvram_size = TG3_NVRAM_SIZE_512KB;
  12355. break;
  12356. case FLASH_5720VENDOR_M_ST_M25PE80:
  12357. case FLASH_5720VENDOR_M_ST_M45PE80:
  12358. case FLASH_5720VENDOR_A_ST_M25PE80:
  12359. case FLASH_5720VENDOR_A_ST_M45PE80:
  12360. tp->nvram_size = TG3_NVRAM_SIZE_1MB;
  12361. break;
  12362. default:
  12363. if (tg3_asic_rev(tp) != ASIC_REV_5762)
  12364. tp->nvram_size = TG3_NVRAM_SIZE_128KB;
  12365. break;
  12366. }
  12367. break;
  12368. default:
  12369. tg3_flag_set(tp, NO_NVRAM);
  12370. return;
  12371. }
  12372. tg3_nvram_get_pagesize(tp, nvcfg1);
  12373. if (tp->nvram_pagesize != 264 && tp->nvram_pagesize != 528)
  12374. tg3_flag_set(tp, NO_NVRAM_ADDR_TRANS);
  12375. if (tg3_asic_rev(tp) == ASIC_REV_5762) {
  12376. u32 val;
  12377. if (tg3_nvram_read(tp, 0, &val))
  12378. return;
  12379. if (val != TG3_EEPROM_MAGIC &&
  12380. (val & TG3_EEPROM_MAGIC_FW_MSK) != TG3_EEPROM_MAGIC_FW)
  12381. tg3_flag_set(tp, NO_NVRAM);
  12382. }
  12383. }
  12384. /* Chips other than 5700/5701 use the NVRAM for fetching info. */
  12385. static void tg3_nvram_init(struct tg3 *tp)
  12386. {
  12387. if (tg3_flag(tp, IS_SSB_CORE)) {
  12388. /* No NVRAM and EEPROM on the SSB Broadcom GigE core. */
  12389. tg3_flag_clear(tp, NVRAM);
  12390. tg3_flag_clear(tp, NVRAM_BUFFERED);
  12391. tg3_flag_set(tp, NO_NVRAM);
  12392. return;
  12393. }
  12394. tw32_f(GRC_EEPROM_ADDR,
  12395. (EEPROM_ADDR_FSM_RESET |
  12396. (EEPROM_DEFAULT_CLOCK_PERIOD <<
  12397. EEPROM_ADDR_CLKPERD_SHIFT)));
  12398. msleep(1);
  12399. /* Enable seeprom accesses. */
  12400. tw32_f(GRC_LOCAL_CTRL,
  12401. tr32(GRC_LOCAL_CTRL) | GRC_LCLCTRL_AUTO_SEEPROM);
  12402. udelay(100);
  12403. if (tg3_asic_rev(tp) != ASIC_REV_5700 &&
  12404. tg3_asic_rev(tp) != ASIC_REV_5701) {
  12405. tg3_flag_set(tp, NVRAM);
  12406. if (tg3_nvram_lock(tp)) {
  12407. netdev_warn(tp->dev,
  12408. "Cannot get nvram lock, %s failed\n",
  12409. __func__);
  12410. return;
  12411. }
  12412. tg3_enable_nvram_access(tp);
  12413. tp->nvram_size = 0;
  12414. if (tg3_asic_rev(tp) == ASIC_REV_5752)
  12415. tg3_get_5752_nvram_info(tp);
  12416. else if (tg3_asic_rev(tp) == ASIC_REV_5755)
  12417. tg3_get_5755_nvram_info(tp);
  12418. else if (tg3_asic_rev(tp) == ASIC_REV_5787 ||
  12419. tg3_asic_rev(tp) == ASIC_REV_5784 ||
  12420. tg3_asic_rev(tp) == ASIC_REV_5785)
  12421. tg3_get_5787_nvram_info(tp);
  12422. else if (tg3_asic_rev(tp) == ASIC_REV_5761)
  12423. tg3_get_5761_nvram_info(tp);
  12424. else if (tg3_asic_rev(tp) == ASIC_REV_5906)
  12425. tg3_get_5906_nvram_info(tp);
  12426. else if (tg3_asic_rev(tp) == ASIC_REV_57780 ||
  12427. tg3_flag(tp, 57765_CLASS))
  12428. tg3_get_57780_nvram_info(tp);
  12429. else if (tg3_asic_rev(tp) == ASIC_REV_5717 ||
  12430. tg3_asic_rev(tp) == ASIC_REV_5719)
  12431. tg3_get_5717_nvram_info(tp);
  12432. else if (tg3_asic_rev(tp) == ASIC_REV_5720 ||
  12433. tg3_asic_rev(tp) == ASIC_REV_5762)
  12434. tg3_get_5720_nvram_info(tp);
  12435. else
  12436. tg3_get_nvram_info(tp);
  12437. if (tp->nvram_size == 0)
  12438. tg3_get_nvram_size(tp);
  12439. tg3_disable_nvram_access(tp);
  12440. tg3_nvram_unlock(tp);
  12441. } else {
  12442. tg3_flag_clear(tp, NVRAM);
  12443. tg3_flag_clear(tp, NVRAM_BUFFERED);
  12444. tg3_get_eeprom_size(tp);
  12445. }
  12446. }
  12447. struct subsys_tbl_ent {
  12448. u16 subsys_vendor, subsys_devid;
  12449. u32 phy_id;
  12450. };
  12451. static struct subsys_tbl_ent subsys_id_to_phy_id[] = {
  12452. /* Broadcom boards. */
  12453. { TG3PCI_SUBVENDOR_ID_BROADCOM,
  12454. TG3PCI_SUBDEVICE_ID_BROADCOM_95700A6, TG3_PHY_ID_BCM5401 },
  12455. { TG3PCI_SUBVENDOR_ID_BROADCOM,
  12456. TG3PCI_SUBDEVICE_ID_BROADCOM_95701A5, TG3_PHY_ID_BCM5701 },
  12457. { TG3PCI_SUBVENDOR_ID_BROADCOM,
  12458. TG3PCI_SUBDEVICE_ID_BROADCOM_95700T6, TG3_PHY_ID_BCM8002 },
  12459. { TG3PCI_SUBVENDOR_ID_BROADCOM,
  12460. TG3PCI_SUBDEVICE_ID_BROADCOM_95700A9, 0 },
  12461. { TG3PCI_SUBVENDOR_ID_BROADCOM,
  12462. TG3PCI_SUBDEVICE_ID_BROADCOM_95701T1, TG3_PHY_ID_BCM5701 },
  12463. { TG3PCI_SUBVENDOR_ID_BROADCOM,
  12464. TG3PCI_SUBDEVICE_ID_BROADCOM_95701T8, TG3_PHY_ID_BCM5701 },
  12465. { TG3PCI_SUBVENDOR_ID_BROADCOM,
  12466. TG3PCI_SUBDEVICE_ID_BROADCOM_95701A7, 0 },
  12467. { TG3PCI_SUBVENDOR_ID_BROADCOM,
  12468. TG3PCI_SUBDEVICE_ID_BROADCOM_95701A10, TG3_PHY_ID_BCM5701 },
  12469. { TG3PCI_SUBVENDOR_ID_BROADCOM,
  12470. TG3PCI_SUBDEVICE_ID_BROADCOM_95701A12, TG3_PHY_ID_BCM5701 },
  12471. { TG3PCI_SUBVENDOR_ID_BROADCOM,
  12472. TG3PCI_SUBDEVICE_ID_BROADCOM_95703AX1, TG3_PHY_ID_BCM5703 },
  12473. { TG3PCI_SUBVENDOR_ID_BROADCOM,
  12474. TG3PCI_SUBDEVICE_ID_BROADCOM_95703AX2, TG3_PHY_ID_BCM5703 },
  12475. /* 3com boards. */
  12476. { TG3PCI_SUBVENDOR_ID_3COM,
  12477. TG3PCI_SUBDEVICE_ID_3COM_3C996T, TG3_PHY_ID_BCM5401 },
  12478. { TG3PCI_SUBVENDOR_ID_3COM,
  12479. TG3PCI_SUBDEVICE_ID_3COM_3C996BT, TG3_PHY_ID_BCM5701 },
  12480. { TG3PCI_SUBVENDOR_ID_3COM,
  12481. TG3PCI_SUBDEVICE_ID_3COM_3C996SX, 0 },
  12482. { TG3PCI_SUBVENDOR_ID_3COM,
  12483. TG3PCI_SUBDEVICE_ID_3COM_3C1000T, TG3_PHY_ID_BCM5701 },
  12484. { TG3PCI_SUBVENDOR_ID_3COM,
  12485. TG3PCI_SUBDEVICE_ID_3COM_3C940BR01, TG3_PHY_ID_BCM5701 },
  12486. /* DELL boards. */
  12487. { TG3PCI_SUBVENDOR_ID_DELL,
  12488. TG3PCI_SUBDEVICE_ID_DELL_VIPER, TG3_PHY_ID_BCM5401 },
  12489. { TG3PCI_SUBVENDOR_ID_DELL,
  12490. TG3PCI_SUBDEVICE_ID_DELL_JAGUAR, TG3_PHY_ID_BCM5401 },
  12491. { TG3PCI_SUBVENDOR_ID_DELL,
  12492. TG3PCI_SUBDEVICE_ID_DELL_MERLOT, TG3_PHY_ID_BCM5411 },
  12493. { TG3PCI_SUBVENDOR_ID_DELL,
  12494. TG3PCI_SUBDEVICE_ID_DELL_SLIM_MERLOT, TG3_PHY_ID_BCM5411 },
  12495. /* Compaq boards. */
  12496. { TG3PCI_SUBVENDOR_ID_COMPAQ,
  12497. TG3PCI_SUBDEVICE_ID_COMPAQ_BANSHEE, TG3_PHY_ID_BCM5701 },
  12498. { TG3PCI_SUBVENDOR_ID_COMPAQ,
  12499. TG3PCI_SUBDEVICE_ID_COMPAQ_BANSHEE_2, TG3_PHY_ID_BCM5701 },
  12500. { TG3PCI_SUBVENDOR_ID_COMPAQ,
  12501. TG3PCI_SUBDEVICE_ID_COMPAQ_CHANGELING, 0 },
  12502. { TG3PCI_SUBVENDOR_ID_COMPAQ,
  12503. TG3PCI_SUBDEVICE_ID_COMPAQ_NC7780, TG3_PHY_ID_BCM5701 },
  12504. { TG3PCI_SUBVENDOR_ID_COMPAQ,
  12505. TG3PCI_SUBDEVICE_ID_COMPAQ_NC7780_2, TG3_PHY_ID_BCM5701 },
  12506. /* IBM boards. */
  12507. { TG3PCI_SUBVENDOR_ID_IBM,
  12508. TG3PCI_SUBDEVICE_ID_IBM_5703SAX2, 0 }
  12509. };
  12510. static struct subsys_tbl_ent *tg3_lookup_by_subsys(struct tg3 *tp)
  12511. {
  12512. int i;
  12513. for (i = 0; i < ARRAY_SIZE(subsys_id_to_phy_id); i++) {
  12514. if ((subsys_id_to_phy_id[i].subsys_vendor ==
  12515. tp->pdev->subsystem_vendor) &&
  12516. (subsys_id_to_phy_id[i].subsys_devid ==
  12517. tp->pdev->subsystem_device))
  12518. return &subsys_id_to_phy_id[i];
  12519. }
  12520. return NULL;
  12521. }
  12522. static void tg3_get_eeprom_hw_cfg(struct tg3 *tp)
  12523. {
  12524. u32 val;
  12525. tp->phy_id = TG3_PHY_ID_INVALID;
  12526. tp->led_ctrl = LED_CTRL_MODE_PHY_1;
  12527. /* Assume an onboard device and WOL capable by default. */
  12528. tg3_flag_set(tp, EEPROM_WRITE_PROT);
  12529. tg3_flag_set(tp, WOL_CAP);
  12530. if (tg3_asic_rev(tp) == ASIC_REV_5906) {
  12531. if (!(tr32(PCIE_TRANSACTION_CFG) & PCIE_TRANS_CFG_LOM)) {
  12532. tg3_flag_clear(tp, EEPROM_WRITE_PROT);
  12533. tg3_flag_set(tp, IS_NIC);
  12534. }
  12535. val = tr32(VCPU_CFGSHDW);
  12536. if (val & VCPU_CFGSHDW_ASPM_DBNC)
  12537. tg3_flag_set(tp, ASPM_WORKAROUND);
  12538. if ((val & VCPU_CFGSHDW_WOL_ENABLE) &&
  12539. (val & VCPU_CFGSHDW_WOL_MAGPKT)) {
  12540. tg3_flag_set(tp, WOL_ENABLE);
  12541. device_set_wakeup_enable(&tp->pdev->dev, true);
  12542. }
  12543. goto done;
  12544. }
  12545. tg3_read_mem(tp, NIC_SRAM_DATA_SIG, &val);
  12546. if (val == NIC_SRAM_DATA_SIG_MAGIC) {
  12547. u32 nic_cfg, led_cfg;
  12548. u32 cfg2 = 0, cfg4 = 0, cfg5 = 0;
  12549. u32 nic_phy_id, ver, eeprom_phy_id;
  12550. int eeprom_phy_serdes = 0;
  12551. tg3_read_mem(tp, NIC_SRAM_DATA_CFG, &nic_cfg);
  12552. tp->nic_sram_data_cfg = nic_cfg;
  12553. tg3_read_mem(tp, NIC_SRAM_DATA_VER, &ver);
  12554. ver >>= NIC_SRAM_DATA_VER_SHIFT;
  12555. if (tg3_asic_rev(tp) != ASIC_REV_5700 &&
  12556. tg3_asic_rev(tp) != ASIC_REV_5701 &&
  12557. tg3_asic_rev(tp) != ASIC_REV_5703 &&
  12558. (ver > 0) && (ver < 0x100))
  12559. tg3_read_mem(tp, NIC_SRAM_DATA_CFG_2, &cfg2);
  12560. if (tg3_asic_rev(tp) == ASIC_REV_5785)
  12561. tg3_read_mem(tp, NIC_SRAM_DATA_CFG_4, &cfg4);
  12562. if (tg3_asic_rev(tp) == ASIC_REV_5717 ||
  12563. tg3_asic_rev(tp) == ASIC_REV_5719 ||
  12564. tg3_asic_rev(tp) == ASIC_REV_5720)
  12565. tg3_read_mem(tp, NIC_SRAM_DATA_CFG_5, &cfg5);
  12566. if ((nic_cfg & NIC_SRAM_DATA_CFG_PHY_TYPE_MASK) ==
  12567. NIC_SRAM_DATA_CFG_PHY_TYPE_FIBER)
  12568. eeprom_phy_serdes = 1;
  12569. tg3_read_mem(tp, NIC_SRAM_DATA_PHY_ID, &nic_phy_id);
  12570. if (nic_phy_id != 0) {
  12571. u32 id1 = nic_phy_id & NIC_SRAM_DATA_PHY_ID1_MASK;
  12572. u32 id2 = nic_phy_id & NIC_SRAM_DATA_PHY_ID2_MASK;
  12573. eeprom_phy_id = (id1 >> 16) << 10;
  12574. eeprom_phy_id |= (id2 & 0xfc00) << 16;
  12575. eeprom_phy_id |= (id2 & 0x03ff) << 0;
  12576. } else
  12577. eeprom_phy_id = 0;
  12578. tp->phy_id = eeprom_phy_id;
  12579. if (eeprom_phy_serdes) {
  12580. if (!tg3_flag(tp, 5705_PLUS))
  12581. tp->phy_flags |= TG3_PHYFLG_PHY_SERDES;
  12582. else
  12583. tp->phy_flags |= TG3_PHYFLG_MII_SERDES;
  12584. }
  12585. if (tg3_flag(tp, 5750_PLUS))
  12586. led_cfg = cfg2 & (NIC_SRAM_DATA_CFG_LED_MODE_MASK |
  12587. SHASTA_EXT_LED_MODE_MASK);
  12588. else
  12589. led_cfg = nic_cfg & NIC_SRAM_DATA_CFG_LED_MODE_MASK;
  12590. switch (led_cfg) {
  12591. default:
  12592. case NIC_SRAM_DATA_CFG_LED_MODE_PHY_1:
  12593. tp->led_ctrl = LED_CTRL_MODE_PHY_1;
  12594. break;
  12595. case NIC_SRAM_DATA_CFG_LED_MODE_PHY_2:
  12596. tp->led_ctrl = LED_CTRL_MODE_PHY_2;
  12597. break;
  12598. case NIC_SRAM_DATA_CFG_LED_MODE_MAC:
  12599. tp->led_ctrl = LED_CTRL_MODE_MAC;
  12600. /* Default to PHY_1_MODE if 0 (MAC_MODE) is
  12601. * read on some older 5700/5701 bootcode.
  12602. */
  12603. if (tg3_asic_rev(tp) == ASIC_REV_5700 ||
  12604. tg3_asic_rev(tp) == ASIC_REV_5701)
  12605. tp->led_ctrl = LED_CTRL_MODE_PHY_1;
  12606. break;
  12607. case SHASTA_EXT_LED_SHARED:
  12608. tp->led_ctrl = LED_CTRL_MODE_SHARED;
  12609. if (tg3_chip_rev_id(tp) != CHIPREV_ID_5750_A0 &&
  12610. tg3_chip_rev_id(tp) != CHIPREV_ID_5750_A1)
  12611. tp->led_ctrl |= (LED_CTRL_MODE_PHY_1 |
  12612. LED_CTRL_MODE_PHY_2);
  12613. if (tg3_flag(tp, 5717_PLUS) ||
  12614. tg3_asic_rev(tp) == ASIC_REV_5762)
  12615. tp->led_ctrl |= LED_CTRL_BLINK_RATE_OVERRIDE |
  12616. LED_CTRL_BLINK_RATE_MASK;
  12617. break;
  12618. case SHASTA_EXT_LED_MAC:
  12619. tp->led_ctrl = LED_CTRL_MODE_SHASTA_MAC;
  12620. break;
  12621. case SHASTA_EXT_LED_COMBO:
  12622. tp->led_ctrl = LED_CTRL_MODE_COMBO;
  12623. if (tg3_chip_rev_id(tp) != CHIPREV_ID_5750_A0)
  12624. tp->led_ctrl |= (LED_CTRL_MODE_PHY_1 |
  12625. LED_CTRL_MODE_PHY_2);
  12626. break;
  12627. }
  12628. if ((tg3_asic_rev(tp) == ASIC_REV_5700 ||
  12629. tg3_asic_rev(tp) == ASIC_REV_5701) &&
  12630. tp->pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)
  12631. tp->led_ctrl = LED_CTRL_MODE_PHY_2;
  12632. if (tg3_chip_rev(tp) == CHIPREV_5784_AX)
  12633. tp->led_ctrl = LED_CTRL_MODE_PHY_1;
  12634. if (nic_cfg & NIC_SRAM_DATA_CFG_EEPROM_WP) {
  12635. tg3_flag_set(tp, EEPROM_WRITE_PROT);
  12636. if ((tp->pdev->subsystem_vendor ==
  12637. PCI_VENDOR_ID_ARIMA) &&
  12638. (tp->pdev->subsystem_device == 0x205a ||
  12639. tp->pdev->subsystem_device == 0x2063))
  12640. tg3_flag_clear(tp, EEPROM_WRITE_PROT);
  12641. } else {
  12642. tg3_flag_clear(tp, EEPROM_WRITE_PROT);
  12643. tg3_flag_set(tp, IS_NIC);
  12644. }
  12645. if (nic_cfg & NIC_SRAM_DATA_CFG_ASF_ENABLE) {
  12646. tg3_flag_set(tp, ENABLE_ASF);
  12647. if (tg3_flag(tp, 5750_PLUS))
  12648. tg3_flag_set(tp, ASF_NEW_HANDSHAKE);
  12649. }
  12650. if ((nic_cfg & NIC_SRAM_DATA_CFG_APE_ENABLE) &&
  12651. tg3_flag(tp, 5750_PLUS))
  12652. tg3_flag_set(tp, ENABLE_APE);
  12653. if (tp->phy_flags & TG3_PHYFLG_ANY_SERDES &&
  12654. !(nic_cfg & NIC_SRAM_DATA_CFG_FIBER_WOL))
  12655. tg3_flag_clear(tp, WOL_CAP);
  12656. if (tg3_flag(tp, WOL_CAP) &&
  12657. (nic_cfg & NIC_SRAM_DATA_CFG_WOL_ENABLE)) {
  12658. tg3_flag_set(tp, WOL_ENABLE);
  12659. device_set_wakeup_enable(&tp->pdev->dev, true);
  12660. }
  12661. if (cfg2 & (1 << 17))
  12662. tp->phy_flags |= TG3_PHYFLG_CAPACITIVE_COUPLING;
  12663. /* serdes signal pre-emphasis in register 0x590 set by */
  12664. /* bootcode if bit 18 is set */
  12665. if (cfg2 & (1 << 18))
  12666. tp->phy_flags |= TG3_PHYFLG_SERDES_PREEMPHASIS;
  12667. if ((tg3_flag(tp, 57765_PLUS) ||
  12668. (tg3_asic_rev(tp) == ASIC_REV_5784 &&
  12669. tg3_chip_rev(tp) != CHIPREV_5784_AX)) &&
  12670. (cfg2 & NIC_SRAM_DATA_CFG_2_APD_EN))
  12671. tp->phy_flags |= TG3_PHYFLG_ENABLE_APD;
  12672. if (tg3_flag(tp, PCI_EXPRESS)) {
  12673. u32 cfg3;
  12674. tg3_read_mem(tp, NIC_SRAM_DATA_CFG_3, &cfg3);
  12675. if (tg3_asic_rev(tp) != ASIC_REV_5785 &&
  12676. !tg3_flag(tp, 57765_PLUS) &&
  12677. (cfg3 & NIC_SRAM_ASPM_DEBOUNCE))
  12678. tg3_flag_set(tp, ASPM_WORKAROUND);
  12679. if (cfg3 & NIC_SRAM_LNK_FLAP_AVOID)
  12680. tp->phy_flags |= TG3_PHYFLG_KEEP_LINK_ON_PWRDN;
  12681. if (cfg3 & NIC_SRAM_1G_ON_VAUX_OK)
  12682. tp->phy_flags |= TG3_PHYFLG_1G_ON_VAUX_OK;
  12683. }
  12684. if (cfg4 & NIC_SRAM_RGMII_INBAND_DISABLE)
  12685. tg3_flag_set(tp, RGMII_INBAND_DISABLE);
  12686. if (cfg4 & NIC_SRAM_RGMII_EXT_IBND_RX_EN)
  12687. tg3_flag_set(tp, RGMII_EXT_IBND_RX_EN);
  12688. if (cfg4 & NIC_SRAM_RGMII_EXT_IBND_TX_EN)
  12689. tg3_flag_set(tp, RGMII_EXT_IBND_TX_EN);
  12690. if (cfg5 & NIC_SRAM_DISABLE_1G_HALF_ADV)
  12691. tp->phy_flags |= TG3_PHYFLG_DISABLE_1G_HD_ADV;
  12692. }
  12693. done:
  12694. if (tg3_flag(tp, WOL_CAP))
  12695. device_set_wakeup_enable(&tp->pdev->dev,
  12696. tg3_flag(tp, WOL_ENABLE));
  12697. else
  12698. device_set_wakeup_capable(&tp->pdev->dev, false);
  12699. }
  12700. static int tg3_ape_otp_read(struct tg3 *tp, u32 offset, u32 *val)
  12701. {
  12702. int i, err;
  12703. u32 val2, off = offset * 8;
  12704. err = tg3_nvram_lock(tp);
  12705. if (err)
  12706. return err;
  12707. tg3_ape_write32(tp, TG3_APE_OTP_ADDR, off | APE_OTP_ADDR_CPU_ENABLE);
  12708. tg3_ape_write32(tp, TG3_APE_OTP_CTRL, APE_OTP_CTRL_PROG_EN |
  12709. APE_OTP_CTRL_CMD_RD | APE_OTP_CTRL_START);
  12710. tg3_ape_read32(tp, TG3_APE_OTP_CTRL);
  12711. udelay(10);
  12712. for (i = 0; i < 100; i++) {
  12713. val2 = tg3_ape_read32(tp, TG3_APE_OTP_STATUS);
  12714. if (val2 & APE_OTP_STATUS_CMD_DONE) {
  12715. *val = tg3_ape_read32(tp, TG3_APE_OTP_RD_DATA);
  12716. break;
  12717. }
  12718. udelay(10);
  12719. }
  12720. tg3_ape_write32(tp, TG3_APE_OTP_CTRL, 0);
  12721. tg3_nvram_unlock(tp);
  12722. if (val2 & APE_OTP_STATUS_CMD_DONE)
  12723. return 0;
  12724. return -EBUSY;
  12725. }
  12726. static int tg3_issue_otp_command(struct tg3 *tp, u32 cmd)
  12727. {
  12728. int i;
  12729. u32 val;
  12730. tw32(OTP_CTRL, cmd | OTP_CTRL_OTP_CMD_START);
  12731. tw32(OTP_CTRL, cmd);
  12732. /* Wait for up to 1 ms for command to execute. */
  12733. for (i = 0; i < 100; i++) {
  12734. val = tr32(OTP_STATUS);
  12735. if (val & OTP_STATUS_CMD_DONE)
  12736. break;
  12737. udelay(10);
  12738. }
  12739. return (val & OTP_STATUS_CMD_DONE) ? 0 : -EBUSY;
  12740. }
  12741. /* Read the gphy configuration from the OTP region of the chip. The gphy
  12742. * configuration is a 32-bit value that straddles the alignment boundary.
  12743. * We do two 32-bit reads and then shift and merge the results.
  12744. */
  12745. static u32 tg3_read_otp_phycfg(struct tg3 *tp)
  12746. {
  12747. u32 bhalf_otp, thalf_otp;
  12748. tw32(OTP_MODE, OTP_MODE_OTP_THRU_GRC);
  12749. if (tg3_issue_otp_command(tp, OTP_CTRL_OTP_CMD_INIT))
  12750. return 0;
  12751. tw32(OTP_ADDRESS, OTP_ADDRESS_MAGIC1);
  12752. if (tg3_issue_otp_command(tp, OTP_CTRL_OTP_CMD_READ))
  12753. return 0;
  12754. thalf_otp = tr32(OTP_READ_DATA);
  12755. tw32(OTP_ADDRESS, OTP_ADDRESS_MAGIC2);
  12756. if (tg3_issue_otp_command(tp, OTP_CTRL_OTP_CMD_READ))
  12757. return 0;
  12758. bhalf_otp = tr32(OTP_READ_DATA);
  12759. return ((thalf_otp & 0x0000ffff) << 16) | (bhalf_otp >> 16);
  12760. }
  12761. static void tg3_phy_init_link_config(struct tg3 *tp)
  12762. {
  12763. u32 adv = ADVERTISED_Autoneg;
  12764. if (!(tp->phy_flags & TG3_PHYFLG_10_100_ONLY)) {
  12765. if (!(tp->phy_flags & TG3_PHYFLG_DISABLE_1G_HD_ADV))
  12766. adv |= ADVERTISED_1000baseT_Half;
  12767. adv |= ADVERTISED_1000baseT_Full;
  12768. }
  12769. if (!(tp->phy_flags & TG3_PHYFLG_ANY_SERDES))
  12770. adv |= ADVERTISED_100baseT_Half |
  12771. ADVERTISED_100baseT_Full |
  12772. ADVERTISED_10baseT_Half |
  12773. ADVERTISED_10baseT_Full |
  12774. ADVERTISED_TP;
  12775. else
  12776. adv |= ADVERTISED_FIBRE;
  12777. tp->link_config.advertising = adv;
  12778. tp->link_config.speed = SPEED_UNKNOWN;
  12779. tp->link_config.duplex = DUPLEX_UNKNOWN;
  12780. tp->link_config.autoneg = AUTONEG_ENABLE;
  12781. tp->link_config.active_speed = SPEED_UNKNOWN;
  12782. tp->link_config.active_duplex = DUPLEX_UNKNOWN;
  12783. tp->old_link = -1;
  12784. }
  12785. static int tg3_phy_probe(struct tg3 *tp)
  12786. {
  12787. u32 hw_phy_id_1, hw_phy_id_2;
  12788. u32 hw_phy_id, hw_phy_id_masked;
  12789. int err;
  12790. /* flow control autonegotiation is default behavior */
  12791. tg3_flag_set(tp, PAUSE_AUTONEG);
  12792. tp->link_config.flowctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  12793. if (tg3_flag(tp, ENABLE_APE)) {
  12794. switch (tp->pci_fn) {
  12795. case 0:
  12796. tp->phy_ape_lock = TG3_APE_LOCK_PHY0;
  12797. break;
  12798. case 1:
  12799. tp->phy_ape_lock = TG3_APE_LOCK_PHY1;
  12800. break;
  12801. case 2:
  12802. tp->phy_ape_lock = TG3_APE_LOCK_PHY2;
  12803. break;
  12804. case 3:
  12805. tp->phy_ape_lock = TG3_APE_LOCK_PHY3;
  12806. break;
  12807. }
  12808. }
  12809. if (!tg3_flag(tp, ENABLE_ASF) &&
  12810. !(tp->phy_flags & TG3_PHYFLG_ANY_SERDES) &&
  12811. !(tp->phy_flags & TG3_PHYFLG_10_100_ONLY))
  12812. tp->phy_flags &= ~(TG3_PHYFLG_1G_ON_VAUX_OK |
  12813. TG3_PHYFLG_KEEP_LINK_ON_PWRDN);
  12814. if (tg3_flag(tp, USE_PHYLIB))
  12815. return tg3_phy_init(tp);
  12816. /* Reading the PHY ID register can conflict with ASF
  12817. * firmware access to the PHY hardware.
  12818. */
  12819. err = 0;
  12820. if (tg3_flag(tp, ENABLE_ASF) || tg3_flag(tp, ENABLE_APE)) {
  12821. hw_phy_id = hw_phy_id_masked = TG3_PHY_ID_INVALID;
  12822. } else {
  12823. /* Now read the physical PHY_ID from the chip and verify
  12824. * that it is sane. If it doesn't look good, we fall back
  12825. * to either the hard-coded table based PHY_ID and failing
  12826. * that the value found in the eeprom area.
  12827. */
  12828. err |= tg3_readphy(tp, MII_PHYSID1, &hw_phy_id_1);
  12829. err |= tg3_readphy(tp, MII_PHYSID2, &hw_phy_id_2);
  12830. hw_phy_id = (hw_phy_id_1 & 0xffff) << 10;
  12831. hw_phy_id |= (hw_phy_id_2 & 0xfc00) << 16;
  12832. hw_phy_id |= (hw_phy_id_2 & 0x03ff) << 0;
  12833. hw_phy_id_masked = hw_phy_id & TG3_PHY_ID_MASK;
  12834. }
  12835. if (!err && TG3_KNOWN_PHY_ID(hw_phy_id_masked)) {
  12836. tp->phy_id = hw_phy_id;
  12837. if (hw_phy_id_masked == TG3_PHY_ID_BCM8002)
  12838. tp->phy_flags |= TG3_PHYFLG_PHY_SERDES;
  12839. else
  12840. tp->phy_flags &= ~TG3_PHYFLG_PHY_SERDES;
  12841. } else {
  12842. if (tp->phy_id != TG3_PHY_ID_INVALID) {
  12843. /* Do nothing, phy ID already set up in
  12844. * tg3_get_eeprom_hw_cfg().
  12845. */
  12846. } else {
  12847. struct subsys_tbl_ent *p;
  12848. /* No eeprom signature? Try the hardcoded
  12849. * subsys device table.
  12850. */
  12851. p = tg3_lookup_by_subsys(tp);
  12852. if (p) {
  12853. tp->phy_id = p->phy_id;
  12854. } else if (!tg3_flag(tp, IS_SSB_CORE)) {
  12855. /* For now we saw the IDs 0xbc050cd0,
  12856. * 0xbc050f80 and 0xbc050c30 on devices
  12857. * connected to an BCM4785 and there are
  12858. * probably more. Just assume that the phy is
  12859. * supported when it is connected to a SSB core
  12860. * for now.
  12861. */
  12862. return -ENODEV;
  12863. }
  12864. if (!tp->phy_id ||
  12865. tp->phy_id == TG3_PHY_ID_BCM8002)
  12866. tp->phy_flags |= TG3_PHYFLG_PHY_SERDES;
  12867. }
  12868. }
  12869. if (!(tp->phy_flags & TG3_PHYFLG_ANY_SERDES) &&
  12870. (tg3_asic_rev(tp) == ASIC_REV_5719 ||
  12871. tg3_asic_rev(tp) == ASIC_REV_5720 ||
  12872. tg3_asic_rev(tp) == ASIC_REV_57766 ||
  12873. tg3_asic_rev(tp) == ASIC_REV_5762 ||
  12874. (tg3_asic_rev(tp) == ASIC_REV_5717 &&
  12875. tg3_chip_rev_id(tp) != CHIPREV_ID_5717_A0) ||
  12876. (tg3_asic_rev(tp) == ASIC_REV_57765 &&
  12877. tg3_chip_rev_id(tp) != CHIPREV_ID_57765_A0))) {
  12878. tp->phy_flags |= TG3_PHYFLG_EEE_CAP;
  12879. tp->eee.supported = SUPPORTED_100baseT_Full |
  12880. SUPPORTED_1000baseT_Full;
  12881. tp->eee.advertised = ADVERTISED_100baseT_Full |
  12882. ADVERTISED_1000baseT_Full;
  12883. tp->eee.eee_enabled = 1;
  12884. tp->eee.tx_lpi_enabled = 1;
  12885. tp->eee.tx_lpi_timer = TG3_CPMU_DBTMR1_LNKIDLE_2047US;
  12886. }
  12887. tg3_phy_init_link_config(tp);
  12888. if (!(tp->phy_flags & TG3_PHYFLG_KEEP_LINK_ON_PWRDN) &&
  12889. !(tp->phy_flags & TG3_PHYFLG_ANY_SERDES) &&
  12890. !tg3_flag(tp, ENABLE_APE) &&
  12891. !tg3_flag(tp, ENABLE_ASF)) {
  12892. u32 bmsr, dummy;
  12893. tg3_readphy(tp, MII_BMSR, &bmsr);
  12894. if (!tg3_readphy(tp, MII_BMSR, &bmsr) &&
  12895. (bmsr & BMSR_LSTATUS))
  12896. goto skip_phy_reset;
  12897. err = tg3_phy_reset(tp);
  12898. if (err)
  12899. return err;
  12900. tg3_phy_set_wirespeed(tp);
  12901. if (!tg3_phy_copper_an_config_ok(tp, &dummy)) {
  12902. tg3_phy_autoneg_cfg(tp, tp->link_config.advertising,
  12903. tp->link_config.flowctrl);
  12904. tg3_writephy(tp, MII_BMCR,
  12905. BMCR_ANENABLE | BMCR_ANRESTART);
  12906. }
  12907. }
  12908. skip_phy_reset:
  12909. if ((tp->phy_id & TG3_PHY_ID_MASK) == TG3_PHY_ID_BCM5401) {
  12910. err = tg3_init_5401phy_dsp(tp);
  12911. if (err)
  12912. return err;
  12913. err = tg3_init_5401phy_dsp(tp);
  12914. }
  12915. return err;
  12916. }
  12917. static void tg3_read_vpd(struct tg3 *tp)
  12918. {
  12919. u8 *vpd_data;
  12920. unsigned int block_end, rosize, len;
  12921. u32 vpdlen;
  12922. int j, i = 0;
  12923. vpd_data = (u8 *)tg3_vpd_readblock(tp, &vpdlen);
  12924. if (!vpd_data)
  12925. goto out_no_vpd;
  12926. i = pci_vpd_find_tag(vpd_data, 0, vpdlen, PCI_VPD_LRDT_RO_DATA);
  12927. if (i < 0)
  12928. goto out_not_found;
  12929. rosize = pci_vpd_lrdt_size(&vpd_data[i]);
  12930. block_end = i + PCI_VPD_LRDT_TAG_SIZE + rosize;
  12931. i += PCI_VPD_LRDT_TAG_SIZE;
  12932. if (block_end > vpdlen)
  12933. goto out_not_found;
  12934. j = pci_vpd_find_info_keyword(vpd_data, i, rosize,
  12935. PCI_VPD_RO_KEYWORD_MFR_ID);
  12936. if (j > 0) {
  12937. len = pci_vpd_info_field_size(&vpd_data[j]);
  12938. j += PCI_VPD_INFO_FLD_HDR_SIZE;
  12939. if (j + len > block_end || len != 4 ||
  12940. memcmp(&vpd_data[j], "1028", 4))
  12941. goto partno;
  12942. j = pci_vpd_find_info_keyword(vpd_data, i, rosize,
  12943. PCI_VPD_RO_KEYWORD_VENDOR0);
  12944. if (j < 0)
  12945. goto partno;
  12946. len = pci_vpd_info_field_size(&vpd_data[j]);
  12947. j += PCI_VPD_INFO_FLD_HDR_SIZE;
  12948. if (j + len > block_end)
  12949. goto partno;
  12950. if (len >= sizeof(tp->fw_ver))
  12951. len = sizeof(tp->fw_ver) - 1;
  12952. memset(tp->fw_ver, 0, sizeof(tp->fw_ver));
  12953. snprintf(tp->fw_ver, sizeof(tp->fw_ver), "%.*s bc ", len,
  12954. &vpd_data[j]);
  12955. }
  12956. partno:
  12957. i = pci_vpd_find_info_keyword(vpd_data, i, rosize,
  12958. PCI_VPD_RO_KEYWORD_PARTNO);
  12959. if (i < 0)
  12960. goto out_not_found;
  12961. len = pci_vpd_info_field_size(&vpd_data[i]);
  12962. i += PCI_VPD_INFO_FLD_HDR_SIZE;
  12963. if (len > TG3_BPN_SIZE ||
  12964. (len + i) > vpdlen)
  12965. goto out_not_found;
  12966. memcpy(tp->board_part_number, &vpd_data[i], len);
  12967. out_not_found:
  12968. kfree(vpd_data);
  12969. if (tp->board_part_number[0])
  12970. return;
  12971. out_no_vpd:
  12972. if (tg3_asic_rev(tp) == ASIC_REV_5717) {
  12973. if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_5717 ||
  12974. tp->pdev->device == TG3PCI_DEVICE_TIGON3_5717_C)
  12975. strcpy(tp->board_part_number, "BCM5717");
  12976. else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_5718)
  12977. strcpy(tp->board_part_number, "BCM5718");
  12978. else
  12979. goto nomatch;
  12980. } else if (tg3_asic_rev(tp) == ASIC_REV_57780) {
  12981. if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57780)
  12982. strcpy(tp->board_part_number, "BCM57780");
  12983. else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57760)
  12984. strcpy(tp->board_part_number, "BCM57760");
  12985. else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57790)
  12986. strcpy(tp->board_part_number, "BCM57790");
  12987. else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57788)
  12988. strcpy(tp->board_part_number, "BCM57788");
  12989. else
  12990. goto nomatch;
  12991. } else if (tg3_asic_rev(tp) == ASIC_REV_57765) {
  12992. if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57761)
  12993. strcpy(tp->board_part_number, "BCM57761");
  12994. else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57765)
  12995. strcpy(tp->board_part_number, "BCM57765");
  12996. else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57781)
  12997. strcpy(tp->board_part_number, "BCM57781");
  12998. else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57785)
  12999. strcpy(tp->board_part_number, "BCM57785");
  13000. else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57791)
  13001. strcpy(tp->board_part_number, "BCM57791");
  13002. else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57795)
  13003. strcpy(tp->board_part_number, "BCM57795");
  13004. else
  13005. goto nomatch;
  13006. } else if (tg3_asic_rev(tp) == ASIC_REV_57766) {
  13007. if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57762)
  13008. strcpy(tp->board_part_number, "BCM57762");
  13009. else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57766)
  13010. strcpy(tp->board_part_number, "BCM57766");
  13011. else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57782)
  13012. strcpy(tp->board_part_number, "BCM57782");
  13013. else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57786)
  13014. strcpy(tp->board_part_number, "BCM57786");
  13015. else
  13016. goto nomatch;
  13017. } else if (tg3_asic_rev(tp) == ASIC_REV_5906) {
  13018. strcpy(tp->board_part_number, "BCM95906");
  13019. } else {
  13020. nomatch:
  13021. strcpy(tp->board_part_number, "none");
  13022. }
  13023. }
  13024. static int tg3_fw_img_is_valid(struct tg3 *tp, u32 offset)
  13025. {
  13026. u32 val;
  13027. if (tg3_nvram_read(tp, offset, &val) ||
  13028. (val & 0xfc000000) != 0x0c000000 ||
  13029. tg3_nvram_read(tp, offset + 4, &val) ||
  13030. val != 0)
  13031. return 0;
  13032. return 1;
  13033. }
  13034. static void tg3_read_bc_ver(struct tg3 *tp)
  13035. {
  13036. u32 val, offset, start, ver_offset;
  13037. int i, dst_off;
  13038. bool newver = false;
  13039. if (tg3_nvram_read(tp, 0xc, &offset) ||
  13040. tg3_nvram_read(tp, 0x4, &start))
  13041. return;
  13042. offset = tg3_nvram_logical_addr(tp, offset);
  13043. if (tg3_nvram_read(tp, offset, &val))
  13044. return;
  13045. if ((val & 0xfc000000) == 0x0c000000) {
  13046. if (tg3_nvram_read(tp, offset + 4, &val))
  13047. return;
  13048. if (val == 0)
  13049. newver = true;
  13050. }
  13051. dst_off = strlen(tp->fw_ver);
  13052. if (newver) {
  13053. if (TG3_VER_SIZE - dst_off < 16 ||
  13054. tg3_nvram_read(tp, offset + 8, &ver_offset))
  13055. return;
  13056. offset = offset + ver_offset - start;
  13057. for (i = 0; i < 16; i += 4) {
  13058. __be32 v;
  13059. if (tg3_nvram_read_be32(tp, offset + i, &v))
  13060. return;
  13061. memcpy(tp->fw_ver + dst_off + i, &v, sizeof(v));
  13062. }
  13063. } else {
  13064. u32 major, minor;
  13065. if (tg3_nvram_read(tp, TG3_NVM_PTREV_BCVER, &ver_offset))
  13066. return;
  13067. major = (ver_offset & TG3_NVM_BCVER_MAJMSK) >>
  13068. TG3_NVM_BCVER_MAJSFT;
  13069. minor = ver_offset & TG3_NVM_BCVER_MINMSK;
  13070. snprintf(&tp->fw_ver[dst_off], TG3_VER_SIZE - dst_off,
  13071. "v%d.%02d", major, minor);
  13072. }
  13073. }
  13074. static void tg3_read_hwsb_ver(struct tg3 *tp)
  13075. {
  13076. u32 val, major, minor;
  13077. /* Use native endian representation */
  13078. if (tg3_nvram_read(tp, TG3_NVM_HWSB_CFG1, &val))
  13079. return;
  13080. major = (val & TG3_NVM_HWSB_CFG1_MAJMSK) >>
  13081. TG3_NVM_HWSB_CFG1_MAJSFT;
  13082. minor = (val & TG3_NVM_HWSB_CFG1_MINMSK) >>
  13083. TG3_NVM_HWSB_CFG1_MINSFT;
  13084. snprintf(&tp->fw_ver[0], 32, "sb v%d.%02d", major, minor);
  13085. }
  13086. static void tg3_read_sb_ver(struct tg3 *tp, u32 val)
  13087. {
  13088. u32 offset, major, minor, build;
  13089. strncat(tp->fw_ver, "sb", TG3_VER_SIZE - strlen(tp->fw_ver) - 1);
  13090. if ((val & TG3_EEPROM_SB_FORMAT_MASK) != TG3_EEPROM_SB_FORMAT_1)
  13091. return;
  13092. switch (val & TG3_EEPROM_SB_REVISION_MASK) {
  13093. case TG3_EEPROM_SB_REVISION_0:
  13094. offset = TG3_EEPROM_SB_F1R0_EDH_OFF;
  13095. break;
  13096. case TG3_EEPROM_SB_REVISION_2:
  13097. offset = TG3_EEPROM_SB_F1R2_EDH_OFF;
  13098. break;
  13099. case TG3_EEPROM_SB_REVISION_3:
  13100. offset = TG3_EEPROM_SB_F1R3_EDH_OFF;
  13101. break;
  13102. case TG3_EEPROM_SB_REVISION_4:
  13103. offset = TG3_EEPROM_SB_F1R4_EDH_OFF;
  13104. break;
  13105. case TG3_EEPROM_SB_REVISION_5:
  13106. offset = TG3_EEPROM_SB_F1R5_EDH_OFF;
  13107. break;
  13108. case TG3_EEPROM_SB_REVISION_6:
  13109. offset = TG3_EEPROM_SB_F1R6_EDH_OFF;
  13110. break;
  13111. default:
  13112. return;
  13113. }
  13114. if (tg3_nvram_read(tp, offset, &val))
  13115. return;
  13116. build = (val & TG3_EEPROM_SB_EDH_BLD_MASK) >>
  13117. TG3_EEPROM_SB_EDH_BLD_SHFT;
  13118. major = (val & TG3_EEPROM_SB_EDH_MAJ_MASK) >>
  13119. TG3_EEPROM_SB_EDH_MAJ_SHFT;
  13120. minor = val & TG3_EEPROM_SB_EDH_MIN_MASK;
  13121. if (minor > 99 || build > 26)
  13122. return;
  13123. offset = strlen(tp->fw_ver);
  13124. snprintf(&tp->fw_ver[offset], TG3_VER_SIZE - offset,
  13125. " v%d.%02d", major, minor);
  13126. if (build > 0) {
  13127. offset = strlen(tp->fw_ver);
  13128. if (offset < TG3_VER_SIZE - 1)
  13129. tp->fw_ver[offset] = 'a' + build - 1;
  13130. }
  13131. }
  13132. static void tg3_read_mgmtfw_ver(struct tg3 *tp)
  13133. {
  13134. u32 val, offset, start;
  13135. int i, vlen;
  13136. for (offset = TG3_NVM_DIR_START;
  13137. offset < TG3_NVM_DIR_END;
  13138. offset += TG3_NVM_DIRENT_SIZE) {
  13139. if (tg3_nvram_read(tp, offset, &val))
  13140. return;
  13141. if ((val >> TG3_NVM_DIRTYPE_SHIFT) == TG3_NVM_DIRTYPE_ASFINI)
  13142. break;
  13143. }
  13144. if (offset == TG3_NVM_DIR_END)
  13145. return;
  13146. if (!tg3_flag(tp, 5705_PLUS))
  13147. start = 0x08000000;
  13148. else if (tg3_nvram_read(tp, offset - 4, &start))
  13149. return;
  13150. if (tg3_nvram_read(tp, offset + 4, &offset) ||
  13151. !tg3_fw_img_is_valid(tp, offset) ||
  13152. tg3_nvram_read(tp, offset + 8, &val))
  13153. return;
  13154. offset += val - start;
  13155. vlen = strlen(tp->fw_ver);
  13156. tp->fw_ver[vlen++] = ',';
  13157. tp->fw_ver[vlen++] = ' ';
  13158. for (i = 0; i < 4; i++) {
  13159. __be32 v;
  13160. if (tg3_nvram_read_be32(tp, offset, &v))
  13161. return;
  13162. offset += sizeof(v);
  13163. if (vlen > TG3_VER_SIZE - sizeof(v)) {
  13164. memcpy(&tp->fw_ver[vlen], &v, TG3_VER_SIZE - vlen);
  13165. break;
  13166. }
  13167. memcpy(&tp->fw_ver[vlen], &v, sizeof(v));
  13168. vlen += sizeof(v);
  13169. }
  13170. }
  13171. static void tg3_probe_ncsi(struct tg3 *tp)
  13172. {
  13173. u32 apedata;
  13174. apedata = tg3_ape_read32(tp, TG3_APE_SEG_SIG);
  13175. if (apedata != APE_SEG_SIG_MAGIC)
  13176. return;
  13177. apedata = tg3_ape_read32(tp, TG3_APE_FW_STATUS);
  13178. if (!(apedata & APE_FW_STATUS_READY))
  13179. return;
  13180. if (tg3_ape_read32(tp, TG3_APE_FW_FEATURES) & TG3_APE_FW_FEATURE_NCSI)
  13181. tg3_flag_set(tp, APE_HAS_NCSI);
  13182. }
  13183. static void tg3_read_dash_ver(struct tg3 *tp)
  13184. {
  13185. int vlen;
  13186. u32 apedata;
  13187. char *fwtype;
  13188. apedata = tg3_ape_read32(tp, TG3_APE_FW_VERSION);
  13189. if (tg3_flag(tp, APE_HAS_NCSI))
  13190. fwtype = "NCSI";
  13191. else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_5725)
  13192. fwtype = "SMASH";
  13193. else
  13194. fwtype = "DASH";
  13195. vlen = strlen(tp->fw_ver);
  13196. snprintf(&tp->fw_ver[vlen], TG3_VER_SIZE - vlen, " %s v%d.%d.%d.%d",
  13197. fwtype,
  13198. (apedata & APE_FW_VERSION_MAJMSK) >> APE_FW_VERSION_MAJSFT,
  13199. (apedata & APE_FW_VERSION_MINMSK) >> APE_FW_VERSION_MINSFT,
  13200. (apedata & APE_FW_VERSION_REVMSK) >> APE_FW_VERSION_REVSFT,
  13201. (apedata & APE_FW_VERSION_BLDMSK));
  13202. }
  13203. static void tg3_read_otp_ver(struct tg3 *tp)
  13204. {
  13205. u32 val, val2;
  13206. if (tg3_asic_rev(tp) != ASIC_REV_5762)
  13207. return;
  13208. if (!tg3_ape_otp_read(tp, OTP_ADDRESS_MAGIC0, &val) &&
  13209. !tg3_ape_otp_read(tp, OTP_ADDRESS_MAGIC0 + 4, &val2) &&
  13210. TG3_OTP_MAGIC0_VALID(val)) {
  13211. u64 val64 = (u64) val << 32 | val2;
  13212. u32 ver = 0;
  13213. int i, vlen;
  13214. for (i = 0; i < 7; i++) {
  13215. if ((val64 & 0xff) == 0)
  13216. break;
  13217. ver = val64 & 0xff;
  13218. val64 >>= 8;
  13219. }
  13220. vlen = strlen(tp->fw_ver);
  13221. snprintf(&tp->fw_ver[vlen], TG3_VER_SIZE - vlen, " .%02d", ver);
  13222. }
  13223. }
  13224. static void tg3_read_fw_ver(struct tg3 *tp)
  13225. {
  13226. u32 val;
  13227. bool vpd_vers = false;
  13228. if (tp->fw_ver[0] != 0)
  13229. vpd_vers = true;
  13230. if (tg3_flag(tp, NO_NVRAM)) {
  13231. strcat(tp->fw_ver, "sb");
  13232. tg3_read_otp_ver(tp);
  13233. return;
  13234. }
  13235. if (tg3_nvram_read(tp, 0, &val))
  13236. return;
  13237. if (val == TG3_EEPROM_MAGIC)
  13238. tg3_read_bc_ver(tp);
  13239. else if ((val & TG3_EEPROM_MAGIC_FW_MSK) == TG3_EEPROM_MAGIC_FW)
  13240. tg3_read_sb_ver(tp, val);
  13241. else if ((val & TG3_EEPROM_MAGIC_HW_MSK) == TG3_EEPROM_MAGIC_HW)
  13242. tg3_read_hwsb_ver(tp);
  13243. if (tg3_flag(tp, ENABLE_ASF)) {
  13244. if (tg3_flag(tp, ENABLE_APE)) {
  13245. tg3_probe_ncsi(tp);
  13246. if (!vpd_vers)
  13247. tg3_read_dash_ver(tp);
  13248. } else if (!vpd_vers) {
  13249. tg3_read_mgmtfw_ver(tp);
  13250. }
  13251. }
  13252. tp->fw_ver[TG3_VER_SIZE - 1] = 0;
  13253. }
  13254. static inline u32 tg3_rx_ret_ring_size(struct tg3 *tp)
  13255. {
  13256. if (tg3_flag(tp, LRG_PROD_RING_CAP))
  13257. return TG3_RX_RET_MAX_SIZE_5717;
  13258. else if (tg3_flag(tp, JUMBO_CAPABLE) && !tg3_flag(tp, 5780_CLASS))
  13259. return TG3_RX_RET_MAX_SIZE_5700;
  13260. else
  13261. return TG3_RX_RET_MAX_SIZE_5705;
  13262. }
  13263. static const struct pci_device_id tg3_write_reorder_chipsets[] = {
  13264. { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_FE_GATE_700C) },
  13265. { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_8131_BRIDGE) },
  13266. { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_8385_0) },
  13267. { },
  13268. };
  13269. static struct pci_dev *tg3_find_peer(struct tg3 *tp)
  13270. {
  13271. struct pci_dev *peer;
  13272. unsigned int func, devnr = tp->pdev->devfn & ~7;
  13273. for (func = 0; func < 8; func++) {
  13274. peer = pci_get_slot(tp->pdev->bus, devnr | func);
  13275. if (peer && peer != tp->pdev)
  13276. break;
  13277. pci_dev_put(peer);
  13278. }
  13279. /* 5704 can be configured in single-port mode, set peer to
  13280. * tp->pdev in that case.
  13281. */
  13282. if (!peer) {
  13283. peer = tp->pdev;
  13284. return peer;
  13285. }
  13286. /*
  13287. * We don't need to keep the refcount elevated; there's no way
  13288. * to remove one half of this device without removing the other
  13289. */
  13290. pci_dev_put(peer);
  13291. return peer;
  13292. }
  13293. static void tg3_detect_asic_rev(struct tg3 *tp, u32 misc_ctrl_reg)
  13294. {
  13295. tp->pci_chip_rev_id = misc_ctrl_reg >> MISC_HOST_CTRL_CHIPREV_SHIFT;
  13296. if (tg3_asic_rev(tp) == ASIC_REV_USE_PROD_ID_REG) {
  13297. u32 reg;
  13298. /* All devices that use the alternate
  13299. * ASIC REV location have a CPMU.
  13300. */
  13301. tg3_flag_set(tp, CPMU_PRESENT);
  13302. if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_5717 ||
  13303. tp->pdev->device == TG3PCI_DEVICE_TIGON3_5717_C ||
  13304. tp->pdev->device == TG3PCI_DEVICE_TIGON3_5718 ||
  13305. tp->pdev->device == TG3PCI_DEVICE_TIGON3_5719 ||
  13306. tp->pdev->device == TG3PCI_DEVICE_TIGON3_5720 ||
  13307. tp->pdev->device == TG3PCI_DEVICE_TIGON3_57767 ||
  13308. tp->pdev->device == TG3PCI_DEVICE_TIGON3_57764 ||
  13309. tp->pdev->device == TG3PCI_DEVICE_TIGON3_5762 ||
  13310. tp->pdev->device == TG3PCI_DEVICE_TIGON3_5725 ||
  13311. tp->pdev->device == TG3PCI_DEVICE_TIGON3_5727 ||
  13312. tp->pdev->device == TG3PCI_DEVICE_TIGON3_57787)
  13313. reg = TG3PCI_GEN2_PRODID_ASICREV;
  13314. else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57781 ||
  13315. tp->pdev->device == TG3PCI_DEVICE_TIGON3_57785 ||
  13316. tp->pdev->device == TG3PCI_DEVICE_TIGON3_57761 ||
  13317. tp->pdev->device == TG3PCI_DEVICE_TIGON3_57765 ||
  13318. tp->pdev->device == TG3PCI_DEVICE_TIGON3_57791 ||
  13319. tp->pdev->device == TG3PCI_DEVICE_TIGON3_57795 ||
  13320. tp->pdev->device == TG3PCI_DEVICE_TIGON3_57762 ||
  13321. tp->pdev->device == TG3PCI_DEVICE_TIGON3_57766 ||
  13322. tp->pdev->device == TG3PCI_DEVICE_TIGON3_57782 ||
  13323. tp->pdev->device == TG3PCI_DEVICE_TIGON3_57786)
  13324. reg = TG3PCI_GEN15_PRODID_ASICREV;
  13325. else
  13326. reg = TG3PCI_PRODID_ASICREV;
  13327. pci_read_config_dword(tp->pdev, reg, &tp->pci_chip_rev_id);
  13328. }
  13329. /* Wrong chip ID in 5752 A0. This code can be removed later
  13330. * as A0 is not in production.
  13331. */
  13332. if (tg3_chip_rev_id(tp) == CHIPREV_ID_5752_A0_HW)
  13333. tp->pci_chip_rev_id = CHIPREV_ID_5752_A0;
  13334. if (tg3_chip_rev_id(tp) == CHIPREV_ID_5717_C0)
  13335. tp->pci_chip_rev_id = CHIPREV_ID_5720_A0;
  13336. if (tg3_asic_rev(tp) == ASIC_REV_5717 ||
  13337. tg3_asic_rev(tp) == ASIC_REV_5719 ||
  13338. tg3_asic_rev(tp) == ASIC_REV_5720)
  13339. tg3_flag_set(tp, 5717_PLUS);
  13340. if (tg3_asic_rev(tp) == ASIC_REV_57765 ||
  13341. tg3_asic_rev(tp) == ASIC_REV_57766)
  13342. tg3_flag_set(tp, 57765_CLASS);
  13343. if (tg3_flag(tp, 57765_CLASS) || tg3_flag(tp, 5717_PLUS) ||
  13344. tg3_asic_rev(tp) == ASIC_REV_5762)
  13345. tg3_flag_set(tp, 57765_PLUS);
  13346. /* Intentionally exclude ASIC_REV_5906 */
  13347. if (tg3_asic_rev(tp) == ASIC_REV_5755 ||
  13348. tg3_asic_rev(tp) == ASIC_REV_5787 ||
  13349. tg3_asic_rev(tp) == ASIC_REV_5784 ||
  13350. tg3_asic_rev(tp) == ASIC_REV_5761 ||
  13351. tg3_asic_rev(tp) == ASIC_REV_5785 ||
  13352. tg3_asic_rev(tp) == ASIC_REV_57780 ||
  13353. tg3_flag(tp, 57765_PLUS))
  13354. tg3_flag_set(tp, 5755_PLUS);
  13355. if (tg3_asic_rev(tp) == ASIC_REV_5780 ||
  13356. tg3_asic_rev(tp) == ASIC_REV_5714)
  13357. tg3_flag_set(tp, 5780_CLASS);
  13358. if (tg3_asic_rev(tp) == ASIC_REV_5750 ||
  13359. tg3_asic_rev(tp) == ASIC_REV_5752 ||
  13360. tg3_asic_rev(tp) == ASIC_REV_5906 ||
  13361. tg3_flag(tp, 5755_PLUS) ||
  13362. tg3_flag(tp, 5780_CLASS))
  13363. tg3_flag_set(tp, 5750_PLUS);
  13364. if (tg3_asic_rev(tp) == ASIC_REV_5705 ||
  13365. tg3_flag(tp, 5750_PLUS))
  13366. tg3_flag_set(tp, 5705_PLUS);
  13367. }
  13368. static bool tg3_10_100_only_device(struct tg3 *tp,
  13369. const struct pci_device_id *ent)
  13370. {
  13371. u32 grc_misc_cfg = tr32(GRC_MISC_CFG) & GRC_MISC_CFG_BOARD_ID_MASK;
  13372. if ((tg3_asic_rev(tp) == ASIC_REV_5703 &&
  13373. (grc_misc_cfg == 0x8000 || grc_misc_cfg == 0x4000)) ||
  13374. (tp->phy_flags & TG3_PHYFLG_IS_FET))
  13375. return true;
  13376. if (ent->driver_data & TG3_DRV_DATA_FLAG_10_100_ONLY) {
  13377. if (tg3_asic_rev(tp) == ASIC_REV_5705) {
  13378. if (ent->driver_data & TG3_DRV_DATA_FLAG_5705_10_100)
  13379. return true;
  13380. } else {
  13381. return true;
  13382. }
  13383. }
  13384. return false;
  13385. }
  13386. static int tg3_get_invariants(struct tg3 *tp, const struct pci_device_id *ent)
  13387. {
  13388. u32 misc_ctrl_reg;
  13389. u32 pci_state_reg, grc_misc_cfg;
  13390. u32 val;
  13391. u16 pci_cmd;
  13392. int err;
  13393. /* Force memory write invalidate off. If we leave it on,
  13394. * then on 5700_BX chips we have to enable a workaround.
  13395. * The workaround is to set the TG3PCI_DMA_RW_CTRL boundary
  13396. * to match the cacheline size. The Broadcom driver have this
  13397. * workaround but turns MWI off all the times so never uses
  13398. * it. This seems to suggest that the workaround is insufficient.
  13399. */
  13400. pci_read_config_word(tp->pdev, PCI_COMMAND, &pci_cmd);
  13401. pci_cmd &= ~PCI_COMMAND_INVALIDATE;
  13402. pci_write_config_word(tp->pdev, PCI_COMMAND, pci_cmd);
  13403. /* Important! -- Make sure register accesses are byteswapped
  13404. * correctly. Also, for those chips that require it, make
  13405. * sure that indirect register accesses are enabled before
  13406. * the first operation.
  13407. */
  13408. pci_read_config_dword(tp->pdev, TG3PCI_MISC_HOST_CTRL,
  13409. &misc_ctrl_reg);
  13410. tp->misc_host_ctrl |= (misc_ctrl_reg &
  13411. MISC_HOST_CTRL_CHIPREV);
  13412. pci_write_config_dword(tp->pdev, TG3PCI_MISC_HOST_CTRL,
  13413. tp->misc_host_ctrl);
  13414. tg3_detect_asic_rev(tp, misc_ctrl_reg);
  13415. /* If we have 5702/03 A1 or A2 on certain ICH chipsets,
  13416. * we need to disable memory and use config. cycles
  13417. * only to access all registers. The 5702/03 chips
  13418. * can mistakenly decode the special cycles from the
  13419. * ICH chipsets as memory write cycles, causing corruption
  13420. * of register and memory space. Only certain ICH bridges
  13421. * will drive special cycles with non-zero data during the
  13422. * address phase which can fall within the 5703's address
  13423. * range. This is not an ICH bug as the PCI spec allows
  13424. * non-zero address during special cycles. However, only
  13425. * these ICH bridges are known to drive non-zero addresses
  13426. * during special cycles.
  13427. *
  13428. * Since special cycles do not cross PCI bridges, we only
  13429. * enable this workaround if the 5703 is on the secondary
  13430. * bus of these ICH bridges.
  13431. */
  13432. if ((tg3_chip_rev_id(tp) == CHIPREV_ID_5703_A1) ||
  13433. (tg3_chip_rev_id(tp) == CHIPREV_ID_5703_A2)) {
  13434. static struct tg3_dev_id {
  13435. u32 vendor;
  13436. u32 device;
  13437. u32 rev;
  13438. } ich_chipsets[] = {
  13439. { PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801AA_8,
  13440. PCI_ANY_ID },
  13441. { PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801AB_8,
  13442. PCI_ANY_ID },
  13443. { PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801BA_11,
  13444. 0xa },
  13445. { PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801BA_6,
  13446. PCI_ANY_ID },
  13447. { },
  13448. };
  13449. struct tg3_dev_id *pci_id = &ich_chipsets[0];
  13450. struct pci_dev *bridge = NULL;
  13451. while (pci_id->vendor != 0) {
  13452. bridge = pci_get_device(pci_id->vendor, pci_id->device,
  13453. bridge);
  13454. if (!bridge) {
  13455. pci_id++;
  13456. continue;
  13457. }
  13458. if (pci_id->rev != PCI_ANY_ID) {
  13459. if (bridge->revision > pci_id->rev)
  13460. continue;
  13461. }
  13462. if (bridge->subordinate &&
  13463. (bridge->subordinate->number ==
  13464. tp->pdev->bus->number)) {
  13465. tg3_flag_set(tp, ICH_WORKAROUND);
  13466. pci_dev_put(bridge);
  13467. break;
  13468. }
  13469. }
  13470. }
  13471. if (tg3_asic_rev(tp) == ASIC_REV_5701) {
  13472. static struct tg3_dev_id {
  13473. u32 vendor;
  13474. u32 device;
  13475. } bridge_chipsets[] = {
  13476. { PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_PXH_0 },
  13477. { PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_PXH_1 },
  13478. { },
  13479. };
  13480. struct tg3_dev_id *pci_id = &bridge_chipsets[0];
  13481. struct pci_dev *bridge = NULL;
  13482. while (pci_id->vendor != 0) {
  13483. bridge = pci_get_device(pci_id->vendor,
  13484. pci_id->device,
  13485. bridge);
  13486. if (!bridge) {
  13487. pci_id++;
  13488. continue;
  13489. }
  13490. if (bridge->subordinate &&
  13491. (bridge->subordinate->number <=
  13492. tp->pdev->bus->number) &&
  13493. (bridge->subordinate->busn_res.end >=
  13494. tp->pdev->bus->number)) {
  13495. tg3_flag_set(tp, 5701_DMA_BUG);
  13496. pci_dev_put(bridge);
  13497. break;
  13498. }
  13499. }
  13500. }
  13501. /* The EPB bridge inside 5714, 5715, and 5780 cannot support
  13502. * DMA addresses > 40-bit. This bridge may have other additional
  13503. * 57xx devices behind it in some 4-port NIC designs for example.
  13504. * Any tg3 device found behind the bridge will also need the 40-bit
  13505. * DMA workaround.
  13506. */
  13507. if (tg3_flag(tp, 5780_CLASS)) {
  13508. tg3_flag_set(tp, 40BIT_DMA_BUG);
  13509. tp->msi_cap = tp->pdev->msi_cap;
  13510. } else {
  13511. struct pci_dev *bridge = NULL;
  13512. do {
  13513. bridge = pci_get_device(PCI_VENDOR_ID_SERVERWORKS,
  13514. PCI_DEVICE_ID_SERVERWORKS_EPB,
  13515. bridge);
  13516. if (bridge && bridge->subordinate &&
  13517. (bridge->subordinate->number <=
  13518. tp->pdev->bus->number) &&
  13519. (bridge->subordinate->busn_res.end >=
  13520. tp->pdev->bus->number)) {
  13521. tg3_flag_set(tp, 40BIT_DMA_BUG);
  13522. pci_dev_put(bridge);
  13523. break;
  13524. }
  13525. } while (bridge);
  13526. }
  13527. if (tg3_asic_rev(tp) == ASIC_REV_5704 ||
  13528. tg3_asic_rev(tp) == ASIC_REV_5714)
  13529. tp->pdev_peer = tg3_find_peer(tp);
  13530. /* Determine TSO capabilities */
  13531. if (tg3_chip_rev_id(tp) == CHIPREV_ID_5719_A0)
  13532. ; /* Do nothing. HW bug. */
  13533. else if (tg3_flag(tp, 57765_PLUS))
  13534. tg3_flag_set(tp, HW_TSO_3);
  13535. else if (tg3_flag(tp, 5755_PLUS) ||
  13536. tg3_asic_rev(tp) == ASIC_REV_5906)
  13537. tg3_flag_set(tp, HW_TSO_2);
  13538. else if (tg3_flag(tp, 5750_PLUS)) {
  13539. tg3_flag_set(tp, HW_TSO_1);
  13540. tg3_flag_set(tp, TSO_BUG);
  13541. if (tg3_asic_rev(tp) == ASIC_REV_5750 &&
  13542. tg3_chip_rev_id(tp) >= CHIPREV_ID_5750_C2)
  13543. tg3_flag_clear(tp, TSO_BUG);
  13544. } else if (tg3_asic_rev(tp) != ASIC_REV_5700 &&
  13545. tg3_asic_rev(tp) != ASIC_REV_5701 &&
  13546. tg3_chip_rev_id(tp) != CHIPREV_ID_5705_A0) {
  13547. tg3_flag_set(tp, FW_TSO);
  13548. tg3_flag_set(tp, TSO_BUG);
  13549. if (tg3_asic_rev(tp) == ASIC_REV_5705)
  13550. tp->fw_needed = FIRMWARE_TG3TSO5;
  13551. else
  13552. tp->fw_needed = FIRMWARE_TG3TSO;
  13553. }
  13554. /* Selectively allow TSO based on operating conditions */
  13555. if (tg3_flag(tp, HW_TSO_1) ||
  13556. tg3_flag(tp, HW_TSO_2) ||
  13557. tg3_flag(tp, HW_TSO_3) ||
  13558. tg3_flag(tp, FW_TSO)) {
  13559. /* For firmware TSO, assume ASF is disabled.
  13560. * We'll disable TSO later if we discover ASF
  13561. * is enabled in tg3_get_eeprom_hw_cfg().
  13562. */
  13563. tg3_flag_set(tp, TSO_CAPABLE);
  13564. } else {
  13565. tg3_flag_clear(tp, TSO_CAPABLE);
  13566. tg3_flag_clear(tp, TSO_BUG);
  13567. tp->fw_needed = NULL;
  13568. }
  13569. if (tg3_chip_rev_id(tp) == CHIPREV_ID_5701_A0)
  13570. tp->fw_needed = FIRMWARE_TG3;
  13571. if (tg3_asic_rev(tp) == ASIC_REV_57766)
  13572. tp->fw_needed = FIRMWARE_TG357766;
  13573. tp->irq_max = 1;
  13574. if (tg3_flag(tp, 5750_PLUS)) {
  13575. tg3_flag_set(tp, SUPPORT_MSI);
  13576. if (tg3_chip_rev(tp) == CHIPREV_5750_AX ||
  13577. tg3_chip_rev(tp) == CHIPREV_5750_BX ||
  13578. (tg3_asic_rev(tp) == ASIC_REV_5714 &&
  13579. tg3_chip_rev_id(tp) <= CHIPREV_ID_5714_A2 &&
  13580. tp->pdev_peer == tp->pdev))
  13581. tg3_flag_clear(tp, SUPPORT_MSI);
  13582. if (tg3_flag(tp, 5755_PLUS) ||
  13583. tg3_asic_rev(tp) == ASIC_REV_5906) {
  13584. tg3_flag_set(tp, 1SHOT_MSI);
  13585. }
  13586. if (tg3_flag(tp, 57765_PLUS)) {
  13587. tg3_flag_set(tp, SUPPORT_MSIX);
  13588. tp->irq_max = TG3_IRQ_MAX_VECS;
  13589. }
  13590. }
  13591. tp->txq_max = 1;
  13592. tp->rxq_max = 1;
  13593. if (tp->irq_max > 1) {
  13594. tp->rxq_max = TG3_RSS_MAX_NUM_QS;
  13595. tg3_rss_init_dflt_indir_tbl(tp, TG3_RSS_MAX_NUM_QS);
  13596. if (tg3_asic_rev(tp) == ASIC_REV_5719 ||
  13597. tg3_asic_rev(tp) == ASIC_REV_5720)
  13598. tp->txq_max = tp->irq_max - 1;
  13599. }
  13600. if (tg3_flag(tp, 5755_PLUS) ||
  13601. tg3_asic_rev(tp) == ASIC_REV_5906)
  13602. tg3_flag_set(tp, SHORT_DMA_BUG);
  13603. if (tg3_asic_rev(tp) == ASIC_REV_5719)
  13604. tp->dma_limit = TG3_TX_BD_DMA_MAX_4K;
  13605. if (tg3_asic_rev(tp) == ASIC_REV_5717 ||
  13606. tg3_asic_rev(tp) == ASIC_REV_5719 ||
  13607. tg3_asic_rev(tp) == ASIC_REV_5720 ||
  13608. tg3_asic_rev(tp) == ASIC_REV_5762)
  13609. tg3_flag_set(tp, LRG_PROD_RING_CAP);
  13610. if (tg3_flag(tp, 57765_PLUS) &&
  13611. tg3_chip_rev_id(tp) != CHIPREV_ID_5719_A0)
  13612. tg3_flag_set(tp, USE_JUMBO_BDFLAG);
  13613. if (!tg3_flag(tp, 5705_PLUS) ||
  13614. tg3_flag(tp, 5780_CLASS) ||
  13615. tg3_flag(tp, USE_JUMBO_BDFLAG))
  13616. tg3_flag_set(tp, JUMBO_CAPABLE);
  13617. pci_read_config_dword(tp->pdev, TG3PCI_PCISTATE,
  13618. &pci_state_reg);
  13619. if (pci_is_pcie(tp->pdev)) {
  13620. u16 lnkctl;
  13621. tg3_flag_set(tp, PCI_EXPRESS);
  13622. pcie_capability_read_word(tp->pdev, PCI_EXP_LNKCTL, &lnkctl);
  13623. if (lnkctl & PCI_EXP_LNKCTL_CLKREQ_EN) {
  13624. if (tg3_asic_rev(tp) == ASIC_REV_5906) {
  13625. tg3_flag_clear(tp, HW_TSO_2);
  13626. tg3_flag_clear(tp, TSO_CAPABLE);
  13627. }
  13628. if (tg3_asic_rev(tp) == ASIC_REV_5784 ||
  13629. tg3_asic_rev(tp) == ASIC_REV_5761 ||
  13630. tg3_chip_rev_id(tp) == CHIPREV_ID_57780_A0 ||
  13631. tg3_chip_rev_id(tp) == CHIPREV_ID_57780_A1)
  13632. tg3_flag_set(tp, CLKREQ_BUG);
  13633. } else if (tg3_chip_rev_id(tp) == CHIPREV_ID_5717_A0) {
  13634. tg3_flag_set(tp, L1PLLPD_EN);
  13635. }
  13636. } else if (tg3_asic_rev(tp) == ASIC_REV_5785) {
  13637. /* BCM5785 devices are effectively PCIe devices, and should
  13638. * follow PCIe codepaths, but do not have a PCIe capabilities
  13639. * section.
  13640. */
  13641. tg3_flag_set(tp, PCI_EXPRESS);
  13642. } else if (!tg3_flag(tp, 5705_PLUS) ||
  13643. tg3_flag(tp, 5780_CLASS)) {
  13644. tp->pcix_cap = pci_find_capability(tp->pdev, PCI_CAP_ID_PCIX);
  13645. if (!tp->pcix_cap) {
  13646. dev_err(&tp->pdev->dev,
  13647. "Cannot find PCI-X capability, aborting\n");
  13648. return -EIO;
  13649. }
  13650. if (!(pci_state_reg & PCISTATE_CONV_PCI_MODE))
  13651. tg3_flag_set(tp, PCIX_MODE);
  13652. }
  13653. /* If we have an AMD 762 or VIA K8T800 chipset, write
  13654. * reordering to the mailbox registers done by the host
  13655. * controller can cause major troubles. We read back from
  13656. * every mailbox register write to force the writes to be
  13657. * posted to the chip in order.
  13658. */
  13659. if (pci_dev_present(tg3_write_reorder_chipsets) &&
  13660. !tg3_flag(tp, PCI_EXPRESS))
  13661. tg3_flag_set(tp, MBOX_WRITE_REORDER);
  13662. pci_read_config_byte(tp->pdev, PCI_CACHE_LINE_SIZE,
  13663. &tp->pci_cacheline_sz);
  13664. pci_read_config_byte(tp->pdev, PCI_LATENCY_TIMER,
  13665. &tp->pci_lat_timer);
  13666. if (tg3_asic_rev(tp) == ASIC_REV_5703 &&
  13667. tp->pci_lat_timer < 64) {
  13668. tp->pci_lat_timer = 64;
  13669. pci_write_config_byte(tp->pdev, PCI_LATENCY_TIMER,
  13670. tp->pci_lat_timer);
  13671. }
  13672. /* Important! -- It is critical that the PCI-X hw workaround
  13673. * situation is decided before the first MMIO register access.
  13674. */
  13675. if (tg3_chip_rev(tp) == CHIPREV_5700_BX) {
  13676. /* 5700 BX chips need to have their TX producer index
  13677. * mailboxes written twice to workaround a bug.
  13678. */
  13679. tg3_flag_set(tp, TXD_MBOX_HWBUG);
  13680. /* If we are in PCI-X mode, enable register write workaround.
  13681. *
  13682. * The workaround is to use indirect register accesses
  13683. * for all chip writes not to mailbox registers.
  13684. */
  13685. if (tg3_flag(tp, PCIX_MODE)) {
  13686. u32 pm_reg;
  13687. tg3_flag_set(tp, PCIX_TARGET_HWBUG);
  13688. /* The chip can have it's power management PCI config
  13689. * space registers clobbered due to this bug.
  13690. * So explicitly force the chip into D0 here.
  13691. */
  13692. pci_read_config_dword(tp->pdev,
  13693. tp->pdev->pm_cap + PCI_PM_CTRL,
  13694. &pm_reg);
  13695. pm_reg &= ~PCI_PM_CTRL_STATE_MASK;
  13696. pm_reg |= PCI_PM_CTRL_PME_ENABLE | 0 /* D0 */;
  13697. pci_write_config_dword(tp->pdev,
  13698. tp->pdev->pm_cap + PCI_PM_CTRL,
  13699. pm_reg);
  13700. /* Also, force SERR#/PERR# in PCI command. */
  13701. pci_read_config_word(tp->pdev, PCI_COMMAND, &pci_cmd);
  13702. pci_cmd |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR;
  13703. pci_write_config_word(tp->pdev, PCI_COMMAND, pci_cmd);
  13704. }
  13705. }
  13706. if ((pci_state_reg & PCISTATE_BUS_SPEED_HIGH) != 0)
  13707. tg3_flag_set(tp, PCI_HIGH_SPEED);
  13708. if ((pci_state_reg & PCISTATE_BUS_32BIT) != 0)
  13709. tg3_flag_set(tp, PCI_32BIT);
  13710. /* Chip-specific fixup from Broadcom driver */
  13711. if ((tg3_chip_rev_id(tp) == CHIPREV_ID_5704_A0) &&
  13712. (!(pci_state_reg & PCISTATE_RETRY_SAME_DMA))) {
  13713. pci_state_reg |= PCISTATE_RETRY_SAME_DMA;
  13714. pci_write_config_dword(tp->pdev, TG3PCI_PCISTATE, pci_state_reg);
  13715. }
  13716. /* Default fast path register access methods */
  13717. tp->read32 = tg3_read32;
  13718. tp->write32 = tg3_write32;
  13719. tp->read32_mbox = tg3_read32;
  13720. tp->write32_mbox = tg3_write32;
  13721. tp->write32_tx_mbox = tg3_write32;
  13722. tp->write32_rx_mbox = tg3_write32;
  13723. /* Various workaround register access methods */
  13724. if (tg3_flag(tp, PCIX_TARGET_HWBUG))
  13725. tp->write32 = tg3_write_indirect_reg32;
  13726. else if (tg3_asic_rev(tp) == ASIC_REV_5701 ||
  13727. (tg3_flag(tp, PCI_EXPRESS) &&
  13728. tg3_chip_rev_id(tp) == CHIPREV_ID_5750_A0)) {
  13729. /*
  13730. * Back to back register writes can cause problems on these
  13731. * chips, the workaround is to read back all reg writes
  13732. * except those to mailbox regs.
  13733. *
  13734. * See tg3_write_indirect_reg32().
  13735. */
  13736. tp->write32 = tg3_write_flush_reg32;
  13737. }
  13738. if (tg3_flag(tp, TXD_MBOX_HWBUG) || tg3_flag(tp, MBOX_WRITE_REORDER)) {
  13739. tp->write32_tx_mbox = tg3_write32_tx_mbox;
  13740. if (tg3_flag(tp, MBOX_WRITE_REORDER))
  13741. tp->write32_rx_mbox = tg3_write_flush_reg32;
  13742. }
  13743. if (tg3_flag(tp, ICH_WORKAROUND)) {
  13744. tp->read32 = tg3_read_indirect_reg32;
  13745. tp->write32 = tg3_write_indirect_reg32;
  13746. tp->read32_mbox = tg3_read_indirect_mbox;
  13747. tp->write32_mbox = tg3_write_indirect_mbox;
  13748. tp->write32_tx_mbox = tg3_write_indirect_mbox;
  13749. tp->write32_rx_mbox = tg3_write_indirect_mbox;
  13750. iounmap(tp->regs);
  13751. tp->regs = NULL;
  13752. pci_read_config_word(tp->pdev, PCI_COMMAND, &pci_cmd);
  13753. pci_cmd &= ~PCI_COMMAND_MEMORY;
  13754. pci_write_config_word(tp->pdev, PCI_COMMAND, pci_cmd);
  13755. }
  13756. if (tg3_asic_rev(tp) == ASIC_REV_5906) {
  13757. tp->read32_mbox = tg3_read32_mbox_5906;
  13758. tp->write32_mbox = tg3_write32_mbox_5906;
  13759. tp->write32_tx_mbox = tg3_write32_mbox_5906;
  13760. tp->write32_rx_mbox = tg3_write32_mbox_5906;
  13761. }
  13762. if (tp->write32 == tg3_write_indirect_reg32 ||
  13763. (tg3_flag(tp, PCIX_MODE) &&
  13764. (tg3_asic_rev(tp) == ASIC_REV_5700 ||
  13765. tg3_asic_rev(tp) == ASIC_REV_5701)))
  13766. tg3_flag_set(tp, SRAM_USE_CONFIG);
  13767. /* The memory arbiter has to be enabled in order for SRAM accesses
  13768. * to succeed. Normally on powerup the tg3 chip firmware will make
  13769. * sure it is enabled, but other entities such as system netboot
  13770. * code might disable it.
  13771. */
  13772. val = tr32(MEMARB_MODE);
  13773. tw32(MEMARB_MODE, val | MEMARB_MODE_ENABLE);
  13774. tp->pci_fn = PCI_FUNC(tp->pdev->devfn) & 3;
  13775. if (tg3_asic_rev(tp) == ASIC_REV_5704 ||
  13776. tg3_flag(tp, 5780_CLASS)) {
  13777. if (tg3_flag(tp, PCIX_MODE)) {
  13778. pci_read_config_dword(tp->pdev,
  13779. tp->pcix_cap + PCI_X_STATUS,
  13780. &val);
  13781. tp->pci_fn = val & 0x7;
  13782. }
  13783. } else if (tg3_asic_rev(tp) == ASIC_REV_5717 ||
  13784. tg3_asic_rev(tp) == ASIC_REV_5719 ||
  13785. tg3_asic_rev(tp) == ASIC_REV_5720) {
  13786. tg3_read_mem(tp, NIC_SRAM_CPMU_STATUS, &val);
  13787. if ((val & NIC_SRAM_CPMUSTAT_SIG_MSK) != NIC_SRAM_CPMUSTAT_SIG)
  13788. val = tr32(TG3_CPMU_STATUS);
  13789. if (tg3_asic_rev(tp) == ASIC_REV_5717)
  13790. tp->pci_fn = (val & TG3_CPMU_STATUS_FMSK_5717) ? 1 : 0;
  13791. else
  13792. tp->pci_fn = (val & TG3_CPMU_STATUS_FMSK_5719) >>
  13793. TG3_CPMU_STATUS_FSHFT_5719;
  13794. }
  13795. if (tg3_flag(tp, FLUSH_POSTED_WRITES)) {
  13796. tp->write32_tx_mbox = tg3_write_flush_reg32;
  13797. tp->write32_rx_mbox = tg3_write_flush_reg32;
  13798. }
  13799. /* Get eeprom hw config before calling tg3_set_power_state().
  13800. * In particular, the TG3_FLAG_IS_NIC flag must be
  13801. * determined before calling tg3_set_power_state() so that
  13802. * we know whether or not to switch out of Vaux power.
  13803. * When the flag is set, it means that GPIO1 is used for eeprom
  13804. * write protect and also implies that it is a LOM where GPIOs
  13805. * are not used to switch power.
  13806. */
  13807. tg3_get_eeprom_hw_cfg(tp);
  13808. if (tg3_flag(tp, FW_TSO) && tg3_flag(tp, ENABLE_ASF)) {
  13809. tg3_flag_clear(tp, TSO_CAPABLE);
  13810. tg3_flag_clear(tp, TSO_BUG);
  13811. tp->fw_needed = NULL;
  13812. }
  13813. if (tg3_flag(tp, ENABLE_APE)) {
  13814. /* Allow reads and writes to the
  13815. * APE register and memory space.
  13816. */
  13817. pci_state_reg |= PCISTATE_ALLOW_APE_CTLSPC_WR |
  13818. PCISTATE_ALLOW_APE_SHMEM_WR |
  13819. PCISTATE_ALLOW_APE_PSPACE_WR;
  13820. pci_write_config_dword(tp->pdev, TG3PCI_PCISTATE,
  13821. pci_state_reg);
  13822. tg3_ape_lock_init(tp);
  13823. tp->ape_hb_interval =
  13824. msecs_to_jiffies(APE_HOST_HEARTBEAT_INT_5SEC);
  13825. }
  13826. /* Set up tp->grc_local_ctrl before calling
  13827. * tg3_pwrsrc_switch_to_vmain(). GPIO1 driven high
  13828. * will bring 5700's external PHY out of reset.
  13829. * It is also used as eeprom write protect on LOMs.
  13830. */
  13831. tp->grc_local_ctrl = GRC_LCLCTRL_INT_ON_ATTN | GRC_LCLCTRL_AUTO_SEEPROM;
  13832. if (tg3_asic_rev(tp) == ASIC_REV_5700 ||
  13833. tg3_flag(tp, EEPROM_WRITE_PROT))
  13834. tp->grc_local_ctrl |= (GRC_LCLCTRL_GPIO_OE1 |
  13835. GRC_LCLCTRL_GPIO_OUTPUT1);
  13836. /* Unused GPIO3 must be driven as output on 5752 because there
  13837. * are no pull-up resistors on unused GPIO pins.
  13838. */
  13839. else if (tg3_asic_rev(tp) == ASIC_REV_5752)
  13840. tp->grc_local_ctrl |= GRC_LCLCTRL_GPIO_OE3;
  13841. if (tg3_asic_rev(tp) == ASIC_REV_5755 ||
  13842. tg3_asic_rev(tp) == ASIC_REV_57780 ||
  13843. tg3_flag(tp, 57765_CLASS))
  13844. tp->grc_local_ctrl |= GRC_LCLCTRL_GPIO_UART_SEL;
  13845. if (tp->pdev->device == PCI_DEVICE_ID_TIGON3_5761 ||
  13846. tp->pdev->device == TG3PCI_DEVICE_TIGON3_5761S) {
  13847. /* Turn off the debug UART. */
  13848. tp->grc_local_ctrl |= GRC_LCLCTRL_GPIO_UART_SEL;
  13849. if (tg3_flag(tp, IS_NIC))
  13850. /* Keep VMain power. */
  13851. tp->grc_local_ctrl |= GRC_LCLCTRL_GPIO_OE0 |
  13852. GRC_LCLCTRL_GPIO_OUTPUT0;
  13853. }
  13854. if (tg3_asic_rev(tp) == ASIC_REV_5762)
  13855. tp->grc_local_ctrl |=
  13856. tr32(GRC_LOCAL_CTRL) & GRC_LCLCTRL_GPIO_UART_SEL;
  13857. /* Switch out of Vaux if it is a NIC */
  13858. tg3_pwrsrc_switch_to_vmain(tp);
  13859. /* Derive initial jumbo mode from MTU assigned in
  13860. * ether_setup() via the alloc_etherdev() call
  13861. */
  13862. if (tp->dev->mtu > ETH_DATA_LEN && !tg3_flag(tp, 5780_CLASS))
  13863. tg3_flag_set(tp, JUMBO_RING_ENABLE);
  13864. /* Determine WakeOnLan speed to use. */
  13865. if (tg3_asic_rev(tp) == ASIC_REV_5700 ||
  13866. tg3_chip_rev_id(tp) == CHIPREV_ID_5701_A0 ||
  13867. tg3_chip_rev_id(tp) == CHIPREV_ID_5701_B0 ||
  13868. tg3_chip_rev_id(tp) == CHIPREV_ID_5701_B2) {
  13869. tg3_flag_clear(tp, WOL_SPEED_100MB);
  13870. } else {
  13871. tg3_flag_set(tp, WOL_SPEED_100MB);
  13872. }
  13873. if (tg3_asic_rev(tp) == ASIC_REV_5906)
  13874. tp->phy_flags |= TG3_PHYFLG_IS_FET;
  13875. /* A few boards don't want Ethernet@WireSpeed phy feature */
  13876. if (tg3_asic_rev(tp) == ASIC_REV_5700 ||
  13877. (tg3_asic_rev(tp) == ASIC_REV_5705 &&
  13878. (tg3_chip_rev_id(tp) != CHIPREV_ID_5705_A0) &&
  13879. (tg3_chip_rev_id(tp) != CHIPREV_ID_5705_A1)) ||
  13880. (tp->phy_flags & TG3_PHYFLG_IS_FET) ||
  13881. (tp->phy_flags & TG3_PHYFLG_ANY_SERDES))
  13882. tp->phy_flags |= TG3_PHYFLG_NO_ETH_WIRE_SPEED;
  13883. if (tg3_chip_rev(tp) == CHIPREV_5703_AX ||
  13884. tg3_chip_rev(tp) == CHIPREV_5704_AX)
  13885. tp->phy_flags |= TG3_PHYFLG_ADC_BUG;
  13886. if (tg3_chip_rev_id(tp) == CHIPREV_ID_5704_A0)
  13887. tp->phy_flags |= TG3_PHYFLG_5704_A0_BUG;
  13888. if (tg3_flag(tp, 5705_PLUS) &&
  13889. !(tp->phy_flags & TG3_PHYFLG_IS_FET) &&
  13890. tg3_asic_rev(tp) != ASIC_REV_5785 &&
  13891. tg3_asic_rev(tp) != ASIC_REV_57780 &&
  13892. !tg3_flag(tp, 57765_PLUS)) {
  13893. if (tg3_asic_rev(tp) == ASIC_REV_5755 ||
  13894. tg3_asic_rev(tp) == ASIC_REV_5787 ||
  13895. tg3_asic_rev(tp) == ASIC_REV_5784 ||
  13896. tg3_asic_rev(tp) == ASIC_REV_5761) {
  13897. if (tp->pdev->device != PCI_DEVICE_ID_TIGON3_5756 &&
  13898. tp->pdev->device != PCI_DEVICE_ID_TIGON3_5722)
  13899. tp->phy_flags |= TG3_PHYFLG_JITTER_BUG;
  13900. if (tp->pdev->device == PCI_DEVICE_ID_TIGON3_5755M)
  13901. tp->phy_flags |= TG3_PHYFLG_ADJUST_TRIM;
  13902. } else
  13903. tp->phy_flags |= TG3_PHYFLG_BER_BUG;
  13904. }
  13905. if (tg3_asic_rev(tp) == ASIC_REV_5784 &&
  13906. tg3_chip_rev(tp) != CHIPREV_5784_AX) {
  13907. tp->phy_otp = tg3_read_otp_phycfg(tp);
  13908. if (tp->phy_otp == 0)
  13909. tp->phy_otp = TG3_OTP_DEFAULT;
  13910. }
  13911. if (tg3_flag(tp, CPMU_PRESENT))
  13912. tp->mi_mode = MAC_MI_MODE_500KHZ_CONST;
  13913. else
  13914. tp->mi_mode = MAC_MI_MODE_BASE;
  13915. tp->coalesce_mode = 0;
  13916. if (tg3_chip_rev(tp) != CHIPREV_5700_AX &&
  13917. tg3_chip_rev(tp) != CHIPREV_5700_BX)
  13918. tp->coalesce_mode |= HOSTCC_MODE_32BYTE;
  13919. /* Set these bits to enable statistics workaround. */
  13920. if (tg3_asic_rev(tp) == ASIC_REV_5717 ||
  13921. tg3_asic_rev(tp) == ASIC_REV_5762 ||
  13922. tg3_chip_rev_id(tp) == CHIPREV_ID_5719_A0 ||
  13923. tg3_chip_rev_id(tp) == CHIPREV_ID_5720_A0) {
  13924. tp->coalesce_mode |= HOSTCC_MODE_ATTN;
  13925. tp->grc_mode |= GRC_MODE_IRQ_ON_FLOW_ATTN;
  13926. }
  13927. if (tg3_asic_rev(tp) == ASIC_REV_5785 ||
  13928. tg3_asic_rev(tp) == ASIC_REV_57780)
  13929. tg3_flag_set(tp, USE_PHYLIB);
  13930. err = tg3_mdio_init(tp);
  13931. if (err)
  13932. return err;
  13933. /* Initialize data/descriptor byte/word swapping. */
  13934. val = tr32(GRC_MODE);
  13935. if (tg3_asic_rev(tp) == ASIC_REV_5720 ||
  13936. tg3_asic_rev(tp) == ASIC_REV_5762)
  13937. val &= (GRC_MODE_BYTE_SWAP_B2HRX_DATA |
  13938. GRC_MODE_WORD_SWAP_B2HRX_DATA |
  13939. GRC_MODE_B2HRX_ENABLE |
  13940. GRC_MODE_HTX2B_ENABLE |
  13941. GRC_MODE_HOST_STACKUP);
  13942. else
  13943. val &= GRC_MODE_HOST_STACKUP;
  13944. tw32(GRC_MODE, val | tp->grc_mode);
  13945. tg3_switch_clocks(tp);
  13946. /* Clear this out for sanity. */
  13947. tw32(TG3PCI_MEM_WIN_BASE_ADDR, 0);
  13948. /* Clear TG3PCI_REG_BASE_ADDR to prevent hangs. */
  13949. tw32(TG3PCI_REG_BASE_ADDR, 0);
  13950. pci_read_config_dword(tp->pdev, TG3PCI_PCISTATE,
  13951. &pci_state_reg);
  13952. if ((pci_state_reg & PCISTATE_CONV_PCI_MODE) == 0 &&
  13953. !tg3_flag(tp, PCIX_TARGET_HWBUG)) {
  13954. if (tg3_chip_rev_id(tp) == CHIPREV_ID_5701_A0 ||
  13955. tg3_chip_rev_id(tp) == CHIPREV_ID_5701_B0 ||
  13956. tg3_chip_rev_id(tp) == CHIPREV_ID_5701_B2 ||
  13957. tg3_chip_rev_id(tp) == CHIPREV_ID_5701_B5) {
  13958. void __iomem *sram_base;
  13959. /* Write some dummy words into the SRAM status block
  13960. * area, see if it reads back correctly. If the return
  13961. * value is bad, force enable the PCIX workaround.
  13962. */
  13963. sram_base = tp->regs + NIC_SRAM_WIN_BASE + NIC_SRAM_STATS_BLK;
  13964. writel(0x00000000, sram_base);
  13965. writel(0x00000000, sram_base + 4);
  13966. writel(0xffffffff, sram_base + 4);
  13967. if (readl(sram_base) != 0x00000000)
  13968. tg3_flag_set(tp, PCIX_TARGET_HWBUG);
  13969. }
  13970. }
  13971. udelay(50);
  13972. tg3_nvram_init(tp);
  13973. /* If the device has an NVRAM, no need to load patch firmware */
  13974. if (tg3_asic_rev(tp) == ASIC_REV_57766 &&
  13975. !tg3_flag(tp, NO_NVRAM))
  13976. tp->fw_needed = NULL;
  13977. grc_misc_cfg = tr32(GRC_MISC_CFG);
  13978. grc_misc_cfg &= GRC_MISC_CFG_BOARD_ID_MASK;
  13979. if (tg3_asic_rev(tp) == ASIC_REV_5705 &&
  13980. (grc_misc_cfg == GRC_MISC_CFG_BOARD_ID_5788 ||
  13981. grc_misc_cfg == GRC_MISC_CFG_BOARD_ID_5788M))
  13982. tg3_flag_set(tp, IS_5788);
  13983. if (!tg3_flag(tp, IS_5788) &&
  13984. tg3_asic_rev(tp) != ASIC_REV_5700)
  13985. tg3_flag_set(tp, TAGGED_STATUS);
  13986. if (tg3_flag(tp, TAGGED_STATUS)) {
  13987. tp->coalesce_mode |= (HOSTCC_MODE_CLRTICK_RXBD |
  13988. HOSTCC_MODE_CLRTICK_TXBD);
  13989. tp->misc_host_ctrl |= MISC_HOST_CTRL_TAGGED_STATUS;
  13990. pci_write_config_dword(tp->pdev, TG3PCI_MISC_HOST_CTRL,
  13991. tp->misc_host_ctrl);
  13992. }
  13993. /* Preserve the APE MAC_MODE bits */
  13994. if (tg3_flag(tp, ENABLE_APE))
  13995. tp->mac_mode = MAC_MODE_APE_TX_EN | MAC_MODE_APE_RX_EN;
  13996. else
  13997. tp->mac_mode = 0;
  13998. if (tg3_10_100_only_device(tp, ent))
  13999. tp->phy_flags |= TG3_PHYFLG_10_100_ONLY;
  14000. err = tg3_phy_probe(tp);
  14001. if (err) {
  14002. dev_err(&tp->pdev->dev, "phy probe failed, err %d\n", err);
  14003. /* ... but do not return immediately ... */
  14004. tg3_mdio_fini(tp);
  14005. }
  14006. tg3_read_vpd(tp);
  14007. tg3_read_fw_ver(tp);
  14008. if (tp->phy_flags & TG3_PHYFLG_PHY_SERDES) {
  14009. tp->phy_flags &= ~TG3_PHYFLG_USE_MI_INTERRUPT;
  14010. } else {
  14011. if (tg3_asic_rev(tp) == ASIC_REV_5700)
  14012. tp->phy_flags |= TG3_PHYFLG_USE_MI_INTERRUPT;
  14013. else
  14014. tp->phy_flags &= ~TG3_PHYFLG_USE_MI_INTERRUPT;
  14015. }
  14016. /* 5700 {AX,BX} chips have a broken status block link
  14017. * change bit implementation, so we must use the
  14018. * status register in those cases.
  14019. */
  14020. if (tg3_asic_rev(tp) == ASIC_REV_5700)
  14021. tg3_flag_set(tp, USE_LINKCHG_REG);
  14022. else
  14023. tg3_flag_clear(tp, USE_LINKCHG_REG);
  14024. /* The led_ctrl is set during tg3_phy_probe, here we might
  14025. * have to force the link status polling mechanism based
  14026. * upon subsystem IDs.
  14027. */
  14028. if (tp->pdev->subsystem_vendor == PCI_VENDOR_ID_DELL &&
  14029. tg3_asic_rev(tp) == ASIC_REV_5701 &&
  14030. !(tp->phy_flags & TG3_PHYFLG_PHY_SERDES)) {
  14031. tp->phy_flags |= TG3_PHYFLG_USE_MI_INTERRUPT;
  14032. tg3_flag_set(tp, USE_LINKCHG_REG);
  14033. }
  14034. /* For all SERDES we poll the MAC status register. */
  14035. if (tp->phy_flags & TG3_PHYFLG_PHY_SERDES)
  14036. tg3_flag_set(tp, POLL_SERDES);
  14037. else
  14038. tg3_flag_clear(tp, POLL_SERDES);
  14039. if (tg3_flag(tp, ENABLE_APE) && tg3_flag(tp, ENABLE_ASF))
  14040. tg3_flag_set(tp, POLL_CPMU_LINK);
  14041. tp->rx_offset = NET_SKB_PAD + NET_IP_ALIGN;
  14042. tp->rx_copy_thresh = TG3_RX_COPY_THRESHOLD;
  14043. if (tg3_asic_rev(tp) == ASIC_REV_5701 &&
  14044. tg3_flag(tp, PCIX_MODE)) {
  14045. tp->rx_offset = NET_SKB_PAD;
  14046. #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
  14047. tp->rx_copy_thresh = ~(u16)0;
  14048. #endif
  14049. }
  14050. tp->rx_std_ring_mask = TG3_RX_STD_RING_SIZE(tp) - 1;
  14051. tp->rx_jmb_ring_mask = TG3_RX_JMB_RING_SIZE(tp) - 1;
  14052. tp->rx_ret_ring_mask = tg3_rx_ret_ring_size(tp) - 1;
  14053. tp->rx_std_max_post = tp->rx_std_ring_mask + 1;
  14054. /* Increment the rx prod index on the rx std ring by at most
  14055. * 8 for these chips to workaround hw errata.
  14056. */
  14057. if (tg3_asic_rev(tp) == ASIC_REV_5750 ||
  14058. tg3_asic_rev(tp) == ASIC_REV_5752 ||
  14059. tg3_asic_rev(tp) == ASIC_REV_5755)
  14060. tp->rx_std_max_post = 8;
  14061. if (tg3_flag(tp, ASPM_WORKAROUND))
  14062. tp->pwrmgmt_thresh = tr32(PCIE_PWR_MGMT_THRESH) &
  14063. PCIE_PWR_MGMT_L1_THRESH_MSK;
  14064. return err;
  14065. }
  14066. static int tg3_get_device_address(struct tg3 *tp)
  14067. {
  14068. struct net_device *dev = tp->dev;
  14069. u32 hi, lo, mac_offset;
  14070. int addr_ok = 0;
  14071. int err;
  14072. if (!eth_platform_get_mac_address(&tp->pdev->dev, dev->dev_addr))
  14073. return 0;
  14074. if (tg3_flag(tp, IS_SSB_CORE)) {
  14075. err = ssb_gige_get_macaddr(tp->pdev, &dev->dev_addr[0]);
  14076. if (!err && is_valid_ether_addr(&dev->dev_addr[0]))
  14077. return 0;
  14078. }
  14079. mac_offset = 0x7c;
  14080. if (tg3_asic_rev(tp) == ASIC_REV_5704 ||
  14081. tg3_flag(tp, 5780_CLASS)) {
  14082. if (tr32(TG3PCI_DUAL_MAC_CTRL) & DUAL_MAC_CTRL_ID)
  14083. mac_offset = 0xcc;
  14084. if (tg3_nvram_lock(tp))
  14085. tw32_f(NVRAM_CMD, NVRAM_CMD_RESET);
  14086. else
  14087. tg3_nvram_unlock(tp);
  14088. } else if (tg3_flag(tp, 5717_PLUS)) {
  14089. if (tp->pci_fn & 1)
  14090. mac_offset = 0xcc;
  14091. if (tp->pci_fn > 1)
  14092. mac_offset += 0x18c;
  14093. } else if (tg3_asic_rev(tp) == ASIC_REV_5906)
  14094. mac_offset = 0x10;
  14095. /* First try to get it from MAC address mailbox. */
  14096. tg3_read_mem(tp, NIC_SRAM_MAC_ADDR_HIGH_MBOX, &hi);
  14097. if ((hi >> 16) == 0x484b) {
  14098. dev->dev_addr[0] = (hi >> 8) & 0xff;
  14099. dev->dev_addr[1] = (hi >> 0) & 0xff;
  14100. tg3_read_mem(tp, NIC_SRAM_MAC_ADDR_LOW_MBOX, &lo);
  14101. dev->dev_addr[2] = (lo >> 24) & 0xff;
  14102. dev->dev_addr[3] = (lo >> 16) & 0xff;
  14103. dev->dev_addr[4] = (lo >> 8) & 0xff;
  14104. dev->dev_addr[5] = (lo >> 0) & 0xff;
  14105. /* Some old bootcode may report a 0 MAC address in SRAM */
  14106. addr_ok = is_valid_ether_addr(&dev->dev_addr[0]);
  14107. }
  14108. if (!addr_ok) {
  14109. /* Next, try NVRAM. */
  14110. if (!tg3_flag(tp, NO_NVRAM) &&
  14111. !tg3_nvram_read_be32(tp, mac_offset + 0, &hi) &&
  14112. !tg3_nvram_read_be32(tp, mac_offset + 4, &lo)) {
  14113. memcpy(&dev->dev_addr[0], ((char *)&hi) + 2, 2);
  14114. memcpy(&dev->dev_addr[2], (char *)&lo, sizeof(lo));
  14115. }
  14116. /* Finally just fetch it out of the MAC control regs. */
  14117. else {
  14118. hi = tr32(MAC_ADDR_0_HIGH);
  14119. lo = tr32(MAC_ADDR_0_LOW);
  14120. dev->dev_addr[5] = lo & 0xff;
  14121. dev->dev_addr[4] = (lo >> 8) & 0xff;
  14122. dev->dev_addr[3] = (lo >> 16) & 0xff;
  14123. dev->dev_addr[2] = (lo >> 24) & 0xff;
  14124. dev->dev_addr[1] = hi & 0xff;
  14125. dev->dev_addr[0] = (hi >> 8) & 0xff;
  14126. }
  14127. }
  14128. if (!is_valid_ether_addr(&dev->dev_addr[0]))
  14129. return -EINVAL;
  14130. return 0;
  14131. }
  14132. #define BOUNDARY_SINGLE_CACHELINE 1
  14133. #define BOUNDARY_MULTI_CACHELINE 2
  14134. static u32 tg3_calc_dma_bndry(struct tg3 *tp, u32 val)
  14135. {
  14136. int cacheline_size;
  14137. u8 byte;
  14138. int goal;
  14139. pci_read_config_byte(tp->pdev, PCI_CACHE_LINE_SIZE, &byte);
  14140. if (byte == 0)
  14141. cacheline_size = 1024;
  14142. else
  14143. cacheline_size = (int) byte * 4;
  14144. /* On 5703 and later chips, the boundary bits have no
  14145. * effect.
  14146. */
  14147. if (tg3_asic_rev(tp) != ASIC_REV_5700 &&
  14148. tg3_asic_rev(tp) != ASIC_REV_5701 &&
  14149. !tg3_flag(tp, PCI_EXPRESS))
  14150. goto out;
  14151. #if defined(CONFIG_PPC64) || defined(CONFIG_IA64) || defined(CONFIG_PARISC)
  14152. goal = BOUNDARY_MULTI_CACHELINE;
  14153. #else
  14154. #if defined(CONFIG_SPARC64) || defined(CONFIG_ALPHA)
  14155. goal = BOUNDARY_SINGLE_CACHELINE;
  14156. #else
  14157. goal = 0;
  14158. #endif
  14159. #endif
  14160. if (tg3_flag(tp, 57765_PLUS)) {
  14161. val = goal ? 0 : DMA_RWCTRL_DIS_CACHE_ALIGNMENT;
  14162. goto out;
  14163. }
  14164. if (!goal)
  14165. goto out;
  14166. /* PCI controllers on most RISC systems tend to disconnect
  14167. * when a device tries to burst across a cache-line boundary.
  14168. * Therefore, letting tg3 do so just wastes PCI bandwidth.
  14169. *
  14170. * Unfortunately, for PCI-E there are only limited
  14171. * write-side controls for this, and thus for reads
  14172. * we will still get the disconnects. We'll also waste
  14173. * these PCI cycles for both read and write for chips
  14174. * other than 5700 and 5701 which do not implement the
  14175. * boundary bits.
  14176. */
  14177. if (tg3_flag(tp, PCIX_MODE) && !tg3_flag(tp, PCI_EXPRESS)) {
  14178. switch (cacheline_size) {
  14179. case 16:
  14180. case 32:
  14181. case 64:
  14182. case 128:
  14183. if (goal == BOUNDARY_SINGLE_CACHELINE) {
  14184. val |= (DMA_RWCTRL_READ_BNDRY_128_PCIX |
  14185. DMA_RWCTRL_WRITE_BNDRY_128_PCIX);
  14186. } else {
  14187. val |= (DMA_RWCTRL_READ_BNDRY_384_PCIX |
  14188. DMA_RWCTRL_WRITE_BNDRY_384_PCIX);
  14189. }
  14190. break;
  14191. case 256:
  14192. val |= (DMA_RWCTRL_READ_BNDRY_256_PCIX |
  14193. DMA_RWCTRL_WRITE_BNDRY_256_PCIX);
  14194. break;
  14195. default:
  14196. val |= (DMA_RWCTRL_READ_BNDRY_384_PCIX |
  14197. DMA_RWCTRL_WRITE_BNDRY_384_PCIX);
  14198. break;
  14199. }
  14200. } else if (tg3_flag(tp, PCI_EXPRESS)) {
  14201. switch (cacheline_size) {
  14202. case 16:
  14203. case 32:
  14204. case 64:
  14205. if (goal == BOUNDARY_SINGLE_CACHELINE) {
  14206. val &= ~DMA_RWCTRL_WRITE_BNDRY_DISAB_PCIE;
  14207. val |= DMA_RWCTRL_WRITE_BNDRY_64_PCIE;
  14208. break;
  14209. }
  14210. /* fallthrough */
  14211. case 128:
  14212. default:
  14213. val &= ~DMA_RWCTRL_WRITE_BNDRY_DISAB_PCIE;
  14214. val |= DMA_RWCTRL_WRITE_BNDRY_128_PCIE;
  14215. break;
  14216. }
  14217. } else {
  14218. switch (cacheline_size) {
  14219. case 16:
  14220. if (goal == BOUNDARY_SINGLE_CACHELINE) {
  14221. val |= (DMA_RWCTRL_READ_BNDRY_16 |
  14222. DMA_RWCTRL_WRITE_BNDRY_16);
  14223. break;
  14224. }
  14225. /* fallthrough */
  14226. case 32:
  14227. if (goal == BOUNDARY_SINGLE_CACHELINE) {
  14228. val |= (DMA_RWCTRL_READ_BNDRY_32 |
  14229. DMA_RWCTRL_WRITE_BNDRY_32);
  14230. break;
  14231. }
  14232. /* fallthrough */
  14233. case 64:
  14234. if (goal == BOUNDARY_SINGLE_CACHELINE) {
  14235. val |= (DMA_RWCTRL_READ_BNDRY_64 |
  14236. DMA_RWCTRL_WRITE_BNDRY_64);
  14237. break;
  14238. }
  14239. /* fallthrough */
  14240. case 128:
  14241. if (goal == BOUNDARY_SINGLE_CACHELINE) {
  14242. val |= (DMA_RWCTRL_READ_BNDRY_128 |
  14243. DMA_RWCTRL_WRITE_BNDRY_128);
  14244. break;
  14245. }
  14246. /* fallthrough */
  14247. case 256:
  14248. val |= (DMA_RWCTRL_READ_BNDRY_256 |
  14249. DMA_RWCTRL_WRITE_BNDRY_256);
  14250. break;
  14251. case 512:
  14252. val |= (DMA_RWCTRL_READ_BNDRY_512 |
  14253. DMA_RWCTRL_WRITE_BNDRY_512);
  14254. break;
  14255. case 1024:
  14256. default:
  14257. val |= (DMA_RWCTRL_READ_BNDRY_1024 |
  14258. DMA_RWCTRL_WRITE_BNDRY_1024);
  14259. break;
  14260. }
  14261. }
  14262. out:
  14263. return val;
  14264. }
  14265. static int tg3_do_test_dma(struct tg3 *tp, u32 *buf, dma_addr_t buf_dma,
  14266. int size, bool to_device)
  14267. {
  14268. struct tg3_internal_buffer_desc test_desc;
  14269. u32 sram_dma_descs;
  14270. int i, ret;
  14271. sram_dma_descs = NIC_SRAM_DMA_DESC_POOL_BASE;
  14272. tw32(FTQ_RCVBD_COMP_FIFO_ENQDEQ, 0);
  14273. tw32(FTQ_RCVDATA_COMP_FIFO_ENQDEQ, 0);
  14274. tw32(RDMAC_STATUS, 0);
  14275. tw32(WDMAC_STATUS, 0);
  14276. tw32(BUFMGR_MODE, 0);
  14277. tw32(FTQ_RESET, 0);
  14278. test_desc.addr_hi = ((u64) buf_dma) >> 32;
  14279. test_desc.addr_lo = buf_dma & 0xffffffff;
  14280. test_desc.nic_mbuf = 0x00002100;
  14281. test_desc.len = size;
  14282. /*
  14283. * HP ZX1 was seeing test failures for 5701 cards running at 33Mhz
  14284. * the *second* time the tg3 driver was getting loaded after an
  14285. * initial scan.
  14286. *
  14287. * Broadcom tells me:
  14288. * ...the DMA engine is connected to the GRC block and a DMA
  14289. * reset may affect the GRC block in some unpredictable way...
  14290. * The behavior of resets to individual blocks has not been tested.
  14291. *
  14292. * Broadcom noted the GRC reset will also reset all sub-components.
  14293. */
  14294. if (to_device) {
  14295. test_desc.cqid_sqid = (13 << 8) | 2;
  14296. tw32_f(RDMAC_MODE, RDMAC_MODE_ENABLE);
  14297. udelay(40);
  14298. } else {
  14299. test_desc.cqid_sqid = (16 << 8) | 7;
  14300. tw32_f(WDMAC_MODE, WDMAC_MODE_ENABLE);
  14301. udelay(40);
  14302. }
  14303. test_desc.flags = 0x00000005;
  14304. for (i = 0; i < (sizeof(test_desc) / sizeof(u32)); i++) {
  14305. u32 val;
  14306. val = *(((u32 *)&test_desc) + i);
  14307. pci_write_config_dword(tp->pdev, TG3PCI_MEM_WIN_BASE_ADDR,
  14308. sram_dma_descs + (i * sizeof(u32)));
  14309. pci_write_config_dword(tp->pdev, TG3PCI_MEM_WIN_DATA, val);
  14310. }
  14311. pci_write_config_dword(tp->pdev, TG3PCI_MEM_WIN_BASE_ADDR, 0);
  14312. if (to_device)
  14313. tw32(FTQ_DMA_HIGH_READ_FIFO_ENQDEQ, sram_dma_descs);
  14314. else
  14315. tw32(FTQ_DMA_HIGH_WRITE_FIFO_ENQDEQ, sram_dma_descs);
  14316. ret = -ENODEV;
  14317. for (i = 0; i < 40; i++) {
  14318. u32 val;
  14319. if (to_device)
  14320. val = tr32(FTQ_RCVBD_COMP_FIFO_ENQDEQ);
  14321. else
  14322. val = tr32(FTQ_RCVDATA_COMP_FIFO_ENQDEQ);
  14323. if ((val & 0xffff) == sram_dma_descs) {
  14324. ret = 0;
  14325. break;
  14326. }
  14327. udelay(100);
  14328. }
  14329. return ret;
  14330. }
  14331. #define TEST_BUFFER_SIZE 0x2000
  14332. static const struct pci_device_id tg3_dma_wait_state_chipsets[] = {
  14333. { PCI_DEVICE(PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_PCI15) },
  14334. { },
  14335. };
  14336. static int tg3_test_dma(struct tg3 *tp)
  14337. {
  14338. dma_addr_t buf_dma;
  14339. u32 *buf, saved_dma_rwctrl;
  14340. int ret = 0;
  14341. buf = dma_alloc_coherent(&tp->pdev->dev, TEST_BUFFER_SIZE,
  14342. &buf_dma, GFP_KERNEL);
  14343. if (!buf) {
  14344. ret = -ENOMEM;
  14345. goto out_nofree;
  14346. }
  14347. tp->dma_rwctrl = ((0x7 << DMA_RWCTRL_PCI_WRITE_CMD_SHIFT) |
  14348. (0x6 << DMA_RWCTRL_PCI_READ_CMD_SHIFT));
  14349. tp->dma_rwctrl = tg3_calc_dma_bndry(tp, tp->dma_rwctrl);
  14350. if (tg3_flag(tp, 57765_PLUS))
  14351. goto out;
  14352. if (tg3_flag(tp, PCI_EXPRESS)) {
  14353. /* DMA read watermark not used on PCIE */
  14354. tp->dma_rwctrl |= 0x00180000;
  14355. } else if (!tg3_flag(tp, PCIX_MODE)) {
  14356. if (tg3_asic_rev(tp) == ASIC_REV_5705 ||
  14357. tg3_asic_rev(tp) == ASIC_REV_5750)
  14358. tp->dma_rwctrl |= 0x003f0000;
  14359. else
  14360. tp->dma_rwctrl |= 0x003f000f;
  14361. } else {
  14362. if (tg3_asic_rev(tp) == ASIC_REV_5703 ||
  14363. tg3_asic_rev(tp) == ASIC_REV_5704) {
  14364. u32 ccval = (tr32(TG3PCI_CLOCK_CTRL) & 0x1f);
  14365. u32 read_water = 0x7;
  14366. /* If the 5704 is behind the EPB bridge, we can
  14367. * do the less restrictive ONE_DMA workaround for
  14368. * better performance.
  14369. */
  14370. if (tg3_flag(tp, 40BIT_DMA_BUG) &&
  14371. tg3_asic_rev(tp) == ASIC_REV_5704)
  14372. tp->dma_rwctrl |= 0x8000;
  14373. else if (ccval == 0x6 || ccval == 0x7)
  14374. tp->dma_rwctrl |= DMA_RWCTRL_ONE_DMA;
  14375. if (tg3_asic_rev(tp) == ASIC_REV_5703)
  14376. read_water = 4;
  14377. /* Set bit 23 to enable PCIX hw bug fix */
  14378. tp->dma_rwctrl |=
  14379. (read_water << DMA_RWCTRL_READ_WATER_SHIFT) |
  14380. (0x3 << DMA_RWCTRL_WRITE_WATER_SHIFT) |
  14381. (1 << 23);
  14382. } else if (tg3_asic_rev(tp) == ASIC_REV_5780) {
  14383. /* 5780 always in PCIX mode */
  14384. tp->dma_rwctrl |= 0x00144000;
  14385. } else if (tg3_asic_rev(tp) == ASIC_REV_5714) {
  14386. /* 5714 always in PCIX mode */
  14387. tp->dma_rwctrl |= 0x00148000;
  14388. } else {
  14389. tp->dma_rwctrl |= 0x001b000f;
  14390. }
  14391. }
  14392. if (tg3_flag(tp, ONE_DMA_AT_ONCE))
  14393. tp->dma_rwctrl |= DMA_RWCTRL_ONE_DMA;
  14394. if (tg3_asic_rev(tp) == ASIC_REV_5703 ||
  14395. tg3_asic_rev(tp) == ASIC_REV_5704)
  14396. tp->dma_rwctrl &= 0xfffffff0;
  14397. if (tg3_asic_rev(tp) == ASIC_REV_5700 ||
  14398. tg3_asic_rev(tp) == ASIC_REV_5701) {
  14399. /* Remove this if it causes problems for some boards. */
  14400. tp->dma_rwctrl |= DMA_RWCTRL_USE_MEM_READ_MULT;
  14401. /* On 5700/5701 chips, we need to set this bit.
  14402. * Otherwise the chip will issue cacheline transactions
  14403. * to streamable DMA memory with not all the byte
  14404. * enables turned on. This is an error on several
  14405. * RISC PCI controllers, in particular sparc64.
  14406. *
  14407. * On 5703/5704 chips, this bit has been reassigned
  14408. * a different meaning. In particular, it is used
  14409. * on those chips to enable a PCI-X workaround.
  14410. */
  14411. tp->dma_rwctrl |= DMA_RWCTRL_ASSERT_ALL_BE;
  14412. }
  14413. tw32(TG3PCI_DMA_RW_CTRL, tp->dma_rwctrl);
  14414. if (tg3_asic_rev(tp) != ASIC_REV_5700 &&
  14415. tg3_asic_rev(tp) != ASIC_REV_5701)
  14416. goto out;
  14417. /* It is best to perform DMA test with maximum write burst size
  14418. * to expose the 5700/5701 write DMA bug.
  14419. */
  14420. saved_dma_rwctrl = tp->dma_rwctrl;
  14421. tp->dma_rwctrl &= ~DMA_RWCTRL_WRITE_BNDRY_MASK;
  14422. tw32(TG3PCI_DMA_RW_CTRL, tp->dma_rwctrl);
  14423. while (1) {
  14424. u32 *p = buf, i;
  14425. for (i = 0; i < TEST_BUFFER_SIZE / sizeof(u32); i++)
  14426. p[i] = i;
  14427. /* Send the buffer to the chip. */
  14428. ret = tg3_do_test_dma(tp, buf, buf_dma, TEST_BUFFER_SIZE, true);
  14429. if (ret) {
  14430. dev_err(&tp->pdev->dev,
  14431. "%s: Buffer write failed. err = %d\n",
  14432. __func__, ret);
  14433. break;
  14434. }
  14435. /* Now read it back. */
  14436. ret = tg3_do_test_dma(tp, buf, buf_dma, TEST_BUFFER_SIZE, false);
  14437. if (ret) {
  14438. dev_err(&tp->pdev->dev, "%s: Buffer read failed. "
  14439. "err = %d\n", __func__, ret);
  14440. break;
  14441. }
  14442. /* Verify it. */
  14443. for (i = 0; i < TEST_BUFFER_SIZE / sizeof(u32); i++) {
  14444. if (p[i] == i)
  14445. continue;
  14446. if ((tp->dma_rwctrl & DMA_RWCTRL_WRITE_BNDRY_MASK) !=
  14447. DMA_RWCTRL_WRITE_BNDRY_16) {
  14448. tp->dma_rwctrl &= ~DMA_RWCTRL_WRITE_BNDRY_MASK;
  14449. tp->dma_rwctrl |= DMA_RWCTRL_WRITE_BNDRY_16;
  14450. tw32(TG3PCI_DMA_RW_CTRL, tp->dma_rwctrl);
  14451. break;
  14452. } else {
  14453. dev_err(&tp->pdev->dev,
  14454. "%s: Buffer corrupted on read back! "
  14455. "(%d != %d)\n", __func__, p[i], i);
  14456. ret = -ENODEV;
  14457. goto out;
  14458. }
  14459. }
  14460. if (i == (TEST_BUFFER_SIZE / sizeof(u32))) {
  14461. /* Success. */
  14462. ret = 0;
  14463. break;
  14464. }
  14465. }
  14466. if ((tp->dma_rwctrl & DMA_RWCTRL_WRITE_BNDRY_MASK) !=
  14467. DMA_RWCTRL_WRITE_BNDRY_16) {
  14468. /* DMA test passed without adjusting DMA boundary,
  14469. * now look for chipsets that are known to expose the
  14470. * DMA bug without failing the test.
  14471. */
  14472. if (pci_dev_present(tg3_dma_wait_state_chipsets)) {
  14473. tp->dma_rwctrl &= ~DMA_RWCTRL_WRITE_BNDRY_MASK;
  14474. tp->dma_rwctrl |= DMA_RWCTRL_WRITE_BNDRY_16;
  14475. } else {
  14476. /* Safe to use the calculated DMA boundary. */
  14477. tp->dma_rwctrl = saved_dma_rwctrl;
  14478. }
  14479. tw32(TG3PCI_DMA_RW_CTRL, tp->dma_rwctrl);
  14480. }
  14481. out:
  14482. dma_free_coherent(&tp->pdev->dev, TEST_BUFFER_SIZE, buf, buf_dma);
  14483. out_nofree:
  14484. return ret;
  14485. }
  14486. static void tg3_init_bufmgr_config(struct tg3 *tp)
  14487. {
  14488. if (tg3_flag(tp, 57765_PLUS)) {
  14489. tp->bufmgr_config.mbuf_read_dma_low_water =
  14490. DEFAULT_MB_RDMA_LOW_WATER_5705;
  14491. tp->bufmgr_config.mbuf_mac_rx_low_water =
  14492. DEFAULT_MB_MACRX_LOW_WATER_57765;
  14493. tp->bufmgr_config.mbuf_high_water =
  14494. DEFAULT_MB_HIGH_WATER_57765;
  14495. tp->bufmgr_config.mbuf_read_dma_low_water_jumbo =
  14496. DEFAULT_MB_RDMA_LOW_WATER_5705;
  14497. tp->bufmgr_config.mbuf_mac_rx_low_water_jumbo =
  14498. DEFAULT_MB_MACRX_LOW_WATER_JUMBO_57765;
  14499. tp->bufmgr_config.mbuf_high_water_jumbo =
  14500. DEFAULT_MB_HIGH_WATER_JUMBO_57765;
  14501. } else if (tg3_flag(tp, 5705_PLUS)) {
  14502. tp->bufmgr_config.mbuf_read_dma_low_water =
  14503. DEFAULT_MB_RDMA_LOW_WATER_5705;
  14504. tp->bufmgr_config.mbuf_mac_rx_low_water =
  14505. DEFAULT_MB_MACRX_LOW_WATER_5705;
  14506. tp->bufmgr_config.mbuf_high_water =
  14507. DEFAULT_MB_HIGH_WATER_5705;
  14508. if (tg3_asic_rev(tp) == ASIC_REV_5906) {
  14509. tp->bufmgr_config.mbuf_mac_rx_low_water =
  14510. DEFAULT_MB_MACRX_LOW_WATER_5906;
  14511. tp->bufmgr_config.mbuf_high_water =
  14512. DEFAULT_MB_HIGH_WATER_5906;
  14513. }
  14514. tp->bufmgr_config.mbuf_read_dma_low_water_jumbo =
  14515. DEFAULT_MB_RDMA_LOW_WATER_JUMBO_5780;
  14516. tp->bufmgr_config.mbuf_mac_rx_low_water_jumbo =
  14517. DEFAULT_MB_MACRX_LOW_WATER_JUMBO_5780;
  14518. tp->bufmgr_config.mbuf_high_water_jumbo =
  14519. DEFAULT_MB_HIGH_WATER_JUMBO_5780;
  14520. } else {
  14521. tp->bufmgr_config.mbuf_read_dma_low_water =
  14522. DEFAULT_MB_RDMA_LOW_WATER;
  14523. tp->bufmgr_config.mbuf_mac_rx_low_water =
  14524. DEFAULT_MB_MACRX_LOW_WATER;
  14525. tp->bufmgr_config.mbuf_high_water =
  14526. DEFAULT_MB_HIGH_WATER;
  14527. tp->bufmgr_config.mbuf_read_dma_low_water_jumbo =
  14528. DEFAULT_MB_RDMA_LOW_WATER_JUMBO;
  14529. tp->bufmgr_config.mbuf_mac_rx_low_water_jumbo =
  14530. DEFAULT_MB_MACRX_LOW_WATER_JUMBO;
  14531. tp->bufmgr_config.mbuf_high_water_jumbo =
  14532. DEFAULT_MB_HIGH_WATER_JUMBO;
  14533. }
  14534. tp->bufmgr_config.dma_low_water = DEFAULT_DMA_LOW_WATER;
  14535. tp->bufmgr_config.dma_high_water = DEFAULT_DMA_HIGH_WATER;
  14536. }
  14537. static char *tg3_phy_string(struct tg3 *tp)
  14538. {
  14539. switch (tp->phy_id & TG3_PHY_ID_MASK) {
  14540. case TG3_PHY_ID_BCM5400: return "5400";
  14541. case TG3_PHY_ID_BCM5401: return "5401";
  14542. case TG3_PHY_ID_BCM5411: return "5411";
  14543. case TG3_PHY_ID_BCM5701: return "5701";
  14544. case TG3_PHY_ID_BCM5703: return "5703";
  14545. case TG3_PHY_ID_BCM5704: return "5704";
  14546. case TG3_PHY_ID_BCM5705: return "5705";
  14547. case TG3_PHY_ID_BCM5750: return "5750";
  14548. case TG3_PHY_ID_BCM5752: return "5752";
  14549. case TG3_PHY_ID_BCM5714: return "5714";
  14550. case TG3_PHY_ID_BCM5780: return "5780";
  14551. case TG3_PHY_ID_BCM5755: return "5755";
  14552. case TG3_PHY_ID_BCM5787: return "5787";
  14553. case TG3_PHY_ID_BCM5784: return "5784";
  14554. case TG3_PHY_ID_BCM5756: return "5722/5756";
  14555. case TG3_PHY_ID_BCM5906: return "5906";
  14556. case TG3_PHY_ID_BCM5761: return "5761";
  14557. case TG3_PHY_ID_BCM5718C: return "5718C";
  14558. case TG3_PHY_ID_BCM5718S: return "5718S";
  14559. case TG3_PHY_ID_BCM57765: return "57765";
  14560. case TG3_PHY_ID_BCM5719C: return "5719C";
  14561. case TG3_PHY_ID_BCM5720C: return "5720C";
  14562. case TG3_PHY_ID_BCM5762: return "5762C";
  14563. case TG3_PHY_ID_BCM8002: return "8002/serdes";
  14564. case 0: return "serdes";
  14565. default: return "unknown";
  14566. }
  14567. }
  14568. static char *tg3_bus_string(struct tg3 *tp, char *str)
  14569. {
  14570. if (tg3_flag(tp, PCI_EXPRESS)) {
  14571. strcpy(str, "PCI Express");
  14572. return str;
  14573. } else if (tg3_flag(tp, PCIX_MODE)) {
  14574. u32 clock_ctrl = tr32(TG3PCI_CLOCK_CTRL) & 0x1f;
  14575. strcpy(str, "PCIX:");
  14576. if ((clock_ctrl == 7) ||
  14577. ((tr32(GRC_MISC_CFG) & GRC_MISC_CFG_BOARD_ID_MASK) ==
  14578. GRC_MISC_CFG_BOARD_ID_5704CIOBE))
  14579. strcat(str, "133MHz");
  14580. else if (clock_ctrl == 0)
  14581. strcat(str, "33MHz");
  14582. else if (clock_ctrl == 2)
  14583. strcat(str, "50MHz");
  14584. else if (clock_ctrl == 4)
  14585. strcat(str, "66MHz");
  14586. else if (clock_ctrl == 6)
  14587. strcat(str, "100MHz");
  14588. } else {
  14589. strcpy(str, "PCI:");
  14590. if (tg3_flag(tp, PCI_HIGH_SPEED))
  14591. strcat(str, "66MHz");
  14592. else
  14593. strcat(str, "33MHz");
  14594. }
  14595. if (tg3_flag(tp, PCI_32BIT))
  14596. strcat(str, ":32-bit");
  14597. else
  14598. strcat(str, ":64-bit");
  14599. return str;
  14600. }
  14601. static void tg3_init_coal(struct tg3 *tp)
  14602. {
  14603. struct ethtool_coalesce *ec = &tp->coal;
  14604. memset(ec, 0, sizeof(*ec));
  14605. ec->cmd = ETHTOOL_GCOALESCE;
  14606. ec->rx_coalesce_usecs = LOW_RXCOL_TICKS;
  14607. ec->tx_coalesce_usecs = LOW_TXCOL_TICKS;
  14608. ec->rx_max_coalesced_frames = LOW_RXMAX_FRAMES;
  14609. ec->tx_max_coalesced_frames = LOW_TXMAX_FRAMES;
  14610. ec->rx_coalesce_usecs_irq = DEFAULT_RXCOAL_TICK_INT;
  14611. ec->tx_coalesce_usecs_irq = DEFAULT_TXCOAL_TICK_INT;
  14612. ec->rx_max_coalesced_frames_irq = DEFAULT_RXCOAL_MAXF_INT;
  14613. ec->tx_max_coalesced_frames_irq = DEFAULT_TXCOAL_MAXF_INT;
  14614. ec->stats_block_coalesce_usecs = DEFAULT_STAT_COAL_TICKS;
  14615. if (tp->coalesce_mode & (HOSTCC_MODE_CLRTICK_RXBD |
  14616. HOSTCC_MODE_CLRTICK_TXBD)) {
  14617. ec->rx_coalesce_usecs = LOW_RXCOL_TICKS_CLRTCKS;
  14618. ec->rx_coalesce_usecs_irq = DEFAULT_RXCOAL_TICK_INT_CLRTCKS;
  14619. ec->tx_coalesce_usecs = LOW_TXCOL_TICKS_CLRTCKS;
  14620. ec->tx_coalesce_usecs_irq = DEFAULT_TXCOAL_TICK_INT_CLRTCKS;
  14621. }
  14622. if (tg3_flag(tp, 5705_PLUS)) {
  14623. ec->rx_coalesce_usecs_irq = 0;
  14624. ec->tx_coalesce_usecs_irq = 0;
  14625. ec->stats_block_coalesce_usecs = 0;
  14626. }
  14627. }
  14628. static int tg3_init_one(struct pci_dev *pdev,
  14629. const struct pci_device_id *ent)
  14630. {
  14631. struct net_device *dev;
  14632. struct tg3 *tp;
  14633. int i, err;
  14634. u32 sndmbx, rcvmbx, intmbx;
  14635. char str[40];
  14636. u64 dma_mask, persist_dma_mask;
  14637. netdev_features_t features = 0;
  14638. err = pci_enable_device(pdev);
  14639. if (err) {
  14640. dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
  14641. return err;
  14642. }
  14643. err = pci_request_regions(pdev, DRV_MODULE_NAME);
  14644. if (err) {
  14645. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
  14646. goto err_out_disable_pdev;
  14647. }
  14648. pci_set_master(pdev);
  14649. dev = alloc_etherdev_mq(sizeof(*tp), TG3_IRQ_MAX_VECS);
  14650. if (!dev) {
  14651. err = -ENOMEM;
  14652. goto err_out_free_res;
  14653. }
  14654. SET_NETDEV_DEV(dev, &pdev->dev);
  14655. tp = netdev_priv(dev);
  14656. tp->pdev = pdev;
  14657. tp->dev = dev;
  14658. tp->rx_mode = TG3_DEF_RX_MODE;
  14659. tp->tx_mode = TG3_DEF_TX_MODE;
  14660. tp->irq_sync = 1;
  14661. tp->pcierr_recovery = false;
  14662. if (tg3_debug > 0)
  14663. tp->msg_enable = tg3_debug;
  14664. else
  14665. tp->msg_enable = TG3_DEF_MSG_ENABLE;
  14666. if (pdev_is_ssb_gige_core(pdev)) {
  14667. tg3_flag_set(tp, IS_SSB_CORE);
  14668. if (ssb_gige_must_flush_posted_writes(pdev))
  14669. tg3_flag_set(tp, FLUSH_POSTED_WRITES);
  14670. if (ssb_gige_one_dma_at_once(pdev))
  14671. tg3_flag_set(tp, ONE_DMA_AT_ONCE);
  14672. if (ssb_gige_have_roboswitch(pdev)) {
  14673. tg3_flag_set(tp, USE_PHYLIB);
  14674. tg3_flag_set(tp, ROBOSWITCH);
  14675. }
  14676. if (ssb_gige_is_rgmii(pdev))
  14677. tg3_flag_set(tp, RGMII_MODE);
  14678. }
  14679. /* The word/byte swap controls here control register access byte
  14680. * swapping. DMA data byte swapping is controlled in the GRC_MODE
  14681. * setting below.
  14682. */
  14683. tp->misc_host_ctrl =
  14684. MISC_HOST_CTRL_MASK_PCI_INT |
  14685. MISC_HOST_CTRL_WORD_SWAP |
  14686. MISC_HOST_CTRL_INDIR_ACCESS |
  14687. MISC_HOST_CTRL_PCISTATE_RW;
  14688. /* The NONFRM (non-frame) byte/word swap controls take effect
  14689. * on descriptor entries, anything which isn't packet data.
  14690. *
  14691. * The StrongARM chips on the board (one for tx, one for rx)
  14692. * are running in big-endian mode.
  14693. */
  14694. tp->grc_mode = (GRC_MODE_WSWAP_DATA | GRC_MODE_BSWAP_DATA |
  14695. GRC_MODE_WSWAP_NONFRM_DATA);
  14696. #ifdef __BIG_ENDIAN
  14697. tp->grc_mode |= GRC_MODE_BSWAP_NONFRM_DATA;
  14698. #endif
  14699. spin_lock_init(&tp->lock);
  14700. spin_lock_init(&tp->indirect_lock);
  14701. INIT_WORK(&tp->reset_task, tg3_reset_task);
  14702. tp->regs = pci_ioremap_bar(pdev, BAR_0);
  14703. if (!tp->regs) {
  14704. dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
  14705. err = -ENOMEM;
  14706. goto err_out_free_dev;
  14707. }
  14708. if (tp->pdev->device == PCI_DEVICE_ID_TIGON3_5761 ||
  14709. tp->pdev->device == PCI_DEVICE_ID_TIGON3_5761E ||
  14710. tp->pdev->device == TG3PCI_DEVICE_TIGON3_5761S ||
  14711. tp->pdev->device == TG3PCI_DEVICE_TIGON3_5761SE ||
  14712. tp->pdev->device == TG3PCI_DEVICE_TIGON3_5717 ||
  14713. tp->pdev->device == TG3PCI_DEVICE_TIGON3_5717_C ||
  14714. tp->pdev->device == TG3PCI_DEVICE_TIGON3_5718 ||
  14715. tp->pdev->device == TG3PCI_DEVICE_TIGON3_5719 ||
  14716. tp->pdev->device == TG3PCI_DEVICE_TIGON3_5720 ||
  14717. tp->pdev->device == TG3PCI_DEVICE_TIGON3_57767 ||
  14718. tp->pdev->device == TG3PCI_DEVICE_TIGON3_57764 ||
  14719. tp->pdev->device == TG3PCI_DEVICE_TIGON3_5762 ||
  14720. tp->pdev->device == TG3PCI_DEVICE_TIGON3_5725 ||
  14721. tp->pdev->device == TG3PCI_DEVICE_TIGON3_5727 ||
  14722. tp->pdev->device == TG3PCI_DEVICE_TIGON3_57787) {
  14723. tg3_flag_set(tp, ENABLE_APE);
  14724. tp->aperegs = pci_ioremap_bar(pdev, BAR_2);
  14725. if (!tp->aperegs) {
  14726. dev_err(&pdev->dev,
  14727. "Cannot map APE registers, aborting\n");
  14728. err = -ENOMEM;
  14729. goto err_out_iounmap;
  14730. }
  14731. }
  14732. tp->rx_pending = TG3_DEF_RX_RING_PENDING;
  14733. tp->rx_jumbo_pending = TG3_DEF_RX_JUMBO_RING_PENDING;
  14734. dev->ethtool_ops = &tg3_ethtool_ops;
  14735. dev->watchdog_timeo = TG3_TX_TIMEOUT;
  14736. dev->netdev_ops = &tg3_netdev_ops;
  14737. dev->irq = pdev->irq;
  14738. err = tg3_get_invariants(tp, ent);
  14739. if (err) {
  14740. dev_err(&pdev->dev,
  14741. "Problem fetching invariants of chip, aborting\n");
  14742. goto err_out_apeunmap;
  14743. }
  14744. /* The EPB bridge inside 5714, 5715, and 5780 and any
  14745. * device behind the EPB cannot support DMA addresses > 40-bit.
  14746. * On 64-bit systems with IOMMU, use 40-bit dma_mask.
  14747. * On 64-bit systems without IOMMU, use 64-bit dma_mask and
  14748. * do DMA address check in tg3_start_xmit().
  14749. */
  14750. if (tg3_flag(tp, IS_5788))
  14751. persist_dma_mask = dma_mask = DMA_BIT_MASK(32);
  14752. else if (tg3_flag(tp, 40BIT_DMA_BUG)) {
  14753. persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
  14754. #ifdef CONFIG_HIGHMEM
  14755. dma_mask = DMA_BIT_MASK(64);
  14756. #endif
  14757. } else
  14758. persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
  14759. /* Configure DMA attributes. */
  14760. if (dma_mask > DMA_BIT_MASK(32)) {
  14761. err = pci_set_dma_mask(pdev, dma_mask);
  14762. if (!err) {
  14763. features |= NETIF_F_HIGHDMA;
  14764. err = pci_set_consistent_dma_mask(pdev,
  14765. persist_dma_mask);
  14766. if (err < 0) {
  14767. dev_err(&pdev->dev, "Unable to obtain 64 bit "
  14768. "DMA for consistent allocations\n");
  14769. goto err_out_apeunmap;
  14770. }
  14771. }
  14772. }
  14773. if (err || dma_mask == DMA_BIT_MASK(32)) {
  14774. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  14775. if (err) {
  14776. dev_err(&pdev->dev,
  14777. "No usable DMA configuration, aborting\n");
  14778. goto err_out_apeunmap;
  14779. }
  14780. }
  14781. tg3_init_bufmgr_config(tp);
  14782. /* 5700 B0 chips do not support checksumming correctly due
  14783. * to hardware bugs.
  14784. */
  14785. if (tg3_chip_rev_id(tp) != CHIPREV_ID_5700_B0) {
  14786. features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_RXCSUM;
  14787. if (tg3_flag(tp, 5755_PLUS))
  14788. features |= NETIF_F_IPV6_CSUM;
  14789. }
  14790. /* TSO is on by default on chips that support hardware TSO.
  14791. * Firmware TSO on older chips gives lower performance, so it
  14792. * is off by default, but can be enabled using ethtool.
  14793. */
  14794. if ((tg3_flag(tp, HW_TSO_1) ||
  14795. tg3_flag(tp, HW_TSO_2) ||
  14796. tg3_flag(tp, HW_TSO_3)) &&
  14797. (features & NETIF_F_IP_CSUM))
  14798. features |= NETIF_F_TSO;
  14799. if (tg3_flag(tp, HW_TSO_2) || tg3_flag(tp, HW_TSO_3)) {
  14800. if (features & NETIF_F_IPV6_CSUM)
  14801. features |= NETIF_F_TSO6;
  14802. if (tg3_flag(tp, HW_TSO_3) ||
  14803. tg3_asic_rev(tp) == ASIC_REV_5761 ||
  14804. (tg3_asic_rev(tp) == ASIC_REV_5784 &&
  14805. tg3_chip_rev(tp) != CHIPREV_5784_AX) ||
  14806. tg3_asic_rev(tp) == ASIC_REV_5785 ||
  14807. tg3_asic_rev(tp) == ASIC_REV_57780)
  14808. features |= NETIF_F_TSO_ECN;
  14809. }
  14810. dev->features |= features | NETIF_F_HW_VLAN_CTAG_TX |
  14811. NETIF_F_HW_VLAN_CTAG_RX;
  14812. dev->vlan_features |= features;
  14813. /*
  14814. * Add loopback capability only for a subset of devices that support
  14815. * MAC-LOOPBACK. Eventually this need to be enhanced to allow INT-PHY
  14816. * loopback for the remaining devices.
  14817. */
  14818. if (tg3_asic_rev(tp) != ASIC_REV_5780 &&
  14819. !tg3_flag(tp, CPMU_PRESENT))
  14820. /* Add the loopback capability */
  14821. features |= NETIF_F_LOOPBACK;
  14822. dev->hw_features |= features;
  14823. dev->priv_flags |= IFF_UNICAST_FLT;
  14824. /* MTU range: 60 - 9000 or 1500, depending on hardware */
  14825. dev->min_mtu = TG3_MIN_MTU;
  14826. dev->max_mtu = TG3_MAX_MTU(tp);
  14827. if (tg3_chip_rev_id(tp) == CHIPREV_ID_5705_A1 &&
  14828. !tg3_flag(tp, TSO_CAPABLE) &&
  14829. !(tr32(TG3PCI_PCISTATE) & PCISTATE_BUS_SPEED_HIGH)) {
  14830. tg3_flag_set(tp, MAX_RXPEND_64);
  14831. tp->rx_pending = 63;
  14832. }
  14833. err = tg3_get_device_address(tp);
  14834. if (err) {
  14835. dev_err(&pdev->dev,
  14836. "Could not obtain valid ethernet address, aborting\n");
  14837. goto err_out_apeunmap;
  14838. }
  14839. intmbx = MAILBOX_INTERRUPT_0 + TG3_64BIT_REG_LOW;
  14840. rcvmbx = MAILBOX_RCVRET_CON_IDX_0 + TG3_64BIT_REG_LOW;
  14841. sndmbx = MAILBOX_SNDHOST_PROD_IDX_0 + TG3_64BIT_REG_LOW;
  14842. for (i = 0; i < tp->irq_max; i++) {
  14843. struct tg3_napi *tnapi = &tp->napi[i];
  14844. tnapi->tp = tp;
  14845. tnapi->tx_pending = TG3_DEF_TX_RING_PENDING;
  14846. tnapi->int_mbox = intmbx;
  14847. if (i <= 4)
  14848. intmbx += 0x8;
  14849. else
  14850. intmbx += 0x4;
  14851. tnapi->consmbox = rcvmbx;
  14852. tnapi->prodmbox = sndmbx;
  14853. if (i)
  14854. tnapi->coal_now = HOSTCC_MODE_COAL_VEC1_NOW << (i - 1);
  14855. else
  14856. tnapi->coal_now = HOSTCC_MODE_NOW;
  14857. if (!tg3_flag(tp, SUPPORT_MSIX))
  14858. break;
  14859. /*
  14860. * If we support MSIX, we'll be using RSS. If we're using
  14861. * RSS, the first vector only handles link interrupts and the
  14862. * remaining vectors handle rx and tx interrupts. Reuse the
  14863. * mailbox values for the next iteration. The values we setup
  14864. * above are still useful for the single vectored mode.
  14865. */
  14866. if (!i)
  14867. continue;
  14868. rcvmbx += 0x8;
  14869. if (sndmbx & 0x4)
  14870. sndmbx -= 0x4;
  14871. else
  14872. sndmbx += 0xc;
  14873. }
  14874. /*
  14875. * Reset chip in case UNDI or EFI driver did not shutdown
  14876. * DMA self test will enable WDMAC and we'll see (spurious)
  14877. * pending DMA on the PCI bus at that point.
  14878. */
  14879. if ((tr32(HOSTCC_MODE) & HOSTCC_MODE_ENABLE) ||
  14880. (tr32(WDMAC_MODE) & WDMAC_MODE_ENABLE)) {
  14881. tg3_full_lock(tp, 0);
  14882. tw32(MEMARB_MODE, MEMARB_MODE_ENABLE);
  14883. tg3_halt(tp, RESET_KIND_SHUTDOWN, 1);
  14884. tg3_full_unlock(tp);
  14885. }
  14886. err = tg3_test_dma(tp);
  14887. if (err) {
  14888. dev_err(&pdev->dev, "DMA engine test failed, aborting\n");
  14889. goto err_out_apeunmap;
  14890. }
  14891. tg3_init_coal(tp);
  14892. pci_set_drvdata(pdev, dev);
  14893. if (tg3_asic_rev(tp) == ASIC_REV_5719 ||
  14894. tg3_asic_rev(tp) == ASIC_REV_5720 ||
  14895. tg3_asic_rev(tp) == ASIC_REV_5762)
  14896. tg3_flag_set(tp, PTP_CAPABLE);
  14897. tg3_timer_init(tp);
  14898. tg3_carrier_off(tp);
  14899. err = register_netdev(dev);
  14900. if (err) {
  14901. dev_err(&pdev->dev, "Cannot register net device, aborting\n");
  14902. goto err_out_apeunmap;
  14903. }
  14904. if (tg3_flag(tp, PTP_CAPABLE)) {
  14905. tg3_ptp_init(tp);
  14906. tp->ptp_clock = ptp_clock_register(&tp->ptp_info,
  14907. &tp->pdev->dev);
  14908. if (IS_ERR(tp->ptp_clock))
  14909. tp->ptp_clock = NULL;
  14910. }
  14911. netdev_info(dev, "Tigon3 [partno(%s) rev %04x] (%s) MAC address %pM\n",
  14912. tp->board_part_number,
  14913. tg3_chip_rev_id(tp),
  14914. tg3_bus_string(tp, str),
  14915. dev->dev_addr);
  14916. if (!(tp->phy_flags & TG3_PHYFLG_IS_CONNECTED)) {
  14917. char *ethtype;
  14918. if (tp->phy_flags & TG3_PHYFLG_10_100_ONLY)
  14919. ethtype = "10/100Base-TX";
  14920. else if (tp->phy_flags & TG3_PHYFLG_ANY_SERDES)
  14921. ethtype = "1000Base-SX";
  14922. else
  14923. ethtype = "10/100/1000Base-T";
  14924. netdev_info(dev, "attached PHY is %s (%s Ethernet) "
  14925. "(WireSpeed[%d], EEE[%d])\n",
  14926. tg3_phy_string(tp), ethtype,
  14927. (tp->phy_flags & TG3_PHYFLG_NO_ETH_WIRE_SPEED) == 0,
  14928. (tp->phy_flags & TG3_PHYFLG_EEE_CAP) != 0);
  14929. }
  14930. netdev_info(dev, "RXcsums[%d] LinkChgREG[%d] MIirq[%d] ASF[%d] TSOcap[%d]\n",
  14931. (dev->features & NETIF_F_RXCSUM) != 0,
  14932. tg3_flag(tp, USE_LINKCHG_REG) != 0,
  14933. (tp->phy_flags & TG3_PHYFLG_USE_MI_INTERRUPT) != 0,
  14934. tg3_flag(tp, ENABLE_ASF) != 0,
  14935. tg3_flag(tp, TSO_CAPABLE) != 0);
  14936. netdev_info(dev, "dma_rwctrl[%08x] dma_mask[%d-bit]\n",
  14937. tp->dma_rwctrl,
  14938. pdev->dma_mask == DMA_BIT_MASK(32) ? 32 :
  14939. ((u64)pdev->dma_mask) == DMA_BIT_MASK(40) ? 40 : 64);
  14940. pci_save_state(pdev);
  14941. return 0;
  14942. err_out_apeunmap:
  14943. if (tp->aperegs) {
  14944. iounmap(tp->aperegs);
  14945. tp->aperegs = NULL;
  14946. }
  14947. err_out_iounmap:
  14948. if (tp->regs) {
  14949. iounmap(tp->regs);
  14950. tp->regs = NULL;
  14951. }
  14952. err_out_free_dev:
  14953. free_netdev(dev);
  14954. err_out_free_res:
  14955. pci_release_regions(pdev);
  14956. err_out_disable_pdev:
  14957. if (pci_is_enabled(pdev))
  14958. pci_disable_device(pdev);
  14959. return err;
  14960. }
  14961. static void tg3_remove_one(struct pci_dev *pdev)
  14962. {
  14963. struct net_device *dev = pci_get_drvdata(pdev);
  14964. if (dev) {
  14965. struct tg3 *tp = netdev_priv(dev);
  14966. tg3_ptp_fini(tp);
  14967. release_firmware(tp->fw);
  14968. tg3_reset_task_cancel(tp);
  14969. if (tg3_flag(tp, USE_PHYLIB)) {
  14970. tg3_phy_fini(tp);
  14971. tg3_mdio_fini(tp);
  14972. }
  14973. unregister_netdev(dev);
  14974. if (tp->aperegs) {
  14975. iounmap(tp->aperegs);
  14976. tp->aperegs = NULL;
  14977. }
  14978. if (tp->regs) {
  14979. iounmap(tp->regs);
  14980. tp->regs = NULL;
  14981. }
  14982. free_netdev(dev);
  14983. pci_release_regions(pdev);
  14984. pci_disable_device(pdev);
  14985. }
  14986. }
  14987. #ifdef CONFIG_PM_SLEEP
  14988. static int tg3_suspend(struct device *device)
  14989. {
  14990. struct net_device *dev = dev_get_drvdata(device);
  14991. struct tg3 *tp = netdev_priv(dev);
  14992. int err = 0;
  14993. rtnl_lock();
  14994. if (!netif_running(dev))
  14995. goto unlock;
  14996. tg3_reset_task_cancel(tp);
  14997. tg3_phy_stop(tp);
  14998. tg3_netif_stop(tp);
  14999. tg3_timer_stop(tp);
  15000. tg3_full_lock(tp, 1);
  15001. tg3_disable_ints(tp);
  15002. tg3_full_unlock(tp);
  15003. netif_device_detach(dev);
  15004. tg3_full_lock(tp, 0);
  15005. tg3_halt(tp, RESET_KIND_SHUTDOWN, 1);
  15006. tg3_flag_clear(tp, INIT_COMPLETE);
  15007. tg3_full_unlock(tp);
  15008. err = tg3_power_down_prepare(tp);
  15009. if (err) {
  15010. int err2;
  15011. tg3_full_lock(tp, 0);
  15012. tg3_flag_set(tp, INIT_COMPLETE);
  15013. err2 = tg3_restart_hw(tp, true);
  15014. if (err2)
  15015. goto out;
  15016. tg3_timer_start(tp);
  15017. netif_device_attach(dev);
  15018. tg3_netif_start(tp);
  15019. out:
  15020. tg3_full_unlock(tp);
  15021. if (!err2)
  15022. tg3_phy_start(tp);
  15023. }
  15024. unlock:
  15025. rtnl_unlock();
  15026. return err;
  15027. }
  15028. static int tg3_resume(struct device *device)
  15029. {
  15030. struct net_device *dev = dev_get_drvdata(device);
  15031. struct tg3 *tp = netdev_priv(dev);
  15032. int err = 0;
  15033. rtnl_lock();
  15034. if (!netif_running(dev))
  15035. goto unlock;
  15036. netif_device_attach(dev);
  15037. tg3_full_lock(tp, 0);
  15038. tg3_ape_driver_state_change(tp, RESET_KIND_INIT);
  15039. tg3_flag_set(tp, INIT_COMPLETE);
  15040. err = tg3_restart_hw(tp,
  15041. !(tp->phy_flags & TG3_PHYFLG_KEEP_LINK_ON_PWRDN));
  15042. if (err)
  15043. goto out;
  15044. tg3_timer_start(tp);
  15045. tg3_netif_start(tp);
  15046. out:
  15047. tg3_full_unlock(tp);
  15048. if (!err)
  15049. tg3_phy_start(tp);
  15050. unlock:
  15051. rtnl_unlock();
  15052. return err;
  15053. }
  15054. #endif /* CONFIG_PM_SLEEP */
  15055. static SIMPLE_DEV_PM_OPS(tg3_pm_ops, tg3_suspend, tg3_resume);
  15056. static void tg3_shutdown(struct pci_dev *pdev)
  15057. {
  15058. struct net_device *dev = pci_get_drvdata(pdev);
  15059. struct tg3 *tp = netdev_priv(dev);
  15060. rtnl_lock();
  15061. netif_device_detach(dev);
  15062. if (netif_running(dev))
  15063. dev_close(dev);
  15064. if (system_state == SYSTEM_POWER_OFF)
  15065. tg3_power_down(tp);
  15066. rtnl_unlock();
  15067. }
  15068. /**
  15069. * tg3_io_error_detected - called when PCI error is detected
  15070. * @pdev: Pointer to PCI device
  15071. * @state: The current pci connection state
  15072. *
  15073. * This function is called after a PCI bus error affecting
  15074. * this device has been detected.
  15075. */
  15076. static pci_ers_result_t tg3_io_error_detected(struct pci_dev *pdev,
  15077. pci_channel_state_t state)
  15078. {
  15079. struct net_device *netdev = pci_get_drvdata(pdev);
  15080. struct tg3 *tp = netdev_priv(netdev);
  15081. pci_ers_result_t err = PCI_ERS_RESULT_NEED_RESET;
  15082. netdev_info(netdev, "PCI I/O error detected\n");
  15083. rtnl_lock();
  15084. /* We probably don't have netdev yet */
  15085. if (!netdev || !netif_running(netdev))
  15086. goto done;
  15087. /* We needn't recover from permanent error */
  15088. if (state == pci_channel_io_frozen)
  15089. tp->pcierr_recovery = true;
  15090. tg3_phy_stop(tp);
  15091. tg3_netif_stop(tp);
  15092. tg3_timer_stop(tp);
  15093. /* Want to make sure that the reset task doesn't run */
  15094. tg3_reset_task_cancel(tp);
  15095. netif_device_detach(netdev);
  15096. /* Clean up software state, even if MMIO is blocked */
  15097. tg3_full_lock(tp, 0);
  15098. tg3_halt(tp, RESET_KIND_SHUTDOWN, 0);
  15099. tg3_full_unlock(tp);
  15100. done:
  15101. if (state == pci_channel_io_perm_failure) {
  15102. if (netdev) {
  15103. tg3_napi_enable(tp);
  15104. dev_close(netdev);
  15105. }
  15106. err = PCI_ERS_RESULT_DISCONNECT;
  15107. } else {
  15108. pci_disable_device(pdev);
  15109. }
  15110. rtnl_unlock();
  15111. return err;
  15112. }
  15113. /**
  15114. * tg3_io_slot_reset - called after the pci bus has been reset.
  15115. * @pdev: Pointer to PCI device
  15116. *
  15117. * Restart the card from scratch, as if from a cold-boot.
  15118. * At this point, the card has exprienced a hard reset,
  15119. * followed by fixups by BIOS, and has its config space
  15120. * set up identically to what it was at cold boot.
  15121. */
  15122. static pci_ers_result_t tg3_io_slot_reset(struct pci_dev *pdev)
  15123. {
  15124. struct net_device *netdev = pci_get_drvdata(pdev);
  15125. struct tg3 *tp = netdev_priv(netdev);
  15126. pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
  15127. int err;
  15128. rtnl_lock();
  15129. if (pci_enable_device(pdev)) {
  15130. dev_err(&pdev->dev,
  15131. "Cannot re-enable PCI device after reset.\n");
  15132. goto done;
  15133. }
  15134. pci_set_master(pdev);
  15135. pci_restore_state(pdev);
  15136. pci_save_state(pdev);
  15137. if (!netdev || !netif_running(netdev)) {
  15138. rc = PCI_ERS_RESULT_RECOVERED;
  15139. goto done;
  15140. }
  15141. err = tg3_power_up(tp);
  15142. if (err)
  15143. goto done;
  15144. rc = PCI_ERS_RESULT_RECOVERED;
  15145. done:
  15146. if (rc != PCI_ERS_RESULT_RECOVERED && netdev && netif_running(netdev)) {
  15147. tg3_napi_enable(tp);
  15148. dev_close(netdev);
  15149. }
  15150. rtnl_unlock();
  15151. return rc;
  15152. }
  15153. /**
  15154. * tg3_io_resume - called when traffic can start flowing again.
  15155. * @pdev: Pointer to PCI device
  15156. *
  15157. * This callback is called when the error recovery driver tells
  15158. * us that its OK to resume normal operation.
  15159. */
  15160. static void tg3_io_resume(struct pci_dev *pdev)
  15161. {
  15162. struct net_device *netdev = pci_get_drvdata(pdev);
  15163. struct tg3 *tp = netdev_priv(netdev);
  15164. int err;
  15165. rtnl_lock();
  15166. if (!netdev || !netif_running(netdev))
  15167. goto done;
  15168. tg3_full_lock(tp, 0);
  15169. tg3_ape_driver_state_change(tp, RESET_KIND_INIT);
  15170. tg3_flag_set(tp, INIT_COMPLETE);
  15171. err = tg3_restart_hw(tp, true);
  15172. if (err) {
  15173. tg3_full_unlock(tp);
  15174. netdev_err(netdev, "Cannot restart hardware after reset.\n");
  15175. goto done;
  15176. }
  15177. netif_device_attach(netdev);
  15178. tg3_timer_start(tp);
  15179. tg3_netif_start(tp);
  15180. tg3_full_unlock(tp);
  15181. tg3_phy_start(tp);
  15182. done:
  15183. tp->pcierr_recovery = false;
  15184. rtnl_unlock();
  15185. }
  15186. static const struct pci_error_handlers tg3_err_handler = {
  15187. .error_detected = tg3_io_error_detected,
  15188. .slot_reset = tg3_io_slot_reset,
  15189. .resume = tg3_io_resume
  15190. };
  15191. static struct pci_driver tg3_driver = {
  15192. .name = DRV_MODULE_NAME,
  15193. .id_table = tg3_pci_tbl,
  15194. .probe = tg3_init_one,
  15195. .remove = tg3_remove_one,
  15196. .err_handler = &tg3_err_handler,
  15197. .driver.pm = &tg3_pm_ops,
  15198. .shutdown = tg3_shutdown,
  15199. };
  15200. module_pci_driver(tg3_driver);