PageRenderTime 67ms CodeModel.GetById 26ms RepoModel.GetById 0ms app.codeStats 0ms

/drivers/net/wireless/b43/phy_lp.c

http://github.com/mirrors/linux
C | 2730 lines | 2387 code | 275 blank | 68 comment | 315 complexity | 874fdd9736822fec1f659a38550afe91 MD5 | raw file
Possible License(s): AGPL-1.0, GPL-2.0, LGPL-2.0
  1. /*
  2. Broadcom B43 wireless driver
  3. IEEE 802.11a/g LP-PHY driver
  4. Copyright (c) 2008-2009 Michael Buesch <m@bues.ch>
  5. Copyright (c) 2009 G??bor Stefanik <netrolller.3d@gmail.com>
  6. This program is free software; you can redistribute it and/or modify
  7. it under the terms of the GNU General Public License as published by
  8. the Free Software Foundation; either version 2 of the License, or
  9. (at your option) any later version.
  10. This program is distributed in the hope that it will be useful,
  11. but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. GNU General Public License for more details.
  14. You should have received a copy of the GNU General Public License
  15. along with this program; see the file COPYING. If not, write to
  16. the Free Software Foundation, Inc., 51 Franklin Steet, Fifth Floor,
  17. Boston, MA 02110-1301, USA.
  18. */
  19. #include <linux/slab.h>
  20. #include "b43.h"
  21. #include "main.h"
  22. #include "phy_lp.h"
  23. #include "phy_common.h"
  24. #include "tables_lpphy.h"
  25. static inline u16 channel2freq_lp(u8 channel)
  26. {
  27. if (channel < 14)
  28. return (2407 + 5 * channel);
  29. else if (channel == 14)
  30. return 2484;
  31. else if (channel < 184)
  32. return (5000 + 5 * channel);
  33. else
  34. return (4000 + 5 * channel);
  35. }
  36. static unsigned int b43_lpphy_op_get_default_chan(struct b43_wldev *dev)
  37. {
  38. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  39. return 1;
  40. return 36;
  41. }
  42. static int b43_lpphy_op_allocate(struct b43_wldev *dev)
  43. {
  44. struct b43_phy_lp *lpphy;
  45. lpphy = kzalloc(sizeof(*lpphy), GFP_KERNEL);
  46. if (!lpphy)
  47. return -ENOMEM;
  48. dev->phy.lp = lpphy;
  49. return 0;
  50. }
  51. static void b43_lpphy_op_prepare_structs(struct b43_wldev *dev)
  52. {
  53. struct b43_phy *phy = &dev->phy;
  54. struct b43_phy_lp *lpphy = phy->lp;
  55. memset(lpphy, 0, sizeof(*lpphy));
  56. lpphy->antenna = B43_ANTENNA_DEFAULT;
  57. //TODO
  58. }
  59. static void b43_lpphy_op_free(struct b43_wldev *dev)
  60. {
  61. struct b43_phy_lp *lpphy = dev->phy.lp;
  62. kfree(lpphy);
  63. dev->phy.lp = NULL;
  64. }
  65. /* http://bcm-v4.sipsolutions.net/802.11/PHY/LP/ReadBandSrom */
  66. static void lpphy_read_band_sprom(struct b43_wldev *dev)
  67. {
  68. struct ssb_sprom *sprom = dev->dev->bus_sprom;
  69. struct b43_phy_lp *lpphy = dev->phy.lp;
  70. u16 cckpo, maxpwr;
  71. u32 ofdmpo;
  72. int i;
  73. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  74. lpphy->tx_isolation_med_band = sprom->tri2g;
  75. lpphy->bx_arch = sprom->bxa2g;
  76. lpphy->rx_pwr_offset = sprom->rxpo2g;
  77. lpphy->rssi_vf = sprom->rssismf2g;
  78. lpphy->rssi_vc = sprom->rssismc2g;
  79. lpphy->rssi_gs = sprom->rssisav2g;
  80. lpphy->txpa[0] = sprom->pa0b0;
  81. lpphy->txpa[1] = sprom->pa0b1;
  82. lpphy->txpa[2] = sprom->pa0b2;
  83. maxpwr = sprom->maxpwr_bg;
  84. lpphy->max_tx_pwr_med_band = maxpwr;
  85. cckpo = sprom->cck2gpo;
  86. if (cckpo) {
  87. ofdmpo = sprom->ofdm2gpo;
  88. for (i = 0; i < 4; i++) {
  89. lpphy->tx_max_rate[i] =
  90. maxpwr - (ofdmpo & 0xF) * 2;
  91. ofdmpo >>= 4;
  92. }
  93. ofdmpo = sprom->ofdm2gpo;
  94. for (i = 4; i < 15; i++) {
  95. lpphy->tx_max_rate[i] =
  96. maxpwr - (ofdmpo & 0xF) * 2;
  97. ofdmpo >>= 4;
  98. }
  99. } else {
  100. u8 opo = sprom->opo;
  101. for (i = 0; i < 4; i++)
  102. lpphy->tx_max_rate[i] = maxpwr;
  103. for (i = 4; i < 15; i++)
  104. lpphy->tx_max_rate[i] = maxpwr - opo;
  105. }
  106. } else { /* 5GHz */
  107. lpphy->tx_isolation_low_band = sprom->tri5gl;
  108. lpphy->tx_isolation_med_band = sprom->tri5g;
  109. lpphy->tx_isolation_hi_band = sprom->tri5gh;
  110. lpphy->bx_arch = sprom->bxa5g;
  111. lpphy->rx_pwr_offset = sprom->rxpo5g;
  112. lpphy->rssi_vf = sprom->rssismf5g;
  113. lpphy->rssi_vc = sprom->rssismc5g;
  114. lpphy->rssi_gs = sprom->rssisav5g;
  115. lpphy->txpa[0] = sprom->pa1b0;
  116. lpphy->txpa[1] = sprom->pa1b1;
  117. lpphy->txpa[2] = sprom->pa1b2;
  118. lpphy->txpal[0] = sprom->pa1lob0;
  119. lpphy->txpal[1] = sprom->pa1lob1;
  120. lpphy->txpal[2] = sprom->pa1lob2;
  121. lpphy->txpah[0] = sprom->pa1hib0;
  122. lpphy->txpah[1] = sprom->pa1hib1;
  123. lpphy->txpah[2] = sprom->pa1hib2;
  124. maxpwr = sprom->maxpwr_al;
  125. ofdmpo = sprom->ofdm5glpo;
  126. lpphy->max_tx_pwr_low_band = maxpwr;
  127. for (i = 4; i < 12; i++) {
  128. lpphy->tx_max_ratel[i] = maxpwr - (ofdmpo & 0xF) * 2;
  129. ofdmpo >>= 4;
  130. }
  131. maxpwr = sprom->maxpwr_a;
  132. ofdmpo = sprom->ofdm5gpo;
  133. lpphy->max_tx_pwr_med_band = maxpwr;
  134. for (i = 4; i < 12; i++) {
  135. lpphy->tx_max_rate[i] = maxpwr - (ofdmpo & 0xF) * 2;
  136. ofdmpo >>= 4;
  137. }
  138. maxpwr = sprom->maxpwr_ah;
  139. ofdmpo = sprom->ofdm5ghpo;
  140. lpphy->max_tx_pwr_hi_band = maxpwr;
  141. for (i = 4; i < 12; i++) {
  142. lpphy->tx_max_rateh[i] = maxpwr - (ofdmpo & 0xF) * 2;
  143. ofdmpo >>= 4;
  144. }
  145. }
  146. }
  147. static void lpphy_adjust_gain_table(struct b43_wldev *dev, u32 freq)
  148. {
  149. struct b43_phy_lp *lpphy = dev->phy.lp;
  150. u16 temp[3];
  151. u16 isolation;
  152. B43_WARN_ON(dev->phy.rev >= 2);
  153. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  154. isolation = lpphy->tx_isolation_med_band;
  155. else if (freq <= 5320)
  156. isolation = lpphy->tx_isolation_low_band;
  157. else if (freq <= 5700)
  158. isolation = lpphy->tx_isolation_med_band;
  159. else
  160. isolation = lpphy->tx_isolation_hi_band;
  161. temp[0] = ((isolation - 26) / 12) << 12;
  162. temp[1] = temp[0] + 0x1000;
  163. temp[2] = temp[0] + 0x2000;
  164. b43_lptab_write_bulk(dev, B43_LPTAB16(13, 0), 3, temp);
  165. b43_lptab_write_bulk(dev, B43_LPTAB16(12, 0), 3, temp);
  166. }
  167. static void lpphy_table_init(struct b43_wldev *dev)
  168. {
  169. u32 freq = channel2freq_lp(b43_lpphy_op_get_default_chan(dev));
  170. if (dev->phy.rev < 2)
  171. lpphy_rev0_1_table_init(dev);
  172. else
  173. lpphy_rev2plus_table_init(dev);
  174. lpphy_init_tx_gain_table(dev);
  175. if (dev->phy.rev < 2)
  176. lpphy_adjust_gain_table(dev, freq);
  177. }
  178. static void lpphy_baseband_rev0_1_init(struct b43_wldev *dev)
  179. {
  180. struct ssb_bus *bus = dev->dev->sdev->bus;
  181. struct ssb_sprom *sprom = dev->dev->bus_sprom;
  182. struct b43_phy_lp *lpphy = dev->phy.lp;
  183. u16 tmp, tmp2;
  184. b43_phy_mask(dev, B43_LPPHY_AFE_DAC_CTL, 0xF7FF);
  185. b43_phy_write(dev, B43_LPPHY_AFE_CTL, 0);
  186. b43_phy_write(dev, B43_LPPHY_AFE_CTL_OVR, 0);
  187. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_0, 0);
  188. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_2, 0);
  189. b43_phy_set(dev, B43_LPPHY_AFE_DAC_CTL, 0x0004);
  190. b43_phy_maskset(dev, B43_LPPHY_OFDMSYNCTHRESH0, 0xFF00, 0x0078);
  191. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0x83FF, 0x5800);
  192. b43_phy_write(dev, B43_LPPHY_ADC_COMPENSATION_CTL, 0x0016);
  193. b43_phy_maskset(dev, B43_LPPHY_AFE_ADC_CTL_0, 0xFFF8, 0x0004);
  194. b43_phy_maskset(dev, B43_LPPHY_VERYLOWGAINDB, 0x00FF, 0x5400);
  195. b43_phy_maskset(dev, B43_LPPHY_HIGAINDB, 0x00FF, 0x2400);
  196. b43_phy_maskset(dev, B43_LPPHY_LOWGAINDB, 0x00FF, 0x2100);
  197. b43_phy_maskset(dev, B43_LPPHY_VERYLOWGAINDB, 0xFF00, 0x0006);
  198. b43_phy_mask(dev, B43_LPPHY_RX_RADIO_CTL, 0xFFFE);
  199. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0xFFE0, 0x0005);
  200. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0xFC1F, 0x0180);
  201. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0x83FF, 0x3C00);
  202. b43_phy_maskset(dev, B43_LPPHY_GAINDIRECTMISMATCH, 0xFFF0, 0x0005);
  203. b43_phy_maskset(dev, B43_LPPHY_GAIN_MISMATCH_LIMIT, 0xFFC0, 0x001A);
  204. b43_phy_maskset(dev, B43_LPPHY_CRS_ED_THRESH, 0xFF00, 0x00B3);
  205. b43_phy_maskset(dev, B43_LPPHY_CRS_ED_THRESH, 0x00FF, 0xAD00);
  206. b43_phy_maskset(dev, B43_LPPHY_INPUT_PWRDB,
  207. 0xFF00, lpphy->rx_pwr_offset);
  208. if ((sprom->boardflags_lo & B43_BFL_FEM) &&
  209. ((b43_current_band(dev->wl) == IEEE80211_BAND_5GHZ) ||
  210. (sprom->boardflags_hi & B43_BFH_PAREF))) {
  211. ssb_pmu_set_ldo_voltage(&bus->chipco, LDO_PAREF, 0x28);
  212. ssb_pmu_set_ldo_paref(&bus->chipco, true);
  213. if (dev->phy.rev == 0) {
  214. b43_phy_maskset(dev, B43_LPPHY_LP_RF_SIGNAL_LUT,
  215. 0xFFCF, 0x0010);
  216. }
  217. b43_lptab_write(dev, B43_LPTAB16(11, 7), 60);
  218. } else {
  219. ssb_pmu_set_ldo_paref(&bus->chipco, false);
  220. b43_phy_maskset(dev, B43_LPPHY_LP_RF_SIGNAL_LUT,
  221. 0xFFCF, 0x0020);
  222. b43_lptab_write(dev, B43_LPTAB16(11, 7), 100);
  223. }
  224. tmp = lpphy->rssi_vf | lpphy->rssi_vc << 4 | 0xA000;
  225. b43_phy_write(dev, B43_LPPHY_AFE_RSSI_CTL_0, tmp);
  226. if (sprom->boardflags_hi & B43_BFH_RSSIINV)
  227. b43_phy_maskset(dev, B43_LPPHY_AFE_RSSI_CTL_1, 0xF000, 0x0AAA);
  228. else
  229. b43_phy_maskset(dev, B43_LPPHY_AFE_RSSI_CTL_1, 0xF000, 0x02AA);
  230. b43_lptab_write(dev, B43_LPTAB16(11, 1), 24);
  231. b43_phy_maskset(dev, B43_LPPHY_RX_RADIO_CTL,
  232. 0xFFF9, (lpphy->bx_arch << 1));
  233. if (dev->phy.rev == 1 &&
  234. (sprom->boardflags_hi & B43_BFH_FEM_BT)) {
  235. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xFFC0, 0x000A);
  236. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0x3F00, 0x0900);
  237. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xFFC0, 0x000A);
  238. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xC0FF, 0x0B00);
  239. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xFFC0, 0x000A);
  240. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xC0FF, 0x0400);
  241. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xFFC0, 0x000A);
  242. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xC0FF, 0x0B00);
  243. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_5, 0xFFC0, 0x000A);
  244. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_5, 0xC0FF, 0x0900);
  245. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_6, 0xFFC0, 0x000A);
  246. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_6, 0xC0FF, 0x0B00);
  247. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_7, 0xFFC0, 0x000A);
  248. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_7, 0xC0FF, 0x0900);
  249. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_8, 0xFFC0, 0x000A);
  250. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_8, 0xC0FF, 0x0B00);
  251. } else if (b43_current_band(dev->wl) == IEEE80211_BAND_5GHZ ||
  252. (dev->dev->board_type == SSB_BOARD_BU4312) ||
  253. (dev->phy.rev == 0 && (sprom->boardflags_lo & B43_BFL_FEM))) {
  254. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xFFC0, 0x0001);
  255. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xC0FF, 0x0400);
  256. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xFFC0, 0x0001);
  257. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xC0FF, 0x0500);
  258. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xFFC0, 0x0002);
  259. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xC0FF, 0x0800);
  260. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xFFC0, 0x0002);
  261. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xC0FF, 0x0A00);
  262. } else if (dev->phy.rev == 1 ||
  263. (sprom->boardflags_lo & B43_BFL_FEM)) {
  264. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xFFC0, 0x0004);
  265. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xC0FF, 0x0800);
  266. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xFFC0, 0x0004);
  267. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xC0FF, 0x0C00);
  268. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xFFC0, 0x0002);
  269. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xC0FF, 0x0100);
  270. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xFFC0, 0x0002);
  271. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xC0FF, 0x0300);
  272. } else {
  273. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xFFC0, 0x000A);
  274. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xC0FF, 0x0900);
  275. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xFFC0, 0x000A);
  276. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xC0FF, 0x0B00);
  277. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xFFC0, 0x0006);
  278. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xC0FF, 0x0500);
  279. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xFFC0, 0x0006);
  280. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xC0FF, 0x0700);
  281. }
  282. if (dev->phy.rev == 1 && (sprom->boardflags_hi & B43_BFH_PAREF)) {
  283. b43_phy_copy(dev, B43_LPPHY_TR_LOOKUP_5, B43_LPPHY_TR_LOOKUP_1);
  284. b43_phy_copy(dev, B43_LPPHY_TR_LOOKUP_6, B43_LPPHY_TR_LOOKUP_2);
  285. b43_phy_copy(dev, B43_LPPHY_TR_LOOKUP_7, B43_LPPHY_TR_LOOKUP_3);
  286. b43_phy_copy(dev, B43_LPPHY_TR_LOOKUP_8, B43_LPPHY_TR_LOOKUP_4);
  287. }
  288. if ((sprom->boardflags_hi & B43_BFH_FEM_BT) &&
  289. (dev->dev->chip_id == 0x5354) &&
  290. (dev->dev->chip_pkg == SSB_CHIPPACK_BCM4712S)) {
  291. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x0006);
  292. b43_phy_write(dev, B43_LPPHY_GPIO_SELECT, 0x0005);
  293. b43_phy_write(dev, B43_LPPHY_GPIO_OUTEN, 0xFFFF);
  294. //FIXME the Broadcom driver caches & delays this HF write!
  295. b43_hf_write(dev, b43_hf_read(dev) | B43_HF_PR45960W);
  296. }
  297. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  298. b43_phy_set(dev, B43_LPPHY_LP_PHY_CTL, 0x8000);
  299. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x0040);
  300. b43_phy_maskset(dev, B43_LPPHY_MINPWR_LEVEL, 0x00FF, 0xA400);
  301. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xF0FF, 0x0B00);
  302. b43_phy_maskset(dev, B43_LPPHY_SYNCPEAKCNT, 0xFFF8, 0x0007);
  303. b43_phy_maskset(dev, B43_LPPHY_DSSS_CONFIRM_CNT, 0xFFF8, 0x0003);
  304. b43_phy_maskset(dev, B43_LPPHY_DSSS_CONFIRM_CNT, 0xFFC7, 0x0020);
  305. b43_phy_mask(dev, B43_LPPHY_IDLEAFTERPKTRXTO, 0x00FF);
  306. } else { /* 5GHz */
  307. b43_phy_mask(dev, B43_LPPHY_LP_PHY_CTL, 0x7FFF);
  308. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, 0xFFBF);
  309. }
  310. if (dev->phy.rev == 1) {
  311. tmp = b43_phy_read(dev, B43_LPPHY_CLIPCTRTHRESH);
  312. tmp2 = (tmp & 0x03E0) >> 5;
  313. tmp2 |= tmp2 << 5;
  314. b43_phy_write(dev, B43_LPPHY_4C3, tmp2);
  315. tmp = b43_phy_read(dev, B43_LPPHY_GAINDIRECTMISMATCH);
  316. tmp2 = (tmp & 0x1F00) >> 8;
  317. tmp2 |= tmp2 << 5;
  318. b43_phy_write(dev, B43_LPPHY_4C4, tmp2);
  319. tmp = b43_phy_read(dev, B43_LPPHY_VERYLOWGAINDB);
  320. tmp2 = tmp & 0x00FF;
  321. tmp2 |= tmp << 8;
  322. b43_phy_write(dev, B43_LPPHY_4C5, tmp2);
  323. }
  324. }
  325. static void lpphy_save_dig_flt_state(struct b43_wldev *dev)
  326. {
  327. static const u16 addr[] = {
  328. B43_PHY_OFDM(0xC1),
  329. B43_PHY_OFDM(0xC2),
  330. B43_PHY_OFDM(0xC3),
  331. B43_PHY_OFDM(0xC4),
  332. B43_PHY_OFDM(0xC5),
  333. B43_PHY_OFDM(0xC6),
  334. B43_PHY_OFDM(0xC7),
  335. B43_PHY_OFDM(0xC8),
  336. B43_PHY_OFDM(0xCF),
  337. };
  338. static const u16 coefs[] = {
  339. 0xDE5E, 0xE832, 0xE331, 0x4D26,
  340. 0x0026, 0x1420, 0x0020, 0xFE08,
  341. 0x0008,
  342. };
  343. struct b43_phy_lp *lpphy = dev->phy.lp;
  344. int i;
  345. for (i = 0; i < ARRAY_SIZE(addr); i++) {
  346. lpphy->dig_flt_state[i] = b43_phy_read(dev, addr[i]);
  347. b43_phy_write(dev, addr[i], coefs[i]);
  348. }
  349. }
  350. static void lpphy_restore_dig_flt_state(struct b43_wldev *dev)
  351. {
  352. static const u16 addr[] = {
  353. B43_PHY_OFDM(0xC1),
  354. B43_PHY_OFDM(0xC2),
  355. B43_PHY_OFDM(0xC3),
  356. B43_PHY_OFDM(0xC4),
  357. B43_PHY_OFDM(0xC5),
  358. B43_PHY_OFDM(0xC6),
  359. B43_PHY_OFDM(0xC7),
  360. B43_PHY_OFDM(0xC8),
  361. B43_PHY_OFDM(0xCF),
  362. };
  363. struct b43_phy_lp *lpphy = dev->phy.lp;
  364. int i;
  365. for (i = 0; i < ARRAY_SIZE(addr); i++)
  366. b43_phy_write(dev, addr[i], lpphy->dig_flt_state[i]);
  367. }
  368. static void lpphy_baseband_rev2plus_init(struct b43_wldev *dev)
  369. {
  370. struct b43_phy_lp *lpphy = dev->phy.lp;
  371. b43_phy_write(dev, B43_LPPHY_AFE_DAC_CTL, 0x50);
  372. b43_phy_write(dev, B43_LPPHY_AFE_CTL, 0x8800);
  373. b43_phy_write(dev, B43_LPPHY_AFE_CTL_OVR, 0);
  374. b43_phy_write(dev, B43_LPPHY_AFE_CTL_OVRVAL, 0);
  375. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_0, 0);
  376. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_2, 0);
  377. b43_phy_write(dev, B43_PHY_OFDM(0xF9), 0);
  378. b43_phy_write(dev, B43_LPPHY_TR_LOOKUP_1, 0);
  379. b43_phy_set(dev, B43_LPPHY_ADC_COMPENSATION_CTL, 0x10);
  380. b43_phy_maskset(dev, B43_LPPHY_OFDMSYNCTHRESH0, 0xFF00, 0xB4);
  381. b43_phy_maskset(dev, B43_LPPHY_DCOFFSETTRANSIENT, 0xF8FF, 0x200);
  382. b43_phy_maskset(dev, B43_LPPHY_DCOFFSETTRANSIENT, 0xFF00, 0x7F);
  383. b43_phy_maskset(dev, B43_LPPHY_GAINDIRECTMISMATCH, 0xFF0F, 0x40);
  384. b43_phy_maskset(dev, B43_LPPHY_PREAMBLECONFIRMTO, 0xFF00, 0x2);
  385. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, ~0x4000);
  386. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, ~0x2000);
  387. b43_phy_set(dev, B43_PHY_OFDM(0x10A), 0x1);
  388. if (dev->dev->board_rev >= 0x18) {
  389. b43_lptab_write(dev, B43_LPTAB32(17, 65), 0xEC);
  390. b43_phy_maskset(dev, B43_PHY_OFDM(0x10A), 0xFF01, 0x14);
  391. } else {
  392. b43_phy_maskset(dev, B43_PHY_OFDM(0x10A), 0xFF01, 0x10);
  393. }
  394. b43_phy_maskset(dev, B43_PHY_OFDM(0xDF), 0xFF00, 0xF4);
  395. b43_phy_maskset(dev, B43_PHY_OFDM(0xDF), 0x00FF, 0xF100);
  396. b43_phy_write(dev, B43_LPPHY_CLIPTHRESH, 0x48);
  397. b43_phy_maskset(dev, B43_LPPHY_HIGAINDB, 0xFF00, 0x46);
  398. b43_phy_maskset(dev, B43_PHY_OFDM(0xE4), 0xFF00, 0x10);
  399. b43_phy_maskset(dev, B43_LPPHY_PWR_THRESH1, 0xFFF0, 0x9);
  400. b43_phy_mask(dev, B43_LPPHY_GAINDIRECTMISMATCH, ~0xF);
  401. b43_phy_maskset(dev, B43_LPPHY_VERYLOWGAINDB, 0x00FF, 0x5500);
  402. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0xFC1F, 0xA0);
  403. b43_phy_maskset(dev, B43_LPPHY_GAINDIRECTMISMATCH, 0xE0FF, 0x300);
  404. b43_phy_maskset(dev, B43_LPPHY_HIGAINDB, 0x00FF, 0x2A00);
  405. if ((dev->dev->chip_id == 0x4325) && (dev->dev->chip_rev == 0)) {
  406. b43_phy_maskset(dev, B43_LPPHY_LOWGAINDB, 0x00FF, 0x2100);
  407. b43_phy_maskset(dev, B43_LPPHY_VERYLOWGAINDB, 0xFF00, 0xA);
  408. } else {
  409. b43_phy_maskset(dev, B43_LPPHY_LOWGAINDB, 0x00FF, 0x1E00);
  410. b43_phy_maskset(dev, B43_LPPHY_VERYLOWGAINDB, 0xFF00, 0xD);
  411. }
  412. b43_phy_maskset(dev, B43_PHY_OFDM(0xFE), 0xFFE0, 0x1F);
  413. b43_phy_maskset(dev, B43_PHY_OFDM(0xFF), 0xFFE0, 0xC);
  414. b43_phy_maskset(dev, B43_PHY_OFDM(0x100), 0xFF00, 0x19);
  415. b43_phy_maskset(dev, B43_PHY_OFDM(0xFF), 0x03FF, 0x3C00);
  416. b43_phy_maskset(dev, B43_PHY_OFDM(0xFE), 0xFC1F, 0x3E0);
  417. b43_phy_maskset(dev, B43_PHY_OFDM(0xFF), 0xFFE0, 0xC);
  418. b43_phy_maskset(dev, B43_PHY_OFDM(0x100), 0x00FF, 0x1900);
  419. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0x83FF, 0x5800);
  420. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0xFFE0, 0x12);
  421. b43_phy_maskset(dev, B43_LPPHY_GAINMISMATCH, 0x0FFF, 0x9000);
  422. if ((dev->dev->chip_id == 0x4325) && (dev->dev->chip_rev == 0)) {
  423. b43_lptab_write(dev, B43_LPTAB16(0x08, 0x14), 0);
  424. b43_lptab_write(dev, B43_LPTAB16(0x08, 0x12), 0x40);
  425. }
  426. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  427. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x40);
  428. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xF0FF, 0xB00);
  429. b43_phy_maskset(dev, B43_LPPHY_SYNCPEAKCNT, 0xFFF8, 0x6);
  430. b43_phy_maskset(dev, B43_LPPHY_MINPWR_LEVEL, 0x00FF, 0x9D00);
  431. b43_phy_maskset(dev, B43_LPPHY_MINPWR_LEVEL, 0xFF00, 0xA1);
  432. b43_phy_mask(dev, B43_LPPHY_IDLEAFTERPKTRXTO, 0x00FF);
  433. } else /* 5GHz */
  434. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, ~0x40);
  435. b43_phy_maskset(dev, B43_LPPHY_CRS_ED_THRESH, 0xFF00, 0xB3);
  436. b43_phy_maskset(dev, B43_LPPHY_CRS_ED_THRESH, 0x00FF, 0xAD00);
  437. b43_phy_maskset(dev, B43_LPPHY_INPUT_PWRDB, 0xFF00, lpphy->rx_pwr_offset);
  438. b43_phy_set(dev, B43_LPPHY_RESET_CTL, 0x44);
  439. b43_phy_write(dev, B43_LPPHY_RESET_CTL, 0x80);
  440. b43_phy_write(dev, B43_LPPHY_AFE_RSSI_CTL_0, 0xA954);
  441. b43_phy_write(dev, B43_LPPHY_AFE_RSSI_CTL_1,
  442. 0x2000 | ((u16)lpphy->rssi_gs << 10) |
  443. ((u16)lpphy->rssi_vc << 4) | lpphy->rssi_vf);
  444. if ((dev->dev->chip_id == 0x4325) && (dev->dev->chip_rev == 0)) {
  445. b43_phy_set(dev, B43_LPPHY_AFE_ADC_CTL_0, 0x1C);
  446. b43_phy_maskset(dev, B43_LPPHY_AFE_CTL, 0x00FF, 0x8800);
  447. b43_phy_maskset(dev, B43_LPPHY_AFE_ADC_CTL_1, 0xFC3C, 0x0400);
  448. }
  449. lpphy_save_dig_flt_state(dev);
  450. }
  451. static void lpphy_baseband_init(struct b43_wldev *dev)
  452. {
  453. lpphy_table_init(dev);
  454. if (dev->phy.rev >= 2)
  455. lpphy_baseband_rev2plus_init(dev);
  456. else
  457. lpphy_baseband_rev0_1_init(dev);
  458. }
  459. struct b2062_freqdata {
  460. u16 freq;
  461. u8 data[6];
  462. };
  463. /* Initialize the 2062 radio. */
  464. static void lpphy_2062_init(struct b43_wldev *dev)
  465. {
  466. struct b43_phy_lp *lpphy = dev->phy.lp;
  467. struct ssb_bus *bus = dev->dev->sdev->bus;
  468. u32 crystalfreq, tmp, ref;
  469. unsigned int i;
  470. const struct b2062_freqdata *fd = NULL;
  471. static const struct b2062_freqdata freqdata_tab[] = {
  472. { .freq = 12000, .data[0] = 6, .data[1] = 6, .data[2] = 6,
  473. .data[3] = 6, .data[4] = 10, .data[5] = 6, },
  474. { .freq = 13000, .data[0] = 4, .data[1] = 4, .data[2] = 4,
  475. .data[3] = 4, .data[4] = 11, .data[5] = 7, },
  476. { .freq = 14400, .data[0] = 3, .data[1] = 3, .data[2] = 3,
  477. .data[3] = 3, .data[4] = 12, .data[5] = 7, },
  478. { .freq = 16200, .data[0] = 3, .data[1] = 3, .data[2] = 3,
  479. .data[3] = 3, .data[4] = 13, .data[5] = 8, },
  480. { .freq = 18000, .data[0] = 2, .data[1] = 2, .data[2] = 2,
  481. .data[3] = 2, .data[4] = 14, .data[5] = 8, },
  482. { .freq = 19200, .data[0] = 1, .data[1] = 1, .data[2] = 1,
  483. .data[3] = 1, .data[4] = 14, .data[5] = 9, },
  484. };
  485. b2062_upload_init_table(dev);
  486. b43_radio_write(dev, B2062_N_TX_CTL3, 0);
  487. b43_radio_write(dev, B2062_N_TX_CTL4, 0);
  488. b43_radio_write(dev, B2062_N_TX_CTL5, 0);
  489. b43_radio_write(dev, B2062_N_TX_CTL6, 0);
  490. b43_radio_write(dev, B2062_N_PDN_CTL0, 0x40);
  491. b43_radio_write(dev, B2062_N_PDN_CTL0, 0);
  492. b43_radio_write(dev, B2062_N_CALIB_TS, 0x10);
  493. b43_radio_write(dev, B2062_N_CALIB_TS, 0);
  494. if (dev->phy.rev > 0) {
  495. b43_radio_write(dev, B2062_S_BG_CTL1,
  496. (b43_radio_read(dev, B2062_N_COMM2) >> 1) | 0x80);
  497. }
  498. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  499. b43_radio_set(dev, B2062_N_TSSI_CTL0, 0x1);
  500. else
  501. b43_radio_mask(dev, B2062_N_TSSI_CTL0, ~0x1);
  502. /* Get the crystal freq, in Hz. */
  503. crystalfreq = bus->chipco.pmu.crystalfreq * 1000;
  504. B43_WARN_ON(!(bus->chipco.capabilities & SSB_CHIPCO_CAP_PMU));
  505. B43_WARN_ON(crystalfreq == 0);
  506. if (crystalfreq <= 30000000) {
  507. lpphy->pdiv = 1;
  508. b43_radio_mask(dev, B2062_S_RFPLL_CTL1, 0xFFFB);
  509. } else {
  510. lpphy->pdiv = 2;
  511. b43_radio_set(dev, B2062_S_RFPLL_CTL1, 0x4);
  512. }
  513. tmp = (((800000000 * lpphy->pdiv + crystalfreq) /
  514. (2 * crystalfreq)) - 8) & 0xFF;
  515. b43_radio_write(dev, B2062_S_RFPLL_CTL7, tmp);
  516. tmp = (((100 * crystalfreq + 16000000 * lpphy->pdiv) /
  517. (32000000 * lpphy->pdiv)) - 1) & 0xFF;
  518. b43_radio_write(dev, B2062_S_RFPLL_CTL18, tmp);
  519. tmp = (((2 * crystalfreq + 1000000 * lpphy->pdiv) /
  520. (2000000 * lpphy->pdiv)) - 1) & 0xFF;
  521. b43_radio_write(dev, B2062_S_RFPLL_CTL19, tmp);
  522. ref = (1000 * lpphy->pdiv + 2 * crystalfreq) / (2000 * lpphy->pdiv);
  523. ref &= 0xFFFF;
  524. for (i = 0; i < ARRAY_SIZE(freqdata_tab); i++) {
  525. if (ref < freqdata_tab[i].freq) {
  526. fd = &freqdata_tab[i];
  527. break;
  528. }
  529. }
  530. if (!fd)
  531. fd = &freqdata_tab[ARRAY_SIZE(freqdata_tab) - 1];
  532. b43dbg(dev->wl, "b2062: Using crystal tab entry %u kHz.\n",
  533. fd->freq); /* FIXME: Keep this printk until the code is fully debugged. */
  534. b43_radio_write(dev, B2062_S_RFPLL_CTL8,
  535. ((u16)(fd->data[1]) << 4) | fd->data[0]);
  536. b43_radio_write(dev, B2062_S_RFPLL_CTL9,
  537. ((u16)(fd->data[3]) << 4) | fd->data[2]);
  538. b43_radio_write(dev, B2062_S_RFPLL_CTL10, fd->data[4]);
  539. b43_radio_write(dev, B2062_S_RFPLL_CTL11, fd->data[5]);
  540. }
  541. /* Initialize the 2063 radio. */
  542. static void lpphy_2063_init(struct b43_wldev *dev)
  543. {
  544. b2063_upload_init_table(dev);
  545. b43_radio_write(dev, B2063_LOGEN_SP5, 0);
  546. b43_radio_set(dev, B2063_COMM8, 0x38);
  547. b43_radio_write(dev, B2063_REG_SP1, 0x56);
  548. b43_radio_mask(dev, B2063_RX_BB_CTL2, ~0x2);
  549. b43_radio_write(dev, B2063_PA_SP7, 0);
  550. b43_radio_write(dev, B2063_TX_RF_SP6, 0x20);
  551. b43_radio_write(dev, B2063_TX_RF_SP9, 0x40);
  552. if (dev->phy.rev == 2) {
  553. b43_radio_write(dev, B2063_PA_SP3, 0xa0);
  554. b43_radio_write(dev, B2063_PA_SP4, 0xa0);
  555. b43_radio_write(dev, B2063_PA_SP2, 0x18);
  556. } else {
  557. b43_radio_write(dev, B2063_PA_SP3, 0x20);
  558. b43_radio_write(dev, B2063_PA_SP2, 0x20);
  559. }
  560. }
  561. struct lpphy_stx_table_entry {
  562. u16 phy_offset;
  563. u16 phy_shift;
  564. u16 rf_addr;
  565. u16 rf_shift;
  566. u16 mask;
  567. };
  568. static const struct lpphy_stx_table_entry lpphy_stx_table[] = {
  569. { .phy_offset = 2, .phy_shift = 6, .rf_addr = 0x3d, .rf_shift = 3, .mask = 0x01, },
  570. { .phy_offset = 1, .phy_shift = 12, .rf_addr = 0x4c, .rf_shift = 1, .mask = 0x01, },
  571. { .phy_offset = 1, .phy_shift = 8, .rf_addr = 0x50, .rf_shift = 0, .mask = 0x7f, },
  572. { .phy_offset = 0, .phy_shift = 8, .rf_addr = 0x44, .rf_shift = 0, .mask = 0xff, },
  573. { .phy_offset = 1, .phy_shift = 0, .rf_addr = 0x4a, .rf_shift = 0, .mask = 0xff, },
  574. { .phy_offset = 0, .phy_shift = 4, .rf_addr = 0x4d, .rf_shift = 0, .mask = 0xff, },
  575. { .phy_offset = 1, .phy_shift = 4, .rf_addr = 0x4e, .rf_shift = 0, .mask = 0xff, },
  576. { .phy_offset = 0, .phy_shift = 12, .rf_addr = 0x4f, .rf_shift = 0, .mask = 0x0f, },
  577. { .phy_offset = 1, .phy_shift = 0, .rf_addr = 0x4f, .rf_shift = 4, .mask = 0x0f, },
  578. { .phy_offset = 3, .phy_shift = 0, .rf_addr = 0x49, .rf_shift = 0, .mask = 0x0f, },
  579. { .phy_offset = 4, .phy_shift = 3, .rf_addr = 0x46, .rf_shift = 4, .mask = 0x07, },
  580. { .phy_offset = 3, .phy_shift = 15, .rf_addr = 0x46, .rf_shift = 0, .mask = 0x01, },
  581. { .phy_offset = 4, .phy_shift = 0, .rf_addr = 0x46, .rf_shift = 1, .mask = 0x07, },
  582. { .phy_offset = 3, .phy_shift = 8, .rf_addr = 0x48, .rf_shift = 4, .mask = 0x07, },
  583. { .phy_offset = 3, .phy_shift = 11, .rf_addr = 0x48, .rf_shift = 0, .mask = 0x0f, },
  584. { .phy_offset = 3, .phy_shift = 4, .rf_addr = 0x49, .rf_shift = 4, .mask = 0x0f, },
  585. { .phy_offset = 2, .phy_shift = 15, .rf_addr = 0x45, .rf_shift = 0, .mask = 0x01, },
  586. { .phy_offset = 5, .phy_shift = 13, .rf_addr = 0x52, .rf_shift = 4, .mask = 0x07, },
  587. { .phy_offset = 6, .phy_shift = 0, .rf_addr = 0x52, .rf_shift = 7, .mask = 0x01, },
  588. { .phy_offset = 5, .phy_shift = 3, .rf_addr = 0x41, .rf_shift = 5, .mask = 0x07, },
  589. { .phy_offset = 5, .phy_shift = 6, .rf_addr = 0x41, .rf_shift = 0, .mask = 0x0f, },
  590. { .phy_offset = 5, .phy_shift = 10, .rf_addr = 0x42, .rf_shift = 5, .mask = 0x07, },
  591. { .phy_offset = 4, .phy_shift = 15, .rf_addr = 0x42, .rf_shift = 0, .mask = 0x01, },
  592. { .phy_offset = 5, .phy_shift = 0, .rf_addr = 0x42, .rf_shift = 1, .mask = 0x07, },
  593. { .phy_offset = 4, .phy_shift = 11, .rf_addr = 0x43, .rf_shift = 4, .mask = 0x0f, },
  594. { .phy_offset = 4, .phy_shift = 7, .rf_addr = 0x43, .rf_shift = 0, .mask = 0x0f, },
  595. { .phy_offset = 4, .phy_shift = 6, .rf_addr = 0x45, .rf_shift = 1, .mask = 0x01, },
  596. { .phy_offset = 2, .phy_shift = 7, .rf_addr = 0x40, .rf_shift = 4, .mask = 0x0f, },
  597. { .phy_offset = 2, .phy_shift = 11, .rf_addr = 0x40, .rf_shift = 0, .mask = 0x0f, },
  598. };
  599. static void lpphy_sync_stx(struct b43_wldev *dev)
  600. {
  601. const struct lpphy_stx_table_entry *e;
  602. unsigned int i;
  603. u16 tmp;
  604. for (i = 0; i < ARRAY_SIZE(lpphy_stx_table); i++) {
  605. e = &lpphy_stx_table[i];
  606. tmp = b43_radio_read(dev, e->rf_addr);
  607. tmp >>= e->rf_shift;
  608. tmp <<= e->phy_shift;
  609. b43_phy_maskset(dev, B43_PHY_OFDM(0xF2 + e->phy_offset),
  610. ~(e->mask << e->phy_shift), tmp);
  611. }
  612. }
  613. static void lpphy_radio_init(struct b43_wldev *dev)
  614. {
  615. /* The radio is attached through the 4wire bus. */
  616. b43_phy_set(dev, B43_LPPHY_FOURWIRE_CTL, 0x2);
  617. udelay(1);
  618. b43_phy_mask(dev, B43_LPPHY_FOURWIRE_CTL, 0xFFFD);
  619. udelay(1);
  620. if (dev->phy.radio_ver == 0x2062) {
  621. lpphy_2062_init(dev);
  622. } else {
  623. lpphy_2063_init(dev);
  624. lpphy_sync_stx(dev);
  625. b43_phy_write(dev, B43_PHY_OFDM(0xF0), 0x5F80);
  626. b43_phy_write(dev, B43_PHY_OFDM(0xF1), 0);
  627. if (dev->dev->chip_id == 0x4325) {
  628. // TODO SSB PMU recalibration
  629. }
  630. }
  631. }
  632. struct lpphy_iq_est { u32 iq_prod, i_pwr, q_pwr; };
  633. static void lpphy_set_rc_cap(struct b43_wldev *dev)
  634. {
  635. struct b43_phy_lp *lpphy = dev->phy.lp;
  636. u8 rc_cap = (lpphy->rc_cap & 0x1F) >> 1;
  637. if (dev->phy.rev == 1) //FIXME check channel 14!
  638. rc_cap = min_t(u8, rc_cap + 5, 15);
  639. b43_radio_write(dev, B2062_N_RXBB_CALIB2,
  640. max_t(u8, lpphy->rc_cap - 4, 0x80));
  641. b43_radio_write(dev, B2062_N_TX_CTL_A, rc_cap | 0x80);
  642. b43_radio_write(dev, B2062_S_RXG_CNT16,
  643. ((lpphy->rc_cap & 0x1F) >> 2) | 0x80);
  644. }
  645. static u8 lpphy_get_bb_mult(struct b43_wldev *dev)
  646. {
  647. return (b43_lptab_read(dev, B43_LPTAB16(0, 87)) & 0xFF00) >> 8;
  648. }
  649. static void lpphy_set_bb_mult(struct b43_wldev *dev, u8 bb_mult)
  650. {
  651. b43_lptab_write(dev, B43_LPTAB16(0, 87), (u16)bb_mult << 8);
  652. }
  653. static void lpphy_set_deaf(struct b43_wldev *dev, bool user)
  654. {
  655. struct b43_phy_lp *lpphy = dev->phy.lp;
  656. if (user)
  657. lpphy->crs_usr_disable = true;
  658. else
  659. lpphy->crs_sys_disable = true;
  660. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xFF1F, 0x80);
  661. }
  662. static void lpphy_clear_deaf(struct b43_wldev *dev, bool user)
  663. {
  664. struct b43_phy_lp *lpphy = dev->phy.lp;
  665. if (user)
  666. lpphy->crs_usr_disable = false;
  667. else
  668. lpphy->crs_sys_disable = false;
  669. if (!lpphy->crs_usr_disable && !lpphy->crs_sys_disable) {
  670. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  671. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL,
  672. 0xFF1F, 0x60);
  673. else
  674. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL,
  675. 0xFF1F, 0x20);
  676. }
  677. }
  678. static void lpphy_set_trsw_over(struct b43_wldev *dev, bool tx, bool rx)
  679. {
  680. u16 trsw = (tx << 1) | rx;
  681. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFFC, trsw);
  682. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x3);
  683. }
  684. static void lpphy_disable_crs(struct b43_wldev *dev, bool user)
  685. {
  686. lpphy_set_deaf(dev, user);
  687. lpphy_set_trsw_over(dev, false, true);
  688. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFFB);
  689. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x4);
  690. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFF7);
  691. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x8);
  692. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0x10);
  693. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x10);
  694. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFDF);
  695. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x20);
  696. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFBF);
  697. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x40);
  698. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0x7);
  699. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0x38);
  700. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFF3F);
  701. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0x100);
  702. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFDFF);
  703. b43_phy_write(dev, B43_LPPHY_PS_CTL_OVERRIDE_VAL0, 0);
  704. b43_phy_write(dev, B43_LPPHY_PS_CTL_OVERRIDE_VAL1, 1);
  705. b43_phy_write(dev, B43_LPPHY_PS_CTL_OVERRIDE_VAL2, 0x20);
  706. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFBFF);
  707. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xF7FF);
  708. b43_phy_write(dev, B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL, 0);
  709. b43_phy_write(dev, B43_LPPHY_RX_GAIN_CTL_OVERRIDE_VAL, 0x45AF);
  710. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_2, 0x3FF);
  711. }
  712. static void lpphy_restore_crs(struct b43_wldev *dev, bool user)
  713. {
  714. lpphy_clear_deaf(dev, user);
  715. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFF80);
  716. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFC00);
  717. }
  718. struct lpphy_tx_gains { u16 gm, pga, pad, dac; };
  719. static void lpphy_disable_rx_gain_override(struct b43_wldev *dev)
  720. {
  721. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFFFE);
  722. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFFEF);
  723. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFFBF);
  724. if (dev->phy.rev >= 2) {
  725. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFEFF);
  726. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  727. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFBFF);
  728. b43_phy_mask(dev, B43_PHY_OFDM(0xE5), 0xFFF7);
  729. }
  730. } else {
  731. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFDFF);
  732. }
  733. }
  734. static void lpphy_enable_rx_gain_override(struct b43_wldev *dev)
  735. {
  736. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x1);
  737. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x10);
  738. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x40);
  739. if (dev->phy.rev >= 2) {
  740. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x100);
  741. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  742. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x400);
  743. b43_phy_set(dev, B43_PHY_OFDM(0xE5), 0x8);
  744. }
  745. } else {
  746. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x200);
  747. }
  748. }
  749. static void lpphy_disable_tx_gain_override(struct b43_wldev *dev)
  750. {
  751. if (dev->phy.rev < 2)
  752. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFEFF);
  753. else {
  754. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFF7F);
  755. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xBFFF);
  756. }
  757. b43_phy_mask(dev, B43_LPPHY_AFE_CTL_OVR, 0xFFBF);
  758. }
  759. static void lpphy_enable_tx_gain_override(struct b43_wldev *dev)
  760. {
  761. if (dev->phy.rev < 2)
  762. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x100);
  763. else {
  764. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x80);
  765. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x4000);
  766. }
  767. b43_phy_set(dev, B43_LPPHY_AFE_CTL_OVR, 0x40);
  768. }
  769. static struct lpphy_tx_gains lpphy_get_tx_gains(struct b43_wldev *dev)
  770. {
  771. struct lpphy_tx_gains gains;
  772. u16 tmp;
  773. gains.dac = (b43_phy_read(dev, B43_LPPHY_AFE_DAC_CTL) & 0x380) >> 7;
  774. if (dev->phy.rev < 2) {
  775. tmp = b43_phy_read(dev,
  776. B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL) & 0x7FF;
  777. gains.gm = tmp & 0x0007;
  778. gains.pga = (tmp & 0x0078) >> 3;
  779. gains.pad = (tmp & 0x780) >> 7;
  780. } else {
  781. tmp = b43_phy_read(dev, B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL);
  782. gains.pad = b43_phy_read(dev, B43_PHY_OFDM(0xFB)) & 0xFF;
  783. gains.gm = tmp & 0xFF;
  784. gains.pga = (tmp >> 8) & 0xFF;
  785. }
  786. return gains;
  787. }
  788. static void lpphy_set_dac_gain(struct b43_wldev *dev, u16 dac)
  789. {
  790. u16 ctl = b43_phy_read(dev, B43_LPPHY_AFE_DAC_CTL) & 0xC7F;
  791. ctl |= dac << 7;
  792. b43_phy_maskset(dev, B43_LPPHY_AFE_DAC_CTL, 0xF000, ctl);
  793. }
  794. static u16 lpphy_get_pa_gain(struct b43_wldev *dev)
  795. {
  796. return b43_phy_read(dev, B43_PHY_OFDM(0xFB)) & 0x7F;
  797. }
  798. static void lpphy_set_pa_gain(struct b43_wldev *dev, u16 gain)
  799. {
  800. b43_phy_maskset(dev, B43_PHY_OFDM(0xFB), 0xE03F, gain << 6);
  801. b43_phy_maskset(dev, B43_PHY_OFDM(0xFD), 0x80FF, gain << 8);
  802. }
  803. static void lpphy_set_tx_gains(struct b43_wldev *dev,
  804. struct lpphy_tx_gains gains)
  805. {
  806. u16 rf_gain, pa_gain;
  807. if (dev->phy.rev < 2) {
  808. rf_gain = (gains.pad << 7) | (gains.pga << 3) | gains.gm;
  809. b43_phy_maskset(dev, B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL,
  810. 0xF800, rf_gain);
  811. } else {
  812. pa_gain = lpphy_get_pa_gain(dev);
  813. b43_phy_write(dev, B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL,
  814. (gains.pga << 8) | gains.gm);
  815. /*
  816. * SPEC FIXME The spec calls for (pa_gain << 8) here, but that
  817. * conflicts with the spec for set_pa_gain! Vendor driver bug?
  818. */
  819. b43_phy_maskset(dev, B43_PHY_OFDM(0xFB),
  820. 0x8000, gains.pad | (pa_gain << 6));
  821. b43_phy_write(dev, B43_PHY_OFDM(0xFC),
  822. (gains.pga << 8) | gains.gm);
  823. b43_phy_maskset(dev, B43_PHY_OFDM(0xFD),
  824. 0x8000, gains.pad | (pa_gain << 8));
  825. }
  826. lpphy_set_dac_gain(dev, gains.dac);
  827. lpphy_enable_tx_gain_override(dev);
  828. }
  829. static void lpphy_rev0_1_set_rx_gain(struct b43_wldev *dev, u32 gain)
  830. {
  831. u16 trsw = gain & 0x1;
  832. u16 lna = (gain & 0xFFFC) | ((gain & 0xC) >> 2);
  833. u16 ext_lna = (gain & 2) >> 1;
  834. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFFE, trsw);
  835. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL,
  836. 0xFBFF, ext_lna << 10);
  837. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL,
  838. 0xF7FF, ext_lna << 11);
  839. b43_phy_write(dev, B43_LPPHY_RX_GAIN_CTL_OVERRIDE_VAL, lna);
  840. }
  841. static void lpphy_rev2plus_set_rx_gain(struct b43_wldev *dev, u32 gain)
  842. {
  843. u16 low_gain = gain & 0xFFFF;
  844. u16 high_gain = (gain >> 16) & 0xF;
  845. u16 ext_lna = (gain >> 21) & 0x1;
  846. u16 trsw = ~(gain >> 20) & 0x1;
  847. u16 tmp;
  848. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFFE, trsw);
  849. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL,
  850. 0xFDFF, ext_lna << 9);
  851. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL,
  852. 0xFBFF, ext_lna << 10);
  853. b43_phy_write(dev, B43_LPPHY_RX_GAIN_CTL_OVERRIDE_VAL, low_gain);
  854. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS, 0xFFF0, high_gain);
  855. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  856. tmp = (gain >> 2) & 0x3;
  857. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL,
  858. 0xE7FF, tmp<<11);
  859. b43_phy_maskset(dev, B43_PHY_OFDM(0xE6), 0xFFE7, tmp << 3);
  860. }
  861. }
  862. static void lpphy_set_rx_gain(struct b43_wldev *dev, u32 gain)
  863. {
  864. if (dev->phy.rev < 2)
  865. lpphy_rev0_1_set_rx_gain(dev, gain);
  866. else
  867. lpphy_rev2plus_set_rx_gain(dev, gain);
  868. lpphy_enable_rx_gain_override(dev);
  869. }
  870. static void lpphy_set_rx_gain_by_index(struct b43_wldev *dev, u16 idx)
  871. {
  872. u32 gain = b43_lptab_read(dev, B43_LPTAB16(12, idx));
  873. lpphy_set_rx_gain(dev, gain);
  874. }
  875. static void lpphy_stop_ddfs(struct b43_wldev *dev)
  876. {
  877. b43_phy_mask(dev, B43_LPPHY_AFE_DDFS, 0xFFFD);
  878. b43_phy_mask(dev, B43_LPPHY_LP_PHY_CTL, 0xFFDF);
  879. }
  880. static void lpphy_run_ddfs(struct b43_wldev *dev, int i_on, int q_on,
  881. int incr1, int incr2, int scale_idx)
  882. {
  883. lpphy_stop_ddfs(dev);
  884. b43_phy_mask(dev, B43_LPPHY_AFE_DDFS_POINTER_INIT, 0xFF80);
  885. b43_phy_mask(dev, B43_LPPHY_AFE_DDFS_POINTER_INIT, 0x80FF);
  886. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS_INCR_INIT, 0xFF80, incr1);
  887. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS_INCR_INIT, 0x80FF, incr2 << 8);
  888. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS, 0xFFF7, i_on << 3);
  889. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS, 0xFFEF, q_on << 4);
  890. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS, 0xFF9F, scale_idx << 5);
  891. b43_phy_mask(dev, B43_LPPHY_AFE_DDFS, 0xFFFB);
  892. b43_phy_set(dev, B43_LPPHY_AFE_DDFS, 0x2);
  893. b43_phy_set(dev, B43_LPPHY_LP_PHY_CTL, 0x20);
  894. }
  895. static bool lpphy_rx_iq_est(struct b43_wldev *dev, u16 samples, u8 time,
  896. struct lpphy_iq_est *iq_est)
  897. {
  898. int i;
  899. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, 0xFFF7);
  900. b43_phy_write(dev, B43_LPPHY_IQ_NUM_SMPLS_ADDR, samples);
  901. b43_phy_maskset(dev, B43_LPPHY_IQ_ENABLE_WAIT_TIME_ADDR, 0xFF00, time);
  902. b43_phy_mask(dev, B43_LPPHY_IQ_ENABLE_WAIT_TIME_ADDR, 0xFEFF);
  903. b43_phy_set(dev, B43_LPPHY_IQ_ENABLE_WAIT_TIME_ADDR, 0x200);
  904. for (i = 0; i < 500; i++) {
  905. if (!(b43_phy_read(dev,
  906. B43_LPPHY_IQ_ENABLE_WAIT_TIME_ADDR) & 0x200))
  907. break;
  908. msleep(1);
  909. }
  910. if ((b43_phy_read(dev, B43_LPPHY_IQ_ENABLE_WAIT_TIME_ADDR) & 0x200)) {
  911. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x8);
  912. return false;
  913. }
  914. iq_est->iq_prod = b43_phy_read(dev, B43_LPPHY_IQ_ACC_HI_ADDR);
  915. iq_est->iq_prod <<= 16;
  916. iq_est->iq_prod |= b43_phy_read(dev, B43_LPPHY_IQ_ACC_LO_ADDR);
  917. iq_est->i_pwr = b43_phy_read(dev, B43_LPPHY_IQ_I_PWR_ACC_HI_ADDR);
  918. iq_est->i_pwr <<= 16;
  919. iq_est->i_pwr |= b43_phy_read(dev, B43_LPPHY_IQ_I_PWR_ACC_LO_ADDR);
  920. iq_est->q_pwr = b43_phy_read(dev, B43_LPPHY_IQ_Q_PWR_ACC_HI_ADDR);
  921. iq_est->q_pwr <<= 16;
  922. iq_est->q_pwr |= b43_phy_read(dev, B43_LPPHY_IQ_Q_PWR_ACC_LO_ADDR);
  923. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x8);
  924. return true;
  925. }
  926. static int lpphy_loopback(struct b43_wldev *dev)
  927. {
  928. struct lpphy_iq_est iq_est;
  929. int i, index = -1;
  930. u32 tmp;
  931. memset(&iq_est, 0, sizeof(iq_est));
  932. lpphy_set_trsw_over(dev, true, true);
  933. b43_phy_set(dev, B43_LPPHY_AFE_CTL_OVR, 1);
  934. b43_phy_mask(dev, B43_LPPHY_AFE_CTL_OVRVAL, 0xFFFE);
  935. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x800);
  936. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0x800);
  937. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x8);
  938. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0x8);
  939. b43_radio_write(dev, B2062_N_TX_CTL_A, 0x80);
  940. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x80);
  941. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0x80);
  942. for (i = 0; i < 32; i++) {
  943. lpphy_set_rx_gain_by_index(dev, i);
  944. lpphy_run_ddfs(dev, 1, 1, 5, 5, 0);
  945. if (!(lpphy_rx_iq_est(dev, 1000, 32, &iq_est)))
  946. continue;
  947. tmp = (iq_est.i_pwr + iq_est.q_pwr) / 1000;
  948. if ((tmp > 4000) && (tmp < 10000)) {
  949. index = i;
  950. break;
  951. }
  952. }
  953. lpphy_stop_ddfs(dev);
  954. return index;
  955. }
  956. /* Fixed-point division algorithm using only integer math. */
  957. static u32 lpphy_qdiv_roundup(u32 dividend, u32 divisor, u8 precision)
  958. {
  959. u32 quotient, remainder;
  960. if (divisor == 0)
  961. return 0;
  962. quotient = dividend / divisor;
  963. remainder = dividend % divisor;
  964. while (precision > 0) {
  965. quotient <<= 1;
  966. if (remainder << 1 >= divisor) {
  967. quotient++;
  968. remainder = (remainder << 1) - divisor;
  969. }
  970. precision--;
  971. }
  972. if (remainder << 1 >= divisor)
  973. quotient++;
  974. return quotient;
  975. }
  976. /* Read the TX power control mode from hardware. */
  977. static void lpphy_read_tx_pctl_mode_from_hardware(struct b43_wldev *dev)
  978. {
  979. struct b43_phy_lp *lpphy = dev->phy.lp;
  980. u16 ctl;
  981. ctl = b43_phy_read(dev, B43_LPPHY_TX_PWR_CTL_CMD);
  982. switch (ctl & B43_LPPHY_TX_PWR_CTL_CMD_MODE) {
  983. case B43_LPPHY_TX_PWR_CTL_CMD_MODE_OFF:
  984. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_OFF;
  985. break;
  986. case B43_LPPHY_TX_PWR_CTL_CMD_MODE_SW:
  987. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_SW;
  988. break;
  989. case B43_LPPHY_TX_PWR_CTL_CMD_MODE_HW:
  990. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_HW;
  991. break;
  992. default:
  993. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_UNKNOWN;
  994. B43_WARN_ON(1);
  995. break;
  996. }
  997. }
  998. /* Set the TX power control mode in hardware. */
  999. static void lpphy_write_tx_pctl_mode_to_hardware(struct b43_wldev *dev)
  1000. {
  1001. struct b43_phy_lp *lpphy = dev->phy.lp;
  1002. u16 ctl;
  1003. switch (lpphy->txpctl_mode) {
  1004. case B43_LPPHY_TXPCTL_OFF:
  1005. ctl = B43_LPPHY_TX_PWR_CTL_CMD_MODE_OFF;
  1006. break;
  1007. case B43_LPPHY_TXPCTL_HW:
  1008. ctl = B43_LPPHY_TX_PWR_CTL_CMD_MODE_HW;
  1009. break;
  1010. case B43_LPPHY_TXPCTL_SW:
  1011. ctl = B43_LPPHY_TX_PWR_CTL_CMD_MODE_SW;
  1012. break;
  1013. default:
  1014. ctl = 0;
  1015. B43_WARN_ON(1);
  1016. }
  1017. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_CMD,
  1018. ~B43_LPPHY_TX_PWR_CTL_CMD_MODE & 0xFFFF, ctl);
  1019. }
  1020. static void lpphy_set_tx_power_control(struct b43_wldev *dev,
  1021. enum b43_lpphy_txpctl_mode mode)
  1022. {
  1023. struct b43_phy_lp *lpphy = dev->phy.lp;
  1024. enum b43_lpphy_txpctl_mode oldmode;
  1025. lpphy_read_tx_pctl_mode_from_hardware(dev);
  1026. oldmode = lpphy->txpctl_mode;
  1027. if (oldmode == mode)
  1028. return;
  1029. lpphy->txpctl_mode = mode;
  1030. if (oldmode == B43_LPPHY_TXPCTL_HW) {
  1031. //TODO Update TX Power NPT
  1032. //TODO Clear all TX Power offsets
  1033. } else {
  1034. if (mode == B43_LPPHY_TXPCTL_HW) {
  1035. //TODO Recalculate target TX power
  1036. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_CMD,
  1037. 0xFF80, lpphy->tssi_idx);
  1038. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_NNUM,
  1039. 0x8FFF, ((u16)lpphy->tssi_npt << 16));
  1040. //TODO Set "TSSI Transmit Count" variable to total transmitted frame count
  1041. lpphy_disable_tx_gain_override(dev);
  1042. lpphy->tx_pwr_idx_over = -1;
  1043. }
  1044. }
  1045. if (dev->phy.rev >= 2) {
  1046. if (mode == B43_LPPHY_TXPCTL_HW)
  1047. b43_phy_set(dev, B43_PHY_OFDM(0xD0), 0x2);
  1048. else
  1049. b43_phy_mask(dev, B43_PHY_OFDM(0xD0), 0xFFFD);
  1050. }
  1051. lpphy_write_tx_pctl_mode_to_hardware(dev);
  1052. }
  1053. static int b43_lpphy_op_switch_channel(struct b43_wldev *dev,
  1054. unsigned int new_channel);
  1055. static void lpphy_rev0_1_rc_calib(struct b43_wldev *dev)
  1056. {
  1057. struct b43_phy_lp *lpphy = dev->phy.lp;
  1058. struct lpphy_iq_est iq_est;
  1059. struct lpphy_tx_gains tx_gains;
  1060. static const u32 ideal_pwr_table[21] = {
  1061. 0x10000, 0x10557, 0x10e2d, 0x113e0, 0x10f22, 0x0ff64,
  1062. 0x0eda2, 0x0e5d4, 0x0efd1, 0x0fbe8, 0x0b7b8, 0x04b35,
  1063. 0x01a5e, 0x00a0b, 0x00444, 0x001fd, 0x000ff, 0x00088,
  1064. 0x0004c, 0x0002c, 0x0001a,
  1065. };
  1066. bool old_txg_ovr;
  1067. u8 old_bbmult;
  1068. u16 old_rf_ovr, old_rf_ovrval, old_afe_ovr, old_afe_ovrval,
  1069. old_rf2_ovr, old_rf2_ovrval, old_phy_ctl;
  1070. enum b43_lpphy_txpctl_mode old_txpctl;
  1071. u32 normal_pwr, ideal_pwr, mean_sq_pwr, tmp = 0, mean_sq_pwr_min = 0;
  1072. int loopback, i, j, inner_sum, err;
  1073. memset(&iq_est, 0, sizeof(iq_est));
  1074. err = b43_lpphy_op_switch_channel(dev, 7);
  1075. if (err) {
  1076. b43dbg(dev->wl,
  1077. "RC calib: Failed to switch to channel 7, error = %d\n",
  1078. err);
  1079. }
  1080. old_txg_ovr = !!(b43_phy_read(dev, B43_LPPHY_AFE_CTL_OVR) & 0x40);
  1081. old_bbmult = lpphy_get_bb_mult(dev);
  1082. if (old_txg_ovr)
  1083. tx_gains = lpphy_get_tx_gains(dev);
  1084. old_rf_ovr = b43_phy_read(dev, B43_LPPHY_RF_OVERRIDE_0);
  1085. old_rf_ovrval = b43_phy_read(dev, B43_LPPHY_RF_OVERRIDE_VAL_0);
  1086. old_afe_ovr = b43_phy_read(dev, B43_LPPHY_AFE_CTL_OVR);
  1087. old_afe_ovrval = b43_phy_read(dev, B43_LPPHY_AFE_CTL_OVRVAL);
  1088. old_rf2_ovr = b43_phy_read(dev, B43_LPPHY_RF_OVERRIDE_2);
  1089. old_rf2_ovrval = b43_phy_read(dev, B43_LPPHY_RF_OVERRIDE_2_VAL);
  1090. old_phy_ctl = b43_phy_read(dev, B43_LPPHY_LP_PHY_CTL);
  1091. lpphy_read_tx_pctl_mode_from_hardware(dev);
  1092. old_txpctl = lpphy->txpctl_mode;
  1093. lpphy_set_tx_power_control(dev, B43_LPPHY_TXPCTL_OFF);
  1094. lpphy_disable_crs(dev, true);
  1095. loopback = lpphy_loopback(dev);
  1096. if (loopback == -1)
  1097. goto finish;
  1098. lpphy_set_rx_gain_by_index(dev, loopback);
  1099. b43_phy_maskset(dev, B43_LPPHY_LP_PHY_CTL, 0xFFBF, 0x40);
  1100. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFFF8, 0x1);
  1101. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFFC7, 0x8);
  1102. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFF3F, 0xC0);
  1103. for (i = 128; i <= 159; i++) {
  1104. b43_radio_write(dev, B2062_N_RXBB_CALIB2, i);
  1105. inner_sum = 0;
  1106. for (j = 5; j <= 25; j++) {
  1107. lpphy_run_ddfs(dev, 1, 1, j, j, 0);
  1108. if (!(lpphy_rx_iq_est(dev, 1000, 32, &iq_est)))
  1109. goto finish;
  1110. mean_sq_pwr = iq_est.i_pwr + iq_est.q_pwr;
  1111. if (j == 5)
  1112. tmp = mean_sq_pwr;
  1113. ideal_pwr = ((ideal_pwr_table[j-5] >> 3) + 1) >> 1;
  1114. normal_pwr = lpphy_qdiv_roundup(mean_sq_pwr, tmp, 12);
  1115. mean_sq_pwr = ideal_pwr - normal_pwr;
  1116. mean_sq_pwr *= mean_sq_pwr;
  1117. inner_sum += mean_sq_pwr;
  1118. if ((i == 128) || (inner_sum < mean_sq_pwr_min)) {
  1119. lpphy->rc_cap = i;
  1120. mean_sq_pwr_min = inner_sum;
  1121. }
  1122. }
  1123. }
  1124. lpphy_stop_ddfs(dev);
  1125. finish:
  1126. lpphy_restore_crs(dev, true);
  1127. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, old_rf_ovrval);
  1128. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_0, old_rf_ovr);
  1129. b43_phy_write(dev, B43_LPPHY_AFE_CTL_OVRVAL, old_afe_ovrval);
  1130. b43_phy_write(dev, B43_LPPHY_AFE_CTL_OVR, old_afe_ovr);
  1131. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, old_rf2_ovrval);
  1132. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_2, old_rf2_ovr);
  1133. b43_phy_write(dev, B43_LPPHY_LP_PHY_CTL, old_phy_ctl);
  1134. lpphy_set_bb_mult(dev, old_bbmult);
  1135. if (old_txg_ovr) {
  1136. /*
  1137. * SPEC FIXME: The specs say "get_tx_gains" here, which is
  1138. * illogical. According to lwfinger, vendor driver v4.150.10.5
  1139. * has a Set here, while v4.174.64.19 has a Get - regression in
  1140. * the vendor driver? This should be tested this once the code
  1141. * is testable.
  1142. */
  1143. lpphy_set_tx_gains(dev, tx_gains);
  1144. }
  1145. lpphy_set_tx_power_control(dev, old_txpctl);
  1146. if (lpphy->rc_cap)
  1147. lpphy_set_rc_cap(dev);
  1148. }
  1149. static void lpphy_rev2plus_rc_calib(struct b43_wldev *dev)
  1150. {
  1151. struct ssb_bus *bus = dev->dev->sdev->bus;
  1152. u32 crystal_freq = bus->chipco.pmu.crystalfreq * 1000;
  1153. u8 tmp = b43_radio_read(dev, B2063_RX_BB_SP8) & 0xFF;
  1154. int i;
  1155. b43_radio_write(dev, B2063_RX_BB_SP8, 0x0);
  1156. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7E);
  1157. b43_radio_mask(dev, B2063_PLL_SP1, 0xF7);
  1158. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7C);
  1159. b43_radio_write(dev, B2063_RC_CALIB_CTL2, 0x15);
  1160. b43_radio_write(dev, B2063_RC_CALIB_CTL3, 0x70);
  1161. b43_radio_write(dev, B2063_RC_CALIB_CTL4, 0x52);
  1162. b43_radio_write(dev, B2063_RC_CALIB_CTL5, 0x1);
  1163. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7D);
  1164. for (i = 0; i < 10000; i++) {
  1165. if (b43_radio_read(dev, B2063_RC_CALIB_CTL6) & 0x2)
  1166. break;
  1167. msleep(1);
  1168. }
  1169. if (!(b43_radio_read(dev, B2063_RC_CALIB_CTL6) & 0x2))
  1170. b43_radio_write(dev, B2063_RX_BB_SP8, tmp);
  1171. tmp = b43_radio_read(dev, B2063_TX_BB_SP3) & 0xFF;
  1172. b43_radio_write(dev, B2063_TX_BB_SP3, 0x0);
  1173. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7E);
  1174. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7C);
  1175. b43_radio_write(dev, B2063_RC_CALIB_CTL2, 0x55);
  1176. b43_radio_write(dev, B2063_RC_CALIB_CTL3, 0x76);
  1177. if (crystal_freq == 24000000) {
  1178. b43_radio_write(dev, B2063_RC_CALIB_CTL4, 0xFC);
  1179. b43_radio_write(dev, B2063_RC_CALIB_CTL5, 0x0);
  1180. } else {
  1181. b43_radio_write(dev, B2063_RC_CALIB_CTL4, 0x13);
  1182. b43_radio_write(dev, B2063_RC_CALIB_CTL5, 0x1);
  1183. }
  1184. b43_radio_write(dev, B2063_PA_SP7, 0x7D);
  1185. for (i = 0; i < 10000; i++) {
  1186. if (b43_radio_read(dev, B2063_RC_CALIB_CTL6) & 0x2)
  1187. break;
  1188. msleep(1);
  1189. }
  1190. if (!(b43_radio_read(dev, B2063_RC_CALIB_CTL6) & 0x2))
  1191. b43_radio_write(dev, B2063_TX_BB_SP3, tmp);
  1192. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7E);
  1193. }
  1194. static void lpphy_calibrate_rc(struct b43_wldev *dev)
  1195. {
  1196. struct b43_phy_lp *lpphy = dev->phy.lp;
  1197. if (dev->phy.rev >= 2) {
  1198. lpphy_rev2plus_rc_calib(dev);
  1199. } else if (!lpphy->rc_cap) {
  1200. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  1201. lpphy_rev0_1_rc_calib(dev);
  1202. } else {
  1203. lpphy_set_rc_cap(dev);
  1204. }
  1205. }
  1206. static void b43_lpphy_op_set_rx_antenna(struct b43_wldev *dev, int antenna)
  1207. {
  1208. if (dev->phy.rev >= 2)
  1209. return; // rev2+ doesn't support antenna diversity
  1210. if (B43_WARN_ON(antenna > B43_ANTENNA_AUTO1))
  1211. return;
  1212. b43_hf_write(dev, b43_hf_read(dev) & ~B43_HF_ANTDIVHELP);
  1213. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xFFFD, antenna & 0x2);
  1214. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xFFFE, antenna & 0x1);
  1215. b43_hf_write(dev, b43_hf_read(dev) | B43_HF_ANTDIVHELP);
  1216. dev->phy.lp->antenna = antenna;
  1217. }
  1218. static void lpphy_set_tx_iqcc(struct b43_wldev *dev, u16 a, u16 b)
  1219. {
  1220. u16 tmp[2];
  1221. tmp[0] = a;
  1222. tmp[1] = b;
  1223. b43_lptab_write_bulk(dev, B43_LPTAB16(0, 80), 2, tmp);
  1224. }
  1225. static void lpphy_set_tx_power_by_index(struct b43_wldev *dev, u8 index)
  1226. {
  1227. struct b43_phy_lp *lpphy = dev->phy.lp;
  1228. struct lpphy_tx_gains gains;
  1229. u32 iq_comp, tx_gain, coeff, rf_power;
  1230. lpphy->tx_pwr_idx_over = index;
  1231. lpphy_read_tx_pctl_mode_from_hardware(dev);
  1232. if (lpphy->txpctl_mode != B43_LPPHY_TXPCTL_OFF)
  1233. lpphy_set_tx_power_control(dev, B43_LPPHY_TXPCTL_SW);
  1234. if (dev->phy.rev >= 2) {
  1235. iq_comp = b43_lptab_read(dev, B43_LPTAB32(7, index + 320));
  1236. tx_gain = b43_lptab_read(dev, B43_LPTAB32(7, index + 192));
  1237. gains.pad = (tx_gain >> 16) & 0xFF;
  1238. gains.gm = tx_gain & 0xFF;
  1239. gains.pga = (tx_gain >> 8) & 0xFF;
  1240. gains.dac = (iq_comp >> 28) & 0xFF;
  1241. lpphy_set_tx_gains(dev, gains);
  1242. } else {
  1243. iq_comp = b43_lptab_read(dev, B43_LPTAB32(10, index + 320));
  1244. tx_gain = b43_lptab_read(dev, B43_LPTAB32(10, index + 192));
  1245. b43_phy_maskset(dev, B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL,
  1246. 0xF800, (tx_gain >> 4) & 0x7FFF);
  1247. lpphy_set_dac_gain(dev, tx_gain & 0x7);
  1248. lpphy_set_pa_gain(dev, (tx_gain >> 24) & 0x7F);
  1249. }
  1250. lpphy_set_bb_mult(dev, (iq_comp >> 20) & 0xFF);
  1251. lpphy_set_tx_iqcc(dev, (iq_comp >> 10) & 0x3FF, iq_comp & 0x3FF);
  1252. if (dev->phy.rev >= 2) {
  1253. coeff = b43_lptab_read(dev, B43_LPTAB32(7, index + 448));
  1254. } else {
  1255. coeff = b43_lptab_read(dev, B43_LPTAB32(10, index + 448));
  1256. }
  1257. b43_lptab_write(dev, B43_LPTAB16(0, 85), coeff & 0xFFFF);
  1258. if (dev->phy.rev >= 2) {
  1259. rf_power = b43_lptab_read(dev, B43_LPTAB32(7, index + 576));
  1260. b43_phy_maskset(dev, B43_LPPHY_RF_PWR_OVERRIDE, 0xFF00,
  1261. rf_power & 0xFFFF);//SPEC FIXME mask & set != 0
  1262. }
  1263. lpphy_enable_tx_gain_override(dev);
  1264. }
  1265. static void lpphy_btcoex_override(struct b43_wldev *dev)
  1266. {
  1267. b43_write16(dev, B43_MMIO_BTCOEX_CTL, 0x3);
  1268. b43_write16(dev, B43_MMIO_BTCOEX_TXCTL, 0xFF);
  1269. }
  1270. static void b43_lpphy_op_software_rfkill(struct b43_wldev *dev,
  1271. bool blocked)
  1272. {
  1273. //TODO check MAC control register
  1274. if (blocked) {
  1275. if (dev->phy.rev >= 2) {
  1276. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0x83FF);
  1277. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x1F00);
  1278. b43_phy_mask(dev, B43_LPPHY_AFE_DDFS, 0x80FF);
  1279. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xDFFF);
  1280. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x0808);
  1281. } else {
  1282. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xE0FF);
  1283. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x1F00);
  1284. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFCFF);
  1285. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x0018);
  1286. }
  1287. } else {
  1288. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xE0FF);
  1289. if (dev->phy.rev >= 2)
  1290. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xF7F7);
  1291. else
  1292. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFFE7);
  1293. }
  1294. }
  1295. /* This was previously called lpphy_japan_filter */
  1296. static void lpphy_set_analog_filter(struct b43_wldev *dev, int channel)
  1297. {
  1298. struct b43_phy_lp *lpphy = dev->phy.lp;
  1299. u16 tmp = (channel == 14); //SPEC FIXME check japanwidefilter!
  1300. if (dev->phy.rev < 2) { //SPEC FIXME Isn't this rev0/1-specific?
  1301. b43_phy_maskset(dev, B43_LPPHY_LP_PHY_CTL, 0xFCFF, tmp << 9);
  1302. if ((dev->phy.rev == 1) && (lpphy->rc_cap))
  1303. lpphy_set_rc_cap(dev);
  1304. } else {
  1305. b43_radio_write(dev, B2063_TX_BB_SP3, 0x3F);
  1306. }
  1307. }
  1308. static void lpphy_set_tssi_mux(struct b43_wldev *dev, enum tssi_mux_mode mode)
  1309. {
  1310. if (mode != TSSI_MUX_EXT) {
  1311. b43_radio_set(dev, B2063_PA_SP1, 0x2);
  1312. b43_phy_set(dev, B43_PHY_OFDM(0xF3), 0x1000);
  1313. b43_radio_write(dev, B2063_PA_CTL10, 0x51);
  1314. if (mode == TSSI_MUX_POSTPA) {
  1315. b43_radio_mask(dev, B2063_PA_SP1, 0xFFFE);
  1316. b43_phy_mask(dev, B43_LPPHY_AFE_CTL_OVRVAL, 0xFFC7);
  1317. } else {
  1318. b43_radio_maskset(dev, B2063_PA_SP1, 0xFFFE, 0x1);
  1319. b43_phy_maskset(dev, B43_LPPHY_AFE_CTL_OVRVAL,
  1320. 0xFFC7, 0x20);
  1321. }
  1322. } else {
  1323. B43_WARN_ON(1);
  1324. }
  1325. }
  1326. static void lpphy_tx_pctl_init_hw(struct b43_wldev *dev)
  1327. {
  1328. u16 tmp;
  1329. int i;
  1330. //SPEC TODO Call LP PHY Clear TX Power offsets
  1331. for (i = 0; i < 64; i++) {
  1332. if (dev->phy.rev >= 2)
  1333. b43_lptab_write(dev, B43_LPTAB32(7, i + 1), i);
  1334. else
  1335. b43_lptab_write(dev, B43_LPTAB32(10, i + 1), i);
  1336. }
  1337. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_NNUM, 0xFF00, 0xFF);
  1338. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_NNUM, 0x8FFF, 0x5000);
  1339. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_IDLETSSI, 0xFFC0, 0x1F);
  1340. if (dev->phy.rev < 2) {
  1341. b43_phy_mask(dev, B43_LPPHY_LP_PHY_CTL, 0xEFFF);
  1342. b43_phy_maskset(dev, B43_LPPHY_LP_PHY_CTL, 0xDFFF, 0x2000);
  1343. } else {
  1344. b43_phy_mask(dev, B43_PHY_OFDM(0x103), 0xFFFE);
  1345. b43_phy_maskset(dev, B43_PHY_OFDM(0x103), 0xFFFB, 0x4);
  1346. b43_phy_maskset(dev, B43_PHY_OFDM(0x103), 0xFFEF, 0x10);
  1347. b43_radio_maskset(dev, B2063_IQ_CALIB_CTL2, 0xF3, 0x1);
  1348. lpphy_set_tssi_mux(dev, TSSI_MUX_POSTPA);
  1349. }
  1350. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_IDLETSSI, 0x7FFF, 0x8000);
  1351. b43_phy_mask(dev, B43_LPPHY_TX_PWR_CTL_DELTAPWR_LIMIT, 0xFF);
  1352. b43_phy_write(dev, B43_LPPHY_TX_PWR_CTL_DELTAPWR_LIMIT, 0xA);
  1353. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_CMD,
  1354. ~B43_LPPHY_TX_PWR_CTL_CMD_MODE & 0xFFFF,
  1355. B43_LPPHY_TX_PWR_CTL_CMD_MODE_OFF);
  1356. b43_phy_mask(dev, B43_LPPHY_TX_PWR_CTL_NNUM, 0xF8FF);
  1357. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_CMD,
  1358. ~B43_LPPHY_TX_PWR_CTL_CMD_MODE & 0xFFFF,
  1359. B43_LPPHY_TX_PWR_CTL_CMD_MODE_SW);
  1360. if (dev->phy.rev < 2) {
  1361. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_0, 0xEFFF, 0x1000);
  1362. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xEFFF);
  1363. } else {
  1364. lpphy_set_tx_power_by_index(dev, 0x7F);
  1365. }
  1366. b43_dummy_transmission(dev, true, true);
  1367. tmp = b43_phy_read(dev, B43_LPPHY_TX_PWR_CTL_STAT);
  1368. if (tmp & 0x8000) {
  1369. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_IDLETSSI,
  1370. 0xFFC0, (tmp & 0xFF) - 32);
  1371. }
  1372. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xEFFF);
  1373. // (SPEC?) TODO Set "Target TX frequency" variable to 0
  1374. // SPEC FIXME "Set BB Multiplier to 0xE000" impossible - bb_mult is u8!
  1375. }
  1376. static void lpphy_tx_pctl_init_sw(struct b43_wldev *dev)
  1377. {
  1378. struct lpphy_tx_gains gains;
  1379. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  1380. gains.gm = 4;
  1381. gains.pad = 12;
  1382. gains.pga = 12;
  1383. gains.dac = 0;
  1384. } else {
  1385. gains.gm = 7;
  1386. gains.pad = 14;
  1387. gains.pga = 15;
  1388. gains.dac = 0;
  1389. }
  1390. lpphy_set_tx_gains(dev, gains);
  1391. lpphy_set_bb_mult(dev, 150);
  1392. }
  1393. /* Initialize TX power control */
  1394. static void lpphy_tx_pctl_init(struct b43_wldev *dev)
  1395. {
  1396. if (0/*FIXME HWPCTL capable */) {
  1397. lpphy_tx_pctl_init_hw(dev);
  1398. } else { /* This device is only software TX power control capable. */
  1399. lpphy_tx_pctl_init_sw(dev);
  1400. }
  1401. }
  1402. static void lpphy_pr41573_workaround(struct b43_wldev *dev)
  1403. {
  1404. struct b43_phy_lp *lpphy = dev->phy.lp;
  1405. u32 *saved_tab;
  1406. const unsigned int saved_tab_size = 256;
  1407. enum b43_lpphy_txpctl_mode txpctl_mode;
  1408. s8 tx_pwr_idx_over;
  1409. u16 tssi_npt, tssi_idx;
  1410. saved_tab = kcalloc(saved_tab_size, sizeof(saved_tab[0]), GFP_KERNEL);
  1411. if (!saved_tab) {
  1412. b43err(dev->wl, "PR41573 failed. Out of memory!\n");
  1413. return;
  1414. }
  1415. lpphy_read_tx_pctl_mode_from_hardware(dev);
  1416. txpctl_mode = lpphy->txpctl_mode;
  1417. tx_pwr_idx_over = lpphy->tx_pwr_idx_over;
  1418. tssi_npt = lpphy->tssi_npt;
  1419. tssi_idx = lpphy->tssi_idx;
  1420. if (dev->phy.rev < 2) {
  1421. b43_lptab_read_bulk(dev, B43_LPTAB32(10, 0x140),
  1422. saved_tab_size, saved_tab);
  1423. } else {
  1424. b43_lptab_read_bulk(dev, B43_LPTAB32(7, 0x140),
  1425. saved_tab_size, saved_tab);
  1426. }
  1427. //FIXME PHY reset
  1428. lpphy_table_init(dev); //FIXME is table init needed?
  1429. lpphy_baseband_init(dev);
  1430. lpphy_tx_pctl_init(dev);
  1431. b43_lpphy_op_software_rfkill(dev, false);
  1432. lpphy_set_tx_power_control(dev, B43_LPPHY_TXPCTL_OFF);
  1433. if (dev->phy.rev < 2) {
  1434. b43_lptab_write_bulk(dev, B43_LPTAB32(10, 0x140),
  1435. saved_tab_size, saved_tab);
  1436. } else {
  1437. b43_lptab_write_bulk(dev, B43_LPTAB32(7, 0x140),
  1438. saved_tab_size, saved_tab);
  1439. }
  1440. b43_write16(dev, B43_MMIO_CHANNEL, lpphy->channel);
  1441. lpphy->tssi_npt = tssi_npt;
  1442. lpphy->tssi_idx = tssi_idx;
  1443. lpphy_set_analog_filter(dev, lpphy->channel);
  1444. if (tx_pwr_idx_over != -1)
  1445. lpphy_set_tx_power_by_index(dev, tx_pwr_idx_over);
  1446. if (lpphy->rc_cap)
  1447. lpphy_set_rc_cap(dev);
  1448. b43_lpphy_op_set_rx_antenna(dev, lpphy->antenna);
  1449. lpphy_set_tx_power_control(dev, txpctl_mode);
  1450. kfree(saved_tab);
  1451. }
  1452. struct lpphy_rx_iq_comp { u8 chan; s8 c1, c0; };
  1453. static const struct lpphy_rx_iq_comp lpphy_5354_iq_table[] = {
  1454. { .chan = 1, .c1 = -66, .c0 = 15, },
  1455. { .chan = 2, .c1 = -66, .c0 = 15, },
  1456. { .chan = 3, .c1 = -66, .c0 = 15, },
  1457. { .chan = 4, .c1 = -66, .c0 = 15, },
  1458. { .chan = 5, .c1 = -66, .c0 = 15, },
  1459. { .chan = 6, .c1 = -66, .c0 = 15, },
  1460. { .chan = 7, .c1 = -66, .c0 = 14, },
  1461. { .chan = 8, .c1 = -66, .c0 = 14, },
  1462. { .chan = 9, .c1 = -66, .c0 = 14, },
  1463. { .chan = 10, .c1 = -66, .c0 = 14, },
  1464. { .chan = 11, .c1 = -66, .c0 = 14, },
  1465. { .chan = 12, .c1 = -66, .c0 = 13, },
  1466. { .chan = 13, .c1 = -66, .c0 = 13, },
  1467. { .chan = 14, .c1 = -66, .c0 = 13, },
  1468. };
  1469. static const struct lpphy_rx_iq_comp lpphy_rev0_1_iq_table[] = {
  1470. { .chan = 1, .c1 = -64, .c0 = 13, },
  1471. { .chan = 2, .c1 = -64, .c0 = 13, },
  1472. { .chan = 3, .c1 = -64, .c0 = 13, },
  1473. { .chan = 4, .c1 = -64, .c0 = 13, },
  1474. { .chan = 5, .c1 = -64, .c0 = 12, },
  1475. { .chan = 6, .c1 = -64, .c0 = 12, },
  1476. { .chan = 7, .c1 = -64, .c0 = 12, },
  1477. { .chan = 8, .c1 = -64, .c0 = 12, },
  1478. { .chan = 9, .c1 = -64, .c0 = 12, },
  1479. { .chan = 10, .c1 = -64, .c0 = 11, },
  1480. { .chan = 11, .c1 = -64, .c0 = 11, },
  1481. { .chan = 12, .c1 = -64, .c0 = 11, },
  1482. { .chan = 13, .c1 = -64, .c0 = 11, },
  1483. { .chan = 14, .c1 = -64, .c0 = 10, },
  1484. { .chan = 34, .c1 = -62, .c0 = 24, },
  1485. { .chan = 38, .c1 = -62, .c0 = 24, },
  1486. { .chan = 42, .c1 = -62, .c0 = 24, },
  1487. { .chan = 46, .c1 = -62, .c0 = 23, },
  1488. { .chan = 36, .c1 = -62, .c0 = 24, },
  1489. { .chan = 40, .c1 = -62, .c0 = 24, },
  1490. { .chan = 44, .c1 = -62, .c0 = 23, },
  1491. { .chan = 48, .c1 = -62, .c0 = 23, },
  1492. { .chan = 52, .c1 = -62, .c0 = 23, },
  1493. { .chan = 56, .c1 = -62, .c0 = 22, },
  1494. { .chan = 60, .c1 = -62, .c0 = 22, },
  1495. { .chan = 64, .c1 = -62, .c0 = 22, },
  1496. { .chan = 100, .c1 = -62, .c0 = 16, },
  1497. { .chan = 104, .c1 = -62, .c0 = 16, },
  1498. { .chan = 108, .c1 = -62, .c0 = 15, },
  1499. { .chan = 112, .c1 = -62, .c0 = 14, },
  1500. { .chan = 116, .c1 = -62, .c0 = 14, },
  1501. { .chan = 120, .c1 = -62, .c0 = 13, },
  1502. { .chan = 124, .c1 = -62, .c0 = 12, },
  1503. { .chan = 128, .c1 = -62, .c0 = 12, },
  1504. { .chan = 132, .c1 = -62, .c0 = 12, },
  1505. { .chan = 136, .c1 = -62, .c0 = 11, },
  1506. { .chan = 140, .c1 = -62, .c0 = 10, },
  1507. { .chan = 149, .c1 = -61, .c0 = 9, },
  1508. { .chan = 153, .c1 = -61, .c0 = 9, },
  1509. { .chan = 157, .c1 = -61, .c0 = 9, },
  1510. { .chan = 161, .c1 = -61, .c0 = 8, },
  1511. { .chan = 165, .c1 = -61, .c0 = 8, },
  1512. { .chan = 184, .c1 = -62, .c0 = 25, },
  1513. { .chan = 188, .c1 = -62, .c0 = 25, },
  1514. { .chan = 192, .c1 = -62, .c0 = 25, },
  1515. { .chan = 196, .c1 = -62, .c0 = 25, },
  1516. { .chan = 200, .c1 = -62, .c0 = 25, },
  1517. { .chan = 204, .c1 = -62, .c0 = 25, },
  1518. { .chan = 208, .c1 = -62, .c0 = 25, },
  1519. { .chan = 212, .c1 = -62, .c0 = 25, },
  1520. { .chan = 216, .c1 = -62, .c0 = 26, },
  1521. };
  1522. static const struct lpphy_rx_iq_comp lpphy_rev2plus_iq_comp = {
  1523. .chan = 0,
  1524. .c1 = -64,
  1525. .c0 = 0,
  1526. };
  1527. static int lpphy_calc_rx_iq_comp(struct b43_wldev *dev, u16 samples)
  1528. {
  1529. struct lpphy_iq_est iq_est;
  1530. u16 c0, c1;
  1531. int prod, ipwr, qpwr, prod_msb, q_msb, tmp1, tmp2, tmp3, tmp4, ret;
  1532. c1 = b43_phy_read(dev, B43_LPPHY_RX_COMP_COEFF_S);
  1533. c0 = c1 >> 8;
  1534. c1 |= 0xFF;
  1535. b43_phy_maskset(dev, B43_LPPHY_RX_COMP_COEFF_S, 0xFF00, 0x00C0);
  1536. b43_phy_mask(dev, B43_LPPHY_RX_COMP_COEFF_S, 0x00FF);
  1537. ret = lpphy_rx_iq_est(dev, samples, 32, &iq_est);
  1538. if (!ret)
  1539. goto out;
  1540. prod = iq_est.iq_prod;
  1541. ipwr = iq_est.i_pwr;
  1542. qpwr = iq_est.q_pwr;
  1543. if (ipwr + qpwr < 2) {
  1544. ret = 0;
  1545. goto out;
  1546. }
  1547. prod_msb = fls(abs(prod));
  1548. q_msb = fls(abs(qpwr));
  1549. tmp1 = prod_msb - 20;
  1550. if (tmp1 >= 0) {
  1551. tmp3 = ((prod << (30 - prod_msb)) + (ipwr >> (1 + tmp1))) /
  1552. (ipwr >> tmp1);
  1553. } else {
  1554. tmp3 = ((prod << (30 - prod_msb)) + (ipwr << (-1 - tmp1))) /
  1555. (ipwr << -tmp1);
  1556. }
  1557. tmp2 = q_msb - 11;
  1558. if (tmp2 >= 0)
  1559. tmp4 = (qpwr << (31 - q_msb)) / (ipwr >> tmp2);
  1560. else
  1561. tmp4 = (qpwr << (31 - q_msb)) / (ipwr << -tmp2);
  1562. tmp4 -= tmp3 * tmp3;
  1563. tmp4 = -int_sqrt(tmp4);
  1564. c0 = tmp3 >> 3;
  1565. c1 = tmp4 >> 4;
  1566. out:
  1567. b43_phy_maskset(dev, B43_LPPHY_RX_COMP_COEFF_S, 0xFF00, c1);
  1568. b43_phy_maskset(dev, B43_LPPHY_RX_COMP_COEFF_S, 0x00FF, c0 << 8);
  1569. return ret;
  1570. }
  1571. static void lpphy_run_samples(struct b43_wldev *dev, u16 samples, u16 loops,
  1572. u16 wait)
  1573. {
  1574. b43_phy_maskset(dev, B43_LPPHY_SMPL_PLAY_BUFFER_CTL,
  1575. 0xFFC0, samples - 1);
  1576. if (loops != 0xFFFF)
  1577. loops--;
  1578. b43_phy_maskset(dev, B43_LPPHY_SMPL_PLAY_COUNT, 0xF000, loops);
  1579. b43_phy_maskset(dev, B43_LPPHY_SMPL_PLAY_BUFFER_CTL, 0x3F, wait << 6);
  1580. b43_phy_set(dev, B43_LPPHY_A_PHY_CTL_ADDR, 0x1);
  1581. }
  1582. //SPEC FIXME what does a negative freq mean?
  1583. static void lpphy_start_tx_tone(struct b43_wldev *dev, s32 freq, u16 max)
  1584. {
  1585. struct b43_phy_lp *lpphy = dev->phy.lp;
  1586. u16 buf[64];
  1587. int i, samples = 0, angle = 0;
  1588. int rotation = (((36 * freq) / 20) << 16) / 100;
  1589. struct b43_c32 sample;
  1590. lpphy->tx_tone_freq = freq;
  1591. if (freq) {
  1592. /* Find i for which abs(freq) integrally divides 20000 * i */
  1593. for (i = 1; samples * abs(freq) != 20000 * i; i++) {
  1594. samples = (20000 * i) / abs(freq);
  1595. if(B43_WARN_ON(samples > 63))
  1596. return;
  1597. }
  1598. } else {
  1599. samples = 2;
  1600. }
  1601. for (i = 0; i < samples; i++) {
  1602. sample = b43_cordic(angle);
  1603. angle += rotation;
  1604. buf[i] = CORDIC_CONVERT((sample.i * max) & 0xFF) << 8;
  1605. buf[i] |= CORDIC_CONVERT((sample.q * max) & 0xFF);
  1606. }
  1607. b43_lptab_write_bulk(dev, B43_LPTAB16(5, 0), samples, buf);
  1608. lpphy_run_samples(dev, samples, 0xFFFF, 0);
  1609. }
  1610. static void lpphy_stop_tx_tone(struct b43_wldev *dev)
  1611. {
  1612. struct b43_phy_lp *lpphy = dev->phy.lp;
  1613. int i;
  1614. lpphy->tx_tone_freq = 0;
  1615. b43_phy_mask(dev, B43_LPPHY_SMPL_PLAY_COUNT, 0xF000);
  1616. for (i = 0; i < 31; i++) {
  1617. if (!(b43_phy_read(dev, B43_LPPHY_A_PHY_CTL_ADDR) & 0x1))
  1618. break;
  1619. udelay(100);
  1620. }
  1621. }
  1622. static void lpphy_papd_cal(struct b43_wldev *dev, struct lpphy_tx_gains gains,
  1623. int mode, bool useindex, u8 index)
  1624. {
  1625. //TODO
  1626. }
  1627. static void lpphy_papd_cal_txpwr(struct b43_wldev *dev)
  1628. {
  1629. struct b43_phy_lp *lpphy = dev->phy.lp;
  1630. struct lpphy_tx_gains gains, oldgains;
  1631. int old_txpctl, old_afe_ovr, old_rf, old_bbmult;
  1632. lpphy_read_tx_pctl_mode_from_hardware(dev);
  1633. old_txpctl = lpphy->txpctl_mode;
  1634. old_afe_ovr = b43_phy_read(dev, B43_LPPHY_AFE_CTL_OVR) & 0x40;
  1635. if (old_afe_ovr)
  1636. oldgains = lpphy_get_tx_gains(dev);
  1637. old_rf = b43_phy_read(dev, B43_LPPHY_RF_PWR_OVERRIDE) & 0xFF;
  1638. old_bbmult = lpphy_get_bb_mult(dev);
  1639. lpphy_set_tx_power_control(dev, B43_LPPHY_TXPCTL_OFF);
  1640. if (dev->dev->chip_id == 0x4325 && dev->dev->chip_rev == 0)
  1641. lpphy_papd_cal(dev, gains, 0, 1, 30);
  1642. else
  1643. lpphy_papd_cal(dev, gains, 0, 1, 65);
  1644. if (old_afe_ovr)
  1645. lpphy_set_tx_gains(dev, oldgains);
  1646. lpphy_set_bb_mult(dev, old_bbmult);
  1647. lpphy_set_tx_power_control(dev, old_txpctl);
  1648. b43_phy_maskset(dev, B43_LPPHY_RF_PWR_OVERRIDE, 0xFF00, old_rf);
  1649. }
  1650. static int lpphy_rx_iq_cal(struct b43_wldev *dev, bool noise, bool tx,
  1651. bool rx, bool pa, struct lpphy_tx_gains *gains)
  1652. {
  1653. struct b43_phy_lp *lpphy = dev->phy.lp;
  1654. const struct lpphy_rx_iq_comp *iqcomp = NULL;
  1655. struct lpphy_tx_gains nogains, oldgains;
  1656. u16 tmp;
  1657. int i, ret;
  1658. memset(&nogains, 0, sizeof(nogains));
  1659. memset(&oldgains, 0, sizeof(oldgains));
  1660. if (dev->dev->chip_id == 0x5354) {
  1661. for (i = 0; i < ARRAY_SIZE(lpphy_5354_iq_table); i++) {
  1662. if (lpphy_5354_iq_table[i].chan == lpphy->channel) {
  1663. iqcomp = &lpphy_5354_iq_table[i];
  1664. }
  1665. }
  1666. } else if (dev->phy.rev >= 2) {
  1667. iqcomp = &lpphy_rev2plus_iq_comp;
  1668. } else {
  1669. for (i = 0; i < ARRAY_SIZE(lpphy_rev0_1_iq_table); i++) {
  1670. if (lpphy_rev0_1_iq_table[i].chan == lpphy->channel) {
  1671. iqcomp = &lpphy_rev0_1_iq_table[i];
  1672. }
  1673. }
  1674. }
  1675. if (B43_WARN_ON(!iqcomp))
  1676. return 0;
  1677. b43_phy_maskset(dev, B43_LPPHY_RX_COMP_COEFF_S, 0xFF00, iqcomp->c1);
  1678. b43_phy_maskset(dev, B43_LPPHY_RX_COMP_COEFF_S,
  1679. 0x00FF, iqcomp->c0 << 8);
  1680. if (noise) {
  1681. tx = true;
  1682. rx = false;
  1683. pa = false;
  1684. }
  1685. lpphy_set_trsw_over(dev, tx, rx);
  1686. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  1687. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x8);
  1688. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_VAL_0,
  1689. 0xFFF7, pa << 3);
  1690. } else {
  1691. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x20);
  1692. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_VAL_0,
  1693. 0xFFDF, pa << 5);
  1694. }
  1695. tmp = b43_phy_read(dev, B43_LPPHY_AFE_CTL_OVR) & 0x40;
  1696. if (noise)
  1697. lpphy_set_rx_gain(dev, 0x2D5D);
  1698. else {
  1699. if (tmp)
  1700. oldgains = lpphy_get_tx_gains(dev);
  1701. if (!gains)
  1702. gains = &nogains;
  1703. lpphy_set_tx_gains(dev, *gains);
  1704. }
  1705. b43_phy_mask(dev, B43_LPPHY_AFE_CTL_OVR, 0xFFFE);
  1706. b43_phy_mask(dev, B43_LPPHY_AFE_CTL_OVRVAL, 0xFFFE);
  1707. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x800);
  1708. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0x800);
  1709. lpphy_set_deaf(dev, false);
  1710. if (noise)
  1711. ret = lpphy_calc_rx_iq_comp(dev, 0xFFF0);
  1712. else {
  1713. lpphy_start_tx_tone(dev, 4000, 100);
  1714. ret = lpphy_calc_rx_iq_comp(dev, 0x4000);
  1715. lpphy_stop_tx_tone(dev);
  1716. }
  1717. lpphy_clear_deaf(dev, false);
  1718. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFFFC);
  1719. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFFF7);
  1720. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFFDF);
  1721. if (!noise) {
  1722. if (tmp)
  1723. lpphy_set_tx_gains(dev, oldgains);
  1724. else
  1725. lpphy_disable_tx_gain_override(dev);
  1726. }
  1727. lpphy_disable_rx_gain_override(dev);
  1728. b43_phy_mask(dev, B43_LPPHY_AFE_CTL_OVR, 0xFFFE);
  1729. b43_phy_mask(dev, B43_LPPHY_AFE_CTL_OVRVAL, 0xF7FF);
  1730. return ret;
  1731. }
  1732. static void lpphy_calibration(struct b43_wldev *dev)
  1733. {
  1734. struct b43_phy_lp *lpphy = dev->phy.lp;
  1735. enum b43_lpphy_txpctl_mode saved_pctl_mode;
  1736. bool full_cal = false;
  1737. if (lpphy->full_calib_chan != lpphy->channel) {
  1738. full_cal = true;
  1739. lpphy->full_calib_chan = lpphy->channel;
  1740. }
  1741. b43_mac_suspend(dev);
  1742. lpphy_btcoex_override(dev);
  1743. if (dev->phy.rev >= 2)
  1744. lpphy_save_dig_flt_state(dev);
  1745. lpphy_read_tx_pctl_mode_from_hardware(dev);
  1746. saved_pctl_mode = lpphy->txpctl_mode;
  1747. lpphy_set_tx_power_control(dev, B43_LPPHY_TXPCTL_OFF);
  1748. //TODO Perform transmit power table I/Q LO calibration
  1749. if ((dev->phy.rev == 0) && (saved_pctl_mode != B43_LPPHY_TXPCTL_OFF))
  1750. lpphy_pr41573_workaround(dev);
  1751. if ((dev->phy.rev >= 2) && full_cal) {
  1752. lpphy_papd_cal_txpwr(dev);
  1753. }
  1754. lpphy_set_tx_power_control(dev, saved_pctl_mode);
  1755. if (dev->phy.rev >= 2)
  1756. lpphy_restore_dig_flt_state(dev);
  1757. lpphy_rx_iq_cal(dev, true, true, false, false, NULL);
  1758. b43_mac_enable(dev);
  1759. }
  1760. static u16 b43_lpphy_op_read(struct b43_wldev *dev, u16 reg)
  1761. {
  1762. b43_write16(dev, B43_MMIO_PHY_CONTROL, reg);
  1763. return b43_read16(dev, B43_MMIO_PHY_DATA);
  1764. }
  1765. static void b43_lpphy_op_write(struct b43_wldev *dev, u16 reg, u16 value)
  1766. {
  1767. b43_write16(dev, B43_MMIO_PHY_CONTROL, reg);
  1768. b43_write16(dev, B43_MMIO_PHY_DATA, value);
  1769. }
  1770. static void b43_lpphy_op_maskset(struct b43_wldev *dev, u16 reg, u16 mask,
  1771. u16 set)
  1772. {
  1773. b43_write16(dev, B43_MMIO_PHY_CONTROL, reg);
  1774. b43_write16(dev, B43_MMIO_PHY_DATA,
  1775. (b43_read16(dev, B43_MMIO_PHY_DATA) & mask) | set);
  1776. }
  1777. static u16 b43_lpphy_op_radio_read(struct b43_wldev *dev, u16 reg)
  1778. {
  1779. /* Register 1 is a 32-bit register. */
  1780. B43_WARN_ON(reg == 1);
  1781. /* LP-PHY needs a special bit set for read access */
  1782. if (dev->phy.rev < 2) {
  1783. if (reg != 0x4001)
  1784. reg |= 0x100;
  1785. } else
  1786. reg |= 0x200;
  1787. b43_write16(dev, B43_MMIO_RADIO_CONTROL, reg);
  1788. return b43_read16(dev, B43_MMIO_RADIO_DATA_LOW);
  1789. }
  1790. static void b43_lpphy_op_radio_write(struct b43_wldev *dev, u16 reg, u16 value)
  1791. {
  1792. /* Register 1 is a 32-bit register. */
  1793. B43_WARN_ON(reg == 1);
  1794. b43_write16(dev, B43_MMIO_RADIO_CONTROL, reg);
  1795. b43_write16(dev, B43_MMIO_RADIO_DATA_LOW, value);
  1796. }
  1797. struct b206x_channel {
  1798. u8 channel;
  1799. u16 freq;
  1800. u8 data[12];
  1801. };
  1802. static const struct b206x_channel b2062_chantbl[] = {
  1803. { .channel = 1, .freq = 2412, .data[0] = 0xFF, .data[1] = 0xFF,
  1804. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1805. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1806. { .channel = 2, .freq = 2417, .data[0] = 0xFF, .data[1] = 0xFF,
  1807. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1808. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1809. { .channel = 3, .freq = 2422, .data[0] = 0xFF, .data[1] = 0xFF,
  1810. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1811. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1812. { .channel = 4, .freq = 2427, .data[0] = 0xFF, .data[1] = 0xFF,
  1813. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1814. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1815. { .channel = 5, .freq = 2432, .data[0] = 0xFF, .data[1] = 0xFF,
  1816. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1817. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1818. { .channel = 6, .freq = 2437, .data[0] = 0xFF, .data[1] = 0xFF,
  1819. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1820. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1821. { .channel = 7, .freq = 2442, .data[0] = 0xFF, .data[1] = 0xFF,
  1822. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1823. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1824. { .channel = 8, .freq = 2447, .data[0] = 0xFF, .data[1] = 0xFF,
  1825. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1826. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1827. { .channel = 9, .freq = 2452, .data[0] = 0xFF, .data[1] = 0xFF,
  1828. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1829. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1830. { .channel = 10, .freq = 2457, .data[0] = 0xFF, .data[1] = 0xFF,
  1831. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1832. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1833. { .channel = 11, .freq = 2462, .data[0] = 0xFF, .data[1] = 0xFF,
  1834. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1835. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1836. { .channel = 12, .freq = 2467, .data[0] = 0xFF, .data[1] = 0xFF,
  1837. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1838. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1839. { .channel = 13, .freq = 2472, .data[0] = 0xFF, .data[1] = 0xFF,
  1840. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1841. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1842. { .channel = 14, .freq = 2484, .data[0] = 0xFF, .data[1] = 0xFF,
  1843. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1844. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1845. { .channel = 34, .freq = 5170, .data[0] = 0x00, .data[1] = 0x22,
  1846. .data[2] = 0x20, .data[3] = 0x84, .data[4] = 0x3C, .data[5] = 0x77,
  1847. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1848. { .channel = 38, .freq = 5190, .data[0] = 0x00, .data[1] = 0x11,
  1849. .data[2] = 0x10, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1850. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1851. { .channel = 42, .freq = 5210, .data[0] = 0x00, .data[1] = 0x11,
  1852. .data[2] = 0x10, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1853. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1854. { .channel = 46, .freq = 5230, .data[0] = 0x00, .data[1] = 0x00,
  1855. .data[2] = 0x00, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1856. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1857. { .channel = 36, .freq = 5180, .data[0] = 0x00, .data[1] = 0x11,
  1858. .data[2] = 0x20, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1859. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1860. { .channel = 40, .freq = 5200, .data[0] = 0x00, .data[1] = 0x11,
  1861. .data[2] = 0x10, .data[3] = 0x84, .data[4] = 0x3C, .data[5] = 0x77,
  1862. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1863. { .channel = 44, .freq = 5220, .data[0] = 0x00, .data[1] = 0x11,
  1864. .data[2] = 0x00, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1865. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1866. { .channel = 48, .freq = 5240, .data[0] = 0x00, .data[1] = 0x00,
  1867. .data[2] = 0x00, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1868. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1869. { .channel = 52, .freq = 5260, .data[0] = 0x00, .data[1] = 0x00,
  1870. .data[2] = 0x00, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1871. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1872. { .channel = 56, .freq = 5280, .data[0] = 0x00, .data[1] = 0x00,
  1873. .data[2] = 0x00, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1874. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1875. { .channel = 60, .freq = 5300, .data[0] = 0x00, .data[1] = 0x00,
  1876. .data[2] = 0x00, .data[3] = 0x63, .data[4] = 0x3C, .data[5] = 0x77,
  1877. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1878. { .channel = 64, .freq = 5320, .data[0] = 0x00, .data[1] = 0x00,
  1879. .data[2] = 0x00, .data[3] = 0x62, .data[4] = 0x3C, .data[5] = 0x77,
  1880. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1881. { .channel = 100, .freq = 5500, .data[0] = 0x00, .data[1] = 0x00,
  1882. .data[2] = 0x00, .data[3] = 0x30, .data[4] = 0x3C, .data[5] = 0x77,
  1883. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1884. { .channel = 104, .freq = 5520, .data[0] = 0x00, .data[1] = 0x00,
  1885. .data[2] = 0x00, .data[3] = 0x20, .data[4] = 0x3C, .data[5] = 0x77,
  1886. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1887. { .channel = 108, .freq = 5540, .data[0] = 0x00, .data[1] = 0x00,
  1888. .data[2] = 0x00, .data[3] = 0x20, .data[4] = 0x3C, .data[5] = 0x77,
  1889. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1890. { .channel = 112, .freq = 5560, .data[0] = 0x00, .data[1] = 0x00,
  1891. .data[2] = 0x00, .data[3] = 0x20, .data[4] = 0x3C, .data[5] = 0x77,
  1892. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1893. { .channel = 116, .freq = 5580, .data[0] = 0x00, .data[1] = 0x00,
  1894. .data[2] = 0x00, .data[3] = 0x10, .data[4] = 0x3C, .data[5] = 0x77,
  1895. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1896. { .channel = 120, .freq = 5600, .data[0] = 0x00, .data[1] = 0x00,
  1897. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1898. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1899. { .channel = 124, .freq = 5620, .data[0] = 0x00, .data[1] = 0x00,
  1900. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1901. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1902. { .channel = 128, .freq = 5640, .data[0] = 0x00, .data[1] = 0x00,
  1903. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1904. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1905. { .channel = 132, .freq = 5660, .data[0] = 0x00, .data[1] = 0x00,
  1906. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1907. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1908. { .channel = 136, .freq = 5680, .data[0] = 0x00, .data[1] = 0x00,
  1909. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1910. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1911. { .channel = 140, .freq = 5700, .data[0] = 0x00, .data[1] = 0x00,
  1912. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1913. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1914. { .channel = 149, .freq = 5745, .data[0] = 0x00, .data[1] = 0x00,
  1915. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1916. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1917. { .channel = 153, .freq = 5765, .data[0] = 0x00, .data[1] = 0x00,
  1918. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1919. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1920. { .channel = 157, .freq = 5785, .data[0] = 0x00, .data[1] = 0x00,
  1921. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1922. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1923. { .channel = 161, .freq = 5805, .data[0] = 0x00, .data[1] = 0x00,
  1924. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1925. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1926. { .channel = 165, .freq = 5825, .data[0] = 0x00, .data[1] = 0x00,
  1927. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1928. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1929. { .channel = 184, .freq = 4920, .data[0] = 0x55, .data[1] = 0x77,
  1930. .data[2] = 0x90, .data[3] = 0xF7, .data[4] = 0x3C, .data[5] = 0x77,
  1931. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0xFF, },
  1932. { .channel = 188, .freq = 4940, .data[0] = 0x44, .data[1] = 0x77,
  1933. .data[2] = 0x80, .data[3] = 0xE7, .data[4] = 0x3C, .data[5] = 0x77,
  1934. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0xFF, },
  1935. { .channel = 192, .freq = 4960, .data[0] = 0x44, .data[1] = 0x66,
  1936. .data[2] = 0x80, .data[3] = 0xE7, .data[4] = 0x3C, .data[5] = 0x77,
  1937. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0xFF, },
  1938. { .channel = 196, .freq = 4980, .data[0] = 0x33, .data[1] = 0x66,
  1939. .data[2] = 0x70, .data[3] = 0xC7, .data[4] = 0x3C, .data[5] = 0x77,
  1940. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0xFF, },
  1941. { .channel = 200, .freq = 5000, .data[0] = 0x22, .data[1] = 0x55,
  1942. .data[2] = 0x60, .data[3] = 0xD7, .data[4] = 0x3C, .data[5] = 0x77,
  1943. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0xFF, },
  1944. { .channel = 204, .freq = 5020, .data[0] = 0x22, .data[1] = 0x55,
  1945. .data[2] = 0x60, .data[3] = 0xC7, .data[4] = 0x3C, .data[5] = 0x77,
  1946. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0xFF, },
  1947. { .channel = 208, .freq = 5040, .data[0] = 0x22, .data[1] = 0x44,
  1948. .data[2] = 0x50, .data[3] = 0xC7, .data[4] = 0x3C, .data[5] = 0x77,
  1949. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0xFF, },
  1950. { .channel = 212, .freq = 5060, .data[0] = 0x11, .data[1] = 0x44,
  1951. .data[2] = 0x50, .data[3] = 0xA5, .data[4] = 0x3C, .data[5] = 0x77,
  1952. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1953. { .channel = 216, .freq = 5080, .data[0] = 0x00, .data[1] = 0x44,
  1954. .data[2] = 0x40, .data[3] = 0xB6, .data[4] = 0x3C, .data[5] = 0x77,
  1955. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1956. };
  1957. static const struct b206x_channel b2063_chantbl[] = {
  1958. { .channel = 1, .freq = 2412, .data[0] = 0x6F, .data[1] = 0x3C,
  1959. .data[2] = 0x3C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1960. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1961. .data[10] = 0x80, .data[11] = 0x70, },
  1962. { .channel = 2, .freq = 2417, .data[0] = 0x6F, .data[1] = 0x3C,
  1963. .data[2] = 0x3C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1964. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1965. .data[10] = 0x80, .data[11] = 0x70, },
  1966. { .channel = 3, .freq = 2422, .data[0] = 0x6F, .data[1] = 0x3C,
  1967. .data[2] = 0x3C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1968. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1969. .data[10] = 0x80, .data[11] = 0x70, },
  1970. { .channel = 4, .freq = 2427, .data[0] = 0x6F, .data[1] = 0x2C,
  1971. .data[2] = 0x2C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1972. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1973. .data[10] = 0x80, .data[11] = 0x70, },
  1974. { .channel = 5, .freq = 2432, .data[0] = 0x6F, .data[1] = 0x2C,
  1975. .data[2] = 0x2C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1976. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1977. .data[10] = 0x80, .data[11] = 0x70, },
  1978. { .channel = 6, .freq = 2437, .data[0] = 0x6F, .data[1] = 0x2C,
  1979. .data[2] = 0x2C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1980. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1981. .data[10] = 0x80, .data[11] = 0x70, },
  1982. { .channel = 7, .freq = 2442, .data[0] = 0x6F, .data[1] = 0x2C,
  1983. .data[2] = 0x2C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1984. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1985. .data[10] = 0x80, .data[11] = 0x70, },
  1986. { .channel = 8, .freq = 2447, .data[0] = 0x6F, .data[1] = 0x2C,
  1987. .data[2] = 0x2C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1988. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1989. .data[10] = 0x80, .data[11] = 0x70, },
  1990. { .channel = 9, .freq = 2452, .data[0] = 0x6F, .data[1] = 0x1C,
  1991. .data[2] = 0x1C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1992. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1993. .data[10] = 0x80, .data[11] = 0x70, },
  1994. { .channel = 10, .freq = 2457, .data[0] = 0x6F, .data[1] = 0x1C,
  1995. .data[2] = 0x1C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1996. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1997. .data[10] = 0x80, .data[11] = 0x70, },
  1998. { .channel = 11, .freq = 2462, .data[0] = 0x6E, .data[1] = 0x1C,
  1999. .data[2] = 0x1C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  2000. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  2001. .data[10] = 0x80, .data[11] = 0x70, },
  2002. { .channel = 12, .freq = 2467, .data[0] = 0x6E, .data[1] = 0x1C,
  2003. .data[2] = 0x1C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  2004. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  2005. .data[10] = 0x80, .data[11] = 0x70, },
  2006. { .channel = 13, .freq = 2472, .data[0] = 0x6E, .data[1] = 0x1C,
  2007. .data[2] = 0x1C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  2008. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  2009. .data[10] = 0x80, .data[11] = 0x70, },
  2010. { .channel = 14, .freq = 2484, .data[0] = 0x6E, .data[1] = 0x0C,
  2011. .data[2] = 0x0C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  2012. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  2013. .data[10] = 0x80, .data[11] = 0x70, },
  2014. { .channel = 34, .freq = 5170, .data[0] = 0x6A, .data[1] = 0x0C,
  2015. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x02, .data[5] = 0x05,
  2016. .data[6] = 0x0D, .data[7] = 0x0D, .data[8] = 0x77, .data[9] = 0x80,
  2017. .data[10] = 0x20, .data[11] = 0x00, },
  2018. { .channel = 36, .freq = 5180, .data[0] = 0x6A, .data[1] = 0x0C,
  2019. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x01, .data[5] = 0x05,
  2020. .data[6] = 0x0D, .data[7] = 0x0C, .data[8] = 0x77, .data[9] = 0x80,
  2021. .data[10] = 0x20, .data[11] = 0x00, },
  2022. { .channel = 38, .freq = 5190, .data[0] = 0x6A, .data[1] = 0x0C,
  2023. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x01, .data[5] = 0x04,
  2024. .data[6] = 0x0C, .data[7] = 0x0C, .data[8] = 0x77, .data[9] = 0x80,
  2025. .data[10] = 0x20, .data[11] = 0x00, },
  2026. { .channel = 40, .freq = 5200, .data[0] = 0x69, .data[1] = 0x0C,
  2027. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x01, .data[5] = 0x04,
  2028. .data[6] = 0x0C, .data[7] = 0x0C, .data[8] = 0x77, .data[9] = 0x70,
  2029. .data[10] = 0x20, .data[11] = 0x00, },
  2030. { .channel = 42, .freq = 5210, .data[0] = 0x69, .data[1] = 0x0C,
  2031. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x01, .data[5] = 0x04,
  2032. .data[6] = 0x0B, .data[7] = 0x0C, .data[8] = 0x77, .data[9] = 0x70,
  2033. .data[10] = 0x20, .data[11] = 0x00, },
  2034. { .channel = 44, .freq = 5220, .data[0] = 0x69, .data[1] = 0x0C,
  2035. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x04,
  2036. .data[6] = 0x0B, .data[7] = 0x0B, .data[8] = 0x77, .data[9] = 0x60,
  2037. .data[10] = 0x20, .data[11] = 0x00, },
  2038. { .channel = 46, .freq = 5230, .data[0] = 0x69, .data[1] = 0x0C,
  2039. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x03,
  2040. .data[6] = 0x0A, .data[7] = 0x0B, .data[8] = 0x77, .data[9] = 0x60,
  2041. .data[10] = 0x20, .data[11] = 0x00, },
  2042. { .channel = 48, .freq = 5240, .data[0] = 0x69, .data[1] = 0x0C,
  2043. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x03,
  2044. .data[6] = 0x0A, .data[7] = 0x0A, .data[8] = 0x77, .data[9] = 0x60,
  2045. .data[10] = 0x20, .data[11] = 0x00, },
  2046. { .channel = 52, .freq = 5260, .data[0] = 0x68, .data[1] = 0x0C,
  2047. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x02,
  2048. .data[6] = 0x09, .data[7] = 0x09, .data[8] = 0x77, .data[9] = 0x60,
  2049. .data[10] = 0x20, .data[11] = 0x00, },
  2050. { .channel = 56, .freq = 5280, .data[0] = 0x68, .data[1] = 0x0C,
  2051. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x01,
  2052. .data[6] = 0x08, .data[7] = 0x08, .data[8] = 0x77, .data[9] = 0x50,
  2053. .data[10] = 0x10, .data[11] = 0x00, },
  2054. { .channel = 60, .freq = 5300, .data[0] = 0x68, .data[1] = 0x0C,
  2055. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x01,
  2056. .data[6] = 0x08, .data[7] = 0x08, .data[8] = 0x77, .data[9] = 0x50,
  2057. .data[10] = 0x10, .data[11] = 0x00, },
  2058. { .channel = 64, .freq = 5320, .data[0] = 0x67, .data[1] = 0x0C,
  2059. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2060. .data[6] = 0x08, .data[7] = 0x08, .data[8] = 0x77, .data[9] = 0x50,
  2061. .data[10] = 0x10, .data[11] = 0x00, },
  2062. { .channel = 100, .freq = 5500, .data[0] = 0x64, .data[1] = 0x0C,
  2063. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2064. .data[6] = 0x02, .data[7] = 0x01, .data[8] = 0x77, .data[9] = 0x20,
  2065. .data[10] = 0x00, .data[11] = 0x00, },
  2066. { .channel = 104, .freq = 5520, .data[0] = 0x64, .data[1] = 0x0C,
  2067. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2068. .data[6] = 0x01, .data[7] = 0x01, .data[8] = 0x77, .data[9] = 0x20,
  2069. .data[10] = 0x00, .data[11] = 0x00, },
  2070. { .channel = 108, .freq = 5540, .data[0] = 0x63, .data[1] = 0x0C,
  2071. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2072. .data[6] = 0x01, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x10,
  2073. .data[10] = 0x00, .data[11] = 0x00, },
  2074. { .channel = 112, .freq = 5560, .data[0] = 0x63, .data[1] = 0x0C,
  2075. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2076. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x10,
  2077. .data[10] = 0x00, .data[11] = 0x00, },
  2078. { .channel = 116, .freq = 5580, .data[0] = 0x62, .data[1] = 0x0C,
  2079. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2080. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x10,
  2081. .data[10] = 0x00, .data[11] = 0x00, },
  2082. { .channel = 120, .freq = 5600, .data[0] = 0x62, .data[1] = 0x0C,
  2083. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2084. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  2085. .data[10] = 0x00, .data[11] = 0x00, },
  2086. { .channel = 124, .freq = 5620, .data[0] = 0x62, .data[1] = 0x0C,
  2087. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2088. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  2089. .data[10] = 0x00, .data[11] = 0x00, },
  2090. { .channel = 128, .freq = 5640, .data[0] = 0x61, .data[1] = 0x0C,
  2091. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2092. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  2093. .data[10] = 0x00, .data[11] = 0x00, },
  2094. { .channel = 132, .freq = 5660, .data[0] = 0x61, .data[1] = 0x0C,
  2095. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2096. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  2097. .data[10] = 0x00, .data[11] = 0x00, },
  2098. { .channel = 136, .freq = 5680, .data[0] = 0x61, .data[1] = 0x0C,
  2099. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2100. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  2101. .data[10] = 0x00, .data[11] = 0x00, },
  2102. { .channel = 140, .freq = 5700, .data[0] = 0x60, .data[1] = 0x0C,
  2103. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2104. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  2105. .data[10] = 0x00, .data[11] = 0x00, },
  2106. { .channel = 149, .freq = 5745, .data[0] = 0x60, .data[1] = 0x0C,
  2107. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2108. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  2109. .data[10] = 0x00, .data[11] = 0x00, },
  2110. { .channel = 153, .freq = 5765, .data[0] = 0x60, .data[1] = 0x0C,
  2111. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2112. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  2113. .data[10] = 0x00, .data[11] = 0x00, },
  2114. { .channel = 157, .freq = 5785, .data[0] = 0x60, .data[1] = 0x0C,
  2115. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2116. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  2117. .data[10] = 0x00, .data[11] = 0x00, },
  2118. { .channel = 161, .freq = 5805, .data[0] = 0x60, .data[1] = 0x0C,
  2119. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2120. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  2121. .data[10] = 0x00, .data[11] = 0x00, },
  2122. { .channel = 165, .freq = 5825, .data[0] = 0x60, .data[1] = 0x0C,
  2123. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2124. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  2125. .data[10] = 0x00, .data[11] = 0x00, },
  2126. { .channel = 184, .freq = 4920, .data[0] = 0x6E, .data[1] = 0x0C,
  2127. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x09, .data[5] = 0x0E,
  2128. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0xC0,
  2129. .data[10] = 0x50, .data[11] = 0x00, },
  2130. { .channel = 188, .freq = 4940, .data[0] = 0x6E, .data[1] = 0x0C,
  2131. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x09, .data[5] = 0x0D,
  2132. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0xB0,
  2133. .data[10] = 0x50, .data[11] = 0x00, },
  2134. { .channel = 192, .freq = 4960, .data[0] = 0x6E, .data[1] = 0x0C,
  2135. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x08, .data[5] = 0x0C,
  2136. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0xB0,
  2137. .data[10] = 0x50, .data[11] = 0x00, },
  2138. { .channel = 196, .freq = 4980, .data[0] = 0x6D, .data[1] = 0x0C,
  2139. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x08, .data[5] = 0x0C,
  2140. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0xA0,
  2141. .data[10] = 0x40, .data[11] = 0x00, },
  2142. { .channel = 200, .freq = 5000, .data[0] = 0x6D, .data[1] = 0x0C,
  2143. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x08, .data[5] = 0x0B,
  2144. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0xA0,
  2145. .data[10] = 0x40, .data[11] = 0x00, },
  2146. { .channel = 204, .freq = 5020, .data[0] = 0x6D, .data[1] = 0x0C,
  2147. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x08, .data[5] = 0x0A,
  2148. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0xA0,
  2149. .data[10] = 0x40, .data[11] = 0x00, },
  2150. { .channel = 208, .freq = 5040, .data[0] = 0x6C, .data[1] = 0x0C,
  2151. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x07, .data[5] = 0x09,
  2152. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0x90,
  2153. .data[10] = 0x40, .data[11] = 0x00, },
  2154. { .channel = 212, .freq = 5060, .data[0] = 0x6C, .data[1] = 0x0C,
  2155. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x06, .data[5] = 0x08,
  2156. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0x90,
  2157. .data[10] = 0x40, .data[11] = 0x00, },
  2158. { .channel = 216, .freq = 5080, .data[0] = 0x6C, .data[1] = 0x0C,
  2159. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x05, .data[5] = 0x08,
  2160. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0x90,
  2161. .data[10] = 0x40, .data[11] = 0x00, },
  2162. };
  2163. static void lpphy_b2062_reset_pll_bias(struct b43_wldev *dev)
  2164. {
  2165. b43_radio_write(dev, B2062_S_RFPLL_CTL2, 0xFF);
  2166. udelay(20);
  2167. if (dev->dev->chip_id == 0x5354) {
  2168. b43_radio_write(dev, B2062_N_COMM1, 4);
  2169. b43_radio_write(dev, B2062_S_RFPLL_CTL2, 4);
  2170. } else {
  2171. b43_radio_write(dev, B2062_S_RFPLL_CTL2, 0);
  2172. }
  2173. udelay(5);
  2174. }
  2175. static void lpphy_b2062_vco_calib(struct b43_wldev *dev)
  2176. {
  2177. b43_radio_write(dev, B2062_S_RFPLL_CTL21, 0x42);
  2178. b43_radio_write(dev, B2062_S_RFPLL_CTL21, 0x62);
  2179. udelay(200);
  2180. }
  2181. static int lpphy_b2062_tune(struct b43_wldev *dev,
  2182. unsigned int channel)
  2183. {
  2184. struct b43_phy_lp *lpphy = dev->phy.lp;
  2185. struct ssb_bus *bus = dev->dev->sdev->bus;
  2186. const struct b206x_channel *chandata = NULL;
  2187. u32 crystal_freq = bus->chipco.pmu.crystalfreq * 1000;
  2188. u32 tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8, tmp9;
  2189. int i, err = 0;
  2190. for (i = 0; i < ARRAY_SIZE(b2062_chantbl); i++) {
  2191. if (b2062_chantbl[i].channel == channel) {
  2192. chandata = &b2062_chantbl[i];
  2193. break;
  2194. }
  2195. }
  2196. if (B43_WARN_ON(!chandata))
  2197. return -EINVAL;
  2198. b43_radio_set(dev, B2062_S_RFPLL_CTL14, 0x04);
  2199. b43_radio_write(dev, B2062_N_LGENA_TUNE0, chandata->data[0]);
  2200. b43_radio_write(dev, B2062_N_LGENA_TUNE2, chandata->data[1]);
  2201. b43_radio_write(dev, B2062_N_LGENA_TUNE3, chandata->data[2]);
  2202. b43_radio_write(dev, B2062_N_TX_TUNE, chandata->data[3]);
  2203. b43_radio_write(dev, B2062_S_LGENG_CTL1, chandata->data[4]);
  2204. b43_radio_write(dev, B2062_N_LGENA_CTL5, chandata->data[5]);
  2205. b43_radio_write(dev, B2062_N_LGENA_CTL6, chandata->data[6]);
  2206. b43_radio_write(dev, B2062_N_TX_PGA, chandata->data[7]);
  2207. b43_radio_write(dev, B2062_N_TX_PAD, chandata->data[8]);
  2208. tmp1 = crystal_freq / 1000;
  2209. tmp2 = lpphy->pdiv * 1000;
  2210. b43_radio_write(dev, B2062_S_RFPLL_CTL33, 0xCC);
  2211. b43_radio_write(dev, B2062_S_RFPLL_CTL34, 0x07);
  2212. lpphy_b2062_reset_pll_bias(dev);
  2213. tmp3 = tmp2 * channel2freq_lp(channel);
  2214. if (channel2freq_lp(channel) < 4000)
  2215. tmp3 *= 2;
  2216. tmp4 = 48 * tmp1;
  2217. tmp6 = tmp3 / tmp4;
  2218. tmp7 = tmp3 % tmp4;
  2219. b43_radio_write(dev, B2062_S_RFPLL_CTL26, tmp6);
  2220. tmp5 = tmp7 * 0x100;
  2221. tmp6 = tmp5 / tmp4;
  2222. tmp7 = tmp5 % tmp4;
  2223. b43_radio_write(dev, B2062_S_RFPLL_CTL27, tmp6);
  2224. tmp5 = tmp7 * 0x100;
  2225. tmp6 = tmp5 / tmp4;
  2226. tmp7 = tmp5 % tmp4;
  2227. b43_radio_write(dev, B2062_S_RFPLL_CTL28, tmp6);
  2228. tmp5 = tmp7 * 0x100;
  2229. tmp6 = tmp5 / tmp4;
  2230. tmp7 = tmp5 % tmp4;
  2231. b43_radio_write(dev, B2062_S_RFPLL_CTL29, tmp6 + ((2 * tmp7) / tmp4));
  2232. tmp8 = b43_radio_read(dev, B2062_S_RFPLL_CTL19);
  2233. tmp9 = ((2 * tmp3 * (tmp8 + 1)) + (3 * tmp1)) / (6 * tmp1);
  2234. b43_radio_write(dev, B2062_S_RFPLL_CTL23, (tmp9 >> 8) + 16);
  2235. b43_radio_write(dev, B2062_S_RFPLL_CTL24, tmp9 & 0xFF);
  2236. lpphy_b2062_vco_calib(dev);
  2237. if (b43_radio_read(dev, B2062_S_RFPLL_CTL3) & 0x10) {
  2238. b43_radio_write(dev, B2062_S_RFPLL_CTL33, 0xFC);
  2239. b43_radio_write(dev, B2062_S_RFPLL_CTL34, 0);
  2240. lpphy_b2062_reset_pll_bias(dev);
  2241. lpphy_b2062_vco_calib(dev);
  2242. if (b43_radio_read(dev, B2062_S_RFPLL_CTL3) & 0x10)
  2243. err = -EIO;
  2244. }
  2245. b43_radio_mask(dev, B2062_S_RFPLL_CTL14, ~0x04);
  2246. return err;
  2247. }
  2248. static void lpphy_b2063_vco_calib(struct b43_wldev *dev)
  2249. {
  2250. u16 tmp;
  2251. b43_radio_mask(dev, B2063_PLL_SP1, ~0x40);
  2252. tmp = b43_radio_read(dev, B2063_PLL_JTAG_CALNRST) & 0xF8;
  2253. b43_radio_write(dev, B2063_PLL_JTAG_CALNRST, tmp);
  2254. udelay(1);
  2255. b43_radio_write(dev, B2063_PLL_JTAG_CALNRST, tmp | 0x4);
  2256. udelay(1);
  2257. b43_radio_write(dev, B2063_PLL_JTAG_CALNRST, tmp | 0x6);
  2258. udelay(1);
  2259. b43_radio_write(dev, B2063_PLL_JTAG_CALNRST, tmp | 0x7);
  2260. udelay(300);
  2261. b43_radio_set(dev, B2063_PLL_SP1, 0x40);
  2262. }
  2263. static int lpphy_b2063_tune(struct b43_wldev *dev,
  2264. unsigned int channel)
  2265. {
  2266. struct ssb_bus *bus = dev->dev->sdev->bus;
  2267. static const struct b206x_channel *chandata = NULL;
  2268. u32 crystal_freq = bus->chipco.pmu.crystalfreq * 1000;
  2269. u32 freqref, vco_freq, val1, val2, val3, timeout, timeoutref, count;
  2270. u16 old_comm15, scale;
  2271. u32 tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;
  2272. int i, div = (crystal_freq <= 26000000 ? 1 : 2);
  2273. for (i = 0; i < ARRAY_SIZE(b2063_chantbl); i++) {
  2274. if (b2063_chantbl[i].channel == channel) {
  2275. chandata = &b2063_chantbl[i];
  2276. break;
  2277. }
  2278. }
  2279. if (B43_WARN_ON(!chandata))
  2280. return -EINVAL;
  2281. b43_radio_write(dev, B2063_LOGEN_VCOBUF1, chandata->data[0]);
  2282. b43_radio_write(dev, B2063_LOGEN_MIXER2, chandata->data[1]);
  2283. b43_radio_write(dev, B2063_LOGEN_BUF2, chandata->data[2]);
  2284. b43_radio_write(dev, B2063_LOGEN_RCCR1, chandata->data[3]);
  2285. b43_radio_write(dev, B2063_A_RX_1ST3, chandata->data[4]);
  2286. b43_radio_write(dev, B2063_A_RX_2ND1, chandata->data[5]);
  2287. b43_radio_write(dev, B2063_A_RX_2ND4, chandata->data[6]);
  2288. b43_radio_write(dev, B2063_A_RX_2ND7, chandata->data[7]);
  2289. b43_radio_write(dev, B2063_A_RX_PS6, chandata->data[8]);
  2290. b43_radio_write(dev, B2063_TX_RF_CTL2, chandata->data[9]);
  2291. b43_radio_write(dev, B2063_TX_RF_CTL5, chandata->data[10]);
  2292. b43_radio_write(dev, B2063_PA_CTL11, chandata->data[11]);
  2293. old_comm15 = b43_radio_read(dev, B2063_COMM15);
  2294. b43_radio_set(dev, B2063_COMM15, 0x1E);
  2295. if (chandata->freq > 4000) /* spec says 2484, but 4000 is safer */
  2296. vco_freq = chandata->freq << 1;
  2297. else
  2298. vco_freq = chandata->freq << 2;
  2299. freqref = crystal_freq * 3;
  2300. val1 = lpphy_qdiv_roundup(crystal_freq, 1000000, 16);
  2301. val2 = lpphy_qdiv_roundup(crystal_freq, 1000000 * div, 16);
  2302. val3 = lpphy_qdiv_roundup(vco_freq, 3, 16);
  2303. timeout = ((((8 * crystal_freq) / (div * 5000000)) + 1) >> 1) - 1;
  2304. b43_radio_write(dev, B2063_PLL_JTAG_PLL_VCO_CALIB3, 0x2);
  2305. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_VCO_CALIB6,
  2306. 0xFFF8, timeout >> 2);
  2307. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_VCO_CALIB7,
  2308. 0xFF9F,timeout << 5);
  2309. timeoutref = ((((8 * crystal_freq) / (div * (timeout + 1))) +
  2310. 999999) / 1000000) + 1;
  2311. b43_radio_write(dev, B2063_PLL_JTAG_PLL_VCO_CALIB5, timeoutref);
  2312. count = lpphy_qdiv_roundup(val3, val2 + 16, 16);
  2313. count *= (timeout + 1) * (timeoutref + 1);
  2314. count--;
  2315. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_VCO_CALIB7,
  2316. 0xF0, count >> 8);
  2317. b43_radio_write(dev, B2063_PLL_JTAG_PLL_VCO_CALIB8, count & 0xFF);
  2318. tmp1 = ((val3 * 62500) / freqref) << 4;
  2319. tmp2 = ((val3 * 62500) % freqref) << 4;
  2320. while (tmp2 >= freqref) {
  2321. tmp1++;
  2322. tmp2 -= freqref;
  2323. }
  2324. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_SG1, 0xFFE0, tmp1 >> 4);
  2325. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_SG2, 0xFE0F, tmp1 << 4);
  2326. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_SG2, 0xFFF0, tmp1 >> 16);
  2327. b43_radio_write(dev, B2063_PLL_JTAG_PLL_SG3, (tmp2 >> 8) & 0xFF);
  2328. b43_radio_write(dev, B2063_PLL_JTAG_PLL_SG4, tmp2 & 0xFF);
  2329. b43_radio_write(dev, B2063_PLL_JTAG_PLL_LF1, 0xB9);
  2330. b43_radio_write(dev, B2063_PLL_JTAG_PLL_LF2, 0x88);
  2331. b43_radio_write(dev, B2063_PLL_JTAG_PLL_LF3, 0x28);
  2332. b43_radio_write(dev, B2063_PLL_JTAG_PLL_LF4, 0x63);
  2333. tmp3 = ((41 * (val3 - 3000)) /1200) + 27;
  2334. tmp4 = lpphy_qdiv_roundup(132000 * tmp1, 8451, 16);
  2335. if ((tmp4 + tmp3 - 1) / tmp3 > 60) {
  2336. scale = 1;
  2337. tmp5 = ((tmp4 + tmp3) / (tmp3 << 1)) - 8;
  2338. } else {
  2339. scale = 0;
  2340. tmp5 = ((tmp4 + (tmp3 >> 1)) / tmp3) - 8;
  2341. }
  2342. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_CP2, 0xFFC0, tmp5);
  2343. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_CP2, 0xFFBF, scale << 6);
  2344. tmp6 = lpphy_qdiv_roundup(100 * val1, val3, 16);
  2345. tmp6 *= (tmp5 * 8) * (scale + 1);
  2346. if (tmp6 > 150)
  2347. tmp6 = 0;
  2348. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_CP3, 0xFFE0, tmp6);
  2349. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_CP3, 0xFFDF, scale << 5);
  2350. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_XTAL_12, 0xFFFB, 0x4);
  2351. if (crystal_freq > 26000000)
  2352. b43_radio_set(dev, B2063_PLL_JTAG_PLL_XTAL_12, 0x2);
  2353. else
  2354. b43_radio_mask(dev, B2063_PLL_JTAG_PLL_XTAL_12, 0xFD);
  2355. if (val1 == 45)
  2356. b43_radio_set(dev, B2063_PLL_JTAG_PLL_VCO1, 0x2);
  2357. else
  2358. b43_radio_mask(dev, B2063_PLL_JTAG_PLL_VCO1, 0xFD);
  2359. b43_radio_set(dev, B2063_PLL_SP2, 0x3);
  2360. udelay(1);
  2361. b43_radio_mask(dev, B2063_PLL_SP2, 0xFFFC);
  2362. lpphy_b2063_vco_calib(dev);
  2363. b43_radio_write(dev, B2063_COMM15, old_comm15);
  2364. return 0;
  2365. }
  2366. static int b43_lpphy_op_switch_channel(struct b43_wldev *dev,
  2367. unsigned int new_channel)
  2368. {
  2369. struct b43_phy_lp *lpphy = dev->phy.lp;
  2370. int err;
  2371. if (dev->phy.radio_ver == 0x2063) {
  2372. err = lpphy_b2063_tune(dev, new_channel);
  2373. if (err)
  2374. return err;
  2375. } else {
  2376. err = lpphy_b2062_tune(dev, new_channel);
  2377. if (err)
  2378. return err;
  2379. lpphy_set_analog_filter(dev, new_channel);
  2380. lpphy_adjust_gain_table(dev, channel2freq_lp(new_channel));
  2381. }
  2382. lpphy->channel = new_channel;
  2383. b43_write16(dev, B43_MMIO_CHANNEL, new_channel);
  2384. return 0;
  2385. }
  2386. static int b43_lpphy_op_init(struct b43_wldev *dev)
  2387. {
  2388. int err;
  2389. if (dev->dev->bus_type != B43_BUS_SSB) {
  2390. b43err(dev->wl, "LP-PHY is supported only on SSB!\n");
  2391. return -EOPNOTSUPP;
  2392. }
  2393. lpphy_read_band_sprom(dev); //FIXME should this be in prepare_structs?
  2394. lpphy_baseband_init(dev);
  2395. lpphy_radio_init(dev);
  2396. lpphy_calibrate_rc(dev);
  2397. err = b43_lpphy_op_switch_channel(dev, 7);
  2398. if (err) {
  2399. b43dbg(dev->wl, "Switch to channel 7 failed, error = %d.\n",
  2400. err);
  2401. }
  2402. lpphy_tx_pctl_init(dev);
  2403. lpphy_calibration(dev);
  2404. //TODO ACI init
  2405. return 0;
  2406. }
  2407. static void b43_lpphy_op_adjust_txpower(struct b43_wldev *dev)
  2408. {
  2409. //TODO
  2410. }
  2411. static enum b43_txpwr_result b43_lpphy_op_recalc_txpower(struct b43_wldev *dev,
  2412. bool ignore_tssi)
  2413. {
  2414. //TODO
  2415. return B43_TXPWR_RES_DONE;
  2416. }
  2417. static void b43_lpphy_op_switch_analog(struct b43_wldev *dev, bool on)
  2418. {
  2419. if (on) {
  2420. b43_phy_mask(dev, B43_LPPHY_AFE_CTL_OVR, 0xfff8);
  2421. } else {
  2422. b43_phy_set(dev, B43_LPPHY_AFE_CTL_OVRVAL, 0x0007);
  2423. b43_phy_set(dev, B43_LPPHY_AFE_CTL_OVR, 0x0007);
  2424. }
  2425. }
  2426. static void b43_lpphy_op_pwork_15sec(struct b43_wldev *dev)
  2427. {
  2428. //TODO
  2429. }
  2430. const struct b43_phy_operations b43_phyops_lp = {
  2431. .allocate = b43_lpphy_op_allocate,
  2432. .free = b43_lpphy_op_free,
  2433. .prepare_structs = b43_lpphy_op_prepare_structs,
  2434. .init = b43_lpphy_op_init,
  2435. .phy_read = b43_lpphy_op_read,
  2436. .phy_write = b43_lpphy_op_write,
  2437. .phy_maskset = b43_lpphy_op_maskset,
  2438. .radio_read = b43_lpphy_op_radio_read,
  2439. .radio_write = b43_lpphy_op_radio_write,
  2440. .software_rfkill = b43_lpphy_op_software_rfkill,
  2441. .switch_analog = b43_lpphy_op_switch_analog,
  2442. .switch_channel = b43_lpphy_op_switch_channel,
  2443. .get_default_chan = b43_lpphy_op_get_default_chan,
  2444. .set_rx_antenna = b43_lpphy_op_set_rx_antenna,
  2445. .recalc_txpower = b43_lpphy_op_recalc_txpower,
  2446. .adjust_txpower = b43_lpphy_op_adjust_txpower,
  2447. .pwork_15sec = b43_lpphy_op_pwork_15sec,
  2448. .pwork_60sec = lpphy_calibration,
  2449. };