PageRenderTime 58ms CodeModel.GetById 16ms RepoModel.GetById 0ms app.codeStats 0ms

/Lib/compiler/transformer.py

http://unladen-swallow.googlecode.com/
Python | 1498 lines | 1411 code | 28 blank | 59 comment | 38 complexity | 4f654a5b70300e8c17f100aa3633e68e MD5 | raw file
Possible License(s): 0BSD, BSD-3-Clause
  1. """Parse tree transformation module.
  2. Transforms Python source code into an abstract syntax tree (AST)
  3. defined in the ast module.
  4. The simplest ways to invoke this module are via parse and parseFile.
  5. parse(buf) -> AST
  6. parseFile(path) -> AST
  7. """
  8. # Original version written by Greg Stein (gstein@lyra.org)
  9. # and Bill Tutt (rassilon@lima.mudlib.org)
  10. # February 1997.
  11. #
  12. # Modifications and improvements for Python 2.0 by Jeremy Hylton and
  13. # Mark Hammond
  14. #
  15. # Some fixes to try to have correct line number on almost all nodes
  16. # (except Module, Discard and Stmt) added by Sylvain Thenault
  17. #
  18. # Portions of this file are:
  19. # Copyright (C) 1997-1998 Greg Stein. All Rights Reserved.
  20. #
  21. # This module is provided under a BSD-ish license. See
  22. # http://www.opensource.org/licenses/bsd-license.html
  23. # and replace OWNER, ORGANIZATION, and YEAR as appropriate.
  24. from compiler.ast import *
  25. import parser
  26. import symbol
  27. import token
  28. class WalkerError(StandardError):
  29. pass
  30. from compiler.consts import CO_VARARGS, CO_VARKEYWORDS
  31. from compiler.consts import OP_ASSIGN, OP_DELETE, OP_APPLY
  32. def parseFile(path):
  33. f = open(path, "U")
  34. # XXX The parser API tolerates files without a trailing newline,
  35. # but not strings without a trailing newline. Always add an extra
  36. # newline to the file contents, since we're going through the string
  37. # version of the API.
  38. src = f.read() + "\n"
  39. f.close()
  40. return parse(src)
  41. def parse(buf, mode="exec"):
  42. if mode == "exec" or mode == "single":
  43. return Transformer().parsesuite(buf)
  44. elif mode == "eval":
  45. return Transformer().parseexpr(buf)
  46. else:
  47. raise ValueError("compile() arg 3 must be"
  48. " 'exec' or 'eval' or 'single'")
  49. def asList(nodes):
  50. l = []
  51. for item in nodes:
  52. if hasattr(item, "asList"):
  53. l.append(item.asList())
  54. else:
  55. if type(item) is type( (None, None) ):
  56. l.append(tuple(asList(item)))
  57. elif type(item) is type( [] ):
  58. l.append(asList(item))
  59. else:
  60. l.append(item)
  61. return l
  62. def extractLineNo(ast):
  63. if not isinstance(ast[1], tuple):
  64. # get a terminal node
  65. return ast[2]
  66. for child in ast[1:]:
  67. if isinstance(child, tuple):
  68. lineno = extractLineNo(child)
  69. if lineno is not None:
  70. return lineno
  71. def Node(*args):
  72. kind = args[0]
  73. if kind in nodes:
  74. try:
  75. return nodes[kind](*args[1:])
  76. except TypeError:
  77. print nodes[kind], len(args), args
  78. raise
  79. else:
  80. raise WalkerError, "Can't find appropriate Node type: %s" % str(args)
  81. #return apply(ast.Node, args)
  82. class Transformer:
  83. """Utility object for transforming Python parse trees.
  84. Exposes the following methods:
  85. tree = transform(ast_tree)
  86. tree = parsesuite(text)
  87. tree = parseexpr(text)
  88. tree = parsefile(fileob | filename)
  89. """
  90. def __init__(self):
  91. self._dispatch = {}
  92. for value, name in symbol.sym_name.items():
  93. if hasattr(self, name):
  94. self._dispatch[value] = getattr(self, name)
  95. self._dispatch[token.NEWLINE] = self.com_NEWLINE
  96. self._atom_dispatch = {token.LPAR: self.atom_lpar,
  97. token.LSQB: self.atom_lsqb,
  98. token.LBRACE: self.atom_lbrace,
  99. token.BACKQUOTE: self.atom_backquote,
  100. token.NUMBER: self.atom_number,
  101. token.STRING: self.atom_string,
  102. token.NAME: self.atom_name,
  103. }
  104. self.encoding = None
  105. def transform(self, tree):
  106. """Transform an AST into a modified parse tree."""
  107. if not (isinstance(tree, tuple) or isinstance(tree, list)):
  108. tree = parser.st2tuple(tree, line_info=1)
  109. return self.compile_node(tree)
  110. def parsesuite(self, text):
  111. """Return a modified parse tree for the given suite text."""
  112. return self.transform(parser.suite(text))
  113. def parseexpr(self, text):
  114. """Return a modified parse tree for the given expression text."""
  115. return self.transform(parser.expr(text))
  116. def parsefile(self, file):
  117. """Return a modified parse tree for the contents of the given file."""
  118. if type(file) == type(''):
  119. file = open(file)
  120. return self.parsesuite(file.read())
  121. # --------------------------------------------------------------
  122. #
  123. # PRIVATE METHODS
  124. #
  125. def compile_node(self, node):
  126. ### emit a line-number node?
  127. n = node[0]
  128. if n == symbol.encoding_decl:
  129. self.encoding = node[2]
  130. node = node[1]
  131. n = node[0]
  132. if n == symbol.single_input:
  133. return self.single_input(node[1:])
  134. if n == symbol.file_input:
  135. return self.file_input(node[1:])
  136. if n == symbol.eval_input:
  137. return self.eval_input(node[1:])
  138. if n == symbol.lambdef:
  139. return self.lambdef(node[1:])
  140. if n == symbol.funcdef:
  141. return self.funcdef(node[1:])
  142. if n == symbol.classdef:
  143. return self.classdef(node[1:])
  144. raise WalkerError, ('unexpected node type', n)
  145. def single_input(self, node):
  146. ### do we want to do anything about being "interactive" ?
  147. # NEWLINE | simple_stmt | compound_stmt NEWLINE
  148. n = node[0][0]
  149. if n != token.NEWLINE:
  150. return self.com_stmt(node[0])
  151. return Pass()
  152. def file_input(self, nodelist):
  153. doc = self.get_docstring(nodelist, symbol.file_input)
  154. if doc is not None:
  155. i = 1
  156. else:
  157. i = 0
  158. stmts = []
  159. for node in nodelist[i:]:
  160. if node[0] != token.ENDMARKER and node[0] != token.NEWLINE:
  161. self.com_append_stmt(stmts, node)
  162. return Module(doc, Stmt(stmts))
  163. def eval_input(self, nodelist):
  164. # from the built-in function input()
  165. ### is this sufficient?
  166. return Expression(self.com_node(nodelist[0]))
  167. def decorator_name(self, nodelist):
  168. listlen = len(nodelist)
  169. assert listlen >= 1 and listlen % 2 == 1
  170. item = self.atom_name(nodelist)
  171. i = 1
  172. while i < listlen:
  173. assert nodelist[i][0] == token.DOT
  174. assert nodelist[i + 1][0] == token.NAME
  175. item = Getattr(item, nodelist[i + 1][1])
  176. i += 2
  177. return item
  178. def decorator(self, nodelist):
  179. # '@' dotted_name [ '(' [arglist] ')' ]
  180. assert len(nodelist) in (3, 5, 6)
  181. assert nodelist[0][0] == token.AT
  182. assert nodelist[-1][0] == token.NEWLINE
  183. assert nodelist[1][0] == symbol.dotted_name
  184. funcname = self.decorator_name(nodelist[1][1:])
  185. if len(nodelist) > 3:
  186. assert nodelist[2][0] == token.LPAR
  187. expr = self.com_call_function(funcname, nodelist[3])
  188. else:
  189. expr = funcname
  190. return expr
  191. def decorators(self, nodelist):
  192. # decorators: decorator ([NEWLINE] decorator)* NEWLINE
  193. items = []
  194. for dec_nodelist in nodelist:
  195. assert dec_nodelist[0] == symbol.decorator
  196. items.append(self.decorator(dec_nodelist[1:]))
  197. return Decorators(items)
  198. def decorated(self, nodelist):
  199. assert nodelist[0][0] == symbol.decorators
  200. if nodelist[1][0] == symbol.funcdef:
  201. n = [nodelist[0]] + list(nodelist[1][1:])
  202. return self.funcdef(n)
  203. elif nodelist[1][0] == symbol.classdef:
  204. decorators = self.decorators(nodelist[0][1:])
  205. cls = self.classdef(nodelist[1][1:])
  206. cls.decorators = decorators
  207. return cls
  208. raise WalkerError()
  209. def funcdef(self, nodelist):
  210. # -6 -5 -4 -3 -2 -1
  211. # funcdef: [decorators] 'def' NAME parameters ':' suite
  212. # parameters: '(' [varargslist] ')'
  213. if len(nodelist) == 6:
  214. assert nodelist[0][0] == symbol.decorators
  215. decorators = self.decorators(nodelist[0][1:])
  216. else:
  217. assert len(nodelist) == 5
  218. decorators = None
  219. lineno = nodelist[-4][2]
  220. name = nodelist[-4][1]
  221. args = nodelist[-3][2]
  222. if args[0] == symbol.varargslist:
  223. names, defaults, flags = self.com_arglist(args[1:])
  224. else:
  225. names = defaults = ()
  226. flags = 0
  227. doc = self.get_docstring(nodelist[-1])
  228. # code for function
  229. code = self.com_node(nodelist[-1])
  230. if doc is not None:
  231. assert isinstance(code, Stmt)
  232. assert isinstance(code.nodes[0], Discard)
  233. del code.nodes[0]
  234. return Function(decorators, name, names, defaults, flags, doc, code,
  235. lineno=lineno)
  236. def lambdef(self, nodelist):
  237. # lambdef: 'lambda' [varargslist] ':' test
  238. if nodelist[2][0] == symbol.varargslist:
  239. names, defaults, flags = self.com_arglist(nodelist[2][1:])
  240. else:
  241. names = defaults = ()
  242. flags = 0
  243. # code for lambda
  244. code = self.com_node(nodelist[-1])
  245. return Lambda(names, defaults, flags, code, lineno=nodelist[1][2])
  246. old_lambdef = lambdef
  247. def classdef(self, nodelist):
  248. # classdef: 'class' NAME ['(' [testlist] ')'] ':' suite
  249. name = nodelist[1][1]
  250. doc = self.get_docstring(nodelist[-1])
  251. if nodelist[2][0] == token.COLON:
  252. bases = []
  253. elif nodelist[3][0] == token.RPAR:
  254. bases = []
  255. else:
  256. bases = self.com_bases(nodelist[3])
  257. # code for class
  258. code = self.com_node(nodelist[-1])
  259. if doc is not None:
  260. assert isinstance(code, Stmt)
  261. assert isinstance(code.nodes[0], Discard)
  262. del code.nodes[0]
  263. return Class(name, bases, doc, code, lineno=nodelist[1][2])
  264. def stmt(self, nodelist):
  265. return self.com_stmt(nodelist[0])
  266. small_stmt = stmt
  267. flow_stmt = stmt
  268. compound_stmt = stmt
  269. def simple_stmt(self, nodelist):
  270. # small_stmt (';' small_stmt)* [';'] NEWLINE
  271. stmts = []
  272. for i in range(0, len(nodelist), 2):
  273. self.com_append_stmt(stmts, nodelist[i])
  274. return Stmt(stmts)
  275. def parameters(self, nodelist):
  276. raise WalkerError
  277. def varargslist(self, nodelist):
  278. raise WalkerError
  279. def fpdef(self, nodelist):
  280. raise WalkerError
  281. def fplist(self, nodelist):
  282. raise WalkerError
  283. def dotted_name(self, nodelist):
  284. raise WalkerError
  285. def comp_op(self, nodelist):
  286. raise WalkerError
  287. def trailer(self, nodelist):
  288. raise WalkerError
  289. def sliceop(self, nodelist):
  290. raise WalkerError
  291. def argument(self, nodelist):
  292. raise WalkerError
  293. # --------------------------------------------------------------
  294. #
  295. # STATEMENT NODES (invoked by com_node())
  296. #
  297. def expr_stmt(self, nodelist):
  298. # augassign testlist | testlist ('=' testlist)*
  299. en = nodelist[-1]
  300. exprNode = self.lookup_node(en)(en[1:])
  301. if len(nodelist) == 1:
  302. return Discard(exprNode, lineno=exprNode.lineno)
  303. if nodelist[1][0] == token.EQUAL:
  304. nodesl = []
  305. for i in range(0, len(nodelist) - 2, 2):
  306. nodesl.append(self.com_assign(nodelist[i], OP_ASSIGN))
  307. return Assign(nodesl, exprNode, lineno=nodelist[1][2])
  308. else:
  309. lval = self.com_augassign(nodelist[0])
  310. op = self.com_augassign_op(nodelist[1])
  311. return AugAssign(lval, op[1], exprNode, lineno=op[2])
  312. raise WalkerError, "can't get here"
  313. def print_stmt(self, nodelist):
  314. # print ([ test (',' test)* [','] ] | '>>' test [ (',' test)+ [','] ])
  315. items = []
  316. if len(nodelist) == 1:
  317. start = 1
  318. dest = None
  319. elif nodelist[1][0] == token.RIGHTSHIFT:
  320. assert len(nodelist) == 3 \
  321. or nodelist[3][0] == token.COMMA
  322. dest = self.com_node(nodelist[2])
  323. start = 4
  324. else:
  325. dest = None
  326. start = 1
  327. for i in range(start, len(nodelist), 2):
  328. items.append(self.com_node(nodelist[i]))
  329. newline = (nodelist[-1][0] != token.COMMA)
  330. return Print(items, dest, newline, lineno=nodelist[0][2])
  331. def del_stmt(self, nodelist):
  332. return self.com_assign(nodelist[1], OP_DELETE)
  333. def pass_stmt(self, nodelist):
  334. return Pass(lineno=nodelist[0][2])
  335. def break_stmt(self, nodelist):
  336. return Break(lineno=nodelist[0][2])
  337. def continue_stmt(self, nodelist):
  338. return Continue(lineno=nodelist[0][2])
  339. def return_stmt(self, nodelist):
  340. # return: [testlist]
  341. if len(nodelist) < 2:
  342. return Return(Const(None), lineno=nodelist[0][2])
  343. return Return(self.com_node(nodelist[1]), lineno=nodelist[0][2])
  344. def yield_stmt(self, nodelist):
  345. expr = self.com_node(nodelist[0])
  346. return Discard(expr, lineno=expr.lineno)
  347. def yield_expr(self, nodelist):
  348. if len(nodelist) > 1:
  349. value = self.com_node(nodelist[1])
  350. else:
  351. value = Const(None)
  352. return Yield(value, lineno=nodelist[0][2])
  353. def raise_stmt(self, nodelist):
  354. # raise: [test [',' test [',' test]]]
  355. if len(nodelist) > 5:
  356. expr3 = self.com_node(nodelist[5])
  357. else:
  358. expr3 = None
  359. if len(nodelist) > 3:
  360. expr2 = self.com_node(nodelist[3])
  361. else:
  362. expr2 = None
  363. if len(nodelist) > 1:
  364. expr1 = self.com_node(nodelist[1])
  365. else:
  366. expr1 = None
  367. return Raise(expr1, expr2, expr3, lineno=nodelist[0][2])
  368. def import_stmt(self, nodelist):
  369. # import_stmt: import_name | import_from
  370. assert len(nodelist) == 1
  371. return self.com_node(nodelist[0])
  372. def import_name(self, nodelist):
  373. # import_name: 'import' dotted_as_names
  374. return Import(self.com_dotted_as_names(nodelist[1]),
  375. lineno=nodelist[0][2])
  376. def import_from(self, nodelist):
  377. # import_from: 'from' ('.'* dotted_name | '.') 'import' ('*' |
  378. # '(' import_as_names ')' | import_as_names)
  379. assert nodelist[0][1] == 'from'
  380. idx = 1
  381. while nodelist[idx][1] == '.':
  382. idx += 1
  383. level = idx - 1
  384. if nodelist[idx][0] == symbol.dotted_name:
  385. fromname = self.com_dotted_name(nodelist[idx])
  386. idx += 1
  387. else:
  388. fromname = ""
  389. assert nodelist[idx][1] == 'import'
  390. if nodelist[idx + 1][0] == token.STAR:
  391. return From(fromname, [('*', None)], level,
  392. lineno=nodelist[0][2])
  393. else:
  394. node = nodelist[idx + 1 + (nodelist[idx + 1][0] == token.LPAR)]
  395. return From(fromname, self.com_import_as_names(node), level,
  396. lineno=nodelist[0][2])
  397. def global_stmt(self, nodelist):
  398. # global: NAME (',' NAME)*
  399. names = []
  400. for i in range(1, len(nodelist), 2):
  401. names.append(nodelist[i][1])
  402. return Global(names, lineno=nodelist[0][2])
  403. def exec_stmt(self, nodelist):
  404. # exec_stmt: 'exec' expr ['in' expr [',' expr]]
  405. expr1 = self.com_node(nodelist[1])
  406. if len(nodelist) >= 4:
  407. expr2 = self.com_node(nodelist[3])
  408. if len(nodelist) >= 6:
  409. expr3 = self.com_node(nodelist[5])
  410. else:
  411. expr3 = None
  412. else:
  413. expr2 = expr3 = None
  414. return Exec(expr1, expr2, expr3, lineno=nodelist[0][2])
  415. def assert_stmt(self, nodelist):
  416. # 'assert': test, [',' test]
  417. expr1 = self.com_node(nodelist[1])
  418. if (len(nodelist) == 4):
  419. expr2 = self.com_node(nodelist[3])
  420. else:
  421. expr2 = None
  422. return Assert(expr1, expr2, lineno=nodelist[0][2])
  423. def if_stmt(self, nodelist):
  424. # if: test ':' suite ('elif' test ':' suite)* ['else' ':' suite]
  425. tests = []
  426. for i in range(0, len(nodelist) - 3, 4):
  427. testNode = self.com_node(nodelist[i + 1])
  428. suiteNode = self.com_node(nodelist[i + 3])
  429. tests.append((testNode, suiteNode))
  430. if len(nodelist) % 4 == 3:
  431. elseNode = self.com_node(nodelist[-1])
  432. ## elseNode.lineno = nodelist[-1][1][2]
  433. else:
  434. elseNode = None
  435. return If(tests, elseNode, lineno=nodelist[0][2])
  436. def while_stmt(self, nodelist):
  437. # 'while' test ':' suite ['else' ':' suite]
  438. testNode = self.com_node(nodelist[1])
  439. bodyNode = self.com_node(nodelist[3])
  440. if len(nodelist) > 4:
  441. elseNode = self.com_node(nodelist[6])
  442. else:
  443. elseNode = None
  444. return While(testNode, bodyNode, elseNode, lineno=nodelist[0][2])
  445. def for_stmt(self, nodelist):
  446. # 'for' exprlist 'in' exprlist ':' suite ['else' ':' suite]
  447. assignNode = self.com_assign(nodelist[1], OP_ASSIGN)
  448. listNode = self.com_node(nodelist[3])
  449. bodyNode = self.com_node(nodelist[5])
  450. if len(nodelist) > 8:
  451. elseNode = self.com_node(nodelist[8])
  452. else:
  453. elseNode = None
  454. return For(assignNode, listNode, bodyNode, elseNode,
  455. lineno=nodelist[0][2])
  456. def try_stmt(self, nodelist):
  457. return self.com_try_except_finally(nodelist)
  458. def with_stmt(self, nodelist):
  459. return self.com_with(nodelist)
  460. def with_var(self, nodelist):
  461. return self.com_with_var(nodelist)
  462. def suite(self, nodelist):
  463. # simple_stmt | NEWLINE INDENT NEWLINE* (stmt NEWLINE*)+ DEDENT
  464. if len(nodelist) == 1:
  465. return self.com_stmt(nodelist[0])
  466. stmts = []
  467. for node in nodelist:
  468. if node[0] == symbol.stmt:
  469. self.com_append_stmt(stmts, node)
  470. return Stmt(stmts)
  471. # --------------------------------------------------------------
  472. #
  473. # EXPRESSION NODES (invoked by com_node())
  474. #
  475. def testlist(self, nodelist):
  476. # testlist: expr (',' expr)* [',']
  477. # testlist_safe: test [(',' test)+ [',']]
  478. # exprlist: expr (',' expr)* [',']
  479. return self.com_binary(Tuple, nodelist)
  480. testlist_safe = testlist # XXX
  481. testlist1 = testlist
  482. exprlist = testlist
  483. def testlist_gexp(self, nodelist):
  484. if len(nodelist) == 2 and nodelist[1][0] == symbol.gen_for:
  485. test = self.com_node(nodelist[0])
  486. return self.com_generator_expression(test, nodelist[1])
  487. return self.testlist(nodelist)
  488. def test(self, nodelist):
  489. # or_test ['if' or_test 'else' test] | lambdef
  490. if len(nodelist) == 1 and nodelist[0][0] == symbol.lambdef:
  491. return self.lambdef(nodelist[0])
  492. then = self.com_node(nodelist[0])
  493. if len(nodelist) > 1:
  494. assert len(nodelist) == 5
  495. assert nodelist[1][1] == 'if'
  496. assert nodelist[3][1] == 'else'
  497. test = self.com_node(nodelist[2])
  498. else_ = self.com_node(nodelist[4])
  499. return IfExp(test, then, else_, lineno=nodelist[1][2])
  500. return then
  501. def or_test(self, nodelist):
  502. # and_test ('or' and_test)* | lambdef
  503. if len(nodelist) == 1 and nodelist[0][0] == symbol.lambdef:
  504. return self.lambdef(nodelist[0])
  505. return self.com_binary(Or, nodelist)
  506. old_test = or_test
  507. def and_test(self, nodelist):
  508. # not_test ('and' not_test)*
  509. return self.com_binary(And, nodelist)
  510. def not_test(self, nodelist):
  511. # 'not' not_test | comparison
  512. result = self.com_node(nodelist[-1])
  513. if len(nodelist) == 2:
  514. return Not(result, lineno=nodelist[0][2])
  515. return result
  516. def comparison(self, nodelist):
  517. # comparison: expr (comp_op expr)*
  518. node = self.com_node(nodelist[0])
  519. if len(nodelist) == 1:
  520. return node
  521. results = []
  522. for i in range(2, len(nodelist), 2):
  523. nl = nodelist[i-1]
  524. # comp_op: '<' | '>' | '=' | '>=' | '<=' | '<>' | '!=' | '=='
  525. # | 'in' | 'not' 'in' | 'is' | 'is' 'not'
  526. n = nl[1]
  527. if n[0] == token.NAME:
  528. type = n[1]
  529. if len(nl) == 3:
  530. if type == 'not':
  531. type = 'not in'
  532. else:
  533. type = 'is not'
  534. else:
  535. type = _cmp_types[n[0]]
  536. lineno = nl[1][2]
  537. results.append((type, self.com_node(nodelist[i])))
  538. # we need a special "compare" node so that we can distinguish
  539. # 3 < x < 5 from (3 < x) < 5
  540. # the two have very different semantics and results (note that the
  541. # latter form is always true)
  542. return Compare(node, results, lineno=lineno)
  543. def expr(self, nodelist):
  544. # xor_expr ('|' xor_expr)*
  545. return self.com_binary(Bitor, nodelist)
  546. def xor_expr(self, nodelist):
  547. # xor_expr ('^' xor_expr)*
  548. return self.com_binary(Bitxor, nodelist)
  549. def and_expr(self, nodelist):
  550. # xor_expr ('&' xor_expr)*
  551. return self.com_binary(Bitand, nodelist)
  552. def shift_expr(self, nodelist):
  553. # shift_expr ('<<'|'>>' shift_expr)*
  554. node = self.com_node(nodelist[0])
  555. for i in range(2, len(nodelist), 2):
  556. right = self.com_node(nodelist[i])
  557. if nodelist[i-1][0] == token.LEFTSHIFT:
  558. node = LeftShift([node, right], lineno=nodelist[1][2])
  559. elif nodelist[i-1][0] == token.RIGHTSHIFT:
  560. node = RightShift([node, right], lineno=nodelist[1][2])
  561. else:
  562. raise ValueError, "unexpected token: %s" % nodelist[i-1][0]
  563. return node
  564. def arith_expr(self, nodelist):
  565. node = self.com_node(nodelist[0])
  566. for i in range(2, len(nodelist), 2):
  567. right = self.com_node(nodelist[i])
  568. if nodelist[i-1][0] == token.PLUS:
  569. node = Add([node, right], lineno=nodelist[1][2])
  570. elif nodelist[i-1][0] == token.MINUS:
  571. node = Sub([node, right], lineno=nodelist[1][2])
  572. else:
  573. raise ValueError, "unexpected token: %s" % nodelist[i-1][0]
  574. return node
  575. def term(self, nodelist):
  576. node = self.com_node(nodelist[0])
  577. for i in range(2, len(nodelist), 2):
  578. right = self.com_node(nodelist[i])
  579. t = nodelist[i-1][0]
  580. if t == token.STAR:
  581. node = Mul([node, right])
  582. elif t == token.SLASH:
  583. node = Div([node, right])
  584. elif t == token.PERCENT:
  585. node = Mod([node, right])
  586. elif t == token.DOUBLESLASH:
  587. node = FloorDiv([node, right])
  588. else:
  589. raise ValueError, "unexpected token: %s" % t
  590. node.lineno = nodelist[1][2]
  591. return node
  592. def factor(self, nodelist):
  593. elt = nodelist[0]
  594. t = elt[0]
  595. node = self.lookup_node(nodelist[-1])(nodelist[-1][1:])
  596. # need to handle (unary op)constant here...
  597. if t == token.PLUS:
  598. return UnaryAdd(node, lineno=elt[2])
  599. elif t == token.MINUS:
  600. return UnarySub(node, lineno=elt[2])
  601. elif t == token.TILDE:
  602. node = Invert(node, lineno=elt[2])
  603. return node
  604. def power(self, nodelist):
  605. # power: atom trailer* ('**' factor)*
  606. node = self.com_node(nodelist[0])
  607. for i in range(1, len(nodelist)):
  608. elt = nodelist[i]
  609. if elt[0] == token.DOUBLESTAR:
  610. return Power([node, self.com_node(nodelist[i+1])],
  611. lineno=elt[2])
  612. node = self.com_apply_trailer(node, elt)
  613. return node
  614. def atom(self, nodelist):
  615. return self._atom_dispatch[nodelist[0][0]](nodelist)
  616. def atom_lpar(self, nodelist):
  617. if nodelist[1][0] == token.RPAR:
  618. return Tuple((), lineno=nodelist[0][2])
  619. return self.com_node(nodelist[1])
  620. def atom_lsqb(self, nodelist):
  621. if nodelist[1][0] == token.RSQB:
  622. return List((), lineno=nodelist[0][2])
  623. return self.com_list_constructor(nodelist[1])
  624. def atom_lbrace(self, nodelist):
  625. if nodelist[1][0] == token.RBRACE:
  626. return Dict((), lineno=nodelist[0][2])
  627. return self.com_dictmaker(nodelist[1])
  628. def atom_backquote(self, nodelist):
  629. return Backquote(self.com_node(nodelist[1]))
  630. def atom_number(self, nodelist):
  631. ### need to verify this matches compile.c
  632. k = eval(nodelist[0][1])
  633. return Const(k, lineno=nodelist[0][2])
  634. def decode_literal(self, lit):
  635. if self.encoding:
  636. # this is particularly fragile & a bit of a
  637. # hack... changes in compile.c:parsestr and
  638. # tokenizer.c must be reflected here.
  639. if self.encoding not in ['utf-8', 'iso-8859-1']:
  640. lit = unicode(lit, 'utf-8').encode(self.encoding)
  641. return eval("# coding: %s\n%s" % (self.encoding, lit))
  642. else:
  643. return eval(lit)
  644. def atom_string(self, nodelist):
  645. k = ''
  646. for node in nodelist:
  647. k += self.decode_literal(node[1])
  648. return Const(k, lineno=nodelist[0][2])
  649. def atom_name(self, nodelist):
  650. return Name(nodelist[0][1], lineno=nodelist[0][2])
  651. # --------------------------------------------------------------
  652. #
  653. # INTERNAL PARSING UTILITIES
  654. #
  655. # The use of com_node() introduces a lot of extra stack frames,
  656. # enough to cause a stack overflow compiling test.test_parser with
  657. # the standard interpreter recursionlimit. The com_node() is a
  658. # convenience function that hides the dispatch details, but comes
  659. # at a very high cost. It is more efficient to dispatch directly
  660. # in the callers. In these cases, use lookup_node() and call the
  661. # dispatched node directly.
  662. def lookup_node(self, node):
  663. return self._dispatch[node[0]]
  664. def com_node(self, node):
  665. # Note: compile.c has handling in com_node for del_stmt, pass_stmt,
  666. # break_stmt, stmt, small_stmt, flow_stmt, simple_stmt,
  667. # and compound_stmt.
  668. # We'll just dispatch them.
  669. return self._dispatch[node[0]](node[1:])
  670. def com_NEWLINE(self, *args):
  671. # A ';' at the end of a line can make a NEWLINE token appear
  672. # here, Render it harmless. (genc discards ('discard',
  673. # ('const', xxxx)) Nodes)
  674. return Discard(Const(None))
  675. def com_arglist(self, nodelist):
  676. # varargslist:
  677. # (fpdef ['=' test] ',')* ('*' NAME [',' '**' NAME] | '**' NAME)
  678. # | fpdef ['=' test] (',' fpdef ['=' test])* [',']
  679. # fpdef: NAME | '(' fplist ')'
  680. # fplist: fpdef (',' fpdef)* [',']
  681. names = []
  682. defaults = []
  683. flags = 0
  684. i = 0
  685. while i < len(nodelist):
  686. node = nodelist[i]
  687. if node[0] == token.STAR or node[0] == token.DOUBLESTAR:
  688. if node[0] == token.STAR:
  689. node = nodelist[i+1]
  690. if node[0] == token.NAME:
  691. names.append(node[1])
  692. flags = flags | CO_VARARGS
  693. i = i + 3
  694. if i < len(nodelist):
  695. # should be DOUBLESTAR
  696. t = nodelist[i][0]
  697. if t == token.DOUBLESTAR:
  698. node = nodelist[i+1]
  699. else:
  700. raise ValueError, "unexpected token: %s" % t
  701. names.append(node[1])
  702. flags = flags | CO_VARKEYWORDS
  703. break
  704. # fpdef: NAME | '(' fplist ')'
  705. names.append(self.com_fpdef(node))
  706. i = i + 1
  707. if i < len(nodelist) and nodelist[i][0] == token.EQUAL:
  708. defaults.append(self.com_node(nodelist[i + 1]))
  709. i = i + 2
  710. elif len(defaults):
  711. # we have already seen an argument with default, but here
  712. # came one without
  713. raise SyntaxError, "non-default argument follows default argument"
  714. # skip the comma
  715. i = i + 1
  716. return names, defaults, flags
  717. def com_fpdef(self, node):
  718. # fpdef: NAME | '(' fplist ')'
  719. if node[1][0] == token.LPAR:
  720. return self.com_fplist(node[2])
  721. return node[1][1]
  722. def com_fplist(self, node):
  723. # fplist: fpdef (',' fpdef)* [',']
  724. if len(node) == 2:
  725. return self.com_fpdef(node[1])
  726. list = []
  727. for i in range(1, len(node), 2):
  728. list.append(self.com_fpdef(node[i]))
  729. return tuple(list)
  730. def com_dotted_name(self, node):
  731. # String together the dotted names and return the string
  732. name = ""
  733. for n in node:
  734. if type(n) == type(()) and n[0] == 1:
  735. name = name + n[1] + '.'
  736. return name[:-1]
  737. def com_dotted_as_name(self, node):
  738. assert node[0] == symbol.dotted_as_name
  739. node = node[1:]
  740. dot = self.com_dotted_name(node[0][1:])
  741. if len(node) == 1:
  742. return dot, None
  743. assert node[1][1] == 'as'
  744. assert node[2][0] == token.NAME
  745. return dot, node[2][1]
  746. def com_dotted_as_names(self, node):
  747. assert node[0] == symbol.dotted_as_names
  748. node = node[1:]
  749. names = [self.com_dotted_as_name(node[0])]
  750. for i in range(2, len(node), 2):
  751. names.append(self.com_dotted_as_name(node[i]))
  752. return names
  753. def com_import_as_name(self, node):
  754. assert node[0] == symbol.import_as_name
  755. node = node[1:]
  756. assert node[0][0] == token.NAME
  757. if len(node) == 1:
  758. return node[0][1], None
  759. assert node[1][1] == 'as', node
  760. assert node[2][0] == token.NAME
  761. return node[0][1], node[2][1]
  762. def com_import_as_names(self, node):
  763. assert node[0] == symbol.import_as_names
  764. node = node[1:]
  765. names = [self.com_import_as_name(node[0])]
  766. for i in range(2, len(node), 2):
  767. names.append(self.com_import_as_name(node[i]))
  768. return names
  769. def com_bases(self, node):
  770. bases = []
  771. for i in range(1, len(node), 2):
  772. bases.append(self.com_node(node[i]))
  773. return bases
  774. def com_try_except_finally(self, nodelist):
  775. # ('try' ':' suite
  776. # ((except_clause ':' suite)+ ['else' ':' suite] ['finally' ':' suite]
  777. # | 'finally' ':' suite))
  778. if nodelist[3][0] == token.NAME:
  779. # first clause is a finally clause: only try-finally
  780. return TryFinally(self.com_node(nodelist[2]),
  781. self.com_node(nodelist[5]),
  782. lineno=nodelist[0][2])
  783. #tryexcept: [TryNode, [except_clauses], elseNode)]
  784. clauses = []
  785. elseNode = None
  786. finallyNode = None
  787. for i in range(3, len(nodelist), 3):
  788. node = nodelist[i]
  789. if node[0] == symbol.except_clause:
  790. # except_clause: 'except' [expr [(',' | 'as') expr]] */
  791. if len(node) > 2:
  792. expr1 = self.com_node(node[2])
  793. if len(node) > 4:
  794. expr2 = self.com_assign(node[4], OP_ASSIGN)
  795. else:
  796. expr2 = None
  797. else:
  798. expr1 = expr2 = None
  799. clauses.append((expr1, expr2, self.com_node(nodelist[i+2])))
  800. if node[0] == token.NAME:
  801. if node[1] == 'else':
  802. elseNode = self.com_node(nodelist[i+2])
  803. elif node[1] == 'finally':
  804. finallyNode = self.com_node(nodelist[i+2])
  805. try_except = TryExcept(self.com_node(nodelist[2]), clauses, elseNode,
  806. lineno=nodelist[0][2])
  807. if finallyNode:
  808. return TryFinally(try_except, finallyNode, lineno=nodelist[0][2])
  809. else:
  810. return try_except
  811. def com_with(self, nodelist):
  812. # with_stmt: 'with' expr [with_var] ':' suite
  813. expr = self.com_node(nodelist[1])
  814. body = self.com_node(nodelist[-1])
  815. if nodelist[2][0] == token.COLON:
  816. var = None
  817. else:
  818. var = self.com_assign(nodelist[2][2], OP_ASSIGN)
  819. return With(expr, var, body, lineno=nodelist[0][2])
  820. def com_with_var(self, nodelist):
  821. # with_var: 'as' expr
  822. return self.com_node(nodelist[1])
  823. def com_augassign_op(self, node):
  824. assert node[0] == symbol.augassign
  825. return node[1]
  826. def com_augassign(self, node):
  827. """Return node suitable for lvalue of augmented assignment
  828. Names, slices, and attributes are the only allowable nodes.
  829. """
  830. l = self.com_node(node)
  831. if l.__class__ in (Name, Slice, Subscript, Getattr):
  832. return l
  833. raise SyntaxError, "can't assign to %s" % l.__class__.__name__
  834. def com_assign(self, node, assigning):
  835. # return a node suitable for use as an "lvalue"
  836. # loop to avoid trivial recursion
  837. while 1:
  838. t = node[0]
  839. if t in (symbol.exprlist, symbol.testlist, symbol.testlist_safe, symbol.testlist_gexp):
  840. if len(node) > 2:
  841. return self.com_assign_tuple(node, assigning)
  842. node = node[1]
  843. elif t in _assign_types:
  844. if len(node) > 2:
  845. raise SyntaxError, "can't assign to operator"
  846. node = node[1]
  847. elif t == symbol.power:
  848. if node[1][0] != symbol.atom:
  849. raise SyntaxError, "can't assign to operator"
  850. if len(node) > 2:
  851. primary = self.com_node(node[1])
  852. for i in range(2, len(node)-1):
  853. ch = node[i]
  854. if ch[0] == token.DOUBLESTAR:
  855. raise SyntaxError, "can't assign to operator"
  856. primary = self.com_apply_trailer(primary, ch)
  857. return self.com_assign_trailer(primary, node[-1],
  858. assigning)
  859. node = node[1]
  860. elif t == symbol.atom:
  861. t = node[1][0]
  862. if t == token.LPAR:
  863. node = node[2]
  864. if node[0] == token.RPAR:
  865. raise SyntaxError, "can't assign to ()"
  866. elif t == token.LSQB:
  867. node = node[2]
  868. if node[0] == token.RSQB:
  869. raise SyntaxError, "can't assign to []"
  870. return self.com_assign_list(node, assigning)
  871. elif t == token.NAME:
  872. return self.com_assign_name(node[1], assigning)
  873. else:
  874. raise SyntaxError, "can't assign to literal"
  875. else:
  876. raise SyntaxError, "bad assignment (%s)" % t
  877. def com_assign_tuple(self, node, assigning):
  878. assigns = []
  879. for i in range(1, len(node), 2):
  880. assigns.append(self.com_assign(node[i], assigning))
  881. return AssTuple(assigns, lineno=extractLineNo(node))
  882. def com_assign_list(self, node, assigning):
  883. assigns = []
  884. for i in range(1, len(node), 2):
  885. if i + 1 < len(node):
  886. if node[i + 1][0] == symbol.list_for:
  887. raise SyntaxError, "can't assign to list comprehension"
  888. assert node[i + 1][0] == token.COMMA, node[i + 1]
  889. assigns.append(self.com_assign(node[i], assigning))
  890. return AssList(assigns, lineno=extractLineNo(node))
  891. def com_assign_name(self, node, assigning):
  892. return AssName(node[1], assigning, lineno=node[2])
  893. def com_assign_trailer(self, primary, node, assigning):
  894. t = node[1][0]
  895. if t == token.DOT:
  896. return self.com_assign_attr(primary, node[2], assigning)
  897. if t == token.LSQB:
  898. return self.com_subscriptlist(primary, node[2], assigning)
  899. if t == token.LPAR:
  900. raise SyntaxError, "can't assign to function call"
  901. raise SyntaxError, "unknown trailer type: %s" % t
  902. def com_assign_attr(self, primary, node, assigning):
  903. return AssAttr(primary, node[1], assigning, lineno=node[-1])
  904. def com_binary(self, constructor, nodelist):
  905. "Compile 'NODE (OP NODE)*' into (type, [ node1, ..., nodeN ])."
  906. l = len(nodelist)
  907. if l == 1:
  908. n = nodelist[0]
  909. return self.lookup_node(n)(n[1:])
  910. items = []
  911. for i in range(0, l, 2):
  912. n = nodelist[i]
  913. items.append(self.lookup_node(n)(n[1:]))
  914. return constructor(items, lineno=extractLineNo(nodelist))
  915. def com_stmt(self, node):
  916. result = self.lookup_node(node)(node[1:])
  917. assert result is not None
  918. if isinstance(result, Stmt):
  919. return result
  920. return Stmt([result])
  921. def com_append_stmt(self, stmts, node):
  922. result = self.lookup_node(node)(node[1:])
  923. assert result is not None
  924. if isinstance(result, Stmt):
  925. stmts.extend(result.nodes)
  926. else:
  927. stmts.append(result)
  928. if hasattr(symbol, 'list_for'):
  929. def com_list_constructor(self, nodelist):
  930. # listmaker: test ( list_for | (',' test)* [','] )
  931. values = []
  932. for i in range(1, len(nodelist)):
  933. if nodelist[i][0] == symbol.list_for:
  934. assert len(nodelist[i:]) == 1
  935. return self.com_list_comprehension(values[0],
  936. nodelist[i])
  937. elif nodelist[i][0] == token.COMMA:
  938. continue
  939. values.append(self.com_node(nodelist[i]))
  940. return List(values, lineno=values[0].lineno)
  941. def com_list_comprehension(self, expr, node):
  942. # list_iter: list_for | list_if
  943. # list_for: 'for' exprlist 'in' testlist [list_iter]
  944. # list_if: 'if' test [list_iter]
  945. # XXX should raise SyntaxError for assignment
  946. lineno = node[1][2]
  947. fors = []
  948. while node:
  949. t = node[1][1]
  950. if t == 'for':
  951. assignNode = self.com_assign(node[2], OP_ASSIGN)
  952. listNode = self.com_node(node[4])
  953. newfor = ListCompFor(assignNode, listNode, [])
  954. newfor.lineno = node[1][2]
  955. fors.append(newfor)
  956. if len(node) == 5:
  957. node = None
  958. else:
  959. node = self.com_list_iter(node[5])
  960. elif t == 'if':
  961. test = self.com_node(node[2])
  962. newif = ListCompIf(test, lineno=node[1][2])
  963. newfor.ifs.append(newif)
  964. if len(node) == 3:
  965. node = None
  966. else:
  967. node = self.com_list_iter(node[3])
  968. else:
  969. raise SyntaxError, \
  970. ("unexpected list comprehension element: %s %d"
  971. % (node, lineno))
  972. return ListComp(expr, fors, lineno=lineno)
  973. def com_list_iter(self, node):
  974. assert node[0] == symbol.list_iter
  975. return node[1]
  976. else:
  977. def com_list_constructor(self, nodelist):
  978. values = []
  979. for i in range(1, len(nodelist), 2):
  980. values.append(self.com_node(nodelist[i]))
  981. return List(values, lineno=values[0].lineno)
  982. if hasattr(symbol, 'gen_for'):
  983. def com_generator_expression(self, expr, node):
  984. # gen_iter: gen_for | gen_if
  985. # gen_for: 'for' exprlist 'in' test [gen_iter]
  986. # gen_if: 'if' test [gen_iter]
  987. lineno = node[1][2]
  988. fors = []
  989. while node:
  990. t = node[1][1]
  991. if t == 'for':
  992. assignNode = self.com_assign(node[2], OP_ASSIGN)
  993. genNode = self.com_node(node[4])
  994. newfor = GenExprFor(assignNode, genNode, [],
  995. lineno=node[1][2])
  996. fors.append(newfor)
  997. if (len(node)) == 5:
  998. node = None
  999. else:
  1000. node = self.com_gen_iter(node[5])
  1001. elif t == 'if':
  1002. test = self.com_node(node[2])
  1003. newif = GenExprIf(test, lineno=node[1][2])
  1004. newfor.ifs.append(newif)
  1005. if len(node) == 3:
  1006. node = None
  1007. else:
  1008. node = self.com_gen_iter(node[3])
  1009. else:
  1010. raise SyntaxError, \
  1011. ("unexpected generator expression element: %s %d"
  1012. % (node, lineno))
  1013. fors[0].is_outmost = True
  1014. return GenExpr(GenExprInner(expr, fors), lineno=lineno)
  1015. def com_gen_iter(self, node):
  1016. assert node[0] == symbol.gen_iter
  1017. return node[1]
  1018. def com_dictmaker(self, nodelist):
  1019. # dictmaker: test ':' test (',' test ':' value)* [',']
  1020. items = []
  1021. for i in range(1, len(nodelist), 4):
  1022. items.append((self.com_node(nodelist[i]),
  1023. self.com_node(nodelist[i+2])))
  1024. return Dict(items, lineno=items[0][0].lineno)
  1025. def com_apply_trailer(self, primaryNode, nodelist):
  1026. t = nodelist[1][0]
  1027. if t == token.LPAR:
  1028. return self.com_call_function(primaryNode, nodelist[2])
  1029. if t == token.DOT:
  1030. return self.com_select_member(primaryNode, nodelist[2])
  1031. if t == token.LSQB:
  1032. return self.com_subscriptlist(primaryNode, nodelist[2], OP_APPLY)
  1033. raise SyntaxError, 'unknown node type: %s' % t
  1034. def com_select_member(self, primaryNode, nodelist):
  1035. if nodelist[0] != token.NAME:
  1036. raise SyntaxError, "member must be a name"
  1037. return Getattr(primaryNode, nodelist[1], lineno=nodelist[2])
  1038. def com_call_function(self, primaryNode, nodelist):
  1039. if nodelist[0] == token.RPAR:
  1040. return CallFunc(primaryNode, [], lineno=extractLineNo(nodelist))
  1041. args = []
  1042. kw = 0
  1043. star_node = dstar_node = None
  1044. len_nodelist = len(nodelist)
  1045. i = 1
  1046. while i < len_nodelist:
  1047. node = nodelist[i]
  1048. if node[0]==token.STAR:
  1049. if star_node is not None:
  1050. raise SyntaxError, 'already have the varargs indentifier'
  1051. star_node = self.com_node(nodelist[i+1])
  1052. i = i + 3
  1053. continue
  1054. elif node[0]==token.DOUBLESTAR:
  1055. if dstar_node is not None:
  1056. raise SyntaxError, 'already have the kwargs indentifier'
  1057. dstar_node = self.com_node(nodelist[i+1])
  1058. i = i + 3
  1059. continue
  1060. # positional or named parameters
  1061. kw, result = self.com_argument(node, kw, star_node)
  1062. if len_nodelist != 2 and isinstance(result, GenExpr) \
  1063. and len(node) == 3 and node[2][0] == symbol.gen_for:
  1064. # allow f(x for x in y), but reject f(x for x in y, 1)
  1065. # should use f((x for x in y), 1) instead of f(x for x in y, 1)
  1066. raise SyntaxError, 'generator expression needs parenthesis'
  1067. args.append(result)
  1068. i = i + 2
  1069. return CallFunc(primaryNode, args, star_node, dstar_node,
  1070. lineno=extractLineNo(nodelist))
  1071. def com_argument(self, nodelist, kw, star_node):
  1072. if len(nodelist) == 3 and nodelist[2][0] == symbol.gen_for:
  1073. test = self.com_node(nodelist[1])
  1074. return 0, self.com_generator_expression(test, nodelist[2])
  1075. if len(nodelist) == 2:
  1076. if kw:
  1077. raise SyntaxError, "non-keyword arg after keyword arg"
  1078. if star_node:
  1079. raise SyntaxError, "only named arguments may follow *expression"
  1080. return 0, self.com_node(nodelist[1])
  1081. result = self.com_node(nodelist[3])
  1082. n = nodelist[1]
  1083. while len(n) == 2 and n[0] != token.NAME:
  1084. n = n[1]
  1085. if n[0] != token.NAME:
  1086. raise SyntaxError, "keyword can't be an expression (%s)"%n[0]
  1087. node = Keyword(n[1], result, lineno=n[2])
  1088. return 1, node
  1089. def com_subscriptlist(self, primary, nodelist, assigning):
  1090. # slicing: simple_slicing | extended_slicing
  1091. # simple_slicing: primary "[" short_slice "]"
  1092. # extended_slicing: primary "[" slice_list "]"
  1093. # slice_list: slice_item ("," slice_item)* [","]
  1094. # backwards compat slice for '[i:j]'
  1095. if len(nodelist) == 2:
  1096. sub = nodelist[1]
  1097. if (sub[1][0] == token.COLON or \
  1098. (len(sub) > 2 and sub[2][0] == token.COLON)) and \
  1099. sub[-1][0] != symbol.sliceop:
  1100. return self.com_slice(primary, sub, assigning)
  1101. subscripts = []
  1102. for i in range(1, len(nodelist), 2):
  1103. subscripts.append(self.com_subscript(nodelist[i]))
  1104. return Subscript(primary, assigning, subscripts,
  1105. lineno=extractLineNo(nodelist))
  1106. def com_subscript(self, node):
  1107. # slice_item: expression | proper_slice | ellipsis
  1108. ch = node[1]
  1109. t = ch[0]
  1110. if t == token.DOT and node[2][0] == token.DOT:
  1111. return Ellipsis()
  1112. if t == token.COLON or len(node) > 2:
  1113. return self.com_sliceobj(node)
  1114. return self.com_node(ch)
  1115. def com_sliceobj(self, node):
  1116. # proper_slice: short_slice | long_slice
  1117. # short_slice: [lower_bound] ":" [upper_bound]
  1118. # long_slice: short_slice ":" [stride]
  1119. # lower_bound: expression
  1120. # upper_bound: expression
  1121. # stride: expression
  1122. #
  1123. # Note: a stride may be further slicing...
  1124. items = []
  1125. if node[1][0] == token.COLON:
  1126. items.append(Const(None))
  1127. i = 2
  1128. else:
  1129. items.append(self.com_node(node[1]))
  1130. # i == 2 is a COLON
  1131. i = 3
  1132. if i < len(node) and node[i][0] == symbol.test:
  1133. items.append(self.com_node(node[i]))
  1134. i = i + 1
  1135. else:
  1136. items.append(Const(None))
  1137. # a short_slice has been built. look for long_slice now by looking
  1138. # for strides...
  1139. for j in range(i, len(node)):
  1140. ch = node[j]
  1141. if len(ch) == 2:
  1142. items.append(Const(None))
  1143. else:
  1144. items.append(self.com_node(ch[2]))
  1145. return Sliceobj(items, lineno=extractLineNo(node))
  1146. def com_slice(self, primary, node, assigning):
  1147. # short_slice: [lower_bound] ":" [upper_bound]
  1148. lower = upper = None
  1149. if len(node) == 3:
  1150. if node[1][0] == token.COLON:
  1151. upper = self.com_node(node[2])
  1152. else:
  1153. lower = self.com_node(node[1])
  1154. elif len(node) == 4:
  1155. lower = self.com_node(node[1])
  1156. upper = self.com_node(node[3])
  1157. return Slice(primary, assigning, lower, upper,
  1158. lineno=extractLineNo(node))
  1159. def get_docstring(self, node, n=None):
  1160. if n is None:
  1161. n = node[0]
  1162. node = node[1:]
  1163. if n == symbol.suite:
  1164. if len(node) == 1:
  1165. return self.get_docstring(node[0])
  1166. for sub in node:
  1167. if sub[0] == symbol.stmt:
  1168. return self.get_docstring(sub)
  1169. return None
  1170. if n == symbol.file_input:
  1171. for sub in node:
  1172. if sub[0] == symbol.stmt:
  1173. return self.get_docstring(sub)
  1174. return None
  1175. if n == symbol.atom:
  1176. if node[0][0] == token.STRING:
  1177. s = ''
  1178. for t in node:
  1179. s = s + eval(t[1])
  1180. return s
  1181. return None
  1182. if n == symbol.stmt or n == symbol.simple_stmt \
  1183. or n == symbol.small_stmt:
  1184. return self.get_docstring(node[0])
  1185. if n in _doc_nodes and len(node) == 1:
  1186. return self.get_docstring(node[0])
  1187. return None
  1188. _doc_nodes = [
  1189. symbol.expr_stmt,
  1190. symbol.testlist,
  1191. symbol.testlist_safe,
  1192. symbol.test,
  1193. symbol.or_test,
  1194. symbol.and_test,
  1195. symbol.not_test,
  1196. symbol.comparison,
  1197. symbol.expr,
  1198. symbol.xor_expr,
  1199. symbol.and_expr,
  1200. symbol.shift_expr,
  1201. symbol.arith_expr,
  1202. symbol.term,
  1203. symbol.factor,
  1204. symbol.power,
  1205. ]
  1206. # comp_op: '<' | '>' | '=' | '>=' | '<=' | '<>' | '!=' | '=='
  1207. # | 'in' | 'not' 'in' | 'is' | 'is' 'not'
  1208. _cmp_types = {
  1209. token.LESS : '<',
  1210. token.GREATER : '>',
  1211. token.EQEQUAL : '==',
  1212. token.EQUAL : '==',
  1213. token.LESSEQUAL : '<=',
  1214. token.GREATEREQUAL : '>=',
  1215. token.NOTEQUAL : '!=',
  1216. }
  1217. _legal_node_types = [
  1218. symbol.funcdef,
  1219. symbol.classdef,
  1220. symbol.stmt,
  1221. symbol.small_stmt,
  1222. symbol.flow_stmt,
  1223. symbol.simple_stmt,
  1224. symbol.compound_stmt,
  1225. symbol.expr_stmt,
  1226. symbol.print_stmt,
  1227. symbol.del_stmt,
  1228. symbol.pass_stmt,
  1229. symbol.break_stmt,
  1230. symbol.continue_stmt,
  1231. symbol.return_stmt,
  1232. symbol.raise_stmt,
  1233. symbol.import_stmt,
  1234. symbol.global_stmt,
  1235. symbol.exec_stmt,
  1236. symbol.assert_stmt,
  1237. symbol.if_stmt,
  1238. symbol.while_stmt,
  1239. symbol.for_stmt,
  1240. symbol.try_stmt,
  1241. symbol.with_stmt,
  1242. symbol.suite,
  1243. symbol.testlist,
  1244. symbol.testlist_safe,
  1245. symbol.test,
  1246. symbol.and_test,
  1247. symbol.not_test,
  1248. symbol.comparison,
  1249. symbol.exprlist,
  1250. symbol.expr,
  1251. symbol.xor_expr,
  1252. symbol.and_expr,
  1253. symbol.shift_expr,
  1254. symbol.arith_expr,
  1255. symbol.term,
  1256. symbol.factor,
  1257. symbol.power,
  1258. symbol.atom,
  1259. ]
  1260. if hasattr(symbol, 'yield_stmt'):
  1261. _legal_node_types.append(symbol.yield_stmt)
  1262. if hasattr(symbol, 'yield_expr'):
  1263. _legal_node_types.append(symbol.yield_expr)
  1264. _assign_types = [
  1265. symbol.test,
  1266. symbol.or_test,
  1267. symbol.and_test,
  1268. symbol.not_test,
  1269. symbol.comparison,
  1270. symbol.expr,
  1271. symbol.xor_expr,
  1272. symbol.and_expr,
  1273. symbol.shift_expr,
  1274. symbol.arith_expr,
  1275. symbol.term,
  1276. symbol.factor,
  1277. ]
  1278. _names = {}
  1279. for k, v in symbol.sym_name.items():
  1280. _names[k] = v
  1281. for k, v in token.tok_name.items():
  1282. _names[k] = v
  1283. def debug_tree(tree):
  1284. l = []
  1285. for elt in tree:
  1286. if isinstance(elt, int):
  1287. l.append(_names.get(elt, elt))
  1288. elif isinstance(elt, str):
  1289. l.append(elt)
  1290. else:
  1291. l.append(debug_tree(elt))
  1292. return l