PageRenderTime 56ms CodeModel.GetById 19ms RepoModel.GetById 1ms app.codeStats 0ms

/libavcodec/dnxhdenc.c

http://github.com/FFmpeg/FFmpeg
C | 1411 lines | 1209 code | 153 blank | 49 comment | 244 complexity | d6780bcd77606d7ab96536dc485f9d50 MD5 | raw file
Possible License(s): GPL-2.0, GPL-3.0, LGPL-2.1, LGPL-3.0, CC-BY-SA-3.0
  1. /*
  2. * VC3/DNxHD encoder
  3. * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
  4. * Copyright (c) 2011 MirriAd Ltd
  5. *
  6. * VC-3 encoder funded by the British Broadcasting Corporation
  7. * 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. #include "libavutil/attributes.h"
  26. #include "libavutil/internal.h"
  27. #include "libavutil/opt.h"
  28. #include "avcodec.h"
  29. #include "blockdsp.h"
  30. #include "fdctdsp.h"
  31. #include "internal.h"
  32. #include "mpegvideo.h"
  33. #include "pixblockdsp.h"
  34. #include "profiles.h"
  35. #include "dnxhdenc.h"
  36. // The largest value that will not lead to overflow for 10-bit samples.
  37. #define DNX10BIT_QMAT_SHIFT 18
  38. #define RC_VARIANCE 1 // use variance or ssd for fast rc
  39. #define LAMBDA_FRAC_BITS 10
  40. #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
  41. static const AVOption options[] = {
  42. { "nitris_compat", "encode with Avid Nitris compatibility",
  43. offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE },
  44. { "ibias", "intra quant bias",
  45. offsetof(DNXHDEncContext, intra_quant_bias), AV_OPT_TYPE_INT,
  46. { .i64 = 0 }, INT_MIN, INT_MAX, VE },
  47. { "profile", NULL, offsetof(DNXHDEncContext, profile), AV_OPT_TYPE_INT,
  48. { .i64 = FF_PROFILE_DNXHD },
  49. FF_PROFILE_DNXHD, FF_PROFILE_DNXHR_444, VE, "profile" },
  50. { "dnxhd", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHD },
  51. 0, 0, VE, "profile" },
  52. { "dnxhr_444", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_444 },
  53. 0, 0, VE, "profile" },
  54. { "dnxhr_hqx", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_HQX },
  55. 0, 0, VE, "profile" },
  56. { "dnxhr_hq", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_HQ },
  57. 0, 0, VE, "profile" },
  58. { "dnxhr_sq", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_SQ },
  59. 0, 0, VE, "profile" },
  60. { "dnxhr_lb", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_LB },
  61. 0, 0, VE, "profile" },
  62. { NULL }
  63. };
  64. static const AVClass dnxhd_class = {
  65. .class_name = "dnxhd",
  66. .item_name = av_default_item_name,
  67. .option = options,
  68. .version = LIBAVUTIL_VERSION_INT,
  69. };
  70. static void dnxhd_8bit_get_pixels_8x4_sym(int16_t *av_restrict block,
  71. const uint8_t *pixels,
  72. ptrdiff_t line_size)
  73. {
  74. int i;
  75. for (i = 0; i < 4; i++) {
  76. block[0] = pixels[0];
  77. block[1] = pixels[1];
  78. block[2] = pixels[2];
  79. block[3] = pixels[3];
  80. block[4] = pixels[4];
  81. block[5] = pixels[5];
  82. block[6] = pixels[6];
  83. block[7] = pixels[7];
  84. pixels += line_size;
  85. block += 8;
  86. }
  87. memcpy(block, block - 8, sizeof(*block) * 8);
  88. memcpy(block + 8, block - 16, sizeof(*block) * 8);
  89. memcpy(block + 16, block - 24, sizeof(*block) * 8);
  90. memcpy(block + 24, block - 32, sizeof(*block) * 8);
  91. }
  92. static av_always_inline
  93. void dnxhd_10bit_get_pixels_8x4_sym(int16_t *av_restrict block,
  94. const uint8_t *pixels,
  95. ptrdiff_t line_size)
  96. {
  97. memcpy(block + 0 * 8, pixels + 0 * line_size, 8 * sizeof(*block));
  98. memcpy(block + 7 * 8, pixels + 0 * line_size, 8 * sizeof(*block));
  99. memcpy(block + 1 * 8, pixels + 1 * line_size, 8 * sizeof(*block));
  100. memcpy(block + 6 * 8, pixels + 1 * line_size, 8 * sizeof(*block));
  101. memcpy(block + 2 * 8, pixels + 2 * line_size, 8 * sizeof(*block));
  102. memcpy(block + 5 * 8, pixels + 2 * line_size, 8 * sizeof(*block));
  103. memcpy(block + 3 * 8, pixels + 3 * line_size, 8 * sizeof(*block));
  104. memcpy(block + 4 * 8, pixels + 3 * line_size, 8 * sizeof(*block));
  105. }
  106. static int dnxhd_10bit_dct_quantize_444(MpegEncContext *ctx, int16_t *block,
  107. int n, int qscale, int *overflow)
  108. {
  109. int i, j, level, last_non_zero, start_i;
  110. const int *qmat;
  111. const uint8_t *scantable= ctx->intra_scantable.scantable;
  112. int bias;
  113. int max = 0;
  114. unsigned int threshold1, threshold2;
  115. ctx->fdsp.fdct(block);
  116. block[0] = (block[0] + 2) >> 2;
  117. start_i = 1;
  118. last_non_zero = 0;
  119. qmat = n < 4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale];
  120. bias= ctx->intra_quant_bias * (1 << (16 - 8));
  121. threshold1 = (1 << 16) - bias - 1;
  122. threshold2 = (threshold1 << 1);
  123. for (i = 63; i >= start_i; i--) {
  124. j = scantable[i];
  125. level = block[j] * qmat[j];
  126. if (((unsigned)(level + threshold1)) > threshold2) {
  127. last_non_zero = i;
  128. break;
  129. } else{
  130. block[j]=0;
  131. }
  132. }
  133. for (i = start_i; i <= last_non_zero; i++) {
  134. j = scantable[i];
  135. level = block[j] * qmat[j];
  136. if (((unsigned)(level + threshold1)) > threshold2) {
  137. if (level > 0) {
  138. level = (bias + level) >> 16;
  139. block[j] = level;
  140. } else{
  141. level = (bias - level) >> 16;
  142. block[j] = -level;
  143. }
  144. max |= level;
  145. } else {
  146. block[j] = 0;
  147. }
  148. }
  149. *overflow = ctx->max_qcoeff < max; //overflow might have happened
  150. /* we need this permutation so that we correct the IDCT, we only permute the !=0 elements */
  151. if (ctx->idsp.perm_type != FF_IDCT_PERM_NONE)
  152. ff_block_permute(block, ctx->idsp.idct_permutation,
  153. scantable, last_non_zero);
  154. return last_non_zero;
  155. }
  156. static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, int16_t *block,
  157. int n, int qscale, int *overflow)
  158. {
  159. const uint8_t *scantable= ctx->intra_scantable.scantable;
  160. const int *qmat = n<4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale];
  161. int last_non_zero = 0;
  162. int i;
  163. ctx->fdsp.fdct(block);
  164. // Divide by 4 with rounding, to compensate scaling of DCT coefficients
  165. block[0] = (block[0] + 2) >> 2;
  166. for (i = 1; i < 64; ++i) {
  167. int j = scantable[i];
  168. int sign = FF_SIGNBIT(block[j]);
  169. int level = (block[j] ^ sign) - sign;
  170. level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT;
  171. block[j] = (level ^ sign) - sign;
  172. if (level)
  173. last_non_zero = i;
  174. }
  175. /* we need this permutation so that we correct the IDCT, we only permute the !=0 elements */
  176. if (ctx->idsp.perm_type != FF_IDCT_PERM_NONE)
  177. ff_block_permute(block, ctx->idsp.idct_permutation,
  178. scantable, last_non_zero);
  179. return last_non_zero;
  180. }
  181. static av_cold int dnxhd_init_vlc(DNXHDEncContext *ctx)
  182. {
  183. int i, j, level, run;
  184. int max_level = 1 << (ctx->bit_depth + 2);
  185. FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->orig_vlc_codes,
  186. max_level, 4 * sizeof(*ctx->orig_vlc_codes), fail);
  187. FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->orig_vlc_bits,
  188. max_level, 4 * sizeof(*ctx->orig_vlc_bits), fail);
  189. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes,
  190. 63 * 2, fail);
  191. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits,
  192. 63, fail);
  193. ctx->vlc_codes = ctx->orig_vlc_codes + max_level * 2;
  194. ctx->vlc_bits = ctx->orig_vlc_bits + max_level * 2;
  195. for (level = -max_level; level < max_level; level++) {
  196. for (run = 0; run < 2; run++) {
  197. int index = level * (1 << 1) | run;
  198. int sign, offset = 0, alevel = level;
  199. MASK_ABS(sign, alevel);
  200. if (alevel > 64) {
  201. offset = (alevel - 1) >> 6;
  202. alevel -= offset << 6;
  203. }
  204. for (j = 0; j < 257; j++) {
  205. if (ctx->cid_table->ac_info[2*j+0] >> 1 == alevel &&
  206. (!offset || (ctx->cid_table->ac_info[2*j+1] & 1) && offset) &&
  207. (!run || (ctx->cid_table->ac_info[2*j+1] & 2) && run)) {
  208. av_assert1(!ctx->vlc_codes[index]);
  209. if (alevel) {
  210. ctx->vlc_codes[index] =
  211. (ctx->cid_table->ac_codes[j] << 1) | (sign & 1);
  212. ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j] + 1;
  213. } else {
  214. ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
  215. ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j];
  216. }
  217. break;
  218. }
  219. }
  220. av_assert0(!alevel || j < 257);
  221. if (offset) {
  222. ctx->vlc_codes[index] =
  223. (ctx->vlc_codes[index] << ctx->cid_table->index_bits) | offset;
  224. ctx->vlc_bits[index] += ctx->cid_table->index_bits;
  225. }
  226. }
  227. }
  228. for (i = 0; i < 62; i++) {
  229. int run = ctx->cid_table->run[i];
  230. av_assert0(run < 63);
  231. ctx->run_codes[run] = ctx->cid_table->run_codes[i];
  232. ctx->run_bits[run] = ctx->cid_table->run_bits[i];
  233. }
  234. return 0;
  235. fail:
  236. return AVERROR(ENOMEM);
  237. }
  238. static av_cold int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
  239. {
  240. // init first elem to 1 to avoid div by 0 in convert_matrix
  241. uint16_t weight_matrix[64] = { 1, }; // convert_matrix needs uint16_t*
  242. int qscale, i;
  243. const uint8_t *luma_weight_table = ctx->cid_table->luma_weight;
  244. const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
  245. FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l,
  246. (ctx->m.avctx->qmax + 1), 64 * sizeof(int), fail);
  247. FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c,
  248. (ctx->m.avctx->qmax + 1), 64 * sizeof(int), fail);
  249. FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l16,
  250. (ctx->m.avctx->qmax + 1), 64 * 2 * sizeof(uint16_t),
  251. fail);
  252. FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c16,
  253. (ctx->m.avctx->qmax + 1), 64 * 2 * sizeof(uint16_t),
  254. fail);
  255. if (ctx->bit_depth == 8) {
  256. for (i = 1; i < 64; i++) {
  257. int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
  258. weight_matrix[j] = ctx->cid_table->luma_weight[i];
  259. }
  260. ff_convert_matrix(&ctx->m, ctx->qmatrix_l, ctx->qmatrix_l16,
  261. weight_matrix, ctx->intra_quant_bias, 1,
  262. ctx->m.avctx->qmax, 1);
  263. for (i = 1; i < 64; i++) {
  264. int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
  265. weight_matrix[j] = ctx->cid_table->chroma_weight[i];
  266. }
  267. ff_convert_matrix(&ctx->m, ctx->qmatrix_c, ctx->qmatrix_c16,
  268. weight_matrix, ctx->intra_quant_bias, 1,
  269. ctx->m.avctx->qmax, 1);
  270. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  271. for (i = 0; i < 64; i++) {
  272. ctx->qmatrix_l[qscale][i] <<= 2;
  273. ctx->qmatrix_c[qscale][i] <<= 2;
  274. ctx->qmatrix_l16[qscale][0][i] <<= 2;
  275. ctx->qmatrix_l16[qscale][1][i] <<= 2;
  276. ctx->qmatrix_c16[qscale][0][i] <<= 2;
  277. ctx->qmatrix_c16[qscale][1][i] <<= 2;
  278. }
  279. }
  280. } else {
  281. // 10-bit
  282. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  283. for (i = 1; i < 64; i++) {
  284. int j = ff_zigzag_direct[i];
  285. /* The quantization formula from the VC-3 standard is:
  286. * quantized = sign(block[i]) * floor(abs(block[i]/s) * p /
  287. * (qscale * weight_table[i]))
  288. * Where p is 32 for 8-bit samples and 8 for 10-bit ones.
  289. * The s factor compensates scaling of DCT coefficients done by
  290. * the DCT routines, and therefore is not present in standard.
  291. * It's 8 for 8-bit samples and 4 for 10-bit ones.
  292. * We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
  293. * ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) /
  294. * (qscale * weight_table[i])
  295. * For 10-bit samples, p / s == 2 */
  296. ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
  297. (qscale * luma_weight_table[i]);
  298. ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
  299. (qscale * chroma_weight_table[i]);
  300. }
  301. }
  302. }
  303. ctx->m.q_chroma_intra_matrix16 = ctx->qmatrix_c16;
  304. ctx->m.q_chroma_intra_matrix = ctx->qmatrix_c;
  305. ctx->m.q_intra_matrix16 = ctx->qmatrix_l16;
  306. ctx->m.q_intra_matrix = ctx->qmatrix_l;
  307. return 0;
  308. fail:
  309. return AVERROR(ENOMEM);
  310. }
  311. static av_cold int dnxhd_init_rc(DNXHDEncContext *ctx)
  312. {
  313. FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->mb_rc, (ctx->m.avctx->qmax + 1),
  314. ctx->m.mb_num * sizeof(RCEntry), fail);
  315. if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD) {
  316. FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->mb_cmp,
  317. ctx->m.mb_num, sizeof(RCCMPEntry), fail);
  318. FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->mb_cmp_tmp,
  319. ctx->m.mb_num, sizeof(RCCMPEntry), fail);
  320. }
  321. ctx->frame_bits = (ctx->coding_unit_size -
  322. ctx->data_offset - 4 - ctx->min_padding) * 8;
  323. ctx->qscale = 1;
  324. ctx->lambda = 2 << LAMBDA_FRAC_BITS; // qscale 2
  325. return 0;
  326. fail:
  327. return AVERROR(ENOMEM);
  328. }
  329. static av_cold int dnxhd_encode_init(AVCodecContext *avctx)
  330. {
  331. DNXHDEncContext *ctx = avctx->priv_data;
  332. int i, index, ret;
  333. switch (avctx->pix_fmt) {
  334. case AV_PIX_FMT_YUV422P:
  335. ctx->bit_depth = 8;
  336. break;
  337. case AV_PIX_FMT_YUV422P10:
  338. case AV_PIX_FMT_YUV444P10:
  339. case AV_PIX_FMT_GBRP10:
  340. ctx->bit_depth = 10;
  341. break;
  342. default:
  343. av_log(avctx, AV_LOG_ERROR,
  344. "pixel format is incompatible with DNxHD\n");
  345. return AVERROR(EINVAL);
  346. }
  347. if ((ctx->profile == FF_PROFILE_DNXHR_444 && (avctx->pix_fmt != AV_PIX_FMT_YUV444P10 &&
  348. avctx->pix_fmt != AV_PIX_FMT_GBRP10)) ||
  349. (ctx->profile != FF_PROFILE_DNXHR_444 && (avctx->pix_fmt == AV_PIX_FMT_YUV444P10 ||
  350. avctx->pix_fmt == AV_PIX_FMT_GBRP10))) {
  351. av_log(avctx, AV_LOG_ERROR,
  352. "pixel format is incompatible with DNxHD profile\n");
  353. return AVERROR(EINVAL);
  354. }
  355. if (ctx->profile == FF_PROFILE_DNXHR_HQX && avctx->pix_fmt != AV_PIX_FMT_YUV422P10) {
  356. av_log(avctx, AV_LOG_ERROR,
  357. "pixel format is incompatible with DNxHR HQX profile\n");
  358. return AVERROR(EINVAL);
  359. }
  360. if ((ctx->profile == FF_PROFILE_DNXHR_LB ||
  361. ctx->profile == FF_PROFILE_DNXHR_SQ ||
  362. ctx->profile == FF_PROFILE_DNXHR_HQ) && avctx->pix_fmt != AV_PIX_FMT_YUV422P) {
  363. av_log(avctx, AV_LOG_ERROR,
  364. "pixel format is incompatible with DNxHR LB/SQ/HQ profile\n");
  365. return AVERROR(EINVAL);
  366. }
  367. ctx->is_444 = ctx->profile == FF_PROFILE_DNXHR_444;
  368. avctx->profile = ctx->profile;
  369. ctx->cid = ff_dnxhd_find_cid(avctx, ctx->bit_depth);
  370. if (!ctx->cid) {
  371. av_log(avctx, AV_LOG_ERROR,
  372. "video parameters incompatible with DNxHD. Valid DNxHD profiles:\n");
  373. ff_dnxhd_print_profiles(avctx, AV_LOG_ERROR);
  374. return AVERROR(EINVAL);
  375. }
  376. av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
  377. if (ctx->cid >= 1270 && ctx->cid <= 1274)
  378. avctx->codec_tag = MKTAG('A','V','d','h');
  379. if (avctx->width < 256 || avctx->height < 120) {
  380. av_log(avctx, AV_LOG_ERROR,
  381. "Input dimensions too small, input must be at least 256x120\n");
  382. return AVERROR(EINVAL);
  383. }
  384. index = ff_dnxhd_get_cid_table(ctx->cid);
  385. av_assert0(index >= 0);
  386. ctx->cid_table = &ff_dnxhd_cid_table[index];
  387. ctx->m.avctx = avctx;
  388. ctx->m.mb_intra = 1;
  389. ctx->m.h263_aic = 1;
  390. avctx->bits_per_raw_sample = ctx->bit_depth;
  391. ff_blockdsp_init(&ctx->bdsp, avctx);
  392. ff_fdctdsp_init(&ctx->m.fdsp, avctx);
  393. ff_mpv_idct_init(&ctx->m);
  394. ff_mpegvideoencdsp_init(&ctx->m.mpvencdsp, avctx);
  395. ff_pixblockdsp_init(&ctx->m.pdsp, avctx);
  396. ff_dct_encode_init(&ctx->m);
  397. if (ctx->profile != FF_PROFILE_DNXHD)
  398. ff_videodsp_init(&ctx->m.vdsp, ctx->bit_depth);
  399. if (!ctx->m.dct_quantize)
  400. ctx->m.dct_quantize = ff_dct_quantize_c;
  401. if (ctx->is_444 || ctx->profile == FF_PROFILE_DNXHR_HQX) {
  402. ctx->m.dct_quantize = dnxhd_10bit_dct_quantize_444;
  403. ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
  404. ctx->block_width_l2 = 4;
  405. } else if (ctx->bit_depth == 10) {
  406. ctx->m.dct_quantize = dnxhd_10bit_dct_quantize;
  407. ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
  408. ctx->block_width_l2 = 4;
  409. } else {
  410. ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym;
  411. ctx->block_width_l2 = 3;
  412. }
  413. if (ARCH_X86)
  414. ff_dnxhdenc_init_x86(ctx);
  415. ctx->m.mb_height = (avctx->height + 15) / 16;
  416. ctx->m.mb_width = (avctx->width + 15) / 16;
  417. if (avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) {
  418. ctx->interlaced = 1;
  419. ctx->m.mb_height /= 2;
  420. }
  421. if (ctx->interlaced && ctx->profile != FF_PROFILE_DNXHD) {
  422. av_log(avctx, AV_LOG_ERROR,
  423. "Interlaced encoding is not supported for DNxHR profiles.\n");
  424. return AVERROR(EINVAL);
  425. }
  426. ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
  427. if (ctx->cid_table->frame_size == DNXHD_VARIABLE) {
  428. ctx->frame_size = avpriv_dnxhd_get_hr_frame_size(ctx->cid,
  429. avctx->width, avctx->height);
  430. av_assert0(ctx->frame_size >= 0);
  431. ctx->coding_unit_size = ctx->frame_size;
  432. } else {
  433. ctx->frame_size = ctx->cid_table->frame_size;
  434. ctx->coding_unit_size = ctx->cid_table->coding_unit_size;
  435. }
  436. if (ctx->m.mb_height > 68)
  437. ctx->data_offset = 0x170 + (ctx->m.mb_height << 2);
  438. else
  439. ctx->data_offset = 0x280;
  440. // XXX tune lbias/cbias
  441. if ((ret = dnxhd_init_qmat(ctx, ctx->intra_quant_bias, 0)) < 0)
  442. return ret;
  443. /* Avid Nitris hardware decoder requires a minimum amount of padding
  444. * in the coding unit payload */
  445. if (ctx->nitris_compat)
  446. ctx->min_padding = 1600;
  447. if ((ret = dnxhd_init_vlc(ctx)) < 0)
  448. return ret;
  449. if ((ret = dnxhd_init_rc(ctx)) < 0)
  450. return ret;
  451. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size,
  452. ctx->m.mb_height * sizeof(uint32_t), fail);
  453. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_offs,
  454. ctx->m.mb_height * sizeof(uint32_t), fail);
  455. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits,
  456. ctx->m.mb_num * sizeof(uint16_t), fail);
  457. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale,
  458. ctx->m.mb_num * sizeof(uint8_t), fail);
  459. #if FF_API_CODED_FRAME
  460. FF_DISABLE_DEPRECATION_WARNINGS
  461. avctx->coded_frame->key_frame = 1;
  462. avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
  463. FF_ENABLE_DEPRECATION_WARNINGS
  464. #endif
  465. if (avctx->active_thread_type == FF_THREAD_SLICE) {
  466. if (avctx->thread_count > MAX_THREADS) {
  467. av_log(avctx, AV_LOG_ERROR, "too many threads\n");
  468. return AVERROR(EINVAL);
  469. }
  470. }
  471. if (avctx->qmax <= 1) {
  472. av_log(avctx, AV_LOG_ERROR, "qmax must be at least 2\n");
  473. return AVERROR(EINVAL);
  474. }
  475. ctx->thread[0] = ctx;
  476. if (avctx->active_thread_type == FF_THREAD_SLICE) {
  477. for (i = 1; i < avctx->thread_count; i++) {
  478. ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext));
  479. if (!ctx->thread[i])
  480. goto fail;
  481. memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
  482. }
  483. }
  484. return 0;
  485. fail: // for FF_ALLOCZ_OR_GOTO
  486. return AVERROR(ENOMEM);
  487. }
  488. static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
  489. {
  490. DNXHDEncContext *ctx = avctx->priv_data;
  491. memset(buf, 0, ctx->data_offset);
  492. // * write prefix */
  493. AV_WB16(buf + 0x02, ctx->data_offset);
  494. if (ctx->cid >= 1270 && ctx->cid <= 1274)
  495. buf[4] = 0x03;
  496. else
  497. buf[4] = 0x01;
  498. buf[5] = ctx->interlaced ? ctx->cur_field + 2 : 0x01;
  499. buf[6] = 0x80; // crc flag off
  500. buf[7] = 0xa0; // reserved
  501. AV_WB16(buf + 0x18, avctx->height >> ctx->interlaced); // ALPF
  502. AV_WB16(buf + 0x1a, avctx->width); // SPL
  503. AV_WB16(buf + 0x1d, avctx->height >> ctx->interlaced); // NAL
  504. buf[0x21] = ctx->bit_depth == 10 ? 0x58 : 0x38;
  505. buf[0x22] = 0x88 + (ctx->interlaced << 2);
  506. AV_WB32(buf + 0x28, ctx->cid); // CID
  507. buf[0x2c] = (!ctx->interlaced << 7) | (ctx->is_444 << 6) | (avctx->pix_fmt == AV_PIX_FMT_YUV444P10);
  508. buf[0x5f] = 0x01; // UDL
  509. buf[0x167] = 0x02; // reserved
  510. AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
  511. AV_WB16(buf + 0x16c, ctx->m.mb_height); // Ns
  512. buf[0x16f] = 0x10; // reserved
  513. ctx->msip = buf + 0x170;
  514. return 0;
  515. }
  516. static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
  517. {
  518. int nbits;
  519. if (diff < 0) {
  520. nbits = av_log2_16bit(-2 * diff);
  521. diff--;
  522. } else {
  523. nbits = av_log2_16bit(2 * diff);
  524. }
  525. put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
  526. (ctx->cid_table->dc_codes[nbits] << nbits) +
  527. av_mod_uintp2(diff, nbits));
  528. }
  529. static av_always_inline
  530. void dnxhd_encode_block(DNXHDEncContext *ctx, int16_t *block,
  531. int last_index, int n)
  532. {
  533. int last_non_zero = 0;
  534. int slevel, i, j;
  535. dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
  536. ctx->m.last_dc[n] = block[0];
  537. for (i = 1; i <= last_index; i++) {
  538. j = ctx->m.intra_scantable.permutated[i];
  539. slevel = block[j];
  540. if (slevel) {
  541. int run_level = i - last_non_zero - 1;
  542. int rlevel = slevel * (1 << 1) | !!run_level;
  543. put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
  544. if (run_level)
  545. put_bits(&ctx->m.pb, ctx->run_bits[run_level],
  546. ctx->run_codes[run_level]);
  547. last_non_zero = i;
  548. }
  549. }
  550. put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
  551. }
  552. static av_always_inline
  553. void dnxhd_unquantize_c(DNXHDEncContext *ctx, int16_t *block, int n,
  554. int qscale, int last_index)
  555. {
  556. const uint8_t *weight_matrix;
  557. int level;
  558. int i;
  559. if (ctx->is_444) {
  560. weight_matrix = ((n % 6) < 2) ? ctx->cid_table->luma_weight
  561. : ctx->cid_table->chroma_weight;
  562. } else {
  563. weight_matrix = (n & 2) ? ctx->cid_table->chroma_weight
  564. : ctx->cid_table->luma_weight;
  565. }
  566. for (i = 1; i <= last_index; i++) {
  567. int j = ctx->m.intra_scantable.permutated[i];
  568. level = block[j];
  569. if (level) {
  570. if (level < 0) {
  571. level = (1 - 2 * level) * qscale * weight_matrix[i];
  572. if (ctx->bit_depth == 10) {
  573. if (weight_matrix[i] != 8)
  574. level += 8;
  575. level >>= 4;
  576. } else {
  577. if (weight_matrix[i] != 32)
  578. level += 32;
  579. level >>= 6;
  580. }
  581. level = -level;
  582. } else {
  583. level = (2 * level + 1) * qscale * weight_matrix[i];
  584. if (ctx->bit_depth == 10) {
  585. if (weight_matrix[i] != 8)
  586. level += 8;
  587. level >>= 4;
  588. } else {
  589. if (weight_matrix[i] != 32)
  590. level += 32;
  591. level >>= 6;
  592. }
  593. }
  594. block[j] = level;
  595. }
  596. }
  597. }
  598. static av_always_inline int dnxhd_ssd_block(int16_t *qblock, int16_t *block)
  599. {
  600. int score = 0;
  601. int i;
  602. for (i = 0; i < 64; i++)
  603. score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
  604. return score;
  605. }
  606. static av_always_inline
  607. int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *block, int last_index)
  608. {
  609. int last_non_zero = 0;
  610. int bits = 0;
  611. int i, j, level;
  612. for (i = 1; i <= last_index; i++) {
  613. j = ctx->m.intra_scantable.permutated[i];
  614. level = block[j];
  615. if (level) {
  616. int run_level = i - last_non_zero - 1;
  617. bits += ctx->vlc_bits[level * (1 << 1) |
  618. !!run_level] + ctx->run_bits[run_level];
  619. last_non_zero = i;
  620. }
  621. }
  622. return bits;
  623. }
  624. static av_always_inline
  625. void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
  626. {
  627. const int bs = ctx->block_width_l2;
  628. const int bw = 1 << bs;
  629. int dct_y_offset = ctx->dct_y_offset;
  630. int dct_uv_offset = ctx->dct_uv_offset;
  631. int linesize = ctx->m.linesize;
  632. int uvlinesize = ctx->m.uvlinesize;
  633. const uint8_t *ptr_y = ctx->thread[0]->src[0] +
  634. ((mb_y << 4) * ctx->m.linesize) + (mb_x << bs + 1);
  635. const uint8_t *ptr_u = ctx->thread[0]->src[1] +
  636. ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs + ctx->is_444);
  637. const uint8_t *ptr_v = ctx->thread[0]->src[2] +
  638. ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs + ctx->is_444);
  639. PixblockDSPContext *pdsp = &ctx->m.pdsp;
  640. VideoDSPContext *vdsp = &ctx->m.vdsp;
  641. if (ctx->bit_depth != 10 && vdsp->emulated_edge_mc && ((mb_x << 4) + 16 > ctx->m.avctx->width ||
  642. (mb_y << 4) + 16 > ctx->m.avctx->height)) {
  643. int y_w = ctx->m.avctx->width - (mb_x << 4);
  644. int y_h = ctx->m.avctx->height - (mb_y << 4);
  645. int uv_w = (y_w + 1) / 2;
  646. int uv_h = y_h;
  647. linesize = 16;
  648. uvlinesize = 8;
  649. vdsp->emulated_edge_mc(&ctx->edge_buf_y[0], ptr_y,
  650. linesize, ctx->m.linesize,
  651. linesize, 16,
  652. 0, 0, y_w, y_h);
  653. vdsp->emulated_edge_mc(&ctx->edge_buf_uv[0][0], ptr_u,
  654. uvlinesize, ctx->m.uvlinesize,
  655. uvlinesize, 16,
  656. 0, 0, uv_w, uv_h);
  657. vdsp->emulated_edge_mc(&ctx->edge_buf_uv[1][0], ptr_v,
  658. uvlinesize, ctx->m.uvlinesize,
  659. uvlinesize, 16,
  660. 0, 0, uv_w, uv_h);
  661. dct_y_offset = bw * linesize;
  662. dct_uv_offset = bw * uvlinesize;
  663. ptr_y = &ctx->edge_buf_y[0];
  664. ptr_u = &ctx->edge_buf_uv[0][0];
  665. ptr_v = &ctx->edge_buf_uv[1][0];
  666. } else if (ctx->bit_depth == 10 && vdsp->emulated_edge_mc && ((mb_x << 4) + 16 > ctx->m.avctx->width ||
  667. (mb_y << 4) + 16 > ctx->m.avctx->height)) {
  668. int y_w = ctx->m.avctx->width - (mb_x << 4);
  669. int y_h = ctx->m.avctx->height - (mb_y << 4);
  670. int uv_w = ctx->is_444 ? y_w : (y_w + 1) / 2;
  671. int uv_h = y_h;
  672. linesize = 32;
  673. uvlinesize = 16 + 16 * ctx->is_444;
  674. vdsp->emulated_edge_mc(&ctx->edge_buf_y[0], ptr_y,
  675. linesize, ctx->m.linesize,
  676. linesize / 2, 16,
  677. 0, 0, y_w, y_h);
  678. vdsp->emulated_edge_mc(&ctx->edge_buf_uv[0][0], ptr_u,
  679. uvlinesize, ctx->m.uvlinesize,
  680. uvlinesize / 2, 16,
  681. 0, 0, uv_w, uv_h);
  682. vdsp->emulated_edge_mc(&ctx->edge_buf_uv[1][0], ptr_v,
  683. uvlinesize, ctx->m.uvlinesize,
  684. uvlinesize / 2, 16,
  685. 0, 0, uv_w, uv_h);
  686. dct_y_offset = bw * linesize / 2;
  687. dct_uv_offset = bw * uvlinesize / 2;
  688. ptr_y = &ctx->edge_buf_y[0];
  689. ptr_u = &ctx->edge_buf_uv[0][0];
  690. ptr_v = &ctx->edge_buf_uv[1][0];
  691. }
  692. if (!ctx->is_444) {
  693. pdsp->get_pixels(ctx->blocks[0], ptr_y, linesize);
  694. pdsp->get_pixels(ctx->blocks[1], ptr_y + bw, linesize);
  695. pdsp->get_pixels(ctx->blocks[2], ptr_u, uvlinesize);
  696. pdsp->get_pixels(ctx->blocks[3], ptr_v, uvlinesize);
  697. if (mb_y + 1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
  698. if (ctx->interlaced) {
  699. ctx->get_pixels_8x4_sym(ctx->blocks[4],
  700. ptr_y + dct_y_offset,
  701. linesize);
  702. ctx->get_pixels_8x4_sym(ctx->blocks[5],
  703. ptr_y + dct_y_offset + bw,
  704. linesize);
  705. ctx->get_pixels_8x4_sym(ctx->blocks[6],
  706. ptr_u + dct_uv_offset,
  707. uvlinesize);
  708. ctx->get_pixels_8x4_sym(ctx->blocks[7],
  709. ptr_v + dct_uv_offset,
  710. uvlinesize);
  711. } else {
  712. ctx->bdsp.clear_block(ctx->blocks[4]);
  713. ctx->bdsp.clear_block(ctx->blocks[5]);
  714. ctx->bdsp.clear_block(ctx->blocks[6]);
  715. ctx->bdsp.clear_block(ctx->blocks[7]);
  716. }
  717. } else {
  718. pdsp->get_pixels(ctx->blocks[4],
  719. ptr_y + dct_y_offset, linesize);
  720. pdsp->get_pixels(ctx->blocks[5],
  721. ptr_y + dct_y_offset + bw, linesize);
  722. pdsp->get_pixels(ctx->blocks[6],
  723. ptr_u + dct_uv_offset, uvlinesize);
  724. pdsp->get_pixels(ctx->blocks[7],
  725. ptr_v + dct_uv_offset, uvlinesize);
  726. }
  727. } else {
  728. pdsp->get_pixels(ctx->blocks[0], ptr_y, linesize);
  729. pdsp->get_pixels(ctx->blocks[1], ptr_y + bw, linesize);
  730. pdsp->get_pixels(ctx->blocks[6], ptr_y + dct_y_offset, linesize);
  731. pdsp->get_pixels(ctx->blocks[7], ptr_y + dct_y_offset + bw, linesize);
  732. pdsp->get_pixels(ctx->blocks[2], ptr_u, uvlinesize);
  733. pdsp->get_pixels(ctx->blocks[3], ptr_u + bw, uvlinesize);
  734. pdsp->get_pixels(ctx->blocks[8], ptr_u + dct_uv_offset, uvlinesize);
  735. pdsp->get_pixels(ctx->blocks[9], ptr_u + dct_uv_offset + bw, uvlinesize);
  736. pdsp->get_pixels(ctx->blocks[4], ptr_v, uvlinesize);
  737. pdsp->get_pixels(ctx->blocks[5], ptr_v + bw, uvlinesize);
  738. pdsp->get_pixels(ctx->blocks[10], ptr_v + dct_uv_offset, uvlinesize);
  739. pdsp->get_pixels(ctx->blocks[11], ptr_v + dct_uv_offset + bw, uvlinesize);
  740. }
  741. }
  742. static av_always_inline
  743. int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
  744. {
  745. int x;
  746. if (ctx->is_444) {
  747. x = (i >> 1) % 3;
  748. } else {
  749. const static uint8_t component[8]={0,0,1,2,0,0,1,2};
  750. x = component[i];
  751. }
  752. return x;
  753. }
  754. static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg,
  755. int jobnr, int threadnr)
  756. {
  757. DNXHDEncContext *ctx = avctx->priv_data;
  758. int mb_y = jobnr, mb_x;
  759. int qscale = ctx->qscale;
  760. LOCAL_ALIGNED_16(int16_t, block, [64]);
  761. ctx = ctx->thread[threadnr];
  762. ctx->m.last_dc[0] =
  763. ctx->m.last_dc[1] =
  764. ctx->m.last_dc[2] = 1 << (ctx->bit_depth + 2);
  765. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  766. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  767. int ssd = 0;
  768. int ac_bits = 0;
  769. int dc_bits = 0;
  770. int i;
  771. dnxhd_get_blocks(ctx, mb_x, mb_y);
  772. for (i = 0; i < 8 + 4 * ctx->is_444; i++) {
  773. int16_t *src_block = ctx->blocks[i];
  774. int overflow, nbits, diff, last_index;
  775. int n = dnxhd_switch_matrix(ctx, i);
  776. memcpy(block, src_block, 64 * sizeof(*block));
  777. last_index = ctx->m.dct_quantize(&ctx->m, block,
  778. ctx->is_444 ? 4 * (n > 0): 4 & (2*i),
  779. qscale, &overflow);
  780. ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
  781. diff = block[0] - ctx->m.last_dc[n];
  782. if (diff < 0)
  783. nbits = av_log2_16bit(-2 * diff);
  784. else
  785. nbits = av_log2_16bit(2 * diff);
  786. av_assert1(nbits < ctx->bit_depth + 4);
  787. dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
  788. ctx->m.last_dc[n] = block[0];
  789. if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
  790. dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
  791. ctx->m.idsp.idct(block);
  792. ssd += dnxhd_ssd_block(block, src_block);
  793. }
  794. }
  795. ctx->mb_rc[(qscale * ctx->m.mb_num) + mb].ssd = ssd;
  796. ctx->mb_rc[(qscale * ctx->m.mb_num) + mb].bits = ac_bits + dc_bits + 12 +
  797. (1 + ctx->is_444) * 8 * ctx->vlc_bits[0];
  798. }
  799. return 0;
  800. }
  801. static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg,
  802. int jobnr, int threadnr)
  803. {
  804. DNXHDEncContext *ctx = avctx->priv_data;
  805. int mb_y = jobnr, mb_x;
  806. ctx = ctx->thread[threadnr];
  807. init_put_bits(&ctx->m.pb, (uint8_t *)arg + ctx->data_offset + ctx->slice_offs[jobnr],
  808. ctx->slice_size[jobnr]);
  809. ctx->m.last_dc[0] =
  810. ctx->m.last_dc[1] =
  811. ctx->m.last_dc[2] = 1 << (ctx->bit_depth + 2);
  812. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  813. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  814. int qscale = ctx->mb_qscale[mb];
  815. int i;
  816. put_bits(&ctx->m.pb, 11, qscale);
  817. put_bits(&ctx->m.pb, 1, avctx->pix_fmt == AV_PIX_FMT_YUV444P10);
  818. dnxhd_get_blocks(ctx, mb_x, mb_y);
  819. for (i = 0; i < 8 + 4 * ctx->is_444; i++) {
  820. int16_t *block = ctx->blocks[i];
  821. int overflow, n = dnxhd_switch_matrix(ctx, i);
  822. int last_index = ctx->m.dct_quantize(&ctx->m, block,
  823. ctx->is_444 ? (((i >> 1) % 3) < 1 ? 0 : 4): 4 & (2*i),
  824. qscale, &overflow);
  825. dnxhd_encode_block(ctx, block, last_index, n);
  826. }
  827. }
  828. if (put_bits_count(&ctx->m.pb) & 31)
  829. put_bits(&ctx->m.pb, 32 - (put_bits_count(&ctx->m.pb) & 31), 0);
  830. flush_put_bits(&ctx->m.pb);
  831. return 0;
  832. }
  833. static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
  834. {
  835. int mb_y, mb_x;
  836. int offset = 0;
  837. for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
  838. int thread_size;
  839. ctx->slice_offs[mb_y] = offset;
  840. ctx->slice_size[mb_y] = 0;
  841. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  842. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  843. ctx->slice_size[mb_y] += ctx->mb_bits[mb];
  844. }
  845. ctx->slice_size[mb_y] = (ctx->slice_size[mb_y] + 31) & ~31;
  846. ctx->slice_size[mb_y] >>= 3;
  847. thread_size = ctx->slice_size[mb_y];
  848. offset += thread_size;
  849. }
  850. }
  851. static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg,
  852. int jobnr, int threadnr)
  853. {
  854. DNXHDEncContext *ctx = avctx->priv_data;
  855. int mb_y = jobnr, mb_x, x, y;
  856. int partial_last_row = (mb_y == ctx->m.mb_height - 1) &&
  857. ((avctx->height >> ctx->interlaced) & 0xF);
  858. ctx = ctx->thread[threadnr];
  859. if (ctx->bit_depth == 8) {
  860. uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize);
  861. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) {
  862. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  863. int sum;
  864. int varc;
  865. if (!partial_last_row && mb_x * 16 <= avctx->width - 16 && (avctx->width % 16) == 0) {
  866. sum = ctx->m.mpvencdsp.pix_sum(pix, ctx->m.linesize);
  867. varc = ctx->m.mpvencdsp.pix_norm1(pix, ctx->m.linesize);
  868. } else {
  869. int bw = FFMIN(avctx->width - 16 * mb_x, 16);
  870. int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
  871. sum = varc = 0;
  872. for (y = 0; y < bh; y++) {
  873. for (x = 0; x < bw; x++) {
  874. uint8_t val = pix[x + y * ctx->m.linesize];
  875. sum += val;
  876. varc += val * val;
  877. }
  878. }
  879. }
  880. varc = (varc - (((unsigned) sum * sum) >> 8) + 128) >> 8;
  881. ctx->mb_cmp[mb].value = varc;
  882. ctx->mb_cmp[mb].mb = mb;
  883. }
  884. } else { // 10-bit
  885. const int linesize = ctx->m.linesize >> 1;
  886. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) {
  887. uint16_t *pix = (uint16_t *)ctx->thread[0]->src[0] +
  888. ((mb_y << 4) * linesize) + (mb_x << 4);
  889. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  890. int sum = 0;
  891. int sqsum = 0;
  892. int bw = FFMIN(avctx->width - 16 * mb_x, 16);
  893. int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
  894. int mean, sqmean;
  895. int i, j;
  896. // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
  897. for (i = 0; i < bh; ++i) {
  898. for (j = 0; j < bw; ++j) {
  899. // Turn 16-bit pixels into 10-bit ones.
  900. const int sample = (unsigned) pix[j] >> 6;
  901. sum += sample;
  902. sqsum += sample * sample;
  903. // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
  904. }
  905. pix += linesize;
  906. }
  907. mean = sum >> 8; // 16*16 == 2^8
  908. sqmean = sqsum >> 8;
  909. ctx->mb_cmp[mb].value = sqmean - mean * mean;
  910. ctx->mb_cmp[mb].mb = mb;
  911. }
  912. }
  913. return 0;
  914. }
  915. static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
  916. {
  917. int lambda, up_step, down_step;
  918. int last_lower = INT_MAX, last_higher = 0;
  919. int x, y, q;
  920. for (q = 1; q < avctx->qmax; q++) {
  921. ctx->qscale = q;
  922. avctx->execute2(avctx, dnxhd_calc_bits_thread,
  923. NULL, NULL, ctx->m.mb_height);
  924. }
  925. up_step = down_step = 2 << LAMBDA_FRAC_BITS;
  926. lambda = ctx->lambda;
  927. for (;;) {
  928. int bits = 0;
  929. int end = 0;
  930. if (lambda == last_higher) {
  931. lambda++;
  932. end = 1; // need to set final qscales/bits
  933. }
  934. for (y = 0; y < ctx->m.mb_height; y++) {
  935. for (x = 0; x < ctx->m.mb_width; x++) {
  936. unsigned min = UINT_MAX;
  937. int qscale = 1;
  938. int mb = y * ctx->m.mb_width + x;
  939. int rc = 0;
  940. for (q = 1; q < avctx->qmax; q++) {
  941. int i = (q*ctx->m.mb_num) + mb;
  942. unsigned score = ctx->mb_rc[i].bits * lambda +
  943. ((unsigned) ctx->mb_rc[i].ssd << LAMBDA_FRAC_BITS);
  944. if (score < min) {
  945. min = score;
  946. qscale = q;
  947. rc = i;
  948. }
  949. }
  950. bits += ctx->mb_rc[rc].bits;
  951. ctx->mb_qscale[mb] = qscale;
  952. ctx->mb_bits[mb] = ctx->mb_rc[rc].bits;
  953. }
  954. bits = (bits + 31) & ~31; // padding
  955. if (bits > ctx->frame_bits)
  956. break;
  957. }
  958. if (end) {
  959. if (bits > ctx->frame_bits)
  960. return AVERROR(EINVAL);
  961. break;
  962. }
  963. if (bits < ctx->frame_bits) {
  964. last_lower = FFMIN(lambda, last_lower);
  965. if (last_higher != 0)
  966. lambda = (lambda+last_higher)>>1;
  967. else
  968. lambda -= down_step;
  969. down_step = FFMIN((int64_t)down_step*5, INT_MAX);
  970. up_step = 1<<LAMBDA_FRAC_BITS;
  971. lambda = FFMAX(1, lambda);
  972. if (lambda == last_lower)
  973. break;
  974. } else {
  975. last_higher = FFMAX(lambda, last_higher);
  976. if (last_lower != INT_MAX)
  977. lambda = (lambda+last_lower)>>1;
  978. else if ((int64_t)lambda + up_step > INT_MAX)
  979. return AVERROR(EINVAL);
  980. else
  981. lambda += up_step;
  982. up_step = FFMIN((int64_t)up_step*5, INT_MAX);
  983. down_step = 1<<LAMBDA_FRAC_BITS;
  984. }
  985. }
  986. ctx->lambda = lambda;
  987. return 0;
  988. }
  989. static int dnxhd_find_qscale(DNXHDEncContext *ctx)
  990. {
  991. int bits = 0;
  992. int up_step = 1;
  993. int down_step = 1;
  994. int last_higher = 0;
  995. int last_lower = INT_MAX;
  996. int qscale;
  997. int x, y;
  998. qscale = ctx->qscale;
  999. for (;;) {
  1000. bits = 0;
  1001. ctx->qscale = qscale;
  1002. // XXX avoid recalculating bits
  1003. ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread,
  1004. NULL, NULL, ctx->m.mb_height);
  1005. for (y = 0; y < ctx->m.mb_height; y++) {
  1006. for (x = 0; x < ctx->m.mb_width; x++)
  1007. bits += ctx->mb_rc[(qscale*ctx->m.mb_num) + (y*ctx->m.mb_width+x)].bits;
  1008. bits = (bits+31)&~31; // padding
  1009. if (bits > ctx->frame_bits)
  1010. break;
  1011. }
  1012. if (bits < ctx->frame_bits) {
  1013. if (qscale == 1)
  1014. return 1;
  1015. if (last_higher == qscale - 1) {
  1016. qscale = last_higher;
  1017. break;
  1018. }
  1019. last_lower = FFMIN(qscale, last_lower);
  1020. if (last_higher != 0)
  1021. qscale = (qscale + last_higher) >> 1;
  1022. else
  1023. qscale -= down_step++;
  1024. if (qscale < 1)
  1025. qscale = 1;
  1026. up_step = 1;
  1027. } else {
  1028. if (last_lower == qscale + 1)
  1029. break;
  1030. last_higher = FFMAX(qscale, last_higher);
  1031. if (last_lower != INT_MAX)
  1032. qscale = (qscale + last_lower) >> 1;
  1033. else
  1034. qscale += up_step++;
  1035. down_step = 1;
  1036. if (qscale >= ctx->m.avctx->qmax)
  1037. return AVERROR(EINVAL);
  1038. }
  1039. }
  1040. ctx->qscale = qscale;
  1041. return 0;
  1042. }
  1043. #define BUCKET_BITS 8
  1044. #define RADIX_PASSES 4
  1045. #define NBUCKETS (1 << BUCKET_BITS)
  1046. static inline int get_bucket(int value, int shift)
  1047. {
  1048. value >>= shift;
  1049. value &= NBUCKETS - 1;
  1050. return NBUCKETS - 1 - value;
  1051. }
  1052. static void radix_count(const RCCMPEntry *data, int size,
  1053. int buckets[RADIX_PASSES][NBUCKETS])
  1054. {
  1055. int i, j;
  1056. memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
  1057. for (i = 0; i < size; i++) {
  1058. int v = data[i].value;
  1059. for (j = 0; j < RADIX_PASSES; j++) {
  1060. buckets[j][get_bucket(v, 0)]++;
  1061. v >>= BUCKET_BITS;
  1062. }
  1063. av_assert1(!v);
  1064. }
  1065. for (j = 0; j < RADIX_PASSES; j++) {
  1066. int offset = size;
  1067. for (i = NBUCKETS - 1; i >= 0; i--)
  1068. buckets[j][i] = offset -= buckets[j][i];
  1069. av_assert1(!buckets[j][0]);
  1070. }
  1071. }
  1072. static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data,
  1073. int size, int buckets[NBUCKETS], int pass)
  1074. {
  1075. int shift = pass * BUCKET_BITS;
  1076. int i;
  1077. for (i = 0; i < size; i++) {
  1078. int v = get_bucket(data[i].value, shift);
  1079. int pos = buckets[v]++;
  1080. dst[pos] = data[i];
  1081. }
  1082. }
  1083. static void radix_sort(RCCMPEntry *data, RCCMPEntry *tmp, int size)
  1084. {
  1085. int buckets[RADIX_PASSES][NBUCKETS];
  1086. radix_count(data, size, buckets);
  1087. radix_sort_pass(tmp, data, size, buckets[0], 0);
  1088. radix_sort_pass(data, tmp, size, buckets[1], 1);
  1089. if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
  1090. radix_sort_pass(tmp, data, size, buckets[2], 2);
  1091. radix_sort_pass(data, tmp, size, buckets[3], 3);
  1092. }
  1093. }
  1094. static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
  1095. {
  1096. int max_bits = 0;
  1097. int ret, x, y;
  1098. if ((ret = dnxhd_find_qscale(ctx)) < 0)
  1099. return ret;
  1100. for (y = 0; y < ctx->m.mb_height; y++) {
  1101. for (x = 0; x < ctx->m.mb_width; x++) {
  1102. int mb = y * ctx->m.mb_width + x;
  1103. int rc = (ctx->qscale * ctx->m.mb_num ) + mb;
  1104. int delta_bits;
  1105. ctx->mb_qscale[mb] = ctx->qscale;
  1106. ctx->mb_bits[mb] = ctx->mb_rc[rc].bits;
  1107. max_bits += ctx->mb_rc[rc].bits;
  1108. if (!RC_VARIANCE) {
  1109. delta_bits = ctx->mb_rc[rc].bits -
  1110. ctx->mb_rc[rc + ctx->m.mb_num].bits;
  1111. ctx->mb_cmp[mb].mb = mb;
  1112. ctx->mb_cmp[mb].value =
  1113. delta_bits ? ((ctx->mb_rc[rc].ssd -
  1114. ctx->mb_rc[rc + ctx->m.mb_num].ssd) * 100) /
  1115. delta_bits
  1116. : INT_MIN; // avoid increasing qscale
  1117. }
  1118. }
  1119. max_bits += 31; // worst padding
  1120. }
  1121. if (!ret) {
  1122. if (RC_VARIANCE)
  1123. avctx->execute2(avctx, dnxhd_mb_var_thread,
  1124. NULL, NULL, ctx->m.mb_height);
  1125. radix_sort(ctx->mb_cmp, ctx->mb_cmp_tmp, ctx->m.mb_num);
  1126. for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
  1127. int mb = ctx->mb_cmp[x].mb;
  1128. int rc = (ctx->qscale * ctx->m.mb_num ) + mb;
  1129. max_bits -= ctx->mb_rc[rc].bits -
  1130. ctx->mb_rc[rc + ctx->m.mb_num].bits;
  1131. ctx->mb_qscale[mb] = ctx->qscale + 1;
  1132. ctx->mb_bits[mb] = ctx->mb_rc[rc + ctx->m.mb_num].bits;
  1133. }
  1134. }
  1135. return 0;
  1136. }
  1137. static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
  1138. {
  1139. int i;
  1140. for (i = 0; i < ctx->m.avctx->thread_count; i++) {
  1141. ctx->thread[i]->m.linesize = frame->linesize[0] << ctx->interlaced;
  1142. ctx->thread[i]->m.uvlinesize = frame->linesize[1] << ctx->interlaced;
  1143. ctx->thread[i]->dct_y_offset = ctx->m.linesize *8;
  1144. ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
  1145. }
  1146. #if FF_API_CODED_FRAME
  1147. FF_DISABLE_DEPRECATION_WARNINGS
  1148. ctx->m.avctx->coded_frame->interlaced_frame = frame->interlaced_frame;
  1149. FF_ENABLE_DEPRECATION_WARNINGS
  1150. #endif
  1151. ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
  1152. }
  1153. static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt,
  1154. const AVFrame *frame, int *got_packet)
  1155. {
  1156. DNXHDEncContext *ctx = avctx->priv_data;
  1157. int first_field = 1;
  1158. int offset, i, ret;
  1159. uint8_t *buf;
  1160. if ((ret = ff_alloc_packet2(avctx, pkt, ctx->frame_size, 0)) < 0)
  1161. return ret;
  1162. buf = pkt->data;
  1163. dnxhd_load_picture(ctx, frame);
  1164. encode_coding_unit:
  1165. for (i = 0; i < 3; i++) {
  1166. ctx->src[i] = frame->data[i];
  1167. if (ctx->interlaced && ctx->cur_field)
  1168. ctx->src[i] += frame->linesize[i];
  1169. }
  1170. dnxhd_write_header(avctx, buf);
  1171. if (avctx->mb_decision == FF_MB_DECISION_RD)
  1172. ret = dnxhd_encode_rdo(avctx, ctx);
  1173. else
  1174. ret = dnxhd_encode_fast(avctx, ctx);
  1175. if (ret < 0) {
  1176. av_log(avctx, AV_LOG_ERROR,
  1177. "picture could not fit ratecontrol constraints, increase qmax\n");
  1178. return ret;
  1179. }
  1180. dnxhd_setup_threads_slices(ctx);
  1181. offset = 0;
  1182. for (i = 0; i < ctx->m.mb_height; i++) {
  1183. AV_WB32(ctx->msip + i * 4, offset);
  1184. offset += ctx->slice_size[i];
  1185. av_assert1(!(ctx->slice_size[i] & 3));
  1186. }
  1187. avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
  1188. av_assert1(ctx->data_offset + offset + 4 <= ctx->coding_unit_size);
  1189. memset(buf + ctx->data_offset + offset, 0,
  1190. ctx->coding_unit_size - 4 - offset - ctx->data_offset);
  1191. AV_WB32(buf + ctx->coding_unit_size - 4, 0x600DC0DE); // EOF
  1192. if (ctx->interlaced && first_field) {
  1193. first_field = 0;
  1194. ctx->cur_field ^= 1;
  1195. buf += ctx->coding_unit_size;
  1196. goto encode_coding_unit;
  1197. }
  1198. #if FF_API_CODED_FRAME
  1199. FF_DISABLE_DEPRECATION_WARNINGS
  1200. avctx->coded_frame->quality = ctx->qscale * FF_QP2LAMBDA;
  1201. FF_ENABLE_DEPRECATION_WARNINGS
  1202. #endif
  1203. ff_side_data_set_encoder_stats(pkt, ctx->qscale * FF_QP2LAMBDA, NULL, 0, AV_PICTURE_TYPE_I);
  1204. pkt->flags |= AV_PKT_FLAG_KEY;
  1205. *got_packet = 1;
  1206. return 0;
  1207. }
  1208. static av_cold int dnxhd_encode_end(AVCodecContext *avctx)
  1209. {
  1210. DNXHDEncContext *ctx = avctx->priv_data;
  1211. int i;
  1212. av_freep(&ctx->orig_vlc_codes);
  1213. av_freep(&ctx->orig_vlc_bits);
  1214. av_freep(&ctx->run_codes);
  1215. av_freep(&ctx->run_bits);
  1216. av_freep(&ctx->mb_bits);
  1217. av_freep(&ctx->mb_qscale);
  1218. av_freep(&ctx->mb_rc);
  1219. av_freep(&ctx->mb_cmp);
  1220. av_freep(&ctx->mb_cmp_tmp);
  1221. av_freep(&ctx->slice_size);
  1222. av_freep(&ctx->slice_offs);
  1223. av_freep(&ctx->qmatrix_c);
  1224. av_freep(&ctx->qmatrix_l);
  1225. av_freep(&ctx->qmatrix_c16);
  1226. av_freep(&ctx->qmatrix_l16);
  1227. if (avctx->active_thread_type == FF_THREAD_SLICE) {
  1228. for (i = 1; i < avctx->thread_count; i++)
  1229. av_freep(&ctx->thread[i]);
  1230. }
  1231. return 0;
  1232. }
  1233. static const AVCodecDefault dnxhd_defaults[] = {
  1234. { "qmax", "1024" }, /* Maximum quantization scale factor allowed for VC-3 */
  1235. { NULL },
  1236. };
  1237. AVCodec ff_dnxhd_encoder = {
  1238. .name = "dnxhd",
  1239. .long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
  1240. .type = AVMEDIA_TYPE_VIDEO,
  1241. .id = AV_CODEC_ID_DNXHD,
  1242. .priv_data_size = sizeof(DNXHDEncContext),
  1243. .init = dnxhd_encode_init,
  1244. .encode2 = dnxhd_encode_picture,
  1245. .close = dnxhd_encode_end,
  1246. .capabilities = AV_CODEC_CAP_SLICE_THREADS | AV_CODEC_CAP_FRAME_THREADS | AV_CODEC_CAP_INTRA_ONLY,
  1247. .caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
  1248. .pix_fmts = (const enum AVPixelFormat[]) {
  1249. AV_PIX_FMT_YUV422P,
  1250. AV_PIX_FMT_YUV422P10,
  1251. AV_PIX_FMT_YUV444P10,
  1252. AV_PIX_FMT_GBRP10,
  1253. AV_PIX_FMT_NONE
  1254. },
  1255. .priv_class = &dnxhd_class,
  1256. .defaults = dnxhd_defaults,
  1257. .profiles = NULL_IF_CONFIG_SMALL(ff_dnxhd_profiles),
  1258. };