PageRenderTime 75ms CodeModel.GetById 33ms RepoModel.GetById 1ms app.codeStats 0ms

/drivers/infiniband/hw/qib/qib_verbs.c

https://bitbucket.org/cresqo/cm7-p500-kernel
C | 2248 lines | 1696 code | 252 blank | 300 comment | 312 complexity | 59acadc1c4839d9c62a4a194146151fd MD5 | raw file
Possible License(s): LGPL-2.0, AGPL-1.0, GPL-2.0
  1. /*
  2. * Copyright (c) 2006, 2007, 2008, 2009, 2010 QLogic Corporation.
  3. * All rights reserved.
  4. * Copyright (c) 2005, 2006 PathScale, Inc. All rights reserved.
  5. *
  6. * This software is available to you under a choice of one of two
  7. * licenses. You may choose to be licensed under the terms of the GNU
  8. * General Public License (GPL) Version 2, available from the file
  9. * COPYING in the main directory of this source tree, or the
  10. * OpenIB.org BSD license below:
  11. *
  12. * Redistribution and use in source and binary forms, with or
  13. * without modification, are permitted provided that the following
  14. * conditions are met:
  15. *
  16. * - Redistributions of source code must retain the above
  17. * copyright notice, this list of conditions and the following
  18. * disclaimer.
  19. *
  20. * - Redistributions in binary form must reproduce the above
  21. * copyright notice, this list of conditions and the following
  22. * disclaimer in the documentation and/or other materials
  23. * provided with the distribution.
  24. *
  25. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  26. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  27. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  28. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  29. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  30. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  31. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  32. * SOFTWARE.
  33. */
  34. #include <rdma/ib_mad.h>
  35. #include <rdma/ib_user_verbs.h>
  36. #include <linux/io.h>
  37. #include <linux/utsname.h>
  38. #include <linux/rculist.h>
  39. #include <linux/mm.h>
  40. #include "qib.h"
  41. #include "qib_common.h"
  42. static unsigned int ib_qib_qp_table_size = 251;
  43. module_param_named(qp_table_size, ib_qib_qp_table_size, uint, S_IRUGO);
  44. MODULE_PARM_DESC(qp_table_size, "QP table size");
  45. unsigned int ib_qib_lkey_table_size = 16;
  46. module_param_named(lkey_table_size, ib_qib_lkey_table_size, uint,
  47. S_IRUGO);
  48. MODULE_PARM_DESC(lkey_table_size,
  49. "LKEY table size in bits (2^n, 1 <= n <= 23)");
  50. static unsigned int ib_qib_max_pds = 0xFFFF;
  51. module_param_named(max_pds, ib_qib_max_pds, uint, S_IRUGO);
  52. MODULE_PARM_DESC(max_pds,
  53. "Maximum number of protection domains to support");
  54. static unsigned int ib_qib_max_ahs = 0xFFFF;
  55. module_param_named(max_ahs, ib_qib_max_ahs, uint, S_IRUGO);
  56. MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
  57. unsigned int ib_qib_max_cqes = 0x2FFFF;
  58. module_param_named(max_cqes, ib_qib_max_cqes, uint, S_IRUGO);
  59. MODULE_PARM_DESC(max_cqes,
  60. "Maximum number of completion queue entries to support");
  61. unsigned int ib_qib_max_cqs = 0x1FFFF;
  62. module_param_named(max_cqs, ib_qib_max_cqs, uint, S_IRUGO);
  63. MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
  64. unsigned int ib_qib_max_qp_wrs = 0x3FFF;
  65. module_param_named(max_qp_wrs, ib_qib_max_qp_wrs, uint, S_IRUGO);
  66. MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
  67. unsigned int ib_qib_max_qps = 16384;
  68. module_param_named(max_qps, ib_qib_max_qps, uint, S_IRUGO);
  69. MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
  70. unsigned int ib_qib_max_sges = 0x60;
  71. module_param_named(max_sges, ib_qib_max_sges, uint, S_IRUGO);
  72. MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
  73. unsigned int ib_qib_max_mcast_grps = 16384;
  74. module_param_named(max_mcast_grps, ib_qib_max_mcast_grps, uint, S_IRUGO);
  75. MODULE_PARM_DESC(max_mcast_grps,
  76. "Maximum number of multicast groups to support");
  77. unsigned int ib_qib_max_mcast_qp_attached = 16;
  78. module_param_named(max_mcast_qp_attached, ib_qib_max_mcast_qp_attached,
  79. uint, S_IRUGO);
  80. MODULE_PARM_DESC(max_mcast_qp_attached,
  81. "Maximum number of attached QPs to support");
  82. unsigned int ib_qib_max_srqs = 1024;
  83. module_param_named(max_srqs, ib_qib_max_srqs, uint, S_IRUGO);
  84. MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
  85. unsigned int ib_qib_max_srq_sges = 128;
  86. module_param_named(max_srq_sges, ib_qib_max_srq_sges, uint, S_IRUGO);
  87. MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
  88. unsigned int ib_qib_max_srq_wrs = 0x1FFFF;
  89. module_param_named(max_srq_wrs, ib_qib_max_srq_wrs, uint, S_IRUGO);
  90. MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
  91. static unsigned int ib_qib_disable_sma;
  92. module_param_named(disable_sma, ib_qib_disable_sma, uint, S_IWUSR | S_IRUGO);
  93. MODULE_PARM_DESC(disable_sma, "Disable the SMA");
  94. /*
  95. * Note that it is OK to post send work requests in the SQE and ERR
  96. * states; qib_do_send() will process them and generate error
  97. * completions as per IB 1.2 C10-96.
  98. */
  99. const int ib_qib_state_ops[IB_QPS_ERR + 1] = {
  100. [IB_QPS_RESET] = 0,
  101. [IB_QPS_INIT] = QIB_POST_RECV_OK,
  102. [IB_QPS_RTR] = QIB_POST_RECV_OK | QIB_PROCESS_RECV_OK,
  103. [IB_QPS_RTS] = QIB_POST_RECV_OK | QIB_PROCESS_RECV_OK |
  104. QIB_POST_SEND_OK | QIB_PROCESS_SEND_OK |
  105. QIB_PROCESS_NEXT_SEND_OK,
  106. [IB_QPS_SQD] = QIB_POST_RECV_OK | QIB_PROCESS_RECV_OK |
  107. QIB_POST_SEND_OK | QIB_PROCESS_SEND_OK,
  108. [IB_QPS_SQE] = QIB_POST_RECV_OK | QIB_PROCESS_RECV_OK |
  109. QIB_POST_SEND_OK | QIB_FLUSH_SEND,
  110. [IB_QPS_ERR] = QIB_POST_RECV_OK | QIB_FLUSH_RECV |
  111. QIB_POST_SEND_OK | QIB_FLUSH_SEND,
  112. };
  113. struct qib_ucontext {
  114. struct ib_ucontext ibucontext;
  115. };
  116. static inline struct qib_ucontext *to_iucontext(struct ib_ucontext
  117. *ibucontext)
  118. {
  119. return container_of(ibucontext, struct qib_ucontext, ibucontext);
  120. }
  121. /*
  122. * Translate ib_wr_opcode into ib_wc_opcode.
  123. */
  124. const enum ib_wc_opcode ib_qib_wc_opcode[] = {
  125. [IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE,
  126. [IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE,
  127. [IB_WR_SEND] = IB_WC_SEND,
  128. [IB_WR_SEND_WITH_IMM] = IB_WC_SEND,
  129. [IB_WR_RDMA_READ] = IB_WC_RDMA_READ,
  130. [IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP,
  131. [IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD
  132. };
  133. /*
  134. * System image GUID.
  135. */
  136. __be64 ib_qib_sys_image_guid;
  137. /**
  138. * qib_copy_sge - copy data to SGE memory
  139. * @ss: the SGE state
  140. * @data: the data to copy
  141. * @length: the length of the data
  142. */
  143. void qib_copy_sge(struct qib_sge_state *ss, void *data, u32 length, int release)
  144. {
  145. struct qib_sge *sge = &ss->sge;
  146. while (length) {
  147. u32 len = sge->length;
  148. if (len > length)
  149. len = length;
  150. if (len > sge->sge_length)
  151. len = sge->sge_length;
  152. BUG_ON(len == 0);
  153. memcpy(sge->vaddr, data, len);
  154. sge->vaddr += len;
  155. sge->length -= len;
  156. sge->sge_length -= len;
  157. if (sge->sge_length == 0) {
  158. if (release)
  159. atomic_dec(&sge->mr->refcount);
  160. if (--ss->num_sge)
  161. *sge = *ss->sg_list++;
  162. } else if (sge->length == 0 && sge->mr->lkey) {
  163. if (++sge->n >= QIB_SEGSZ) {
  164. if (++sge->m >= sge->mr->mapsz)
  165. break;
  166. sge->n = 0;
  167. }
  168. sge->vaddr =
  169. sge->mr->map[sge->m]->segs[sge->n].vaddr;
  170. sge->length =
  171. sge->mr->map[sge->m]->segs[sge->n].length;
  172. }
  173. data += len;
  174. length -= len;
  175. }
  176. }
  177. /**
  178. * qib_skip_sge - skip over SGE memory - XXX almost dup of prev func
  179. * @ss: the SGE state
  180. * @length: the number of bytes to skip
  181. */
  182. void qib_skip_sge(struct qib_sge_state *ss, u32 length, int release)
  183. {
  184. struct qib_sge *sge = &ss->sge;
  185. while (length) {
  186. u32 len = sge->length;
  187. if (len > length)
  188. len = length;
  189. if (len > sge->sge_length)
  190. len = sge->sge_length;
  191. BUG_ON(len == 0);
  192. sge->vaddr += len;
  193. sge->length -= len;
  194. sge->sge_length -= len;
  195. if (sge->sge_length == 0) {
  196. if (release)
  197. atomic_dec(&sge->mr->refcount);
  198. if (--ss->num_sge)
  199. *sge = *ss->sg_list++;
  200. } else if (sge->length == 0 && sge->mr->lkey) {
  201. if (++sge->n >= QIB_SEGSZ) {
  202. if (++sge->m >= sge->mr->mapsz)
  203. break;
  204. sge->n = 0;
  205. }
  206. sge->vaddr =
  207. sge->mr->map[sge->m]->segs[sge->n].vaddr;
  208. sge->length =
  209. sge->mr->map[sge->m]->segs[sge->n].length;
  210. }
  211. length -= len;
  212. }
  213. }
  214. /*
  215. * Count the number of DMA descriptors needed to send length bytes of data.
  216. * Don't modify the qib_sge_state to get the count.
  217. * Return zero if any of the segments is not aligned.
  218. */
  219. static u32 qib_count_sge(struct qib_sge_state *ss, u32 length)
  220. {
  221. struct qib_sge *sg_list = ss->sg_list;
  222. struct qib_sge sge = ss->sge;
  223. u8 num_sge = ss->num_sge;
  224. u32 ndesc = 1; /* count the header */
  225. while (length) {
  226. u32 len = sge.length;
  227. if (len > length)
  228. len = length;
  229. if (len > sge.sge_length)
  230. len = sge.sge_length;
  231. BUG_ON(len == 0);
  232. if (((long) sge.vaddr & (sizeof(u32) - 1)) ||
  233. (len != length && (len & (sizeof(u32) - 1)))) {
  234. ndesc = 0;
  235. break;
  236. }
  237. ndesc++;
  238. sge.vaddr += len;
  239. sge.length -= len;
  240. sge.sge_length -= len;
  241. if (sge.sge_length == 0) {
  242. if (--num_sge)
  243. sge = *sg_list++;
  244. } else if (sge.length == 0 && sge.mr->lkey) {
  245. if (++sge.n >= QIB_SEGSZ) {
  246. if (++sge.m >= sge.mr->mapsz)
  247. break;
  248. sge.n = 0;
  249. }
  250. sge.vaddr =
  251. sge.mr->map[sge.m]->segs[sge.n].vaddr;
  252. sge.length =
  253. sge.mr->map[sge.m]->segs[sge.n].length;
  254. }
  255. length -= len;
  256. }
  257. return ndesc;
  258. }
  259. /*
  260. * Copy from the SGEs to the data buffer.
  261. */
  262. static void qib_copy_from_sge(void *data, struct qib_sge_state *ss, u32 length)
  263. {
  264. struct qib_sge *sge = &ss->sge;
  265. while (length) {
  266. u32 len = sge->length;
  267. if (len > length)
  268. len = length;
  269. if (len > sge->sge_length)
  270. len = sge->sge_length;
  271. BUG_ON(len == 0);
  272. memcpy(data, sge->vaddr, len);
  273. sge->vaddr += len;
  274. sge->length -= len;
  275. sge->sge_length -= len;
  276. if (sge->sge_length == 0) {
  277. if (--ss->num_sge)
  278. *sge = *ss->sg_list++;
  279. } else if (sge->length == 0 && sge->mr->lkey) {
  280. if (++sge->n >= QIB_SEGSZ) {
  281. if (++sge->m >= sge->mr->mapsz)
  282. break;
  283. sge->n = 0;
  284. }
  285. sge->vaddr =
  286. sge->mr->map[sge->m]->segs[sge->n].vaddr;
  287. sge->length =
  288. sge->mr->map[sge->m]->segs[sge->n].length;
  289. }
  290. data += len;
  291. length -= len;
  292. }
  293. }
  294. /**
  295. * qib_post_one_send - post one RC, UC, or UD send work request
  296. * @qp: the QP to post on
  297. * @wr: the work request to send
  298. */
  299. static int qib_post_one_send(struct qib_qp *qp, struct ib_send_wr *wr)
  300. {
  301. struct qib_swqe *wqe;
  302. u32 next;
  303. int i;
  304. int j;
  305. int acc;
  306. int ret;
  307. unsigned long flags;
  308. struct qib_lkey_table *rkt;
  309. struct qib_pd *pd;
  310. spin_lock_irqsave(&qp->s_lock, flags);
  311. /* Check that state is OK to post send. */
  312. if (unlikely(!(ib_qib_state_ops[qp->state] & QIB_POST_SEND_OK)))
  313. goto bail_inval;
  314. /* IB spec says that num_sge == 0 is OK. */
  315. if (wr->num_sge > qp->s_max_sge)
  316. goto bail_inval;
  317. /*
  318. * Don't allow RDMA reads or atomic operations on UC or
  319. * undefined operations.
  320. * Make sure buffer is large enough to hold the result for atomics.
  321. */
  322. if (wr->opcode == IB_WR_FAST_REG_MR) {
  323. if (qib_fast_reg_mr(qp, wr))
  324. goto bail_inval;
  325. } else if (qp->ibqp.qp_type == IB_QPT_UC) {
  326. if ((unsigned) wr->opcode >= IB_WR_RDMA_READ)
  327. goto bail_inval;
  328. } else if (qp->ibqp.qp_type != IB_QPT_RC) {
  329. /* Check IB_QPT_SMI, IB_QPT_GSI, IB_QPT_UD opcode */
  330. if (wr->opcode != IB_WR_SEND &&
  331. wr->opcode != IB_WR_SEND_WITH_IMM)
  332. goto bail_inval;
  333. /* Check UD destination address PD */
  334. if (qp->ibqp.pd != wr->wr.ud.ah->pd)
  335. goto bail_inval;
  336. } else if ((unsigned) wr->opcode > IB_WR_ATOMIC_FETCH_AND_ADD)
  337. goto bail_inval;
  338. else if (wr->opcode >= IB_WR_ATOMIC_CMP_AND_SWP &&
  339. (wr->num_sge == 0 ||
  340. wr->sg_list[0].length < sizeof(u64) ||
  341. wr->sg_list[0].addr & (sizeof(u64) - 1)))
  342. goto bail_inval;
  343. else if (wr->opcode >= IB_WR_RDMA_READ && !qp->s_max_rd_atomic)
  344. goto bail_inval;
  345. next = qp->s_head + 1;
  346. if (next >= qp->s_size)
  347. next = 0;
  348. if (next == qp->s_last) {
  349. ret = -ENOMEM;
  350. goto bail;
  351. }
  352. rkt = &to_idev(qp->ibqp.device)->lk_table;
  353. pd = to_ipd(qp->ibqp.pd);
  354. wqe = get_swqe_ptr(qp, qp->s_head);
  355. wqe->wr = *wr;
  356. wqe->length = 0;
  357. j = 0;
  358. if (wr->num_sge) {
  359. acc = wr->opcode >= IB_WR_RDMA_READ ?
  360. IB_ACCESS_LOCAL_WRITE : 0;
  361. for (i = 0; i < wr->num_sge; i++) {
  362. u32 length = wr->sg_list[i].length;
  363. int ok;
  364. if (length == 0)
  365. continue;
  366. ok = qib_lkey_ok(rkt, pd, &wqe->sg_list[j],
  367. &wr->sg_list[i], acc);
  368. if (!ok)
  369. goto bail_inval_free;
  370. wqe->length += length;
  371. j++;
  372. }
  373. wqe->wr.num_sge = j;
  374. }
  375. if (qp->ibqp.qp_type == IB_QPT_UC ||
  376. qp->ibqp.qp_type == IB_QPT_RC) {
  377. if (wqe->length > 0x80000000U)
  378. goto bail_inval_free;
  379. } else if (wqe->length > (dd_from_ibdev(qp->ibqp.device)->pport +
  380. qp->port_num - 1)->ibmtu)
  381. goto bail_inval_free;
  382. else
  383. atomic_inc(&to_iah(wr->wr.ud.ah)->refcount);
  384. wqe->ssn = qp->s_ssn++;
  385. qp->s_head = next;
  386. ret = 0;
  387. goto bail;
  388. bail_inval_free:
  389. while (j) {
  390. struct qib_sge *sge = &wqe->sg_list[--j];
  391. atomic_dec(&sge->mr->refcount);
  392. }
  393. bail_inval:
  394. ret = -EINVAL;
  395. bail:
  396. spin_unlock_irqrestore(&qp->s_lock, flags);
  397. return ret;
  398. }
  399. /**
  400. * qib_post_send - post a send on a QP
  401. * @ibqp: the QP to post the send on
  402. * @wr: the list of work requests to post
  403. * @bad_wr: the first bad WR is put here
  404. *
  405. * This may be called from interrupt context.
  406. */
  407. static int qib_post_send(struct ib_qp *ibqp, struct ib_send_wr *wr,
  408. struct ib_send_wr **bad_wr)
  409. {
  410. struct qib_qp *qp = to_iqp(ibqp);
  411. int err = 0;
  412. for (; wr; wr = wr->next) {
  413. err = qib_post_one_send(qp, wr);
  414. if (err) {
  415. *bad_wr = wr;
  416. goto bail;
  417. }
  418. }
  419. /* Try to do the send work in the caller's context. */
  420. qib_do_send(&qp->s_work);
  421. bail:
  422. return err;
  423. }
  424. /**
  425. * qib_post_receive - post a receive on a QP
  426. * @ibqp: the QP to post the receive on
  427. * @wr: the WR to post
  428. * @bad_wr: the first bad WR is put here
  429. *
  430. * This may be called from interrupt context.
  431. */
  432. static int qib_post_receive(struct ib_qp *ibqp, struct ib_recv_wr *wr,
  433. struct ib_recv_wr **bad_wr)
  434. {
  435. struct qib_qp *qp = to_iqp(ibqp);
  436. struct qib_rwq *wq = qp->r_rq.wq;
  437. unsigned long flags;
  438. int ret;
  439. /* Check that state is OK to post receive. */
  440. if (!(ib_qib_state_ops[qp->state] & QIB_POST_RECV_OK) || !wq) {
  441. *bad_wr = wr;
  442. ret = -EINVAL;
  443. goto bail;
  444. }
  445. for (; wr; wr = wr->next) {
  446. struct qib_rwqe *wqe;
  447. u32 next;
  448. int i;
  449. if ((unsigned) wr->num_sge > qp->r_rq.max_sge) {
  450. *bad_wr = wr;
  451. ret = -EINVAL;
  452. goto bail;
  453. }
  454. spin_lock_irqsave(&qp->r_rq.lock, flags);
  455. next = wq->head + 1;
  456. if (next >= qp->r_rq.size)
  457. next = 0;
  458. if (next == wq->tail) {
  459. spin_unlock_irqrestore(&qp->r_rq.lock, flags);
  460. *bad_wr = wr;
  461. ret = -ENOMEM;
  462. goto bail;
  463. }
  464. wqe = get_rwqe_ptr(&qp->r_rq, wq->head);
  465. wqe->wr_id = wr->wr_id;
  466. wqe->num_sge = wr->num_sge;
  467. for (i = 0; i < wr->num_sge; i++)
  468. wqe->sg_list[i] = wr->sg_list[i];
  469. /* Make sure queue entry is written before the head index. */
  470. smp_wmb();
  471. wq->head = next;
  472. spin_unlock_irqrestore(&qp->r_rq.lock, flags);
  473. }
  474. ret = 0;
  475. bail:
  476. return ret;
  477. }
  478. /**
  479. * qib_qp_rcv - processing an incoming packet on a QP
  480. * @rcd: the context pointer
  481. * @hdr: the packet header
  482. * @has_grh: true if the packet has a GRH
  483. * @data: the packet data
  484. * @tlen: the packet length
  485. * @qp: the QP the packet came on
  486. *
  487. * This is called from qib_ib_rcv() to process an incoming packet
  488. * for the given QP.
  489. * Called at interrupt level.
  490. */
  491. static void qib_qp_rcv(struct qib_ctxtdata *rcd, struct qib_ib_header *hdr,
  492. int has_grh, void *data, u32 tlen, struct qib_qp *qp)
  493. {
  494. struct qib_ibport *ibp = &rcd->ppd->ibport_data;
  495. /* Check for valid receive state. */
  496. if (!(ib_qib_state_ops[qp->state] & QIB_PROCESS_RECV_OK)) {
  497. ibp->n_pkt_drops++;
  498. return;
  499. }
  500. switch (qp->ibqp.qp_type) {
  501. case IB_QPT_SMI:
  502. case IB_QPT_GSI:
  503. if (ib_qib_disable_sma)
  504. break;
  505. /* FALLTHROUGH */
  506. case IB_QPT_UD:
  507. qib_ud_rcv(ibp, hdr, has_grh, data, tlen, qp);
  508. break;
  509. case IB_QPT_RC:
  510. qib_rc_rcv(rcd, hdr, has_grh, data, tlen, qp);
  511. break;
  512. case IB_QPT_UC:
  513. qib_uc_rcv(ibp, hdr, has_grh, data, tlen, qp);
  514. break;
  515. default:
  516. break;
  517. }
  518. }
  519. /**
  520. * qib_ib_rcv - process an incoming packet
  521. * @rcd: the context pointer
  522. * @rhdr: the header of the packet
  523. * @data: the packet payload
  524. * @tlen: the packet length
  525. *
  526. * This is called from qib_kreceive() to process an incoming packet at
  527. * interrupt level. Tlen is the length of the header + data + CRC in bytes.
  528. */
  529. void qib_ib_rcv(struct qib_ctxtdata *rcd, void *rhdr, void *data, u32 tlen)
  530. {
  531. struct qib_pportdata *ppd = rcd->ppd;
  532. struct qib_ibport *ibp = &ppd->ibport_data;
  533. struct qib_ib_header *hdr = rhdr;
  534. struct qib_other_headers *ohdr;
  535. struct qib_qp *qp;
  536. u32 qp_num;
  537. int lnh;
  538. u8 opcode;
  539. u16 lid;
  540. /* 24 == LRH+BTH+CRC */
  541. if (unlikely(tlen < 24))
  542. goto drop;
  543. /* Check for a valid destination LID (see ch. 7.11.1). */
  544. lid = be16_to_cpu(hdr->lrh[1]);
  545. if (lid < QIB_MULTICAST_LID_BASE) {
  546. lid &= ~((1 << ppd->lmc) - 1);
  547. if (unlikely(lid != ppd->lid))
  548. goto drop;
  549. }
  550. /* Check for GRH */
  551. lnh = be16_to_cpu(hdr->lrh[0]) & 3;
  552. if (lnh == QIB_LRH_BTH)
  553. ohdr = &hdr->u.oth;
  554. else if (lnh == QIB_LRH_GRH) {
  555. u32 vtf;
  556. ohdr = &hdr->u.l.oth;
  557. if (hdr->u.l.grh.next_hdr != IB_GRH_NEXT_HDR)
  558. goto drop;
  559. vtf = be32_to_cpu(hdr->u.l.grh.version_tclass_flow);
  560. if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
  561. goto drop;
  562. } else
  563. goto drop;
  564. opcode = be32_to_cpu(ohdr->bth[0]) >> 24;
  565. ibp->opstats[opcode & 0x7f].n_bytes += tlen;
  566. ibp->opstats[opcode & 0x7f].n_packets++;
  567. /* Get the destination QP number. */
  568. qp_num = be32_to_cpu(ohdr->bth[1]) & QIB_QPN_MASK;
  569. if (qp_num == QIB_MULTICAST_QPN) {
  570. struct qib_mcast *mcast;
  571. struct qib_mcast_qp *p;
  572. if (lnh != QIB_LRH_GRH)
  573. goto drop;
  574. mcast = qib_mcast_find(ibp, &hdr->u.l.grh.dgid);
  575. if (mcast == NULL)
  576. goto drop;
  577. ibp->n_multicast_rcv++;
  578. list_for_each_entry_rcu(p, &mcast->qp_list, list)
  579. qib_qp_rcv(rcd, hdr, 1, data, tlen, p->qp);
  580. /*
  581. * Notify qib_multicast_detach() if it is waiting for us
  582. * to finish.
  583. */
  584. if (atomic_dec_return(&mcast->refcount) <= 1)
  585. wake_up(&mcast->wait);
  586. } else {
  587. qp = qib_lookup_qpn(ibp, qp_num);
  588. if (!qp)
  589. goto drop;
  590. ibp->n_unicast_rcv++;
  591. qib_qp_rcv(rcd, hdr, lnh == QIB_LRH_GRH, data, tlen, qp);
  592. /*
  593. * Notify qib_destroy_qp() if it is waiting
  594. * for us to finish.
  595. */
  596. if (atomic_dec_and_test(&qp->refcount))
  597. wake_up(&qp->wait);
  598. }
  599. return;
  600. drop:
  601. ibp->n_pkt_drops++;
  602. }
  603. /*
  604. * This is called from a timer to check for QPs
  605. * which need kernel memory in order to send a packet.
  606. */
  607. static void mem_timer(unsigned long data)
  608. {
  609. struct qib_ibdev *dev = (struct qib_ibdev *) data;
  610. struct list_head *list = &dev->memwait;
  611. struct qib_qp *qp = NULL;
  612. unsigned long flags;
  613. spin_lock_irqsave(&dev->pending_lock, flags);
  614. if (!list_empty(list)) {
  615. qp = list_entry(list->next, struct qib_qp, iowait);
  616. list_del_init(&qp->iowait);
  617. atomic_inc(&qp->refcount);
  618. if (!list_empty(list))
  619. mod_timer(&dev->mem_timer, jiffies + 1);
  620. }
  621. spin_unlock_irqrestore(&dev->pending_lock, flags);
  622. if (qp) {
  623. spin_lock_irqsave(&qp->s_lock, flags);
  624. if (qp->s_flags & QIB_S_WAIT_KMEM) {
  625. qp->s_flags &= ~QIB_S_WAIT_KMEM;
  626. qib_schedule_send(qp);
  627. }
  628. spin_unlock_irqrestore(&qp->s_lock, flags);
  629. if (atomic_dec_and_test(&qp->refcount))
  630. wake_up(&qp->wait);
  631. }
  632. }
  633. static void update_sge(struct qib_sge_state *ss, u32 length)
  634. {
  635. struct qib_sge *sge = &ss->sge;
  636. sge->vaddr += length;
  637. sge->length -= length;
  638. sge->sge_length -= length;
  639. if (sge->sge_length == 0) {
  640. if (--ss->num_sge)
  641. *sge = *ss->sg_list++;
  642. } else if (sge->length == 0 && sge->mr->lkey) {
  643. if (++sge->n >= QIB_SEGSZ) {
  644. if (++sge->m >= sge->mr->mapsz)
  645. return;
  646. sge->n = 0;
  647. }
  648. sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr;
  649. sge->length = sge->mr->map[sge->m]->segs[sge->n].length;
  650. }
  651. }
  652. #ifdef __LITTLE_ENDIAN
  653. static inline u32 get_upper_bits(u32 data, u32 shift)
  654. {
  655. return data >> shift;
  656. }
  657. static inline u32 set_upper_bits(u32 data, u32 shift)
  658. {
  659. return data << shift;
  660. }
  661. static inline u32 clear_upper_bytes(u32 data, u32 n, u32 off)
  662. {
  663. data <<= ((sizeof(u32) - n) * BITS_PER_BYTE);
  664. data >>= ((sizeof(u32) - n - off) * BITS_PER_BYTE);
  665. return data;
  666. }
  667. #else
  668. static inline u32 get_upper_bits(u32 data, u32 shift)
  669. {
  670. return data << shift;
  671. }
  672. static inline u32 set_upper_bits(u32 data, u32 shift)
  673. {
  674. return data >> shift;
  675. }
  676. static inline u32 clear_upper_bytes(u32 data, u32 n, u32 off)
  677. {
  678. data >>= ((sizeof(u32) - n) * BITS_PER_BYTE);
  679. data <<= ((sizeof(u32) - n - off) * BITS_PER_BYTE);
  680. return data;
  681. }
  682. #endif
  683. static void copy_io(u32 __iomem *piobuf, struct qib_sge_state *ss,
  684. u32 length, unsigned flush_wc)
  685. {
  686. u32 extra = 0;
  687. u32 data = 0;
  688. u32 last;
  689. while (1) {
  690. u32 len = ss->sge.length;
  691. u32 off;
  692. if (len > length)
  693. len = length;
  694. if (len > ss->sge.sge_length)
  695. len = ss->sge.sge_length;
  696. BUG_ON(len == 0);
  697. /* If the source address is not aligned, try to align it. */
  698. off = (unsigned long)ss->sge.vaddr & (sizeof(u32) - 1);
  699. if (off) {
  700. u32 *addr = (u32 *)((unsigned long)ss->sge.vaddr &
  701. ~(sizeof(u32) - 1));
  702. u32 v = get_upper_bits(*addr, off * BITS_PER_BYTE);
  703. u32 y;
  704. y = sizeof(u32) - off;
  705. if (len > y)
  706. len = y;
  707. if (len + extra >= sizeof(u32)) {
  708. data |= set_upper_bits(v, extra *
  709. BITS_PER_BYTE);
  710. len = sizeof(u32) - extra;
  711. if (len == length) {
  712. last = data;
  713. break;
  714. }
  715. __raw_writel(data, piobuf);
  716. piobuf++;
  717. extra = 0;
  718. data = 0;
  719. } else {
  720. /* Clear unused upper bytes */
  721. data |= clear_upper_bytes(v, len, extra);
  722. if (len == length) {
  723. last = data;
  724. break;
  725. }
  726. extra += len;
  727. }
  728. } else if (extra) {
  729. /* Source address is aligned. */
  730. u32 *addr = (u32 *) ss->sge.vaddr;
  731. int shift = extra * BITS_PER_BYTE;
  732. int ushift = 32 - shift;
  733. u32 l = len;
  734. while (l >= sizeof(u32)) {
  735. u32 v = *addr;
  736. data |= set_upper_bits(v, shift);
  737. __raw_writel(data, piobuf);
  738. data = get_upper_bits(v, ushift);
  739. piobuf++;
  740. addr++;
  741. l -= sizeof(u32);
  742. }
  743. /*
  744. * We still have 'extra' number of bytes leftover.
  745. */
  746. if (l) {
  747. u32 v = *addr;
  748. if (l + extra >= sizeof(u32)) {
  749. data |= set_upper_bits(v, shift);
  750. len -= l + extra - sizeof(u32);
  751. if (len == length) {
  752. last = data;
  753. break;
  754. }
  755. __raw_writel(data, piobuf);
  756. piobuf++;
  757. extra = 0;
  758. data = 0;
  759. } else {
  760. /* Clear unused upper bytes */
  761. data |= clear_upper_bytes(v, l, extra);
  762. if (len == length) {
  763. last = data;
  764. break;
  765. }
  766. extra += l;
  767. }
  768. } else if (len == length) {
  769. last = data;
  770. break;
  771. }
  772. } else if (len == length) {
  773. u32 w;
  774. /*
  775. * Need to round up for the last dword in the
  776. * packet.
  777. */
  778. w = (len + 3) >> 2;
  779. qib_pio_copy(piobuf, ss->sge.vaddr, w - 1);
  780. piobuf += w - 1;
  781. last = ((u32 *) ss->sge.vaddr)[w - 1];
  782. break;
  783. } else {
  784. u32 w = len >> 2;
  785. qib_pio_copy(piobuf, ss->sge.vaddr, w);
  786. piobuf += w;
  787. extra = len & (sizeof(u32) - 1);
  788. if (extra) {
  789. u32 v = ((u32 *) ss->sge.vaddr)[w];
  790. /* Clear unused upper bytes */
  791. data = clear_upper_bytes(v, extra, 0);
  792. }
  793. }
  794. update_sge(ss, len);
  795. length -= len;
  796. }
  797. /* Update address before sending packet. */
  798. update_sge(ss, length);
  799. if (flush_wc) {
  800. /* must flush early everything before trigger word */
  801. qib_flush_wc();
  802. __raw_writel(last, piobuf);
  803. /* be sure trigger word is written */
  804. qib_flush_wc();
  805. } else
  806. __raw_writel(last, piobuf);
  807. }
  808. static struct qib_verbs_txreq *get_txreq(struct qib_ibdev *dev,
  809. struct qib_qp *qp, int *retp)
  810. {
  811. struct qib_verbs_txreq *tx;
  812. unsigned long flags;
  813. spin_lock_irqsave(&qp->s_lock, flags);
  814. spin_lock(&dev->pending_lock);
  815. if (!list_empty(&dev->txreq_free)) {
  816. struct list_head *l = dev->txreq_free.next;
  817. list_del(l);
  818. tx = list_entry(l, struct qib_verbs_txreq, txreq.list);
  819. *retp = 0;
  820. } else {
  821. if (ib_qib_state_ops[qp->state] & QIB_PROCESS_RECV_OK &&
  822. list_empty(&qp->iowait)) {
  823. dev->n_txwait++;
  824. qp->s_flags |= QIB_S_WAIT_TX;
  825. list_add_tail(&qp->iowait, &dev->txwait);
  826. }
  827. tx = NULL;
  828. qp->s_flags &= ~QIB_S_BUSY;
  829. *retp = -EBUSY;
  830. }
  831. spin_unlock(&dev->pending_lock);
  832. spin_unlock_irqrestore(&qp->s_lock, flags);
  833. return tx;
  834. }
  835. void qib_put_txreq(struct qib_verbs_txreq *tx)
  836. {
  837. struct qib_ibdev *dev;
  838. struct qib_qp *qp;
  839. unsigned long flags;
  840. qp = tx->qp;
  841. dev = to_idev(qp->ibqp.device);
  842. if (atomic_dec_and_test(&qp->refcount))
  843. wake_up(&qp->wait);
  844. if (tx->mr) {
  845. atomic_dec(&tx->mr->refcount);
  846. tx->mr = NULL;
  847. }
  848. if (tx->txreq.flags & QIB_SDMA_TXREQ_F_FREEBUF) {
  849. tx->txreq.flags &= ~QIB_SDMA_TXREQ_F_FREEBUF;
  850. dma_unmap_single(&dd_from_dev(dev)->pcidev->dev,
  851. tx->txreq.addr, tx->hdr_dwords << 2,
  852. DMA_TO_DEVICE);
  853. kfree(tx->align_buf);
  854. }
  855. spin_lock_irqsave(&dev->pending_lock, flags);
  856. /* Put struct back on free list */
  857. list_add(&tx->txreq.list, &dev->txreq_free);
  858. if (!list_empty(&dev->txwait)) {
  859. /* Wake up first QP wanting a free struct */
  860. qp = list_entry(dev->txwait.next, struct qib_qp, iowait);
  861. list_del_init(&qp->iowait);
  862. atomic_inc(&qp->refcount);
  863. spin_unlock_irqrestore(&dev->pending_lock, flags);
  864. spin_lock_irqsave(&qp->s_lock, flags);
  865. if (qp->s_flags & QIB_S_WAIT_TX) {
  866. qp->s_flags &= ~QIB_S_WAIT_TX;
  867. qib_schedule_send(qp);
  868. }
  869. spin_unlock_irqrestore(&qp->s_lock, flags);
  870. if (atomic_dec_and_test(&qp->refcount))
  871. wake_up(&qp->wait);
  872. } else
  873. spin_unlock_irqrestore(&dev->pending_lock, flags);
  874. }
  875. /*
  876. * This is called when there are send DMA descriptors that might be
  877. * available.
  878. *
  879. * This is called with ppd->sdma_lock held.
  880. */
  881. void qib_verbs_sdma_desc_avail(struct qib_pportdata *ppd, unsigned avail)
  882. {
  883. struct qib_qp *qp, *nqp;
  884. struct qib_qp *qps[20];
  885. struct qib_ibdev *dev;
  886. unsigned i, n;
  887. n = 0;
  888. dev = &ppd->dd->verbs_dev;
  889. spin_lock(&dev->pending_lock);
  890. /* Search wait list for first QP wanting DMA descriptors. */
  891. list_for_each_entry_safe(qp, nqp, &dev->dmawait, iowait) {
  892. if (qp->port_num != ppd->port)
  893. continue;
  894. if (n == ARRAY_SIZE(qps))
  895. break;
  896. if (qp->s_tx->txreq.sg_count > avail)
  897. break;
  898. avail -= qp->s_tx->txreq.sg_count;
  899. list_del_init(&qp->iowait);
  900. atomic_inc(&qp->refcount);
  901. qps[n++] = qp;
  902. }
  903. spin_unlock(&dev->pending_lock);
  904. for (i = 0; i < n; i++) {
  905. qp = qps[i];
  906. spin_lock(&qp->s_lock);
  907. if (qp->s_flags & QIB_S_WAIT_DMA_DESC) {
  908. qp->s_flags &= ~QIB_S_WAIT_DMA_DESC;
  909. qib_schedule_send(qp);
  910. }
  911. spin_unlock(&qp->s_lock);
  912. if (atomic_dec_and_test(&qp->refcount))
  913. wake_up(&qp->wait);
  914. }
  915. }
  916. /*
  917. * This is called with ppd->sdma_lock held.
  918. */
  919. static void sdma_complete(struct qib_sdma_txreq *cookie, int status)
  920. {
  921. struct qib_verbs_txreq *tx =
  922. container_of(cookie, struct qib_verbs_txreq, txreq);
  923. struct qib_qp *qp = tx->qp;
  924. spin_lock(&qp->s_lock);
  925. if (tx->wqe)
  926. qib_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
  927. else if (qp->ibqp.qp_type == IB_QPT_RC) {
  928. struct qib_ib_header *hdr;
  929. if (tx->txreq.flags & QIB_SDMA_TXREQ_F_FREEBUF)
  930. hdr = &tx->align_buf->hdr;
  931. else {
  932. struct qib_ibdev *dev = to_idev(qp->ibqp.device);
  933. hdr = &dev->pio_hdrs[tx->hdr_inx].hdr;
  934. }
  935. qib_rc_send_complete(qp, hdr);
  936. }
  937. if (atomic_dec_and_test(&qp->s_dma_busy)) {
  938. if (qp->state == IB_QPS_RESET)
  939. wake_up(&qp->wait_dma);
  940. else if (qp->s_flags & QIB_S_WAIT_DMA) {
  941. qp->s_flags &= ~QIB_S_WAIT_DMA;
  942. qib_schedule_send(qp);
  943. }
  944. }
  945. spin_unlock(&qp->s_lock);
  946. qib_put_txreq(tx);
  947. }
  948. static int wait_kmem(struct qib_ibdev *dev, struct qib_qp *qp)
  949. {
  950. unsigned long flags;
  951. int ret = 0;
  952. spin_lock_irqsave(&qp->s_lock, flags);
  953. if (ib_qib_state_ops[qp->state] & QIB_PROCESS_RECV_OK) {
  954. spin_lock(&dev->pending_lock);
  955. if (list_empty(&qp->iowait)) {
  956. if (list_empty(&dev->memwait))
  957. mod_timer(&dev->mem_timer, jiffies + 1);
  958. qp->s_flags |= QIB_S_WAIT_KMEM;
  959. list_add_tail(&qp->iowait, &dev->memwait);
  960. }
  961. spin_unlock(&dev->pending_lock);
  962. qp->s_flags &= ~QIB_S_BUSY;
  963. ret = -EBUSY;
  964. }
  965. spin_unlock_irqrestore(&qp->s_lock, flags);
  966. return ret;
  967. }
  968. static int qib_verbs_send_dma(struct qib_qp *qp, struct qib_ib_header *hdr,
  969. u32 hdrwords, struct qib_sge_state *ss, u32 len,
  970. u32 plen, u32 dwords)
  971. {
  972. struct qib_ibdev *dev = to_idev(qp->ibqp.device);
  973. struct qib_devdata *dd = dd_from_dev(dev);
  974. struct qib_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
  975. struct qib_pportdata *ppd = ppd_from_ibp(ibp);
  976. struct qib_verbs_txreq *tx;
  977. struct qib_pio_header *phdr;
  978. u32 control;
  979. u32 ndesc;
  980. int ret;
  981. tx = qp->s_tx;
  982. if (tx) {
  983. qp->s_tx = NULL;
  984. /* resend previously constructed packet */
  985. ret = qib_sdma_verbs_send(ppd, tx->ss, tx->dwords, tx);
  986. goto bail;
  987. }
  988. tx = get_txreq(dev, qp, &ret);
  989. if (!tx)
  990. goto bail;
  991. control = dd->f_setpbc_control(ppd, plen, qp->s_srate,
  992. be16_to_cpu(hdr->lrh[0]) >> 12);
  993. tx->qp = qp;
  994. atomic_inc(&qp->refcount);
  995. tx->wqe = qp->s_wqe;
  996. tx->mr = qp->s_rdma_mr;
  997. if (qp->s_rdma_mr)
  998. qp->s_rdma_mr = NULL;
  999. tx->txreq.callback = sdma_complete;
  1000. if (dd->flags & QIB_HAS_SDMA_TIMEOUT)
  1001. tx->txreq.flags = QIB_SDMA_TXREQ_F_HEADTOHOST;
  1002. else
  1003. tx->txreq.flags = QIB_SDMA_TXREQ_F_INTREQ;
  1004. if (plen + 1 > dd->piosize2kmax_dwords)
  1005. tx->txreq.flags |= QIB_SDMA_TXREQ_F_USELARGEBUF;
  1006. if (len) {
  1007. /*
  1008. * Don't try to DMA if it takes more descriptors than
  1009. * the queue holds.
  1010. */
  1011. ndesc = qib_count_sge(ss, len);
  1012. if (ndesc >= ppd->sdma_descq_cnt)
  1013. ndesc = 0;
  1014. } else
  1015. ndesc = 1;
  1016. if (ndesc) {
  1017. phdr = &dev->pio_hdrs[tx->hdr_inx];
  1018. phdr->pbc[0] = cpu_to_le32(plen);
  1019. phdr->pbc[1] = cpu_to_le32(control);
  1020. memcpy(&phdr->hdr, hdr, hdrwords << 2);
  1021. tx->txreq.flags |= QIB_SDMA_TXREQ_F_FREEDESC;
  1022. tx->txreq.sg_count = ndesc;
  1023. tx->txreq.addr = dev->pio_hdrs_phys +
  1024. tx->hdr_inx * sizeof(struct qib_pio_header);
  1025. tx->hdr_dwords = hdrwords + 2; /* add PBC length */
  1026. ret = qib_sdma_verbs_send(ppd, ss, dwords, tx);
  1027. goto bail;
  1028. }
  1029. /* Allocate a buffer and copy the header and payload to it. */
  1030. tx->hdr_dwords = plen + 1;
  1031. phdr = kmalloc(tx->hdr_dwords << 2, GFP_ATOMIC);
  1032. if (!phdr)
  1033. goto err_tx;
  1034. phdr->pbc[0] = cpu_to_le32(plen);
  1035. phdr->pbc[1] = cpu_to_le32(control);
  1036. memcpy(&phdr->hdr, hdr, hdrwords << 2);
  1037. qib_copy_from_sge((u32 *) &phdr->hdr + hdrwords, ss, len);
  1038. tx->txreq.addr = dma_map_single(&dd->pcidev->dev, phdr,
  1039. tx->hdr_dwords << 2, DMA_TO_DEVICE);
  1040. if (dma_mapping_error(&dd->pcidev->dev, tx->txreq.addr))
  1041. goto map_err;
  1042. tx->align_buf = phdr;
  1043. tx->txreq.flags |= QIB_SDMA_TXREQ_F_FREEBUF;
  1044. tx->txreq.sg_count = 1;
  1045. ret = qib_sdma_verbs_send(ppd, NULL, 0, tx);
  1046. goto unaligned;
  1047. map_err:
  1048. kfree(phdr);
  1049. err_tx:
  1050. qib_put_txreq(tx);
  1051. ret = wait_kmem(dev, qp);
  1052. unaligned:
  1053. ibp->n_unaligned++;
  1054. bail:
  1055. return ret;
  1056. }
  1057. /*
  1058. * If we are now in the error state, return zero to flush the
  1059. * send work request.
  1060. */
  1061. static int no_bufs_available(struct qib_qp *qp)
  1062. {
  1063. struct qib_ibdev *dev = to_idev(qp->ibqp.device);
  1064. struct qib_devdata *dd;
  1065. unsigned long flags;
  1066. int ret = 0;
  1067. /*
  1068. * Note that as soon as want_buffer() is called and
  1069. * possibly before it returns, qib_ib_piobufavail()
  1070. * could be called. Therefore, put QP on the I/O wait list before
  1071. * enabling the PIO avail interrupt.
  1072. */
  1073. spin_lock_irqsave(&qp->s_lock, flags);
  1074. if (ib_qib_state_ops[qp->state] & QIB_PROCESS_RECV_OK) {
  1075. spin_lock(&dev->pending_lock);
  1076. if (list_empty(&qp->iowait)) {
  1077. dev->n_piowait++;
  1078. qp->s_flags |= QIB_S_WAIT_PIO;
  1079. list_add_tail(&qp->iowait, &dev->piowait);
  1080. dd = dd_from_dev(dev);
  1081. dd->f_wantpiobuf_intr(dd, 1);
  1082. }
  1083. spin_unlock(&dev->pending_lock);
  1084. qp->s_flags &= ~QIB_S_BUSY;
  1085. ret = -EBUSY;
  1086. }
  1087. spin_unlock_irqrestore(&qp->s_lock, flags);
  1088. return ret;
  1089. }
  1090. static int qib_verbs_send_pio(struct qib_qp *qp, struct qib_ib_header *ibhdr,
  1091. u32 hdrwords, struct qib_sge_state *ss, u32 len,
  1092. u32 plen, u32 dwords)
  1093. {
  1094. struct qib_devdata *dd = dd_from_ibdev(qp->ibqp.device);
  1095. struct qib_pportdata *ppd = dd->pport + qp->port_num - 1;
  1096. u32 *hdr = (u32 *) ibhdr;
  1097. u32 __iomem *piobuf_orig;
  1098. u32 __iomem *piobuf;
  1099. u64 pbc;
  1100. unsigned long flags;
  1101. unsigned flush_wc;
  1102. u32 control;
  1103. u32 pbufn;
  1104. control = dd->f_setpbc_control(ppd, plen, qp->s_srate,
  1105. be16_to_cpu(ibhdr->lrh[0]) >> 12);
  1106. pbc = ((u64) control << 32) | plen;
  1107. piobuf = dd->f_getsendbuf(ppd, pbc, &pbufn);
  1108. if (unlikely(piobuf == NULL))
  1109. return no_bufs_available(qp);
  1110. /*
  1111. * Write the pbc.
  1112. * We have to flush after the PBC for correctness on some cpus
  1113. * or WC buffer can be written out of order.
  1114. */
  1115. writeq(pbc, piobuf);
  1116. piobuf_orig = piobuf;
  1117. piobuf += 2;
  1118. flush_wc = dd->flags & QIB_PIO_FLUSH_WC;
  1119. if (len == 0) {
  1120. /*
  1121. * If there is just the header portion, must flush before
  1122. * writing last word of header for correctness, and after
  1123. * the last header word (trigger word).
  1124. */
  1125. if (flush_wc) {
  1126. qib_flush_wc();
  1127. qib_pio_copy(piobuf, hdr, hdrwords - 1);
  1128. qib_flush_wc();
  1129. __raw_writel(hdr[hdrwords - 1], piobuf + hdrwords - 1);
  1130. qib_flush_wc();
  1131. } else
  1132. qib_pio_copy(piobuf, hdr, hdrwords);
  1133. goto done;
  1134. }
  1135. if (flush_wc)
  1136. qib_flush_wc();
  1137. qib_pio_copy(piobuf, hdr, hdrwords);
  1138. piobuf += hdrwords;
  1139. /* The common case is aligned and contained in one segment. */
  1140. if (likely(ss->num_sge == 1 && len <= ss->sge.length &&
  1141. !((unsigned long)ss->sge.vaddr & (sizeof(u32) - 1)))) {
  1142. u32 *addr = (u32 *) ss->sge.vaddr;
  1143. /* Update address before sending packet. */
  1144. update_sge(ss, len);
  1145. if (flush_wc) {
  1146. qib_pio_copy(piobuf, addr, dwords - 1);
  1147. /* must flush early everything before trigger word */
  1148. qib_flush_wc();
  1149. __raw_writel(addr[dwords - 1], piobuf + dwords - 1);
  1150. /* be sure trigger word is written */
  1151. qib_flush_wc();
  1152. } else
  1153. qib_pio_copy(piobuf, addr, dwords);
  1154. goto done;
  1155. }
  1156. copy_io(piobuf, ss, len, flush_wc);
  1157. done:
  1158. if (dd->flags & QIB_USE_SPCL_TRIG) {
  1159. u32 spcl_off = (pbufn >= dd->piobcnt2k) ? 2047 : 1023;
  1160. qib_flush_wc();
  1161. __raw_writel(0xaebecede, piobuf_orig + spcl_off);
  1162. }
  1163. qib_sendbuf_done(dd, pbufn);
  1164. if (qp->s_rdma_mr) {
  1165. atomic_dec(&qp->s_rdma_mr->refcount);
  1166. qp->s_rdma_mr = NULL;
  1167. }
  1168. if (qp->s_wqe) {
  1169. spin_lock_irqsave(&qp->s_lock, flags);
  1170. qib_send_complete(qp, qp->s_wqe, IB_WC_SUCCESS);
  1171. spin_unlock_irqrestore(&qp->s_lock, flags);
  1172. } else if (qp->ibqp.qp_type == IB_QPT_RC) {
  1173. spin_lock_irqsave(&qp->s_lock, flags);
  1174. qib_rc_send_complete(qp, ibhdr);
  1175. spin_unlock_irqrestore(&qp->s_lock, flags);
  1176. }
  1177. return 0;
  1178. }
  1179. /**
  1180. * qib_verbs_send - send a packet
  1181. * @qp: the QP to send on
  1182. * @hdr: the packet header
  1183. * @hdrwords: the number of 32-bit words in the header
  1184. * @ss: the SGE to send
  1185. * @len: the length of the packet in bytes
  1186. *
  1187. * Return zero if packet is sent or queued OK.
  1188. * Return non-zero and clear qp->s_flags QIB_S_BUSY otherwise.
  1189. */
  1190. int qib_verbs_send(struct qib_qp *qp, struct qib_ib_header *hdr,
  1191. u32 hdrwords, struct qib_sge_state *ss, u32 len)
  1192. {
  1193. struct qib_devdata *dd = dd_from_ibdev(qp->ibqp.device);
  1194. u32 plen;
  1195. int ret;
  1196. u32 dwords = (len + 3) >> 2;
  1197. /*
  1198. * Calculate the send buffer trigger address.
  1199. * The +1 counts for the pbc control dword following the pbc length.
  1200. */
  1201. plen = hdrwords + dwords + 1;
  1202. /*
  1203. * VL15 packets (IB_QPT_SMI) will always use PIO, so we
  1204. * can defer SDMA restart until link goes ACTIVE without
  1205. * worrying about just how we got there.
  1206. */
  1207. if (qp->ibqp.qp_type == IB_QPT_SMI ||
  1208. !(dd->flags & QIB_HAS_SEND_DMA))
  1209. ret = qib_verbs_send_pio(qp, hdr, hdrwords, ss, len,
  1210. plen, dwords);
  1211. else
  1212. ret = qib_verbs_send_dma(qp, hdr, hdrwords, ss, len,
  1213. plen, dwords);
  1214. return ret;
  1215. }
  1216. int qib_snapshot_counters(struct qib_pportdata *ppd, u64 *swords,
  1217. u64 *rwords, u64 *spkts, u64 *rpkts,
  1218. u64 *xmit_wait)
  1219. {
  1220. int ret;
  1221. struct qib_devdata *dd = ppd->dd;
  1222. if (!(dd->flags & QIB_PRESENT)) {
  1223. /* no hardware, freeze, etc. */
  1224. ret = -EINVAL;
  1225. goto bail;
  1226. }
  1227. *swords = dd->f_portcntr(ppd, QIBPORTCNTR_WORDSEND);
  1228. *rwords = dd->f_portcntr(ppd, QIBPORTCNTR_WORDRCV);
  1229. *spkts = dd->f_portcntr(ppd, QIBPORTCNTR_PKTSEND);
  1230. *rpkts = dd->f_portcntr(ppd, QIBPORTCNTR_PKTRCV);
  1231. *xmit_wait = dd->f_portcntr(ppd, QIBPORTCNTR_SENDSTALL);
  1232. ret = 0;
  1233. bail:
  1234. return ret;
  1235. }
  1236. /**
  1237. * qib_get_counters - get various chip counters
  1238. * @dd: the qlogic_ib device
  1239. * @cntrs: counters are placed here
  1240. *
  1241. * Return the counters needed by recv_pma_get_portcounters().
  1242. */
  1243. int qib_get_counters(struct qib_pportdata *ppd,
  1244. struct qib_verbs_counters *cntrs)
  1245. {
  1246. int ret;
  1247. if (!(ppd->dd->flags & QIB_PRESENT)) {
  1248. /* no hardware, freeze, etc. */
  1249. ret = -EINVAL;
  1250. goto bail;
  1251. }
  1252. cntrs->symbol_error_counter =
  1253. ppd->dd->f_portcntr(ppd, QIBPORTCNTR_IBSYMBOLERR);
  1254. cntrs->link_error_recovery_counter =
  1255. ppd->dd->f_portcntr(ppd, QIBPORTCNTR_IBLINKERRRECOV);
  1256. /*
  1257. * The link downed counter counts when the other side downs the
  1258. * connection. We add in the number of times we downed the link
  1259. * due to local link integrity errors to compensate.
  1260. */
  1261. cntrs->link_downed_counter =
  1262. ppd->dd->f_portcntr(ppd, QIBPORTCNTR_IBLINKDOWN);
  1263. cntrs->port_rcv_errors =
  1264. ppd->dd->f_portcntr(ppd, QIBPORTCNTR_RXDROPPKT) +
  1265. ppd->dd->f_portcntr(ppd, QIBPORTCNTR_RCVOVFL) +
  1266. ppd->dd->f_portcntr(ppd, QIBPORTCNTR_ERR_RLEN) +
  1267. ppd->dd->f_portcntr(ppd, QIBPORTCNTR_INVALIDRLEN) +
  1268. ppd->dd->f_portcntr(ppd, QIBPORTCNTR_ERRLINK) +
  1269. ppd->dd->f_portcntr(ppd, QIBPORTCNTR_ERRICRC) +
  1270. ppd->dd->f_portcntr(ppd, QIBPORTCNTR_ERRVCRC) +
  1271. ppd->dd->f_portcntr(ppd, QIBPORTCNTR_ERRLPCRC) +
  1272. ppd->dd->f_portcntr(ppd, QIBPORTCNTR_BADFORMAT);
  1273. cntrs->port_rcv_errors +=
  1274. ppd->dd->f_portcntr(ppd, QIBPORTCNTR_RXLOCALPHYERR);
  1275. cntrs->port_rcv_errors +=
  1276. ppd->dd->f_portcntr(ppd, QIBPORTCNTR_RXVLERR);
  1277. cntrs->port_rcv_remphys_errors =
  1278. ppd->dd->f_portcntr(ppd, QIBPORTCNTR_RCVEBP);
  1279. cntrs->port_xmit_discards =
  1280. ppd->dd->f_portcntr(ppd, QIBPORTCNTR_UNSUPVL);
  1281. cntrs->port_xmit_data = ppd->dd->f_portcntr(ppd,
  1282. QIBPORTCNTR_WORDSEND);
  1283. cntrs->port_rcv_data = ppd->dd->f_portcntr(ppd,
  1284. QIBPORTCNTR_WORDRCV);
  1285. cntrs->port_xmit_packets = ppd->dd->f_portcntr(ppd,
  1286. QIBPORTCNTR_PKTSEND);
  1287. cntrs->port_rcv_packets = ppd->dd->f_portcntr(ppd,
  1288. QIBPORTCNTR_PKTRCV);
  1289. cntrs->local_link_integrity_errors =
  1290. ppd->dd->f_portcntr(ppd, QIBPORTCNTR_LLI);
  1291. cntrs->excessive_buffer_overrun_errors =
  1292. ppd->dd->f_portcntr(ppd, QIBPORTCNTR_EXCESSBUFOVFL);
  1293. cntrs->vl15_dropped =
  1294. ppd->dd->f_portcntr(ppd, QIBPORTCNTR_VL15PKTDROP);
  1295. ret = 0;
  1296. bail:
  1297. return ret;
  1298. }
  1299. /**
  1300. * qib_ib_piobufavail - callback when a PIO buffer is available
  1301. * @dd: the device pointer
  1302. *
  1303. * This is called from qib_intr() at interrupt level when a PIO buffer is
  1304. * available after qib_verbs_send() returned an error that no buffers were
  1305. * available. Disable the interrupt if there are no more QPs waiting.
  1306. */
  1307. void qib_ib_piobufavail(struct qib_devdata *dd)
  1308. {
  1309. struct qib_ibdev *dev = &dd->verbs_dev;
  1310. struct list_head *list;
  1311. struct qib_qp *qps[5];
  1312. struct qib_qp *qp;
  1313. unsigned long flags;
  1314. unsigned i, n;
  1315. list = &dev->piowait;
  1316. n = 0;
  1317. /*
  1318. * Note: checking that the piowait list is empty and clearing
  1319. * the buffer available interrupt needs to be atomic or we
  1320. * could end up with QPs on the wait list with the interrupt
  1321. * disabled.
  1322. */
  1323. spin_lock_irqsave(&dev->pending_lock, flags);
  1324. while (!list_empty(list)) {
  1325. if (n == ARRAY_SIZE(qps))
  1326. goto full;
  1327. qp = list_entry(list->next, struct qib_qp, iowait);
  1328. list_del_init(&qp->iowait);
  1329. atomic_inc(&qp->refcount);
  1330. qps[n++] = qp;
  1331. }
  1332. dd->f_wantpiobuf_intr(dd, 0);
  1333. full:
  1334. spin_unlock_irqrestore(&dev->pending_lock, flags);
  1335. for (i = 0; i < n; i++) {
  1336. qp = qps[i];
  1337. spin_lock_irqsave(&qp->s_lock, flags);
  1338. if (qp->s_flags & QIB_S_WAIT_PIO) {
  1339. qp->s_flags &= ~QIB_S_WAIT_PIO;
  1340. qib_schedule_send(qp);
  1341. }
  1342. spin_unlock_irqrestore(&qp->s_lock, flags);
  1343. /* Notify qib_destroy_qp() if it is waiting. */
  1344. if (atomic_dec_and_test(&qp->refcount))
  1345. wake_up(&qp->wait);
  1346. }
  1347. }
  1348. static int qib_query_device(struct ib_device *ibdev,
  1349. struct ib_device_attr *props)
  1350. {
  1351. struct qib_devdata *dd = dd_from_ibdev(ibdev);
  1352. struct qib_ibdev *dev = to_idev(ibdev);
  1353. memset(props, 0, sizeof(*props));
  1354. props->device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
  1355. IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
  1356. IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
  1357. IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE;
  1358. props->page_size_cap = PAGE_SIZE;
  1359. props->vendor_id =
  1360. QIB_SRC_OUI_1 << 16 | QIB_SRC_OUI_2 << 8 | QIB_SRC_OUI_3;
  1361. props->vendor_part_id = dd->deviceid;
  1362. props->hw_ver = dd->minrev;
  1363. props->sys_image_guid = ib_qib_sys_image_guid;
  1364. props->max_mr_size = ~0ULL;
  1365. props->max_qp = ib_qib_max_qps;
  1366. props->max_qp_wr = ib_qib_max_qp_wrs;
  1367. props->max_sge = ib_qib_max_sges;
  1368. props->max_cq = ib_qib_max_cqs;
  1369. props->max_ah = ib_qib_max_ahs;
  1370. props->max_cqe = ib_qib_max_cqes;
  1371. props->max_mr = dev->lk_table.max;
  1372. props->max_fmr = dev->lk_table.max;
  1373. props->max_map_per_fmr = 32767;
  1374. props->max_pd = ib_qib_max_pds;
  1375. props->max_qp_rd_atom = QIB_MAX_RDMA_ATOMIC;
  1376. props->max_qp_init_rd_atom = 255;
  1377. /* props->max_res_rd_atom */
  1378. props->max_srq = ib_qib_max_srqs;
  1379. props->max_srq_wr = ib_qib_max_srq_wrs;
  1380. props->max_srq_sge = ib_qib_max_srq_sges;
  1381. /* props->local_ca_ack_delay */
  1382. props->atomic_cap = IB_ATOMIC_GLOB;
  1383. props->max_pkeys = qib_get_npkeys(dd);
  1384. props->max_mcast_grp = ib_qib_max_mcast_grps;
  1385. props->max_mcast_qp_attach = ib_qib_max_mcast_qp_attached;
  1386. props->max_total_mcast_qp_attach = props->max_mcast_qp_attach *
  1387. props->max_mcast_grp;
  1388. return 0;
  1389. }
  1390. static int qib_query_port(struct ib_device *ibdev, u8 port,
  1391. struct ib_port_attr *props)
  1392. {
  1393. struct qib_devdata *dd = dd_from_ibdev(ibdev);
  1394. struct qib_ibport *ibp = to_iport(ibdev, port);
  1395. struct qib_pportdata *ppd = ppd_from_ibp(ibp);
  1396. enum ib_mtu mtu;
  1397. u16 lid = ppd->lid;
  1398. memset(props, 0, sizeof(*props));
  1399. props->lid = lid ? lid : be16_to_cpu(IB_LID_PERMISSIVE);
  1400. props->lmc = ppd->lmc;
  1401. props->sm_lid = ibp->sm_lid;
  1402. props->sm_sl = ibp->sm_sl;
  1403. props->state = dd->f_iblink_state(ppd->lastibcstat);
  1404. props->phys_state = dd->f_ibphys_portstate(ppd->lastibcstat);
  1405. props->port_cap_flags = ibp->port_cap_flags;
  1406. props->gid_tbl_len = QIB_GUIDS_PER_PORT;
  1407. props->max_msg_sz = 0x80000000;
  1408. props->pkey_tbl_len = qib_get_npkeys(dd);
  1409. props->bad_pkey_cntr = ibp->pkey_violations;
  1410. props->qkey_viol_cntr = ibp->qkey_violations;
  1411. props->active_width = ppd->link_width_active;
  1412. /* See rate_show() */
  1413. props->active_speed = ppd->link_speed_active;
  1414. props->max_vl_num = qib_num_vls(ppd->vls_supported);
  1415. props->init_type_reply = 0;
  1416. props->max_mtu = qib_ibmtu ? qib_ibmtu : IB_MTU_4096;
  1417. switch (ppd->ibmtu) {
  1418. case 4096:
  1419. mtu = IB_MTU_4096;
  1420. break;
  1421. case 2048:
  1422. mtu = IB_MTU_2048;
  1423. break;
  1424. case 1024:
  1425. mtu = IB_MTU_1024;
  1426. break;
  1427. case 512:
  1428. mtu = IB_MTU_512;
  1429. break;
  1430. case 256:
  1431. mtu = IB_MTU_256;
  1432. break;
  1433. default:
  1434. mtu = IB_MTU_2048;
  1435. }
  1436. props->active_mtu = mtu;
  1437. props->subnet_timeout = ibp->subnet_timeout;
  1438. return 0;
  1439. }
  1440. static int qib_modify_device(struct ib_device *device,
  1441. int device_modify_mask,
  1442. struct ib_device_modify *device_modify)
  1443. {
  1444. struct qib_devdata *dd = dd_from_ibdev(device);
  1445. unsigned i;
  1446. int ret;
  1447. if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
  1448. IB_DEVICE_MODIFY_NODE_DESC)) {
  1449. ret = -EOPNOTSUPP;
  1450. goto bail;
  1451. }
  1452. if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
  1453. memcpy(device->node_desc, device_modify->node_desc, 64);
  1454. for (i = 0; i < dd->num_pports; i++) {
  1455. struct qib_ibport *ibp = &dd->pport[i].ibport_data;
  1456. qib_node_desc_chg(ibp);
  1457. }
  1458. }
  1459. if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
  1460. ib_qib_sys_image_guid =
  1461. cpu_to_be64(device_modify->sys_image_guid);
  1462. for (i = 0; i < dd->num_pports; i++) {
  1463. struct qib_ibport *ibp = &dd->pport[i].ibport_data;
  1464. qib_sys_guid_chg(ibp);
  1465. }
  1466. }
  1467. ret = 0;
  1468. bail:
  1469. return ret;
  1470. }
  1471. static int qib_modify_port(struct ib_device *ibdev, u8 port,
  1472. int port_modify_mask, struct ib_port_modify *props)
  1473. {
  1474. struct qib_ibport *ibp = to_iport(ibdev, port);
  1475. struct qib_pportdata *ppd = ppd_from_ibp(ibp);
  1476. ibp->port_cap_flags |= props->set_port_cap_mask;
  1477. ibp->port_cap_flags &= ~props->clr_port_cap_mask;
  1478. if (props->set_port_cap_mask || props->clr_port_cap_mask)
  1479. qib_cap_mask_chg(ibp);
  1480. if (port_modify_mask & IB_PORT_SHUTDOWN)
  1481. qib_set_linkstate(ppd, QIB_IB_LINKDOWN);
  1482. if (port_modify_mask & IB_PORT_RESET_QKEY_CNTR)
  1483. ibp->qkey_violations = 0;
  1484. return 0;
  1485. }
  1486. static int qib_query_gid(struct ib_device *ibdev, u8 port,
  1487. int index, union ib_gid *gid)
  1488. {
  1489. struct qib_devdata *dd = dd_from_ibdev(ibdev);
  1490. int ret = 0;
  1491. if (!port || port > dd->num_pports)
  1492. ret = -EINVAL;
  1493. else {
  1494. struct qib_ibport *ibp = to_iport(ibdev, port);
  1495. struct qib_pportdata *ppd = ppd_from_ibp(ibp);
  1496. gid->global.subnet_prefix = ibp->gid_prefix;
  1497. if (index == 0)
  1498. gid->global.interface_id = ppd->guid;
  1499. else if (index < QIB_GUIDS_PER_PORT)
  1500. gid->global.interface_id = ibp->guids[index - 1];
  1501. else
  1502. ret = -EINVAL;
  1503. }
  1504. return ret;
  1505. }
  1506. static struct ib_pd *qib_alloc_pd(struct ib_device *ibdev,
  1507. struct ib_ucontext *context,
  1508. struct ib_udata *udata)
  1509. {
  1510. struct qib_ibdev *dev = to_idev(ibdev);
  1511. struct qib_pd *pd;
  1512. struct ib_pd *ret;
  1513. /*
  1514. * This is actually totally arbitrary. Some correctness tests
  1515. * assume there's a maximum number of PDs that can be allocated.
  1516. * We don't actually have this limit, but we fail the test if
  1517. * we allow allocations of more than we report for this value.
  1518. */
  1519. pd = kmalloc(sizeof *pd, GFP_KERNEL);
  1520. if (!pd) {
  1521. ret = ERR_PTR(-ENOMEM);
  1522. goto bail;
  1523. }
  1524. spin_lock(&dev->n_pds_lock);
  1525. if (dev->n_pds_allocated == ib_qib_max_pds) {
  1526. spin_unlock(&dev->n_pds_lock);
  1527. kfree(pd);
  1528. ret = ERR_PTR(-ENOMEM);
  1529. goto bail;
  1530. }
  1531. dev->n_pds_allocated++;
  1532. spin_unlock(&dev->n_pds_lock);
  1533. /* ib_alloc_pd() will initialize pd->ibpd. */
  1534. pd->user = udata != NULL;
  1535. ret = &pd->ibpd;
  1536. bail:
  1537. return ret;
  1538. }
  1539. static int qib_dealloc_pd(struct ib_pd *ibpd)
  1540. {
  1541. struct qib_pd *pd = to_ipd(ibpd);
  1542. struct qib_ibdev *dev = to_idev(ibpd->device);
  1543. spin_lock(&dev->n_pds_lock);
  1544. dev->n_pds_allocated--;
  1545. spin_unlock(&dev->n_pds_lock);
  1546. kfree(pd);
  1547. return 0;
  1548. }
  1549. int qib_check_ah(struct ib_device *ibdev, struct ib_ah_attr *ah_attr)
  1550. {
  1551. /* A multicast address requires a GRH (see ch. 8.4.1). */
  1552. if (ah_attr->dlid >= QIB_MULTICAST_LID_BASE &&
  1553. ah_attr->dlid != QIB_PERMISSIVE_LID &&
  1554. !(ah_attr->ah_flags & IB_AH_GRH))
  1555. goto bail;
  1556. if ((ah_attr->ah_flags & IB_AH_GRH) &&
  1557. ah_attr->grh.sgid_index >= QIB_GUIDS_PER_PORT)
  1558. goto bail;
  1559. if (ah_attr->dlid == 0)
  1560. goto bail;
  1561. if (ah_attr->port_num < 1 ||
  1562. ah_attr->port_num > ibdev->phys_port_cnt)
  1563. goto bail;
  1564. if (ah_attr->static_rate != IB_RATE_PORT_CURRENT &&
  1565. ib_rate_to_mult(ah_attr->static_rate) < 0)
  1566. goto bail;
  1567. if (ah_attr->sl > 15)
  1568. goto bail;
  1569. return 0;
  1570. bail:
  1571. return -EINVAL;
  1572. }
  1573. /**
  1574. * qib_create_ah - create an address handle
  1575. * @pd: the protection domain
  1576. * @ah_attr: the attributes of the AH
  1577. *
  1578. * This may be called from interrupt context.
  1579. */
  1580. static struct ib_ah *qib_create_ah(struct ib_pd *pd,
  1581. struct ib_ah_attr *ah_attr)
  1582. {
  1583. struct qib_ah *ah;
  1584. struct ib_ah *ret;
  1585. struct qib_ibdev *dev = to_idev(pd->device);
  1586. unsigned long flags;
  1587. if (qib_check_ah(pd->device, ah_attr)) {
  1588. ret = ERR_PTR(-EINVAL);
  1589. goto bail;
  1590. }
  1591. ah = kmalloc(sizeof *ah, GFP_ATOMIC);
  1592. if (!ah) {
  1593. ret = ERR_PTR(-ENOMEM);
  1594. goto bail;
  1595. }
  1596. spin_lock_irqsave(&dev->n_ahs_lock, flags);
  1597. if (dev->n_ahs_allocated == ib_qib_max_ahs) {
  1598. spin_unlock_irqrestore(&dev->n_ahs_lock, flags);
  1599. kfree(ah);
  1600. ret = ERR_PTR(-ENOMEM);
  1601. goto bail;
  1602. }
  1603. dev->n_ahs_allocated++;
  1604. spin_unlock_irqrestore(&dev->n_ahs_lock, flags);
  1605. /* ib_create_ah() will initialize ah->ibah. */
  1606. ah->attr = *ah_attr;
  1607. atomic_set(&ah->refcount, 0);
  1608. ret = &ah->ibah;
  1609. bail:
  1610. return ret;
  1611. }
  1612. /**
  1613. * qib_destroy_ah - destroy an address handle
  1614. * @ibah: the AH to destroy
  1615. *
  1616. * This may be called from interrupt context.
  1617. */
  1618. static int qib_destroy_ah(struct ib_ah *ibah)
  1619. {
  1620. struct qib_ibdev *dev = to_idev(ibah->device);
  1621. struct qib_ah *ah = to_iah(ibah);
  1622. unsigned long flags;
  1623. if (atomic_read(&ah->refcount) != 0)
  1624. return -EBUSY;
  1625. spin_lock_irqsave(&dev->n_ahs_lock, flags);
  1626. dev->n_ahs_allocated--;
  1627. spin_unlock_irqrestore(&dev->n_ahs_lock, flags);
  1628. kfree(ah);
  1629. return 0;
  1630. }
  1631. static int qib_modify_ah(struct ib_ah *ibah, struct ib_ah_attr *ah_attr)
  1632. {
  1633. struct qib_ah *ah = to_iah(ibah);
  1634. if (qib_check_ah(ibah->device, ah_attr))
  1635. return -EINVAL;
  1636. ah->attr = *ah_attr;
  1637. return 0;
  1638. }
  1639. static int qib_query_ah(struct ib_ah *ibah, struct ib_ah_attr *ah_attr)
  1640. {
  1641. struct qib_ah *ah = to_iah(ibah);
  1642. *ah_attr = ah->attr;
  1643. return 0;
  1644. }
  1645. /**
  1646. * qib_get_npkeys - return the size of the PKEY table for context 0
  1647. * @dd: the qlogic_ib device
  1648. */
  1649. unsigned qib_get_npkeys(struct qib_devdata *dd)
  1650. {
  1651. return ARRAY_SIZE(dd->rcd[0]->pkeys);
  1652. }
  1653. /*
  1654. * Return the indexed PKEY from the port PKEY table.
  1655. * No need to validate rcd[ctxt]; the port is setup if we are here.
  1656. */
  1657. unsigned qib_get_pkey(struct qib_ibport *ibp, unsigned index)
  1658. {
  1659. struct qib_pportdata *ppd = ppd_from_ibp(ibp);
  1660. struct qib_devdata *dd = ppd->dd;
  1661. unsigned ctxt = ppd->hw_pidx;
  1662. unsigned ret;
  1663. /* dd->rcd null if mini_init or some init failures */
  1664. if (!dd->rcd || index >= ARRAY_SIZE(dd->rcd[ctxt]->pkeys))
  1665. ret = 0;
  1666. else
  1667. ret = dd->rcd[ctxt]->pkeys[index];
  1668. return ret;
  1669. }
  1670. static int qib_query_pkey(struct ib_device *ibdev, u8 port, u16 index,
  1671. u16 *pkey)
  1672. {
  1673. struct qib_devdata *dd = dd_from_ibdev(ibdev);
  1674. int ret;
  1675. if (index >= qib_get_npkeys(dd)) {
  1676. ret = -EINVAL;
  1677. goto bail;
  1678. }
  1679. *pkey = qib_get_pkey(to_iport(ibdev, port), index);
  1680. ret = 0;
  1681. bail:
  1682. return ret;
  1683. }
  1684. /**
  1685. * qib_alloc_ucontext - allocate a ucontest
  1686. * @ibdev: the infiniband device
  1687. * @udata: not used by the QLogic_IB driver
  1688. */
  1689. static struct ib_ucontext *qib_alloc_ucontext(struct ib_device *ibdev,
  1690. struct ib_udata *udata)
  1691. {
  1692. struct qib_ucontext *context;
  1693. struct ib_ucontext *ret;
  1694. context = kmalloc(sizeof *context, GFP_KERNEL);
  1695. if (!context) {
  1696. ret = ERR_PTR(-ENOMEM);
  1697. goto bail;
  1698. }
  1699. ret = &context->ibucontext;
  1700. bail:
  1701. return ret;
  1702. }
  1703. static int qib_dealloc_ucontext(struct ib_ucontext *context)
  1704. {
  1705. kfree(to_iucontext(context));
  1706. return 0;
  1707. }
  1708. static void init_ibport(struct qib_pportdata *ppd)
  1709. {
  1710. struct qib_verbs_counters cntrs;
  1711. struct qib_ibport *ibp = &ppd->ibport_data;
  1712. spin_lock_init(&ibp->lock);
  1713. /* Set the prefix to the default value (see ch. 4.1.1) */
  1714. ibp->gid_prefix = IB_DEFAULT_GID_PREFIX;
  1715. ibp->sm_lid = be16_to_cpu(IB_LID_PERMISSIVE);
  1716. ibp->port_cap_flags = IB_PORT_SYS_IMAGE_GUID_SUP |
  1717. IB_PORT_CLIENT_REG_SUP | IB_PORT_SL_MAP_SUP |
  1718. IB_PORT_TRAP_SUP | IB_PORT_AUTO_MIGR_SUP |
  1719. IB_PORT_DR_NOTICE_SUP | IB_PORT_CAP_MASK_NOTICE_SUP |
  1720. IB_PORT_OTHER_LOCAL_CHANGES_SUP;
  1721. if (ppd->dd->flags & QIB_HAS_LINK_LATENCY)
  1722. ibp->port_cap_flags |= IB_PORT_LINK_LATENCY_SUP;
  1723. ibp->pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
  1724. ibp->pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
  1725. ibp->pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
  1726. ibp->pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
  1727. ibp->pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
  1728. /* Snapshot current HW counters to "clear" them. */
  1729. qib_get_counters(ppd, &cntrs);
  1730. ibp->z_symbol_error_counter = cntrs.symbol_error_counter;
  1731. ibp->z_link_error_recovery_counter =
  1732. cntrs.link_error_recovery_counter;
  1733. ibp->z_link_downed_counter = cntrs.link_downed_counter;
  1734. ibp->z_port_rcv_errors = cntrs.port_rcv_errors;
  1735. ibp->z_port_rcv_remphys_errors = cntrs.port_rcv_remphys_errors;
  1736. ibp->z_port_xmit_discards = cntrs.port_xmit_discards;
  1737. ibp->z_port_xmit_data = cntrs.port_xmit_data;
  1738. ibp->z_port_rcv_data = cntrs.port_rcv_data;
  1739. ibp->z_port_xmit_packets = cntrs.port_xmit_packets;
  1740. ibp->z_port_rcv_packets = cntrs.port_rcv_packets;
  1741. ibp->z_local_link_integrity_errors =
  1742. cntrs.local_link_integrity_errors;
  1743. ibp->z_excessive_buffer_overrun_errors =
  1744. cntrs.excessive_buffer_overrun_errors;
  1745. ibp->z_vl15_dropped = cntrs.vl15_dropped;
  1746. }
  1747. /**
  1748. * qib_register_ib_device - register our device with the infiniband core
  1749. * @dd: the device data structure
  1750. * Return the allocated qib_ibdev pointer or NULL on error.
  1751. */
  1752. int qib_register_ib_device(struct qib_devdata *dd)
  1753. {
  1754. struct qib_ibdev *dev = &dd->verbs_dev;
  1755. struct ib_device *ibdev = &dev->ibdev;
  1756. struct qib_pportdata *ppd = dd->pport;
  1757. unsigned i, lk_tab_size;
  1758. int ret;
  1759. dev->qp_table_size = ib_qib_qp_table_size;
  1760. dev->qp_table = kzalloc(dev->qp_table_size * sizeof *dev->qp_table,
  1761. GFP_KERNEL);
  1762. if (!dev->qp_table) {
  1763. ret = -ENOMEM;
  1764. goto err_qpt;
  1765. }
  1766. for (i = 0; i < dd->num_pports; i++)
  1767. init_ibport(ppd + i);
  1768. /* Only need to initialize non-zero fields. */
  1769. spin_lock_init(&dev->qpt_lock);
  1770. spin_lock_init(&dev->n_pds_lock);
  1771. spin_lock_init(&dev->n_ahs_lock);
  1772. spin_lock_init(&dev->n_cqs_lock);
  1773. spin_lock_init(&dev->n_qps_lock);
  1774. spin_lock_init(&dev->n_srqs_lock);
  1775. spin_lock_init(&dev->n_mcast_grps_lock);
  1776. init_timer(&dev->mem_timer);
  1777. dev->mem_timer.function = mem_timer;
  1778. dev->mem_timer.data = (unsigned long) dev;
  1779. qib_init_qpn_table(dd, &dev->qpn_table);
  1780. /*
  1781. * The top ib_qib_lkey_table_size bits are used to index the
  1782. * table. The lower 8 bits can be owned by the user (copied from
  1783. * the LKEY). The remaining bits act as a generation number or tag.
  1784. */
  1785. spin_lock_init(&dev->lk_table.lock);
  1786. dev->lk_table.max = 1 << ib_qib_lkey_table_size;
  1787. lk_tab_size = dev->lk_table.max * sizeof(*dev->lk_table.table);
  1788. dev->lk_table.table = (struct qib_mregion **)
  1789. __get_free_pages(GFP_KERNEL, get_order(lk_tab_size));
  1790. if (dev->lk_table.table == NULL) {
  1791. ret = -ENOMEM;
  1792. goto err_lk;
  1793. }
  1794. memset(dev->lk_table.table, 0, lk_tab_size);
  1795. INIT_LIST_HEAD(&dev->pending_mmaps);
  1796. spin_lock_init(&dev->pending_lock);
  1797. dev->mmap_offset = PAGE_SIZE;
  1798. spin_lock_init(&dev->mmap_offset_lock);
  1799. INIT_LIST_HEAD(&dev->piowait);
  1800. INIT_LIST_HEAD(&dev->dmawait);
  1801. INIT_LIST_HEAD(&dev->txwait);
  1802. INIT_LIST_HEAD(&dev->memwait);
  1803. INIT_LIST_HEAD(&dev->txreq_free);
  1804. if (ppd->sdma_descq_cnt) {
  1805. dev->pio_hdrs = dma_alloc_coherent(&dd->pcidev->dev,
  1806. ppd->sdma_descq_cnt *
  1807. sizeof(struct qib_pio_header),
  1808. &dev->pio_hdrs_phys,
  1809. GFP_KERNEL);
  1810. if (!dev->pio_hdrs) {
  1811. ret = -ENOMEM;
  1812. goto err_hdrs;
  1813. }
  1814. }
  1815. for (i = 0; i < ppd->sdma_descq_cnt; i++) {
  1816. struct qib_verbs_txreq *tx;
  1817. tx = kzalloc(sizeof *tx, GFP_KERNEL);
  1818. if (!tx) {
  1819. ret = -ENOMEM;
  1820. goto err_tx;
  1821. }
  1822. tx->hdr_inx = i;
  1823. list_add(&tx->txreq.list, &dev->txreq_free);
  1824. }
  1825. /*
  1826. * The system image GUID is supposed to be the same for all
  1827. * IB HCAs in a single system but since there can be other
  1828. * device types in the system, we can't be sure this is unique.
  1829. */
  1830. if (!ib_qib_sys_image_guid)
  1831. ib_qib_sys_image_guid = ppd->guid;
  1832. strlcpy(ibdev->name, "qib%d", IB_DEVICE_NAME_MAX);
  1833. ibdev->owner = THIS_MODULE;
  1834. ibdev->node_guid = ppd->guid;
  1835. ibdev->uverbs_abi_ver = QIB_UVERBS_ABI_VERSION;
  1836. ibdev->uverbs_cmd_mask =
  1837. (1ull << IB_USER_VERBS_CMD_GET_CONTEXT) |
  1838. (1ull << IB_USER_VERBS_CMD_QUERY_DEVICE) |
  1839. (1ull << IB_USER_VERBS_CMD_QUERY_PORT) |
  1840. (1ull << IB_USER_VERBS_CMD_ALLOC_PD) |
  1841. (1ull << IB_USER_VERBS_CMD_DEALLOC_PD) |
  1842. (1ull << IB_USER_VERBS_CMD_CREATE_AH) |
  1843. (1ull << IB_USER_VERBS_CMD_MODIFY_AH) |
  1844. (1ull << IB_USER_VERBS_CMD_QUERY_AH) |
  1845. (1ull << IB_USER_VERBS_CMD_DESTROY_AH) |
  1846. (1ull << IB_USER_VERBS_CMD_REG_MR) |
  1847. (1ull << IB_USER_VERBS_CMD_DEREG_MR) |
  1848. (1ull << IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) |
  1849. (1ull << IB_USER_VERBS_CMD_CREATE_CQ) |
  1850. (1ull << IB_USER_VERBS_CMD_RESIZE_CQ) |
  1851. (1ull << IB_USER_VERBS_CMD_DESTROY_CQ) |
  1852. (1ull << IB_USER_VERBS_CMD_POLL_CQ) |
  1853. (1ull << IB_USER_VERBS_CMD_REQ_NOTIFY_CQ) |
  1854. (1ull << IB_USER_VERBS_CMD_CREATE_QP) |
  1855. (1ull << IB_USER_VERBS_CMD_QUERY_QP) |
  1856. (1ull << IB_USER_VERBS_CMD_MODIFY_QP) |
  1857. (1ull << IB_USER_VERBS_CMD_DESTROY_QP) |
  1858. (1ull << IB_USER_VERBS_CMD_POST_SEND) |
  1859. (1ull << IB_USER_VERBS_CMD_POST_RECV) |
  1860. (1ull << IB_USER_VERBS_CMD_ATTACH_MCAST) |
  1861. (1ull << IB_USER_VERBS_CMD_DETACH_MCAST) |
  1862. (1ull << IB_USER_VERBS_CMD_CREATE_SRQ) |
  1863. (1ull << IB_USER_VERBS_CMD_MODIFY_SRQ) |
  1864. (1ull << IB_USER_VERBS_CMD_QUERY_SRQ) |
  1865. (1ull << IB_USER_VERBS_CMD_DESTROY_SRQ) |
  1866. (1ull << IB_USER_VERBS_CMD_POST_SRQ_RECV);
  1867. ibdev->node_type = RDMA_NODE_IB_CA;
  1868. ibdev->phys_port_cnt = dd->num_pports;
  1869. ibdev->num_comp_vectors = 1;
  1870. ibdev->dma_device = &dd->pcidev->dev;
  1871. ibdev->query_device = qib_query_device;
  1872. ibdev->modify_device = qib_modify_device;
  1873. ibdev->query_port = qib_query_port;
  1874. ibdev->modify_port = qib_modify_port;
  1875. ibdev->query_pkey = qib_query_pkey;
  1876. ibdev->query_gid = qib_query_gid;
  1877. ibdev->alloc_ucontext = qib_alloc_ucontext;
  1878. ibdev->dealloc_ucontext = qib_dealloc_ucontext;
  1879. ibdev->alloc_pd = qib_alloc_pd;
  1880. ibdev->dealloc_pd = qib_dealloc_pd;
  1881. ibdev->create_ah = qib_create_ah;
  1882. ibdev->destroy_ah = qib_destroy_ah;
  1883. ibdev->modify_ah = qib_modify_ah;
  1884. ibdev->query_ah = qib_query_ah;
  1885. ibdev->create_srq = qib_create_srq;
  1886. ibdev->modify_srq = qib_modify_srq;
  1887. ibdev->query_srq = qib_query_srq;
  1888. ibdev->destroy_srq = qib_destroy_srq;
  1889. ibdev->create_qp = qib_create_qp;
  1890. ibdev->modify_qp = qib_modify_qp;
  1891. ibdev->query_qp = qib_query_qp;
  1892. ibdev->destroy_qp = qib_destroy_qp;
  1893. ibdev->post_send = qib_post_send;
  1894. ibdev->post_recv = qib_post_receive;
  1895. ibdev->post_srq_recv = qib_post_srq_receive;
  1896. ibdev->create_cq = qib_create_cq;
  1897. ibdev->destroy_cq = qib_destroy_cq;
  1898. ibdev->resize_cq = qib_resize_cq;
  1899. ibdev->poll_cq = qib_poll_cq;
  1900. ibdev->req_notify_cq = qib_req_notify_cq;
  1901. ibdev->get_dma_mr = qib_get_dma_mr;
  1902. ibdev->reg_phys_mr = qib_reg_phys_mr;
  1903. ibdev->reg_user_mr = qib_reg_user_mr;
  1904. ibdev->dereg_mr = qib_dereg_mr;
  1905. ibdev->alloc_fast_reg_mr = qib_alloc_fast_reg_mr;
  1906. ibdev->alloc_fast_reg_page_list = qib_alloc_fast_reg_page_list;
  1907. ibdev->free_fast_reg_page_list = qib_free_fast_reg_page_list;
  1908. ibdev->alloc_fmr = qib_alloc_fmr;
  1909. ibdev->map_phys_fmr = qib_map_phys_fmr;
  1910. ibdev->unmap_fmr = qib_unmap_fmr;
  1911. ibdev->dealloc_fmr = qib_dealloc_fmr;
  1912. ibdev->attach_mcast = qib_multicast_attach;
  1913. ibdev->detach_mcast = qib_multicast_detach;
  1914. ibdev->process_mad = qib_process_mad;
  1915. ibdev->mmap = qib_mmap;
  1916. ibdev->dma_ops = &qib_dma_mapping_ops;
  1917. snprintf(ibdev->node_desc, sizeof(ibdev->node_desc),
  1918. QIB_IDSTR " %s", init_utsname()->nodename);
  1919. ret = ib_register_device(ibdev, qib_create_port_files);
  1920. if (ret)
  1921. goto err_reg;
  1922. ret = qib_create_agents(dev);
  1923. if (ret)
  1924. goto err_agents;
  1925. if (qib_verbs_register_sysfs(dd))
  1926. goto err_class;
  1927. goto bail;
  1928. err_class:
  1929. qib_free_agents(dev);
  1930. err_agents:
  1931. ib_unregister_device(ibdev);
  1932. err_reg:
  1933. err_tx:
  1934. while (!list_empty(&dev->txreq_free)) {
  1935. struct list_head *l = dev->txreq_free.next;
  1936. struct qib_verbs_txreq *tx;
  1937. list_del(l);
  1938. tx = list_entry(l, struct qib_verbs_txreq, txreq.list);
  1939. kfree(tx);
  1940. }
  1941. if (ppd->sdma_descq_cnt)
  1942. dma_free_coherent(&dd->pcidev->dev,
  1943. ppd->sdma_descq_cnt *
  1944. sizeof(struct qib_pio_header),
  1945. dev->pio_hdrs, dev->pio_hdrs_phys);
  1946. err_hdrs:
  1947. free_pages((unsigned long) dev->lk_table.table, get_order(lk_tab_size));
  1948. err_lk:
  1949. kfree(dev->qp_table);
  1950. err_qpt:
  1951. qib_dev_err(dd, "cannot register verbs: %d!\n", -ret);
  1952. bail:
  1953. return ret;
  1954. }
  1955. void qib_unregister_ib_device(struct qib_devdata *dd)
  1956. {
  1957. struct qib_ibdev *dev = &dd->verbs_dev;
  1958. struct ib_device *ibdev = &dev->ibdev;
  1959. u32 qps_inuse;
  1960. unsigned lk_tab_size;
  1961. qib_verbs_unregister_sysfs(dd);
  1962. qib_free_agents(dev);
  1963. ib_unregister_device(ibdev);
  1964. if (!list_empty(&dev->piowait))
  1965. qib_dev_err(dd, "piowait list not empty!\n");
  1966. if (!list_empty(&dev->dmawait))
  1967. qib_dev_err(dd, "dmawait list not empty!\n");
  1968. if (!list_empty(&dev->txwait))
  1969. qib_dev_err(dd, "txwait list not empty!\n");
  1970. if (!list_empty(&dev->memwait))
  1971. qib_dev_err(dd, "memwait list not empty!\n");
  1972. if (dev->dma_mr)
  1973. qib_dev_err(dd, "DMA MR not NULL!\n");
  1974. qps_inuse = qib_free_all_qps(dd);
  1975. if (qps_inuse)
  1976. qib_dev_err(dd, "QP memory leak! %u still in use\n",
  1977. qps_inuse);
  1978. del_timer_sync(&dev->mem_timer);
  1979. qib_free_qpn_table(&dev->qpn_table);
  1980. while (!list_empty(&dev->txreq_free)) {
  1981. struct list_head *l = dev->txreq_free.next;
  1982. struct qib_verbs_txreq *tx;
  1983. list_del(l);
  1984. tx = list_entry(l, struct qib_verbs_txreq, txreq.list);
  1985. kfree(tx);
  1986. }
  1987. if (dd->pport->sdma_descq_cnt)
  1988. dma_free_coherent(&dd->pcidev->dev,
  1989. dd->pport->sdma_descq_cnt *
  1990. sizeof(struct qib_pio_header),
  1991. dev->pio_hdrs, dev->pio_hdrs_phys);
  1992. lk_tab_size = dev->lk_table.max * sizeof(*dev->lk_table.table);
  1993. free_pages((unsigned long) dev->lk_table.table,
  1994. get_order(lk_tab_size));
  1995. kfree(dev->qp_table);
  1996. }