PageRenderTime 71ms CodeModel.GetById 18ms RepoModel.GetById 0ms app.codeStats 0ms

/arch/arm/mach-msm/qdsp5v2/audio_mp3.c

https://bitbucket.org/sammyz/iscream_thunderc-2.6.35-rebase
C | 2505 lines | 2094 code | 304 blank | 107 comment | 308 complexity | ff24e02e18d75190a0e4efeff7c4ea42 MD5 | raw file
Possible License(s): GPL-2.0, LGPL-2.0, AGPL-1.0
  1. /* mp3 audio output device
  2. *
  3. * Copyright (C) 2008 Google, Inc.
  4. * Copyright (C) 2008 HTC Corporation
  5. * Copyright (c) 2009-2010, Code Aurora Forum. All rights reserved.
  6. *
  7. * This software is licensed under the terms of the GNU General Public
  8. * License version 2, as published by the Free Software Foundation, and
  9. * may be copied, distributed, and modified under those terms.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. */
  17. #include <linux/module.h>
  18. #include <linux/fs.h>
  19. #include <linux/miscdevice.h>
  20. #include <linux/uaccess.h>
  21. #include <linux/kthread.h>
  22. #include <linux/wait.h>
  23. #include <linux/dma-mapping.h>
  24. #include <linux/debugfs.h>
  25. #include <linux/delay.h>
  26. #include <linux/earlysuspend.h>
  27. #include <linux/list.h>
  28. #include <linux/android_pmem.h>
  29. #include <asm/atomic.h>
  30. #include <asm/ioctls.h>
  31. #include <mach/msm_adsp.h>
  32. #include <linux/msm_audio.h>
  33. #include <mach/qdsp5v2/audio_dev_ctl.h>
  34. #include <mach/qdsp5v2/qdsp5audppmsg.h>
  35. #include <mach/qdsp5v2/qdsp5audplaycmdi.h>
  36. #include <mach/qdsp5v2/qdsp5audplaymsg.h>
  37. #include <mach/qdsp5v2/audio_dev_ctl.h>
  38. #include <mach/qdsp5v2/audpp.h>
  39. #include <mach/debug_mm.h>
  40. #include <linux/slab.h>
  41. #define ADRV_STATUS_AIO_INTF 0x00000001
  42. #define ADRV_STATUS_OBUF_GIVEN 0x00000002
  43. #define ADRV_STATUS_IBUF_GIVEN 0x00000004
  44. #define ADRV_STATUS_FSYNC 0x00000008
  45. /* Size must be power of 2 */
  46. #define BUFSZ_MAX 32768
  47. #define BUFSZ_MIN 4096
  48. #define DMASZ_MAX (BUFSZ_MAX * 2)
  49. #define DMASZ_MIN (BUFSZ_MIN * 2)
  50. #define AUDPLAY_INVALID_READ_PTR_OFFSET 0xFFFF
  51. #define AUDDEC_DEC_MP3 2
  52. #define PCM_BUFSZ_MIN 4800 /* Hold one stereo MP3 frame */
  53. #define PCM_BUF_MAX_COUNT 5 /* DSP only accepts 5 buffers at most
  54. but support 2 buffers currently */
  55. #define ROUTING_MODE_FTRT 1
  56. #define ROUTING_MODE_RT 2
  57. /* Decoder status received from AUDPPTASK */
  58. #define AUDPP_DEC_STATUS_SLEEP 0
  59. #define AUDPP_DEC_STATUS_INIT 1
  60. #define AUDPP_DEC_STATUS_CFG 2
  61. #define AUDPP_DEC_STATUS_PLAY 3
  62. #define AUDMP3_METAFIELD_MASK 0xFFFF0000
  63. #define AUDMP3_EOS_FLG_OFFSET 0x0A /* Offset from beginning of buffer */
  64. #define AUDMP3_EOS_FLG_MASK 0x01
  65. #define AUDMP3_EOS_NONE 0x0 /* No EOS detected */
  66. #define AUDMP3_EOS_SET 0x1 /* EOS set in meta field */
  67. #define AUDMP3_EVENT_NUM 10 /* Default number of pre-allocated event packets */
  68. #define BITSTREAM_ERROR_THRESHOLD_VALUE 0x1 /* DEFAULT THRESHOLD VALUE */
  69. #define __CONTAINS(r, v, l) ({ \
  70. typeof(r) __r = r; \
  71. typeof(v) __v = v; \
  72. typeof(v) __e = __v + l; \
  73. int res = ((__v >= __r->vaddr) && \
  74. (__e <= __r->vaddr + __r->len)); \
  75. res; \
  76. })
  77. #define CONTAINS(r1, r2) ({ \
  78. typeof(r2) __r2 = r2; \
  79. __CONTAINS(r1, __r2->vaddr, __r2->len); \
  80. })
  81. #define IN_RANGE(r, v) ({ \
  82. typeof(r) __r = r; \
  83. typeof(v) __vv = v; \
  84. int res = ((__vv >= __r->vaddr) && \
  85. (__vv < (__r->vaddr + __r->len))); \
  86. res; \
  87. })
  88. #define OVERLAPS(r1, r2) ({ \
  89. typeof(r1) __r1 = r1; \
  90. typeof(r2) __r2 = r2; \
  91. typeof(__r2->vaddr) __v = __r2->vaddr; \
  92. typeof(__v) __e = __v + __r2->len - 1; \
  93. int res = (IN_RANGE(__r1, __v) || IN_RANGE(__r1, __e)); \
  94. res; \
  95. })
  96. struct buffer {
  97. void *data;
  98. unsigned size;
  99. unsigned used; /* Input usage actual DSP produced PCM size */
  100. unsigned addr;
  101. unsigned short mfield_sz; /*only useful for data has meta field */
  102. };
  103. #ifdef CONFIG_HAS_EARLYSUSPEND
  104. struct audmp3_suspend_ctl {
  105. struct early_suspend node;
  106. struct audio *audio;
  107. };
  108. #endif
  109. struct audmp3_event {
  110. struct list_head list;
  111. int event_type;
  112. union msm_audio_event_payload payload;
  113. };
  114. struct audmp3_pmem_region {
  115. struct list_head list;
  116. struct file *file;
  117. int fd;
  118. void *vaddr;
  119. unsigned long paddr;
  120. unsigned long kvaddr;
  121. unsigned long len;
  122. unsigned ref_cnt;
  123. };
  124. struct audmp3_buffer_node {
  125. struct list_head list;
  126. struct msm_audio_aio_buf buf;
  127. unsigned long paddr;
  128. };
  129. struct audmp3_drv_operations {
  130. void (*pcm_buf_update)(struct audio *, uint32_t *);
  131. void (*buffer_refresh)(struct audio *);
  132. void (*send_data)(struct audio *, unsigned);
  133. void (*out_flush)(struct audio *);
  134. void (*in_flush)(struct audio *);
  135. int (*fsync)(struct audio *);
  136. };
  137. struct audio {
  138. struct buffer out[2];
  139. spinlock_t dsp_lock;
  140. uint8_t out_head;
  141. uint8_t out_tail;
  142. uint8_t out_needed; /* number of buffers the dsp is waiting for */
  143. unsigned out_dma_sz;
  144. struct list_head out_queue; /* queue to retain output buffers */
  145. atomic_t out_bytes;
  146. struct mutex lock;
  147. struct mutex write_lock;
  148. wait_queue_head_t write_wait;
  149. /* Host PCM section */
  150. struct buffer in[PCM_BUF_MAX_COUNT];
  151. struct mutex read_lock;
  152. wait_queue_head_t read_wait; /* Wait queue for read */
  153. char *read_data; /* pointer to reader buffer */
  154. int32_t read_phys; /* physical address of reader buffer */
  155. uint8_t read_next; /* index to input buffers to be read next */
  156. uint8_t fill_next; /* index to buffer that DSP should be filling */
  157. uint8_t pcm_buf_count; /* number of pcm buffer allocated */
  158. struct list_head in_queue; /* queue to retain input buffers */
  159. /* ---- End of Host PCM section */
  160. struct msm_adsp_module *audplay;
  161. /* configuration to use on next enable */
  162. uint32_t out_sample_rate;
  163. uint32_t out_channel_mode;
  164. /* data allocated for various buffers */
  165. char *data;
  166. int32_t phys; /* physical address of write buffer */
  167. uint32_t drv_status;
  168. int mfield; /* meta field embedded in data */
  169. int rflush; /* Read flush */
  170. int wflush; /* Write flush */
  171. int opened;
  172. int enabled;
  173. int running;
  174. int stopped; /* set when stopped, cleared on flush */
  175. int pcm_feedback;
  176. int buf_refresh;
  177. int teos; /* valid only if tunnel mode & no data left for decoder */
  178. enum msm_aud_decoder_state dec_state; /* Represents decoder state */
  179. int reserved; /* A byte is being reserved */
  180. char rsv_byte; /* Handle odd length user data */
  181. const char *module_name;
  182. unsigned queue_id;
  183. uint16_t dec_id;
  184. uint32_t read_ptr_offset;
  185. int16_t source;
  186. #ifdef CONFIG_HAS_EARLYSUSPEND
  187. struct audmp3_suspend_ctl suspend_ctl;
  188. #endif
  189. #ifdef CONFIG_DEBUG_FS
  190. struct dentry *dentry;
  191. #endif
  192. wait_queue_head_t wait;
  193. struct list_head free_event_queue;
  194. struct list_head event_queue;
  195. wait_queue_head_t event_wait;
  196. spinlock_t event_queue_lock;
  197. struct mutex get_event_lock;
  198. int event_abort;
  199. /* AV sync Info */
  200. int avsync_flag; /* Flag to indicate feedback from DSP */
  201. wait_queue_head_t avsync_wait;/* Wait queue for AV Sync Message */
  202. /* flags, 48 bits sample/bytes counter per channel */
  203. uint16_t avsync[AUDPP_AVSYNC_CH_COUNT * AUDPP_AVSYNC_NUM_WORDS + 1];
  204. uint32_t device_events;
  205. struct list_head pmem_region_queue; /* protected by lock */
  206. struct audmp3_drv_operations drv_ops;
  207. struct msm_audio_bitstream_info stream_info;
  208. struct msm_audio_bitstream_error_info bitstream_error_info;
  209. uint32_t bitstream_error_threshold_value;
  210. int eq_enable;
  211. int eq_needs_commit;
  212. struct audpp_cmd_cfg_object_params_eqalizer eq;
  213. struct audpp_cmd_cfg_object_params_volume vol_pan;
  214. };
  215. static int auddec_dsp_config(struct audio *audio, int enable);
  216. static void audpp_cmd_cfg_adec_params(struct audio *audio);
  217. static void audpp_cmd_cfg_routing_mode(struct audio *audio);
  218. static void audplay_send_data(struct audio *audio, unsigned needed);
  219. static void audplay_error_threshold_config(struct audio *audio);
  220. static void audplay_config_hostpcm(struct audio *audio);
  221. static void audplay_buffer_refresh(struct audio *audio);
  222. static void audio_dsp_event(void *private, unsigned id, uint16_t *msg);
  223. static void audmp3_post_event(struct audio *audio, int type,
  224. union msm_audio_event_payload payload);
  225. static unsigned long audmp3_pmem_fixup(struct audio *audio, void *addr,
  226. unsigned long len, int ref_up);
  227. static void mp3_listner(u32 evt_id, union auddev_evt_data *evt_payload,
  228. void *private_data)
  229. {
  230. struct audio *audio = (struct audio *) private_data;
  231. switch (evt_id) {
  232. case AUDDEV_EVT_DEV_RDY:
  233. MM_DBG(":AUDDEV_EVT_DEV_RDY\n");
  234. audio->source |= (0x1 << evt_payload->routing_id);
  235. if (audio->running == 1 && audio->enabled == 1)
  236. audpp_route_stream(audio->dec_id, audio->source);
  237. break;
  238. case AUDDEV_EVT_DEV_RLS:
  239. MM_DBG(":AUDDEV_EVT_DEV_RLS\n");
  240. audio->source &= ~(0x1 << evt_payload->routing_id);
  241. if (audio->running == 1 && audio->enabled == 1)
  242. audpp_route_stream(audio->dec_id, audio->source);
  243. break;
  244. case AUDDEV_EVT_STREAM_VOL_CHG:
  245. audio->vol_pan.volume = evt_payload->session_vol;
  246. MM_DBG(":AUDDEV_EVT_STREAM_VOL_CHG, stream vol %d\n",
  247. audio->vol_pan.volume);
  248. if (audio->running)
  249. audpp_dsp_set_vol_pan(audio->dec_id, &audio->vol_pan,
  250. POPP);
  251. break;
  252. default:
  253. MM_ERR(":ERROR:wrong event\n");
  254. break;
  255. }
  256. }
  257. /* must be called with audio->lock held */
  258. static int audio_enable(struct audio *audio)
  259. {
  260. MM_DBG("\n"); /* Macro prints the file name and function */
  261. if (audio->enabled)
  262. return 0;
  263. audio->dec_state = MSM_AUD_DECODER_STATE_NONE;
  264. audio->out_tail = 0;
  265. audio->out_needed = 0;
  266. if (msm_adsp_enable(audio->audplay)) {
  267. MM_ERR("msm_adsp_enable(audplay) failed\n");
  268. return -ENODEV;
  269. }
  270. if (audpp_enable(audio->dec_id, audio_dsp_event, audio)) {
  271. MM_ERR("audpp_enable() failed\n");
  272. msm_adsp_disable(audio->audplay);
  273. return -ENODEV;
  274. }
  275. audio->enabled = 1;
  276. return 0;
  277. }
  278. /* must be called with audio->lock held */
  279. static int audio_disable(struct audio *audio)
  280. {
  281. int rc = 0;
  282. MM_DBG("\n"); /* Macro prints the file name and function */
  283. if (audio->enabled) {
  284. audio->enabled = 0;
  285. audio->dec_state = MSM_AUD_DECODER_STATE_NONE;
  286. auddec_dsp_config(audio, 0);
  287. rc = wait_event_interruptible_timeout(audio->wait,
  288. audio->dec_state != MSM_AUD_DECODER_STATE_NONE,
  289. msecs_to_jiffies(MSM_AUD_DECODER_WAIT_MS));
  290. if (rc == 0)
  291. rc = -ETIMEDOUT;
  292. else if (audio->dec_state != MSM_AUD_DECODER_STATE_CLOSE)
  293. rc = -EFAULT;
  294. else
  295. rc = 0;
  296. wake_up(&audio->write_wait);
  297. wake_up(&audio->read_wait);
  298. msm_adsp_disable(audio->audplay);
  299. audpp_disable(audio->dec_id, audio);
  300. audio->out_needed = 0;
  301. }
  302. return rc;
  303. }
  304. /* ------------------- dsp --------------------- */
  305. static void audmp3_async_pcm_buf_update(struct audio *audio, uint32_t *payload)
  306. {
  307. unsigned long flags;
  308. union msm_audio_event_payload event_payload;
  309. struct audmp3_buffer_node *filled_buf;
  310. uint8_t index;
  311. if (audio->rflush)
  312. return;
  313. spin_lock_irqsave(&audio->dsp_lock, flags);
  314. for (index = 0; index < payload[1]; index++) {
  315. BUG_ON(list_empty(&audio->in_queue));
  316. filled_buf = list_first_entry(&audio->in_queue,
  317. struct audmp3_buffer_node, list);
  318. if (filled_buf->paddr == payload[2 + index * 2]) {
  319. list_del(&filled_buf->list);
  320. event_payload.aio_buf = filled_buf->buf;
  321. event_payload.aio_buf.data_len =
  322. payload[3 + index * 2];
  323. MM_DBG("pcm buf %p data_len %d\n", filled_buf,
  324. event_payload.aio_buf.data_len);
  325. audmp3_post_event(audio, AUDIO_EVENT_READ_DONE,
  326. event_payload);
  327. kfree(filled_buf);
  328. } else {
  329. MM_ERR("expected=%lx ret=%x\n", filled_buf->paddr,
  330. payload[2 + index * 2]);
  331. break;
  332. }
  333. }
  334. audio->drv_status &= ~ADRV_STATUS_IBUF_GIVEN;
  335. audio->drv_ops.buffer_refresh(audio);
  336. spin_unlock_irqrestore(&audio->dsp_lock, flags);
  337. }
  338. static void audio_update_pcm_buf_entry(struct audio *audio, uint32_t *payload)
  339. {
  340. uint8_t index;
  341. unsigned long flags;
  342. if (audio->rflush)
  343. return;
  344. spin_lock_irqsave(&audio->dsp_lock, flags);
  345. for (index = 0; index < payload[1]; index++) {
  346. if (audio->in[audio->fill_next].addr ==
  347. payload[2 + index * 2]) {
  348. MM_DBG("in[%d] ready\n", audio->fill_next);
  349. audio->in[audio->fill_next].used =
  350. payload[3 + index * 2];
  351. if ((++audio->fill_next) == audio->pcm_buf_count)
  352. audio->fill_next = 0;
  353. } else {
  354. MM_ERR("expected=%x ret=%x\n",
  355. audio->in[audio->fill_next].addr,
  356. payload[2 + index * 2]);
  357. break;
  358. }
  359. }
  360. if (audio->in[audio->fill_next].used == 0) {
  361. audio->drv_ops.buffer_refresh(audio);
  362. } else {
  363. MM_DBG("read cannot keep up\n");
  364. audio->buf_refresh = 1;
  365. }
  366. wake_up(&audio->read_wait);
  367. spin_unlock_irqrestore(&audio->dsp_lock, flags);
  368. }
  369. static void audmp3_bitstream_error_info(struct audio *audio, uint32_t *payload)
  370. {
  371. unsigned long flags;
  372. union msm_audio_event_payload e_payload;
  373. if (payload[0] != AUDDEC_DEC_MP3) {
  374. MM_ERR("Unexpected bitstream error info from DSP:\
  375. Invalid decoder\n");
  376. return;
  377. }
  378. /* get stream info from DSP msg */
  379. spin_lock_irqsave(&audio->dsp_lock, flags);
  380. audio->bitstream_error_info.dec_id = payload[0];
  381. audio->bitstream_error_info.err_msg_indicator = payload[1];
  382. audio->bitstream_error_info.err_type = payload[2];
  383. spin_unlock_irqrestore(&audio->dsp_lock, flags);
  384. MM_ERR("bit_stream_error_type=%d error_count=%d\n",
  385. audio->bitstream_error_info.err_type, (0x0000FFFF &
  386. audio->bitstream_error_info.err_msg_indicator));
  387. /* send event to ARM to notify error info coming */
  388. e_payload.error_info = audio->bitstream_error_info;
  389. audmp3_post_event(audio, AUDIO_EVENT_BITSTREAM_ERROR_INFO, e_payload);
  390. }
  391. static void audmp3_update_stream_info(struct audio *audio, uint32_t *payload)
  392. {
  393. unsigned long flags;
  394. union msm_audio_event_payload e_payload;
  395. /* get stream info from DSP msg */
  396. spin_lock_irqsave(&audio->dsp_lock, flags);
  397. audio->stream_info.codec_type = AUDIO_CODEC_TYPE_MP3;
  398. audio->stream_info.chan_info = (0x0000FFFF & payload[1]);
  399. audio->stream_info.sample_rate = (0x0000FFFF & payload[2]);
  400. audio->stream_info.bit_stream_info = (0x0000FFFF & payload[3]);
  401. audio->stream_info.bit_rate = payload[4];
  402. spin_unlock_irqrestore(&audio->dsp_lock, flags);
  403. MM_DBG("chan_info=%d, sample_rate=%d, bit_stream_info=%d\n",
  404. audio->stream_info.chan_info,
  405. audio->stream_info.sample_rate,
  406. audio->stream_info.bit_stream_info);
  407. /* send event to ARM to notify steam info coming */
  408. e_payload.stream_info = audio->stream_info;
  409. audmp3_post_event(audio, AUDIO_EVENT_STREAM_INFO, e_payload);
  410. }
  411. static void audplay_dsp_event(void *data, unsigned id, size_t len,
  412. void (*getevent) (void *ptr, size_t len))
  413. {
  414. struct audio *audio = data;
  415. uint32_t msg[28];
  416. getevent(msg, sizeof(msg));
  417. MM_DBG("msg_id=%x\n", id);
  418. switch (id) {
  419. case AUDPLAY_MSG_DEC_NEEDS_DATA:
  420. audio->drv_ops.send_data(audio, 1);
  421. break;
  422. case AUDPLAY_MSG_BUFFER_UPDATE:
  423. audio->drv_ops.pcm_buf_update(audio, msg);
  424. break;
  425. case AUDPLAY_UP_STREAM_INFO:
  426. if ((msg[1] & AUDPLAY_STREAM_INFO_MSG_MASK) ==
  427. AUDPLAY_STREAM_INFO_MSG_MASK) {
  428. audmp3_bitstream_error_info(audio, msg);
  429. } else {
  430. audmp3_update_stream_info(audio, msg);
  431. }
  432. break;
  433. case AUDPLAY_UP_OUTPORT_FLUSH_ACK:
  434. MM_DBG("OUTPORT_FLUSH_ACK\n");
  435. audio->rflush = 0;
  436. wake_up(&audio->read_wait);
  437. if (audio->pcm_feedback)
  438. audio->drv_ops.buffer_refresh(audio);
  439. break;
  440. case ADSP_MESSAGE_ID:
  441. MM_DBG("Received ADSP event: module enable(audplaytask)\n");
  442. break;
  443. default:
  444. MM_ERR("unexpected message from decoder \n");
  445. break;
  446. }
  447. }
  448. static void audio_dsp_event(void *private, unsigned id, uint16_t *msg)
  449. {
  450. struct audio *audio = private;
  451. switch (id) {
  452. case AUDPP_MSG_STATUS_MSG:{
  453. unsigned status = msg[1];
  454. switch (status) {
  455. case AUDPP_DEC_STATUS_SLEEP: {
  456. uint16_t reason = msg[2];
  457. MM_DBG("decoder status: sleep reason=0x%04x\n",
  458. reason);
  459. if ((reason == AUDPP_MSG_REASON_MEM)
  460. || (reason ==
  461. AUDPP_MSG_REASON_NODECODER)) {
  462. audio->dec_state =
  463. MSM_AUD_DECODER_STATE_FAILURE;
  464. wake_up(&audio->wait);
  465. } else if (reason == AUDPP_MSG_REASON_NONE) {
  466. /* decoder is in disable state */
  467. audio->dec_state =
  468. MSM_AUD_DECODER_STATE_CLOSE;
  469. wake_up(&audio->wait);
  470. }
  471. break;
  472. }
  473. case AUDPP_DEC_STATUS_INIT:
  474. MM_DBG("decoder status: init \n");
  475. if (audio->pcm_feedback)
  476. audpp_cmd_cfg_routing_mode(audio);
  477. else
  478. audpp_cmd_cfg_adec_params(audio);
  479. break;
  480. case AUDPP_DEC_STATUS_CFG:
  481. MM_DBG("decoder status: cfg \n");
  482. break;
  483. case AUDPP_DEC_STATUS_PLAY:
  484. MM_DBG("decoder status: play \n");
  485. /* send mixer command */
  486. audpp_route_stream(audio->dec_id,
  487. audio->source);
  488. if (audio->pcm_feedback) {
  489. audplay_error_threshold_config(audio);
  490. audplay_config_hostpcm(audio);
  491. audio->drv_ops.buffer_refresh(audio);
  492. }
  493. audio->dec_state =
  494. MSM_AUD_DECODER_STATE_SUCCESS;
  495. wake_up(&audio->wait);
  496. break;
  497. default:
  498. MM_ERR("unknown decoder status \n");
  499. break;
  500. }
  501. break;
  502. }
  503. case AUDPP_MSG_CFG_MSG:
  504. if (msg[0] == AUDPP_MSG_ENA_ENA) {
  505. MM_DBG("CFG_MSG ENABLE\n");
  506. auddec_dsp_config(audio, 1);
  507. audio->out_needed = 0;
  508. audio->running = 1;
  509. audpp_dsp_set_vol_pan(audio->dec_id, &audio->vol_pan,
  510. POPP);
  511. audpp_dsp_set_eq(audio->dec_id, audio->eq_enable,
  512. &audio->eq, POPP);
  513. } else if (msg[0] == AUDPP_MSG_ENA_DIS) {
  514. MM_DBG("CFG_MSG DISABLE\n");
  515. audio->running = 0;
  516. } else {
  517. MM_DBG("CFG_MSG %d?\n", msg[0]);
  518. }
  519. break;
  520. case AUDPP_MSG_ROUTING_ACK:
  521. MM_DBG("ROUTING_ACK mode=%d\n", msg[1]);
  522. audpp_cmd_cfg_adec_params(audio);
  523. break;
  524. case AUDPP_MSG_FLUSH_ACK:
  525. MM_DBG("FLUSH_ACK\n");
  526. audio->wflush = 0;
  527. audio->rflush = 0;
  528. wake_up(&audio->write_wait);
  529. if (audio->pcm_feedback)
  530. audio->drv_ops.buffer_refresh(audio);
  531. break;
  532. case AUDPP_MSG_PCMDMAMISSED:
  533. MM_DBG("PCMDMAMISSED\n");
  534. audio->teos = 1;
  535. wake_up(&audio->write_wait);
  536. break;
  537. case AUDPP_MSG_AVSYNC_MSG:
  538. MM_DBG("AUDPP_MSG_AVSYNC_MSG\n");
  539. memcpy(&audio->avsync[0], msg, sizeof(audio->avsync));
  540. audio->avsync_flag = 1;
  541. wake_up(&audio->avsync_wait);
  542. break;
  543. default:
  544. MM_ERR("UNKNOWN (%d)\n", id);
  545. }
  546. }
  547. struct msm_adsp_ops audplay_adsp_ops = {
  548. .event = audplay_dsp_event,
  549. };
  550. #define audplay_send_queue0(audio, cmd, len) \
  551. msm_adsp_write(audio->audplay, audio->queue_id, \
  552. cmd, len)
  553. static int auddec_dsp_config(struct audio *audio, int enable)
  554. {
  555. struct audpp_cmd_cfg_dec_type cfg_dec_cmd;
  556. memset(&cfg_dec_cmd, 0, sizeof(cfg_dec_cmd));
  557. cfg_dec_cmd.cmd_id = AUDPP_CMD_CFG_DEC_TYPE;
  558. if (enable)
  559. cfg_dec_cmd.dec_cfg = AUDPP_CMD_UPDATDE_CFG_DEC |
  560. AUDPP_CMD_ENA_DEC_V | AUDDEC_DEC_MP3;
  561. else
  562. cfg_dec_cmd.dec_cfg = AUDPP_CMD_UPDATDE_CFG_DEC |
  563. AUDPP_CMD_DIS_DEC_V;
  564. cfg_dec_cmd.dm_mode = 0x0;
  565. cfg_dec_cmd.stream_id = audio->dec_id;
  566. return audpp_send_queue1(&cfg_dec_cmd, sizeof(cfg_dec_cmd));
  567. }
  568. static void audpp_cmd_cfg_adec_params(struct audio *audio)
  569. {
  570. struct audpp_cmd_cfg_adec_params_mp3 cmd;
  571. memset(&cmd, 0, sizeof(cmd));
  572. cmd.common.cmd_id = AUDPP_CMD_CFG_ADEC_PARAMS;
  573. cmd.common.length = AUDPP_CMD_CFG_ADEC_PARAMS_MP3_LEN;
  574. cmd.common.dec_id = audio->dec_id;
  575. cmd.common.input_sampling_frequency = audio->out_sample_rate;
  576. audpp_send_queue2(&cmd, sizeof(cmd));
  577. }
  578. static void audpp_cmd_cfg_routing_mode(struct audio *audio)
  579. {
  580. struct audpp_cmd_routing_mode cmd;
  581. MM_DBG("\n"); /* Macro prints the file name and function */
  582. memset(&cmd, 0, sizeof(cmd));
  583. cmd.cmd_id = AUDPP_CMD_ROUTING_MODE;
  584. cmd.object_number = audio->dec_id;
  585. if (audio->pcm_feedback)
  586. cmd.routing_mode = ROUTING_MODE_FTRT;
  587. else
  588. cmd.routing_mode = ROUTING_MODE_RT;
  589. audpp_send_queue1(&cmd, sizeof(cmd));
  590. }
  591. static int audplay_dsp_send_data_avail(struct audio *audio,
  592. unsigned idx, unsigned len)
  593. {
  594. struct audplay_cmd_bitstream_data_avail_nt2 cmd;
  595. cmd.cmd_id = AUDPLAY_CMD_BITSTREAM_DATA_AVAIL_NT2;
  596. if (audio->mfield)
  597. cmd.decoder_id = AUDMP3_METAFIELD_MASK |
  598. (audio->out[idx].mfield_sz >> 1);
  599. else
  600. cmd.decoder_id = audio->dec_id;
  601. cmd.buf_ptr = audio->out[idx].addr;
  602. cmd.buf_size = len/2;
  603. cmd.partition_number = 0;
  604. return audplay_send_queue0(audio, &cmd, sizeof(cmd));
  605. }
  606. /* Caller holds irq_lock */
  607. static void audmp3_async_buffer_refresh(struct audio *audio)
  608. {
  609. struct audplay_cmd_buffer_refresh refresh_cmd;
  610. struct audmp3_buffer_node *next_buf;
  611. if (!audio->running ||
  612. audio->drv_status & ADRV_STATUS_IBUF_GIVEN)
  613. return;
  614. if (!list_empty(&audio->in_queue)) {
  615. next_buf = list_first_entry(&audio->in_queue,
  616. struct audmp3_buffer_node, list);
  617. if (!next_buf)
  618. return;
  619. MM_DBG("next buf %p phy %lx len %d\n", next_buf,
  620. next_buf->paddr, next_buf->buf.buf_len);
  621. refresh_cmd.cmd_id = AUDPLAY_CMD_BUFFER_REFRESH;
  622. refresh_cmd.num_buffers = 1;
  623. refresh_cmd.buf0_address = next_buf->paddr;
  624. refresh_cmd.buf0_length = next_buf->buf.buf_len -
  625. (next_buf->buf.buf_len % 576) +
  626. (audio->mfield ? 24 : 0); /* Mp3 frame size */
  627. refresh_cmd.buf_read_count = 0;
  628. audio->drv_status |= ADRV_STATUS_IBUF_GIVEN;
  629. (void) audplay_send_queue0(audio, &refresh_cmd,
  630. sizeof(refresh_cmd));
  631. }
  632. }
  633. static void audplay_buffer_refresh(struct audio *audio)
  634. {
  635. struct audplay_cmd_buffer_refresh refresh_cmd;
  636. refresh_cmd.cmd_id = AUDPLAY_CMD_BUFFER_REFRESH;
  637. refresh_cmd.num_buffers = 1;
  638. refresh_cmd.buf0_address = audio->in[audio->fill_next].addr;
  639. refresh_cmd.buf0_length = audio->in[audio->fill_next].size -
  640. (audio->in[audio->fill_next].size % 576) +
  641. (audio->mfield ? 24 : 0); /* Mp3 frame size */
  642. refresh_cmd.buf_read_count = 0;
  643. MM_DBG("buf0_addr=%x buf0_len=%d\n", refresh_cmd.buf0_address,
  644. refresh_cmd.buf0_length);
  645. (void)audplay_send_queue0(audio, &refresh_cmd, sizeof(refresh_cmd));
  646. }
  647. static void audplay_error_threshold_config(struct audio *audio)
  648. {
  649. union audplay_cmd_channel_info ch_cfg_cmd;
  650. MM_DBG("\n"); /* Macro prints the file name and function */
  651. ch_cfg_cmd.thr_update.cmd_id = AUDPLAY_CMD_CHANNEL_INFO;
  652. ch_cfg_cmd.thr_update.threshold_update = AUDPLAY_ERROR_THRESHOLD_ENABLE;
  653. ch_cfg_cmd.thr_update.threshold_value =
  654. audio->bitstream_error_threshold_value;
  655. (void)audplay_send_queue0(audio, &ch_cfg_cmd, sizeof(ch_cfg_cmd));
  656. }
  657. static void audplay_config_hostpcm(struct audio *audio)
  658. {
  659. struct audplay_cmd_hpcm_buf_cfg cfg_cmd;
  660. MM_DBG("\n"); /* Macro prints the file name and function */
  661. cfg_cmd.cmd_id = AUDPLAY_CMD_HPCM_BUF_CFG;
  662. cfg_cmd.max_buffers = 1;
  663. cfg_cmd.byte_swap = 0;
  664. cfg_cmd.hostpcm_config = (0x8000) | (0x4000);
  665. cfg_cmd.feedback_frequency = 1;
  666. cfg_cmd.partition_number = 0;
  667. (void)audplay_send_queue0(audio, &cfg_cmd, sizeof(cfg_cmd));
  668. }
  669. static void audplay_outport_flush(struct audio *audio)
  670. {
  671. struct audplay_cmd_outport_flush op_flush_cmd;
  672. MM_DBG("\n"); /* Macro prints the file name and function */
  673. op_flush_cmd.cmd_id = AUDPLAY_CMD_OUTPORT_FLUSH;
  674. (void)audplay_send_queue0(audio, &op_flush_cmd, sizeof(op_flush_cmd));
  675. }
  676. static void audmp3_async_send_data(struct audio *audio, unsigned needed)
  677. {
  678. unsigned long flags;
  679. spin_lock_irqsave(&audio->dsp_lock, flags);
  680. if (!audio->running)
  681. goto done;
  682. if (needed && !audio->wflush) {
  683. audio->out_needed = 1;
  684. if (audio->drv_status & ADRV_STATUS_OBUF_GIVEN) {
  685. /* pop one node out of queue */
  686. union msm_audio_event_payload payload;
  687. struct audmp3_buffer_node *used_buf;
  688. MM_DBG("consumed\n");
  689. BUG_ON(list_empty(&audio->out_queue));
  690. used_buf = list_first_entry(&audio->out_queue,
  691. struct audmp3_buffer_node, list);
  692. list_del(&used_buf->list);
  693. payload.aio_buf = used_buf->buf;
  694. audmp3_post_event(audio, AUDIO_EVENT_WRITE_DONE,
  695. payload);
  696. kfree(used_buf);
  697. audio->drv_status &= ~ADRV_STATUS_OBUF_GIVEN;
  698. }
  699. }
  700. if (audio->out_needed) {
  701. struct audmp3_buffer_node *next_buf;
  702. struct audplay_cmd_bitstream_data_avail_nt2 cmd;
  703. if (!list_empty(&audio->out_queue)) {
  704. next_buf = list_first_entry(&audio->out_queue,
  705. struct audmp3_buffer_node, list);
  706. MM_DBG("next_buf %p\n", next_buf);
  707. if (next_buf) {
  708. MM_DBG("next buf phy %lx len %d\n",
  709. next_buf->paddr,
  710. next_buf->buf.data_len);
  711. cmd.cmd_id =
  712. AUDPLAY_CMD_BITSTREAM_DATA_AVAIL_NT2;
  713. if (audio->mfield)
  714. cmd.decoder_id = AUDMP3_METAFIELD_MASK |
  715. (next_buf->buf.mfield_sz >> 1);
  716. else
  717. cmd.decoder_id = audio->dec_id;
  718. cmd.buf_ptr = (unsigned) next_buf->paddr;
  719. cmd.buf_size = next_buf->buf.data_len >> 1;
  720. cmd.partition_number = 0;
  721. audplay_send_queue0(audio, &cmd, sizeof(cmd));
  722. audio->out_needed = 0;
  723. audio->drv_status |= ADRV_STATUS_OBUF_GIVEN;
  724. }
  725. }
  726. }
  727. done:
  728. spin_unlock_irqrestore(&audio->dsp_lock, flags);
  729. }
  730. static void audplay_send_data(struct audio *audio, unsigned needed)
  731. {
  732. struct buffer *frame;
  733. unsigned long flags;
  734. spin_lock_irqsave(&audio->dsp_lock, flags);
  735. if (!audio->running)
  736. goto done;
  737. if (needed && !audio->wflush) {
  738. /* We were called from the callback because the DSP
  739. * requested more data. Note that the DSP does want
  740. * more data, and if a buffer was in-flight, mark it
  741. * as available (since the DSP must now be done with
  742. * it).
  743. */
  744. audio->out_needed = 1;
  745. frame = audio->out + audio->out_tail;
  746. if (frame->used == 0xffffffff) {
  747. MM_DBG("frame %d free\n", audio->out_tail);
  748. frame->used = 0;
  749. audio->out_tail ^= 1;
  750. wake_up(&audio->write_wait);
  751. }
  752. }
  753. if (audio->out_needed) {
  754. /* If the DSP currently wants data and we have a
  755. * buffer available, we will send it and reset
  756. * the needed flag. We'll mark the buffer as in-flight
  757. * so that it won't be recycled until the next buffer
  758. * is requested
  759. */
  760. frame = audio->out + audio->out_tail;
  761. if (frame->used) {
  762. BUG_ON(frame->used == 0xffffffff);
  763. MM_DBG("frame %d busy\n", audio->out_tail);
  764. audplay_dsp_send_data_avail(audio, audio->out_tail,
  765. frame->used);
  766. frame->used = 0xffffffff;
  767. audio->out_needed = 0;
  768. }
  769. }
  770. done:
  771. spin_unlock_irqrestore(&audio->dsp_lock, flags);
  772. }
  773. /* ------------------- device --------------------- */
  774. static void audmp3_async_flush(struct audio *audio)
  775. {
  776. struct audmp3_buffer_node *buf_node;
  777. struct list_head *ptr, *next;
  778. union msm_audio_event_payload payload;
  779. MM_DBG("\n"); /* Macro prints the file name and function */
  780. list_for_each_safe(ptr, next, &audio->out_queue) {
  781. buf_node = list_entry(ptr, struct audmp3_buffer_node, list);
  782. list_del(&buf_node->list);
  783. payload.aio_buf = buf_node->buf;
  784. audmp3_post_event(audio, AUDIO_EVENT_WRITE_DONE,
  785. payload);
  786. kfree(buf_node);
  787. }
  788. audio->drv_status &= ~ADRV_STATUS_OBUF_GIVEN;
  789. audio->out_needed = 0;
  790. atomic_set(&audio->out_bytes, 0);
  791. }
  792. static void audio_flush(struct audio *audio)
  793. {
  794. audio->out[0].used = 0;
  795. audio->out[1].used = 0;
  796. audio->out_head = 0;
  797. audio->out_tail = 0;
  798. audio->reserved = 0;
  799. audio->out_needed = 0;
  800. atomic_set(&audio->out_bytes, 0);
  801. }
  802. static void audmp3_async_flush_pcm_buf(struct audio *audio)
  803. {
  804. struct audmp3_buffer_node *buf_node;
  805. struct list_head *ptr, *next;
  806. union msm_audio_event_payload payload;
  807. MM_DBG("\n"); /* Macro prints the file name and function */
  808. list_for_each_safe(ptr, next, &audio->in_queue) {
  809. buf_node = list_entry(ptr, struct audmp3_buffer_node, list);
  810. list_del(&buf_node->list);
  811. payload.aio_buf = buf_node->buf;
  812. payload.aio_buf.data_len = 0;
  813. audmp3_post_event(audio, AUDIO_EVENT_READ_DONE,
  814. payload);
  815. kfree(buf_node);
  816. }
  817. audio->drv_status &= ~ADRV_STATUS_IBUF_GIVEN;
  818. }
  819. static void audio_flush_pcm_buf(struct audio *audio)
  820. {
  821. uint8_t index;
  822. for (index = 0; index < PCM_BUF_MAX_COUNT; index++)
  823. audio->in[index].used = 0;
  824. audio->buf_refresh = 0;
  825. audio->read_next = 0;
  826. audio->fill_next = 0;
  827. }
  828. static void audio_ioport_reset(struct audio *audio)
  829. {
  830. if (audio->drv_status & ADRV_STATUS_AIO_INTF) {
  831. /* If fsync is in progress, make sure
  832. * return value of fsync indicates
  833. * abort due to flush
  834. */
  835. if (audio->drv_status & ADRV_STATUS_FSYNC) {
  836. MM_DBG("fsync in progress\n");
  837. wake_up(&audio->write_wait);
  838. mutex_lock(&audio->write_lock);
  839. audio->drv_ops.out_flush(audio);
  840. mutex_unlock(&audio->write_lock);
  841. } else
  842. audio->drv_ops.out_flush(audio);
  843. audio->drv_ops.in_flush(audio);
  844. } else {
  845. /* Make sure read/write thread are free from
  846. * sleep and knowing that system is not able
  847. * to process io request at the moment
  848. */
  849. wake_up(&audio->write_wait);
  850. mutex_lock(&audio->write_lock);
  851. audio->drv_ops.out_flush(audio);
  852. mutex_unlock(&audio->write_lock);
  853. wake_up(&audio->read_wait);
  854. mutex_lock(&audio->read_lock);
  855. audio->drv_ops.in_flush(audio);
  856. mutex_unlock(&audio->read_lock);
  857. }
  858. audio->avsync_flag = 1;
  859. wake_up(&audio->avsync_wait);
  860. }
  861. static int audmp3_events_pending(struct audio *audio)
  862. {
  863. unsigned long flags;
  864. int empty;
  865. spin_lock_irqsave(&audio->event_queue_lock, flags);
  866. empty = !list_empty(&audio->event_queue);
  867. spin_unlock_irqrestore(&audio->event_queue_lock, flags);
  868. return empty || audio->event_abort;
  869. }
  870. static void audmp3_reset_event_queue(struct audio *audio)
  871. {
  872. unsigned long flags;
  873. struct audmp3_event *drv_evt;
  874. struct list_head *ptr, *next;
  875. spin_lock_irqsave(&audio->event_queue_lock, flags);
  876. list_for_each_safe(ptr, next, &audio->event_queue) {
  877. drv_evt = list_first_entry(&audio->event_queue,
  878. struct audmp3_event, list);
  879. list_del(&drv_evt->list);
  880. kfree(drv_evt);
  881. }
  882. list_for_each_safe(ptr, next, &audio->free_event_queue) {
  883. drv_evt = list_first_entry(&audio->free_event_queue,
  884. struct audmp3_event, list);
  885. list_del(&drv_evt->list);
  886. kfree(drv_evt);
  887. }
  888. spin_unlock_irqrestore(&audio->event_queue_lock, flags);
  889. return;
  890. }
  891. static long audmp3_process_event_req(struct audio *audio, void __user *arg)
  892. {
  893. long rc;
  894. struct msm_audio_event usr_evt;
  895. struct audmp3_event *drv_evt = NULL;
  896. int timeout;
  897. unsigned long flags;
  898. if (copy_from_user(&usr_evt, arg, sizeof(struct msm_audio_event)))
  899. return -EFAULT;
  900. timeout = (int) usr_evt.timeout_ms;
  901. if (timeout > 0) {
  902. rc = wait_event_interruptible_timeout(
  903. audio->event_wait, audmp3_events_pending(audio),
  904. msecs_to_jiffies(timeout));
  905. if (rc == 0)
  906. return -ETIMEDOUT;
  907. } else {
  908. rc = wait_event_interruptible(
  909. audio->event_wait, audmp3_events_pending(audio));
  910. }
  911. if (rc < 0)
  912. return rc;
  913. if (audio->event_abort) {
  914. audio->event_abort = 0;
  915. return -ENODEV;
  916. }
  917. rc = 0;
  918. spin_lock_irqsave(&audio->event_queue_lock, flags);
  919. if (!list_empty(&audio->event_queue)) {
  920. drv_evt = list_first_entry(&audio->event_queue,
  921. struct audmp3_event, list);
  922. list_del(&drv_evt->list);
  923. }
  924. if (drv_evt) {
  925. usr_evt.event_type = drv_evt->event_type;
  926. usr_evt.event_payload = drv_evt->payload;
  927. list_add_tail(&drv_evt->list, &audio->free_event_queue);
  928. } else
  929. rc = -1;
  930. spin_unlock_irqrestore(&audio->event_queue_lock, flags);
  931. if (drv_evt->event_type == AUDIO_EVENT_WRITE_DONE ||
  932. drv_evt->event_type == AUDIO_EVENT_READ_DONE) {
  933. mutex_lock(&audio->lock);
  934. audmp3_pmem_fixup(audio, drv_evt->payload.aio_buf.buf_addr,
  935. drv_evt->payload.aio_buf.buf_len, 0);
  936. mutex_unlock(&audio->lock);
  937. }
  938. if (!rc && copy_to_user(arg, &usr_evt, sizeof(usr_evt)))
  939. rc = -EFAULT;
  940. return rc;
  941. }
  942. static int audmp3_pmem_check(struct audio *audio,
  943. void *vaddr, unsigned long len)
  944. {
  945. struct audmp3_pmem_region *region_elt;
  946. struct audmp3_pmem_region t = { .vaddr = vaddr, .len = len };
  947. list_for_each_entry(region_elt, &audio->pmem_region_queue, list) {
  948. if (CONTAINS(region_elt, &t) || CONTAINS(&t, region_elt) ||
  949. OVERLAPS(region_elt, &t)) {
  950. MM_ERR("region (vaddr %p len %ld)"
  951. " clashes with registered region"
  952. " (vaddr %p paddr %p len %ld)\n",
  953. vaddr, len,
  954. region_elt->vaddr,
  955. (void *)region_elt->paddr,
  956. region_elt->len);
  957. return -EINVAL;
  958. }
  959. }
  960. return 0;
  961. }
  962. static int audmp3_pmem_add(struct audio *audio,
  963. struct msm_audio_pmem_info *info)
  964. {
  965. unsigned long paddr, kvaddr, len;
  966. struct file *file;
  967. struct audmp3_pmem_region *region;
  968. int rc = -EINVAL;
  969. MM_DBG("\n"); /* Macro prints the file name and function */
  970. region = kmalloc(sizeof(*region), GFP_KERNEL);
  971. if (!region) {
  972. rc = -ENOMEM;
  973. goto end;
  974. }
  975. if (get_pmem_file(info->fd, &paddr, &kvaddr, &len, &file)) {
  976. kfree(region);
  977. goto end;
  978. }
  979. rc = audmp3_pmem_check(audio, info->vaddr, len);
  980. if (rc < 0) {
  981. put_pmem_file(file);
  982. kfree(region);
  983. goto end;
  984. }
  985. region->vaddr = info->vaddr;
  986. region->fd = info->fd;
  987. region->paddr = paddr;
  988. region->kvaddr = kvaddr;
  989. region->len = len;
  990. region->file = file;
  991. region->ref_cnt = 0;
  992. MM_DBG("add region paddr %lx vaddr %p, len %lu\n", region->paddr,
  993. region->vaddr, region->len);
  994. list_add_tail(&region->list, &audio->pmem_region_queue);
  995. end:
  996. return rc;
  997. }
  998. static int audmp3_pmem_remove(struct audio *audio,
  999. struct msm_audio_pmem_info *info)
  1000. {
  1001. struct audmp3_pmem_region *region;
  1002. struct list_head *ptr, *next;
  1003. int rc = -EINVAL;
  1004. MM_DBG("info fd %d vaddr %p\n", info->fd, info->vaddr);
  1005. list_for_each_safe(ptr, next, &audio->pmem_region_queue) {
  1006. region = list_entry(ptr, struct audmp3_pmem_region, list);
  1007. if ((region->fd == info->fd) &&
  1008. (region->vaddr == info->vaddr)) {
  1009. if (region->ref_cnt) {
  1010. MM_DBG("region %p in use ref_cnt %d\n",
  1011. region, region->ref_cnt);
  1012. break;
  1013. }
  1014. MM_DBG("remove region fd %d vaddr %p \n",
  1015. info->fd, info->vaddr);
  1016. list_del(&region->list);
  1017. put_pmem_file(region->file);
  1018. kfree(region);
  1019. rc = 0;
  1020. break;
  1021. }
  1022. }
  1023. return rc;
  1024. }
  1025. static int audmp3_pmem_lookup_vaddr(struct audio *audio, void *addr,
  1026. unsigned long len, struct audmp3_pmem_region **region)
  1027. {
  1028. struct audmp3_pmem_region *region_elt;
  1029. int match_count = 0;
  1030. *region = NULL;
  1031. /* returns physical address or zero */
  1032. list_for_each_entry(region_elt, &audio->pmem_region_queue,
  1033. list) {
  1034. if (addr >= region_elt->vaddr &&
  1035. addr < region_elt->vaddr + region_elt->len &&
  1036. addr + len <= region_elt->vaddr + region_elt->len) {
  1037. /* offset since we could pass vaddr inside a registerd
  1038. * pmem buffer
  1039. */
  1040. match_count++;
  1041. if (!*region)
  1042. *region = region_elt;
  1043. }
  1044. }
  1045. if (match_count > 1) {
  1046. MM_ERR("multiple hits for vaddr %p, len %ld\n", addr, len);
  1047. list_for_each_entry(region_elt,
  1048. &audio->pmem_region_queue, list) {
  1049. if (addr >= region_elt->vaddr &&
  1050. addr < region_elt->vaddr + region_elt->len &&
  1051. addr + len <= region_elt->vaddr + region_elt->len)
  1052. MM_ERR("\t%p, %ld --> %p\n", region_elt->vaddr,
  1053. region_elt->len,
  1054. (void *)region_elt->paddr);
  1055. }
  1056. }
  1057. return *region ? 0 : -1;
  1058. }
  1059. unsigned long audmp3_pmem_fixup(struct audio *audio, void *addr,
  1060. unsigned long len, int ref_up)
  1061. {
  1062. struct audmp3_pmem_region *region;
  1063. unsigned long paddr;
  1064. int ret;
  1065. ret = audmp3_pmem_lookup_vaddr(audio, addr, len, &region);
  1066. if (ret) {
  1067. MM_ERR("lookup (%p, %ld) failed\n", addr, len);
  1068. return 0;
  1069. }
  1070. if (ref_up)
  1071. region->ref_cnt++;
  1072. else
  1073. region->ref_cnt--;
  1074. MM_DBG("found region %p ref_cnt %d\n", region, region->ref_cnt);
  1075. paddr = region->paddr + (addr - region->vaddr);
  1076. return paddr;
  1077. }
  1078. /* audio -> lock must be held at this point */
  1079. static int audmp3_aio_buf_add(struct audio *audio, unsigned dir,
  1080. void __user *arg)
  1081. {
  1082. unsigned long flags;
  1083. struct audmp3_buffer_node *buf_node;
  1084. buf_node = kmalloc(sizeof(*buf_node), GFP_KERNEL);
  1085. if (!buf_node)
  1086. return -ENOMEM;
  1087. if (copy_from_user(&buf_node->buf, arg, sizeof(buf_node->buf))) {
  1088. kfree(buf_node);
  1089. return -EFAULT;
  1090. }
  1091. MM_DBG("node %p dir %x buf_addr %p buf_len %d data_len \
  1092. %d\n", buf_node, dir,
  1093. buf_node->buf.buf_addr, buf_node->buf.buf_len,
  1094. buf_node->buf.data_len);
  1095. buf_node->paddr = audmp3_pmem_fixup(
  1096. audio, buf_node->buf.buf_addr,
  1097. buf_node->buf.buf_len, 1);
  1098. if (dir) {
  1099. /* write */
  1100. if (!buf_node->paddr ||
  1101. (buf_node->paddr & 0x1) ||
  1102. (buf_node->buf.data_len & 0x1) ||
  1103. (!audio->pcm_feedback &&
  1104. !buf_node->buf.data_len)) {
  1105. kfree(buf_node);
  1106. return -EINVAL;
  1107. }
  1108. spin_lock_irqsave(&audio->dsp_lock, flags);
  1109. list_add_tail(&buf_node->list, &audio->out_queue);
  1110. spin_unlock_irqrestore(&audio->dsp_lock, flags);
  1111. audio->drv_ops.send_data(audio, 0);
  1112. } else {
  1113. /* read */
  1114. if (!buf_node->paddr ||
  1115. (buf_node->paddr & 0x1) ||
  1116. (buf_node->buf.buf_len < PCM_BUFSZ_MIN)) {
  1117. kfree(buf_node);
  1118. return -EINVAL;
  1119. }
  1120. spin_lock_irqsave(&audio->dsp_lock, flags);
  1121. list_add_tail(&buf_node->list, &audio->in_queue);
  1122. audio->drv_ops.buffer_refresh(audio);
  1123. spin_unlock_irqrestore(&audio->dsp_lock, flags);
  1124. }
  1125. MM_DBG("Add buf_node %p paddr %lx\n", buf_node, buf_node->paddr);
  1126. return 0;
  1127. }
  1128. static int audio_enable_eq(struct audio *audio, int enable)
  1129. {
  1130. if (audio->eq_enable == enable && !audio->eq_needs_commit)
  1131. return 0;
  1132. audio->eq_enable = enable;
  1133. if (audio->running) {
  1134. audpp_dsp_set_eq(audio->dec_id, enable, &audio->eq, POPP);
  1135. audio->eq_needs_commit = 0;
  1136. }
  1137. return 0;
  1138. }
  1139. static int audio_get_avsync_data(struct audio *audio,
  1140. struct msm_audio_stats *stats)
  1141. {
  1142. int rc = -EINVAL;
  1143. unsigned long flags;
  1144. local_irq_save(flags);
  1145. if (audio->dec_id == audio->avsync[0] && audio->avsync_flag) {
  1146. /* av_sync sample count */
  1147. stats->sample_count = (audio->avsync[2] << 16) |
  1148. (audio->avsync[3]);
  1149. /* av_sync byte_count */
  1150. stats->byte_count = (audio->avsync[5] << 16) |
  1151. (audio->avsync[6]);
  1152. audio->avsync_flag = 0;
  1153. rc = 0;
  1154. }
  1155. local_irq_restore(flags);
  1156. return rc;
  1157. }
  1158. static long audio_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  1159. {
  1160. struct audio *audio = file->private_data;
  1161. int rc = -EINVAL;
  1162. unsigned long flags = 0;
  1163. uint16_t enable_mask;
  1164. int enable;
  1165. int prev_state;
  1166. MM_DBG("cmd = %d\n", cmd);
  1167. if (cmd == AUDIO_GET_STATS) {
  1168. struct msm_audio_stats stats;
  1169. audio->avsync_flag = 0;
  1170. memset(&stats, 0, sizeof(stats));
  1171. if (audpp_query_avsync(audio->dec_id) < 0)
  1172. return rc;
  1173. rc = wait_event_interruptible_timeout(audio->avsync_wait,
  1174. (audio->avsync_flag == 1),
  1175. msecs_to_jiffies(AUDPP_AVSYNC_EVENT_TIMEOUT));
  1176. if (rc < 0)
  1177. return rc;
  1178. else if ((rc > 0) || ((rc == 0) && (audio->avsync_flag == 1))) {
  1179. if (audio_get_avsync_data(audio, &stats) < 0)
  1180. return rc;
  1181. if (copy_to_user((void *)arg, &stats, sizeof(stats)))
  1182. return -EFAULT;
  1183. return 0;
  1184. } else
  1185. return -EAGAIN;
  1186. }
  1187. switch (cmd) {
  1188. case AUDIO_ENABLE_AUDPP:
  1189. if (copy_from_user(&enable_mask, (void *) arg,
  1190. sizeof(enable_mask))) {
  1191. rc = -EFAULT;
  1192. break;
  1193. }
  1194. spin_lock_irqsave(&audio->dsp_lock, flags);
  1195. enable = (enable_mask & EQ_ENABLE) ? 1 : 0;
  1196. audio_enable_eq(audio, enable);
  1197. spin_unlock_irqrestore(&audio->dsp_lock, flags);
  1198. rc = 0;
  1199. break;
  1200. case AUDIO_SET_VOLUME:
  1201. spin_lock_irqsave(&audio->dsp_lock, flags);
  1202. audio->vol_pan.volume = arg;
  1203. if (audio->running)
  1204. audpp_dsp_set_vol_pan(audio->dec_id, &audio->vol_pan,
  1205. POPP);
  1206. spin_unlock_irqrestore(&audio->dsp_lock, flags);
  1207. rc = 0;
  1208. break;
  1209. case AUDIO_SET_PAN:
  1210. spin_lock_irqsave(&audio->dsp_lock, flags);
  1211. audio->vol_pan.pan = arg;
  1212. if (audio->running)
  1213. audpp_dsp_set_vol_pan(audio->dec_id, &audio->vol_pan,
  1214. POPP);
  1215. spin_unlock_irqrestore(&audio->dsp_lock, flags);
  1216. rc = 0;
  1217. break;
  1218. case AUDIO_SET_EQ:
  1219. prev_state = audio->eq_enable;
  1220. audio->eq_enable = 0;
  1221. if (copy_from_user(&audio->eq.num_bands, (void *) arg,
  1222. sizeof(audio->eq) -
  1223. (AUDPP_CMD_CFG_OBJECT_PARAMS_COMMON_LEN + 2))) {
  1224. rc = -EFAULT;
  1225. break;
  1226. }
  1227. audio->eq_enable = prev_state;
  1228. audio->eq_needs_commit = 1;
  1229. rc = 0;
  1230. break;
  1231. }
  1232. if (-EINVAL != rc)
  1233. return rc;
  1234. if (cmd == AUDIO_GET_EVENT) {
  1235. MM_DBG(" AUDIO_GET_EVENT\n");
  1236. if (mutex_trylock(&audio->get_event_lock)) {
  1237. rc = audmp3_process_event_req(audio,
  1238. (void __user *) arg);
  1239. mutex_unlock(&audio->get_event_lock);
  1240. } else
  1241. rc = -EBUSY;
  1242. return rc;
  1243. }
  1244. if (cmd == AUDIO_ABORT_GET_EVENT) {
  1245. audio->event_abort = 1;
  1246. wake_up(&audio->event_wait);
  1247. return 0;
  1248. }
  1249. mutex_lock(&audio->lock);
  1250. switch (cmd) {
  1251. case AUDIO_START:
  1252. MM_DBG("AUDIO_START\n");
  1253. rc = audio_enable(audio);
  1254. if (!rc) {
  1255. rc = wait_event_interruptible_timeout(audio->wait,
  1256. audio->dec_state != MSM_AUD_DECODER_STATE_NONE,
  1257. msecs_to_jiffies(MSM_AUD_DECODER_WAIT_MS));
  1258. MM_INFO("dec_state %d rc = %d\n", audio->dec_state, rc);
  1259. if (audio->dec_state != MSM_AUD_DECODER_STATE_SUCCESS)
  1260. rc = -ENODEV;
  1261. else
  1262. rc = 0;
  1263. }
  1264. break;
  1265. case AUDIO_STOP:
  1266. MM_DBG("AUDIO_STOP\n");
  1267. rc = audio_disable(audio);
  1268. audio->stopped = 1;
  1269. audio_ioport_reset(audio);
  1270. audio->stopped = 0;
  1271. break;
  1272. case AUDIO_FLUSH:
  1273. MM_DBG("AUDIO_FLUSH\n");
  1274. audio->rflush = 1;
  1275. audio->wflush = 1;
  1276. audio_ioport_reset(audio);
  1277. if (audio->running) {
  1278. audpp_flush(audio->dec_id);
  1279. rc = wait_event_interruptible(audio->write_wait,
  1280. !audio->wflush);
  1281. if (rc < 0) {
  1282. MM_ERR("AUDIO_FLUSH interrupted\n");
  1283. rc = -EINTR;
  1284. }
  1285. } else {
  1286. audio->rflush = 0;
  1287. audio->wflush = 0;
  1288. }
  1289. break;
  1290. case AUDIO_OUTPORT_FLUSH:
  1291. MM_DBG("AUDIO_OUTPORT_FLUSH\n");
  1292. audio->rflush = 1;
  1293. if (audio->drv_status & ADRV_STATUS_AIO_INTF) {
  1294. audio->drv_ops.in_flush(audio);
  1295. } else {
  1296. wake_up(&audio->read_wait);
  1297. mutex_lock(&audio->read_lock);
  1298. audio->drv_ops.in_flush(audio);
  1299. mutex_unlock(&audio->read_lock);
  1300. }
  1301. audplay_outport_flush(audio);
  1302. rc = wait_event_interruptible(audio->read_wait,
  1303. !audio->rflush);
  1304. if (rc < 0) {
  1305. MM_ERR("AUDPLAY_OUTPORT_FLUSH interrupted\n");
  1306. rc = -EINTR;
  1307. }
  1308. break;
  1309. case AUDIO_SET_CONFIG: {
  1310. struct msm_audio_config config;
  1311. if (copy_from_user(&config, (void *) arg, sizeof(config))) {
  1312. rc = -EFAULT;
  1313. break;
  1314. }
  1315. if (config.channel_count == 1) {
  1316. config.channel_count = AUDPP_CMD_PCM_INTF_MONO_V;
  1317. } else if (config.channel_count == 2) {
  1318. config.channel_count = AUDPP_CMD_PCM_INTF_STEREO_V;
  1319. } else {
  1320. rc = -EINVAL;
  1321. break;
  1322. }
  1323. audio->mfield = config.meta_field;
  1324. audio->out_sample_rate = config.sample_rate;
  1325. audio->out_channel_mode = config.channel_count;
  1326. rc = 0;
  1327. break;
  1328. }
  1329. case AUDIO_GET_CONFIG: {
  1330. struct msm_audio_config config;
  1331. config.buffer_size = (audio->out_dma_sz >> 1);
  1332. config.buffer_count = 2;
  1333. config.sample_rate = audio->out_sample_rate;
  1334. if (audio->out_channel_mode == AUDPP_CMD_PCM_INTF_MONO_V)
  1335. config.channel_count = 1;
  1336. else
  1337. config.channel_count = 2;
  1338. config.meta_field = 0;
  1339. config.unused[0] = 0;
  1340. config.unused[1] = 0;
  1341. config.unused[2] = 0;
  1342. if (copy_to_user((void *) arg, &config, sizeof(config)))
  1343. rc = -EFAULT;
  1344. else
  1345. rc = 0;
  1346. break;
  1347. }
  1348. case AUDIO_GET_PCM_CONFIG:{
  1349. struct msm_audio_pcm_config config;
  1350. config.pcm_feedback = audio->pcm_feedback;
  1351. config.buffer_count = PCM_BUF_MAX_COUNT;
  1352. config.buffer_size = PCM_BUFSZ_MIN;
  1353. if (copy_to_user((void *)arg, &config,
  1354. sizeof(config)))
  1355. rc = -EFAULT;
  1356. else
  1357. rc = 0;
  1358. break;
  1359. }
  1360. case AUDIO_SET_PCM_CONFIG:{
  1361. struct msm_audio_pcm_config config;
  1362. if (copy_from_user
  1363. (&config, (void *)arg, sizeof(config))) {
  1364. rc = -EFAULT;
  1365. break;
  1366. }
  1367. if (config.pcm_feedback != audio->pcm_feedback) {
  1368. MM_ERR("Not sufficient permission to"
  1369. "change the playback mode\n");
  1370. rc = -EACCES;
  1371. break;
  1372. }
  1373. if (audio->drv_status & ADRV_STATUS_AIO_INTF) {
  1374. rc = 0;
  1375. break;
  1376. }
  1377. if ((config.buffer_count > PCM_BUF_MAX_COUNT) ||
  1378. (config.buffer_count == 1))
  1379. config.buffer_count = PCM_BUF_MAX_COUNT;
  1380. if (config.buffer_size < PCM_BUFSZ_MIN)
  1381. config.buffer_size = PCM_BUFSZ_MIN;
  1382. /* Check if pcm feedback is required */
  1383. if ((config.pcm_feedback) && (!audio->read_data)) {
  1384. MM_DBG("allocate PCM buffer %d\n",
  1385. config.buffer_count *
  1386. config.buffer_size);
  1387. audio->read_phys = pmem_kalloc(
  1388. config.buffer_size *
  1389. config.buffer_count,
  1390. PMEM_MEMTYPE_EBI1|
  1391. PMEM_ALIGNMENT_4K);
  1392. if (IS_ERR((void *)audio->read_phys)) {
  1393. rc = -ENOMEM;
  1394. break;
  1395. }
  1396. audio->read_data = ioremap(audio->read_phys,
  1397. config.buffer_size *
  1398. config.buffer_count);
  1399. if (!audio->read_data) {
  1400. MM_ERR("malloc read buf failed\n");
  1401. rc = -ENOMEM;
  1402. pmem_kfree(audio->read_phys);
  1403. } else {
  1404. uint8_t index;
  1405. uint32_t offset = 0;
  1406. audio->buf_refresh = 0;
  1407. audio->pcm_buf_count =
  1408. config.buffer_count;
  1409. audio->read_next = 0;
  1410. audio->fill_next = 0;
  1411. for (index = 0;
  1412. index < config.buffer_count;
  1413. index++) {
  1414. audio->in[index].data =
  1415. audio->read_data + offset;
  1416. audio->in[index].addr =
  1417. audio->read_phys + offset;
  1418. audio->in[index].size =
  1419. config.buffer_size;
  1420. audio->in[index].used = 0;
  1421. offset += config.buffer_size;
  1422. }
  1423. rc = 0;
  1424. MM_DBG("read buf: phy addr \
  1425. 0x%08x kernel addr 0x%08x\n",
  1426. audio->read_phys,
  1427. (int)audio->read_data);
  1428. }
  1429. } else {
  1430. rc = 0;
  1431. }
  1432. break;
  1433. }
  1434. case AUDIO_PAUSE:
  1435. MM_DBG("AUDIO_PAUSE %ld\n", arg);
  1436. rc = audpp_pause(audio->dec_id, (int) arg);
  1437. break;
  1438. case AUDIO_GET_STREAM_INFO:{
  1439. if (audio->stream_info.sample_rate == 0) {
  1440. /* haven't received DSP stream event,
  1441. the stream info is not updated */
  1442. rc = -EPERM;
  1443. break;
  1444. }
  1445. if (copy_to_user((void *)arg, &audio->stream_info,
  1446. sizeof(struct msm_audio_bitstream_info)))
  1447. rc = -EFAULT;
  1448. else
  1449. rc = 0;
  1450. break;
  1451. }
  1452. case AUDIO_GET_BITSTREAM_ERROR_INFO:{
  1453. if ((audio->bitstream_error_info.err_msg_indicator &
  1454. AUDPLAY_STREAM_INFO_MSG_MASK) ==
  1455. AUDPLAY_STREAM_INFO_MSG_MASK) {
  1456. /* haven't received bitstream error info event,
  1457. the bitstream error info is not updated */
  1458. rc = -EPERM;
  1459. break;
  1460. }
  1461. if (copy_to_user((void *)arg, &audio->bitstream_error_info,
  1462. sizeof(struct msm_audio_bitstream_error_info)))
  1463. rc = -EFAULT;
  1464. else
  1465. rc = 0;
  1466. break;
  1467. }
  1468. case AUDIO_REGISTER_PMEM: {
  1469. struct msm_audio_pmem_info info;
  1470. MM_DBG("AUDIO_REGISTER_PMEM\n");
  1471. if (copy_from_user(&info, (void *) arg, sizeof(info)))
  1472. rc = -EFAULT;
  1473. else
  1474. rc = audmp3_pmem_add(audio, &info);
  1475. break;
  1476. }
  1477. case AUDIO_DEREGISTER_PMEM: {
  1478. struct msm_audio_pmem_info info;
  1479. MM_DBG("AUDIO_DEREGISTER_PMEM\n");
  1480. if (copy_from_user(&info, (void *) arg, sizeof(info)))
  1481. rc = -EFAULT;
  1482. else
  1483. rc = audmp3_pmem_remove(audio, &info);
  1484. break;
  1485. }
  1486. case AUDIO_ASYNC_WRITE:
  1487. if (audio->drv_status & ADRV_STATUS_FSYNC)
  1488. rc = -EBUSY;
  1489. else
  1490. rc = audmp3_aio_buf_add(audio, 1, (void __user *) arg);
  1491. break;
  1492. case AUDIO_ASYNC_READ:
  1493. if (audio->pcm_feedback)
  1494. rc = audmp3_aio_buf_add(audio, 0, (void __user *) arg);
  1495. else
  1496. rc = -EPERM;
  1497. break;
  1498. case AUDIO_GET_SESSION_ID:
  1499. if (copy_to_user((void *) arg, &audio->dec_id,
  1500. sizeof(unsigned short)))
  1501. rc = -EFAULT;
  1502. else
  1503. rc = 0;
  1504. break;
  1505. case AUDIO_SET_ERR_THRESHOLD_VALUE:
  1506. if (copy_from_user(&audio->bitstream_error_threshold_value,
  1507. (void *)arg, sizeof(uint32_t)))
  1508. rc = -EFAULT;
  1509. else
  1510. rc = 0;
  1511. break;
  1512. default:
  1513. rc = -EINVAL;
  1514. }
  1515. mutex_unlock(&audio->lock);
  1516. return rc;
  1517. }
  1518. /* Only useful in tunnel-mode */
  1519. int audmp3_async_fsync(struct audio *audio)
  1520. {
  1521. int rc = 0;
  1522. MM_DBG("\n"); /* Macro prints the file name and function */
  1523. /* Blocking client sends more data */
  1524. mutex_lock(&audio->lock);
  1525. audio->drv_status |= ADRV_STATUS_FSYNC;
  1526. mutex_unlock(&audio->lock);
  1527. mutex_lock(&audio->write_lock);
  1528. /* pcm dmamiss message is sent continously
  1529. * when decoder is starved so no race
  1530. * condition concern
  1531. */
  1532. audio->teos = 0;
  1533. rc = wait_event_interruptible(audio->write_wait,
  1534. (audio->teos && audio->out_needed &&
  1535. list_empty(&audio->out_queue))
  1536. || audio->wflush || audio->stopped);
  1537. if (audio->stopped || audio->wflush)
  1538. rc = -EBUSY;
  1539. mutex_unlock(&audio->write_lock);
  1540. mutex_lock(&audio->lock);
  1541. audio->drv_status &= ~ADRV_STATUS_FSYNC;
  1542. mutex_unlock(&audio->lock);
  1543. return rc;
  1544. }
  1545. int audmp3_sync_fsync(struct audio *audio)
  1546. {
  1547. struct buffer *frame;
  1548. int rc = 0;
  1549. MM_DBG("\n"); /* Macro prints the file name and function */
  1550. mutex_lock(&audio->write_lock);
  1551. rc = wait_event_interruptible(audio->write_wait,
  1552. (!audio->out[0].used &&
  1553. !audio->out[1].used &&
  1554. audio->out_needed) || audio->wflush);
  1555. if (rc < 0)
  1556. goto done;
  1557. else if (audio->wflush) {
  1558. rc = -EBUSY;
  1559. goto done;
  1560. }
  1561. if (audio->reserved) {
  1562. MM_DBG("send reserved byte\n");
  1563. frame = audio->out + audio->out_tail;
  1564. ((char *) frame->data)[0] = audio->rsv_byte;
  1565. ((char *) frame->data)[1] = 0;
  1566. frame->used = 2;
  1567. audio->drv_ops.send_data(audio, 0);
  1568. rc = wait_event_interruptible(audio->write_wait,
  1569. (!audio->out[0].used &&
  1570. !audio->out[1].used &&
  1571. audio->out_needed) || audio->wflush);
  1572. if (rc < 0)
  1573. goto done;
  1574. else if (audio->wflush) {
  1575. rc = -EBUSY;
  1576. goto done;
  1577. }
  1578. }
  1579. /* pcm dmamiss message is sent continously
  1580. * when decoder is starved so no race
  1581. * condition concern
  1582. */
  1583. audio->teos = 0;
  1584. rc = wait_event_interruptible(audio->write_wait,
  1585. audio->teos || audio->wflush);
  1586. if (audio->wflush)
  1587. rc = -EBUSY;
  1588. done:
  1589. mutex_unlock(&audio->write_lock);
  1590. return rc;
  1591. }
  1592. int audmp3_fsync(struct file *file, int datasync)
  1593. {
  1594. struct audio *audio = file->private_data;
  1595. if (!audio->running || audio->pcm_feedback)
  1596. return -EINVAL;
  1597. return audio->drv_ops.fsync(audio);
  1598. }
  1599. static ssize_t audio_read(struct file *file, char __user *buf, size_t count,
  1600. loff_t *pos)
  1601. {
  1602. struct audio *audio = file->private_data;
  1603. const char __user *start = buf;
  1604. int rc = 0;
  1605. if (audio->drv_status & ADRV_STATUS_AIO_INTF)
  1606. return -EPERM;
  1607. else if (!audio->pcm_feedback)
  1608. return 0; /* PCM feedback disabled. Nothing to read */
  1609. mutex_lock(&audio->read_lock);
  1610. MM_DBG("%d \n", count);
  1611. while (count > 0) {
  1612. rc = wait_event_interruptible_timeout(
  1613. audio->read_wait,
  1614. (audio->in[audio->read_next].
  1615. used > 0) || (audio->stopped)
  1616. || (audio->rflush),
  1617. msecs_to_jiffies(MSM_AUD_BUFFER_UPDATE_WAIT_MS));
  1618. if (rc == 0) {
  1619. rc = -ETIMEDOUT;
  1620. break;
  1621. } else if (rc < 0)
  1622. break;
  1623. if (audio->stopped || audio->rflush) {
  1624. rc = -EBUSY;
  1625. break;
  1626. }
  1627. if (count < audio->in[audio->read_next].used) {
  1628. /* Read must happen in frame boundary. Since
  1629. * driver does not know frame size, read count
  1630. * must be greater or equal
  1631. * to size of PCM samples
  1632. */
  1633. MM_DBG("no partial frame done reading\n");
  1634. break;
  1635. } else {
  1636. MM_DBG("read from in[%d]\n", audio->read_next);
  1637. if (copy_to_user
  1638. (buf, audio->in[audio->read_next].data,
  1639. audio->in[audio->read_next].used)) {
  1640. MM_ERR("invalid addr %x \n", (unsigned int)buf);
  1641. rc = -EFAULT;
  1642. break;
  1643. }
  1644. count -= audio->in[audio->read_next].used;
  1645. buf += audio->in[audio->read_next].used;
  1646. audio->in[audio->read_next].used = 0;
  1647. if ((++audio->read_next) == audio->pcm_buf_count)
  1648. audio->read_next = 0;
  1649. break; /* Force to exit while loop
  1650. * to prevent output thread
  1651. * sleep too long if data is
  1652. * not ready at this moment.
  1653. */
  1654. }
  1655. }
  1656. /* don't feed output buffer to HW decoder during flushing
  1657. * buffer refresh command will be sent once flush completes
  1658. * send buf refresh command here can confuse HW decoder
  1659. */
  1660. if (audio->buf_refresh && !audio->rflush) {
  1661. audio->buf_refresh = 0;
  1662. MM_DBG("kick start pcm feedback again\n");
  1663. audio->drv_ops.buffer_refresh(audio);
  1664. }
  1665. mutex_unlock(&audio->read_lock);
  1666. if (buf > start)
  1667. rc = buf - start;
  1668. MM_DBG("read %d bytes\n", rc);
  1669. return rc;
  1670. }
  1671. static int audmp3_process_eos(struct audio *audio,
  1672. const char __user *buf_start, unsigned short mfield_size)
  1673. {
  1674. int rc = 0;
  1675. struct buffer *frame;
  1676. char *buf_ptr;
  1677. if (audio->reserved) {
  1678. MM_DBG("flush reserve byte\n");
  1679. frame = audio->out + audio->out_head;
  1680. buf_ptr = frame->data;
  1681. rc = wait_event_interruptible(audio->write_wait,
  1682. (frame->used == 0)
  1683. || (audio->stopped)
  1684. || (audio->wflush));
  1685. if (rc < 0)
  1686. goto done;
  1687. if (audio->stopped || audio->wflush) {
  1688. rc = -EBUSY;
  1689. goto done;
  1690. }
  1691. buf_ptr[0] = audio->rsv_byte;
  1692. buf_ptr[1] = 0;
  1693. audio->out_head ^= 1;
  1694. frame->mfield_sz = 0;
  1695. frame->used = 2;
  1696. audio->reserved = 0;
  1697. audio->drv_ops.send_data(audio, 0);
  1698. }
  1699. frame = audio->out + audio->out_head;
  1700. rc = wait_event_interruptible(audio->write_wait,
  1701. (audio->out_needed &&
  1702. audio->out[0].used == 0 &&
  1703. audio->out[1].used == 0)
  1704. || (audio->stopped)
  1705. || (audio->wflush));
  1706. if (rc < 0)
  1707. goto done;
  1708. if (audio->stopped || audio->wflush) {
  1709. rc = -EBUSY;
  1710. goto done;
  1711. }
  1712. if (copy_from_user(frame->data, buf_start, mfield_size)) {
  1713. rc = -EFAULT;
  1714. goto done;
  1715. }
  1716. frame->mfield_sz = mfield_size;
  1717. audio->out_head ^= 1;
  1718. frame->used = mfield_size;
  1719. audio->drv_ops.send_data(audio, 0);
  1720. done:
  1721. return rc;
  1722. }
  1723. static ssize_t audio_write(struct file *file, const char __user *buf,
  1724. size_t count, loff_t *pos)
  1725. {
  1726. struct audio *audio = file->private_data;
  1727. const char __user *start = buf;
  1728. struct buffer *frame;
  1729. size_t xfer;
  1730. char *cpy_ptr;
  1731. int rc = 0, eos_condition = AUDMP3_EOS_NONE;
  1732. unsigned dsize;
  1733. unsigned short mfield_size = 0;
  1734. if (audio->drv_status & ADRV_STATUS_AIO_INTF)
  1735. return -EPERM;
  1736. MM_DBG("cnt=%d\n", count);
  1737. mutex_lock(&audio->write_lock);
  1738. while (count > 0) {
  1739. frame = audio->out + audio->out_head;
  1740. cpy_ptr = frame->data;
  1741. dsize = 0;
  1742. rc = wait_event_interruptible(audio->write_wait,
  1743. (frame->used == 0)
  1744. || (audio->stopped)
  1745. || (audio->wflush));
  1746. if (rc < 0)
  1747. break;
  1748. if (audio->stopped || audio->wflush) {
  1749. rc = -EBUSY;
  1750. break;
  1751. }
  1752. if (audio->mfield) {
  1753. if (buf == start) {
  1754. /* Processing beginning of user buffer */
  1755. if (__get_user(mfield_size,
  1756. (unsigned short __user *) buf)) {
  1757. rc = -EFAULT;
  1758. break;
  1759. } else if (mfield_size > count) {
  1760. rc = -EINVAL;
  1761. break;
  1762. }
  1763. MM_DBG("mf offset_val %x\n", mfield_size);
  1764. if (copy_from_user(cpy_ptr, buf, mfield_size)) {
  1765. rc = -EFAULT;
  1766. break;
  1767. }
  1768. /* Check if EOS flag is set and buffer has
  1769. * contains just meta field
  1770. */
  1771. if (cpy_ptr[AUDMP3_EOS_FLG_OFFSET] &
  1772. AUDMP3_EOS_FLG_MASK) {
  1773. MM_DBG("EOS SET\n");
  1774. eos_condition = AUDMP3_EOS_SET;
  1775. if (mfield_size == count) {
  1776. buf += mfield_size;
  1777. break;
  1778. } else
  1779. cpy_ptr[AUDMP3_EOS_FLG_OFFSET]
  1780. &= ~AUDMP3_EOS_FLG_MASK;
  1781. }
  1782. cpy_ptr += mfield_size;
  1783. count -= mfield_size;
  1784. dsize += mfield_size;
  1785. buf += mfield_size;
  1786. } else {
  1787. mfield_size = 0;
  1788. MM_DBG("continuous buffer\n");
  1789. }
  1790. frame->mfield_sz = mfield_size;
  1791. }
  1792. if (audio->reserved) {
  1793. MM_DBG("append reserved byte %x\n", audio->rsv_byte);
  1794. *cpy_ptr = audio->rsv_byte;
  1795. xfer = (count > ((frame->size - mfield_size) - 1)) ?
  1796. (frame->size - mfield_size) - 1 : count;
  1797. cpy_ptr++;
  1798. dsize += 1;
  1799. audio->reserved = 0;
  1800. } else
  1801. xfer = (count > (frame->size - mfield_size)) ?
  1802. (frame->size - mfield_size) : count;
  1803. if (copy_from_user(cpy_ptr, buf, xfer)) {
  1804. rc = -EFAULT;
  1805. break;
  1806. }
  1807. dsize += xfer;
  1808. if (dsize & 1) {
  1809. audio->rsv_byte = ((char *) frame->data)[dsize - 1];
  1810. MM_DBG("odd length buf reserve last byte %x\n",
  1811. audio->rsv_byte);
  1812. audio->reserved = 1;
  1813. dsize--;
  1814. }
  1815. count -= xfer;
  1816. buf += xfer;
  1817. if (dsize > 0) {
  1818. audio->out_head ^= 1;
  1819. frame->used = dsize;
  1820. audio->drv_ops.send_data(audio, 0);
  1821. }
  1822. }
  1823. if (eos_condition == AUDMP3_EOS_SET)
  1824. rc = audmp3_process_eos(audio, start, mfield_size);
  1825. mutex_unlock(&audio->write_lock);
  1826. if (!rc) {
  1827. if (buf > start)
  1828. return buf - start;
  1829. }
  1830. return rc;
  1831. }
  1832. static void audmp3_reset_pmem_region(struct audio *audio)
  1833. {
  1834. struct audmp3_pmem_region *region;
  1835. struct list_head *ptr, *next;
  1836. list_for_each_safe(ptr, next, &audio->pmem_region_queue) {
  1837. region = list_entry(ptr, struct audmp3_pmem_region, list);
  1838. list_del(&region->list);
  1839. put_pmem_file(region->file);
  1840. kfree(region);
  1841. }
  1842. return;
  1843. }
  1844. static int audio_release(struct inode *inode, struct file *file)
  1845. {
  1846. struct audio *audio = file->private_data;
  1847. MM_INFO("audio instance 0x%08x freeing\n", (int)audio);
  1848. mutex_lock(&audio->lock);
  1849. auddev_unregister_evt_listner(AUDDEV_CLNT_DEC, audio->dec_id);
  1850. audio_disable(audio);
  1851. audio->drv_ops.out_flush(audio);
  1852. audio->drv_ops.in_flush(audio);
  1853. audmp3_reset_pmem_region(audio);
  1854. msm_adsp_put(audio->audplay);
  1855. audpp_adec_free(audio->dec_id);
  1856. #ifdef CONFIG_HAS_EARLYSUSPEND
  1857. unregister_early_suspend(&audio->suspend_ctl.node);
  1858. #endif
  1859. audio->opened = 0;
  1860. audio->event_abort = 1;
  1861. wake_up(&audio->event_wait);
  1862. audmp3_reset_event_queue(audio);
  1863. if (audio->data) {
  1864. iounmap(audio->data);
  1865. pmem_kfree(audio->phys);
  1866. }
  1867. if (audio->read_data) {
  1868. iounmap(audio->read_data);
  1869. pmem_kfree(audio->read_phys);
  1870. }
  1871. mutex_unlock(&audio->lock);
  1872. #ifdef CONFIG_DEBUG_FS
  1873. if (audio->dentry)
  1874. debugfs_remove(audio->dentry);
  1875. #endif
  1876. kfree(audio);
  1877. return 0;
  1878. }
  1879. static void audmp3_post_event(struct audio *audio, int type,
  1880. union msm_audio_event_payload payload)
  1881. {
  1882. struct audmp3_event *e_node = NULL;
  1883. unsigned long flags;
  1884. spin_lock_irqsave(&audio->event_queue_lock, flags);
  1885. if (!list_empty(&audio->free_event_queue)) {
  1886. e_node = list_first_entry(&audio->free_event_queue,
  1887. struct audmp3_event, list);
  1888. list_del(&e_node->list);
  1889. } else {
  1890. e_node = kmalloc(sizeof(struct audmp3_event), GFP_ATOMIC);
  1891. if (!e_node) {
  1892. MM_ERR("No mem to post event %d\n", type);
  1893. return;
  1894. }
  1895. }
  1896. e_node->event_type = type;
  1897. e_node->payload = payload;
  1898. list_add_tail(&e_node->list, &audio->event_queue);
  1899. spin_unlock_irqrestore(&audio->event_queue_lock, flags);
  1900. wake_up(&audio->event_wait);
  1901. }
  1902. #ifdef CONFIG_HAS_EARLYSUSPEND
  1903. static void audmp3_suspend(struct early_suspend *h)
  1904. {
  1905. struct audmp3_suspend_ctl *ctl =
  1906. container_of(h, struct audmp3_suspend_ctl, node);
  1907. union msm_audio_event_payload payload;
  1908. MM_DBG("\n"); /* Macro prints the file name and function */
  1909. audmp3_post_event(ctl->audio, AUDIO_EVENT_SUSPEND, payload);
  1910. }
  1911. static void audmp3_resume(struct early_suspend *h)
  1912. {
  1913. struct audmp3_suspend_ctl *ctl =
  1914. container_of(h, struct audmp3_suspend_ctl, node);
  1915. union msm_audio_event_payload payload;
  1916. MM_DBG("\n"); /* Macro prints the file name and function */
  1917. audmp3_post_event(ctl->audio, AUDIO_EVENT_RESUME, payload);
  1918. }
  1919. #endif
  1920. #ifdef CONFIG_DEBUG_FS
  1921. static ssize_t audmp3_debug_open(struct inode *inode, struct file *file)
  1922. {
  1923. file->private_data = inode->i_private;
  1924. return 0;
  1925. }
  1926. static ssize_t audmp3_debug_read(struct file *file, char __user *buf,
  1927. size_t count, loff_t *ppos)
  1928. {
  1929. const int debug_bufmax = 4096;
  1930. static char buffer[4096];
  1931. int n = 0, i;
  1932. struct audio *audio = file->private_data;
  1933. mutex_lock(&audio->lock);
  1934. n = scnprintf(buffer, debug_bufmax, "opened %d\n", audio->opened);
  1935. n += scnprintf(buffer + n, debug_bufmax - n,
  1936. "enabled %d\n", audio->enabled);
  1937. n += scnprintf(buffer + n, debug_bufmax - n,
  1938. "stopped %d\n", audio->stopped);
  1939. n += scnprintf(buffer + n, debug_bufmax - n,
  1940. "pcm_feedback %d\n", audio->pcm_feedback);
  1941. n += scnprintf(buffer + n, debug_bufmax - n,
  1942. "out_buf_sz %d\n", audio->out[0].size);
  1943. n += scnprintf(buffer + n, debug_bufmax - n,
  1944. "pcm_buf_count %d \n", audio->pcm_buf_count);
  1945. n += scnprintf(buffer + n, debug_bufmax - n,
  1946. "pcm_buf_sz %d \n", audio->in[0].size);
  1947. n += scnprintf(buffer + n, debug_bufmax - n,
  1948. "volume %x \n", audio->vol_pan.volume);
  1949. n += scnprintf(buffer + n, debug_bufmax - n,
  1950. "sample rate %d \n", audio->out_sample_rate);
  1951. n += scnprintf(buffer + n, debug_bufmax - n,
  1952. "channel mode %d \n", audio->out_channel_mode);
  1953. mutex_unlock(&audio->lock);
  1954. /* Following variables are only useful for debugging when
  1955. * when playback halts unexpectedly. Thus, no mutual exclusion
  1956. * enforced
  1957. */
  1958. n += scnprintf(buffer + n, debug_bufmax - n,
  1959. "wflush %d\n", audio->wflush);
  1960. n += scnprintf(buffer + n, debug_bufmax - n,
  1961. "rflush %d\n", audio->rflush);
  1962. n += scnprintf(buffer + n, debug_bufmax - n,
  1963. "running %d \n", audio->running);
  1964. n += scnprintf(buffer + n, debug_bufmax - n,
  1965. "dec state %d \n", audio->dec_state);
  1966. n += scnprintf(buffer + n, debug_bufmax - n,
  1967. "out_needed %d \n", audio->out_needed);
  1968. n += scnprintf(buffer + n, debug_bufmax - n,
  1969. "out_head %d \n", audio->out_head);
  1970. n += scnprintf(buffer + n, debug_bufmax - n,
  1971. "out_tail %d \n", audio->out_tail);
  1972. n += scnprintf(buffer + n, debug_bufmax - n,
  1973. "out[0].used %d \n", audio->out[0].used);
  1974. n += scnprintf(buffer + n, debug_bufmax - n,
  1975. "out[1].used %d \n", audio->out[1].used);
  1976. n += scnprintf(buffer + n, debug_bufmax - n,
  1977. "buffer_refresh %d \n", audio->buf_refresh);
  1978. n += scnprintf(buffer + n, debug_bufmax - n,
  1979. "read_next %d \n", audio->read_next);
  1980. n += scnprintf(buffer + n, debug_bufmax - n,
  1981. "fill_next %d \n", audio->fill_next);
  1982. for (i = 0; i < audio->pcm_buf_count; i++)
  1983. n += scnprintf(buffer + n, debug_bufmax - n,
  1984. "in[%d].size %d \n", i, audio->in[i].used);
  1985. buffer[n] = 0;
  1986. return simple_read_from_buffer(buf, count, ppos, buffer, n);
  1987. }
  1988. static const struct file_operations audmp3_debug_fops = {
  1989. .read = audmp3_debug_read,
  1990. .open = audmp3_debug_open,
  1991. };
  1992. #endif
  1993. static int audio_open(struct inode *inode, struct file *file)
  1994. {
  1995. struct audio *audio = NULL;
  1996. int rc, i, dec_attrb, decid;
  1997. struct audmp3_event *e_node = NULL;
  1998. unsigned pmem_sz = DMASZ_MAX;
  1999. #ifdef CONFIG_DEBUG_FS
  2000. /* 4 bytes represents decoder number, 1 byte for terminate string */
  2001. char name[sizeof "msm_mp3_" + 5];
  2002. #endif
  2003. /* Allocate audio instance, set to zero */
  2004. audio = kzalloc(sizeof(struct audio), GFP_KERNEL);
  2005. if (!audio) {
  2006. MM_ERR("no memory to allocate audio instance \n");
  2007. rc = -ENOMEM;
  2008. goto done;
  2009. }
  2010. MM_INFO("audio instance 0x%08x created\n", (int)audio);
  2011. /* Allocate the decoder */
  2012. dec_attrb = AUDDEC_DEC_MP3;
  2013. if ((file->f_mode & FMODE_WRITE) &&
  2014. (file->f_mode & FMODE_READ)) {
  2015. dec_attrb |= MSM_AUD_MODE_NONTUNNEL;
  2016. audio->pcm_feedback = NON_TUNNEL_MODE_PLAYBACK;
  2017. } else if ((file->f_mode & FMODE_WRITE) &&
  2018. !(file->f_mode & FMODE_READ)) {
  2019. dec_attrb |= MSM_AUD_MODE_TUNNEL;
  2020. audio->pcm_feedback = TUNNEL_MODE_PLAYBACK;
  2021. } else {
  2022. kfree(audio);
  2023. rc = -EACCES;
  2024. goto done;
  2025. }
  2026. decid = audpp_adec_alloc(dec_attrb, &audio->module_name,
  2027. &audio->queue_id);
  2028. if (decid < 0) {
  2029. MM_ERR("No free decoder available, freeing instance 0x%08x\n",
  2030. (int)audio);
  2031. rc = -ENODEV;
  2032. kfree(audio);
  2033. goto done;
  2034. }
  2035. audio->dec_id = decid & MSM_AUD_DECODER_MASK;
  2036. /* AIO interface */
  2037. if (file->f_flags & O_NONBLOCK) {
  2038. MM_DBG("set to aio interface \n");
  2039. audio->drv_status |= ADRV_STATUS_AIO_INTF;
  2040. audio->drv_ops.pcm_buf_update = audmp3_async_pcm_buf_update;
  2041. audio->drv_ops.buffer_refresh = audmp3_async_buffer_refresh;
  2042. audio->drv_ops.send_data = audmp3_async_send_data;
  2043. audio->drv_ops.out_flush = audmp3_async_flush;
  2044. audio->drv_ops.in_flush = audmp3_async_flush_pcm_buf;
  2045. audio->drv_ops.fsync = audmp3_async_fsync;
  2046. } else {
  2047. MM_DBG("set to std io interface \n");
  2048. while (pmem_sz >= DMASZ_MIN) {
  2049. MM_DBG("pmemsz = %d \n", pmem_sz);
  2050. audio->phys = pmem_kalloc(pmem_sz, PMEM_MEMTYPE_EBI1|
  2051. PMEM_ALIGNMENT_4K);
  2052. if (!IS_ERR((void *)audio->phys)) {
  2053. audio->data = ioremap(audio->phys, pmem_sz);
  2054. if (!audio->data) {
  2055. MM_ERR("could not allocate write \
  2056. buffers, freeing instance \
  2057. 0x%08x\n", (int)audio);
  2058. rc = -ENOMEM;
  2059. pmem_kfree(audio->phys);
  2060. audpp_adec_free(audio->dec_id);
  2061. kfree(audio);
  2062. goto done;
  2063. }
  2064. MM_DBG("write buf: phy addr 0x%08x kernel addr\
  2065. 0x%08x\n", audio->phys,\
  2066. (int)audio->data);
  2067. break;
  2068. } else if (pmem_sz == DMASZ_MIN) {
  2069. MM_ERR("could not allocate write buffers, \
  2070. freeing instance 0x%08x\n",
  2071. (int)audio);
  2072. rc = -ENOMEM;
  2073. audpp_adec_free(audio->dec_id);
  2074. kfree(audio);
  2075. goto done;
  2076. } else
  2077. pmem_sz >>= 1;
  2078. }
  2079. audio->out_dma_sz = pmem_sz;
  2080. audio->drv_ops.pcm_buf_update = audio_update_pcm_buf_entry;
  2081. audio->drv_ops.buffer_refresh = audplay_buffer_refresh;
  2082. audio->drv_ops.send_data = audplay_send_data;
  2083. audio->drv_ops.out_flush = audio_flush;
  2084. audio->drv_ops.in_flush = audio_flush_pcm_buf;
  2085. audio->drv_ops.fsync = audmp3_sync_fsync;
  2086. audio->out[0].data = audio->data + 0;
  2087. audio->out[0].addr = audio->phys + 0;
  2088. audio->out[0].size = (audio->out_dma_sz >> 1);
  2089. audio->out[1].data = audio->data + audio->out[0].size;
  2090. audio->out[1].addr = audio->phys + audio->out[0].size;
  2091. audio->out[1].size = audio->out[0].size;
  2092. }
  2093. rc = msm_adsp_get(audio->module_name, &audio->audplay,
  2094. &audplay_adsp_ops, audio);
  2095. if (rc) {
  2096. MM_ERR("failed to get %s module freeing instance 0x%08x\n",
  2097. audio->module_name, (int)audio);
  2098. goto err;
  2099. }
  2100. /* Initialize all locks of audio instance */
  2101. mutex_init(&audio->lock);
  2102. mutex_init(&audio->write_lock);
  2103. mutex_init(&audio->read_lock);
  2104. mutex_init(&audio->get_event_lock);
  2105. spin_lock_init(&audio->dsp_lock);
  2106. init_waitqueue_head(&audio->write_wait);
  2107. init_waitqueue_head(&audio->read_wait);
  2108. INIT_LIST_HEAD(&audio->out_queue);
  2109. INIT_LIST_HEAD(&audio->in_queue);
  2110. INIT_LIST_HEAD(&audio->pmem_region_queue);
  2111. INIT_LIST_HEAD(&audio->free_event_queue);
  2112. INIT_LIST_HEAD(&audio->event_queue);
  2113. init_waitqueue_head(&audio->wait);
  2114. init_waitqueue_head(&audio->event_wait);
  2115. spin_lock_init(&audio->event_queue_lock);
  2116. init_waitqueue_head(&audio->avsync_wait);
  2117. audio->out_sample_rate = 44100;
  2118. audio->out_channel_mode = AUDPP_CMD_PCM_INTF_STEREO_V;
  2119. audio->vol_pan.volume = 0x2000;
  2120. audio->bitstream_error_threshold_value =
  2121. BITSTREAM_ERROR_THRESHOLD_VALUE;
  2122. audio->drv_ops.out_flush(audio);
  2123. file->private_data = audio;
  2124. audio->opened = 1;
  2125. audio->device_events = AUDDEV_EVT_DEV_RDY
  2126. |AUDDEV_EVT_DEV_RLS |
  2127. AUDDEV_EVT_STREAM_VOL_CHG;
  2128. rc = auddev_register_evt_listner(audio->device_events,
  2129. AUDDEV_CLNT_DEC,
  2130. audio->dec_id,
  2131. mp3_listner,
  2132. (void *)audio);
  2133. if (rc) {
  2134. MM_ERR("%s: failed to register listner\n", __func__);
  2135. goto event_err;
  2136. }
  2137. #ifdef CONFIG_DEBUG_FS
  2138. snprintf(name, sizeof name, "msm_mp3_%04x", audio->dec_id);
  2139. audio->dentry = debugfs_create_file(name, S_IFREG | S_IRUGO,
  2140. NULL, (void *) audio, &audmp3_debug_fops);
  2141. if (IS_ERR(audio->dentry))
  2142. MM_DBG("debugfs_create_file failed\n");
  2143. #endif
  2144. #ifdef CONFIG_HAS_EARLYSUSPEND
  2145. audio->suspend_ctl.node.level = EARLY_SUSPEND_LEVEL_DISABLE_FB;
  2146. audio->suspend_ctl.node.resume = audmp3_resume;
  2147. audio->suspend_ctl.node.suspend = audmp3_suspend;
  2148. audio->suspend_ctl.audio = audio;
  2149. register_early_suspend(&audio->suspend_ctl.node);
  2150. #endif
  2151. for (i = 0; i < AUDMP3_EVENT_NUM; i++) {
  2152. e_node = kmalloc(sizeof(struct audmp3_event), GFP_KERNEL);
  2153. if (e_node)
  2154. list_add_tail(&e_node->list, &audio->free_event_queue);
  2155. else {
  2156. MM_ERR("event pkt alloc failed\n");
  2157. break;
  2158. }
  2159. }
  2160. memset(&audio->stream_info, 0, sizeof(struct msm_audio_bitstream_info));
  2161. memset(&audio->bitstream_error_info, 0,
  2162. sizeof(struct msm_audio_bitstream_info));
  2163. done:
  2164. return rc;
  2165. event_err:
  2166. msm_adsp_put(audio->audplay);
  2167. err:
  2168. if (audio->data) {
  2169. iounmap(audio->data);
  2170. pmem_kfree(audio->phys);
  2171. }
  2172. audpp_adec_free(audio->dec_id);
  2173. kfree(audio);
  2174. return rc;
  2175. }
  2176. static const struct file_operations audio_mp3_fops = {
  2177. .owner = THIS_MODULE,
  2178. .open = audio_open,
  2179. .release = audio_release,
  2180. .read = audio_read,
  2181. .write = audio_write,
  2182. .unlocked_ioctl = audio_ioctl,
  2183. .fsync = audmp3_fsync,
  2184. };
  2185. struct miscdevice audio_mp3_misc = {
  2186. .minor = MISC_DYNAMIC_MINOR,
  2187. .name = "msm_mp3",
  2188. .fops = &audio_mp3_fops,
  2189. };
  2190. static int __init audio_init(void)
  2191. {
  2192. return misc_register(&audio_mp3_misc);
  2193. }
  2194. static void __exit audio_exit(void)
  2195. {
  2196. misc_deregister(&audio_mp3_misc);
  2197. }
  2198. module_init(audio_init);
  2199. module_exit(audio_exit);
  2200. MODULE_DESCRIPTION("MSM MP3 driver");
  2201. MODULE_LICENSE("GPL v2");