PageRenderTime 33ms CodeModel.GetById 33ms RepoModel.GetById 0ms app.codeStats 1ms

/compiler/specialise/SpecConstr.lhs

https://bitbucket.org/carter/ghc
Haskell | 1792 lines | 1217 code | 324 blank | 251 comment | 68 complexity | 9522308fcf057ede1ab7e2445db1004b MD5 | raw file
  1. ToDo [Nov 2010]
  2. ~~~~~~~~~~~~~~~
  3. 1. Use a library type rather than an annotation for ForceSpecConstr
  4. 2. Nuke NoSpecConstr
  5. %
  6. % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
  7. %
  8. \section[SpecConstr]{Specialise over constructors}
  9. \begin{code}
  10. {-# OPTIONS -fno-warn-tabs #-}
  11. -- The above warning supression flag is a temporary kludge.
  12. -- While working on this module you are encouraged to remove it and
  13. -- detab the module (please do the detabbing in a separate patch). See
  14. -- http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces
  15. -- for details
  16. module SpecConstr(
  17. specConstrProgram
  18. #ifdef GHCI
  19. , SpecConstrAnnotation(..)
  20. #endif
  21. ) where
  22. #include "HsVersions.h"
  23. import CoreSyn
  24. import CoreSubst
  25. import CoreUtils
  26. import CoreUnfold ( couldBeSmallEnoughToInline )
  27. import CoreFVs ( exprsFreeVars )
  28. import CoreMonad
  29. import Literal ( litIsLifted )
  30. import HscTypes ( ModGuts(..) )
  31. import WwLib ( mkWorkerArgs )
  32. import DataCon
  33. import Coercion hiding( substTy, substCo )
  34. import Rules
  35. import Type hiding ( substTy )
  36. import Id
  37. import MkCore ( mkImpossibleExpr )
  38. import Var
  39. import VarEnv
  40. import VarSet
  41. import Name
  42. import BasicTypes
  43. import DynFlags ( DynFlags(..) )
  44. import StaticFlags ( opt_PprStyle_Debug )
  45. import Maybes ( orElse, catMaybes, isJust, isNothing )
  46. import Demand
  47. import DmdAnal ( both )
  48. import Serialized ( deserializeWithData )
  49. import Util
  50. import Pair
  51. import UniqSupply
  52. import Outputable
  53. import FastString
  54. import UniqFM
  55. import MonadUtils
  56. import Control.Monad ( zipWithM )
  57. import Data.List
  58. -- See Note [SpecConstrAnnotation]
  59. #ifndef GHCI
  60. type SpecConstrAnnotation = ()
  61. #else
  62. import TyCon ( TyCon )
  63. import GHC.Exts( SpecConstrAnnotation(..) )
  64. #endif
  65. \end{code}
  66. -----------------------------------------------------
  67. Game plan
  68. -----------------------------------------------------
  69. Consider
  70. drop n [] = []
  71. drop 0 xs = []
  72. drop n (x:xs) = drop (n-1) xs
  73. After the first time round, we could pass n unboxed. This happens in
  74. numerical code too. Here's what it looks like in Core:
  75. drop n xs = case xs of
  76. [] -> []
  77. (y:ys) -> case n of
  78. I# n# -> case n# of
  79. 0 -> []
  80. _ -> drop (I# (n# -# 1#)) xs
  81. Notice that the recursive call has an explicit constructor as argument.
  82. Noticing this, we can make a specialised version of drop
  83. RULE: drop (I# n#) xs ==> drop' n# xs
  84. drop' n# xs = let n = I# n# in ...orig RHS...
  85. Now the simplifier will apply the specialisation in the rhs of drop', giving
  86. drop' n# xs = case xs of
  87. [] -> []
  88. (y:ys) -> case n# of
  89. 0 -> []
  90. _ -> drop (n# -# 1#) xs
  91. Much better!
  92. We'd also like to catch cases where a parameter is carried along unchanged,
  93. but evaluated each time round the loop:
  94. f i n = if i>0 || i>n then i else f (i*2) n
  95. Here f isn't strict in n, but we'd like to avoid evaluating it each iteration.
  96. In Core, by the time we've w/wd (f is strict in i) we get
  97. f i# n = case i# ># 0 of
  98. False -> I# i#
  99. True -> case n of n' { I# n# ->
  100. case i# ># n# of
  101. False -> I# i#
  102. True -> f (i# *# 2#) n'
  103. At the call to f, we see that the argument, n is know to be (I# n#),
  104. and n is evaluated elsewhere in the body of f, so we can play the same
  105. trick as above.
  106. Note [Reboxing]
  107. ~~~~~~~~~~~~~~~
  108. We must be careful not to allocate the same constructor twice. Consider
  109. f p = (...(case p of (a,b) -> e)...p...,
  110. ...let t = (r,s) in ...t...(f t)...)
  111. At the recursive call to f, we can see that t is a pair. But we do NOT want
  112. to make a specialised copy:
  113. f' a b = let p = (a,b) in (..., ...)
  114. because now t is allocated by the caller, then r and s are passed to the
  115. recursive call, which allocates the (r,s) pair again.
  116. This happens if
  117. (a) the argument p is used in other than a case-scrutinsation way.
  118. (b) the argument to the call is not a 'fresh' tuple; you have to
  119. look into its unfolding to see that it's a tuple
  120. Hence the "OR" part of Note [Good arguments] below.
  121. ALTERNATIVE 2: pass both boxed and unboxed versions. This no longer saves
  122. allocation, but does perhaps save evals. In the RULE we'd have
  123. something like
  124. f (I# x#) = f' (I# x#) x#
  125. If at the call site the (I# x) was an unfolding, then we'd have to
  126. rely on CSE to eliminate the duplicate allocation.... This alternative
  127. doesn't look attractive enough to pursue.
  128. ALTERNATIVE 3: ignore the reboxing problem. The trouble is that
  129. the conservative reboxing story prevents many useful functions from being
  130. specialised. Example:
  131. foo :: Maybe Int -> Int -> Int
  132. foo (Just m) 0 = 0
  133. foo x@(Just m) n = foo x (n-m)
  134. Here the use of 'x' will clearly not require boxing in the specialised function.
  135. The strictness analyser has the same problem, in fact. Example:
  136. f p@(a,b) = ...
  137. If we pass just 'a' and 'b' to the worker, it might need to rebox the
  138. pair to create (a,b). A more sophisticated analysis might figure out
  139. precisely the cases in which this could happen, but the strictness
  140. analyser does no such analysis; it just passes 'a' and 'b', and hopes
  141. for the best.
  142. So my current choice is to make SpecConstr similarly aggressive, and
  143. ignore the bad potential of reboxing.
  144. Note [Good arguments]
  145. ~~~~~~~~~~~~~~~~~~~~~
  146. So we look for
  147. * A self-recursive function. Ignore mutual recursion for now,
  148. because it's less common, and the code is simpler for self-recursion.
  149. * EITHER
  150. a) At a recursive call, one or more parameters is an explicit
  151. constructor application
  152. AND
  153. That same parameter is scrutinised by a case somewhere in
  154. the RHS of the function
  155. OR
  156. b) At a recursive call, one or more parameters has an unfolding
  157. that is an explicit constructor application
  158. AND
  159. That same parameter is scrutinised by a case somewhere in
  160. the RHS of the function
  161. AND
  162. Those are the only uses of the parameter (see Note [Reboxing])
  163. What to abstract over
  164. ~~~~~~~~~~~~~~~~~~~~~
  165. There's a bit of a complication with type arguments. If the call
  166. site looks like
  167. f p = ...f ((:) [a] x xs)...
  168. then our specialised function look like
  169. f_spec x xs = let p = (:) [a] x xs in ....as before....
  170. This only makes sense if either
  171. a) the type variable 'a' is in scope at the top of f, or
  172. b) the type variable 'a' is an argument to f (and hence fs)
  173. Actually, (a) may hold for value arguments too, in which case
  174. we may not want to pass them. Supose 'x' is in scope at f's
  175. defn, but xs is not. Then we'd like
  176. f_spec xs = let p = (:) [a] x xs in ....as before....
  177. Similarly (b) may hold too. If x is already an argument at the
  178. call, no need to pass it again.
  179. Finally, if 'a' is not in scope at the call site, we could abstract
  180. it as we do the term variables:
  181. f_spec a x xs = let p = (:) [a] x xs in ...as before...
  182. So the grand plan is:
  183. * abstract the call site to a constructor-only pattern
  184. e.g. C x (D (f p) (g q)) ==> C s1 (D s2 s3)
  185. * Find the free variables of the abstracted pattern
  186. * Pass these variables, less any that are in scope at
  187. the fn defn. But see Note [Shadowing] below.
  188. NOTICE that we only abstract over variables that are not in scope,
  189. so we're in no danger of shadowing variables used in "higher up"
  190. in f_spec's RHS.
  191. Note [Shadowing]
  192. ~~~~~~~~~~~~~~~~
  193. In this pass we gather up usage information that may mention variables
  194. that are bound between the usage site and the definition site; or (more
  195. seriously) may be bound to something different at the definition site.
  196. For example:
  197. f x = letrec g y v = let x = ...
  198. in ...(g (a,b) x)...
  199. Since 'x' is in scope at the call site, we may make a rewrite rule that
  200. looks like
  201. RULE forall a,b. g (a,b) x = ...
  202. But this rule will never match, because it's really a different 'x' at
  203. the call site -- and that difference will be manifest by the time the
  204. simplifier gets to it. [A worry: the simplifier doesn't *guarantee*
  205. no-shadowing, so perhaps it may not be distinct?]
  206. Anyway, the rule isn't actually wrong, it's just not useful. One possibility
  207. is to run deShadowBinds before running SpecConstr, but instead we run the
  208. simplifier. That gives the simplest possible program for SpecConstr to
  209. chew on; and it virtually guarantees no shadowing.
  210. Note [Specialising for constant parameters]
  211. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  212. This one is about specialising on a *constant* (but not necessarily
  213. constructor) argument
  214. foo :: Int -> (Int -> Int) -> Int
  215. foo 0 f = 0
  216. foo m f = foo (f m) (+1)
  217. It produces
  218. lvl_rmV :: GHC.Base.Int -> GHC.Base.Int
  219. lvl_rmV =
  220. \ (ds_dlk :: GHC.Base.Int) ->
  221. case ds_dlk of wild_alH { GHC.Base.I# x_alG ->
  222. GHC.Base.I# (GHC.Prim.+# x_alG 1)
  223. T.$wfoo :: GHC.Prim.Int# -> (GHC.Base.Int -> GHC.Base.Int) ->
  224. GHC.Prim.Int#
  225. T.$wfoo =
  226. \ (ww_sme :: GHC.Prim.Int#) (w_smg :: GHC.Base.Int -> GHC.Base.Int) ->
  227. case ww_sme of ds_Xlw {
  228. __DEFAULT ->
  229. case w_smg (GHC.Base.I# ds_Xlw) of w1_Xmo { GHC.Base.I# ww1_Xmz ->
  230. T.$wfoo ww1_Xmz lvl_rmV
  231. };
  232. 0 -> 0
  233. }
  234. The recursive call has lvl_rmV as its argument, so we could create a specialised copy
  235. with that argument baked in; that is, not passed at all. Now it can perhaps be inlined.
  236. When is this worth it? Call the constant 'lvl'
  237. - If 'lvl' has an unfolding that is a constructor, see if the corresponding
  238. parameter is scrutinised anywhere in the body.
  239. - If 'lvl' has an unfolding that is a inlinable function, see if the corresponding
  240. parameter is applied (...to enough arguments...?)
  241. Also do this is if the function has RULES?
  242. Also
  243. Note [Specialising for lambda parameters]
  244. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  245. foo :: Int -> (Int -> Int) -> Int
  246. foo 0 f = 0
  247. foo m f = foo (f m) (\n -> n-m)
  248. This is subtly different from the previous one in that we get an
  249. explicit lambda as the argument:
  250. T.$wfoo :: GHC.Prim.Int# -> (GHC.Base.Int -> GHC.Base.Int) ->
  251. GHC.Prim.Int#
  252. T.$wfoo =
  253. \ (ww_sm8 :: GHC.Prim.Int#) (w_sma :: GHC.Base.Int -> GHC.Base.Int) ->
  254. case ww_sm8 of ds_Xlr {
  255. __DEFAULT ->
  256. case w_sma (GHC.Base.I# ds_Xlr) of w1_Xmf { GHC.Base.I# ww1_Xmq ->
  257. T.$wfoo
  258. ww1_Xmq
  259. (\ (n_ad3 :: GHC.Base.Int) ->
  260. case n_ad3 of wild_alB { GHC.Base.I# x_alA ->
  261. GHC.Base.I# (GHC.Prim.-# x_alA ds_Xlr)
  262. })
  263. };
  264. 0 -> 0
  265. }
  266. I wonder if SpecConstr couldn't be extended to handle this? After all,
  267. lambda is a sort of constructor for functions and perhaps it already
  268. has most of the necessary machinery?
  269. Furthermore, there's an immediate win, because you don't need to allocate the lamda
  270. at the call site; and if perchance it's called in the recursive call, then you
  271. may avoid allocating it altogether. Just like for constructors.
  272. Looks cool, but probably rare...but it might be easy to implement.
  273. Note [SpecConstr for casts]
  274. ~~~~~~~~~~~~~~~~~~~~~~~~~~~
  275. Consider
  276. data family T a :: *
  277. data instance T Int = T Int
  278. foo n = ...
  279. where
  280. go (T 0) = 0
  281. go (T n) = go (T (n-1))
  282. The recursive call ends up looking like
  283. go (T (I# ...) `cast` g)
  284. So we want to spot the construtor application inside the cast.
  285. That's why we have the Cast case in argToPat
  286. Note [Local recursive groups]
  287. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  288. For a *local* recursive group, we can see all the calls to the
  289. function, so we seed the specialisation loop from the calls in the
  290. body, not from the calls in the RHS. Consider:
  291. bar m n = foo n (n,n) (n,n) (n,n) (n,n)
  292. where
  293. foo n p q r s
  294. | n == 0 = m
  295. | n > 3000 = case p of { (p1,p2) -> foo (n-1) (p2,p1) q r s }
  296. | n > 2000 = case q of { (q1,q2) -> foo (n-1) p (q2,q1) r s }
  297. | n > 1000 = case r of { (r1,r2) -> foo (n-1) p q (r2,r1) s }
  298. | otherwise = case s of { (s1,s2) -> foo (n-1) p q r (s2,s1) }
  299. If we start with the RHSs of 'foo', we get lots and lots of specialisations,
  300. most of which are not needed. But if we start with the (single) call
  301. in the rhs of 'bar' we get exactly one fully-specialised copy, and all
  302. the recursive calls go to this fully-specialised copy. Indeed, the original
  303. function is later collected as dead code. This is very important in
  304. specialising the loops arising from stream fusion, for example in NDP where
  305. we were getting literally hundreds of (mostly unused) specialisations of
  306. a local function.
  307. In a case like the above we end up never calling the original un-specialised
  308. function. (Although we still leave its code around just in case.)
  309. However, if we find any boring calls in the body, including *unsaturated*
  310. ones, such as
  311. letrec foo x y = ....foo...
  312. in map foo xs
  313. then we will end up calling the un-specialised function, so then we *should*
  314. use the calls in the un-specialised RHS as seeds. We call these "boring
  315. call patterns, and callsToPats reports if it finds any of these.
  316. Note [Do not specialise diverging functions]
  317. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  318. Specialising a function that just diverges is a waste of code.
  319. Furthermore, it broke GHC (simpl014) thus:
  320. {-# STR Sb #-}
  321. f = \x. case x of (a,b) -> f x
  322. If we specialise f we get
  323. f = \x. case x of (a,b) -> fspec a b
  324. But fspec doesn't have decent strictnes info. As it happened,
  325. (f x) :: IO t, so the state hack applied and we eta expanded fspec,
  326. and hence f. But now f's strictness is less than its arity, which
  327. breaks an invariant.
  328. Note [SpecConstrAnnotation]
  329. ~~~~~~~~~~~~~~~~~~~~~~~~~~~
  330. SpecConstrAnnotation is defined in GHC.Exts, and is only guaranteed to
  331. be available in stage 2 (well, until the bootstrap compiler can be
  332. guaranteed to have it)
  333. So we define it to be () in stage1 (ie when GHCI is undefined), and
  334. '#ifdef' out the code that uses it.
  335. See also Note [Forcing specialisation]
  336. Note [Forcing specialisation]
  337. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  338. With stream fusion and in other similar cases, we want to fully specialise
  339. some (but not necessarily all!) loops regardless of their size and the
  340. number of specialisations. We allow a library to specify this by annotating
  341. a type with ForceSpecConstr and then adding a parameter of that type to the
  342. loop. Here is a (simplified) example from the vector library:
  343. data SPEC = SPEC | SPEC2
  344. {-# ANN type SPEC ForceSpecConstr #-}
  345. foldl :: (a -> b -> a) -> a -> Stream b -> a
  346. {-# INLINE foldl #-}
  347. foldl f z (Stream step s _) = foldl_loop SPEC z s
  348. where
  349. foldl_loop !sPEC z s = case step s of
  350. Yield x s' -> foldl_loop sPEC (f z x) s'
  351. Skip -> foldl_loop sPEC z s'
  352. Done -> z
  353. SpecConstr will spot the SPEC parameter and always fully specialise
  354. foldl_loop. Note that
  355. * We have to prevent the SPEC argument from being removed by
  356. w/w which is why (a) SPEC is a sum type, and (b) we have to seq on
  357. the SPEC argument.
  358. * And lastly, the SPEC argument is ultimately eliminated by
  359. SpecConstr itself so there is no runtime overhead.
  360. This is all quite ugly; we ought to come up with a better design.
  361. ForceSpecConstr arguments are spotted in scExpr' and scTopBinds which then set
  362. sc_force to True when calling specLoop. This flag does three things:
  363. * Ignore specConstrThreshold, to specialise functions of arbitrary size
  364. (see scTopBind)
  365. * Ignore specConstrCount, to make arbitrary numbers of specialisations
  366. (see specialise)
  367. * Specialise even for arguments that are not scrutinised in the loop
  368. (see argToPat; Trac #4488)
  369. This flag is inherited for nested non-recursive bindings (which are likely to
  370. be join points and hence should be fully specialised) but reset for nested
  371. recursive bindings.
  372. What alternatives did I consider? Annotating the loop itself doesn't
  373. work because (a) it is local and (b) it will be w/w'ed and I having
  374. w/w propagating annotation somehow doesn't seem like a good idea. The
  375. types of the loop arguments really seem to be the most persistent
  376. thing.
  377. Annotating the types that make up the loop state doesn't work,
  378. either, because (a) it would prevent us from using types like Either
  379. or tuples here, (b) we don't want to restrict the set of types that
  380. can be used in Stream states and (c) some types are fixed by the user
  381. (e.g., the accumulator here) but we still want to specialise as much
  382. as possible.
  383. ForceSpecConstr is done by way of an annotation:
  384. data SPEC = SPEC | SPEC2
  385. {-# ANN type SPEC ForceSpecConstr #-}
  386. But SPEC is the *only* type so annotated, so it'd be better to
  387. use a particular library type.
  388. Alternatives to ForceSpecConstr
  389. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  390. Instead of giving the loop an extra argument of type SPEC, we
  391. also considered *wrapping* arguments in SPEC, thus
  392. data SPEC a = SPEC a | SPEC2
  393. loop = \arg -> case arg of
  394. SPEC state ->
  395. case state of (x,y) -> ... loop (SPEC (x',y')) ...
  396. S2 -> error ...
  397. The idea is that a SPEC argument says "specialise this argument
  398. regardless of whether the function case-analyses it. But this
  399. doesn't work well:
  400. * SPEC must still be a sum type, else the strictness analyser
  401. eliminates it
  402. * But that means that 'loop' won't be strict in its real payload
  403. This loss of strictness in turn screws up specialisation, because
  404. we may end up with calls like
  405. loop (SPEC (case z of (p,q) -> (q,p)))
  406. Without the SPEC, if 'loop' was strict, the case would move out
  407. and we'd see loop applied to a pair. But if 'loop' isn' strict
  408. this doesn't look like a specialisable call.
  409. Note [NoSpecConstr]
  410. ~~~~~~~~~~~~~~~~~~~
  411. The ignoreDataCon stuff allows you to say
  412. {-# ANN type T NoSpecConstr #-}
  413. to mean "don't specialise on arguments of this type. It was added
  414. before we had ForceSpecConstr. Lacking ForceSpecConstr we specialised
  415. regardless of size; and then we needed a way to turn that *off*. Now
  416. that we have ForceSpecConstr, this NoSpecConstr is probably redundant.
  417. (Used only for PArray.)
  418. -----------------------------------------------------
  419. Stuff not yet handled
  420. -----------------------------------------------------
  421. Here are notes arising from Roman's work that I don't want to lose.
  422. Example 1
  423. ~~~~~~~~~
  424. data T a = T !a
  425. foo :: Int -> T Int -> Int
  426. foo 0 t = 0
  427. foo x t | even x = case t of { T n -> foo (x-n) t }
  428. | otherwise = foo (x-1) t
  429. SpecConstr does no specialisation, because the second recursive call
  430. looks like a boxed use of the argument. A pity.
  431. $wfoo_sFw :: GHC.Prim.Int# -> T.T GHC.Base.Int -> GHC.Prim.Int#
  432. $wfoo_sFw =
  433. \ (ww_sFo [Just L] :: GHC.Prim.Int#) (w_sFq [Just L] :: T.T GHC.Base.Int) ->
  434. case ww_sFo of ds_Xw6 [Just L] {
  435. __DEFAULT ->
  436. case GHC.Prim.remInt# ds_Xw6 2 of wild1_aEF [Dead Just A] {
  437. __DEFAULT -> $wfoo_sFw (GHC.Prim.-# ds_Xw6 1) w_sFq;
  438. 0 ->
  439. case w_sFq of wild_Xy [Just L] { T.T n_ad5 [Just U(L)] ->
  440. case n_ad5 of wild1_aET [Just A] { GHC.Base.I# y_aES [Just L] ->
  441. $wfoo_sFw (GHC.Prim.-# ds_Xw6 y_aES) wild_Xy
  442. } } };
  443. 0 -> 0
  444. Example 2
  445. ~~~~~~~~~
  446. data a :*: b = !a :*: !b
  447. data T a = T !a
  448. foo :: (Int :*: T Int) -> Int
  449. foo (0 :*: t) = 0
  450. foo (x :*: t) | even x = case t of { T n -> foo ((x-n) :*: t) }
  451. | otherwise = foo ((x-1) :*: t)
  452. Very similar to the previous one, except that the parameters are now in
  453. a strict tuple. Before SpecConstr, we have
  454. $wfoo_sG3 :: GHC.Prim.Int# -> T.T GHC.Base.Int -> GHC.Prim.Int#
  455. $wfoo_sG3 =
  456. \ (ww_sFU [Just L] :: GHC.Prim.Int#) (ww_sFW [Just L] :: T.T
  457. GHC.Base.Int) ->
  458. case ww_sFU of ds_Xws [Just L] {
  459. __DEFAULT ->
  460. case GHC.Prim.remInt# ds_Xws 2 of wild1_aEZ [Dead Just A] {
  461. __DEFAULT ->
  462. case ww_sFW of tpl_B2 [Just L] { T.T a_sFo [Just A] ->
  463. $wfoo_sG3 (GHC.Prim.-# ds_Xws 1) tpl_B2 -- $wfoo1
  464. };
  465. 0 ->
  466. case ww_sFW of wild_XB [Just A] { T.T n_ad7 [Just S(L)] ->
  467. case n_ad7 of wild1_aFd [Just L] { GHC.Base.I# y_aFc [Just L] ->
  468. $wfoo_sG3 (GHC.Prim.-# ds_Xws y_aFc) wild_XB -- $wfoo2
  469. } } };
  470. 0 -> 0 }
  471. We get two specialisations:
  472. "SC:$wfoo1" [0] __forall {a_sFB :: GHC.Base.Int sc_sGC :: GHC.Prim.Int#}
  473. Foo.$wfoo sc_sGC (Foo.T @ GHC.Base.Int a_sFB)
  474. = Foo.$s$wfoo1 a_sFB sc_sGC ;
  475. "SC:$wfoo2" [0] __forall {y_aFp :: GHC.Prim.Int# sc_sGC :: GHC.Prim.Int#}
  476. Foo.$wfoo sc_sGC (Foo.T @ GHC.Base.Int (GHC.Base.I# y_aFp))
  477. = Foo.$s$wfoo y_aFp sc_sGC ;
  478. But perhaps the first one isn't good. After all, we know that tpl_B2 is
  479. a T (I# x) really, because T is strict and Int has one constructor. (We can't
  480. unbox the strict fields, becuase T is polymorphic!)
  481. %************************************************************************
  482. %* *
  483. \subsection{Top level wrapper stuff}
  484. %* *
  485. %************************************************************************
  486. \begin{code}
  487. specConstrProgram :: ModGuts -> CoreM ModGuts
  488. specConstrProgram guts
  489. = do
  490. dflags <- getDynFlags
  491. us <- getUniqueSupplyM
  492. annos <- getFirstAnnotations deserializeWithData guts
  493. let binds' = fst $ initUs us (go (initScEnv dflags annos) (mg_binds guts))
  494. return (guts { mg_binds = binds' })
  495. where
  496. go _ [] = return []
  497. go env (bind:binds) = do (env', bind') <- scTopBind env bind
  498. binds' <- go env' binds
  499. return (bind' : binds')
  500. \end{code}
  501. %************************************************************************
  502. %* *
  503. \subsection{Environment: goes downwards}
  504. %* *
  505. %************************************************************************
  506. \begin{code}
  507. data ScEnv = SCE { sc_dflags :: DynFlags,
  508. sc_size :: Maybe Int, -- Size threshold
  509. sc_count :: Maybe Int, -- Max # of specialisations for any one fn
  510. -- See Note [Avoiding exponential blowup]
  511. sc_force :: Bool, -- Force specialisation?
  512. -- See Note [Forcing specialisation]
  513. sc_subst :: Subst, -- Current substitution
  514. -- Maps InIds to OutExprs
  515. sc_how_bound :: HowBoundEnv,
  516. -- Binds interesting non-top-level variables
  517. -- Domain is OutVars (*after* applying the substitution)
  518. sc_vals :: ValueEnv,
  519. -- Domain is OutIds (*after* applying the substitution)
  520. -- Used even for top-level bindings (but not imported ones)
  521. sc_annotations :: UniqFM SpecConstrAnnotation
  522. }
  523. ---------------------
  524. -- As we go, we apply a substitution (sc_subst) to the current term
  525. type InExpr = CoreExpr -- _Before_ applying the subst
  526. type InVar = Var
  527. type OutExpr = CoreExpr -- _After_ applying the subst
  528. type OutId = Id
  529. type OutVar = Var
  530. ---------------------
  531. type HowBoundEnv = VarEnv HowBound -- Domain is OutVars
  532. ---------------------
  533. type ValueEnv = IdEnv Value -- Domain is OutIds
  534. data Value = ConVal AltCon [CoreArg] -- _Saturated_ constructors
  535. -- The AltCon is never DEFAULT
  536. | LambdaVal -- Inlinable lambdas or PAPs
  537. instance Outputable Value where
  538. ppr (ConVal con args) = ppr con <+> interpp'SP args
  539. ppr LambdaVal = ptext (sLit "<Lambda>")
  540. ---------------------
  541. initScEnv :: DynFlags -> UniqFM SpecConstrAnnotation -> ScEnv
  542. initScEnv dflags anns
  543. = SCE { sc_dflags = dflags,
  544. sc_size = specConstrThreshold dflags,
  545. sc_count = specConstrCount dflags,
  546. sc_force = False,
  547. sc_subst = emptySubst,
  548. sc_how_bound = emptyVarEnv,
  549. sc_vals = emptyVarEnv,
  550. sc_annotations = anns }
  551. data HowBound = RecFun -- These are the recursive functions for which
  552. -- we seek interesting call patterns
  553. | RecArg -- These are those functions' arguments, or their sub-components;
  554. -- we gather occurrence information for these
  555. instance Outputable HowBound where
  556. ppr RecFun = text "RecFun"
  557. ppr RecArg = text "RecArg"
  558. scForce :: ScEnv -> Bool -> ScEnv
  559. scForce env b = env { sc_force = b }
  560. lookupHowBound :: ScEnv -> Id -> Maybe HowBound
  561. lookupHowBound env id = lookupVarEnv (sc_how_bound env) id
  562. scSubstId :: ScEnv -> Id -> CoreExpr
  563. scSubstId env v = lookupIdSubst (text "scSubstId") (sc_subst env) v
  564. scSubstTy :: ScEnv -> Type -> Type
  565. scSubstTy env ty = substTy (sc_subst env) ty
  566. scSubstCo :: ScEnv -> Coercion -> Coercion
  567. scSubstCo env co = substCo (sc_subst env) co
  568. zapScSubst :: ScEnv -> ScEnv
  569. zapScSubst env = env { sc_subst = zapSubstEnv (sc_subst env) }
  570. extendScInScope :: ScEnv -> [Var] -> ScEnv
  571. -- Bring the quantified variables into scope
  572. extendScInScope env qvars = env { sc_subst = extendInScopeList (sc_subst env) qvars }
  573. -- Extend the substitution
  574. extendScSubst :: ScEnv -> Var -> OutExpr -> ScEnv
  575. extendScSubst env var expr = env { sc_subst = extendSubst (sc_subst env) var expr }
  576. extendScSubstList :: ScEnv -> [(Var,OutExpr)] -> ScEnv
  577. extendScSubstList env prs = env { sc_subst = extendSubstList (sc_subst env) prs }
  578. extendHowBound :: ScEnv -> [Var] -> HowBound -> ScEnv
  579. extendHowBound env bndrs how_bound
  580. = env { sc_how_bound = extendVarEnvList (sc_how_bound env)
  581. [(bndr,how_bound) | bndr <- bndrs] }
  582. extendBndrsWith :: HowBound -> ScEnv -> [Var] -> (ScEnv, [Var])
  583. extendBndrsWith how_bound env bndrs
  584. = (env { sc_subst = subst', sc_how_bound = hb_env' }, bndrs')
  585. where
  586. (subst', bndrs') = substBndrs (sc_subst env) bndrs
  587. hb_env' = sc_how_bound env `extendVarEnvList`
  588. [(bndr,how_bound) | bndr <- bndrs']
  589. extendBndrWith :: HowBound -> ScEnv -> Var -> (ScEnv, Var)
  590. extendBndrWith how_bound env bndr
  591. = (env { sc_subst = subst', sc_how_bound = hb_env' }, bndr')
  592. where
  593. (subst', bndr') = substBndr (sc_subst env) bndr
  594. hb_env' = extendVarEnv (sc_how_bound env) bndr' how_bound
  595. extendRecBndrs :: ScEnv -> [Var] -> (ScEnv, [Var])
  596. extendRecBndrs env bndrs = (env { sc_subst = subst' }, bndrs')
  597. where
  598. (subst', bndrs') = substRecBndrs (sc_subst env) bndrs
  599. extendBndr :: ScEnv -> Var -> (ScEnv, Var)
  600. extendBndr env bndr = (env { sc_subst = subst' }, bndr')
  601. where
  602. (subst', bndr') = substBndr (sc_subst env) bndr
  603. extendValEnv :: ScEnv -> Id -> Maybe Value -> ScEnv
  604. extendValEnv env _ Nothing = env
  605. extendValEnv env id (Just cv) = env { sc_vals = extendVarEnv (sc_vals env) id cv }
  606. extendCaseBndrs :: ScEnv -> OutExpr -> OutId -> AltCon -> [Var] -> (ScEnv, [Var])
  607. -- When we encounter
  608. -- case scrut of b
  609. -- C x y -> ...
  610. -- we want to bind b, to (C x y)
  611. -- NB1: Extends only the sc_vals part of the envt
  612. -- NB2: Kill the dead-ness info on the pattern binders x,y, since
  613. -- they are potentially made alive by the [b -> C x y] binding
  614. extendCaseBndrs env scrut case_bndr con alt_bndrs
  615. = (env2, alt_bndrs')
  616. where
  617. live_case_bndr = not (isDeadBinder case_bndr)
  618. env1 | Var v <- scrut = extendValEnv env v cval
  619. | otherwise = env -- See Note [Add scrutinee to ValueEnv too]
  620. env2 | live_case_bndr = extendValEnv env1 case_bndr cval
  621. | otherwise = env1
  622. alt_bndrs' | case scrut of { Var {} -> True; _ -> live_case_bndr }
  623. = map zap alt_bndrs
  624. | otherwise
  625. = alt_bndrs
  626. cval = case con of
  627. DEFAULT -> Nothing
  628. LitAlt {} -> Just (ConVal con [])
  629. DataAlt {} -> Just (ConVal con vanilla_args)
  630. where
  631. vanilla_args = map Type (tyConAppArgs (idType case_bndr)) ++
  632. varsToCoreExprs alt_bndrs
  633. zap v | isTyVar v = v -- See NB2 above
  634. | otherwise = zapIdOccInfo v
  635. decreaseSpecCount :: ScEnv -> Int -> ScEnv
  636. -- See Note [Avoiding exponential blowup]
  637. decreaseSpecCount env n_specs
  638. = env { sc_count = case sc_count env of
  639. Nothing -> Nothing
  640. Just n -> Just (n `div` (n_specs + 1)) }
  641. -- The "+1" takes account of the original function;
  642. -- See Note [Avoiding exponential blowup]
  643. ---------------------------------------------------
  644. -- See Note [SpecConstrAnnotation]
  645. ignoreType :: ScEnv -> Type -> Bool
  646. ignoreDataCon :: ScEnv -> DataCon -> Bool
  647. forceSpecBndr :: ScEnv -> Var -> Bool
  648. #ifndef GHCI
  649. ignoreType _ _ = False
  650. ignoreDataCon _ _ = False
  651. forceSpecBndr _ _ = False
  652. #else /* GHCI */
  653. ignoreDataCon env dc = ignoreTyCon env (dataConTyCon dc)
  654. ignoreType env ty
  655. = case tyConAppTyCon_maybe ty of
  656. Just tycon -> ignoreTyCon env tycon
  657. _ -> False
  658. ignoreTyCon :: ScEnv -> TyCon -> Bool
  659. ignoreTyCon env tycon
  660. = lookupUFM (sc_annotations env) tycon == Just NoSpecConstr
  661. forceSpecBndr env var = forceSpecFunTy env . snd . splitForAllTys . varType $ var
  662. forceSpecFunTy :: ScEnv -> Type -> Bool
  663. forceSpecFunTy env = any (forceSpecArgTy env) . fst . splitFunTys
  664. forceSpecArgTy :: ScEnv -> Type -> Bool
  665. forceSpecArgTy env ty
  666. | Just ty' <- coreView ty = forceSpecArgTy env ty'
  667. forceSpecArgTy env ty
  668. | Just (tycon, tys) <- splitTyConApp_maybe ty
  669. , tycon /= funTyCon
  670. = lookupUFM (sc_annotations env) tycon == Just ForceSpecConstr
  671. || any (forceSpecArgTy env) tys
  672. forceSpecArgTy _ _ = False
  673. #endif /* GHCI */
  674. \end{code}
  675. Note [Add scrutinee to ValueEnv too]
  676. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  677. Consider this:
  678. case x of y
  679. (a,b) -> case b of c
  680. I# v -> ...(f y)...
  681. By the time we get to the call (f y), the ValueEnv
  682. will have a binding for y, and for c
  683. y -> (a,b)
  684. c -> I# v
  685. BUT that's not enough! Looking at the call (f y) we
  686. see that y is pair (a,b), but we also need to know what 'b' is.
  687. So in extendCaseBndrs we must *also* add the binding
  688. b -> I# v
  689. else we lose a useful specialisation for f. This is necessary even
  690. though the simplifier has systematically replaced uses of 'x' with 'y'
  691. and 'b' with 'c' in the code. The use of 'b' in the ValueEnv came
  692. from outside the case. See Trac #4908 for the live example.
  693. Note [Avoiding exponential blowup]
  694. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  695. The sc_count field of the ScEnv says how many times we are prepared to
  696. duplicate a single function. But we must take care with recursive
  697. specialiations. Consider
  698. let $j1 = let $j2 = let $j3 = ...
  699. in
  700. ...$j3...
  701. in
  702. ...$j2...
  703. in
  704. ...$j1...
  705. If we specialise $j1 then in each specialisation (as well as the original)
  706. we can specialise $j2, and similarly $j3. Even if we make just *one*
  707. specialisation of each, becuase we also have the original we'll get 2^n
  708. copies of $j3, which is not good.
  709. So when recursively specialising we divide the sc_count by the number of
  710. copies we are making at this level, including the original.
  711. %************************************************************************
  712. %* *
  713. \subsection{Usage information: flows upwards}
  714. %* *
  715. %************************************************************************
  716. \begin{code}
  717. data ScUsage
  718. = SCU {
  719. scu_calls :: CallEnv, -- Calls
  720. -- The functions are a subset of the
  721. -- RecFuns in the ScEnv
  722. scu_occs :: !(IdEnv ArgOcc) -- Information on argument occurrences
  723. } -- The domain is OutIds
  724. type CallEnv = IdEnv [Call]
  725. type Call = (ValueEnv, [CoreArg])
  726. -- The arguments of the call, together with the
  727. -- env giving the constructor bindings at the call site
  728. nullUsage :: ScUsage
  729. nullUsage = SCU { scu_calls = emptyVarEnv, scu_occs = emptyVarEnv }
  730. combineCalls :: CallEnv -> CallEnv -> CallEnv
  731. combineCalls = plusVarEnv_C (++)
  732. combineUsage :: ScUsage -> ScUsage -> ScUsage
  733. combineUsage u1 u2 = SCU { scu_calls = combineCalls (scu_calls u1) (scu_calls u2),
  734. scu_occs = plusVarEnv_C combineOcc (scu_occs u1) (scu_occs u2) }
  735. combineUsages :: [ScUsage] -> ScUsage
  736. combineUsages [] = nullUsage
  737. combineUsages us = foldr1 combineUsage us
  738. lookupOccs :: ScUsage -> [OutVar] -> (ScUsage, [ArgOcc])
  739. lookupOccs (SCU { scu_calls = sc_calls, scu_occs = sc_occs }) bndrs
  740. = (SCU {scu_calls = sc_calls, scu_occs = delVarEnvList sc_occs bndrs},
  741. [lookupVarEnv sc_occs b `orElse` NoOcc | b <- bndrs])
  742. data ArgOcc = NoOcc -- Doesn't occur at all; or a type argument
  743. | UnkOcc -- Used in some unknown way
  744. | ScrutOcc -- See Note [ScrutOcc]
  745. (DataConEnv [ArgOcc]) -- How the sub-components are used
  746. type DataConEnv a = UniqFM a -- Keyed by DataCon
  747. {- Note [ScrutOcc]
  748. ~~~~~~~~~~~~~~~~~~~
  749. An occurrence of ScrutOcc indicates that the thing, or a `cast` version of the thing,
  750. is *only* taken apart or applied.
  751. Functions, literal: ScrutOcc emptyUFM
  752. Data constructors: ScrutOcc subs,
  753. where (subs :: UniqFM [ArgOcc]) gives usage of the *pattern-bound* components,
  754. The domain of the UniqFM is the Unique of the data constructor
  755. The [ArgOcc] is the occurrences of the *pattern-bound* components
  756. of the data structure. E.g.
  757. data T a = forall b. MkT a b (b->a)
  758. A pattern binds b, x::a, y::b, z::b->a, but not 'a'!
  759. -}
  760. instance Outputable ArgOcc where
  761. ppr (ScrutOcc xs) = ptext (sLit "scrut-occ") <> ppr xs
  762. ppr UnkOcc = ptext (sLit "unk-occ")
  763. ppr NoOcc = ptext (sLit "no-occ")
  764. evalScrutOcc :: ArgOcc
  765. evalScrutOcc = ScrutOcc emptyUFM
  766. -- Experimentally, this vesion of combineOcc makes ScrutOcc "win", so
  767. -- that if the thing is scrutinised anywhere then we get to see that
  768. -- in the overall result, even if it's also used in a boxed way
  769. -- This might be too agressive; see Note [Reboxing] Alternative 3
  770. combineOcc :: ArgOcc -> ArgOcc -> ArgOcc
  771. combineOcc NoOcc occ = occ
  772. combineOcc occ NoOcc = occ
  773. combineOcc (ScrutOcc xs) (ScrutOcc ys) = ScrutOcc (plusUFM_C combineOccs xs ys)
  774. combineOcc UnkOcc (ScrutOcc ys) = ScrutOcc ys
  775. combineOcc (ScrutOcc xs) UnkOcc = ScrutOcc xs
  776. combineOcc UnkOcc UnkOcc = UnkOcc
  777. combineOccs :: [ArgOcc] -> [ArgOcc] -> [ArgOcc]
  778. combineOccs xs ys = zipWithEqual "combineOccs" combineOcc xs ys
  779. setScrutOcc :: ScEnv -> ScUsage -> OutExpr -> ArgOcc -> ScUsage
  780. -- _Overwrite_ the occurrence info for the scrutinee, if the scrutinee
  781. -- is a variable, and an interesting variable
  782. setScrutOcc env usg (Cast e _) occ = setScrutOcc env usg e occ
  783. setScrutOcc env usg (Tick _ e) occ = setScrutOcc env usg e occ
  784. setScrutOcc env usg (Var v) occ
  785. | Just RecArg <- lookupHowBound env v = usg { scu_occs = extendVarEnv (scu_occs usg) v occ }
  786. | otherwise = usg
  787. setScrutOcc _env usg _other _occ -- Catch-all
  788. = usg
  789. \end{code}
  790. %************************************************************************
  791. %* *
  792. \subsection{The main recursive function}
  793. %* *
  794. %************************************************************************
  795. The main recursive function gathers up usage information, and
  796. creates specialised versions of functions.
  797. \begin{code}
  798. scExpr, scExpr' :: ScEnv -> CoreExpr -> UniqSM (ScUsage, CoreExpr)
  799. -- The unique supply is needed when we invent
  800. -- a new name for the specialised function and its args
  801. scExpr env e = scExpr' env e
  802. scExpr' env (Var v) = case scSubstId env v of
  803. Var v' -> return (mkVarUsage env v' [], Var v')
  804. e' -> scExpr (zapScSubst env) e'
  805. scExpr' env (Type t) = return (nullUsage, Type (scSubstTy env t))
  806. scExpr' env (Coercion c) = return (nullUsage, Coercion (scSubstCo env c))
  807. scExpr' _ e@(Lit {}) = return (nullUsage, e)
  808. scExpr' env (Tick t e) = do (usg,e') <- scExpr env e
  809. return (usg, Tick t e')
  810. scExpr' env (Cast e co) = do (usg, e') <- scExpr env e
  811. return (usg, Cast e' (scSubstCo env co))
  812. scExpr' env e@(App _ _) = scApp env (collectArgs e)
  813. scExpr' env (Lam b e) = do let (env', b') = extendBndr env b
  814. (usg, e') <- scExpr env' e
  815. return (usg, Lam b' e')
  816. scExpr' env (Case scrut b ty alts)
  817. = do { (scrut_usg, scrut') <- scExpr env scrut
  818. ; case isValue (sc_vals env) scrut' of
  819. Just (ConVal con args) -> sc_con_app con args scrut'
  820. _other -> sc_vanilla scrut_usg scrut'
  821. }
  822. where
  823. sc_con_app con args scrut' -- Known constructor; simplify
  824. = do { let (_, bs, rhs) = findAlt con alts
  825. `orElse` (DEFAULT, [], mkImpossibleExpr ty)
  826. alt_env' = extendScSubstList env ((b,scrut') : bs `zip` trimConArgs con args)
  827. ; scExpr alt_env' rhs }
  828. sc_vanilla scrut_usg scrut' -- Normal case
  829. = do { let (alt_env,b') = extendBndrWith RecArg env b
  830. -- Record RecArg for the components
  831. ; (alt_usgs, alt_occs, alts')
  832. <- mapAndUnzip3M (sc_alt alt_env scrut' b') alts
  833. ; let scrut_occ = foldr combineOcc NoOcc alt_occs
  834. scrut_usg' = setScrutOcc env scrut_usg scrut' scrut_occ
  835. -- The combined usage of the scrutinee is given
  836. -- by scrut_occ, which is passed to scScrut, which
  837. -- in turn treats a bare-variable scrutinee specially
  838. ; return (foldr combineUsage scrut_usg' alt_usgs,
  839. Case scrut' b' (scSubstTy env ty) alts') }
  840. sc_alt env scrut' b' (con,bs,rhs)
  841. = do { let (env1, bs1) = extendBndrsWith RecArg env bs
  842. (env2, bs2) = extendCaseBndrs env1 scrut' b' con bs1
  843. ; (usg, rhs') <- scExpr env2 rhs
  844. ; let (usg', b_occ:arg_occs) = lookupOccs usg (b':bs2)
  845. scrut_occ = case con of
  846. DataAlt dc -> ScrutOcc (unitUFM dc arg_occs)
  847. _ -> ScrutOcc emptyUFM
  848. ; return (usg', b_occ `combineOcc` scrut_occ, (con, bs2, rhs')) }
  849. scExpr' env (Let (NonRec bndr rhs) body)
  850. | isTyVar bndr -- Type-lets may be created by doBeta
  851. = scExpr' (extendScSubst env bndr rhs) body
  852. | otherwise
  853. = do { let (body_env, bndr') = extendBndr env bndr
  854. ; (rhs_usg, rhs_info) <- scRecRhs env (bndr',rhs)
  855. ; let body_env2 = extendHowBound body_env [bndr'] RecFun
  856. -- Note [Local let bindings]
  857. RI _ rhs' _ _ _ = rhs_info
  858. body_env3 = extendValEnv body_env2 bndr' (isValue (sc_vals env) rhs')
  859. ; (body_usg, body') <- scExpr body_env3 body
  860. -- NB: For non-recursive bindings we inherit sc_force flag from
  861. -- the parent function (see Note [Forcing specialisation])
  862. ; (spec_usg, specs) <- specialise env
  863. (scu_calls body_usg)
  864. rhs_info
  865. (SI [] 0 (Just rhs_usg))
  866. ; return (body_usg { scu_calls = scu_calls body_usg `delVarEnv` bndr' }
  867. `combineUsage` rhs_usg `combineUsage` spec_usg,
  868. mkLets [NonRec b r | (b,r) <- specInfoBinds rhs_info specs] body')
  869. }
  870. -- A *local* recursive group: see Note [Local recursive groups]
  871. scExpr' env (Let (Rec prs) body)
  872. = do { let (bndrs,rhss) = unzip prs
  873. (rhs_env1,bndrs') = extendRecBndrs env bndrs
  874. rhs_env2 = extendHowBound rhs_env1 bndrs' RecFun
  875. force_spec = any (forceSpecBndr env) bndrs'
  876. -- Note [Forcing specialisation]
  877. ; (rhs_usgs, rhs_infos) <- mapAndUnzipM (scRecRhs rhs_env2) (bndrs' `zip` rhss)
  878. ; (body_usg, body') <- scExpr rhs_env2 body
  879. -- NB: start specLoop from body_usg
  880. ; (spec_usg, specs) <- specLoop (scForce rhs_env2 force_spec)
  881. (scu_calls body_usg) rhs_infos nullUsage
  882. [SI [] 0 (Just usg) | usg <- rhs_usgs]
  883. -- Do not unconditionally generate specialisations from rhs_usgs
  884. -- Instead use them only if we find an unspecialised call
  885. -- See Note [Local recursive groups]
  886. ; let rhs_usg = combineUsages rhs_usgs
  887. all_usg = spec_usg `combineUsage` rhs_usg `combineUsage` body_usg
  888. bind' = Rec (concat (zipWith specInfoBinds rhs_infos specs))
  889. ; return (all_usg { scu_calls = scu_calls all_usg `delVarEnvList` bndrs' },
  890. Let bind' body') }
  891. \end{code}
  892. Note [Local let bindings]
  893. ~~~~~~~~~~~~~~~~~~~~~~~~~
  894. It is not uncommon to find this
  895. let $j = \x. <blah> in ...$j True...$j True...
  896. Here $j is an arbitrary let-bound function, but it often comes up for
  897. join points. We might like to specialise $j for its call patterns.
  898. Notice the difference from a letrec, where we look for call patterns
  899. in the *RHS* of the function. Here we look for call patterns in the
  900. *body* of the let.
  901. At one point I predicated this on the RHS mentioning the outer
  902. recursive function, but that's not essential and might even be
  903. harmful. I'm not sure.
  904. \begin{code}
  905. scApp :: ScEnv -> (InExpr, [InExpr]) -> UniqSM (ScUsage, CoreExpr)
  906. scApp env (Var fn, args) -- Function is a variable
  907. = ASSERT( not (null args) )
  908. do { args_w_usgs <- mapM (scExpr env) args
  909. ; let (arg_usgs, args') = unzip args_w_usgs
  910. arg_usg = combineUsages arg_usgs
  911. ; case scSubstId env fn of
  912. fn'@(Lam {}) -> scExpr (zapScSubst env) (doBeta fn' args')
  913. -- Do beta-reduction and try again
  914. Var fn' -> return (arg_usg `combineUsage` mkVarUsage env fn' args',
  915. mkApps (Var fn') args')
  916. other_fn' -> return (arg_usg, mkApps other_fn' args') }
  917. -- NB: doing this ignores any usage info from the substituted
  918. -- function, but I don't think that matters. If it does
  919. -- we can fix it.
  920. where
  921. doBeta :: OutExpr -> [OutExpr] -> OutExpr
  922. -- ToDo: adjust for System IF
  923. doBeta (Lam bndr body) (arg : args) = Let (NonRec bndr arg) (doBeta body args)
  924. doBeta fn args = mkApps fn args
  925. -- The function is almost always a variable, but not always.
  926. -- In particular, if this pass follows float-in,
  927. -- which it may, we can get
  928. -- (let f = ...f... in f) arg1 arg2
  929. scApp env (other_fn, args)
  930. = do { (fn_usg, fn') <- scExpr env other_fn
  931. ; (arg_usgs, args') <- mapAndUnzipM (scExpr env) args
  932. ; return (combineUsages arg_usgs `combineUsage` fn_usg, mkApps fn' args') }
  933. ----------------------
  934. mkVarUsage :: ScEnv -> Id -> [CoreExpr] -> ScUsage
  935. mkVarUsage env fn args
  936. = case lookupHowBound env fn of
  937. Just RecFun -> SCU { scu_calls = unitVarEnv fn [(sc_vals env, args)]
  938. , scu_occs = emptyVarEnv }
  939. Just RecArg -> SCU { scu_calls = emptyVarEnv
  940. , scu_occs = unitVarEnv fn arg_occ }
  941. Nothing -> nullUsage
  942. where
  943. -- I rather think we could use UnkOcc all the time
  944. arg_occ | null args = UnkOcc
  945. | otherwise = evalScrutOcc
  946. ----------------------
  947. scTopBind :: ScEnv -> CoreBind -> UniqSM (ScEnv, CoreBind)
  948. scTopBind env (Rec prs)
  949. | Just threshold <- sc_size env
  950. , not force_spec
  951. , not (all (couldBeSmallEnoughToInline (sc_dflags env) threshold) rhss)
  952. -- No specialisation
  953. = do { let (rhs_env,bndrs') = extendRecBndrs env bndrs
  954. ; (_, rhss') <- mapAndUnzipM (scExpr rhs_env) rhss
  955. ; return (rhs_env, Rec (bndrs' `zip` rhss')) }
  956. | otherwise -- Do specialisation
  957. = do { let (rhs_env1,bndrs') = extendRecBndrs env bndrs
  958. rhs_env2 = extendHowBound rhs_env1 bndrs' RecFun
  959. ; (rhs_usgs, rhs_infos) <- mapAndUnzipM (scRecRhs rhs_env2) (bndrs' `zip` rhss)
  960. ; let rhs_usg = combineUsages rhs_usgs
  961. ; (_, specs) <- specLoop (scForce rhs_env2 force_spec)
  962. (scu_calls rhs_usg) rhs_infos nullUsage
  963. [SI [] 0 Nothing | _ <- bndrs]
  964. ; return (rhs_env1, -- For the body of the letrec, delete the RecFun business
  965. Rec (concat (zipWith specInfoBinds rhs_infos specs))) }
  966. where
  967. (bndrs,rhss) = unzip prs
  968. force_spec = any (forceSpecBndr env) bndrs
  969. -- Note [Forcing specialisation]
  970. scTopBind env (NonRec bndr rhs)
  971. = do { (_, rhs') <- scExpr env rhs
  972. ; let (env1, bndr') = extendBndr env bndr
  973. env2 = extendValEnv env1 bndr' (isValue (sc_vals env) rhs')
  974. ; return (env2, NonRec bndr' rhs') }
  975. ----------------------
  976. scRecRhs :: ScEnv -> (OutId, InExpr) -> UniqSM (ScUsage, RhsInfo)
  977. scRecRhs env (bndr,rhs)
  978. = do { let (arg_bndrs,body) = collectBinders rhs
  979. (body_env, arg_bndrs') = extendBndrsWith RecArg env arg_bndrs
  980. ; (body_usg, body') <- scExpr body_env body
  981. ; let (rhs_usg, arg_occs) = lookupOccs body_usg arg_bndrs'
  982. ; return (rhs_usg, RI bndr (mkLams arg_bndrs' body')
  983. arg_bndrs body arg_occs) }
  984. -- The arg_occs says how the visible,
  985. -- lambda-bound binders of the RHS are used
  986. -- (including the TyVar binders)
  987. -- Two pats are the same if they match both ways
  988. ----------------------
  989. specInfoBinds :: RhsInfo -> SpecInfo -> [(Id,CoreExpr)]
  990. specInfoBinds (RI fn new_rhs _ _ _) (SI specs _ _)
  991. = [(id,rhs) | OS _ _ id rhs <- specs] ++
  992. -- First the specialised bindings
  993. [(fn `addIdSpecialisations` rules, new_rhs)]
  994. -- And now the original binding
  995. where
  996. rules = [r | OS _ r _ _ <- specs]
  997. \end{code}
  998. %************************************************************************
  999. %* *
  1000. The specialiser itself
  1001. %* *
  1002. %************************************************************************
  1003. \begin{code}
  1004. data RhsInfo = RI OutId -- The binder
  1005. OutExpr -- The new RHS
  1006. [InVar] InExpr -- The *original* RHS (\xs.body)
  1007. -- Note [Specialise original body]
  1008. [ArgOcc] -- Info on how the xs occur in body
  1009. data SpecInfo = SI [OneSpec] -- The specialisations we have generated
  1010. Int -- Length of specs; used for numbering them
  1011. (Maybe ScUsage) -- Just cs => we have not yet used calls in the
  1012. -- from calls in the *original* RHS as
  1013. -- seeds for new specialisations;
  1014. -- if you decide to do so, here is the
  1015. -- RHS usage (which has not yet been
  1016. -- unleashed)
  1017. -- Nothing => we have
  1018. -- See Note [Local recursive groups]
  1019. -- One specialisation: Rule plus definition
  1020. data OneSpec = OS CallPat -- Call pattern that generated this specialisation
  1021. CoreRule -- Rule connecting original id with the specialisation
  1022. OutId OutExpr -- Spec id + its rhs
  1023. specLoop :: ScEnv
  1024. -> CallEnv
  1025. -> [RhsInfo]
  1026. -> ScUsage -> [SpecInfo] -- One per binder; acccumulating parameter
  1027. -> UniqSM (ScUsage, [SpecInfo]) -- ...ditto...
  1028. specLoop env all_calls rhs_infos usg_so_far specs_so_far
  1029. = do { specs_w_usg <- zipWithM (specialise env all_calls) rhs_infos specs_so_far
  1030. ; let (new_usg_s, all_specs) = unzip specs_w_usg
  1031. new_usg = combineUsages new_usg_s
  1032. new_calls = scu_calls new_usg
  1033. all_usg = usg_so_far `combineUsage` new_usg
  1034. ; if isEmptyVarEnv new_calls then
  1035. return (all_usg, all_specs)
  1036. else
  1037. specLoop env new_calls rhs_infos all_usg all_specs }
  1038. specialise
  1039. :: ScEnv
  1040. -> CallEnv -- Info on calls
  1041. -> RhsInfo
  1042. -> SpecInfo -- Original RHS plus patterns dealt with
  1043. -> UniqSM (ScUsage, SpecInfo) -- New specialised versions and their usage
  1044. -- Note: this only generates *specialised* bindings
  1045. -- The original binding is added by specInfoBinds
  1046. --
  1047. -- Note: the rhs here is the optimised version of the original rhs
  1048. -- So when we make a specialised copy of the RHS, we're starting
  1049. -- from an RHS whose nested functions have been optimised already.
  1050. specialise env bind_calls (RI fn _ arg_bndrs body arg_occs)
  1051. spec_info@(SI specs spec_count mb_unspec)
  1052. | not (isBottomingId fn) -- Note [Do not specialise diverging functions]
  1053. , not (isNeverActive (idInlineActivation fn)) -- See Note [Transfer activation]
  1054. , notNull arg_bndrs -- Only specialise functions
  1055. , Just all_calls <- lookupVarEnv bind_calls fn
  1056. = do { (boring_call, pats) <- callsToPats env specs arg_occs all_calls
  1057. -- ; pprTrace "specialise" (vcat [ ppr fn <+> text "with" <+> int (length pats) <+> text "good patterns"
  1058. -- , text "arg_occs" <+> ppr arg_occs
  1059. -- , text "calls" <+> ppr all_calls
  1060. -- , text "good pats" <+> ppr pats]) $
  1061. -- return ()
  1062. -- Bale out if too many specialisations
  1063. ; let n_pats = length pats
  1064. spec_count' = n_pats + spec_count
  1065. ; case sc_count env of
  1066. Just max | not (sc_force env) && spec_count' > max
  1067. -> if (debugIsOn || opt_PprStyle_Debug) -- Suppress this scary message for
  1068. then pprTrace "SpecConstr" msg $ -- ordinary users! Trac #5125
  1069. return (nullUsage, spec_info)
  1070. else return (nullUsage, spec_info)
  1071. where
  1072. msg = vcat [ sep [ ptext (sLit "Function") <+> quotes (ppr fn)
  1073. , nest 2 (ptext (sLit "has") <+>
  1074. speakNOf spec_count' (ptext (sLit "call pattern")) <> comma <+>
  1075. ptext (sLit "but the limit is") <+> int max) ]
  1076. , ptext (sLit "Use -fspec-constr-count=n to set the bound")
  1077. , extra ]
  1078. extra | not opt_PprStyle_Debug = ptext (sLit "Use -dppr-debug to see specialisations")
  1079. | otherwise = ptext (sLit "Specialisations:") <+> ppr (pats ++ [p | OS p _ _ _ <- specs])
  1080. _normal_case -> do {
  1081. let spec_env = decreaseSpecCount env n_pats
  1082. ; (spec_usgs, new_specs) <- mapAndUnzipM (spec_one spec_env fn arg_bndrs body)
  1083. (pats `zip` [spec_count..])
  1084. -- See Note [Specialise original body]
  1085. ; let spec_usg = combineUsages spec_usgs
  1086. (new_usg, mb_unspec')
  1087. = case mb_unspec of
  1088. Just rhs_usg | boring_call -> (spec_usg `combineUsage` rhs_usg, Nothing)
  1089. _ -> (spec_usg, mb_unspec)
  1090. ; return (new_usg, SI (new_specs ++ specs) spec_count' mb_unspec') } }
  1091. | otherwise
  1092. = return (nullUsage, spec_info) -- The boring case
  1093. ---------------------
  1094. spec_one :: ScEnv
  1095. -> OutId -- Function
  1096. -> [InVar] -- Lambda-binders of RHS; should match patterns
  1097. -> InExpr -- Body of the original function
  1098. -> (CallPat, Int)
  1099. -> UniqSM (ScUsage, OneSpec) -- Rule and binding
  1100. -- spec_one creates a specialised copy of the function, together
  1101. -- with a rule for using it. I'm very proud of how short this
  1102. -- function is, considering what it does :-).
  1103. {-
  1104. Example
  1105. In-scope: a, x::a
  1106. f = /\b \y::[(a,b)] -> ....f (b,c) ((:) (a,(b,c)) (x,v) (h w))...
  1107. [c::*, v::(b,c) are presumably bound by the (...) part]
  1108. ==>
  1109. f_spec = /\ b c \ v::(b,c) hw::[(a,(b,c))] ->
  1110. (...entire body of f...) [b -> (b,c),
  1111. y -> ((:) (a,(b,c)) (x,v) hw)]
  1112. RULE: forall b::* c::*, -- Note, *not* forall a, x
  1113. v::(b,c),
  1114. hw::[(a,(b,c))] .
  1115. f (b,c) ((:) (a,(b,c)) (x,v) hw) = f_spec b c v hw
  1116. -}
  1117. spec_one env fn arg_bndrs body (call_pat@(qvars, pats), rule_number)
  1118. = do { spec_uniq <- getUniqueUs
  1119. ; let spec_env = extendScSubstList (extendScInScope env qvars)
  1120. (arg_bndrs `zip` pats)
  1121. fn_name = idName fn
  1122. fn_loc = nameSrcSpan fn_name
  1123. spec_occ = mkSpecOcc (nameOccName fn_name)
  1124. dflags = sc_dflags env
  1125. rule_name = mkFastString ("SC:" ++ showSDoc dflags (ppr fn <> int rule_number))
  1126. spec_name = mkInternalName spec_uniq spec_occ fn_loc
  1127. -- ; pprTrace "{spec_one" (ppr (sc_count env) <+> ppr fn <+> ppr pats <+> text "-->" <+> ppr spec_name) $
  1128. -- return ()
  1129. -- Specialise the body
  1130. ; (spec_usg, spec_body) <- scExpr spec_env body
  1131. -- ; pprTrace "done spec_one}" (ppr fn) $
  1132. -- return ()
  1133. -- And build the results
  1134. ; let spec_id = mkLocalId spec_name (mkPiTypes spec_lam_args body_ty)
  1135. `setIdStrictness` spec_str -- See Note [Transfer strictness]
  1136. `setIdArity` count isId spec_lam_args
  1137. spec_str = calcSpecStrictness fn spec_lam_args pats
  1138. (spec_lam_args, spec_call_args) = mkWorkerArgs qvars body_ty
  1139. -- Usual w/w hack to avoid generating
  1140. -- a spec_rhs of unlifted type and no args
  1141. spec_rhs = mkLams spec_lam_args spec_body
  1142. body_ty = exprType spec_body
  1143. rule_rhs = mkVarApps (Var spec_id) spec_call_args
  1144. inline_act = idInlineActivation fn
  1145. rule = mkRule True {- Auto -} True {- Local -}
  1146. rule_name inline_act fn_name qvars pats rule_rhs
  1147. -- See Note [Transfer activation]
  1148. ; return (spec_usg, OS call_pat rule spec_id spec_rhs) }
  1149. calcSpecStrictness :: Id -- The original function
  1150. -> [Var] -> [CoreExpr] -- Call pattern
  1151. -> StrictSig -- Strictness of specialised thing
  1152. -- See Note [Transfer strictness]
  1153. calcSpecStrictness fn qvars pats
  1154. = StrictSig (mkTopDmdType spec_dmds TopRes)
  1155. where
  1156. spec_dmds = [ lookupVarEnv dmd_env qv `orElse` lazyDmd | qv <- qvars, isId qv ]
  1157. StrictSig (DmdType _ dmds _) = idStrictness fn
  1158. dmd_env = go emptyVarEnv dmds pats
  1159. go env ds (Type {} : pats) = go env ds pats
  1160. go env ds (Coercion {} : pats) = go env ds pats
  1161. go env (d:ds) (pat : pats) = go (go_one env d pat) ds pats
  1162. go env _ _ = env
  1163. go_one env d (Var v) = extendVarEnv_C both env v d
  1164. go_one env (Box d) e = go_one env d e
  1165. go_one env (Eval (Prod ds)) e
  1166. | (Var _, args) <- collectArgs e = go env ds args
  1167. go_one env _ _ = env
  1168. \end{code}
  1169. Note [Specialise original body]
  1170. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1171. The RhsInfo for a binding keeps the *original* body of the binding. We
  1172. must specialise that, *not* the result of applying specExpr to the RHS
  1173. (which is also kept in RhsInfo). Otherwise we end up specialising a
  1174. specialised RHS, and that can lead directly to exponential behaviour.
  1175. Note [Transfer activation]
  1176. ~~~~~~~~~~~~~~~~~~~~~~~~~~
  1177. This note is for SpecConstr, but exactly the same thing
  1178. happens in the overloading specialiser; see
  1179. Note [Auto-specialisation and RULES] in Specialise.
  1180. In which phase should the specialise-constructor rules be active?
  1181. Originally I made them always-active, but Manuel found that this
  1182. defeated some clever user-written rules. Then I made them active only
  1183. in Phase 0; after all, currently, the specConstr transformation is
  1184. only run after the simplifier has reached Phase 0, but that meant
  1185. that specialisations didn't fire inside wrappers; see test
  1186. simplCore/should_compile/spec-inline.
  1187. So now I just use the inline-activation of the parent Id, as the
  1188. activation for the specialiation RULE, just like the main specialiser;
  1189. This in turn means there is no point in specialising NOINLINE things,
  1190. so we test for that.
  1191. Note [Transfer strictness]
  1192. ~~~~~~~~~~~~~~~~~~~~~~~~~~
  1193. We must transfer strictness information from the original function to
  1194. the specialised one. Suppose, for example
  1195. f has strictness SS
  1196. and a RULE f (a:as) b = f_spec a as b
  1197. Now we want f_spec to have strictess LLS, otherwise we'll use call-by-need
  1198. when calling f_spec instead of call-by-value. And that can result in
  1199. unbounded worsening in space (cf the classic foldl vs foldl')
  1200. See Trac #3437 for a good example.
  1201. The function calcSpecStrictness performs the calculation.
  1202. %************************************************************************
  1203. %* *
  1204. \subsection{Argument analysis}
  1205. %* *
  1206. %************************************************************************
  1207. This code deals with analysing call-site arguments to see whether
  1208. they are constructor applications.
  1209. Note [Free type variables of the qvar types]
  1210. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1211. In a call (f @a x True), that we want to specialise, what variables should
  1212. we quantify over. Clearly over 'a' and 'x', but what about any type variables
  1213. free in x's type? In fact we don't need to worry about them because (f @a)
  1214. can only be a well-typed application if its type is compatible with x, so any
  1215. variables free in x's type must be free in (f @a), and hence either be gathered
  1216. via 'a' itself, or be in scope at f's defn. Hence we just take
  1217. (exprsFreeVars pats).
  1218. BUT phantom type synonyms can mess this reasoning up,
  1219. eg x::T b with type T b = Int
  1220. So we apply expandTypeSynonyms to the bound Ids.
  1221. See Trac # 5458. Yuk.
  1222. \begin{code}
  1223. type CallPat = ([Var], [CoreExpr]) -- Quantified variables and arguments
  1224. callsToPats :: ScEnv -> [OneSpec] -> [ArgOcc] -> [Call] -> UniqSM (Bool, [CallPat])
  1225. -- Result has no duplicate patterns,
  1226. -- nor ones mentioned in done_pats
  1227. -- Bool indicates that there was at least one boring pattern
  1228. callsToPats env done_specs bndr_occs calls
  1229. = do { mb_pats <- mapM (callToPats env bndr_occs) calls
  1230. ; let good_pats :: [CallPat]
  1231. good_pats = catMaybes mb_pats
  1232. done_pats = [p | OS p _ _ _ <- done_specs]
  1233. is_done p = any (samePat p) done_pats
  1234. ; return (any isNothing mb_pats,
  1235. filterOut is_done (nubBy samePat good_pats)) }
  1236. callToPats :: ScEnv -> [ArgOcc] -> Call -> UniqSM (Maybe CallPat)
  1237. -- The [Var] is the variables to quantify over in the rule
  1238. -- Type variables come first, since they may scope
  1239. -- over the following term variables
  1240. -- The [CoreExpr] are the argument patterns for the rule
  1241. callToPats env bndr_occs (con_env, args)
  1242. | length args < length bndr_occs -- Check saturated
  1243. = return Nothing
  1244. | otherwise
  1245. = do { let in_scope = substInScope (sc_subst env)
  1246. ; (interesting, pats) <- argsToPats env in_scope con_env args bndr_occs
  1247. ; let pat_fvs = varSetElems (exprsFreeVars pats)
  1248. in_scope_vars = getInScopeVars in_scope
  1249. qvars = filterOut (`elemVarSet` in_scope_vars) pat_fvs
  1250. -- Quantify over variables that are not in sccpe
  1251. -- at the call site
  1252. -- See Note [Free type variables of the qvar types]
  1253. -- See Note [Shadowing] at the top
  1254. (tvs, ids) = partition isTyVar qvars
  1255. qvars' = tvs ++ map sanitise ids
  1256. -- Put the type variables first; the type of a term
  1257. -- variable may mention a type variable
  1258. sanitise id = id `setIdType` expandTypeSynonyms (idType id)
  1259. -- See Note [Free type variables of the qvar types]
  1260. ; -- pprTrace "callToPats" (ppr args $$ ppr prs $$ ppr bndr_occs) $
  1261. if interesting
  1262. then return (Just (qvars', pats))
  1263. else return Nothing }
  1264. -- argToPat takes an actual argument, and returns an abstracted
  1265. -- version, consisting of just the "constructor skeleton" of the
  1266. -- argument, with non-constructor sub-expression replaced by new
  1267. -- placeholder variables. For example:
  1268. -- C a (D (f x) (g y)) ==> C p1 (D p2 p3)
  1269. argToPat :: ScEnv
  1270. -> InScopeSet -- What's in scope at the fn defn site
  1271. -> ValueEnv -- ValueEnv at the call site
  1272. -> CoreArg -- A call arg (or component thereof)
  1273. -> ArgOcc
  1274. -> UniqSM (Bool, CoreArg)
  1275. -- Returns (interesting, pat),
  1276. -- where pat is the pattern derived from the argument
  1277. -- interesting=True if the pattern is non-trivial (not a variable or type)
  1278. -- E.g. x:xs --> (True, x:xs)
  1279. -- f xs --> (False, w) where w is a fresh wildcard
  1280. -- (f xs, 'c') --> (True, (w, 'c')) where w is a fresh wildcard
  1281. -- \x. x+y --> (True, \x. x+y)
  1282. -- lvl7 --> (True, lvl7) if lvl7 is bound
  1283. -- somewhere further out
  1284. argToPat _env _in_scope _val_env arg@(Type {}) _arg_occ
  1285. = return (False, arg)
  1286. argToPat env in_scope val_env (Tick _ arg) arg_occ
  1287. = argToPat env in_scope val_env arg arg_occ
  1288. -- Note [Notes in call patterns]
  1289. -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1290. -- Ignore Notes. In particular, we want to ignore any InlineMe notes
  1291. -- Perhaps we should not ignore profiling notes, but I'm going to
  1292. -- ride roughshod over them all for now.
  1293. --- See Note [Notes in RULE matching] in Rules
  1294. argToPat env in_scope val_env (Let _ arg) arg_occ
  1295. = argToPat env in_scope val_env arg arg_occ
  1296. -- See Note [Matching lets] in Rule.lhs
  1297. -- Look through let expressions
  1298. -- e.g. f (let v = rhs in (v,w))
  1299. -- Here we can specialise for f (v,w)
  1300. -- because the rule-matcher will look through the let.
  1301. {- Disabled; see Note [Matching cases] in Rule.lhs
  1302. argToPat env in_scope val_env (Case scrut _ _ [(_, _, rhs)]) arg_occ
  1303. | exprOkForSpeculation scrut -- See Note [Matching cases] in Rule.hhs
  1304. = argToPat env in_scope val_env rhs arg_occ
  1305. -}
  1306. argToPat env in_scope val_env (Cast arg co) arg_occ
  1307. | isReflCo co -- Substitution in the SpecConstr itself
  1308. -- can lead to identity coercions
  1309. = argToPat env in_scope val_env arg arg_occ
  1310. | not (ignoreType env ty2)
  1311. = do { (interesting, arg') <- argToPat env in_scope val_env arg arg_occ
  1312. ; if not interesting then
  1313. wildCardPat ty2
  1314. else do
  1315. { -- Make a wild-card pattern for the coercion
  1316. uniq <- getUniqueUs
  1317. ; let co_name = mkSysTvName uniq (fsLit "sg")
  1318. co_var = mkCoVar co_name (mkCoercionType ty1 ty2)
  1319. ; return (interesting, Cast arg' (mkCoVarCo co_var)) } }
  1320. where
  1321. Pair ty1 ty2 = coercionKind co
  1322. {- Disabling lambda specialisation for now
  1323. It's fragile, and the spec_loop can be infinite
  1324. argToPat in_scope val_env arg arg_occ
  1325. | is_value_lam arg
  1326. = return (True, arg)
  1327. where
  1328. is_value_lam (Lam v e) -- Spot a value lambda, even if
  1329. | isId v = True -- it is inside a type lambda
  1330. | otherwise = is_value_lam e
  1331. is_value_lam other = False
  1332. -}
  1333. -- Check for a constructor application
  1334. -- NB: this *precedes* the Var case, so that we catch nullary constrs
  1335. argToPat env in_scope val_env arg arg_occ
  1336. | Just (ConVal (DataAlt dc) args) <- isValue val_env arg
  1337. , not (ignoreDataCon env dc) -- See Note [NoSpecConstr]
  1338. , Just arg_occs <- mb_scrut dc
  1339. = do { let (ty_args, rest_args) = splitAtList (dataConUnivTyVars dc) args
  1340. ; (_, args') <- argsToPats env in_scope val_env rest_args arg_occs
  1341. ; return (True,
  1342. mkConApp dc (ty_args ++ args')) }
  1343. where
  1344. mb_scrut dc = case arg_occ of
  1345. ScrutOcc bs
  1346. | Just occs <- lookupUFM bs dc
  1347. -> Just (occs) -- See Note [Reboxing]
  1348. _other | sc_force env -> Just (repeat UnkOcc)
  1349. | otherwise -> Nothing
  1350. -- Check if the argument is a variable that
  1351. -- (a) is used in an interesting way in the body
  1352. -- (b) we know what its value is
  1353. -- In that case it counts as "interesting"
  1354. argToPat env in_scope val_env (Var v) arg_occ
  1355. | sc_force env || case arg_occ of { UnkOcc -> False; _other -> True }, -- (a)
  1356. is_value, -- (b)
  1357. not (ignoreType env (varType v))
  1358. = return (True, Var v)
  1359. where
  1360. is_value
  1361. | isLocalId v = v `elemInScopeSet` in_scope
  1362. && isJust (lookupVarEnv val_env v)
  1363. -- Local variables have values in val_env
  1364. | otherwise = isValueUnfolding (idUnfolding v)
  1365. -- Imports have unfoldings
  1366. -- I'm really not sure what this comment means
  1367. -- And by not wild-carding we tend to get forall'd
  1368. -- variables that are in soope, which in turn can
  1369. -- expose the weakness in let-matching
  1370. -- See Note [Matching lets] in Rules
  1371. -- Check for a variable bound inside the function.
  1372. -- Don't make a wild-card, because we may usefully share
  1373. -- e.g. f a = let x = ... in f (x,x)
  1374. -- NB: this case follows the lambda and con-app cases!!
  1375. -- argToPat _in_scope _val_env (Var v) _arg_occ
  1376. -- = return (False, Var v)
  1377. -- SLPJ : disabling this to avoid proliferation of versions
  1378. -- also works badly when thinking about seeding the loop
  1379. -- from the body of the let
  1380. -- f x y = letrec g z = ... in g (x,y)
  1381. -- We don't want to specialise for that *particular* x,y
  1382. -- The default case: make a wild-card
  1383. -- We use this for coercions too
  1384. argToPat _env _in_scope _val_env arg _arg_occ
  1385. = wildCardPat (exprType arg)
  1386. wildCardPat :: Type -> UniqSM (Bool, CoreArg)
  1387. wildCardPat ty
  1388. = do { uniq <- getUniqueUs
  1389. ; let id = mkSysLocal (fsLit "sc") uniq ty
  1390. ; return (False, varToCoreExpr id) }
  1391. argsToPats :: ScEnv -> InScopeSet -> ValueEnv
  1392. -> [CoreArg] -> [ArgOcc] -- Should be same length
  1393. -> UniqSM (Bool, [CoreArg])
  1394. argsToPats env in_scope val_env args occs
  1395. = do { stuff <- zipWithM (argToPat env in_scope val_env) args occs
  1396. ; let (interesting_s, args') = unzip stuff
  1397. ; return (or interesting_s, args') }
  1398. \end{code}
  1399. \begin{code}
  1400. isValue :: ValueEnv -> CoreExpr -> Maybe Value
  1401. isValue _env (Lit lit)
  1402. | litIsLifted lit = Nothing
  1403. | otherwise = Just (ConVal (LitAlt lit) [])
  1404. isValue env (Var v)
  1405. | Just stuff <- lookupVarEnv env v
  1406. = Just stuff -- You might think we could look in the idUnfolding here
  1407. -- but that doesn't take account of which branch of a
  1408. -- case we are in, which is the whole point
  1409. | not (isLocalId v) && isCheapUnfolding unf
  1410. = isValue env (unfoldingTemplate unf)
  1411. where
  1412. unf = idUnfolding v
  1413. -- However we do want to consult the unfolding
  1414. -- as well, for let-bound constructors!
  1415. isValue env (Lam b e)
  1416. | isTyVar b = case isValue env e of
  1417. Just _ -> Just LambdaVal
  1418. Nothing -> Nothing
  1419. | otherwise = Just LambdaVal
  1420. isValue _env expr -- Maybe it's a constructor application
  1421. | (Var fun, args) <- collectArgs expr
  1422. = case isDataConWorkId_maybe fun of
  1423. Just con | args `lengthAtLeast` dataConRepArity con
  1424. -- Check saturated; might be > because the
  1425. -- arity excludes type args
  1426. -> Just (ConVal (DataAlt con) args)
  1427. _other | valArgCount args < idArity fun
  1428. -- Under-applied function
  1429. -> Just LambdaVal -- Partial application
  1430. _other -> Nothing
  1431. isValue _env _expr = Nothing
  1432. samePat :: CallPat -> CallPat -> Bool
  1433. samePat (vs1, as1) (vs2, as2)
  1434. = all2 same as1 as2
  1435. where
  1436. same (Var v1) (Var v2)
  1437. | v1 `elem` vs1 = v2 `elem` vs2
  1438. | v2 `elem` vs2 = False
  1439. | otherwise = v1 == v2
  1440. same (Lit l1) (Lit l2) = l1==l2
  1441. same (App f1 a1) (App f2 a2) = same f1 f2 && same a1 a2
  1442. same (Type {}) (Type {}) = True -- Note [Ignore type differences]
  1443. same (Coercion {}) (Coercion {}) = True
  1444. same (Tick _ e1) e2 = same e1 e2 -- Ignore casts and notes
  1445. same (Cast e1 _) e2 = same e1 e2
  1446. same e1 (Tick _ e2) = same e1 e2
  1447. same e1 (Cast e2 _) = same e1 e2
  1448. same e1 e2 = WARN( bad e1 || bad e2, ppr e1 $$ ppr e2)
  1449. False -- Let, lambda, case should not occur
  1450. bad (Case {}) = True
  1451. bad (Let {}) = True
  1452. bad (Lam {}) = True
  1453. bad _other = False
  1454. \end{code}
  1455. Note [Ignore type differences]
  1456. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1457. We do not want to generate specialisations where the call patterns
  1458. differ only in their type arguments! Not only is it utterly useless,
  1459. but it also means that (with polymorphic recursion) we can generate
  1460. an infinite number of specialisations. Example is Data.Sequence.adjustTree,
  1461. I think.