PageRenderTime 73ms CodeModel.GetById 32ms RepoModel.GetById 0ms app.codeStats 1ms

/drivers/net/wireless/adm8211.c

https://bitbucket.org/cyanogenmod/android_kernel_asus_tf300t
C | 2007 lines | 1543 code | 346 blank | 118 comment | 205 complexity | 41b971452bc0e86e05b12019fe2c63f9 MD5 | raw file
Possible License(s): LGPL-2.0, AGPL-1.0, GPL-2.0
  1. /*
  2. * Linux device driver for ADMtek ADM8211 (IEEE 802.11b MAC/BBP)
  3. *
  4. * Copyright (c) 2003, Jouni Malinen <j@w1.fi>
  5. * Copyright (c) 2004-2007, Michael Wu <flamingice@sourmilk.net>
  6. * Some parts copyright (c) 2003 by David Young <dyoung@pobox.com>
  7. * and used with permission.
  8. *
  9. * Much thanks to Infineon-ADMtek for their support of this driver.
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License version 2 as
  13. * published by the Free Software Foundation. See README and COPYING for
  14. * more details.
  15. */
  16. #include <linux/init.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/if.h>
  19. #include <linux/skbuff.h>
  20. #include <linux/slab.h>
  21. #include <linux/etherdevice.h>
  22. #include <linux/pci.h>
  23. #include <linux/delay.h>
  24. #include <linux/crc32.h>
  25. #include <linux/eeprom_93cx6.h>
  26. #include <net/mac80211.h>
  27. #include "adm8211.h"
  28. MODULE_AUTHOR("Michael Wu <flamingice@sourmilk.net>");
  29. MODULE_AUTHOR("Jouni Malinen <j@w1.fi>");
  30. MODULE_DESCRIPTION("Driver for IEEE 802.11b wireless cards based on ADMtek ADM8211");
  31. MODULE_SUPPORTED_DEVICE("ADM8211");
  32. MODULE_LICENSE("GPL");
  33. static unsigned int tx_ring_size __read_mostly = 16;
  34. static unsigned int rx_ring_size __read_mostly = 16;
  35. module_param(tx_ring_size, uint, 0);
  36. module_param(rx_ring_size, uint, 0);
  37. static DEFINE_PCI_DEVICE_TABLE(adm8211_pci_id_table) = {
  38. /* ADMtek ADM8211 */
  39. { PCI_DEVICE(0x10B7, 0x6000) }, /* 3Com 3CRSHPW796 */
  40. { PCI_DEVICE(0x1200, 0x8201) }, /* ? */
  41. { PCI_DEVICE(0x1317, 0x8201) }, /* ADM8211A */
  42. { PCI_DEVICE(0x1317, 0x8211) }, /* ADM8211B/C */
  43. { 0 }
  44. };
  45. static struct ieee80211_rate adm8211_rates[] = {
  46. { .bitrate = 10, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
  47. { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
  48. { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
  49. { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
  50. { .bitrate = 220, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, /* XX ?? */
  51. };
  52. static const struct ieee80211_channel adm8211_channels[] = {
  53. { .center_freq = 2412},
  54. { .center_freq = 2417},
  55. { .center_freq = 2422},
  56. { .center_freq = 2427},
  57. { .center_freq = 2432},
  58. { .center_freq = 2437},
  59. { .center_freq = 2442},
  60. { .center_freq = 2447},
  61. { .center_freq = 2452},
  62. { .center_freq = 2457},
  63. { .center_freq = 2462},
  64. { .center_freq = 2467},
  65. { .center_freq = 2472},
  66. { .center_freq = 2484},
  67. };
  68. static void adm8211_eeprom_register_read(struct eeprom_93cx6 *eeprom)
  69. {
  70. struct adm8211_priv *priv = eeprom->data;
  71. u32 reg = ADM8211_CSR_READ(SPR);
  72. eeprom->reg_data_in = reg & ADM8211_SPR_SDI;
  73. eeprom->reg_data_out = reg & ADM8211_SPR_SDO;
  74. eeprom->reg_data_clock = reg & ADM8211_SPR_SCLK;
  75. eeprom->reg_chip_select = reg & ADM8211_SPR_SCS;
  76. }
  77. static void adm8211_eeprom_register_write(struct eeprom_93cx6 *eeprom)
  78. {
  79. struct adm8211_priv *priv = eeprom->data;
  80. u32 reg = 0x4000 | ADM8211_SPR_SRS;
  81. if (eeprom->reg_data_in)
  82. reg |= ADM8211_SPR_SDI;
  83. if (eeprom->reg_data_out)
  84. reg |= ADM8211_SPR_SDO;
  85. if (eeprom->reg_data_clock)
  86. reg |= ADM8211_SPR_SCLK;
  87. if (eeprom->reg_chip_select)
  88. reg |= ADM8211_SPR_SCS;
  89. ADM8211_CSR_WRITE(SPR, reg);
  90. ADM8211_CSR_READ(SPR); /* eeprom_delay */
  91. }
  92. static int adm8211_read_eeprom(struct ieee80211_hw *dev)
  93. {
  94. struct adm8211_priv *priv = dev->priv;
  95. unsigned int words, i;
  96. struct ieee80211_chan_range chan_range;
  97. u16 cr49;
  98. struct eeprom_93cx6 eeprom = {
  99. .data = priv,
  100. .register_read = adm8211_eeprom_register_read,
  101. .register_write = adm8211_eeprom_register_write
  102. };
  103. if (ADM8211_CSR_READ(CSR_TEST0) & ADM8211_CSR_TEST0_EPTYP) {
  104. /* 256 * 16-bit = 512 bytes */
  105. eeprom.width = PCI_EEPROM_WIDTH_93C66;
  106. words = 256;
  107. } else {
  108. /* 64 * 16-bit = 128 bytes */
  109. eeprom.width = PCI_EEPROM_WIDTH_93C46;
  110. words = 64;
  111. }
  112. priv->eeprom_len = words * 2;
  113. priv->eeprom = kmalloc(priv->eeprom_len, GFP_KERNEL);
  114. if (!priv->eeprom)
  115. return -ENOMEM;
  116. eeprom_93cx6_multiread(&eeprom, 0, (__le16 *)priv->eeprom, words);
  117. cr49 = le16_to_cpu(priv->eeprom->cr49);
  118. priv->rf_type = (cr49 >> 3) & 0x7;
  119. switch (priv->rf_type) {
  120. case ADM8211_TYPE_INTERSIL:
  121. case ADM8211_TYPE_RFMD:
  122. case ADM8211_TYPE_MARVEL:
  123. case ADM8211_TYPE_AIROHA:
  124. case ADM8211_TYPE_ADMTEK:
  125. break;
  126. default:
  127. if (priv->pdev->revision < ADM8211_REV_CA)
  128. priv->rf_type = ADM8211_TYPE_RFMD;
  129. else
  130. priv->rf_type = ADM8211_TYPE_AIROHA;
  131. printk(KERN_WARNING "%s (adm8211): Unknown RFtype %d\n",
  132. pci_name(priv->pdev), (cr49 >> 3) & 0x7);
  133. }
  134. priv->bbp_type = cr49 & 0x7;
  135. switch (priv->bbp_type) {
  136. case ADM8211_TYPE_INTERSIL:
  137. case ADM8211_TYPE_RFMD:
  138. case ADM8211_TYPE_MARVEL:
  139. case ADM8211_TYPE_AIROHA:
  140. case ADM8211_TYPE_ADMTEK:
  141. break;
  142. default:
  143. if (priv->pdev->revision < ADM8211_REV_CA)
  144. priv->bbp_type = ADM8211_TYPE_RFMD;
  145. else
  146. priv->bbp_type = ADM8211_TYPE_ADMTEK;
  147. printk(KERN_WARNING "%s (adm8211): Unknown BBPtype: %d\n",
  148. pci_name(priv->pdev), cr49 >> 3);
  149. }
  150. if (priv->eeprom->country_code >= ARRAY_SIZE(cranges)) {
  151. printk(KERN_WARNING "%s (adm8211): Invalid country code (%d)\n",
  152. pci_name(priv->pdev), priv->eeprom->country_code);
  153. chan_range = cranges[2];
  154. } else
  155. chan_range = cranges[priv->eeprom->country_code];
  156. printk(KERN_DEBUG "%s (adm8211): Channel range: %d - %d\n",
  157. pci_name(priv->pdev), (int)chan_range.min, (int)chan_range.max);
  158. BUILD_BUG_ON(sizeof(priv->channels) != sizeof(adm8211_channels));
  159. memcpy(priv->channels, adm8211_channels, sizeof(priv->channels));
  160. priv->band.channels = priv->channels;
  161. priv->band.n_channels = ARRAY_SIZE(adm8211_channels);
  162. priv->band.bitrates = adm8211_rates;
  163. priv->band.n_bitrates = ARRAY_SIZE(adm8211_rates);
  164. for (i = 1; i <= ARRAY_SIZE(adm8211_channels); i++)
  165. if (i < chan_range.min || i > chan_range.max)
  166. priv->channels[i - 1].flags |= IEEE80211_CHAN_DISABLED;
  167. switch (priv->eeprom->specific_bbptype) {
  168. case ADM8211_BBP_RFMD3000:
  169. case ADM8211_BBP_RFMD3002:
  170. case ADM8211_BBP_ADM8011:
  171. priv->specific_bbptype = priv->eeprom->specific_bbptype;
  172. break;
  173. default:
  174. if (priv->pdev->revision < ADM8211_REV_CA)
  175. priv->specific_bbptype = ADM8211_BBP_RFMD3000;
  176. else
  177. priv->specific_bbptype = ADM8211_BBP_ADM8011;
  178. printk(KERN_WARNING "%s (adm8211): Unknown specific BBP: %d\n",
  179. pci_name(priv->pdev), priv->eeprom->specific_bbptype);
  180. }
  181. switch (priv->eeprom->specific_rftype) {
  182. case ADM8211_RFMD2948:
  183. case ADM8211_RFMD2958:
  184. case ADM8211_RFMD2958_RF3000_CONTROL_POWER:
  185. case ADM8211_MAX2820:
  186. case ADM8211_AL2210L:
  187. priv->transceiver_type = priv->eeprom->specific_rftype;
  188. break;
  189. default:
  190. if (priv->pdev->revision == ADM8211_REV_BA)
  191. priv->transceiver_type = ADM8211_RFMD2958_RF3000_CONTROL_POWER;
  192. else if (priv->pdev->revision == ADM8211_REV_CA)
  193. priv->transceiver_type = ADM8211_AL2210L;
  194. else if (priv->pdev->revision == ADM8211_REV_AB)
  195. priv->transceiver_type = ADM8211_RFMD2948;
  196. printk(KERN_WARNING "%s (adm8211): Unknown transceiver: %d\n",
  197. pci_name(priv->pdev), priv->eeprom->specific_rftype);
  198. break;
  199. }
  200. printk(KERN_DEBUG "%s (adm8211): RFtype=%d BBPtype=%d Specific BBP=%d "
  201. "Transceiver=%d\n", pci_name(priv->pdev), priv->rf_type,
  202. priv->bbp_type, priv->specific_bbptype, priv->transceiver_type);
  203. return 0;
  204. }
  205. static inline void adm8211_write_sram(struct ieee80211_hw *dev,
  206. u32 addr, u32 data)
  207. {
  208. struct adm8211_priv *priv = dev->priv;
  209. ADM8211_CSR_WRITE(WEPCTL, addr | ADM8211_WEPCTL_TABLE_WR |
  210. (priv->pdev->revision < ADM8211_REV_BA ?
  211. 0 : ADM8211_WEPCTL_SEL_WEPTABLE ));
  212. ADM8211_CSR_READ(WEPCTL);
  213. msleep(1);
  214. ADM8211_CSR_WRITE(WESK, data);
  215. ADM8211_CSR_READ(WESK);
  216. msleep(1);
  217. }
  218. static void adm8211_write_sram_bytes(struct ieee80211_hw *dev,
  219. unsigned int addr, u8 *buf,
  220. unsigned int len)
  221. {
  222. struct adm8211_priv *priv = dev->priv;
  223. u32 reg = ADM8211_CSR_READ(WEPCTL);
  224. unsigned int i;
  225. if (priv->pdev->revision < ADM8211_REV_BA) {
  226. for (i = 0; i < len; i += 2) {
  227. u16 val = buf[i] | (buf[i + 1] << 8);
  228. adm8211_write_sram(dev, addr + i / 2, val);
  229. }
  230. } else {
  231. for (i = 0; i < len; i += 4) {
  232. u32 val = (buf[i + 0] << 0 ) | (buf[i + 1] << 8 ) |
  233. (buf[i + 2] << 16) | (buf[i + 3] << 24);
  234. adm8211_write_sram(dev, addr + i / 4, val);
  235. }
  236. }
  237. ADM8211_CSR_WRITE(WEPCTL, reg);
  238. }
  239. static void adm8211_clear_sram(struct ieee80211_hw *dev)
  240. {
  241. struct adm8211_priv *priv = dev->priv;
  242. u32 reg = ADM8211_CSR_READ(WEPCTL);
  243. unsigned int addr;
  244. for (addr = 0; addr < ADM8211_SRAM_SIZE; addr++)
  245. adm8211_write_sram(dev, addr, 0);
  246. ADM8211_CSR_WRITE(WEPCTL, reg);
  247. }
  248. static int adm8211_get_stats(struct ieee80211_hw *dev,
  249. struct ieee80211_low_level_stats *stats)
  250. {
  251. struct adm8211_priv *priv = dev->priv;
  252. memcpy(stats, &priv->stats, sizeof(*stats));
  253. return 0;
  254. }
  255. static void adm8211_interrupt_tci(struct ieee80211_hw *dev)
  256. {
  257. struct adm8211_priv *priv = dev->priv;
  258. unsigned int dirty_tx;
  259. spin_lock(&priv->lock);
  260. for (dirty_tx = priv->dirty_tx; priv->cur_tx - dirty_tx; dirty_tx++) {
  261. unsigned int entry = dirty_tx % priv->tx_ring_size;
  262. u32 status = le32_to_cpu(priv->tx_ring[entry].status);
  263. struct ieee80211_tx_info *txi;
  264. struct adm8211_tx_ring_info *info;
  265. struct sk_buff *skb;
  266. if (status & TDES0_CONTROL_OWN ||
  267. !(status & TDES0_CONTROL_DONE))
  268. break;
  269. info = &priv->tx_buffers[entry];
  270. skb = info->skb;
  271. txi = IEEE80211_SKB_CB(skb);
  272. /* TODO: check TDES0_STATUS_TUF and TDES0_STATUS_TRO */
  273. pci_unmap_single(priv->pdev, info->mapping,
  274. info->skb->len, PCI_DMA_TODEVICE);
  275. ieee80211_tx_info_clear_status(txi);
  276. skb_pull(skb, sizeof(struct adm8211_tx_hdr));
  277. memcpy(skb_push(skb, info->hdrlen), skb->cb, info->hdrlen);
  278. if (!(txi->flags & IEEE80211_TX_CTL_NO_ACK) &&
  279. !(status & TDES0_STATUS_ES))
  280. txi->flags |= IEEE80211_TX_STAT_ACK;
  281. ieee80211_tx_status_irqsafe(dev, skb);
  282. info->skb = NULL;
  283. }
  284. if (priv->cur_tx - dirty_tx < priv->tx_ring_size - 2)
  285. ieee80211_wake_queue(dev, 0);
  286. priv->dirty_tx = dirty_tx;
  287. spin_unlock(&priv->lock);
  288. }
  289. static void adm8211_interrupt_rci(struct ieee80211_hw *dev)
  290. {
  291. struct adm8211_priv *priv = dev->priv;
  292. unsigned int entry = priv->cur_rx % priv->rx_ring_size;
  293. u32 status;
  294. unsigned int pktlen;
  295. struct sk_buff *skb, *newskb;
  296. unsigned int limit = priv->rx_ring_size;
  297. u8 rssi, rate;
  298. while (!(priv->rx_ring[entry].status & cpu_to_le32(RDES0_STATUS_OWN))) {
  299. if (!limit--)
  300. break;
  301. status = le32_to_cpu(priv->rx_ring[entry].status);
  302. rate = (status & RDES0_STATUS_RXDR) >> 12;
  303. rssi = le32_to_cpu(priv->rx_ring[entry].length) &
  304. RDES1_STATUS_RSSI;
  305. pktlen = status & RDES0_STATUS_FL;
  306. if (pktlen > RX_PKT_SIZE) {
  307. if (net_ratelimit())
  308. wiphy_debug(dev->wiphy, "frame too long (%d)\n",
  309. pktlen);
  310. pktlen = RX_PKT_SIZE;
  311. }
  312. if (!priv->soft_rx_crc && status & RDES0_STATUS_ES) {
  313. skb = NULL; /* old buffer will be reused */
  314. /* TODO: update RX error stats */
  315. /* TODO: check RDES0_STATUS_CRC*E */
  316. } else if (pktlen < RX_COPY_BREAK) {
  317. skb = dev_alloc_skb(pktlen);
  318. if (skb) {
  319. pci_dma_sync_single_for_cpu(
  320. priv->pdev,
  321. priv->rx_buffers[entry].mapping,
  322. pktlen, PCI_DMA_FROMDEVICE);
  323. memcpy(skb_put(skb, pktlen),
  324. skb_tail_pointer(priv->rx_buffers[entry].skb),
  325. pktlen);
  326. pci_dma_sync_single_for_device(
  327. priv->pdev,
  328. priv->rx_buffers[entry].mapping,
  329. RX_PKT_SIZE, PCI_DMA_FROMDEVICE);
  330. }
  331. } else {
  332. newskb = dev_alloc_skb(RX_PKT_SIZE);
  333. if (newskb) {
  334. skb = priv->rx_buffers[entry].skb;
  335. skb_put(skb, pktlen);
  336. pci_unmap_single(
  337. priv->pdev,
  338. priv->rx_buffers[entry].mapping,
  339. RX_PKT_SIZE, PCI_DMA_FROMDEVICE);
  340. priv->rx_buffers[entry].skb = newskb;
  341. priv->rx_buffers[entry].mapping =
  342. pci_map_single(priv->pdev,
  343. skb_tail_pointer(newskb),
  344. RX_PKT_SIZE,
  345. PCI_DMA_FROMDEVICE);
  346. } else {
  347. skb = NULL;
  348. /* TODO: update rx dropped stats */
  349. }
  350. priv->rx_ring[entry].buffer1 =
  351. cpu_to_le32(priv->rx_buffers[entry].mapping);
  352. }
  353. priv->rx_ring[entry].status = cpu_to_le32(RDES0_STATUS_OWN |
  354. RDES0_STATUS_SQL);
  355. priv->rx_ring[entry].length =
  356. cpu_to_le32(RX_PKT_SIZE |
  357. (entry == priv->rx_ring_size - 1 ?
  358. RDES1_CONTROL_RER : 0));
  359. if (skb) {
  360. struct ieee80211_rx_status rx_status = {0};
  361. if (priv->pdev->revision < ADM8211_REV_CA)
  362. rx_status.signal = rssi;
  363. else
  364. rx_status.signal = 100 - rssi;
  365. rx_status.rate_idx = rate;
  366. rx_status.freq = adm8211_channels[priv->channel - 1].center_freq;
  367. rx_status.band = IEEE80211_BAND_2GHZ;
  368. memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status));
  369. ieee80211_rx_irqsafe(dev, skb);
  370. }
  371. entry = (++priv->cur_rx) % priv->rx_ring_size;
  372. }
  373. /* TODO: check LPC and update stats? */
  374. }
  375. static irqreturn_t adm8211_interrupt(int irq, void *dev_id)
  376. {
  377. #define ADM8211_INT(x) \
  378. do { \
  379. if (unlikely(stsr & ADM8211_STSR_ ## x)) \
  380. wiphy_debug(dev->wiphy, "%s\n", #x); \
  381. } while (0)
  382. struct ieee80211_hw *dev = dev_id;
  383. struct adm8211_priv *priv = dev->priv;
  384. u32 stsr = ADM8211_CSR_READ(STSR);
  385. ADM8211_CSR_WRITE(STSR, stsr);
  386. if (stsr == 0xffffffff)
  387. return IRQ_HANDLED;
  388. if (!(stsr & (ADM8211_STSR_NISS | ADM8211_STSR_AISS)))
  389. return IRQ_HANDLED;
  390. if (stsr & ADM8211_STSR_RCI)
  391. adm8211_interrupt_rci(dev);
  392. if (stsr & ADM8211_STSR_TCI)
  393. adm8211_interrupt_tci(dev);
  394. ADM8211_INT(PCF);
  395. ADM8211_INT(BCNTC);
  396. ADM8211_INT(GPINT);
  397. ADM8211_INT(ATIMTC);
  398. ADM8211_INT(TSFTF);
  399. ADM8211_INT(TSCZ);
  400. ADM8211_INT(SQL);
  401. ADM8211_INT(WEPTD);
  402. ADM8211_INT(ATIME);
  403. ADM8211_INT(TEIS);
  404. ADM8211_INT(FBE);
  405. ADM8211_INT(REIS);
  406. ADM8211_INT(GPTT);
  407. ADM8211_INT(RPS);
  408. ADM8211_INT(RDU);
  409. ADM8211_INT(TUF);
  410. ADM8211_INT(TPS);
  411. return IRQ_HANDLED;
  412. #undef ADM8211_INT
  413. }
  414. #define WRITE_SYN(name,v_mask,v_shift,a_mask,a_shift,bits,prewrite,postwrite)\
  415. static void adm8211_rf_write_syn_ ## name (struct ieee80211_hw *dev, \
  416. u16 addr, u32 value) { \
  417. struct adm8211_priv *priv = dev->priv; \
  418. unsigned int i; \
  419. u32 reg, bitbuf; \
  420. \
  421. value &= v_mask; \
  422. addr &= a_mask; \
  423. bitbuf = (value << v_shift) | (addr << a_shift); \
  424. \
  425. ADM8211_CSR_WRITE(SYNRF, ADM8211_SYNRF_IF_SELECT_1); \
  426. ADM8211_CSR_READ(SYNRF); \
  427. ADM8211_CSR_WRITE(SYNRF, ADM8211_SYNRF_IF_SELECT_0); \
  428. ADM8211_CSR_READ(SYNRF); \
  429. \
  430. if (prewrite) { \
  431. ADM8211_CSR_WRITE(SYNRF, ADM8211_SYNRF_WRITE_SYNDATA_0); \
  432. ADM8211_CSR_READ(SYNRF); \
  433. } \
  434. \
  435. for (i = 0; i <= bits; i++) { \
  436. if (bitbuf & (1 << (bits - i))) \
  437. reg = ADM8211_SYNRF_WRITE_SYNDATA_1; \
  438. else \
  439. reg = ADM8211_SYNRF_WRITE_SYNDATA_0; \
  440. \
  441. ADM8211_CSR_WRITE(SYNRF, reg); \
  442. ADM8211_CSR_READ(SYNRF); \
  443. \
  444. ADM8211_CSR_WRITE(SYNRF, reg | ADM8211_SYNRF_WRITE_CLOCK_1); \
  445. ADM8211_CSR_READ(SYNRF); \
  446. ADM8211_CSR_WRITE(SYNRF, reg | ADM8211_SYNRF_WRITE_CLOCK_0); \
  447. ADM8211_CSR_READ(SYNRF); \
  448. } \
  449. \
  450. if (postwrite == 1) { \
  451. ADM8211_CSR_WRITE(SYNRF, reg | ADM8211_SYNRF_IF_SELECT_0); \
  452. ADM8211_CSR_READ(SYNRF); \
  453. } \
  454. if (postwrite == 2) { \
  455. ADM8211_CSR_WRITE(SYNRF, reg | ADM8211_SYNRF_IF_SELECT_1); \
  456. ADM8211_CSR_READ(SYNRF); \
  457. } \
  458. \
  459. ADM8211_CSR_WRITE(SYNRF, 0); \
  460. ADM8211_CSR_READ(SYNRF); \
  461. }
  462. WRITE_SYN(max2820, 0x00FFF, 0, 0x0F, 12, 15, 1, 1)
  463. WRITE_SYN(al2210l, 0xFFFFF, 4, 0x0F, 0, 23, 1, 1)
  464. WRITE_SYN(rfmd2958, 0x3FFFF, 0, 0x1F, 18, 23, 0, 1)
  465. WRITE_SYN(rfmd2948, 0x0FFFF, 4, 0x0F, 0, 21, 0, 2)
  466. #undef WRITE_SYN
  467. static int adm8211_write_bbp(struct ieee80211_hw *dev, u8 addr, u8 data)
  468. {
  469. struct adm8211_priv *priv = dev->priv;
  470. unsigned int timeout;
  471. u32 reg;
  472. timeout = 10;
  473. while (timeout > 0) {
  474. reg = ADM8211_CSR_READ(BBPCTL);
  475. if (!(reg & (ADM8211_BBPCTL_WR | ADM8211_BBPCTL_RD)))
  476. break;
  477. timeout--;
  478. msleep(2);
  479. }
  480. if (timeout == 0) {
  481. wiphy_debug(dev->wiphy,
  482. "adm8211_write_bbp(%d,%d) failed prewrite (reg=0x%08x)\n",
  483. addr, data, reg);
  484. return -ETIMEDOUT;
  485. }
  486. switch (priv->bbp_type) {
  487. case ADM8211_TYPE_INTERSIL:
  488. reg = ADM8211_BBPCTL_MMISEL; /* three wire interface */
  489. break;
  490. case ADM8211_TYPE_RFMD:
  491. reg = (0x20 << 24) | ADM8211_BBPCTL_TXCE | ADM8211_BBPCTL_CCAP |
  492. (0x01 << 18);
  493. break;
  494. case ADM8211_TYPE_ADMTEK:
  495. reg = (0x20 << 24) | ADM8211_BBPCTL_TXCE | ADM8211_BBPCTL_CCAP |
  496. (0x05 << 18);
  497. break;
  498. }
  499. reg |= ADM8211_BBPCTL_WR | (addr << 8) | data;
  500. ADM8211_CSR_WRITE(BBPCTL, reg);
  501. timeout = 10;
  502. while (timeout > 0) {
  503. reg = ADM8211_CSR_READ(BBPCTL);
  504. if (!(reg & ADM8211_BBPCTL_WR))
  505. break;
  506. timeout--;
  507. msleep(2);
  508. }
  509. if (timeout == 0) {
  510. ADM8211_CSR_WRITE(BBPCTL, ADM8211_CSR_READ(BBPCTL) &
  511. ~ADM8211_BBPCTL_WR);
  512. wiphy_debug(dev->wiphy,
  513. "adm8211_write_bbp(%d,%d) failed postwrite (reg=0x%08x)\n",
  514. addr, data, reg);
  515. return -ETIMEDOUT;
  516. }
  517. return 0;
  518. }
  519. static int adm8211_rf_set_channel(struct ieee80211_hw *dev, unsigned int chan)
  520. {
  521. static const u32 adm8211_rfmd2958_reg5[] =
  522. {0x22BD, 0x22D2, 0x22E8, 0x22FE, 0x2314, 0x232A, 0x2340,
  523. 0x2355, 0x236B, 0x2381, 0x2397, 0x23AD, 0x23C2, 0x23F7};
  524. static const u32 adm8211_rfmd2958_reg6[] =
  525. {0x05D17, 0x3A2E8, 0x2E8BA, 0x22E8B, 0x1745D, 0x0BA2E, 0x00000,
  526. 0x345D1, 0x28BA2, 0x1D174, 0x11745, 0x05D17, 0x3A2E8, 0x11745};
  527. struct adm8211_priv *priv = dev->priv;
  528. u8 ant_power = priv->ant_power > 0x3F ?
  529. priv->eeprom->antenna_power[chan - 1] : priv->ant_power;
  530. u8 tx_power = priv->tx_power > 0x3F ?
  531. priv->eeprom->tx_power[chan - 1] : priv->tx_power;
  532. u8 lpf_cutoff = priv->lpf_cutoff == 0xFF ?
  533. priv->eeprom->lpf_cutoff[chan - 1] : priv->lpf_cutoff;
  534. u8 lnags_thresh = priv->lnags_threshold == 0xFF ?
  535. priv->eeprom->lnags_threshold[chan - 1] : priv->lnags_threshold;
  536. u32 reg;
  537. ADM8211_IDLE();
  538. /* Program synthesizer to new channel */
  539. switch (priv->transceiver_type) {
  540. case ADM8211_RFMD2958:
  541. case ADM8211_RFMD2958_RF3000_CONTROL_POWER:
  542. adm8211_rf_write_syn_rfmd2958(dev, 0x00, 0x04007);
  543. adm8211_rf_write_syn_rfmd2958(dev, 0x02, 0x00033);
  544. adm8211_rf_write_syn_rfmd2958(dev, 0x05,
  545. adm8211_rfmd2958_reg5[chan - 1]);
  546. adm8211_rf_write_syn_rfmd2958(dev, 0x06,
  547. adm8211_rfmd2958_reg6[chan - 1]);
  548. break;
  549. case ADM8211_RFMD2948:
  550. adm8211_rf_write_syn_rfmd2948(dev, SI4126_MAIN_CONF,
  551. SI4126_MAIN_XINDIV2);
  552. adm8211_rf_write_syn_rfmd2948(dev, SI4126_POWERDOWN,
  553. SI4126_POWERDOWN_PDIB |
  554. SI4126_POWERDOWN_PDRB);
  555. adm8211_rf_write_syn_rfmd2948(dev, SI4126_PHASE_DET_GAIN, 0);
  556. adm8211_rf_write_syn_rfmd2948(dev, SI4126_RF2_N_DIV,
  557. (chan == 14 ?
  558. 2110 : (2033 + (chan * 5))));
  559. adm8211_rf_write_syn_rfmd2948(dev, SI4126_IF_N_DIV, 1496);
  560. adm8211_rf_write_syn_rfmd2948(dev, SI4126_RF2_R_DIV, 44);
  561. adm8211_rf_write_syn_rfmd2948(dev, SI4126_IF_R_DIV, 44);
  562. break;
  563. case ADM8211_MAX2820:
  564. adm8211_rf_write_syn_max2820(dev, 0x3,
  565. (chan == 14 ? 0x054 : (0x7 + (chan * 5))));
  566. break;
  567. case ADM8211_AL2210L:
  568. adm8211_rf_write_syn_al2210l(dev, 0x0,
  569. (chan == 14 ? 0x229B4 : (0x22967 + (chan * 5))));
  570. break;
  571. default:
  572. wiphy_debug(dev->wiphy, "unsupported transceiver type %d\n",
  573. priv->transceiver_type);
  574. break;
  575. }
  576. /* write BBP regs */
  577. if (priv->bbp_type == ADM8211_TYPE_RFMD) {
  578. /* SMC 2635W specific? adm8211b doesn't use the 2948 though.. */
  579. /* TODO: remove if SMC 2635W doesn't need this */
  580. if (priv->transceiver_type == ADM8211_RFMD2948) {
  581. reg = ADM8211_CSR_READ(GPIO);
  582. reg &= 0xfffc0000;
  583. reg |= ADM8211_CSR_GPIO_EN0;
  584. if (chan != 14)
  585. reg |= ADM8211_CSR_GPIO_O0;
  586. ADM8211_CSR_WRITE(GPIO, reg);
  587. }
  588. if (priv->transceiver_type == ADM8211_RFMD2958) {
  589. /* set PCNT2 */
  590. adm8211_rf_write_syn_rfmd2958(dev, 0x0B, 0x07100);
  591. /* set PCNT1 P_DESIRED/MID_BIAS */
  592. reg = le16_to_cpu(priv->eeprom->cr49);
  593. reg >>= 13;
  594. reg <<= 15;
  595. reg |= ant_power << 9;
  596. adm8211_rf_write_syn_rfmd2958(dev, 0x0A, reg);
  597. /* set TXRX TX_GAIN */
  598. adm8211_rf_write_syn_rfmd2958(dev, 0x09, 0x00050 |
  599. (priv->pdev->revision < ADM8211_REV_CA ? tx_power : 0));
  600. } else {
  601. reg = ADM8211_CSR_READ(PLCPHD);
  602. reg &= 0xff00ffff;
  603. reg |= tx_power << 18;
  604. ADM8211_CSR_WRITE(PLCPHD, reg);
  605. }
  606. ADM8211_CSR_WRITE(SYNRF, ADM8211_SYNRF_SELRF |
  607. ADM8211_SYNRF_PE1 | ADM8211_SYNRF_PHYRST);
  608. ADM8211_CSR_READ(SYNRF);
  609. msleep(30);
  610. /* RF3000 BBP */
  611. if (priv->transceiver_type != ADM8211_RFMD2958)
  612. adm8211_write_bbp(dev, RF3000_TX_VAR_GAIN__TX_LEN_EXT,
  613. tx_power<<2);
  614. adm8211_write_bbp(dev, RF3000_LOW_GAIN_CALIB, lpf_cutoff);
  615. adm8211_write_bbp(dev, RF3000_HIGH_GAIN_CALIB, lnags_thresh);
  616. adm8211_write_bbp(dev, 0x1c, priv->pdev->revision == ADM8211_REV_BA ?
  617. priv->eeprom->cr28 : 0);
  618. adm8211_write_bbp(dev, 0x1d, priv->eeprom->cr29);
  619. ADM8211_CSR_WRITE(SYNRF, 0);
  620. /* Nothing to do for ADMtek BBP */
  621. } else if (priv->bbp_type != ADM8211_TYPE_ADMTEK)
  622. wiphy_debug(dev->wiphy, "unsupported BBP type %d\n",
  623. priv->bbp_type);
  624. ADM8211_RESTORE();
  625. /* update current channel for adhoc (and maybe AP mode) */
  626. reg = ADM8211_CSR_READ(CAP0);
  627. reg &= ~0xF;
  628. reg |= chan;
  629. ADM8211_CSR_WRITE(CAP0, reg);
  630. return 0;
  631. }
  632. static void adm8211_update_mode(struct ieee80211_hw *dev)
  633. {
  634. struct adm8211_priv *priv = dev->priv;
  635. ADM8211_IDLE();
  636. priv->soft_rx_crc = 0;
  637. switch (priv->mode) {
  638. case NL80211_IFTYPE_STATION:
  639. priv->nar &= ~(ADM8211_NAR_PR | ADM8211_NAR_EA);
  640. priv->nar |= ADM8211_NAR_ST | ADM8211_NAR_SR;
  641. break;
  642. case NL80211_IFTYPE_ADHOC:
  643. priv->nar &= ~ADM8211_NAR_PR;
  644. priv->nar |= ADM8211_NAR_EA | ADM8211_NAR_ST | ADM8211_NAR_SR;
  645. /* don't trust the error bits on rev 0x20 and up in adhoc */
  646. if (priv->pdev->revision >= ADM8211_REV_BA)
  647. priv->soft_rx_crc = 1;
  648. break;
  649. case NL80211_IFTYPE_MONITOR:
  650. priv->nar &= ~(ADM8211_NAR_EA | ADM8211_NAR_ST);
  651. priv->nar |= ADM8211_NAR_PR | ADM8211_NAR_SR;
  652. break;
  653. }
  654. ADM8211_RESTORE();
  655. }
  656. static void adm8211_hw_init_syn(struct ieee80211_hw *dev)
  657. {
  658. struct adm8211_priv *priv = dev->priv;
  659. switch (priv->transceiver_type) {
  660. case ADM8211_RFMD2958:
  661. case ADM8211_RFMD2958_RF3000_CONTROL_POWER:
  662. /* comments taken from ADMtek vendor driver */
  663. /* Reset RF2958 after power on */
  664. adm8211_rf_write_syn_rfmd2958(dev, 0x1F, 0x00000);
  665. /* Initialize RF VCO Core Bias to maximum */
  666. adm8211_rf_write_syn_rfmd2958(dev, 0x0C, 0x3001F);
  667. /* Initialize IF PLL */
  668. adm8211_rf_write_syn_rfmd2958(dev, 0x01, 0x29C03);
  669. /* Initialize IF PLL Coarse Tuning */
  670. adm8211_rf_write_syn_rfmd2958(dev, 0x03, 0x1FF6F);
  671. /* Initialize RF PLL */
  672. adm8211_rf_write_syn_rfmd2958(dev, 0x04, 0x29403);
  673. /* Initialize RF PLL Coarse Tuning */
  674. adm8211_rf_write_syn_rfmd2958(dev, 0x07, 0x1456F);
  675. /* Initialize TX gain and filter BW (R9) */
  676. adm8211_rf_write_syn_rfmd2958(dev, 0x09,
  677. (priv->transceiver_type == ADM8211_RFMD2958 ?
  678. 0x10050 : 0x00050));
  679. /* Initialize CAL register */
  680. adm8211_rf_write_syn_rfmd2958(dev, 0x08, 0x3FFF8);
  681. break;
  682. case ADM8211_MAX2820:
  683. adm8211_rf_write_syn_max2820(dev, 0x1, 0x01E);
  684. adm8211_rf_write_syn_max2820(dev, 0x2, 0x001);
  685. adm8211_rf_write_syn_max2820(dev, 0x3, 0x054);
  686. adm8211_rf_write_syn_max2820(dev, 0x4, 0x310);
  687. adm8211_rf_write_syn_max2820(dev, 0x5, 0x000);
  688. break;
  689. case ADM8211_AL2210L:
  690. adm8211_rf_write_syn_al2210l(dev, 0x0, 0x0196C);
  691. adm8211_rf_write_syn_al2210l(dev, 0x1, 0x007CB);
  692. adm8211_rf_write_syn_al2210l(dev, 0x2, 0x3582F);
  693. adm8211_rf_write_syn_al2210l(dev, 0x3, 0x010A9);
  694. adm8211_rf_write_syn_al2210l(dev, 0x4, 0x77280);
  695. adm8211_rf_write_syn_al2210l(dev, 0x5, 0x45641);
  696. adm8211_rf_write_syn_al2210l(dev, 0x6, 0xEA130);
  697. adm8211_rf_write_syn_al2210l(dev, 0x7, 0x80000);
  698. adm8211_rf_write_syn_al2210l(dev, 0x8, 0x7850F);
  699. adm8211_rf_write_syn_al2210l(dev, 0x9, 0xF900C);
  700. adm8211_rf_write_syn_al2210l(dev, 0xA, 0x00000);
  701. adm8211_rf_write_syn_al2210l(dev, 0xB, 0x00000);
  702. break;
  703. case ADM8211_RFMD2948:
  704. default:
  705. break;
  706. }
  707. }
  708. static int adm8211_hw_init_bbp(struct ieee80211_hw *dev)
  709. {
  710. struct adm8211_priv *priv = dev->priv;
  711. u32 reg;
  712. /* write addresses */
  713. if (priv->bbp_type == ADM8211_TYPE_INTERSIL) {
  714. ADM8211_CSR_WRITE(MMIWA, 0x100E0C0A);
  715. ADM8211_CSR_WRITE(MMIRD0, 0x00007C7E);
  716. ADM8211_CSR_WRITE(MMIRD1, 0x00100000);
  717. } else if (priv->bbp_type == ADM8211_TYPE_RFMD ||
  718. priv->bbp_type == ADM8211_TYPE_ADMTEK) {
  719. /* check specific BBP type */
  720. switch (priv->specific_bbptype) {
  721. case ADM8211_BBP_RFMD3000:
  722. case ADM8211_BBP_RFMD3002:
  723. ADM8211_CSR_WRITE(MMIWA, 0x00009101);
  724. ADM8211_CSR_WRITE(MMIRD0, 0x00000301);
  725. break;
  726. case ADM8211_BBP_ADM8011:
  727. ADM8211_CSR_WRITE(MMIWA, 0x00008903);
  728. ADM8211_CSR_WRITE(MMIRD0, 0x00001716);
  729. reg = ADM8211_CSR_READ(BBPCTL);
  730. reg &= ~ADM8211_BBPCTL_TYPE;
  731. reg |= 0x5 << 18;
  732. ADM8211_CSR_WRITE(BBPCTL, reg);
  733. break;
  734. }
  735. switch (priv->pdev->revision) {
  736. case ADM8211_REV_CA:
  737. if (priv->transceiver_type == ADM8211_RFMD2958 ||
  738. priv->transceiver_type == ADM8211_RFMD2958_RF3000_CONTROL_POWER ||
  739. priv->transceiver_type == ADM8211_RFMD2948)
  740. ADM8211_CSR_WRITE(SYNCTL, 0x1 << 22);
  741. else if (priv->transceiver_type == ADM8211_MAX2820 ||
  742. priv->transceiver_type == ADM8211_AL2210L)
  743. ADM8211_CSR_WRITE(SYNCTL, 0x3 << 22);
  744. break;
  745. case ADM8211_REV_BA:
  746. reg = ADM8211_CSR_READ(MMIRD1);
  747. reg &= 0x0000FFFF;
  748. reg |= 0x7e100000;
  749. ADM8211_CSR_WRITE(MMIRD1, reg);
  750. break;
  751. case ADM8211_REV_AB:
  752. case ADM8211_REV_AF:
  753. default:
  754. ADM8211_CSR_WRITE(MMIRD1, 0x7e100000);
  755. break;
  756. }
  757. /* For RFMD */
  758. ADM8211_CSR_WRITE(MACTEST, 0x800);
  759. }
  760. adm8211_hw_init_syn(dev);
  761. /* Set RF Power control IF pin to PE1+PHYRST# */
  762. ADM8211_CSR_WRITE(SYNRF, ADM8211_SYNRF_SELRF |
  763. ADM8211_SYNRF_PE1 | ADM8211_SYNRF_PHYRST);
  764. ADM8211_CSR_READ(SYNRF);
  765. msleep(20);
  766. /* write BBP regs */
  767. if (priv->bbp_type == ADM8211_TYPE_RFMD) {
  768. /* RF3000 BBP */
  769. /* another set:
  770. * 11: c8
  771. * 14: 14
  772. * 15: 50 (chan 1..13; chan 14: d0)
  773. * 1c: 00
  774. * 1d: 84
  775. */
  776. adm8211_write_bbp(dev, RF3000_CCA_CTRL, 0x80);
  777. /* antenna selection: diversity */
  778. adm8211_write_bbp(dev, RF3000_DIVERSITY__RSSI, 0x80);
  779. adm8211_write_bbp(dev, RF3000_TX_VAR_GAIN__TX_LEN_EXT, 0x74);
  780. adm8211_write_bbp(dev, RF3000_LOW_GAIN_CALIB, 0x38);
  781. adm8211_write_bbp(dev, RF3000_HIGH_GAIN_CALIB, 0x40);
  782. if (priv->eeprom->major_version < 2) {
  783. adm8211_write_bbp(dev, 0x1c, 0x00);
  784. adm8211_write_bbp(dev, 0x1d, 0x80);
  785. } else {
  786. if (priv->pdev->revision == ADM8211_REV_BA)
  787. adm8211_write_bbp(dev, 0x1c, priv->eeprom->cr28);
  788. else
  789. adm8211_write_bbp(dev, 0x1c, 0x00);
  790. adm8211_write_bbp(dev, 0x1d, priv->eeprom->cr29);
  791. }
  792. } else if (priv->bbp_type == ADM8211_TYPE_ADMTEK) {
  793. /* reset baseband */
  794. adm8211_write_bbp(dev, 0x00, 0xFF);
  795. /* antenna selection: diversity */
  796. adm8211_write_bbp(dev, 0x07, 0x0A);
  797. /* TODO: find documentation for this */
  798. switch (priv->transceiver_type) {
  799. case ADM8211_RFMD2958:
  800. case ADM8211_RFMD2958_RF3000_CONTROL_POWER:
  801. adm8211_write_bbp(dev, 0x00, 0x00);
  802. adm8211_write_bbp(dev, 0x01, 0x00);
  803. adm8211_write_bbp(dev, 0x02, 0x00);
  804. adm8211_write_bbp(dev, 0x03, 0x00);
  805. adm8211_write_bbp(dev, 0x06, 0x0f);
  806. adm8211_write_bbp(dev, 0x09, 0x00);
  807. adm8211_write_bbp(dev, 0x0a, 0x00);
  808. adm8211_write_bbp(dev, 0x0b, 0x00);
  809. adm8211_write_bbp(dev, 0x0c, 0x00);
  810. adm8211_write_bbp(dev, 0x0f, 0xAA);
  811. adm8211_write_bbp(dev, 0x10, 0x8c);
  812. adm8211_write_bbp(dev, 0x11, 0x43);
  813. adm8211_write_bbp(dev, 0x18, 0x40);
  814. adm8211_write_bbp(dev, 0x20, 0x23);
  815. adm8211_write_bbp(dev, 0x21, 0x02);
  816. adm8211_write_bbp(dev, 0x22, 0x28);
  817. adm8211_write_bbp(dev, 0x23, 0x30);
  818. adm8211_write_bbp(dev, 0x24, 0x2d);
  819. adm8211_write_bbp(dev, 0x28, 0x35);
  820. adm8211_write_bbp(dev, 0x2a, 0x8c);
  821. adm8211_write_bbp(dev, 0x2b, 0x81);
  822. adm8211_write_bbp(dev, 0x2c, 0x44);
  823. adm8211_write_bbp(dev, 0x2d, 0x0A);
  824. adm8211_write_bbp(dev, 0x29, 0x40);
  825. adm8211_write_bbp(dev, 0x60, 0x08);
  826. adm8211_write_bbp(dev, 0x64, 0x01);
  827. break;
  828. case ADM8211_MAX2820:
  829. adm8211_write_bbp(dev, 0x00, 0x00);
  830. adm8211_write_bbp(dev, 0x01, 0x00);
  831. adm8211_write_bbp(dev, 0x02, 0x00);
  832. adm8211_write_bbp(dev, 0x03, 0x00);
  833. adm8211_write_bbp(dev, 0x06, 0x0f);
  834. adm8211_write_bbp(dev, 0x09, 0x05);
  835. adm8211_write_bbp(dev, 0x0a, 0x02);
  836. adm8211_write_bbp(dev, 0x0b, 0x00);
  837. adm8211_write_bbp(dev, 0x0c, 0x0f);
  838. adm8211_write_bbp(dev, 0x0f, 0x55);
  839. adm8211_write_bbp(dev, 0x10, 0x8d);
  840. adm8211_write_bbp(dev, 0x11, 0x43);
  841. adm8211_write_bbp(dev, 0x18, 0x4a);
  842. adm8211_write_bbp(dev, 0x20, 0x20);
  843. adm8211_write_bbp(dev, 0x21, 0x02);
  844. adm8211_write_bbp(dev, 0x22, 0x23);
  845. adm8211_write_bbp(dev, 0x23, 0x30);
  846. adm8211_write_bbp(dev, 0x24, 0x2d);
  847. adm8211_write_bbp(dev, 0x2a, 0x8c);
  848. adm8211_write_bbp(dev, 0x2b, 0x81);
  849. adm8211_write_bbp(dev, 0x2c, 0x44);
  850. adm8211_write_bbp(dev, 0x29, 0x4a);
  851. adm8211_write_bbp(dev, 0x60, 0x2b);
  852. adm8211_write_bbp(dev, 0x64, 0x01);
  853. break;
  854. case ADM8211_AL2210L:
  855. adm8211_write_bbp(dev, 0x00, 0x00);
  856. adm8211_write_bbp(dev, 0x01, 0x00);
  857. adm8211_write_bbp(dev, 0x02, 0x00);
  858. adm8211_write_bbp(dev, 0x03, 0x00);
  859. adm8211_write_bbp(dev, 0x06, 0x0f);
  860. adm8211_write_bbp(dev, 0x07, 0x05);
  861. adm8211_write_bbp(dev, 0x08, 0x03);
  862. adm8211_write_bbp(dev, 0x09, 0x00);
  863. adm8211_write_bbp(dev, 0x0a, 0x00);
  864. adm8211_write_bbp(dev, 0x0b, 0x00);
  865. adm8211_write_bbp(dev, 0x0c, 0x10);
  866. adm8211_write_bbp(dev, 0x0f, 0x55);
  867. adm8211_write_bbp(dev, 0x10, 0x8d);
  868. adm8211_write_bbp(dev, 0x11, 0x43);
  869. adm8211_write_bbp(dev, 0x18, 0x4a);
  870. adm8211_write_bbp(dev, 0x20, 0x20);
  871. adm8211_write_bbp(dev, 0x21, 0x02);
  872. adm8211_write_bbp(dev, 0x22, 0x23);
  873. adm8211_write_bbp(dev, 0x23, 0x30);
  874. adm8211_write_bbp(dev, 0x24, 0x2d);
  875. adm8211_write_bbp(dev, 0x2a, 0xaa);
  876. adm8211_write_bbp(dev, 0x2b, 0x81);
  877. adm8211_write_bbp(dev, 0x2c, 0x44);
  878. adm8211_write_bbp(dev, 0x29, 0xfa);
  879. adm8211_write_bbp(dev, 0x60, 0x2d);
  880. adm8211_write_bbp(dev, 0x64, 0x01);
  881. break;
  882. case ADM8211_RFMD2948:
  883. break;
  884. default:
  885. wiphy_debug(dev->wiphy, "unsupported transceiver %d\n",
  886. priv->transceiver_type);
  887. break;
  888. }
  889. } else
  890. wiphy_debug(dev->wiphy, "unsupported BBP %d\n", priv->bbp_type);
  891. ADM8211_CSR_WRITE(SYNRF, 0);
  892. /* Set RF CAL control source to MAC control */
  893. reg = ADM8211_CSR_READ(SYNCTL);
  894. reg |= ADM8211_SYNCTL_SELCAL;
  895. ADM8211_CSR_WRITE(SYNCTL, reg);
  896. return 0;
  897. }
  898. /* configures hw beacons/probe responses */
  899. static int adm8211_set_rate(struct ieee80211_hw *dev)
  900. {
  901. struct adm8211_priv *priv = dev->priv;
  902. u32 reg;
  903. int i = 0;
  904. u8 rate_buf[12] = {0};
  905. /* write supported rates */
  906. if (priv->pdev->revision != ADM8211_REV_BA) {
  907. rate_buf[0] = ARRAY_SIZE(adm8211_rates);
  908. for (i = 0; i < ARRAY_SIZE(adm8211_rates); i++)
  909. rate_buf[i + 1] = (adm8211_rates[i].bitrate / 5) | 0x80;
  910. } else {
  911. /* workaround for rev BA specific bug */
  912. rate_buf[0] = 0x04;
  913. rate_buf[1] = 0x82;
  914. rate_buf[2] = 0x04;
  915. rate_buf[3] = 0x0b;
  916. rate_buf[4] = 0x16;
  917. }
  918. adm8211_write_sram_bytes(dev, ADM8211_SRAM_SUPP_RATE, rate_buf,
  919. ARRAY_SIZE(adm8211_rates) + 1);
  920. reg = ADM8211_CSR_READ(PLCPHD) & 0x00FFFFFF; /* keep bits 0-23 */
  921. reg |= 1 << 15; /* short preamble */
  922. reg |= 110 << 24;
  923. ADM8211_CSR_WRITE(PLCPHD, reg);
  924. /* MTMLT = 512 TU (max TX MSDU lifetime)
  925. * BCNTSIG = plcp_signal (beacon, probe resp, and atim TX rate)
  926. * SRTYLIM = 224 (short retry limit, TX header value is default) */
  927. ADM8211_CSR_WRITE(TXLMT, (512 << 16) | (110 << 8) | (224 << 0));
  928. return 0;
  929. }
  930. static void adm8211_hw_init(struct ieee80211_hw *dev)
  931. {
  932. struct adm8211_priv *priv = dev->priv;
  933. u32 reg;
  934. u8 cline;
  935. reg = ADM8211_CSR_READ(PAR);
  936. reg |= ADM8211_PAR_MRLE | ADM8211_PAR_MRME;
  937. reg &= ~(ADM8211_PAR_BAR | ADM8211_PAR_CAL);
  938. if (!pci_set_mwi(priv->pdev)) {
  939. reg |= 0x1 << 24;
  940. pci_read_config_byte(priv->pdev, PCI_CACHE_LINE_SIZE, &cline);
  941. switch (cline) {
  942. case 0x8: reg |= (0x1 << 14);
  943. break;
  944. case 0x16: reg |= (0x2 << 14);
  945. break;
  946. case 0x32: reg |= (0x3 << 14);
  947. break;
  948. default: reg |= (0x0 << 14);
  949. break;
  950. }
  951. }
  952. ADM8211_CSR_WRITE(PAR, reg);
  953. reg = ADM8211_CSR_READ(CSR_TEST1);
  954. reg &= ~(0xF << 28);
  955. reg |= (1 << 28) | (1 << 31);
  956. ADM8211_CSR_WRITE(CSR_TEST1, reg);
  957. /* lose link after 4 lost beacons */
  958. reg = (0x04 << 21) | ADM8211_WCSR_TSFTWE | ADM8211_WCSR_LSOE;
  959. ADM8211_CSR_WRITE(WCSR, reg);
  960. /* Disable APM, enable receive FIFO threshold, and set drain receive
  961. * threshold to store-and-forward */
  962. reg = ADM8211_CSR_READ(CMDR);
  963. reg &= ~(ADM8211_CMDR_APM | ADM8211_CMDR_DRT);
  964. reg |= ADM8211_CMDR_RTE | ADM8211_CMDR_DRT_SF;
  965. ADM8211_CSR_WRITE(CMDR, reg);
  966. adm8211_set_rate(dev);
  967. /* 4-bit values:
  968. * PWR1UP = 8 * 2 ms
  969. * PWR0PAPE = 8 us or 5 us
  970. * PWR1PAPE = 1 us or 3 us
  971. * PWR0TRSW = 5 us
  972. * PWR1TRSW = 12 us
  973. * PWR0PE2 = 13 us
  974. * PWR1PE2 = 1 us
  975. * PWR0TXPE = 8 or 6 */
  976. if (priv->pdev->revision < ADM8211_REV_CA)
  977. ADM8211_CSR_WRITE(TOFS2, 0x8815cd18);
  978. else
  979. ADM8211_CSR_WRITE(TOFS2, 0x8535cd16);
  980. /* Enable store and forward for transmit */
  981. priv->nar = ADM8211_NAR_SF | ADM8211_NAR_PB;
  982. ADM8211_CSR_WRITE(NAR, priv->nar);
  983. /* Reset RF */
  984. ADM8211_CSR_WRITE(SYNRF, ADM8211_SYNRF_RADIO);
  985. ADM8211_CSR_READ(SYNRF);
  986. msleep(10);
  987. ADM8211_CSR_WRITE(SYNRF, 0);
  988. ADM8211_CSR_READ(SYNRF);
  989. msleep(5);
  990. /* Set CFP Max Duration to 0x10 TU */
  991. reg = ADM8211_CSR_READ(CFPP);
  992. reg &= ~(0xffff << 8);
  993. reg |= 0x0010 << 8;
  994. ADM8211_CSR_WRITE(CFPP, reg);
  995. /* USCNT = 0x16 (number of system clocks, 22 MHz, in 1us
  996. * TUCNT = 0x3ff - Tu counter 1024 us */
  997. ADM8211_CSR_WRITE(TOFS0, (0x16 << 24) | 0x3ff);
  998. /* SLOT=20 us, SIFS=110 cycles of 22 MHz (5 us),
  999. * DIFS=50 us, EIFS=100 us */
  1000. if (priv->pdev->revision < ADM8211_REV_CA)
  1001. ADM8211_CSR_WRITE(IFST, (20 << 23) | (110 << 15) |
  1002. (50 << 9) | 100);
  1003. else
  1004. ADM8211_CSR_WRITE(IFST, (20 << 23) | (24 << 15) |
  1005. (50 << 9) | 100);
  1006. /* PCNT = 1 (MAC idle time awake/sleep, unit S)
  1007. * RMRD = 2346 * 8 + 1 us (max RX duration) */
  1008. ADM8211_CSR_WRITE(RMD, (1 << 16) | 18769);
  1009. /* MART=65535 us, MIRT=256 us, TSFTOFST=0 us */
  1010. ADM8211_CSR_WRITE(RSPT, 0xffffff00);
  1011. /* Initialize BBP (and SYN) */
  1012. adm8211_hw_init_bbp(dev);
  1013. /* make sure interrupts are off */
  1014. ADM8211_CSR_WRITE(IER, 0);
  1015. /* ACK interrupts */
  1016. ADM8211_CSR_WRITE(STSR, ADM8211_CSR_READ(STSR));
  1017. /* Setup WEP (turns it off for now) */
  1018. reg = ADM8211_CSR_READ(MACTEST);
  1019. reg &= ~(7 << 20);
  1020. ADM8211_CSR_WRITE(MACTEST, reg);
  1021. reg = ADM8211_CSR_READ(WEPCTL);
  1022. reg &= ~ADM8211_WEPCTL_WEPENABLE;
  1023. reg |= ADM8211_WEPCTL_WEPRXBYP;
  1024. ADM8211_CSR_WRITE(WEPCTL, reg);
  1025. /* Clear the missed-packet counter. */
  1026. ADM8211_CSR_READ(LPC);
  1027. }
  1028. static int adm8211_hw_reset(struct ieee80211_hw *dev)
  1029. {
  1030. struct adm8211_priv *priv = dev->priv;
  1031. u32 reg, tmp;
  1032. int timeout = 100;
  1033. /* Power-on issue */
  1034. /* TODO: check if this is necessary */
  1035. ADM8211_CSR_WRITE(FRCTL, 0);
  1036. /* Reset the chip */
  1037. tmp = ADM8211_CSR_READ(PAR);
  1038. ADM8211_CSR_WRITE(PAR, ADM8211_PAR_SWR);
  1039. while ((ADM8211_CSR_READ(PAR) & ADM8211_PAR_SWR) && timeout--)
  1040. msleep(50);
  1041. if (timeout <= 0)
  1042. return -ETIMEDOUT;
  1043. ADM8211_CSR_WRITE(PAR, tmp);
  1044. if (priv->pdev->revision == ADM8211_REV_BA &&
  1045. (priv->transceiver_type == ADM8211_RFMD2958_RF3000_CONTROL_POWER ||
  1046. priv->transceiver_type == ADM8211_RFMD2958)) {
  1047. reg = ADM8211_CSR_READ(CSR_TEST1);
  1048. reg |= (1 << 4) | (1 << 5);
  1049. ADM8211_CSR_WRITE(CSR_TEST1, reg);
  1050. } else if (priv->pdev->revision == ADM8211_REV_CA) {
  1051. reg = ADM8211_CSR_READ(CSR_TEST1);
  1052. reg &= ~((1 << 4) | (1 << 5));
  1053. ADM8211_CSR_WRITE(CSR_TEST1, reg);
  1054. }
  1055. ADM8211_CSR_WRITE(FRCTL, 0);
  1056. reg = ADM8211_CSR_READ(CSR_TEST0);
  1057. reg |= ADM8211_CSR_TEST0_EPRLD; /* EEPROM Recall */
  1058. ADM8211_CSR_WRITE(CSR_TEST0, reg);
  1059. adm8211_clear_sram(dev);
  1060. return 0;
  1061. }
  1062. static u64 adm8211_get_tsft(struct ieee80211_hw *dev)
  1063. {
  1064. struct adm8211_priv *priv = dev->priv;
  1065. u32 tsftl;
  1066. u64 tsft;
  1067. tsftl = ADM8211_CSR_READ(TSFTL);
  1068. tsft = ADM8211_CSR_READ(TSFTH);
  1069. tsft <<= 32;
  1070. tsft |= tsftl;
  1071. return tsft;
  1072. }
  1073. static void adm8211_set_interval(struct ieee80211_hw *dev,
  1074. unsigned short bi, unsigned short li)
  1075. {
  1076. struct adm8211_priv *priv = dev->priv;
  1077. u32 reg;
  1078. /* BP (beacon interval) = data->beacon_interval
  1079. * LI (listen interval) = data->listen_interval (in beacon intervals) */
  1080. reg = (bi << 16) | li;
  1081. ADM8211_CSR_WRITE(BPLI, reg);
  1082. }
  1083. static void adm8211_set_bssid(struct ieee80211_hw *dev, const u8 *bssid)
  1084. {
  1085. struct adm8211_priv *priv = dev->priv;
  1086. u32 reg;
  1087. ADM8211_CSR_WRITE(BSSID0, le32_to_cpu(*(__le32 *)bssid));
  1088. reg = ADM8211_CSR_READ(ABDA1);
  1089. reg &= 0x0000ffff;
  1090. reg |= (bssid[4] << 16) | (bssid[5] << 24);
  1091. ADM8211_CSR_WRITE(ABDA1, reg);
  1092. }
  1093. static int adm8211_config(struct ieee80211_hw *dev, u32 changed)
  1094. {
  1095. struct adm8211_priv *priv = dev->priv;
  1096. struct ieee80211_conf *conf = &dev->conf;
  1097. int channel = ieee80211_frequency_to_channel(conf->channel->center_freq);
  1098. if (channel != priv->channel) {
  1099. priv->channel = channel;
  1100. adm8211_rf_set_channel(dev, priv->channel);
  1101. }
  1102. return 0;
  1103. }
  1104. static void adm8211_bss_info_changed(struct ieee80211_hw *dev,
  1105. struct ieee80211_vif *vif,
  1106. struct ieee80211_bss_conf *conf,
  1107. u32 changes)
  1108. {
  1109. struct adm8211_priv *priv = dev->priv;
  1110. if (!(changes & BSS_CHANGED_BSSID))
  1111. return;
  1112. if (memcmp(conf->bssid, priv->bssid, ETH_ALEN)) {
  1113. adm8211_set_bssid(dev, conf->bssid);
  1114. memcpy(priv->bssid, conf->bssid, ETH_ALEN);
  1115. }
  1116. }
  1117. static u64 adm8211_prepare_multicast(struct ieee80211_hw *hw,
  1118. struct netdev_hw_addr_list *mc_list)
  1119. {
  1120. unsigned int bit_nr;
  1121. u32 mc_filter[2];
  1122. struct netdev_hw_addr *ha;
  1123. mc_filter[1] = mc_filter[0] = 0;
  1124. netdev_hw_addr_list_for_each(ha, mc_list) {
  1125. bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
  1126. bit_nr &= 0x3F;
  1127. mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
  1128. }
  1129. return mc_filter[0] | ((u64)(mc_filter[1]) << 32);
  1130. }
  1131. static void adm8211_configure_filter(struct ieee80211_hw *dev,
  1132. unsigned int changed_flags,
  1133. unsigned int *total_flags,
  1134. u64 multicast)
  1135. {
  1136. static const u8 bcast[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
  1137. struct adm8211_priv *priv = dev->priv;
  1138. unsigned int new_flags;
  1139. u32 mc_filter[2];
  1140. mc_filter[0] = multicast;
  1141. mc_filter[1] = multicast >> 32;
  1142. new_flags = 0;
  1143. if (*total_flags & FIF_PROMISC_IN_BSS) {
  1144. new_flags |= FIF_PROMISC_IN_BSS;
  1145. priv->nar |= ADM8211_NAR_PR;
  1146. priv->nar &= ~ADM8211_NAR_MM;
  1147. mc_filter[1] = mc_filter[0] = ~0;
  1148. } else if (*total_flags & FIF_ALLMULTI || multicast == ~(0ULL)) {
  1149. new_flags |= FIF_ALLMULTI;
  1150. priv->nar &= ~ADM8211_NAR_PR;
  1151. priv->nar |= ADM8211_NAR_MM;
  1152. mc_filter[1] = mc_filter[0] = ~0;
  1153. } else {
  1154. priv->nar &= ~(ADM8211_NAR_MM | ADM8211_NAR_PR);
  1155. }
  1156. ADM8211_IDLE_RX();
  1157. ADM8211_CSR_WRITE(MAR0, mc_filter[0]);
  1158. ADM8211_CSR_WRITE(MAR1, mc_filter[1]);
  1159. ADM8211_CSR_READ(NAR);
  1160. if (priv->nar & ADM8211_NAR_PR)
  1161. dev->flags |= IEEE80211_HW_RX_INCLUDES_FCS;
  1162. else
  1163. dev->flags &= ~IEEE80211_HW_RX_INCLUDES_FCS;
  1164. if (*total_flags & FIF_BCN_PRBRESP_PROMISC)
  1165. adm8211_set_bssid(dev, bcast);
  1166. else
  1167. adm8211_set_bssid(dev, priv->bssid);
  1168. ADM8211_RESTORE();
  1169. *total_flags = new_flags;
  1170. }
  1171. static int adm8211_add_interface(struct ieee80211_hw *dev,
  1172. struct ieee80211_vif *vif)
  1173. {
  1174. struct adm8211_priv *priv = dev->priv;
  1175. if (priv->mode != NL80211_IFTYPE_MONITOR)
  1176. return -EOPNOTSUPP;
  1177. switch (vif->type) {
  1178. case NL80211_IFTYPE_STATION:
  1179. priv->mode = vif->type;
  1180. break;
  1181. default:
  1182. return -EOPNOTSUPP;
  1183. }
  1184. ADM8211_IDLE();
  1185. ADM8211_CSR_WRITE(PAR0, le32_to_cpu(*(__le32 *)vif->addr));
  1186. ADM8211_CSR_WRITE(PAR1, le16_to_cpu(*(__le16 *)(vif->addr + 4)));
  1187. adm8211_update_mode(dev);
  1188. ADM8211_RESTORE();
  1189. return 0;
  1190. }
  1191. static void adm8211_remove_interface(struct ieee80211_hw *dev,
  1192. struct ieee80211_vif *vif)
  1193. {
  1194. struct adm8211_priv *priv = dev->priv;
  1195. priv->mode = NL80211_IFTYPE_MONITOR;
  1196. }
  1197. static int adm8211_init_rings(struct ieee80211_hw *dev)
  1198. {
  1199. struct adm8211_priv *priv = dev->priv;
  1200. struct adm8211_desc *desc = NULL;
  1201. struct adm8211_rx_ring_info *rx_info;
  1202. struct adm8211_tx_ring_info *tx_info;
  1203. unsigned int i;
  1204. for (i = 0; i < priv->rx_ring_size; i++) {
  1205. desc = &priv->rx_ring[i];
  1206. desc->status = 0;
  1207. desc->length = cpu_to_le32(RX_PKT_SIZE);
  1208. priv->rx_buffers[i].skb = NULL;
  1209. }
  1210. /* Mark the end of RX ring; hw returns to base address after this
  1211. * descriptor */
  1212. desc->length |= cpu_to_le32(RDES1_CONTROL_RER);
  1213. for (i = 0; i < priv->rx_ring_size; i++) {
  1214. desc = &priv->rx_ring[i];
  1215. rx_info = &priv->rx_buffers[i];
  1216. rx_info->skb = dev_alloc_skb(RX_PKT_SIZE);
  1217. if (rx_info->skb == NULL)
  1218. break;
  1219. rx_info->mapping = pci_map_single(priv->pdev,
  1220. skb_tail_pointer(rx_info->skb),
  1221. RX_PKT_SIZE,
  1222. PCI_DMA_FROMDEVICE);
  1223. desc->buffer1 = cpu_to_le32(rx_info->mapping);
  1224. desc->status = cpu_to_le32(RDES0_STATUS_OWN | RDES0_STATUS_SQL);
  1225. }
  1226. /* Setup TX ring. TX buffers descriptors will be filled in as needed */
  1227. for (i = 0; i < priv->tx_ring_size; i++) {
  1228. desc = &priv->tx_ring[i];
  1229. tx_info = &priv->tx_buffers[i];
  1230. tx_info->skb = NULL;
  1231. tx_info->mapping = 0;
  1232. desc->status = 0;
  1233. }
  1234. desc->length = cpu_to_le32(TDES1_CONTROL_TER);
  1235. priv->cur_rx = priv->cur_tx = priv->dirty_tx = 0;
  1236. ADM8211_CSR_WRITE(RDB, priv->rx_ring_dma);
  1237. ADM8211_CSR_WRITE(TDBD, priv->tx_ring_dma);
  1238. return 0;
  1239. }
  1240. static void adm8211_free_rings(struct ieee80211_hw *dev)
  1241. {
  1242. struct adm8211_priv *priv = dev->priv;
  1243. unsigned int i;
  1244. for (i = 0; i < priv->rx_ring_size; i++) {
  1245. if (!priv->rx_buffers[i].skb)
  1246. continue;
  1247. pci_unmap_single(
  1248. priv->pdev,
  1249. priv->rx_buffers[i].mapping,
  1250. RX_PKT_SIZE, PCI_DMA_FROMDEVICE);
  1251. dev_kfree_skb(priv->rx_buffers[i].skb);
  1252. }
  1253. for (i = 0; i < priv->tx_ring_size; i++) {
  1254. if (!priv->tx_buffers[i].skb)
  1255. continue;
  1256. pci_unmap_single(priv->pdev,
  1257. priv->tx_buffers[i].mapping,
  1258. priv->tx_buffers[i].skb->len,
  1259. PCI_DMA_TODEVICE);
  1260. dev_kfree_skb(priv->tx_buffers[i].skb);
  1261. }
  1262. }
  1263. static int adm8211_start(struct ieee80211_hw *dev)
  1264. {
  1265. struct adm8211_priv *priv = dev->priv;
  1266. int retval;
  1267. /* Power up MAC and RF chips */
  1268. retval = adm8211_hw_reset(dev);
  1269. if (retval) {
  1270. wiphy_err(dev->wiphy, "hardware reset failed\n");
  1271. goto fail;
  1272. }
  1273. retval = adm8211_init_rings(dev);
  1274. if (retval) {
  1275. wiphy_err(dev->wiphy, "failed to initialize rings\n");
  1276. goto fail;
  1277. }
  1278. /* Init hardware */
  1279. adm8211_hw_init(dev);
  1280. adm8211_rf_set_channel(dev, priv->channel);
  1281. retval = request_irq(priv->pdev->irq, adm8211_interrupt,
  1282. IRQF_SHARED, "adm8211", dev);
  1283. if (retval) {
  1284. wiphy_err(dev->wiphy, "failed to register IRQ handler\n");
  1285. goto fail;
  1286. }
  1287. ADM8211_CSR_WRITE(IER, ADM8211_IER_NIE | ADM8211_IER_AIE |
  1288. ADM8211_IER_RCIE | ADM8211_IER_TCIE |
  1289. ADM8211_IER_TDUIE | ADM8211_IER_GPTIE);
  1290. priv->mode = NL80211_IFTYPE_MONITOR;
  1291. adm8211_update_mode(dev);
  1292. ADM8211_CSR_WRITE(RDR, 0);
  1293. adm8211_set_interval(dev, 100, 10);
  1294. return 0;
  1295. fail:
  1296. return retval;
  1297. }
  1298. static void adm8211_stop(struct ieee80211_hw *dev)
  1299. {
  1300. struct adm8211_priv *priv = dev->priv;
  1301. priv->mode = NL80211_IFTYPE_UNSPECIFIED;
  1302. priv->nar = 0;
  1303. ADM8211_CSR_WRITE(NAR, 0);
  1304. ADM8211_CSR_WRITE(IER, 0);
  1305. ADM8211_CSR_READ(NAR);
  1306. free_irq(priv->pdev->irq, dev);
  1307. adm8211_free_rings(dev);
  1308. }
  1309. static void adm8211_calc_durations(int *dur, int *plcp, size_t payload_len, int len,
  1310. int plcp_signal, int short_preamble)
  1311. {
  1312. /* Alternative calculation from NetBSD: */
  1313. /* IEEE 802.11b durations for DSSS PHY in microseconds */
  1314. #define IEEE80211_DUR_DS_LONG_PREAMBLE 144
  1315. #define IEEE80211_DUR_DS_SHORT_PREAMBLE 72
  1316. #define IEEE80211_DUR_DS_FAST_PLCPHDR 24
  1317. #define IEEE80211_DUR_DS_SLOW_PLCPHDR 48
  1318. #define IEEE80211_DUR_DS_SLOW_ACK 112
  1319. #define IEEE80211_DUR_DS_FAST_ACK 56
  1320. #define IEEE80211_DUR_DS_SLOW_CTS 112
  1321. #define IEEE80211_DUR_DS_FAST_CTS 56
  1322. #define IEEE80211_DUR_DS_SLOT 20
  1323. #define IEEE80211_DUR_DS_SIFS 10
  1324. int remainder;
  1325. *dur = (80 * (24 + payload_len) + plcp_signal - 1)
  1326. / plcp_signal;
  1327. if (plcp_signal <= PLCP_SIGNAL_2M)
  1328. /* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
  1329. *dur += 3 * (IEEE80211_DUR_DS_SIFS +
  1330. IEEE80211_DUR_DS_SHORT_PREAMBLE +
  1331. IEEE80211_DUR_DS_FAST_PLCPHDR) +
  1332. IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
  1333. else
  1334. /* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
  1335. *dur += 3 * (IEEE80211_DUR_DS_SIFS +
  1336. IEEE80211_DUR_DS_SHORT_PREAMBLE +
  1337. IEEE80211_DUR_DS_FAST_PLCPHDR) +
  1338. IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
  1339. /* lengthen duration if long preamble */
  1340. if (!short_preamble)
  1341. *dur += 3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
  1342. IEEE80211_DUR_DS_SHORT_PREAMBLE) +
  1343. 3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
  1344. IEEE80211_DUR_DS_FAST_PLCPHDR);
  1345. *plcp = (80 * len) / plcp_signal;
  1346. remainder = (80 * len) % plcp_signal;
  1347. if (plcp_signal == PLCP_SIGNAL_11M &&
  1348. remainder <= 30 && remainder > 0)
  1349. *plcp = (*plcp | 0x8000) + 1;
  1350. else if (remainder)
  1351. (*plcp)++;
  1352. }
  1353. /* Transmit skb w/adm8211_tx_hdr (802.11 header created by hardware) */
  1354. static void adm8211_tx_raw(struct ieee80211_hw *dev, struct sk_buff *skb,
  1355. u16 plcp_signal,
  1356. size_t hdrlen)
  1357. {
  1358. struct adm8211_priv *priv = dev->priv;
  1359. unsigned long flags;
  1360. dma_addr_t mapping;
  1361. unsigned int entry;
  1362. u32 flag;
  1363. mapping = pci_map_single(priv->pdev, skb->data, skb->len,
  1364. PCI_DMA_TODEVICE);
  1365. spin_lock_irqsave(&priv->lock, flags);
  1366. if (priv->cur_tx - priv->dirty_tx == priv->tx_ring_size / 2)
  1367. flag = TDES1_CONTROL_IC | TDES1_CONTROL_LS | TDES1_CONTROL_FS;
  1368. else
  1369. flag = TDES1_CONTROL_LS | TDES1_CONTROL_FS;
  1370. if (priv->cur_tx - priv->dirty_tx == priv->tx_ring_size - 2)
  1371. ieee80211_stop_queue(dev, 0);
  1372. entry = priv->cur_tx % priv->tx_ring_size;
  1373. priv->tx_buffers[entry].skb = skb;
  1374. priv->tx_buffers[entry].mapping = mapping;
  1375. priv->tx_buffers[entry].hdrlen = hdrlen;
  1376. priv->tx_ring[entry].buffer1 = cpu_to_le32(mapping);
  1377. if (entry == priv->tx_ring_size - 1)
  1378. flag |= TDES1_CONTROL_TER;
  1379. priv->tx_ring[entry].length = cpu_to_le32(flag | skb->len);
  1380. /* Set TX rate (SIGNAL field in PLCP PPDU format) */
  1381. flag = TDES0_CONTROL_OWN | (plcp_signal << 20) | 8 /* ? */;
  1382. priv->tx_ring[entry].status = cpu_to_le32(flag);
  1383. priv->cur_tx++;
  1384. spin_unlock_irqrestore(&priv->lock, flags);
  1385. /* Trigger transmit poll */
  1386. ADM8211_CSR_WRITE(TDR, 0);
  1387. }
  1388. /* Put adm8211_tx_hdr on skb and transmit */
  1389. static void adm8211_tx(struct ieee80211_hw *dev, struct sk_buff *skb)
  1390. {
  1391. struct adm8211_tx_hdr *txhdr;
  1392. size_t payload_len, hdrlen;
  1393. int plcp, dur, len, plcp_signal, short_preamble;
  1394. struct ieee80211_hdr *hdr;
  1395. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1396. struct ieee80211_rate *txrate = ieee80211_get_tx_rate(dev, info);
  1397. u8 rc_flags;
  1398. rc_flags = info->control.rates[0].flags;
  1399. short_preamble = !!(rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
  1400. plcp_signal = txrate->bitrate;
  1401. hdr = (struct ieee80211_hdr *)skb->data;
  1402. hdrlen = ieee80211_hdrlen(hdr->frame_control);
  1403. memcpy(skb->cb, skb->data, hdrlen);
  1404. hdr = (struct ieee80211_hdr *)skb->cb;
  1405. skb_pull(skb, hdrlen);
  1406. payload_len = skb->len;
  1407. txhdr = (struct adm8211_tx_hdr *) skb_push(skb, sizeof(*txhdr));
  1408. memset(txhdr, 0, sizeof(*txhdr));
  1409. memcpy(txhdr->da, ieee80211_get_DA(hdr), ETH_ALEN);
  1410. txhdr->signal = plcp_signal;
  1411. txhdr->frame_body_size = cpu_to_le16(payload_len);
  1412. txhdr->frame_control = hdr->frame_control;
  1413. len = hdrlen + payload_len + FCS_LEN;
  1414. txhdr->frag = cpu_to_le16(0x0FFF);
  1415. adm8211_calc_durations(&dur, &plcp, payload_len,
  1416. len, plcp_signal, short_preamble);
  1417. txhdr->plcp_frag_head_len = cpu_to_le16(plcp);
  1418. txhdr->plcp_frag_tail_len = cpu_to_le16(plcp);
  1419. txhdr->dur_frag_head = cpu_to_le16(dur);
  1420. txhdr->dur_frag_tail = cpu_to_le16(dur);
  1421. txhdr->header_control = cpu_to_le16(ADM8211_TXHDRCTL_ENABLE_EXTEND_HEADER);
  1422. if (short_preamble)
  1423. txhdr->header_control |= cpu_to_le16(ADM8211_TXHDRCTL_SHORT_PREAMBLE);
  1424. if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS)
  1425. txhdr->header_control |= cpu_to_le16(ADM8211_TXHDRCTL_ENABLE_RTS);
  1426. txhdr->retry_limit = info->control.rates[0].count;
  1427. adm8211_tx_raw(dev, skb, plcp_signal, hdrlen);
  1428. }
  1429. static int adm8211_alloc_rings(struct ieee80211_hw *dev)
  1430. {
  1431. struct adm8211_priv *priv = dev->priv;
  1432. unsigned int ring_size;
  1433. priv->rx_buffers = kmalloc(sizeof(*priv->rx_buffers) * priv->rx_ring_size +
  1434. sizeof(*priv->tx_buffers) * priv->tx_ring_size, GFP_KERNEL);
  1435. if (!priv->rx_buffers)
  1436. return -ENOMEM;
  1437. priv->tx_buffers = (void *)priv->rx_buffers +
  1438. sizeof(*priv->rx_buffers) * priv->rx_ring_size;
  1439. /* Allocate TX/RX descriptors */
  1440. ring_size = sizeof(struct adm8211_desc) * priv->rx_ring_size +
  1441. sizeof(struct adm8211_desc) * priv->tx_ring_size;
  1442. priv->rx_ring = pci_alloc_consistent(priv->pdev, ring_size,
  1443. &priv->rx_ring_dma);
  1444. if (!priv->rx_ring) {
  1445. kfree(priv->rx_buffers);
  1446. priv->rx_buffers = NULL;
  1447. priv->tx_buffers = NULL;
  1448. return -ENOMEM;
  1449. }
  1450. priv->tx_ring = (struct adm8211_desc *)(priv->rx_ring +
  1451. priv->rx_ring_size);
  1452. priv->tx_ring_dma = priv->rx_ring_dma +
  1453. sizeof(struct adm8211_desc) * priv->rx_ring_size;
  1454. return 0;
  1455. }
  1456. static const struct ieee80211_ops adm8211_ops = {
  1457. .tx = adm8211_tx,
  1458. .start = adm8211_start,
  1459. .stop = adm8211_stop,
  1460. .add_interface = adm8211_add_interface,
  1461. .remove_interface = adm8211_remove_interface,
  1462. .config = adm8211_config,
  1463. .bss_info_changed = adm8211_bss_info_changed,
  1464. .prepare_multicast = adm8211_prepare_multicast,
  1465. .configure_filter = adm8211_configure_filter,
  1466. .get_stats = adm8211_get_stats,
  1467. .get_tsf = adm8211_get_tsft
  1468. };
  1469. static int __devinit adm8211_probe(struct pci_dev *pdev,
  1470. const struct pci_device_id *id)
  1471. {
  1472. struct ieee80211_hw *dev;
  1473. struct adm8211_priv *priv;
  1474. unsigned long mem_addr, mem_len;
  1475. unsigned int io_addr, io_len;
  1476. int err;
  1477. u32 reg;
  1478. u8 perm_addr[ETH_ALEN];
  1479. err = pci_enable_device(pdev);
  1480. if (err) {
  1481. printk(KERN_ERR "%s (adm8211): Cannot enable new PCI device\n",
  1482. pci_name(pdev));
  1483. return err;
  1484. }
  1485. io_addr = pci_resource_start(pdev, 0);
  1486. io_len = pci_resource_len(pdev, 0);
  1487. mem_addr = pci_resource_start(pdev, 1);
  1488. mem_len = pci_resource_len(pdev, 1);
  1489. if (io_len < 256 || mem_len < 1024) {
  1490. printk(KERN_ERR "%s (adm8211): Too short PCI resources\n",
  1491. pci_name(pdev));
  1492. goto err_disable_pdev;
  1493. }
  1494. /* check signature */
  1495. pci_read_config_dword(pdev, 0x80 /* CR32 */, &reg);
  1496. if (reg != ADM8211_SIG1 && reg != ADM8211_SIG2) {
  1497. printk(KERN_ERR "%s (adm8211): Invalid signature (0x%x)\n",
  1498. pci_name(pdev), reg);
  1499. goto err_disable_pdev;
  1500. }
  1501. err = pci_request_regions(pdev, "adm8211");
  1502. if (err) {
  1503. printk(KERN_ERR "%s (adm8211): Cannot obtain PCI resources\n",
  1504. pci_name(pdev));
  1505. return err; /* someone else grabbed it? don't disable it */
  1506. }
  1507. if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) ||
  1508. pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
  1509. printk(KERN_ERR "%s (adm8211): No suitable DMA available\n",
  1510. pci_name(pdev));
  1511. goto err_free_reg;
  1512. }
  1513. pci_set_master(pdev);
  1514. dev = ieee80211_alloc_hw(sizeof(*priv), &adm8211_ops);
  1515. if (!dev) {
  1516. printk(KERN_ERR "%s (adm8211): ieee80211 alloc failed\n",
  1517. pci_name(pdev));
  1518. err = -ENOMEM;
  1519. goto err_free_reg;
  1520. }
  1521. priv = dev->priv;
  1522. priv->pdev = pdev;
  1523. spin_lock_init(&priv->lock);
  1524. SET_IEEE80211_DEV(dev, &pdev->dev);
  1525. pci_set_drvdata(pdev, dev);
  1526. priv->map = pci_iomap(pdev, 1, mem_len);
  1527. if (!priv->map)
  1528. priv->map = pci_iomap(pdev, 0, io_len);
  1529. if (!priv->map) {
  1530. printk(KERN_ERR "%s (adm8211): Cannot map device memory\n",
  1531. pci_name(pdev));
  1532. goto err_free_dev;
  1533. }
  1534. priv->rx_ring_size = rx_ring_size;
  1535. priv->tx_ring_size = tx_ring_size;
  1536. if (adm8211_alloc_rings(dev)) {
  1537. printk(KERN_ERR "%s (adm8211): Cannot allocate TX/RX ring\n",
  1538. pci_name(pdev));
  1539. goto err_iounmap;
  1540. }
  1541. *(__le32 *)perm_addr = cpu_to_le32(ADM8211_CSR_READ(PAR0));
  1542. *(__le16 *)&perm_addr[4] =
  1543. cpu_to_le16(ADM8211_CSR_READ(PAR1) & 0xFFFF);
  1544. if (!is_valid_ether_addr(perm_addr)) {
  1545. printk(KERN_WARNING "%s (adm8211): Invalid hwaddr in EEPROM!\n",
  1546. pci_name(pdev));
  1547. random_ether_addr(perm_addr);
  1548. }
  1549. SET_IEEE80211_PERM_ADDR(dev, perm_addr);
  1550. dev->extra_tx_headroom = sizeof(struct adm8211_tx_hdr);
  1551. /* dev->flags = IEEE80211_HW_RX_INCLUDES_FCS in promisc mode */
  1552. dev->flags = IEEE80211_HW_SIGNAL_UNSPEC;
  1553. dev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
  1554. dev->channel_change_time = 1000;
  1555. dev->max_signal = 100; /* FIXME: find better value */
  1556. dev->queues = 1; /* ADM8211C supports more, maybe ADM8211B too */
  1557. priv->retry_limit = 3;
  1558. priv->ant_power = 0x40;
  1559. priv->tx_power = 0x40;
  1560. priv->lpf_cutoff = 0xFF;
  1561. priv->lnags_threshold = 0xFF;
  1562. priv->mode = NL80211_IFTYPE_UNSPECIFIED;
  1563. /* Power-on issue. EEPROM won't read correctly without */
  1564. if (pdev->revision >= ADM8211_REV_BA) {
  1565. ADM8211_CSR_WRITE(FRCTL, 0);
  1566. ADM8211_CSR_READ(FRCTL);
  1567. ADM8211_CSR_WRITE(FRCTL, 1);
  1568. ADM8211_CSR_READ(FRCTL);
  1569. msleep(100);
  1570. }
  1571. err = adm8211_read_eeprom(dev);
  1572. if (err) {
  1573. printk(KERN_ERR "%s (adm8211): Can't alloc eeprom buffer\n",
  1574. pci_name(pdev));
  1575. goto err_free_desc;
  1576. }
  1577. priv->channel = 1;
  1578. dev->wiphy->bands[IEEE80211_BAND_2GHZ] = &priv->band;
  1579. err = ieee80211_register_hw(dev);
  1580. if (err) {
  1581. printk(KERN_ERR "%s (adm8211): Cannot register device\n",
  1582. pci_name(pdev));
  1583. goto err_free_eeprom;
  1584. }
  1585. wiphy_info(dev->wiphy, "hwaddr %pM, Rev 0x%02x\n",
  1586. dev->wiphy->perm_addr, pdev->revision);
  1587. return 0;
  1588. err_free_eeprom:
  1589. kfree(priv->eeprom);
  1590. err_free_desc:
  1591. pci_free_consistent(pdev,
  1592. sizeof(struct adm8211_desc) * priv->rx_ring_size +
  1593. sizeof(struct adm8211_desc) * priv->tx_ring_size,
  1594. priv->rx_ring, priv->rx_ring_dma);
  1595. kfree(priv->rx_buffers);
  1596. err_iounmap:
  1597. pci_iounmap(pdev, priv->map);
  1598. err_free_dev:
  1599. pci_set_drvdata(pdev, NULL);
  1600. ieee80211_free_hw(dev);
  1601. err_free_reg:
  1602. pci_release_regions(pdev);
  1603. err_disable_pdev:
  1604. pci_disable_device(pdev);
  1605. return err;
  1606. }
  1607. static void __devexit adm8211_remove(struct pci_dev *pdev)
  1608. {
  1609. struct ieee80211_hw *dev = pci_get_drvdata(pdev);
  1610. struct adm8211_priv *priv;
  1611. if (!dev)
  1612. return;
  1613. ieee80211_unregister_hw(dev);
  1614. priv = dev->priv;
  1615. pci_free_consistent(pdev,
  1616. sizeof(struct adm8211_desc) * priv->rx_ring_size +
  1617. sizeof(struct adm8211_desc) * priv->tx_ring_size,
  1618. priv->rx_ring, priv->rx_ring_dma);
  1619. kfree(priv->rx_buffers);
  1620. kfree(priv->eeprom);
  1621. pci_iounmap(pdev, priv->map);
  1622. pci_release_regions(pdev);
  1623. pci_disable_device(pdev);
  1624. ieee80211_free_hw(dev);
  1625. }
  1626. #ifdef CONFIG_PM
  1627. static int adm8211_suspend(struct pci_dev *pdev, pm_message_t state)
  1628. {
  1629. pci_save_state(pdev);
  1630. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  1631. return 0;
  1632. }
  1633. static int adm8211_resume(struct pci_dev *pdev)
  1634. {
  1635. pci_set_power_state(pdev, PCI_D0);
  1636. pci_restore_state(pdev);
  1637. return 0;
  1638. }
  1639. #endif /* CONFIG_PM */
  1640. MODULE_DEVICE_TABLE(pci, adm8211_pci_id_table);
  1641. /* TODO: implement enable_wake */
  1642. static struct pci_driver adm8211_driver = {
  1643. .name = "adm8211",
  1644. .id_table = adm8211_pci_id_table,
  1645. .probe = adm8211_probe,
  1646. .remove = __devexit_p(adm8211_remove),
  1647. #ifdef CONFIG_PM
  1648. .suspend = adm8211_suspend,
  1649. .resume = adm8211_resume,
  1650. #endif /* CONFIG_PM */
  1651. };
  1652. static int __init adm8211_init(void)
  1653. {
  1654. return pci_register_driver(&adm8211_driver);
  1655. }
  1656. static void __exit adm8211_exit(void)
  1657. {
  1658. pci_unregister_driver(&adm8211_driver);
  1659. }
  1660. module_init(adm8211_init);
  1661. module_exit(adm8211_exit);