PageRenderTime 74ms CodeModel.GetById 20ms RepoModel.GetById 0ms app.codeStats 0ms

/net/ipv4/tcp.c

https://bitbucket.org/sp4rda/source-ville
C | 3448 lines | 2288 code | 478 blank | 682 comment | 553 complexity | b9ed74541d32910d8a02e91f72e4da0e MD5 | raw file
Possible License(s): GPL-2.0, LGPL-2.0, AGPL-1.0
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. *
  20. * Fixes:
  21. * Alan Cox : Numerous verify_area() calls
  22. * Alan Cox : Set the ACK bit on a reset
  23. * Alan Cox : Stopped it crashing if it closed while
  24. * sk->inuse=1 and was trying to connect
  25. * (tcp_err()).
  26. * Alan Cox : All icmp error handling was broken
  27. * pointers passed where wrong and the
  28. * socket was looked up backwards. Nobody
  29. * tested any icmp error code obviously.
  30. * Alan Cox : tcp_err() now handled properly. It
  31. * wakes people on errors. poll
  32. * behaves and the icmp error race
  33. * has gone by moving it into sock.c
  34. * Alan Cox : tcp_send_reset() fixed to work for
  35. * everything not just packets for
  36. * unknown sockets.
  37. * Alan Cox : tcp option processing.
  38. * Alan Cox : Reset tweaked (still not 100%) [Had
  39. * syn rule wrong]
  40. * Herp Rosmanith : More reset fixes
  41. * Alan Cox : No longer acks invalid rst frames.
  42. * Acking any kind of RST is right out.
  43. * Alan Cox : Sets an ignore me flag on an rst
  44. * receive otherwise odd bits of prattle
  45. * escape still
  46. * Alan Cox : Fixed another acking RST frame bug.
  47. * Should stop LAN workplace lockups.
  48. * Alan Cox : Some tidyups using the new skb list
  49. * facilities
  50. * Alan Cox : sk->keepopen now seems to work
  51. * Alan Cox : Pulls options out correctly on accepts
  52. * Alan Cox : Fixed assorted sk->rqueue->next errors
  53. * Alan Cox : PSH doesn't end a TCP read. Switched a
  54. * bit to skb ops.
  55. * Alan Cox : Tidied tcp_data to avoid a potential
  56. * nasty.
  57. * Alan Cox : Added some better commenting, as the
  58. * tcp is hard to follow
  59. * Alan Cox : Removed incorrect check for 20 * psh
  60. * Michael O'Reilly : ack < copied bug fix.
  61. * Johannes Stille : Misc tcp fixes (not all in yet).
  62. * Alan Cox : FIN with no memory -> CRASH
  63. * Alan Cox : Added socket option proto entries.
  64. * Also added awareness of them to accept.
  65. * Alan Cox : Added TCP options (SOL_TCP)
  66. * Alan Cox : Switched wakeup calls to callbacks,
  67. * so the kernel can layer network
  68. * sockets.
  69. * Alan Cox : Use ip_tos/ip_ttl settings.
  70. * Alan Cox : Handle FIN (more) properly (we hope).
  71. * Alan Cox : RST frames sent on unsynchronised
  72. * state ack error.
  73. * Alan Cox : Put in missing check for SYN bit.
  74. * Alan Cox : Added tcp_select_window() aka NET2E
  75. * window non shrink trick.
  76. * Alan Cox : Added a couple of small NET2E timer
  77. * fixes
  78. * Charles Hedrick : TCP fixes
  79. * Toomas Tamm : TCP window fixes
  80. * Alan Cox : Small URG fix to rlogin ^C ack fight
  81. * Charles Hedrick : Rewrote most of it to actually work
  82. * Linus : Rewrote tcp_read() and URG handling
  83. * completely
  84. * Gerhard Koerting: Fixed some missing timer handling
  85. * Matthew Dillon : Reworked TCP machine states as per RFC
  86. * Gerhard Koerting: PC/TCP workarounds
  87. * Adam Caldwell : Assorted timer/timing errors
  88. * Matthew Dillon : Fixed another RST bug
  89. * Alan Cox : Move to kernel side addressing changes.
  90. * Alan Cox : Beginning work on TCP fastpathing
  91. * (not yet usable)
  92. * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
  93. * Alan Cox : TCP fast path debugging
  94. * Alan Cox : Window clamping
  95. * Michael Riepe : Bug in tcp_check()
  96. * Matt Dillon : More TCP improvements and RST bug fixes
  97. * Matt Dillon : Yet more small nasties remove from the
  98. * TCP code (Be very nice to this man if
  99. * tcp finally works 100%) 8)
  100. * Alan Cox : BSD accept semantics.
  101. * Alan Cox : Reset on closedown bug.
  102. * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
  103. * Michael Pall : Handle poll() after URG properly in
  104. * all cases.
  105. * Michael Pall : Undo the last fix in tcp_read_urg()
  106. * (multi URG PUSH broke rlogin).
  107. * Michael Pall : Fix the multi URG PUSH problem in
  108. * tcp_readable(), poll() after URG
  109. * works now.
  110. * Michael Pall : recv(...,MSG_OOB) never blocks in the
  111. * BSD api.
  112. * Alan Cox : Changed the semantics of sk->socket to
  113. * fix a race and a signal problem with
  114. * accept() and async I/O.
  115. * Alan Cox : Relaxed the rules on tcp_sendto().
  116. * Yury Shevchuk : Really fixed accept() blocking problem.
  117. * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
  118. * clients/servers which listen in on
  119. * fixed ports.
  120. * Alan Cox : Cleaned the above up and shrank it to
  121. * a sensible code size.
  122. * Alan Cox : Self connect lockup fix.
  123. * Alan Cox : No connect to multicast.
  124. * Ross Biro : Close unaccepted children on master
  125. * socket close.
  126. * Alan Cox : Reset tracing code.
  127. * Alan Cox : Spurious resets on shutdown.
  128. * Alan Cox : Giant 15 minute/60 second timer error
  129. * Alan Cox : Small whoops in polling before an
  130. * accept.
  131. * Alan Cox : Kept the state trace facility since
  132. * it's handy for debugging.
  133. * Alan Cox : More reset handler fixes.
  134. * Alan Cox : Started rewriting the code based on
  135. * the RFC's for other useful protocol
  136. * references see: Comer, KA9Q NOS, and
  137. * for a reference on the difference
  138. * between specifications and how BSD
  139. * works see the 4.4lite source.
  140. * A.N.Kuznetsov : Don't time wait on completion of tidy
  141. * close.
  142. * Linus Torvalds : Fin/Shutdown & copied_seq changes.
  143. * Linus Torvalds : Fixed BSD port reuse to work first syn
  144. * Alan Cox : Reimplemented timers as per the RFC
  145. * and using multiple timers for sanity.
  146. * Alan Cox : Small bug fixes, and a lot of new
  147. * comments.
  148. * Alan Cox : Fixed dual reader crash by locking
  149. * the buffers (much like datagram.c)
  150. * Alan Cox : Fixed stuck sockets in probe. A probe
  151. * now gets fed up of retrying without
  152. * (even a no space) answer.
  153. * Alan Cox : Extracted closing code better
  154. * Alan Cox : Fixed the closing state machine to
  155. * resemble the RFC.
  156. * Alan Cox : More 'per spec' fixes.
  157. * Jorge Cwik : Even faster checksumming.
  158. * Alan Cox : tcp_data() doesn't ack illegal PSH
  159. * only frames. At least one pc tcp stack
  160. * generates them.
  161. * Alan Cox : Cache last socket.
  162. * Alan Cox : Per route irtt.
  163. * Matt Day : poll()->select() match BSD precisely on error
  164. * Alan Cox : New buffers
  165. * Marc Tamsky : Various sk->prot->retransmits and
  166. * sk->retransmits misupdating fixed.
  167. * Fixed tcp_write_timeout: stuck close,
  168. * and TCP syn retries gets used now.
  169. * Mark Yarvis : In tcp_read_wakeup(), don't send an
  170. * ack if state is TCP_CLOSED.
  171. * Alan Cox : Look up device on a retransmit - routes may
  172. * change. Doesn't yet cope with MSS shrink right
  173. * but it's a start!
  174. * Marc Tamsky : Closing in closing fixes.
  175. * Mike Shaver : RFC1122 verifications.
  176. * Alan Cox : rcv_saddr errors.
  177. * Alan Cox : Block double connect().
  178. * Alan Cox : Small hooks for enSKIP.
  179. * Alexey Kuznetsov: Path MTU discovery.
  180. * Alan Cox : Support soft errors.
  181. * Alan Cox : Fix MTU discovery pathological case
  182. * when the remote claims no mtu!
  183. * Marc Tamsky : TCP_CLOSE fix.
  184. * Colin (G3TNE) : Send a reset on syn ack replies in
  185. * window but wrong (fixes NT lpd problems)
  186. * Pedro Roque : Better TCP window handling, delayed ack.
  187. * Joerg Reuter : No modification of locked buffers in
  188. * tcp_do_retransmit()
  189. * Eric Schenk : Changed receiver side silly window
  190. * avoidance algorithm to BSD style
  191. * algorithm. This doubles throughput
  192. * against machines running Solaris,
  193. * and seems to result in general
  194. * improvement.
  195. * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
  196. * Willy Konynenberg : Transparent proxying support.
  197. * Mike McLagan : Routing by source
  198. * Keith Owens : Do proper merging with partial SKB's in
  199. * tcp_do_sendmsg to avoid burstiness.
  200. * Eric Schenk : Fix fast close down bug with
  201. * shutdown() followed by close().
  202. * Andi Kleen : Make poll agree with SIGIO
  203. * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
  204. * lingertime == 0 (RFC 793 ABORT Call)
  205. * Hirokazu Takahashi : Use copy_from_user() instead of
  206. * csum_and_copy_from_user() if possible.
  207. *
  208. * This program is free software; you can redistribute it and/or
  209. * modify it under the terms of the GNU General Public License
  210. * as published by the Free Software Foundation; either version
  211. * 2 of the License, or(at your option) any later version.
  212. *
  213. * Description of States:
  214. *
  215. * TCP_SYN_SENT sent a connection request, waiting for ack
  216. *
  217. * TCP_SYN_RECV received a connection request, sent ack,
  218. * waiting for final ack in three-way handshake.
  219. *
  220. * TCP_ESTABLISHED connection established
  221. *
  222. * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
  223. * transmission of remaining buffered data
  224. *
  225. * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
  226. * to shutdown
  227. *
  228. * TCP_CLOSING both sides have shutdown but we still have
  229. * data we have to finish sending
  230. *
  231. * TCP_TIME_WAIT timeout to catch resent junk before entering
  232. * closed, can only be entered from FIN_WAIT2
  233. * or CLOSING. Required because the other end
  234. * may not have gotten our last ACK causing it
  235. * to retransmit the data packet (which we ignore)
  236. *
  237. * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
  238. * us to finish writing our data and to shutdown
  239. * (we have to close() to move on to LAST_ACK)
  240. *
  241. * TCP_LAST_ACK out side has shutdown after remote has
  242. * shutdown. There may still be data in our
  243. * buffer that we have to finish sending
  244. *
  245. * TCP_CLOSE socket is finished
  246. */
  247. #include <linux/kernel.h>
  248. #include <linux/module.h>
  249. #include <linux/types.h>
  250. #include <linux/fcntl.h>
  251. #include <linux/poll.h>
  252. #include <linux/init.h>
  253. #include <linux/fs.h>
  254. #include <linux/skbuff.h>
  255. #include <linux/scatterlist.h>
  256. #include <linux/splice.h>
  257. #include <linux/net.h>
  258. #include <linux/socket.h>
  259. #include <linux/random.h>
  260. #include <linux/bootmem.h>
  261. #include <linux/highmem.h>
  262. #include <linux/swap.h>
  263. #include <linux/cache.h>
  264. #include <linux/err.h>
  265. #include <linux/crypto.h>
  266. #include <linux/time.h>
  267. #include <linux/slab.h>
  268. #include <linux/uid_stat.h>
  269. #include <net/icmp.h>
  270. #include <net/tcp.h>
  271. #include <net/xfrm.h>
  272. #include <net/ip.h>
  273. #include <net/ip6_route.h>
  274. #include <net/ipv6.h>
  275. #include <net/transp_v6.h>
  276. #include <net/netdma.h>
  277. #include <net/sock.h>
  278. #include <asm/uaccess.h>
  279. #include <asm/ioctls.h>
  280. int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
  281. struct percpu_counter tcp_orphan_count;
  282. EXPORT_SYMBOL_GPL(tcp_orphan_count);
  283. long sysctl_tcp_mem[3] __read_mostly;
  284. int sysctl_tcp_wmem[3] __read_mostly;
  285. int sysctl_tcp_rmem[3] __read_mostly;
  286. EXPORT_SYMBOL(sysctl_tcp_mem);
  287. EXPORT_SYMBOL(sysctl_tcp_rmem);
  288. EXPORT_SYMBOL(sysctl_tcp_wmem);
  289. atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
  290. EXPORT_SYMBOL(tcp_memory_allocated);
  291. /*
  292. * Current number of TCP sockets.
  293. */
  294. struct percpu_counter tcp_sockets_allocated;
  295. EXPORT_SYMBOL(tcp_sockets_allocated);
  296. /*
  297. * TCP splice context
  298. */
  299. struct tcp_splice_state {
  300. struct pipe_inode_info *pipe;
  301. size_t len;
  302. unsigned int flags;
  303. };
  304. /*
  305. * Pressure flag: try to collapse.
  306. * Technical note: it is used by multiple contexts non atomically.
  307. * All the __sk_mem_schedule() is of this nature: accounting
  308. * is strict, actions are advisory and have some latency.
  309. */
  310. int tcp_memory_pressure __read_mostly;
  311. EXPORT_SYMBOL(tcp_memory_pressure);
  312. void tcp_enter_memory_pressure(struct sock *sk)
  313. {
  314. if (!tcp_memory_pressure) {
  315. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
  316. tcp_memory_pressure = 1;
  317. }
  318. }
  319. EXPORT_SYMBOL(tcp_enter_memory_pressure);
  320. /* Convert seconds to retransmits based on initial and max timeout */
  321. static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
  322. {
  323. u8 res = 0;
  324. if (seconds > 0) {
  325. int period = timeout;
  326. res = 1;
  327. while (seconds > period && res < 255) {
  328. res++;
  329. timeout <<= 1;
  330. if (timeout > rto_max)
  331. timeout = rto_max;
  332. period += timeout;
  333. }
  334. }
  335. return res;
  336. }
  337. /* Convert retransmits to seconds based on initial and max timeout */
  338. static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
  339. {
  340. int period = 0;
  341. if (retrans > 0) {
  342. period = timeout;
  343. while (--retrans) {
  344. timeout <<= 1;
  345. if (timeout > rto_max)
  346. timeout = rto_max;
  347. period += timeout;
  348. }
  349. }
  350. return period;
  351. }
  352. /*
  353. * Wait for a TCP event.
  354. *
  355. * Note that we don't need to lock the socket, as the upper poll layers
  356. * take care of normal races (between the test and the event) and we don't
  357. * go look at any of the socket buffers directly.
  358. */
  359. unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
  360. {
  361. unsigned int mask;
  362. struct sock *sk = sock->sk;
  363. struct tcp_sock *tp = tcp_sk(sk);
  364. sock_poll_wait(file, sk_sleep(sk), wait);
  365. if (sk->sk_state == TCP_LISTEN)
  366. return inet_csk_listen_poll(sk);
  367. /* Socket is not locked. We are protected from async events
  368. * by poll logic and correct handling of state changes
  369. * made by other threads is impossible in any case.
  370. */
  371. mask = 0;
  372. /*
  373. * POLLHUP is certainly not done right. But poll() doesn't
  374. * have a notion of HUP in just one direction, and for a
  375. * socket the read side is more interesting.
  376. *
  377. * Some poll() documentation says that POLLHUP is incompatible
  378. * with the POLLOUT/POLLWR flags, so somebody should check this
  379. * all. But careful, it tends to be safer to return too many
  380. * bits than too few, and you can easily break real applications
  381. * if you don't tell them that something has hung up!
  382. *
  383. * Check-me.
  384. *
  385. * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
  386. * our fs/select.c). It means that after we received EOF,
  387. * poll always returns immediately, making impossible poll() on write()
  388. * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
  389. * if and only if shutdown has been made in both directions.
  390. * Actually, it is interesting to look how Solaris and DUX
  391. * solve this dilemma. I would prefer, if POLLHUP were maskable,
  392. * then we could set it on SND_SHUTDOWN. BTW examples given
  393. * in Stevens' books assume exactly this behaviour, it explains
  394. * why POLLHUP is incompatible with POLLOUT. --ANK
  395. *
  396. * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
  397. * blocking on fresh not-connected or disconnected socket. --ANK
  398. */
  399. if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
  400. mask |= POLLHUP;
  401. if (sk->sk_shutdown & RCV_SHUTDOWN)
  402. mask |= POLLIN | POLLRDNORM | POLLRDHUP;
  403. /* Connected? */
  404. if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
  405. int target = sock_rcvlowat(sk, 0, INT_MAX);
  406. if (tp->urg_seq == tp->copied_seq &&
  407. !sock_flag(sk, SOCK_URGINLINE) &&
  408. tp->urg_data)
  409. target++;
  410. /* Potential race condition. If read of tp below will
  411. * escape above sk->sk_state, we can be illegally awaken
  412. * in SYN_* states. */
  413. if (tp->rcv_nxt - tp->copied_seq >= target)
  414. mask |= POLLIN | POLLRDNORM;
  415. if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
  416. if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
  417. mask |= POLLOUT | POLLWRNORM;
  418. } else { /* send SIGIO later */
  419. set_bit(SOCK_ASYNC_NOSPACE,
  420. &sk->sk_socket->flags);
  421. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  422. /* Race breaker. If space is freed after
  423. * wspace test but before the flags are set,
  424. * IO signal will be lost.
  425. */
  426. if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
  427. mask |= POLLOUT | POLLWRNORM;
  428. }
  429. } else
  430. mask |= POLLOUT | POLLWRNORM;
  431. if (tp->urg_data & TCP_URG_VALID)
  432. mask |= POLLPRI;
  433. }
  434. /* This barrier is coupled with smp_wmb() in tcp_reset() */
  435. smp_rmb();
  436. if (sk->sk_err)
  437. mask |= POLLERR;
  438. return mask;
  439. }
  440. EXPORT_SYMBOL(tcp_poll);
  441. int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
  442. {
  443. struct tcp_sock *tp = tcp_sk(sk);
  444. int answ;
  445. switch (cmd) {
  446. case SIOCINQ:
  447. if (sk->sk_state == TCP_LISTEN)
  448. return -EINVAL;
  449. lock_sock(sk);
  450. if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
  451. answ = 0;
  452. else if (sock_flag(sk, SOCK_URGINLINE) ||
  453. !tp->urg_data ||
  454. before(tp->urg_seq, tp->copied_seq) ||
  455. !before(tp->urg_seq, tp->rcv_nxt)) {
  456. struct sk_buff *skb;
  457. answ = tp->rcv_nxt - tp->copied_seq;
  458. /* Subtract 1, if FIN is in queue. */
  459. skb = skb_peek_tail(&sk->sk_receive_queue);
  460. if (answ && skb)
  461. answ -= tcp_hdr(skb)->fin;
  462. } else
  463. answ = tp->urg_seq - tp->copied_seq;
  464. release_sock(sk);
  465. break;
  466. case SIOCATMARK:
  467. answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
  468. break;
  469. case SIOCOUTQ:
  470. if (sk->sk_state == TCP_LISTEN)
  471. return -EINVAL;
  472. if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
  473. answ = 0;
  474. else
  475. answ = tp->write_seq - tp->snd_una;
  476. break;
  477. case SIOCOUTQNSD:
  478. if (sk->sk_state == TCP_LISTEN)
  479. return -EINVAL;
  480. if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
  481. answ = 0;
  482. else
  483. answ = tp->write_seq - tp->snd_nxt;
  484. break;
  485. default:
  486. return -ENOIOCTLCMD;
  487. }
  488. return put_user(answ, (int __user *)arg);
  489. }
  490. EXPORT_SYMBOL(tcp_ioctl);
  491. static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
  492. {
  493. TCP_SKB_CB(skb)->flags |= TCPHDR_PSH;
  494. tp->pushed_seq = tp->write_seq;
  495. }
  496. static inline int forced_push(struct tcp_sock *tp)
  497. {
  498. return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
  499. }
  500. static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
  501. {
  502. struct tcp_sock *tp = tcp_sk(sk);
  503. struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
  504. skb->csum = 0;
  505. tcb->seq = tcb->end_seq = tp->write_seq;
  506. tcb->flags = TCPHDR_ACK;
  507. tcb->sacked = 0;
  508. skb_header_release(skb);
  509. tcp_add_write_queue_tail(sk, skb);
  510. sk->sk_wmem_queued += skb->truesize;
  511. sk_mem_charge(sk, skb->truesize);
  512. if (tp->nonagle & TCP_NAGLE_PUSH)
  513. tp->nonagle &= ~TCP_NAGLE_PUSH;
  514. }
  515. static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
  516. {
  517. if (flags & MSG_OOB)
  518. tp->snd_up = tp->write_seq;
  519. }
  520. static inline void tcp_push(struct sock *sk, int flags, int mss_now,
  521. int nonagle)
  522. {
  523. if (tcp_send_head(sk)) {
  524. struct tcp_sock *tp = tcp_sk(sk);
  525. if (!(flags & MSG_MORE) || forced_push(tp))
  526. tcp_mark_push(tp, tcp_write_queue_tail(sk));
  527. tcp_mark_urg(tp, flags);
  528. __tcp_push_pending_frames(sk, mss_now,
  529. (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
  530. }
  531. }
  532. static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
  533. unsigned int offset, size_t len)
  534. {
  535. struct tcp_splice_state *tss = rd_desc->arg.data;
  536. int ret;
  537. ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
  538. tss->flags);
  539. if (ret > 0)
  540. rd_desc->count -= ret;
  541. return ret;
  542. }
  543. static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
  544. {
  545. /* Store TCP splice context information in read_descriptor_t. */
  546. read_descriptor_t rd_desc = {
  547. .arg.data = tss,
  548. .count = tss->len,
  549. };
  550. return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
  551. }
  552. /**
  553. * tcp_splice_read - splice data from TCP socket to a pipe
  554. * @sock: socket to splice from
  555. * @ppos: position (not valid)
  556. * @pipe: pipe to splice to
  557. * @len: number of bytes to splice
  558. * @flags: splice modifier flags
  559. *
  560. * Description:
  561. * Will read pages from given socket and fill them into a pipe.
  562. *
  563. **/
  564. ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
  565. struct pipe_inode_info *pipe, size_t len,
  566. unsigned int flags)
  567. {
  568. struct sock *sk = sock->sk;
  569. struct tcp_splice_state tss = {
  570. .pipe = pipe,
  571. .len = len,
  572. .flags = flags,
  573. };
  574. long timeo;
  575. ssize_t spliced;
  576. int ret;
  577. sock_rps_record_flow(sk);
  578. /*
  579. * We can't seek on a socket input
  580. */
  581. if (unlikely(*ppos))
  582. return -ESPIPE;
  583. ret = spliced = 0;
  584. lock_sock(sk);
  585. timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
  586. while (tss.len) {
  587. ret = __tcp_splice_read(sk, &tss);
  588. if (ret < 0)
  589. break;
  590. else if (!ret) {
  591. if (spliced)
  592. break;
  593. if (sock_flag(sk, SOCK_DONE))
  594. break;
  595. if (sk->sk_err) {
  596. ret = sock_error(sk);
  597. break;
  598. }
  599. if (sk->sk_shutdown & RCV_SHUTDOWN)
  600. break;
  601. if (sk->sk_state == TCP_CLOSE) {
  602. /*
  603. * This occurs when user tries to read
  604. * from never connected socket.
  605. */
  606. if (!sock_flag(sk, SOCK_DONE))
  607. ret = -ENOTCONN;
  608. break;
  609. }
  610. if (!timeo) {
  611. ret = -EAGAIN;
  612. break;
  613. }
  614. sk_wait_data(sk, &timeo);
  615. if (signal_pending(current)) {
  616. ret = sock_intr_errno(timeo);
  617. break;
  618. }
  619. continue;
  620. }
  621. tss.len -= ret;
  622. spliced += ret;
  623. if (!timeo)
  624. break;
  625. release_sock(sk);
  626. lock_sock(sk);
  627. if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
  628. (sk->sk_shutdown & RCV_SHUTDOWN) ||
  629. signal_pending(current))
  630. break;
  631. }
  632. release_sock(sk);
  633. if (spliced)
  634. return spliced;
  635. return ret;
  636. }
  637. EXPORT_SYMBOL(tcp_splice_read);
  638. struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
  639. {
  640. struct sk_buff *skb;
  641. /* The TCP header must be at least 32-bit aligned. */
  642. size = ALIGN(size, 4);
  643. skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
  644. if (skb) {
  645. if (sk_wmem_schedule(sk, skb->truesize)) {
  646. /*
  647. * Make sure that we have exactly size bytes
  648. * available to the caller, no more, no less.
  649. */
  650. skb_reserve(skb, skb_tailroom(skb) - size);
  651. return skb;
  652. }
  653. #ifdef CONFIG_HTC_NETWORK_MODIFY
  654. if (IS_ERR(skb) || (!skb)) {
  655. printk(KERN_ERR "[NET] skb is NULL in %s!\n", __func__);
  656. }
  657. else {
  658. __kfree_skb(skb);
  659. }
  660. #else
  661. __kfree_skb(skb);
  662. #endif
  663. } else {
  664. sk->sk_prot->enter_memory_pressure(sk);
  665. sk_stream_moderate_sndbuf(sk);
  666. }
  667. return NULL;
  668. }
  669. static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
  670. int large_allowed)
  671. {
  672. struct tcp_sock *tp = tcp_sk(sk);
  673. u32 xmit_size_goal, old_size_goal;
  674. xmit_size_goal = mss_now;
  675. if (large_allowed && sk_can_gso(sk)) {
  676. xmit_size_goal = ((sk->sk_gso_max_size - 1) -
  677. inet_csk(sk)->icsk_af_ops->net_header_len -
  678. inet_csk(sk)->icsk_ext_hdr_len -
  679. tp->tcp_header_len);
  680. xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
  681. /* We try hard to avoid divides here */
  682. old_size_goal = tp->xmit_size_goal_segs * mss_now;
  683. if (likely(old_size_goal <= xmit_size_goal &&
  684. old_size_goal + mss_now > xmit_size_goal)) {
  685. xmit_size_goal = old_size_goal;
  686. } else {
  687. tp->xmit_size_goal_segs = xmit_size_goal / mss_now;
  688. xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
  689. }
  690. }
  691. return max(xmit_size_goal, mss_now);
  692. }
  693. static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
  694. {
  695. int mss_now;
  696. mss_now = tcp_current_mss(sk);
  697. *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
  698. return mss_now;
  699. }
  700. static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
  701. size_t psize, int flags)
  702. {
  703. struct tcp_sock *tp = tcp_sk(sk);
  704. int mss_now, size_goal;
  705. int err;
  706. ssize_t copied;
  707. long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
  708. /* Wait for a connection to finish. */
  709. if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
  710. if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
  711. goto out_err;
  712. clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  713. mss_now = tcp_send_mss(sk, &size_goal, flags);
  714. copied = 0;
  715. err = -EPIPE;
  716. if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
  717. goto out_err;
  718. while (psize > 0) {
  719. struct sk_buff *skb = tcp_write_queue_tail(sk);
  720. struct page *page = pages[poffset / PAGE_SIZE];
  721. int copy, i, can_coalesce;
  722. int offset = poffset % PAGE_SIZE;
  723. int size = min_t(size_t, psize, PAGE_SIZE - offset);
  724. if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
  725. new_segment:
  726. if (!sk_stream_memory_free(sk))
  727. goto wait_for_sndbuf;
  728. skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
  729. if (!skb)
  730. goto wait_for_memory;
  731. skb_entail(sk, skb);
  732. copy = size_goal;
  733. }
  734. if (copy > size)
  735. copy = size;
  736. i = skb_shinfo(skb)->nr_frags;
  737. can_coalesce = skb_can_coalesce(skb, i, page, offset);
  738. if (!can_coalesce && i >= MAX_SKB_FRAGS) {
  739. tcp_mark_push(tp, skb);
  740. goto new_segment;
  741. }
  742. if (!sk_wmem_schedule(sk, copy))
  743. goto wait_for_memory;
  744. if (can_coalesce) {
  745. skb_shinfo(skb)->frags[i - 1].size += copy;
  746. } else {
  747. get_page(page);
  748. skb_fill_page_desc(skb, i, page, offset, copy);
  749. }
  750. skb->len += copy;
  751. skb->data_len += copy;
  752. skb->truesize += copy;
  753. sk->sk_wmem_queued += copy;
  754. sk_mem_charge(sk, copy);
  755. skb->ip_summed = CHECKSUM_PARTIAL;
  756. tp->write_seq += copy;
  757. TCP_SKB_CB(skb)->end_seq += copy;
  758. skb_shinfo(skb)->gso_segs = 0;
  759. if (!copied)
  760. TCP_SKB_CB(skb)->flags &= ~TCPHDR_PSH;
  761. copied += copy;
  762. poffset += copy;
  763. if (!(psize -= copy))
  764. goto out;
  765. if (skb->len < size_goal || (flags & MSG_OOB))
  766. continue;
  767. if (forced_push(tp)) {
  768. tcp_mark_push(tp, skb);
  769. __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
  770. } else if (skb == tcp_send_head(sk))
  771. tcp_push_one(sk, mss_now);
  772. continue;
  773. wait_for_sndbuf:
  774. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  775. wait_for_memory:
  776. if (copied)
  777. tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
  778. if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
  779. goto do_error;
  780. mss_now = tcp_send_mss(sk, &size_goal, flags);
  781. }
  782. out:
  783. if (copied)
  784. tcp_push(sk, flags, mss_now, tp->nonagle);
  785. return copied;
  786. do_error:
  787. if (copied)
  788. goto out;
  789. out_err:
  790. return sk_stream_error(sk, flags, err);
  791. }
  792. int tcp_sendpage(struct sock *sk, struct page *page, int offset,
  793. size_t size, int flags)
  794. {
  795. ssize_t res;
  796. if (!(sk->sk_route_caps & NETIF_F_SG) ||
  797. !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
  798. return sock_no_sendpage(sk->sk_socket, page, offset, size,
  799. flags);
  800. lock_sock(sk);
  801. res = do_tcp_sendpages(sk, &page, offset, size, flags);
  802. release_sock(sk);
  803. return res;
  804. }
  805. EXPORT_SYMBOL(tcp_sendpage);
  806. #define TCP_PAGE(sk) (sk->sk_sndmsg_page)
  807. #define TCP_OFF(sk) (sk->sk_sndmsg_off)
  808. static inline int select_size(struct sock *sk, int sg)
  809. {
  810. struct tcp_sock *tp = tcp_sk(sk);
  811. int tmp = tp->mss_cache;
  812. if (sg) {
  813. if (sk_can_gso(sk))
  814. tmp = 0;
  815. else {
  816. int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
  817. if (tmp >= pgbreak &&
  818. tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
  819. tmp = pgbreak;
  820. }
  821. }
  822. return tmp;
  823. }
  824. int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
  825. size_t size)
  826. {
  827. struct iovec *iov;
  828. struct tcp_sock *tp = tcp_sk(sk);
  829. struct sk_buff *skb;
  830. int iovlen, flags;
  831. int mss_now, size_goal;
  832. int sg, err, copied;
  833. long timeo;
  834. lock_sock(sk);
  835. flags = msg->msg_flags;
  836. timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
  837. /* Wait for a connection to finish. */
  838. if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
  839. if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
  840. goto out_err;
  841. /* This should be in poll */
  842. clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  843. mss_now = tcp_send_mss(sk, &size_goal, flags);
  844. /* Ok commence sending. */
  845. iovlen = msg->msg_iovlen;
  846. iov = msg->msg_iov;
  847. copied = 0;
  848. err = -EPIPE;
  849. if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
  850. goto out_err;
  851. sg = sk->sk_route_caps & NETIF_F_SG;
  852. while (--iovlen >= 0) {
  853. size_t seglen = iov->iov_len;
  854. unsigned char __user *from = iov->iov_base;
  855. iov++;
  856. while (seglen > 0) {
  857. int copy = 0;
  858. int max = size_goal;
  859. skb = tcp_write_queue_tail(sk);
  860. if (tcp_send_head(sk)) {
  861. if (skb->ip_summed == CHECKSUM_NONE)
  862. max = mss_now;
  863. copy = max - skb->len;
  864. }
  865. if (copy <= 0) {
  866. new_segment:
  867. /* Allocate new segment. If the interface is SG,
  868. * allocate skb fitting to single page.
  869. */
  870. if (!sk_stream_memory_free(sk))
  871. goto wait_for_sndbuf;
  872. skb = sk_stream_alloc_skb(sk,
  873. select_size(sk, sg),
  874. sk->sk_allocation);
  875. if (!skb)
  876. goto wait_for_memory;
  877. /*
  878. * Check whether we can use HW checksum.
  879. */
  880. if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
  881. skb->ip_summed = CHECKSUM_PARTIAL;
  882. skb_entail(sk, skb);
  883. copy = size_goal;
  884. max = size_goal;
  885. }
  886. /* Try to append data to the end of skb. */
  887. if (copy > seglen)
  888. copy = seglen;
  889. /* Where to copy to? */
  890. if (skb_tailroom(skb) > 0) {
  891. /* We have some space in skb head. Superb! */
  892. if (copy > skb_tailroom(skb))
  893. copy = skb_tailroom(skb);
  894. err = skb_add_data_nocache(sk, skb, from, copy);
  895. if (err)
  896. goto do_fault;
  897. } else {
  898. int merge = 0;
  899. int i = skb_shinfo(skb)->nr_frags;
  900. struct page *page = TCP_PAGE(sk);
  901. int off = TCP_OFF(sk);
  902. if (skb_can_coalesce(skb, i, page, off) &&
  903. off != PAGE_SIZE) {
  904. /* We can extend the last page
  905. * fragment. */
  906. merge = 1;
  907. } else if (i == MAX_SKB_FRAGS || !sg) {
  908. /* Need to add new fragment and cannot
  909. * do this because interface is non-SG,
  910. * or because all the page slots are
  911. * busy. */
  912. tcp_mark_push(tp, skb);
  913. goto new_segment;
  914. } else if (page) {
  915. if (off == PAGE_SIZE) {
  916. put_page(page);
  917. TCP_PAGE(sk) = page = NULL;
  918. off = 0;
  919. }
  920. } else
  921. off = 0;
  922. if (copy > PAGE_SIZE - off)
  923. copy = PAGE_SIZE - off;
  924. if (!sk_wmem_schedule(sk, copy))
  925. goto wait_for_memory;
  926. if (!page) {
  927. /* Allocate new cache page. */
  928. if (!(page = sk_stream_alloc_page(sk)))
  929. goto wait_for_memory;
  930. }
  931. /* Time to copy data. We are close to
  932. * the end! */
  933. err = skb_copy_to_page_nocache(sk, from, skb,
  934. page, off, copy);
  935. if (err) {
  936. /* If this page was new, give it to the
  937. * socket so it does not get leaked.
  938. */
  939. if (!TCP_PAGE(sk)) {
  940. TCP_PAGE(sk) = page;
  941. TCP_OFF(sk) = 0;
  942. }
  943. goto do_error;
  944. }
  945. /* Update the skb. */
  946. if (merge) {
  947. skb_shinfo(skb)->frags[i - 1].size +=
  948. copy;
  949. } else {
  950. skb_fill_page_desc(skb, i, page, off, copy);
  951. if (TCP_PAGE(sk)) {
  952. get_page(page);
  953. } else if (off + copy < PAGE_SIZE) {
  954. get_page(page);
  955. TCP_PAGE(sk) = page;
  956. }
  957. }
  958. TCP_OFF(sk) = off + copy;
  959. }
  960. if (!copied)
  961. TCP_SKB_CB(skb)->flags &= ~TCPHDR_PSH;
  962. tp->write_seq += copy;
  963. TCP_SKB_CB(skb)->end_seq += copy;
  964. skb_shinfo(skb)->gso_segs = 0;
  965. from += copy;
  966. copied += copy;
  967. if ((seglen -= copy) == 0 && iovlen == 0)
  968. goto out;
  969. if (skb->len < max || (flags & MSG_OOB))
  970. continue;
  971. if (forced_push(tp)) {
  972. tcp_mark_push(tp, skb);
  973. __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
  974. } else if (skb == tcp_send_head(sk))
  975. tcp_push_one(sk, mss_now);
  976. continue;
  977. wait_for_sndbuf:
  978. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  979. wait_for_memory:
  980. if (copied)
  981. tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
  982. if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
  983. goto do_error;
  984. mss_now = tcp_send_mss(sk, &size_goal, flags);
  985. }
  986. }
  987. out:
  988. if (copied)
  989. tcp_push(sk, flags, mss_now, tp->nonagle);
  990. release_sock(sk);
  991. if (copied > 0)
  992. uid_stat_tcp_snd(current_uid(), copied);
  993. return copied;
  994. do_fault:
  995. if (!skb->len) {
  996. tcp_unlink_write_queue(skb, sk);
  997. /* It is the one place in all of TCP, except connection
  998. * reset, where we can be unlinking the send_head.
  999. */
  1000. tcp_check_send_head(sk, skb);
  1001. sk_wmem_free_skb(sk, skb);
  1002. }
  1003. do_error:
  1004. if (copied)
  1005. goto out;
  1006. out_err:
  1007. err = sk_stream_error(sk, flags, err);
  1008. release_sock(sk);
  1009. return err;
  1010. }
  1011. EXPORT_SYMBOL(tcp_sendmsg);
  1012. /*
  1013. * Handle reading urgent data. BSD has very simple semantics for
  1014. * this, no blocking and very strange errors 8)
  1015. */
  1016. static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
  1017. {
  1018. struct tcp_sock *tp = tcp_sk(sk);
  1019. /* No URG data to read. */
  1020. if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
  1021. tp->urg_data == TCP_URG_READ)
  1022. return -EINVAL; /* Yes this is right ! */
  1023. if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
  1024. return -ENOTCONN;
  1025. if (tp->urg_data & TCP_URG_VALID) {
  1026. int err = 0;
  1027. char c = tp->urg_data;
  1028. if (!(flags & MSG_PEEK))
  1029. tp->urg_data = TCP_URG_READ;
  1030. /* Read urgent data. */
  1031. msg->msg_flags |= MSG_OOB;
  1032. if (len > 0) {
  1033. if (!(flags & MSG_TRUNC))
  1034. err = memcpy_toiovec(msg->msg_iov, &c, 1);
  1035. len = 1;
  1036. } else
  1037. msg->msg_flags |= MSG_TRUNC;
  1038. return err ? -EFAULT : len;
  1039. }
  1040. if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
  1041. return 0;
  1042. /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
  1043. * the available implementations agree in this case:
  1044. * this call should never block, independent of the
  1045. * blocking state of the socket.
  1046. * Mike <pall@rz.uni-karlsruhe.de>
  1047. */
  1048. return -EAGAIN;
  1049. }
  1050. /* Clean up the receive buffer for full frames taken by the user,
  1051. * then send an ACK if necessary. COPIED is the number of bytes
  1052. * tcp_recvmsg has given to the user so far, it speeds up the
  1053. * calculation of whether or not we must ACK for the sake of
  1054. * a window update.
  1055. */
  1056. void tcp_cleanup_rbuf(struct sock *sk, int copied)
  1057. {
  1058. struct tcp_sock *tp = tcp_sk(sk);
  1059. int time_to_ack = 0;
  1060. #if TCP_DEBUG
  1061. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  1062. WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
  1063. "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
  1064. tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
  1065. #endif
  1066. if (inet_csk_ack_scheduled(sk)) {
  1067. const struct inet_connection_sock *icsk = inet_csk(sk);
  1068. /* Delayed ACKs frequently hit locked sockets during bulk
  1069. * receive. */
  1070. if (icsk->icsk_ack.blocked ||
  1071. /* Once-per-two-segments ACK was not sent by tcp_input.c */
  1072. tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
  1073. /*
  1074. * If this read emptied read buffer, we send ACK, if
  1075. * connection is not bidirectional, user drained
  1076. * receive buffer and there was a small segment
  1077. * in queue.
  1078. */
  1079. (copied > 0 &&
  1080. ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
  1081. ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
  1082. !icsk->icsk_ack.pingpong)) &&
  1083. !atomic_read(&sk->sk_rmem_alloc)))
  1084. time_to_ack = 1;
  1085. }
  1086. /* We send an ACK if we can now advertise a non-zero window
  1087. * which has been raised "significantly".
  1088. *
  1089. * Even if window raised up to infinity, do not send window open ACK
  1090. * in states, where we will not receive more. It is useless.
  1091. */
  1092. if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
  1093. __u32 rcv_window_now = tcp_receive_window(tp);
  1094. /* Optimize, __tcp_select_window() is not cheap. */
  1095. if (2*rcv_window_now <= tp->window_clamp) {
  1096. __u32 new_window = __tcp_select_window(sk);
  1097. /* Send ACK now, if this read freed lots of space
  1098. * in our buffer. Certainly, new_window is new window.
  1099. * We can advertise it now, if it is not less than current one.
  1100. * "Lots" means "at least twice" here.
  1101. */
  1102. if (new_window && new_window >= 2 * rcv_window_now)
  1103. time_to_ack = 1;
  1104. }
  1105. }
  1106. if (time_to_ack)
  1107. tcp_send_ack(sk);
  1108. }
  1109. static void tcp_prequeue_process(struct sock *sk)
  1110. {
  1111. struct sk_buff *skb;
  1112. struct tcp_sock *tp = tcp_sk(sk);
  1113. NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
  1114. /* RX process wants to run with disabled BHs, though it is not
  1115. * necessary */
  1116. local_bh_disable();
  1117. while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
  1118. sk_backlog_rcv(sk, skb);
  1119. local_bh_enable();
  1120. /* Clear memory counter. */
  1121. tp->ucopy.memory = 0;
  1122. }
  1123. #ifdef CONFIG_NET_DMA
  1124. static void tcp_service_net_dma(struct sock *sk, bool wait)
  1125. {
  1126. dma_cookie_t done, used;
  1127. dma_cookie_t last_issued;
  1128. struct tcp_sock *tp = tcp_sk(sk);
  1129. if (!tp->ucopy.dma_chan)
  1130. return;
  1131. last_issued = tp->ucopy.dma_cookie;
  1132. dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
  1133. do {
  1134. if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
  1135. last_issued, &done,
  1136. &used) == DMA_SUCCESS) {
  1137. /* Safe to free early-copied skbs now */
  1138. __skb_queue_purge(&sk->sk_async_wait_queue);
  1139. break;
  1140. } else {
  1141. struct sk_buff *skb;
  1142. while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
  1143. (dma_async_is_complete(skb->dma_cookie, done,
  1144. used) == DMA_SUCCESS)) {
  1145. __skb_dequeue(&sk->sk_async_wait_queue);
  1146. kfree_skb(skb);
  1147. }
  1148. }
  1149. } while (wait);
  1150. }
  1151. #endif
  1152. static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
  1153. {
  1154. struct sk_buff *skb;
  1155. u32 offset;
  1156. skb_queue_walk(&sk->sk_receive_queue, skb) {
  1157. offset = seq - TCP_SKB_CB(skb)->seq;
  1158. if (tcp_hdr(skb)->syn)
  1159. offset--;
  1160. if (offset < skb->len || tcp_hdr(skb)->fin) {
  1161. *off = offset;
  1162. return skb;
  1163. }
  1164. }
  1165. return NULL;
  1166. }
  1167. /*
  1168. * This routine provides an alternative to tcp_recvmsg() for routines
  1169. * that would like to handle copying from skbuffs directly in 'sendfile'
  1170. * fashion.
  1171. * Note:
  1172. * - It is assumed that the socket was locked by the caller.
  1173. * - The routine does not block.
  1174. * - At present, there is no support for reading OOB data
  1175. * or for 'peeking' the socket using this routine
  1176. * (although both would be easy to implement).
  1177. */
  1178. int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
  1179. sk_read_actor_t recv_actor)
  1180. {
  1181. struct sk_buff *skb;
  1182. struct tcp_sock *tp = tcp_sk(sk);
  1183. u32 seq = tp->copied_seq;
  1184. u32 offset;
  1185. int copied = 0;
  1186. if (sk->sk_state == TCP_LISTEN)
  1187. return -ENOTCONN;
  1188. while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
  1189. if (offset < skb->len) {
  1190. int used;
  1191. size_t len;
  1192. len = skb->len - offset;
  1193. /* Stop reading if we hit a patch of urgent data */
  1194. if (tp->urg_data) {
  1195. u32 urg_offset = tp->urg_seq - seq;
  1196. if (urg_offset < len)
  1197. len = urg_offset;
  1198. if (!len)
  1199. break;
  1200. }
  1201. used = recv_actor(desc, skb, offset, len);
  1202. if (used < 0) {
  1203. if (!copied)
  1204. copied = used;
  1205. break;
  1206. } else if (used <= len) {
  1207. seq += used;
  1208. copied += used;
  1209. offset += used;
  1210. }
  1211. /*
  1212. * If recv_actor drops the lock (e.g. TCP splice
  1213. * receive) the skb pointer might be invalid when
  1214. * getting here: tcp_collapse might have deleted it
  1215. * while aggregating skbs from the socket queue.
  1216. */
  1217. skb = tcp_recv_skb(sk, seq-1, &offset);
  1218. if (!skb || (offset+1 != skb->len))
  1219. break;
  1220. }
  1221. if (tcp_hdr(skb)->fin) {
  1222. sk_eat_skb(sk, skb, 0);
  1223. ++seq;
  1224. break;
  1225. }
  1226. sk_eat_skb(sk, skb, 0);
  1227. if (!desc->count)
  1228. break;
  1229. tp->copied_seq = seq;
  1230. }
  1231. tp->copied_seq = seq;
  1232. tcp_rcv_space_adjust(sk);
  1233. /* Clean up data we have read: This will do ACK frames. */
  1234. if (copied > 0) {
  1235. tcp_cleanup_rbuf(sk, copied);
  1236. uid_stat_tcp_rcv(current_uid(), copied);
  1237. }
  1238. return copied;
  1239. }
  1240. EXPORT_SYMBOL(tcp_read_sock);
  1241. /*
  1242. * This routine copies from a sock struct into the user buffer.
  1243. *
  1244. * Technical note: in 2.3 we work on _locked_ socket, so that
  1245. * tricks with *seq access order and skb->users are not required.
  1246. * Probably, code can be easily improved even more.
  1247. */
  1248. int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
  1249. size_t len, int nonblock, int flags, int *addr_len)
  1250. {
  1251. struct tcp_sock *tp = tcp_sk(sk);
  1252. int copied = 0;
  1253. u32 peek_seq;
  1254. u32 *seq;
  1255. unsigned long used;
  1256. int err;
  1257. int target; /* Read at least this many bytes */
  1258. long timeo;
  1259. struct task_struct *user_recv = NULL;
  1260. int copied_early = 0;
  1261. struct sk_buff *skb;
  1262. u32 urg_hole = 0;
  1263. lock_sock(sk);
  1264. err = -ENOTCONN;
  1265. if (sk->sk_state == TCP_LISTEN)
  1266. goto out;
  1267. timeo = sock_rcvtimeo(sk, nonblock);
  1268. /* Urgent data needs to be handled specially. */
  1269. if (flags & MSG_OOB)
  1270. goto recv_urg;
  1271. seq = &tp->copied_seq;
  1272. if (flags & MSG_PEEK) {
  1273. peek_seq = tp->copied_seq;
  1274. seq = &peek_seq;
  1275. }
  1276. target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
  1277. #ifdef CONFIG_NET_DMA
  1278. tp->ucopy.dma_chan = NULL;
  1279. preempt_disable();
  1280. skb = skb_peek_tail(&sk->sk_receive_queue);
  1281. {
  1282. int available = 0;
  1283. if (skb)
  1284. available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
  1285. if ((available < target) &&
  1286. (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
  1287. !sysctl_tcp_low_latency &&
  1288. dma_find_channel(DMA_MEMCPY)) {
  1289. preempt_enable_no_resched();
  1290. tp->ucopy.pinned_list =
  1291. dma_pin_iovec_pages(msg->msg_iov, len);
  1292. } else {
  1293. preempt_enable_no_resched();
  1294. }
  1295. }
  1296. #endif
  1297. do {
  1298. u32 offset;
  1299. /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
  1300. if (tp->urg_data && tp->urg_seq == *seq) {
  1301. if (copied)
  1302. break;
  1303. if (signal_pending(current)) {
  1304. copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
  1305. break;
  1306. }
  1307. }
  1308. /* Next get a buffer. */
  1309. skb_queue_walk(&sk->sk_receive_queue, skb) {
  1310. /* Now that we have two receive queues this
  1311. * shouldn't happen.
  1312. */
  1313. if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
  1314. "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
  1315. *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
  1316. flags))
  1317. break;
  1318. offset = *seq - TCP_SKB_CB(skb)->seq;
  1319. if (tcp_hdr(skb)->syn)
  1320. offset--;
  1321. if (offset < skb->len)
  1322. goto found_ok_skb;
  1323. if (tcp_hdr(skb)->fin)
  1324. goto found_fin_ok;
  1325. WARN(!(flags & MSG_PEEK),
  1326. "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
  1327. *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
  1328. }
  1329. /* Well, if we have backlog, try to process it now yet. */
  1330. if (copied >= target && !sk->sk_backlog.tail)
  1331. break;
  1332. if (copied) {
  1333. if (sk->sk_err ||
  1334. sk->sk_state == TCP_CLOSE ||
  1335. (sk->sk_shutdown & RCV_SHUTDOWN) ||
  1336. !timeo ||
  1337. signal_pending(current))
  1338. break;
  1339. } else {
  1340. if (sock_flag(sk, SOCK_DONE))
  1341. break;
  1342. if (sk->sk_err) {
  1343. copied = sock_error(sk);
  1344. break;
  1345. }
  1346. if (sk->sk_shutdown & RCV_SHUTDOWN)
  1347. break;
  1348. if (sk->sk_state == TCP_CLOSE) {
  1349. if (!sock_flag(sk, SOCK_DONE)) {
  1350. /* This occurs when user tries to read
  1351. * from never connected socket.
  1352. */
  1353. copied = -ENOTCONN;
  1354. break;
  1355. }
  1356. break;
  1357. }
  1358. if (!timeo) {
  1359. copied = -EAGAIN;
  1360. break;
  1361. }
  1362. if (signal_pending(current)) {
  1363. copied = sock_intr_errno(timeo);
  1364. break;
  1365. }
  1366. }
  1367. tcp_cleanup_rbuf(sk, copied);
  1368. if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
  1369. /* Install new reader */
  1370. if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
  1371. user_recv = current;
  1372. tp->ucopy.task = user_recv;
  1373. tp->ucopy.iov = msg->msg_iov;
  1374. }
  1375. tp->ucopy.len = len;
  1376. WARN_ON(tp->copied_seq != tp->rcv_nxt &&
  1377. !(flags & (MSG_PEEK | MSG_TRUNC)));
  1378. /* Ugly... If prequeue is not empty, we have to
  1379. * process it before releasing socket, otherwise
  1380. * order will be broken at second iteration.
  1381. * More elegant solution is required!!!
  1382. *
  1383. * Look: we have the following (pseudo)queues:
  1384. *
  1385. * 1. packets in flight
  1386. * 2. backlog
  1387. * 3. prequeue
  1388. * 4. receive_queue
  1389. *
  1390. * Each queue can be processed only if the next ones
  1391. * are empty. At this point we have empty receive_queue.
  1392. * But prequeue _can_ be not empty after 2nd iteration,
  1393. * when we jumped to start of loop because backlog
  1394. * processing added something to receive_queue.
  1395. * We cannot release_sock(), because backlog contains
  1396. * packets arrived _after_ prequeued ones.
  1397. *
  1398. * Shortly, algorithm is clear --- to process all
  1399. * the queues in order. We could make it more directly,
  1400. * requeueing packets from backlog to prequeue, if
  1401. * is not empty. It is more elegant, but eats cycles,
  1402. * unfortunately.
  1403. */
  1404. if (!skb_queue_empty(&tp->ucopy.prequeue))
  1405. goto do_prequeue;
  1406. /* __ Set realtime policy in scheduler __ */
  1407. }
  1408. #ifdef CONFIG_NET_DMA
  1409. if (tp->ucopy.dma_chan)
  1410. dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
  1411. #endif
  1412. if (copied >= target) {
  1413. /* Do not sleep, just process backlog. */
  1414. release_sock(sk);
  1415. lock_sock(sk);
  1416. } else
  1417. sk_wait_data(sk, &timeo);
  1418. #ifdef CONFIG_NET_DMA
  1419. tcp_service_net_dma(sk, false); /* Don't block */
  1420. tp->ucopy.wakeup = 0;
  1421. #endif
  1422. if (user_recv) {
  1423. int chunk;
  1424. /* __ Restore normal policy in scheduler __ */
  1425. if ((chunk = len - tp->ucopy.len) != 0) {
  1426. NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
  1427. len -= chunk;
  1428. copied += chunk;
  1429. }
  1430. if (tp->rcv_nxt == tp->copied_seq &&
  1431. !skb_queue_empty(&tp->ucopy.prequeue)) {
  1432. do_prequeue:
  1433. tcp_prequeue_process(sk);
  1434. if ((chunk = len - tp->ucopy.len) != 0) {
  1435. NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
  1436. len -= chunk;
  1437. copied += chunk;
  1438. }
  1439. }
  1440. }
  1441. if ((flags & MSG_PEEK) &&
  1442. (peek_seq - copied - urg_hole != tp->copied_seq)) {
  1443. if (net_ratelimit())
  1444. printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
  1445. current->comm, task_pid_nr(current));
  1446. peek_seq = tp->copied_seq;
  1447. }
  1448. continue;
  1449. found_ok_skb:
  1450. /* Ok so how much can we use? */
  1451. used = skb->len - offset;
  1452. if (len < used)
  1453. used = len;
  1454. /* Do we have urgent data here? */
  1455. if (tp->urg_data) {
  1456. u32 urg_offset = tp->urg_seq - *seq;
  1457. if (urg_offset < used) {
  1458. if (!urg_offset) {
  1459. if (!sock_flag(sk, SOCK_URGINLINE)) {
  1460. ++*seq;
  1461. urg_hole++;
  1462. offset++;
  1463. used--;
  1464. if (!used)
  1465. goto skip_copy;
  1466. }
  1467. } else
  1468. used = urg_offset;
  1469. }
  1470. }
  1471. if (!(flags & MSG_TRUNC)) {
  1472. #ifdef CONFIG_NET_DMA
  1473. if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
  1474. tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
  1475. if (tp->ucopy.dma_chan) {
  1476. tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
  1477. tp->ucopy.dma_chan, skb, offset,
  1478. msg->msg_iov, used,
  1479. tp->ucopy.pinned_list);
  1480. if (tp->ucopy.dma_cookie < 0) {
  1481. printk(KERN_ALERT "dma_cookie < 0\n");
  1482. /* Exception. Bailout! */
  1483. if (!copied)
  1484. copied = -EFAULT;
  1485. break;
  1486. }
  1487. dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
  1488. if ((offset + used) == skb->len)
  1489. copied_early = 1;
  1490. } else
  1491. #endif
  1492. {
  1493. err = skb_copy_datagram_iovec(skb, offset,
  1494. msg->msg_iov, used);
  1495. if (err) {
  1496. /* Exception. Bailout! */
  1497. if (!copied)
  1498. copied = -EFAULT;
  1499. break;
  1500. }
  1501. }
  1502. }
  1503. *seq += used;
  1504. copied += used;
  1505. len -= used;
  1506. tcp_rcv_space_adjust(sk);
  1507. skip_copy:
  1508. if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
  1509. tp->urg_data = 0;
  1510. tcp_fast_path_check(sk);
  1511. }
  1512. if (used + offset < skb->len)
  1513. continue;
  1514. if (tcp_hdr(skb)->fin)
  1515. goto found_fin_ok;
  1516. if (!(flags & MSG_PEEK)) {
  1517. sk_eat_skb(sk, skb, copied_early);
  1518. copied_early = 0;
  1519. }
  1520. continue;
  1521. found_fin_ok:
  1522. /* Process the FIN. */
  1523. ++*seq;
  1524. if (!(flags & MSG_PEEK)) {
  1525. sk_eat_skb(sk, skb, copied_early);
  1526. copied_early = 0;
  1527. }
  1528. break;
  1529. } while (len > 0);
  1530. if (user_recv) {
  1531. if (!skb_queue_empty(&tp->ucopy.prequeue)) {
  1532. int chunk;
  1533. tp->ucopy.len = copied > 0 ? len : 0;
  1534. tcp_prequeue_process(sk);
  1535. if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
  1536. NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
  1537. len -= chunk;
  1538. copied += chunk;
  1539. }
  1540. }
  1541. tp->ucopy.task = NULL;
  1542. tp->ucopy.len = 0;
  1543. }
  1544. #ifdef CONFIG_NET_DMA
  1545. tcp_service_net_dma(sk, true); /* Wait for queue to drain */
  1546. tp->ucopy.dma_chan = NULL;
  1547. if (tp->ucopy.pinned_list) {
  1548. dma_unpin_iovec_pages(tp->ucopy.pinned_list);
  1549. tp->ucopy.pinned_list = NULL;
  1550. }
  1551. #endif
  1552. /* According to UNIX98, msg_name/msg_namelen are ignored
  1553. * on connected socket. I was just happy when found this 8) --ANK
  1554. */
  1555. /* Clean up data we have read: This will do ACK frames. */
  1556. tcp_cleanup_rbuf(sk, copied);
  1557. release_sock(sk);
  1558. if (copied > 0)
  1559. uid_stat_tcp_rcv(current_uid(), copied);
  1560. return copied;
  1561. out:
  1562. release_sock(sk);
  1563. return err;
  1564. recv_urg:
  1565. err = tcp_recv_urg(sk, msg, len, flags);
  1566. if (err > 0)
  1567. uid_stat_tcp_rcv(current_uid(), err);
  1568. goto out;
  1569. }
  1570. EXPORT_SYMBOL(tcp_recvmsg);
  1571. void tcp_set_state(struct sock *sk, int state)
  1572. {
  1573. int oldstate = sk->sk_state;
  1574. switch (state) {
  1575. case TCP_ESTABLISHED:
  1576. if (oldstate != TCP_ESTABLISHED)
  1577. TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
  1578. break;
  1579. case TCP_CLOSE:
  1580. if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
  1581. TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
  1582. sk->sk_prot->unhash(sk);
  1583. if (inet_csk(sk)->icsk_bind_hash &&
  1584. !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
  1585. inet_put_port(sk);
  1586. /* fall through */
  1587. default:
  1588. if (oldstate == TCP_ESTABLISHED)
  1589. TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
  1590. }
  1591. /* Change state AFTER socket is unhashed to avoid closed
  1592. * socket sitting in hash tables.
  1593. */
  1594. sk->sk_state = state;
  1595. #ifdef STATE_TRACE
  1596. SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
  1597. #endif
  1598. }
  1599. EXPORT_SYMBOL_GPL(tcp_set_state);
  1600. /*
  1601. * State processing on a close. This implements the state shift for
  1602. * sending our FIN frame. Note that we only send a FIN for some
  1603. * states. A shutdown() may have already sent the FIN, or we may be
  1604. * closed.
  1605. */
  1606. static const unsigned char new_state[16] = {
  1607. /* current state: new state: action: */
  1608. /* (Invalid) */ TCP_CLOSE,
  1609. /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
  1610. /* TCP_SYN_SENT */ TCP_CLOSE,
  1611. /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
  1612. /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1,
  1613. /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2,
  1614. /* TCP_TIME_WAIT */ TCP_CLOSE,
  1615. /* TCP_CLOSE */ TCP_CLOSE,
  1616. /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN,
  1617. /* TCP_LAST_ACK */ TCP_LAST_ACK,
  1618. /* TCP_LISTEN */ TCP_CLOSE,
  1619. /* TCP_CLOSING */ TCP_CLOSING,
  1620. };
  1621. static int tcp_close_state(struct sock *sk)
  1622. {
  1623. int next = (int)new_state[sk->sk_state];
  1624. int ns = next & TCP_STATE_MASK;
  1625. tcp_set_state(sk, ns);
  1626. return next & TCP_ACTION_FIN;
  1627. }
  1628. /*
  1629. * Shutdown the sending side of a connection. Much like close except
  1630. * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
  1631. */
  1632. void tcp_shutdown(struct sock *sk, int how)
  1633. {
  1634. /* We need to grab some memory, and put together a FIN,
  1635. * and then put it into the queue to be sent.
  1636. * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
  1637. */
  1638. if (!(how & SEND_SHUTDOWN))
  1639. return;
  1640. /* If we've already sent a FIN, or it's a closed state, skip this. */
  1641. if ((1 << sk->sk_state) &
  1642. (TCPF_ESTABLISHED | TCPF_SYN_SENT |
  1643. TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
  1644. /* Clear out any half completed packets. FIN if needed. */
  1645. if (tcp_close_state(sk))
  1646. tcp_send_fin(sk);
  1647. }
  1648. }
  1649. EXPORT_SYMBOL(tcp_shutdown);
  1650. void tcp_close(struct sock *sk, long timeout)
  1651. {
  1652. struct sk_buff *skb;
  1653. int data_was_unread = 0;
  1654. int state;
  1655. lock_sock(sk);
  1656. sk->sk_shutdown = SHUTDOWN_MASK;
  1657. if (sk->sk_state == TCP_LISTEN) {
  1658. tcp_set_state(sk, TCP_CLOSE);
  1659. /* Special case. */
  1660. inet_csk_listen_stop(sk);
  1661. goto adjudge_to_death;
  1662. }
  1663. /* We need to flush the recv. buffs. We do this only on the
  1664. * descriptor close, not protocol-sourced closes, because the
  1665. * reader process may not have drained the data yet!
  1666. */
  1667. while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
  1668. u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
  1669. tcp_hdr(skb)->fin;
  1670. data_was_unread += len;
  1671. if (IS_ERR(skb) || (!skb)) {
  1672. printk(KERN_ERR "[NET] skb is NULL in %s!\n", __func__);
  1673. }
  1674. else {
  1675. __kfree_skb(skb);
  1676. }
  1677. }
  1678. sk_mem_reclaim(sk);
  1679. /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
  1680. if (sk->sk_state == TCP_CLOSE)
  1681. goto adjudge_to_death;
  1682. /* As outlined in RFC 2525, section 2.17, we send a RST here because
  1683. * data was lost. To witness the awful effects of the old behavior of
  1684. * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
  1685. * GET in an FTP client, suspend the process, wait for the client to
  1686. * advertise a zero window, then kill -9 the FTP client, wheee...
  1687. * Note: timeout is always zero in such a case.
  1688. */
  1689. if (data_was_unread) {
  1690. /* Unread data was tossed, zap the connection. */
  1691. NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
  1692. tcp_set_state(sk, TCP_CLOSE);
  1693. tcp_send_active_reset(sk, sk->sk_allocation);
  1694. } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
  1695. /* Check zero linger _after_ checking for unread data. */
  1696. sk->sk_prot->disconnect(sk, 0);
  1697. NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  1698. } else if (tcp_close_state(sk)) {
  1699. /* We FIN if the application ate all the data before
  1700. * zapping the connection.
  1701. */
  1702. /* RED-PEN. Formally speaking, we have broken TCP state
  1703. * machine. State transitions:
  1704. *
  1705. * TCP_ESTABLISHED -> TCP_FIN_WAIT1
  1706. * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
  1707. * TCP_CLOSE_WAIT -> TCP_LAST_ACK
  1708. *
  1709. * are legal only when FIN has been sent (i.e. in window),
  1710. * rather than queued out of window. Purists blame.
  1711. *
  1712. * F.e. "RFC state" is ESTABLISHED,
  1713. * if Linux state is FIN-WAIT-1, but FIN is still not sent.
  1714. *
  1715. * The visible declinations are that sometimes
  1716. * we enter time-wait state, when it is not required really
  1717. * (harmless), do not send active resets, when they are
  1718. * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
  1719. * they look as CLOSING or LAST_ACK for Linux)
  1720. * Probably, I missed some more holelets.
  1721. * --ANK
  1722. */
  1723. tcp_send_fin(sk);
  1724. }
  1725. sk_stream_wait_close(sk, timeout);
  1726. adjudge_to_death:
  1727. state = sk->sk_state;
  1728. sock_hold(sk);
  1729. sock_orphan(sk);
  1730. /* It is the last release_sock in its life. It will remove backlog. */
  1731. release_sock(sk);
  1732. /* Now socket is owned by kernel and we acquire BH lock
  1733. to finish close. No need to check for user refs.
  1734. */
  1735. local_bh_disable();
  1736. bh_lock_sock(sk);
  1737. WARN_ON(sock_owned_by_user(sk));
  1738. percpu_counter_inc(sk->sk_prot->orphan_count);
  1739. /* Have we already been destroyed by a softirq or backlog? */
  1740. if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
  1741. goto out;
  1742. /* This is a (useful) BSD violating of the RFC. There is a
  1743. * problem with TCP as specified in that the other end could
  1744. * keep a socket open forever with no application left this end.
  1745. * We use a 3 minute timeout (about the same as BSD) then kill
  1746. * our end. If they send after that then tough - BUT: long enough
  1747. * that we won't make the old 4*rto = almost no time - whoops
  1748. * reset mistake.
  1749. *
  1750. * Nope, it was not mistake. It is really desired behaviour
  1751. * f.e. on http servers, when such sockets are useless, but
  1752. * consume significant resources. Let's do it with special
  1753. * linger2 option. --ANK
  1754. */
  1755. if (sk->sk_state == TCP_FIN_WAIT2) {
  1756. struct tcp_sock *tp = tcp_sk(sk);
  1757. if (tp->linger2 < 0) {
  1758. tcp_set_state(sk, TCP_CLOSE);
  1759. tcp_send_active_reset(sk, GFP_ATOMIC);
  1760. NET_INC_STATS_BH(sock_net(sk),
  1761. LINUX_MIB_TCPABORTONLINGER);
  1762. } else {
  1763. const int tmo = tcp_fin_time(sk);
  1764. if (tmo > TCP_TIMEWAIT_LEN) {
  1765. inet_csk_reset_keepalive_timer(sk,
  1766. tmo - TCP_TIMEWAIT_LEN);
  1767. } else {
  1768. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  1769. goto out;
  1770. }
  1771. }
  1772. }
  1773. if (sk->sk_state != TCP_CLOSE) {
  1774. sk_mem_reclaim(sk);
  1775. if (tcp_too_many_orphans(sk, 0)) {
  1776. if (net_ratelimit())
  1777. printk(KERN_INFO "TCP: too many of orphaned "
  1778. "sockets\n");
  1779. tcp_set_state(sk, TCP_CLOSE);
  1780. tcp_send_active_reset(sk, GFP_ATOMIC);
  1781. NET_INC_STATS_BH(sock_net(sk),
  1782. LINUX_MIB_TCPABORTONMEMORY);
  1783. }
  1784. }
  1785. if (sk->sk_state == TCP_CLOSE)
  1786. inet_csk_destroy_sock(sk);
  1787. /* Otherwise, socket is reprieved until protocol close. */
  1788. out:
  1789. bh_unlock_sock(sk);
  1790. local_bh_enable();
  1791. sock_put(sk);
  1792. }
  1793. EXPORT_SYMBOL(tcp_close);
  1794. /* These states need RST on ABORT according to RFC793 */
  1795. static inline int tcp_need_reset(int state)
  1796. {
  1797. return (1 << state) &
  1798. (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
  1799. TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
  1800. }
  1801. int tcp_disconnect(struct sock *sk, int flags)
  1802. {
  1803. struct inet_sock *inet = inet_sk(sk);
  1804. struct inet_connection_sock *icsk = inet_csk(sk);
  1805. struct tcp_sock *tp = tcp_sk(sk);
  1806. int err = 0;
  1807. int old_state = sk->sk_state;
  1808. if (old_state != TCP_CLOSE)
  1809. tcp_set_state(sk, TCP_CLOSE);
  1810. /* ABORT function of RFC793 */
  1811. if (old_state == TCP_LISTEN) {
  1812. inet_csk_listen_stop(sk);
  1813. } else if (tcp_need_reset(old_state) ||
  1814. (tp->snd_nxt != tp->write_seq &&
  1815. (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
  1816. /* The last check adjusts for discrepancy of Linux wrt. RFC
  1817. * states
  1818. */
  1819. tcp_send_active_reset(sk, gfp_any());
  1820. sk->sk_err = ECONNRESET;
  1821. } else if (old_state == TCP_SYN_SENT)
  1822. sk->sk_err = ECONNRESET;
  1823. tcp_clear_xmit_timers(sk);
  1824. __skb_queue_purge(&sk->sk_receive_queue);
  1825. tcp_write_queue_purge(sk);
  1826. __skb_queue_purge(&tp->out_of_order_queue);
  1827. #ifdef CONFIG_NET_DMA
  1828. __skb_queue_purge(&sk->sk_async_wait_queue);
  1829. #endif
  1830. inet->inet_dport = 0;
  1831. if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
  1832. inet_reset_saddr(sk);
  1833. sk->sk_shutdown = 0;
  1834. sock_reset_flag(sk, SOCK_DONE);
  1835. tp->srtt = 0;
  1836. if ((tp->write_seq += tp->max_window + 2) == 0)
  1837. tp->write_seq = 1;
  1838. icsk->icsk_backoff = 0;
  1839. tp->snd_cwnd = 2;
  1840. icsk->icsk_probes_out = 0;
  1841. tp->packets_out = 0;
  1842. tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
  1843. tp->snd_cwnd_cnt = 0;
  1844. tp->bytes_acked = 0;
  1845. tp->window_clamp = 0;
  1846. tcp_set_ca_state(sk, TCP_CA_Open);
  1847. tcp_clear_retrans(tp);
  1848. inet_csk_delack_init(sk);
  1849. tcp_init_send_head(sk);
  1850. memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
  1851. __sk_dst_reset(sk);
  1852. WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
  1853. sk->sk_error_report(sk);
  1854. return err;
  1855. }
  1856. EXPORT_SYMBOL(tcp_disconnect);
  1857. /*
  1858. * Socket option code for TCP.
  1859. */
  1860. static int do_tcp_setsockopt(struct sock *sk, int level,
  1861. int optname, char __user *optval, unsigned int optlen)
  1862. {
  1863. struct tcp_sock *tp = tcp_sk(sk);
  1864. struct inet_connection_sock *icsk = inet_csk(sk);
  1865. int val;
  1866. int err = 0;
  1867. /* These are data/string values, all the others are ints */
  1868. switch (optname) {
  1869. case TCP_CONGESTION: {
  1870. char name[TCP_CA_NAME_MAX];
  1871. if (optlen < 1)
  1872. return -EINVAL;
  1873. val = strncpy_from_user(name, optval,
  1874. min_t(long, TCP_CA_NAME_MAX-1, optlen));
  1875. if (val < 0)
  1876. return -EFAULT;
  1877. name[val] = 0;
  1878. lock_sock(sk);
  1879. err = tcp_set_congestion_control(sk, name);
  1880. release_sock(sk);
  1881. return err;
  1882. }
  1883. case TCP_COOKIE_TRANSACTIONS: {
  1884. struct tcp_cookie_transactions ctd;
  1885. struct tcp_cookie_values *cvp = NULL;
  1886. if (sizeof(ctd) > optlen)
  1887. return -EINVAL;
  1888. if (copy_from_user(&ctd, optval, sizeof(ctd)))
  1889. return -EFAULT;
  1890. if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
  1891. ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
  1892. return -EINVAL;
  1893. if (ctd.tcpct_cookie_desired == 0) {
  1894. /* default to global value */
  1895. } else if ((0x1 & ctd.tcpct_cookie_desired) ||
  1896. ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
  1897. ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
  1898. return -EINVAL;
  1899. }
  1900. if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
  1901. /* Supercedes all other values */
  1902. lock_sock(sk);
  1903. if (tp->cookie_values != NULL) {
  1904. kref_put(&tp->cookie_values->kref,
  1905. tcp_cookie_values_release);
  1906. tp->cookie_values = NULL;
  1907. }
  1908. tp->rx_opt.cookie_in_always = 0; /* false */
  1909. tp->rx_opt.cookie_out_never = 1; /* true */
  1910. release_sock(sk);
  1911. return err;
  1912. }
  1913. /* Allocate ancillary memory before locking.
  1914. */
  1915. if (ctd.tcpct_used > 0 ||
  1916. (tp->cookie_values == NULL &&
  1917. (sysctl_tcp_cookie_size > 0 ||
  1918. ctd.tcpct_cookie_desired > 0 ||
  1919. ctd.tcpct_s_data_desired > 0))) {
  1920. cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
  1921. GFP_KERNEL);
  1922. if (cvp == NULL)
  1923. return -ENOMEM;
  1924. kref_init(&cvp->kref);
  1925. }
  1926. lock_sock(sk);
  1927. tp->rx_opt.cookie_in_always =
  1928. (TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
  1929. tp->rx_opt.cookie_out_never = 0; /* false */
  1930. if (tp->cookie_values != NULL) {
  1931. if (cvp != NULL) {
  1932. /* Changed values are recorded by a changed
  1933. * pointer, ensuring the cookie will differ,
  1934. * without separately hashing each value later.
  1935. */
  1936. kref_put(&tp->cookie_values->kref,
  1937. tcp_cookie_values_release);
  1938. } else {
  1939. cvp = tp->cookie_values;
  1940. }
  1941. }
  1942. if (cvp != NULL) {
  1943. cvp->cookie_desired = ctd.tcpct_cookie_desired;
  1944. if (ctd.tcpct_used > 0) {
  1945. memcpy(cvp->s_data_payload, ctd.tcpct_value,
  1946. ctd.tcpct_used);
  1947. cvp->s_data_desired = ctd.tcpct_used;
  1948. cvp->s_data_constant = 1; /* true */
  1949. } else {
  1950. /* No constant payload data. */
  1951. cvp->s_data_desired = ctd.tcpct_s_data_desired;
  1952. cvp->s_data_constant = 0; /* false */
  1953. }
  1954. tp->cookie_values = cvp;
  1955. }
  1956. release_sock(sk);
  1957. return err;
  1958. }
  1959. default:
  1960. /* fallthru */
  1961. break;
  1962. }
  1963. if (optlen < sizeof(int))
  1964. return -EINVAL;
  1965. if (get_user(val, (int __user *)optval))
  1966. return -EFAULT;
  1967. lock_sock(sk);
  1968. switch (optname) {
  1969. case TCP_MAXSEG:
  1970. /* Values greater than interface MTU won't take effect. However
  1971. * at the point when this call is done we typically don't yet
  1972. * know which interface is going to be used */
  1973. if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
  1974. err = -EINVAL;
  1975. break;
  1976. }
  1977. tp->rx_opt.user_mss = val;
  1978. break;
  1979. case TCP_NODELAY:
  1980. if (val) {
  1981. /* TCP_NODELAY is weaker than TCP_CORK, so that
  1982. * this option on corked socket is remembered, but
  1983. * it is not activated until cork is cleared.
  1984. *
  1985. * However, when TCP_NODELAY is set we make
  1986. * an explicit push, which overrides even TCP_CORK
  1987. * for currently queued segments.
  1988. */
  1989. tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
  1990. tcp_push_pending_frames(sk);
  1991. } else {
  1992. tp->nonagle &= ~TCP_NAGLE_OFF;
  1993. }
  1994. break;
  1995. case TCP_THIN_LINEAR_TIMEOUTS:
  1996. if (val < 0 || val > 1)
  1997. err = -EINVAL;
  1998. else
  1999. tp->thin_lto = val;
  2000. break;
  2001. case TCP_THIN_DUPACK:
  2002. if (val < 0 || val > 1)
  2003. err = -EINVAL;
  2004. else
  2005. tp->thin_dupack = val;
  2006. break;
  2007. case TCP_CORK:
  2008. /* When set indicates to always queue non-full frames.
  2009. * Later the user clears this option and we transmit
  2010. * any pending partial frames in the queue. This is
  2011. * meant to be used alongside sendfile() to get properly
  2012. * filled frames when the user (for example) must write
  2013. * out headers with a write() call first and then use
  2014. * sendfile to send out the data parts.
  2015. *
  2016. * TCP_CORK can be set together with TCP_NODELAY and it is
  2017. * stronger than TCP_NODELAY.
  2018. */
  2019. if (val) {
  2020. tp->nonagle |= TCP_NAGLE_CORK;
  2021. } else {
  2022. tp->nonagle &= ~TCP_NAGLE_CORK;
  2023. if (tp->nonagle&TCP_NAGLE_OFF)
  2024. tp->nonagle |= TCP_NAGLE_PUSH;
  2025. tcp_push_pending_frames(sk);
  2026. }
  2027. break;
  2028. case TCP_KEEPIDLE:
  2029. if (val < 1 || val > MAX_TCP_KEEPIDLE)
  2030. err = -EINVAL;
  2031. else {
  2032. tp->keepalive_time = val * HZ;
  2033. if (sock_flag(sk, SOCK_KEEPOPEN) &&
  2034. !((1 << sk->sk_state) &
  2035. (TCPF_CLOSE | TCPF_LISTEN))) {
  2036. u32 elapsed = keepalive_time_elapsed(tp);
  2037. if (tp->keepalive_time > elapsed)
  2038. elapsed = tp->keepalive_time - elapsed;
  2039. else
  2040. elapsed = 0;
  2041. inet_csk_reset_keepalive_timer(sk, elapsed);
  2042. }
  2043. }
  2044. break;
  2045. case TCP_KEEPINTVL:
  2046. if (val < 1 || val > MAX_TCP_KEEPINTVL)
  2047. err = -EINVAL;
  2048. else
  2049. tp->keepalive_intvl = val * HZ;
  2050. break;
  2051. case TCP_KEEPCNT:
  2052. if (val < 1 || val > MAX_TCP_KEEPCNT)
  2053. err = -EINVAL;
  2054. else
  2055. tp->keepalive_probes = val;
  2056. break;
  2057. case TCP_SYNCNT:
  2058. if (val < 1 || val > MAX_TCP_SYNCNT)
  2059. err = -EINVAL;
  2060. else
  2061. icsk->icsk_syn_retries = val;
  2062. break;
  2063. case TCP_LINGER2:
  2064. if (val < 0)
  2065. tp->linger2 = -1;
  2066. else if (val > sysctl_tcp_fin_timeout / HZ)
  2067. tp->linger2 = 0;
  2068. else
  2069. tp->linger2 = val * HZ;
  2070. break;
  2071. case TCP_DEFER_ACCEPT:
  2072. /* Translate value in seconds to number of retransmits */
  2073. icsk->icsk_accept_queue.rskq_defer_accept =
  2074. secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
  2075. TCP_RTO_MAX / HZ);
  2076. break;
  2077. case TCP_WINDOW_CLAMP:
  2078. if (!val) {
  2079. if (sk->sk_state != TCP_CLOSE) {
  2080. err = -EINVAL;
  2081. break;
  2082. }
  2083. tp->window_clamp = 0;
  2084. } else
  2085. tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
  2086. SOCK_MIN_RCVBUF / 2 : val;
  2087. break;
  2088. case TCP_QUICKACK:
  2089. if (!val) {
  2090. icsk->icsk_ack.pingpong = 1;
  2091. } else {
  2092. icsk->icsk_ack.pingpong = 0;
  2093. if ((1 << sk->sk_state) &
  2094. (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
  2095. inet_csk_ack_scheduled(sk)) {
  2096. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  2097. tcp_cleanup_rbuf(sk, 1);
  2098. if (!(val & 1))
  2099. icsk->icsk_ack.pingpong = 1;
  2100. }
  2101. }
  2102. break;
  2103. #ifdef CONFIG_TCP_MD5SIG
  2104. case TCP_MD5SIG:
  2105. /* Read the IP->Key mappings from userspace */
  2106. err = tp->af_specific->md5_parse(sk, optval, optlen);
  2107. break;
  2108. #endif
  2109. case TCP_USER_TIMEOUT:
  2110. /* Cap the max timeout in ms TCP will retry/retrans
  2111. * before giving up and aborting (ETIMEDOUT) a connection.
  2112. */
  2113. icsk->icsk_user_timeout = msecs_to_jiffies(val);
  2114. break;
  2115. default:
  2116. err = -ENOPROTOOPT;
  2117. break;
  2118. }
  2119. release_sock(sk);
  2120. return err;
  2121. }
  2122. int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
  2123. unsigned int optlen)
  2124. {
  2125. struct inet_connection_sock *icsk = inet_csk(sk);
  2126. if (level != SOL_TCP)
  2127. return icsk->icsk_af_ops->setsockopt(sk, level, optname,
  2128. optval, optlen);
  2129. return do_tcp_setsockopt(sk, level, optname, optval, optlen);
  2130. }
  2131. EXPORT_SYMBOL(tcp_setsockopt);
  2132. #ifdef CONFIG_COMPAT
  2133. int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
  2134. char __user *optval, unsigned int optlen)
  2135. {
  2136. if (level != SOL_TCP)
  2137. return inet_csk_compat_setsockopt(sk, level, optname,
  2138. optval, optlen);
  2139. return do_tcp_setsockopt(sk, level, optname, optval, optlen);
  2140. }
  2141. EXPORT_SYMBOL(compat_tcp_setsockopt);
  2142. #endif
  2143. /* Return information about state of tcp endpoint in API format. */
  2144. void tcp_get_info(struct sock *sk, struct tcp_info *info)
  2145. {
  2146. struct tcp_sock *tp = tcp_sk(sk);
  2147. const struct inet_connection_sock *icsk = inet_csk(sk);
  2148. u32 now = tcp_time_stamp;
  2149. memset(info, 0, sizeof(*info));
  2150. info->tcpi_state = sk->sk_state;
  2151. info->tcpi_ca_state = icsk->icsk_ca_state;
  2152. info->tcpi_retransmits = icsk->icsk_retransmits;
  2153. info->tcpi_probes = icsk->icsk_probes_out;
  2154. info->tcpi_backoff = icsk->icsk_backoff;
  2155. if (tp->rx_opt.tstamp_ok)
  2156. info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
  2157. if (tcp_is_sack(tp))
  2158. info->tcpi_options |= TCPI_OPT_SACK;
  2159. if (tp->rx_opt.wscale_ok) {
  2160. info->tcpi_options |= TCPI_OPT_WSCALE;
  2161. info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
  2162. info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
  2163. }
  2164. if (tp->ecn_flags&TCP_ECN_OK)
  2165. info->tcpi_options |= TCPI_OPT_ECN;
  2166. info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
  2167. info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
  2168. info->tcpi_snd_mss = tp->mss_cache;
  2169. info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
  2170. if (sk->sk_state == TCP_LISTEN) {
  2171. info->tcpi_unacked = sk->sk_ack_backlog;
  2172. info->tcpi_sacked = sk->sk_max_ack_backlog;
  2173. } else {
  2174. info->tcpi_unacked = tp->packets_out;
  2175. info->tcpi_sacked = tp->sacked_out;
  2176. }
  2177. info->tcpi_lost = tp->lost_out;
  2178. info->tcpi_retrans = tp->retrans_out;
  2179. info->tcpi_fackets = tp->fackets_out;
  2180. info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
  2181. info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
  2182. info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
  2183. info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
  2184. info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
  2185. info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
  2186. info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
  2187. info->tcpi_snd_ssthresh = tp->snd_ssthresh;
  2188. info->tcpi_snd_cwnd = tp->snd_cwnd;
  2189. info->tcpi_advmss = tp->advmss;
  2190. info->tcpi_reordering = tp->reordering;
  2191. info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
  2192. info->tcpi_rcv_space = tp->rcvq_space.space;
  2193. info->tcpi_total_retrans = tp->total_retrans;
  2194. }
  2195. EXPORT_SYMBOL_GPL(tcp_get_info);
  2196. static int do_tcp_getsockopt(struct sock *sk, int level,
  2197. int optname, char __user *optval, int __user *optlen)
  2198. {
  2199. struct inet_connection_sock *icsk = inet_csk(sk);
  2200. struct tcp_sock *tp = tcp_sk(sk);
  2201. int val, len;
  2202. if (get_user(len, optlen))
  2203. return -EFAULT;
  2204. len = min_t(unsigned int, len, sizeof(int));
  2205. if (len < 0)
  2206. return -EINVAL;
  2207. switch (optname) {
  2208. case TCP_MAXSEG:
  2209. val = tp->mss_cache;
  2210. if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
  2211. val = tp->rx_opt.user_mss;
  2212. break;
  2213. case TCP_NODELAY:
  2214. val = !!(tp->nonagle&TCP_NAGLE_OFF);
  2215. break;
  2216. case TCP_CORK:
  2217. val = !!(tp->nonagle&TCP_NAGLE_CORK);
  2218. break;
  2219. case TCP_KEEPIDLE:
  2220. val = keepalive_time_when(tp) / HZ;
  2221. break;
  2222. case TCP_KEEPINTVL:
  2223. val = keepalive_intvl_when(tp) / HZ;
  2224. break;
  2225. case TCP_KEEPCNT:
  2226. val = keepalive_probes(tp);
  2227. break;
  2228. case TCP_SYNCNT:
  2229. val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
  2230. break;
  2231. case TCP_LINGER2:
  2232. val = tp->linger2;
  2233. if (val >= 0)
  2234. val = (val ? : sysctl_tcp_fin_timeout) / HZ;
  2235. break;
  2236. case TCP_DEFER_ACCEPT:
  2237. val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
  2238. TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
  2239. break;
  2240. case TCP_WINDOW_CLAMP:
  2241. val = tp->window_clamp;
  2242. break;
  2243. case TCP_INFO: {
  2244. struct tcp_info info;
  2245. if (get_user(len, optlen))
  2246. return -EFAULT;
  2247. tcp_get_info(sk, &info);
  2248. len = min_t(unsigned int, len, sizeof(info));
  2249. if (put_user(len, optlen))
  2250. return -EFAULT;
  2251. if (copy_to_user(optval, &info, len))
  2252. return -EFAULT;
  2253. return 0;
  2254. }
  2255. case TCP_QUICKACK:
  2256. val = !icsk->icsk_ack.pingpong;
  2257. break;
  2258. case TCP_CONGESTION:
  2259. if (get_user(len, optlen))
  2260. return -EFAULT;
  2261. len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
  2262. if (put_user(len, optlen))
  2263. return -EFAULT;
  2264. if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
  2265. return -EFAULT;
  2266. return 0;
  2267. case TCP_COOKIE_TRANSACTIONS: {
  2268. struct tcp_cookie_transactions ctd;
  2269. struct tcp_cookie_values *cvp = tp->cookie_values;
  2270. if (get_user(len, optlen))
  2271. return -EFAULT;
  2272. if (len < sizeof(ctd))
  2273. return -EINVAL;
  2274. memset(&ctd, 0, sizeof(ctd));
  2275. ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
  2276. TCP_COOKIE_IN_ALWAYS : 0)
  2277. | (tp->rx_opt.cookie_out_never ?
  2278. TCP_COOKIE_OUT_NEVER : 0);
  2279. if (cvp != NULL) {
  2280. ctd.tcpct_flags |= (cvp->s_data_in ?
  2281. TCP_S_DATA_IN : 0)
  2282. | (cvp->s_data_out ?
  2283. TCP_S_DATA_OUT : 0);
  2284. ctd.tcpct_cookie_desired = cvp->cookie_desired;
  2285. ctd.tcpct_s_data_desired = cvp->s_data_desired;
  2286. memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
  2287. cvp->cookie_pair_size);
  2288. ctd.tcpct_used = cvp->cookie_pair_size;
  2289. }
  2290. if (put_user(sizeof(ctd), optlen))
  2291. return -EFAULT;
  2292. if (copy_to_user(optval, &ctd, sizeof(ctd)))
  2293. return -EFAULT;
  2294. return 0;
  2295. }
  2296. case TCP_THIN_LINEAR_TIMEOUTS:
  2297. val = tp->thin_lto;
  2298. break;
  2299. case TCP_THIN_DUPACK:
  2300. val = tp->thin_dupack;
  2301. break;
  2302. case TCP_USER_TIMEOUT:
  2303. val = jiffies_to_msecs(icsk->icsk_user_timeout);
  2304. break;
  2305. default:
  2306. return -ENOPROTOOPT;
  2307. }
  2308. if (put_user(len, optlen))
  2309. return -EFAULT;
  2310. if (copy_to_user(optval, &val, len))
  2311. return -EFAULT;
  2312. return 0;
  2313. }
  2314. int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
  2315. int __user *optlen)
  2316. {
  2317. struct inet_connection_sock *icsk = inet_csk(sk);
  2318. if (level != SOL_TCP)
  2319. return icsk->icsk_af_ops->getsockopt(sk, level, optname,
  2320. optval, optlen);
  2321. return do_tcp_getsockopt(sk, level, optname, optval, optlen);
  2322. }
  2323. EXPORT_SYMBOL(tcp_getsockopt);
  2324. #ifdef CONFIG_COMPAT
  2325. int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
  2326. char __user *optval, int __user *optlen)
  2327. {
  2328. if (level != SOL_TCP)
  2329. return inet_csk_compat_getsockopt(sk, level, optname,
  2330. optval, optlen);
  2331. return do_tcp_getsockopt(sk, level, optname, optval, optlen);
  2332. }
  2333. EXPORT_SYMBOL(compat_tcp_getsockopt);
  2334. #endif
  2335. struct sk_buff *tcp_tso_segment(struct sk_buff *skb, u32 features)
  2336. {
  2337. struct sk_buff *segs = ERR_PTR(-EINVAL);
  2338. struct tcphdr *th;
  2339. unsigned thlen;
  2340. unsigned int seq;
  2341. __be32 delta;
  2342. unsigned int oldlen;
  2343. unsigned int mss;
  2344. if (!pskb_may_pull(skb, sizeof(*th)))
  2345. goto out;
  2346. th = tcp_hdr(skb);
  2347. thlen = th->doff * 4;
  2348. if (thlen < sizeof(*th))
  2349. goto out;
  2350. if (!pskb_may_pull(skb, thlen))
  2351. goto out;
  2352. oldlen = (u16)~skb->len;
  2353. __skb_pull(skb, thlen);
  2354. mss = skb_shinfo(skb)->gso_size;
  2355. if (unlikely(skb->len <= mss))
  2356. goto out;
  2357. if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
  2358. /* Packet is from an untrusted source, reset gso_segs. */
  2359. int type = skb_shinfo(skb)->gso_type;
  2360. if (unlikely(type &
  2361. ~(SKB_GSO_TCPV4 |
  2362. SKB_GSO_DODGY |
  2363. SKB_GSO_TCP_ECN |
  2364. SKB_GSO_TCPV6 |
  2365. 0) ||
  2366. !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
  2367. goto out;
  2368. skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
  2369. segs = NULL;
  2370. goto out;
  2371. }
  2372. segs = skb_segment(skb, features);
  2373. if (IS_ERR(segs))
  2374. goto out;
  2375. delta = htonl(oldlen + (thlen + mss));
  2376. skb = segs;
  2377. th = tcp_hdr(skb);
  2378. seq = ntohl(th->seq);
  2379. do {
  2380. th->fin = th->psh = 0;
  2381. th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
  2382. (__force u32)delta));
  2383. if (skb->ip_summed != CHECKSUM_PARTIAL)
  2384. th->check =
  2385. csum_fold(csum_partial(skb_transport_header(skb),
  2386. thlen, skb->csum));
  2387. seq += mss;
  2388. skb = skb->next;
  2389. th = tcp_hdr(skb);
  2390. th->seq = htonl(seq);
  2391. th->cwr = 0;
  2392. } while (skb->next);
  2393. delta = htonl(oldlen + (skb->tail - skb->transport_header) +
  2394. skb->data_len);
  2395. th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
  2396. (__force u32)delta));
  2397. if (skb->ip_summed != CHECKSUM_PARTIAL)
  2398. th->check = csum_fold(csum_partial(skb_transport_header(skb),
  2399. thlen, skb->csum));
  2400. out:
  2401. return segs;
  2402. }
  2403. EXPORT_SYMBOL(tcp_tso_segment);
  2404. struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
  2405. {
  2406. struct sk_buff **pp = NULL;
  2407. struct sk_buff *p;
  2408. struct tcphdr *th;
  2409. struct tcphdr *th2;
  2410. unsigned int len;
  2411. unsigned int thlen;
  2412. __be32 flags;
  2413. unsigned int mss = 1;
  2414. unsigned int hlen;
  2415. unsigned int off;
  2416. int flush = 1;
  2417. int i;
  2418. off = skb_gro_offset(skb);
  2419. hlen = off + sizeof(*th);
  2420. th = skb_gro_header_fast(skb, off);
  2421. if (skb_gro_header_hard(skb, hlen)) {
  2422. th = skb_gro_header_slow(skb, hlen, off);
  2423. if (unlikely(!th))
  2424. goto out;
  2425. }
  2426. thlen = th->doff * 4;
  2427. if (thlen < sizeof(*th))
  2428. goto out;
  2429. hlen = off + thlen;
  2430. if (skb_gro_header_hard(skb, hlen)) {
  2431. th = skb_gro_header_slow(skb, hlen, off);
  2432. if (unlikely(!th))
  2433. goto out;
  2434. }
  2435. skb_gro_pull(skb, thlen);
  2436. len = skb_gro_len(skb);
  2437. flags = tcp_flag_word(th);
  2438. for (; (p = *head); head = &p->next) {
  2439. if (!NAPI_GRO_CB(p)->same_flow)
  2440. continue;
  2441. th2 = tcp_hdr(p);
  2442. if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
  2443. NAPI_GRO_CB(p)->same_flow = 0;
  2444. continue;
  2445. }
  2446. goto found;
  2447. }
  2448. goto out_check_final;
  2449. found:
  2450. flush = NAPI_GRO_CB(p)->flush;
  2451. flush |= (__force int)(flags & TCP_FLAG_CWR);
  2452. flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
  2453. ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
  2454. flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
  2455. for (i = sizeof(*th); i < thlen; i += 4)
  2456. flush |= *(u32 *)((u8 *)th + i) ^
  2457. *(u32 *)((u8 *)th2 + i);
  2458. mss = skb_shinfo(p)->gso_size;
  2459. flush |= (len - 1) >= mss;
  2460. flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
  2461. if (flush || skb_gro_receive(head, skb)) {
  2462. mss = 1;
  2463. goto out_check_final;
  2464. }
  2465. p = *head;
  2466. th2 = tcp_hdr(p);
  2467. tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
  2468. out_check_final:
  2469. flush = len < mss;
  2470. flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
  2471. TCP_FLAG_RST | TCP_FLAG_SYN |
  2472. TCP_FLAG_FIN));
  2473. if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
  2474. pp = head;
  2475. out:
  2476. NAPI_GRO_CB(skb)->flush |= flush;
  2477. return pp;
  2478. }
  2479. EXPORT_SYMBOL(tcp_gro_receive);
  2480. int tcp_gro_complete(struct sk_buff *skb)
  2481. {
  2482. struct tcphdr *th = tcp_hdr(skb);
  2483. skb->csum_start = skb_transport_header(skb) - skb->head;
  2484. skb->csum_offset = offsetof(struct tcphdr, check);
  2485. skb->ip_summed = CHECKSUM_PARTIAL;
  2486. skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
  2487. if (th->cwr)
  2488. skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
  2489. return 0;
  2490. }
  2491. EXPORT_SYMBOL(tcp_gro_complete);
  2492. #ifdef CONFIG_TCP_MD5SIG
  2493. static unsigned long tcp_md5sig_users;
  2494. static struct tcp_md5sig_pool * __percpu *tcp_md5sig_pool;
  2495. static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
  2496. static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool * __percpu *pool)
  2497. {
  2498. int cpu;
  2499. for_each_possible_cpu(cpu) {
  2500. struct tcp_md5sig_pool *p = *per_cpu_ptr(pool, cpu);
  2501. if (p) {
  2502. if (p->md5_desc.tfm)
  2503. crypto_free_hash(p->md5_desc.tfm);
  2504. kfree(p);
  2505. }
  2506. }
  2507. free_percpu(pool);
  2508. }
  2509. void tcp_free_md5sig_pool(void)
  2510. {
  2511. struct tcp_md5sig_pool * __percpu *pool = NULL;
  2512. spin_lock_bh(&tcp_md5sig_pool_lock);
  2513. if (--tcp_md5sig_users == 0) {
  2514. pool = tcp_md5sig_pool;
  2515. tcp_md5sig_pool = NULL;
  2516. }
  2517. spin_unlock_bh(&tcp_md5sig_pool_lock);
  2518. if (pool)
  2519. __tcp_free_md5sig_pool(pool);
  2520. }
  2521. EXPORT_SYMBOL(tcp_free_md5sig_pool);
  2522. static struct tcp_md5sig_pool * __percpu *
  2523. __tcp_alloc_md5sig_pool(struct sock *sk)
  2524. {
  2525. int cpu;
  2526. struct tcp_md5sig_pool * __percpu *pool;
  2527. pool = alloc_percpu(struct tcp_md5sig_pool *);
  2528. if (!pool)
  2529. return NULL;
  2530. for_each_possible_cpu(cpu) {
  2531. struct tcp_md5sig_pool *p;
  2532. struct crypto_hash *hash;
  2533. p = kzalloc(sizeof(*p), sk->sk_allocation);
  2534. if (!p)
  2535. goto out_free;
  2536. *per_cpu_ptr(pool, cpu) = p;
  2537. hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
  2538. if (!hash || IS_ERR(hash))
  2539. goto out_free;
  2540. p->md5_desc.tfm = hash;
  2541. }
  2542. return pool;
  2543. out_free:
  2544. __tcp_free_md5sig_pool(pool);
  2545. return NULL;
  2546. }
  2547. struct tcp_md5sig_pool * __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
  2548. {
  2549. struct tcp_md5sig_pool * __percpu *pool;
  2550. int alloc = 0;
  2551. retry:
  2552. spin_lock_bh(&tcp_md5sig_pool_lock);
  2553. pool = tcp_md5sig_pool;
  2554. if (tcp_md5sig_users++ == 0) {
  2555. alloc = 1;
  2556. spin_unlock_bh(&tcp_md5sig_pool_lock);
  2557. } else if (!pool) {
  2558. tcp_md5sig_users--;
  2559. spin_unlock_bh(&tcp_md5sig_pool_lock);
  2560. cpu_relax();
  2561. goto retry;
  2562. } else
  2563. spin_unlock_bh(&tcp_md5sig_pool_lock);
  2564. if (alloc) {
  2565. /* we cannot hold spinlock here because this may sleep. */
  2566. struct tcp_md5sig_pool * __percpu *p;
  2567. p = __tcp_alloc_md5sig_pool(sk);
  2568. spin_lock_bh(&tcp_md5sig_pool_lock);
  2569. if (!p) {
  2570. tcp_md5sig_users--;
  2571. spin_unlock_bh(&tcp_md5sig_pool_lock);
  2572. return NULL;
  2573. }
  2574. pool = tcp_md5sig_pool;
  2575. if (pool) {
  2576. /* oops, it has already been assigned. */
  2577. spin_unlock_bh(&tcp_md5sig_pool_lock);
  2578. __tcp_free_md5sig_pool(p);
  2579. } else {
  2580. tcp_md5sig_pool = pool = p;
  2581. spin_unlock_bh(&tcp_md5sig_pool_lock);
  2582. }
  2583. }
  2584. return pool;
  2585. }
  2586. EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
  2587. /**
  2588. * tcp_get_md5sig_pool - get md5sig_pool for this user
  2589. *
  2590. * We use percpu structure, so if we succeed, we exit with preemption
  2591. * and BH disabled, to make sure another thread or softirq handling
  2592. * wont try to get same context.
  2593. */
  2594. struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
  2595. {
  2596. struct tcp_md5sig_pool * __percpu *p;
  2597. local_bh_disable();
  2598. spin_lock(&tcp_md5sig_pool_lock);
  2599. p = tcp_md5sig_pool;
  2600. if (p)
  2601. tcp_md5sig_users++;
  2602. spin_unlock(&tcp_md5sig_pool_lock);
  2603. if (p)
  2604. return *this_cpu_ptr(p);
  2605. local_bh_enable();
  2606. return NULL;
  2607. }
  2608. EXPORT_SYMBOL(tcp_get_md5sig_pool);
  2609. void tcp_put_md5sig_pool(void)
  2610. {
  2611. local_bh_enable();
  2612. tcp_free_md5sig_pool();
  2613. }
  2614. EXPORT_SYMBOL(tcp_put_md5sig_pool);
  2615. int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
  2616. struct tcphdr *th)
  2617. {
  2618. struct scatterlist sg;
  2619. int err;
  2620. __sum16 old_checksum = th->check;
  2621. th->check = 0;
  2622. /* options aren't included in the hash */
  2623. sg_init_one(&sg, th, sizeof(struct tcphdr));
  2624. err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(struct tcphdr));
  2625. th->check = old_checksum;
  2626. return err;
  2627. }
  2628. EXPORT_SYMBOL(tcp_md5_hash_header);
  2629. int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
  2630. struct sk_buff *skb, unsigned header_len)
  2631. {
  2632. struct scatterlist sg;
  2633. const struct tcphdr *tp = tcp_hdr(skb);
  2634. struct hash_desc *desc = &hp->md5_desc;
  2635. unsigned i;
  2636. const unsigned head_data_len = skb_headlen(skb) > header_len ?
  2637. skb_headlen(skb) - header_len : 0;
  2638. const struct skb_shared_info *shi = skb_shinfo(skb);
  2639. struct sk_buff *frag_iter;
  2640. sg_init_table(&sg, 1);
  2641. sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
  2642. if (crypto_hash_update(desc, &sg, head_data_len))
  2643. return 1;
  2644. for (i = 0; i < shi->nr_frags; ++i) {
  2645. const struct skb_frag_struct *f = &shi->frags[i];
  2646. sg_set_page(&sg, f->page, f->size, f->page_offset);
  2647. if (crypto_hash_update(desc, &sg, f->size))
  2648. return 1;
  2649. }
  2650. skb_walk_frags(skb, frag_iter)
  2651. if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
  2652. return 1;
  2653. return 0;
  2654. }
  2655. EXPORT_SYMBOL(tcp_md5_hash_skb_data);
  2656. int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, struct tcp_md5sig_key *key)
  2657. {
  2658. struct scatterlist sg;
  2659. sg_init_one(&sg, key->key, key->keylen);
  2660. return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
  2661. }
  2662. EXPORT_SYMBOL(tcp_md5_hash_key);
  2663. #endif
  2664. /**
  2665. * Each Responder maintains up to two secret values concurrently for
  2666. * efficient secret rollover. Each secret value has 4 states:
  2667. *
  2668. * Generating. (tcp_secret_generating != tcp_secret_primary)
  2669. * Generates new Responder-Cookies, but not yet used for primary
  2670. * verification. This is a short-term state, typically lasting only
  2671. * one round trip time (RTT).
  2672. *
  2673. * Primary. (tcp_secret_generating == tcp_secret_primary)
  2674. * Used both for generation and primary verification.
  2675. *
  2676. * Retiring. (tcp_secret_retiring != tcp_secret_secondary)
  2677. * Used for verification, until the first failure that can be
  2678. * verified by the newer Generating secret. At that time, this
  2679. * cookie's state is changed to Secondary, and the Generating
  2680. * cookie's state is changed to Primary. This is a short-term state,
  2681. * typically lasting only one round trip time (RTT).
  2682. *
  2683. * Secondary. (tcp_secret_retiring == tcp_secret_secondary)
  2684. * Used for secondary verification, after primary verification
  2685. * failures. This state lasts no more than twice the Maximum Segment
  2686. * Lifetime (2MSL). Then, the secret is discarded.
  2687. */
  2688. struct tcp_cookie_secret {
  2689. /* The secret is divided into two parts. The digest part is the
  2690. * equivalent of previously hashing a secret and saving the state,
  2691. * and serves as an initialization vector (IV). The message part
  2692. * serves as the trailing secret.
  2693. */
  2694. u32 secrets[COOKIE_WORKSPACE_WORDS];
  2695. unsigned long expires;
  2696. };
  2697. #define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
  2698. #define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
  2699. #define TCP_SECRET_LIFE (HZ * 600)
  2700. static struct tcp_cookie_secret tcp_secret_one;
  2701. static struct tcp_cookie_secret tcp_secret_two;
  2702. /* Essentially a circular list, without dynamic allocation. */
  2703. static struct tcp_cookie_secret *tcp_secret_generating;
  2704. static struct tcp_cookie_secret *tcp_secret_primary;
  2705. static struct tcp_cookie_secret *tcp_secret_retiring;
  2706. static struct tcp_cookie_secret *tcp_secret_secondary;
  2707. static DEFINE_SPINLOCK(tcp_secret_locker);
  2708. /* Select a pseudo-random word in the cookie workspace.
  2709. */
  2710. static inline u32 tcp_cookie_work(const u32 *ws, const int n)
  2711. {
  2712. return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
  2713. }
  2714. /* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
  2715. * Called in softirq context.
  2716. * Returns: 0 for success.
  2717. */
  2718. int tcp_cookie_generator(u32 *bakery)
  2719. {
  2720. unsigned long jiffy = jiffies;
  2721. if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
  2722. spin_lock_bh(&tcp_secret_locker);
  2723. if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
  2724. /* refreshed by another */
  2725. memcpy(bakery,
  2726. &tcp_secret_generating->secrets[0],
  2727. COOKIE_WORKSPACE_WORDS);
  2728. } else {
  2729. /* still needs refreshing */
  2730. get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
  2731. /* The first time, paranoia assumes that the
  2732. * randomization function isn't as strong. But,
  2733. * this secret initialization is delayed until
  2734. * the last possible moment (packet arrival).
  2735. * Although that time is observable, it is
  2736. * unpredictably variable. Mash in the most
  2737. * volatile clock bits available, and expire the
  2738. * secret extra quickly.
  2739. */
  2740. if (unlikely(tcp_secret_primary->expires ==
  2741. tcp_secret_secondary->expires)) {
  2742. struct timespec tv;
  2743. getnstimeofday(&tv);
  2744. bakery[COOKIE_DIGEST_WORDS+0] ^=
  2745. (u32)tv.tv_nsec;
  2746. tcp_secret_secondary->expires = jiffy
  2747. + TCP_SECRET_1MSL
  2748. + (0x0f & tcp_cookie_work(bakery, 0));
  2749. } else {
  2750. tcp_secret_secondary->expires = jiffy
  2751. + TCP_SECRET_LIFE
  2752. + (0xff & tcp_cookie_work(bakery, 1));
  2753. tcp_secret_primary->expires = jiffy
  2754. + TCP_SECRET_2MSL
  2755. + (0x1f & tcp_cookie_work(bakery, 2));
  2756. }
  2757. memcpy(&tcp_secret_secondary->secrets[0],
  2758. bakery, COOKIE_WORKSPACE_WORDS);
  2759. rcu_assign_pointer(tcp_secret_generating,
  2760. tcp_secret_secondary);
  2761. rcu_assign_pointer(tcp_secret_retiring,
  2762. tcp_secret_primary);
  2763. /*
  2764. * Neither call_rcu() nor synchronize_rcu() needed.
  2765. * Retiring data is not freed. It is replaced after
  2766. * further (locked) pointer updates, and a quiet time
  2767. * (minimum 1MSL, maximum LIFE - 2MSL).
  2768. */
  2769. }
  2770. spin_unlock_bh(&tcp_secret_locker);
  2771. } else {
  2772. rcu_read_lock_bh();
  2773. memcpy(bakery,
  2774. &rcu_dereference(tcp_secret_generating)->secrets[0],
  2775. COOKIE_WORKSPACE_WORDS);
  2776. rcu_read_unlock_bh();
  2777. }
  2778. return 0;
  2779. }
  2780. EXPORT_SYMBOL(tcp_cookie_generator);
  2781. void tcp_done(struct sock *sk)
  2782. {
  2783. if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
  2784. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
  2785. tcp_set_state(sk, TCP_CLOSE);
  2786. tcp_clear_xmit_timers(sk);
  2787. sk->sk_shutdown = SHUTDOWN_MASK;
  2788. if (!sock_flag(sk, SOCK_DEAD))
  2789. sk->sk_state_change(sk);
  2790. else
  2791. inet_csk_destroy_sock(sk);
  2792. }
  2793. EXPORT_SYMBOL_GPL(tcp_done);
  2794. extern struct tcp_congestion_ops tcp_reno;
  2795. static __initdata unsigned long thash_entries;
  2796. static int __init set_thash_entries(char *str)
  2797. {
  2798. if (!str)
  2799. return 0;
  2800. thash_entries = simple_strtoul(str, &str, 0);
  2801. return 1;
  2802. }
  2803. __setup("thash_entries=", set_thash_entries);
  2804. void __init tcp_init(void)
  2805. {
  2806. struct sk_buff *skb = NULL;
  2807. unsigned long limit;
  2808. int i, max_share, cnt;
  2809. unsigned long jiffy = jiffies;
  2810. BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
  2811. percpu_counter_init(&tcp_sockets_allocated, 0);
  2812. percpu_counter_init(&tcp_orphan_count, 0);
  2813. tcp_hashinfo.bind_bucket_cachep =
  2814. kmem_cache_create("tcp_bind_bucket",
  2815. sizeof(struct inet_bind_bucket), 0,
  2816. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  2817. /* Size and allocate the main established and bind bucket
  2818. * hash tables.
  2819. *
  2820. * The methodology is similar to that of the buffer cache.
  2821. */
  2822. tcp_hashinfo.ehash =
  2823. alloc_large_system_hash("TCP established",
  2824. sizeof(struct inet_ehash_bucket),
  2825. thash_entries,
  2826. (totalram_pages >= 128 * 1024) ?
  2827. 13 : 15,
  2828. 0,
  2829. NULL,
  2830. &tcp_hashinfo.ehash_mask,
  2831. thash_entries ? 0 : 512 * 1024);
  2832. for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
  2833. INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
  2834. INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
  2835. }
  2836. if (inet_ehash_locks_alloc(&tcp_hashinfo))
  2837. panic("TCP: failed to alloc ehash_locks");
  2838. tcp_hashinfo.bhash =
  2839. alloc_large_system_hash("TCP bind",
  2840. sizeof(struct inet_bind_hashbucket),
  2841. tcp_hashinfo.ehash_mask + 1,
  2842. (totalram_pages >= 128 * 1024) ?
  2843. 13 : 15,
  2844. 0,
  2845. &tcp_hashinfo.bhash_size,
  2846. NULL,
  2847. 64 * 1024);
  2848. tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size;
  2849. for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
  2850. spin_lock_init(&tcp_hashinfo.bhash[i].lock);
  2851. INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
  2852. }
  2853. cnt = tcp_hashinfo.ehash_mask + 1;
  2854. tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
  2855. sysctl_tcp_max_orphans = cnt / 2;
  2856. sysctl_max_syn_backlog = max(128, cnt / 256);
  2857. limit = nr_free_buffer_pages() / 8;
  2858. limit = max(limit, 128UL);
  2859. sysctl_tcp_mem[0] = limit / 4 * 3;
  2860. sysctl_tcp_mem[1] = limit;
  2861. sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
  2862. /* Set per-socket limits to no more than 1/128 the pressure threshold */
  2863. limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7);
  2864. max_share = min(4UL*1024*1024, limit);
  2865. sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
  2866. sysctl_tcp_wmem[1] = 16*1024;
  2867. sysctl_tcp_wmem[2] = max(64*1024, max_share);
  2868. sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
  2869. sysctl_tcp_rmem[1] = 87380;
  2870. sysctl_tcp_rmem[2] = max(87380, max_share);
  2871. printk(KERN_INFO "TCP: Hash tables configured "
  2872. "(established %u bind %u)\n",
  2873. tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
  2874. tcp_register_congestion_control(&tcp_reno);
  2875. memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
  2876. memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
  2877. tcp_secret_one.expires = jiffy; /* past due */
  2878. tcp_secret_two.expires = jiffy; /* past due */
  2879. tcp_secret_generating = &tcp_secret_one;
  2880. tcp_secret_primary = &tcp_secret_one;
  2881. tcp_secret_retiring = &tcp_secret_two;
  2882. tcp_secret_secondary = &tcp_secret_two;
  2883. }
  2884. static int tcp_is_local(struct net *net, __be32 addr) {
  2885. struct rtable *rt;
  2886. struct flowi4 fl4 = { .daddr = addr };
  2887. rt = ip_route_output_key(net, &fl4);
  2888. if (IS_ERR_OR_NULL(rt))
  2889. return 0;
  2890. return rt->dst.dev && (rt->dst.dev->flags & IFF_LOOPBACK);
  2891. }
  2892. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2893. static int tcp_is_local6(struct net *net, struct in6_addr *addr) {
  2894. struct rt6_info *rt6 = rt6_lookup(net, addr, addr, 0, 0);
  2895. return rt6 && rt6->rt6i_dev && (rt6->rt6i_dev->flags & IFF_LOOPBACK);
  2896. }
  2897. #endif
  2898. /*
  2899. * tcp_nuke_addr - destroy all sockets on the given local address
  2900. * if local address is the unspecified address (0.0.0.0 or ::), destroy all
  2901. * sockets with local addresses that are not configured.
  2902. */
  2903. int tcp_nuke_addr(struct net *net, struct sockaddr *addr)
  2904. {
  2905. int family = addr->sa_family;
  2906. unsigned int bucket;
  2907. struct in_addr *in = NULL;
  2908. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2909. struct in6_addr *in6 = NULL;
  2910. #endif
  2911. if (family == AF_INET) {
  2912. in = &((struct sockaddr_in *)addr)->sin_addr;
  2913. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2914. } else if (family == AF_INET6) {
  2915. in6 = &((struct sockaddr_in6 *)addr)->sin6_addr;
  2916. #endif
  2917. } else {
  2918. return -EAFNOSUPPORT;
  2919. }
  2920. for (bucket = 0; bucket < tcp_hashinfo.ehash_mask; bucket++) {
  2921. struct hlist_nulls_node *node;
  2922. struct sock *sk;
  2923. spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, bucket);
  2924. restart:
  2925. spin_lock_bh(lock);
  2926. sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[bucket].chain) {
  2927. struct inet_sock *inet = inet_sk(sk);
  2928. if (sysctl_ip_dynaddr && sk->sk_state == TCP_SYN_SENT)
  2929. continue;
  2930. if (sock_flag(sk, SOCK_DEAD))
  2931. continue;
  2932. if (family == AF_INET) {
  2933. __be32 s4 = inet->inet_rcv_saddr;
  2934. if (s4 == LOOPBACK4_IPV6)
  2935. continue;
  2936. if (in->s_addr != s4 &&
  2937. !(in->s_addr == INADDR_ANY &&
  2938. !tcp_is_local(net, s4)))
  2939. continue;
  2940. }
  2941. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2942. if (family == AF_INET6) {
  2943. struct in6_addr *s6;
  2944. if (!inet->pinet6)
  2945. continue;
  2946. s6 = &inet->pinet6->rcv_saddr;
  2947. if (ipv6_addr_type(s6) == IPV6_ADDR_MAPPED)
  2948. continue;
  2949. if (!ipv6_addr_equal(in6, s6) &&
  2950. !(ipv6_addr_equal(in6, &in6addr_any) &&
  2951. !tcp_is_local6(net, s6)))
  2952. continue;
  2953. }
  2954. #endif
  2955. sock_hold(sk);
  2956. spin_unlock_bh(lock);
  2957. local_bh_disable();
  2958. bh_lock_sock(sk);
  2959. sk->sk_err = ETIMEDOUT;
  2960. sk->sk_error_report(sk);
  2961. tcp_done(sk);
  2962. bh_unlock_sock(sk);
  2963. local_bh_enable();
  2964. sock_put(sk);
  2965. goto restart;
  2966. }
  2967. spin_unlock_bh(lock);
  2968. }
  2969. return 0;
  2970. }