PageRenderTime 104ms CodeModel.GetById 38ms RepoModel.GetById 0ms app.codeStats 1ms

/drivers/net/sungem.c

https://bitbucket.org/slukk/jb-tsm-kernel-4.2
C | 3197 lines | 2251 code | 555 blank | 391 comment | 452 complexity | 3cf469f6a726c33785a36de37468f45b MD5 | raw file
Possible License(s): GPL-2.0, LGPL-2.0, AGPL-1.0
  1. /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
  2. * sungem.c: Sun GEM ethernet driver.
  3. *
  4. * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
  5. *
  6. * Support for Apple GMAC and assorted PHYs, WOL, Power Management
  7. * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
  8. * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
  9. *
  10. * NAPI and NETPOLL support
  11. * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
  12. *
  13. * TODO:
  14. * - Now that the driver was significantly simplified, I need to rework
  15. * the locking. I'm sure we don't need _2_ spinlocks, and we probably
  16. * can avoid taking most of them for so long period of time (and schedule
  17. * instead). The main issues at this point are caused by the netdev layer
  18. * though:
  19. *
  20. * gem_change_mtu() and gem_set_multicast() are called with a read_lock()
  21. * help by net/core/dev.c, thus they can't schedule. That means they can't
  22. * call napi_disable() neither, thus force gem_poll() to keep a spinlock
  23. * where it could have been dropped. change_mtu especially would love also to
  24. * be able to msleep instead of horrid locked delays when resetting the HW,
  25. * but that read_lock() makes it impossible, unless I defer it's action to
  26. * the reset task, which means it'll be asynchronous (won't take effect until
  27. * the system schedules a bit).
  28. *
  29. * Also, it would probably be possible to also remove most of the long-life
  30. * locking in open/resume code path (gem_reinit_chip) by beeing more careful
  31. * about when we can start taking interrupts or get xmit() called...
  32. */
  33. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  34. #include <linux/module.h>
  35. #include <linux/kernel.h>
  36. #include <linux/types.h>
  37. #include <linux/fcntl.h>
  38. #include <linux/interrupt.h>
  39. #include <linux/ioport.h>
  40. #include <linux/in.h>
  41. #include <linux/sched.h>
  42. #include <linux/string.h>
  43. #include <linux/delay.h>
  44. #include <linux/init.h>
  45. #include <linux/errno.h>
  46. #include <linux/pci.h>
  47. #include <linux/dma-mapping.h>
  48. #include <linux/netdevice.h>
  49. #include <linux/etherdevice.h>
  50. #include <linux/skbuff.h>
  51. #include <linux/mii.h>
  52. #include <linux/ethtool.h>
  53. #include <linux/crc32.h>
  54. #include <linux/random.h>
  55. #include <linux/workqueue.h>
  56. #include <linux/if_vlan.h>
  57. #include <linux/bitops.h>
  58. #include <linux/mutex.h>
  59. #include <linux/mm.h>
  60. #include <linux/gfp.h>
  61. #include <asm/system.h>
  62. #include <asm/io.h>
  63. #include <asm/byteorder.h>
  64. #include <asm/uaccess.h>
  65. #include <asm/irq.h>
  66. #ifdef CONFIG_SPARC
  67. #include <asm/idprom.h>
  68. #include <asm/prom.h>
  69. #endif
  70. #ifdef CONFIG_PPC_PMAC
  71. #include <asm/pci-bridge.h>
  72. #include <asm/prom.h>
  73. #include <asm/machdep.h>
  74. #include <asm/pmac_feature.h>
  75. #endif
  76. #include "sungem_phy.h"
  77. #include "sungem.h"
  78. /* Stripping FCS is causing problems, disabled for now */
  79. #undef STRIP_FCS
  80. #define DEFAULT_MSG (NETIF_MSG_DRV | \
  81. NETIF_MSG_PROBE | \
  82. NETIF_MSG_LINK)
  83. #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
  84. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
  85. SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
  86. SUPPORTED_Pause | SUPPORTED_Autoneg)
  87. #define DRV_NAME "sungem"
  88. #define DRV_VERSION "0.98"
  89. #define DRV_RELDATE "8/24/03"
  90. #define DRV_AUTHOR "David S. Miller (davem@redhat.com)"
  91. static char version[] __devinitdata =
  92. DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
  93. MODULE_AUTHOR(DRV_AUTHOR);
  94. MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
  95. MODULE_LICENSE("GPL");
  96. #define GEM_MODULE_NAME "gem"
  97. static DEFINE_PCI_DEVICE_TABLE(gem_pci_tbl) = {
  98. { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
  99. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  100. /* These models only differ from the original GEM in
  101. * that their tx/rx fifos are of a different size and
  102. * they only support 10/100 speeds. -DaveM
  103. *
  104. * Apple's GMAC does support gigabit on machines with
  105. * the BCM54xx PHYs. -BenH
  106. */
  107. { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
  108. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  109. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
  110. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  111. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
  112. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  113. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
  114. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  115. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
  116. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  117. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
  118. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  119. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
  120. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  121. {0, }
  122. };
  123. MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
  124. static u16 __phy_read(struct gem *gp, int phy_addr, int reg)
  125. {
  126. u32 cmd;
  127. int limit = 10000;
  128. cmd = (1 << 30);
  129. cmd |= (2 << 28);
  130. cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
  131. cmd |= (reg << 18) & MIF_FRAME_REGAD;
  132. cmd |= (MIF_FRAME_TAMSB);
  133. writel(cmd, gp->regs + MIF_FRAME);
  134. while (--limit) {
  135. cmd = readl(gp->regs + MIF_FRAME);
  136. if (cmd & MIF_FRAME_TALSB)
  137. break;
  138. udelay(10);
  139. }
  140. if (!limit)
  141. cmd = 0xffff;
  142. return cmd & MIF_FRAME_DATA;
  143. }
  144. static inline int _phy_read(struct net_device *dev, int mii_id, int reg)
  145. {
  146. struct gem *gp = netdev_priv(dev);
  147. return __phy_read(gp, mii_id, reg);
  148. }
  149. static inline u16 phy_read(struct gem *gp, int reg)
  150. {
  151. return __phy_read(gp, gp->mii_phy_addr, reg);
  152. }
  153. static void __phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
  154. {
  155. u32 cmd;
  156. int limit = 10000;
  157. cmd = (1 << 30);
  158. cmd |= (1 << 28);
  159. cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
  160. cmd |= (reg << 18) & MIF_FRAME_REGAD;
  161. cmd |= (MIF_FRAME_TAMSB);
  162. cmd |= (val & MIF_FRAME_DATA);
  163. writel(cmd, gp->regs + MIF_FRAME);
  164. while (limit--) {
  165. cmd = readl(gp->regs + MIF_FRAME);
  166. if (cmd & MIF_FRAME_TALSB)
  167. break;
  168. udelay(10);
  169. }
  170. }
  171. static inline void _phy_write(struct net_device *dev, int mii_id, int reg, int val)
  172. {
  173. struct gem *gp = netdev_priv(dev);
  174. __phy_write(gp, mii_id, reg, val & 0xffff);
  175. }
  176. static inline void phy_write(struct gem *gp, int reg, u16 val)
  177. {
  178. __phy_write(gp, gp->mii_phy_addr, reg, val);
  179. }
  180. static inline void gem_enable_ints(struct gem *gp)
  181. {
  182. /* Enable all interrupts but TXDONE */
  183. writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
  184. }
  185. static inline void gem_disable_ints(struct gem *gp)
  186. {
  187. /* Disable all interrupts, including TXDONE */
  188. writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
  189. }
  190. static void gem_get_cell(struct gem *gp)
  191. {
  192. BUG_ON(gp->cell_enabled < 0);
  193. gp->cell_enabled++;
  194. #ifdef CONFIG_PPC_PMAC
  195. if (gp->cell_enabled == 1) {
  196. mb();
  197. pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
  198. udelay(10);
  199. }
  200. #endif /* CONFIG_PPC_PMAC */
  201. }
  202. /* Turn off the chip's clock */
  203. static void gem_put_cell(struct gem *gp)
  204. {
  205. BUG_ON(gp->cell_enabled <= 0);
  206. gp->cell_enabled--;
  207. #ifdef CONFIG_PPC_PMAC
  208. if (gp->cell_enabled == 0) {
  209. mb();
  210. pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
  211. udelay(10);
  212. }
  213. #endif /* CONFIG_PPC_PMAC */
  214. }
  215. static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
  216. {
  217. if (netif_msg_intr(gp))
  218. printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
  219. }
  220. static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  221. {
  222. u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
  223. u32 pcs_miistat;
  224. if (netif_msg_intr(gp))
  225. printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
  226. gp->dev->name, pcs_istat);
  227. if (!(pcs_istat & PCS_ISTAT_LSC)) {
  228. netdev_err(dev, "PCS irq but no link status change???\n");
  229. return 0;
  230. }
  231. /* The link status bit latches on zero, so you must
  232. * read it twice in such a case to see a transition
  233. * to the link being up.
  234. */
  235. pcs_miistat = readl(gp->regs + PCS_MIISTAT);
  236. if (!(pcs_miistat & PCS_MIISTAT_LS))
  237. pcs_miistat |=
  238. (readl(gp->regs + PCS_MIISTAT) &
  239. PCS_MIISTAT_LS);
  240. if (pcs_miistat & PCS_MIISTAT_ANC) {
  241. /* The remote-fault indication is only valid
  242. * when autoneg has completed.
  243. */
  244. if (pcs_miistat & PCS_MIISTAT_RF)
  245. netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n");
  246. else
  247. netdev_info(dev, "PCS AutoNEG complete\n");
  248. }
  249. if (pcs_miistat & PCS_MIISTAT_LS) {
  250. netdev_info(dev, "PCS link is now up\n");
  251. netif_carrier_on(gp->dev);
  252. } else {
  253. netdev_info(dev, "PCS link is now down\n");
  254. netif_carrier_off(gp->dev);
  255. /* If this happens and the link timer is not running,
  256. * reset so we re-negotiate.
  257. */
  258. if (!timer_pending(&gp->link_timer))
  259. return 1;
  260. }
  261. return 0;
  262. }
  263. static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  264. {
  265. u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
  266. if (netif_msg_intr(gp))
  267. printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
  268. gp->dev->name, txmac_stat);
  269. /* Defer timer expiration is quite normal,
  270. * don't even log the event.
  271. */
  272. if ((txmac_stat & MAC_TXSTAT_DTE) &&
  273. !(txmac_stat & ~MAC_TXSTAT_DTE))
  274. return 0;
  275. if (txmac_stat & MAC_TXSTAT_URUN) {
  276. netdev_err(dev, "TX MAC xmit underrun\n");
  277. dev->stats.tx_fifo_errors++;
  278. }
  279. if (txmac_stat & MAC_TXSTAT_MPE) {
  280. netdev_err(dev, "TX MAC max packet size error\n");
  281. dev->stats.tx_errors++;
  282. }
  283. /* The rest are all cases of one of the 16-bit TX
  284. * counters expiring.
  285. */
  286. if (txmac_stat & MAC_TXSTAT_NCE)
  287. dev->stats.collisions += 0x10000;
  288. if (txmac_stat & MAC_TXSTAT_ECE) {
  289. dev->stats.tx_aborted_errors += 0x10000;
  290. dev->stats.collisions += 0x10000;
  291. }
  292. if (txmac_stat & MAC_TXSTAT_LCE) {
  293. dev->stats.tx_aborted_errors += 0x10000;
  294. dev->stats.collisions += 0x10000;
  295. }
  296. /* We do not keep track of MAC_TXSTAT_FCE and
  297. * MAC_TXSTAT_PCE events.
  298. */
  299. return 0;
  300. }
  301. /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
  302. * so we do the following.
  303. *
  304. * If any part of the reset goes wrong, we return 1 and that causes the
  305. * whole chip to be reset.
  306. */
  307. static int gem_rxmac_reset(struct gem *gp)
  308. {
  309. struct net_device *dev = gp->dev;
  310. int limit, i;
  311. u64 desc_dma;
  312. u32 val;
  313. /* First, reset & disable MAC RX. */
  314. writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
  315. for (limit = 0; limit < 5000; limit++) {
  316. if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
  317. break;
  318. udelay(10);
  319. }
  320. if (limit == 5000) {
  321. netdev_err(dev, "RX MAC will not reset, resetting whole chip\n");
  322. return 1;
  323. }
  324. writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
  325. gp->regs + MAC_RXCFG);
  326. for (limit = 0; limit < 5000; limit++) {
  327. if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
  328. break;
  329. udelay(10);
  330. }
  331. if (limit == 5000) {
  332. netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
  333. return 1;
  334. }
  335. /* Second, disable RX DMA. */
  336. writel(0, gp->regs + RXDMA_CFG);
  337. for (limit = 0; limit < 5000; limit++) {
  338. if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
  339. break;
  340. udelay(10);
  341. }
  342. if (limit == 5000) {
  343. netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
  344. return 1;
  345. }
  346. udelay(5000);
  347. /* Execute RX reset command. */
  348. writel(gp->swrst_base | GREG_SWRST_RXRST,
  349. gp->regs + GREG_SWRST);
  350. for (limit = 0; limit < 5000; limit++) {
  351. if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
  352. break;
  353. udelay(10);
  354. }
  355. if (limit == 5000) {
  356. netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
  357. return 1;
  358. }
  359. /* Refresh the RX ring. */
  360. for (i = 0; i < RX_RING_SIZE; i++) {
  361. struct gem_rxd *rxd = &gp->init_block->rxd[i];
  362. if (gp->rx_skbs[i] == NULL) {
  363. netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n");
  364. return 1;
  365. }
  366. rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
  367. }
  368. gp->rx_new = gp->rx_old = 0;
  369. /* Now we must reprogram the rest of RX unit. */
  370. desc_dma = (u64) gp->gblock_dvma;
  371. desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
  372. writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
  373. writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
  374. writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
  375. val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
  376. ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
  377. writel(val, gp->regs + RXDMA_CFG);
  378. if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
  379. writel(((5 & RXDMA_BLANK_IPKTS) |
  380. ((8 << 12) & RXDMA_BLANK_ITIME)),
  381. gp->regs + RXDMA_BLANK);
  382. else
  383. writel(((5 & RXDMA_BLANK_IPKTS) |
  384. ((4 << 12) & RXDMA_BLANK_ITIME)),
  385. gp->regs + RXDMA_BLANK);
  386. val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
  387. val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
  388. writel(val, gp->regs + RXDMA_PTHRESH);
  389. val = readl(gp->regs + RXDMA_CFG);
  390. writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
  391. writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
  392. val = readl(gp->regs + MAC_RXCFG);
  393. writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  394. return 0;
  395. }
  396. static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  397. {
  398. u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
  399. int ret = 0;
  400. if (netif_msg_intr(gp))
  401. printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
  402. gp->dev->name, rxmac_stat);
  403. if (rxmac_stat & MAC_RXSTAT_OFLW) {
  404. u32 smac = readl(gp->regs + MAC_SMACHINE);
  405. netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac);
  406. dev->stats.rx_over_errors++;
  407. dev->stats.rx_fifo_errors++;
  408. ret = gem_rxmac_reset(gp);
  409. }
  410. if (rxmac_stat & MAC_RXSTAT_ACE)
  411. dev->stats.rx_frame_errors += 0x10000;
  412. if (rxmac_stat & MAC_RXSTAT_CCE)
  413. dev->stats.rx_crc_errors += 0x10000;
  414. if (rxmac_stat & MAC_RXSTAT_LCE)
  415. dev->stats.rx_length_errors += 0x10000;
  416. /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
  417. * events.
  418. */
  419. return ret;
  420. }
  421. static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  422. {
  423. u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
  424. if (netif_msg_intr(gp))
  425. printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
  426. gp->dev->name, mac_cstat);
  427. /* This interrupt is just for pause frame and pause
  428. * tracking. It is useful for diagnostics and debug
  429. * but probably by default we will mask these events.
  430. */
  431. if (mac_cstat & MAC_CSTAT_PS)
  432. gp->pause_entered++;
  433. if (mac_cstat & MAC_CSTAT_PRCV)
  434. gp->pause_last_time_recvd = (mac_cstat >> 16);
  435. return 0;
  436. }
  437. static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  438. {
  439. u32 mif_status = readl(gp->regs + MIF_STATUS);
  440. u32 reg_val, changed_bits;
  441. reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
  442. changed_bits = (mif_status & MIF_STATUS_STAT);
  443. gem_handle_mif_event(gp, reg_val, changed_bits);
  444. return 0;
  445. }
  446. static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  447. {
  448. u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
  449. if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
  450. gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
  451. netdev_err(dev, "PCI error [%04x]", pci_estat);
  452. if (pci_estat & GREG_PCIESTAT_BADACK)
  453. pr_cont(" <No ACK64# during ABS64 cycle>");
  454. if (pci_estat & GREG_PCIESTAT_DTRTO)
  455. pr_cont(" <Delayed transaction timeout>");
  456. if (pci_estat & GREG_PCIESTAT_OTHER)
  457. pr_cont(" <other>");
  458. pr_cont("\n");
  459. } else {
  460. pci_estat |= GREG_PCIESTAT_OTHER;
  461. netdev_err(dev, "PCI error\n");
  462. }
  463. if (pci_estat & GREG_PCIESTAT_OTHER) {
  464. u16 pci_cfg_stat;
  465. /* Interrogate PCI config space for the
  466. * true cause.
  467. */
  468. pci_read_config_word(gp->pdev, PCI_STATUS,
  469. &pci_cfg_stat);
  470. netdev_err(dev, "Read PCI cfg space status [%04x]\n",
  471. pci_cfg_stat);
  472. if (pci_cfg_stat & PCI_STATUS_PARITY)
  473. netdev_err(dev, "PCI parity error detected\n");
  474. if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT)
  475. netdev_err(dev, "PCI target abort\n");
  476. if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT)
  477. netdev_err(dev, "PCI master acks target abort\n");
  478. if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT)
  479. netdev_err(dev, "PCI master abort\n");
  480. if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR)
  481. netdev_err(dev, "PCI system error SERR#\n");
  482. if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY)
  483. netdev_err(dev, "PCI parity error\n");
  484. /* Write the error bits back to clear them. */
  485. pci_cfg_stat &= (PCI_STATUS_PARITY |
  486. PCI_STATUS_SIG_TARGET_ABORT |
  487. PCI_STATUS_REC_TARGET_ABORT |
  488. PCI_STATUS_REC_MASTER_ABORT |
  489. PCI_STATUS_SIG_SYSTEM_ERROR |
  490. PCI_STATUS_DETECTED_PARITY);
  491. pci_write_config_word(gp->pdev,
  492. PCI_STATUS, pci_cfg_stat);
  493. }
  494. /* For all PCI errors, we should reset the chip. */
  495. return 1;
  496. }
  497. /* All non-normal interrupt conditions get serviced here.
  498. * Returns non-zero if we should just exit the interrupt
  499. * handler right now (ie. if we reset the card which invalidates
  500. * all of the other original irq status bits).
  501. */
  502. static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
  503. {
  504. if (gem_status & GREG_STAT_RXNOBUF) {
  505. /* Frame arrived, no free RX buffers available. */
  506. if (netif_msg_rx_err(gp))
  507. printk(KERN_DEBUG "%s: no buffer for rx frame\n",
  508. gp->dev->name);
  509. dev->stats.rx_dropped++;
  510. }
  511. if (gem_status & GREG_STAT_RXTAGERR) {
  512. /* corrupt RX tag framing */
  513. if (netif_msg_rx_err(gp))
  514. printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
  515. gp->dev->name);
  516. dev->stats.rx_errors++;
  517. goto do_reset;
  518. }
  519. if (gem_status & GREG_STAT_PCS) {
  520. if (gem_pcs_interrupt(dev, gp, gem_status))
  521. goto do_reset;
  522. }
  523. if (gem_status & GREG_STAT_TXMAC) {
  524. if (gem_txmac_interrupt(dev, gp, gem_status))
  525. goto do_reset;
  526. }
  527. if (gem_status & GREG_STAT_RXMAC) {
  528. if (gem_rxmac_interrupt(dev, gp, gem_status))
  529. goto do_reset;
  530. }
  531. if (gem_status & GREG_STAT_MAC) {
  532. if (gem_mac_interrupt(dev, gp, gem_status))
  533. goto do_reset;
  534. }
  535. if (gem_status & GREG_STAT_MIF) {
  536. if (gem_mif_interrupt(dev, gp, gem_status))
  537. goto do_reset;
  538. }
  539. if (gem_status & GREG_STAT_PCIERR) {
  540. if (gem_pci_interrupt(dev, gp, gem_status))
  541. goto do_reset;
  542. }
  543. return 0;
  544. do_reset:
  545. gp->reset_task_pending = 1;
  546. schedule_work(&gp->reset_task);
  547. return 1;
  548. }
  549. static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
  550. {
  551. int entry, limit;
  552. if (netif_msg_intr(gp))
  553. printk(KERN_DEBUG "%s: tx interrupt, gem_status: 0x%x\n",
  554. gp->dev->name, gem_status);
  555. entry = gp->tx_old;
  556. limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
  557. while (entry != limit) {
  558. struct sk_buff *skb;
  559. struct gem_txd *txd;
  560. dma_addr_t dma_addr;
  561. u32 dma_len;
  562. int frag;
  563. if (netif_msg_tx_done(gp))
  564. printk(KERN_DEBUG "%s: tx done, slot %d\n",
  565. gp->dev->name, entry);
  566. skb = gp->tx_skbs[entry];
  567. if (skb_shinfo(skb)->nr_frags) {
  568. int last = entry + skb_shinfo(skb)->nr_frags;
  569. int walk = entry;
  570. int incomplete = 0;
  571. last &= (TX_RING_SIZE - 1);
  572. for (;;) {
  573. walk = NEXT_TX(walk);
  574. if (walk == limit)
  575. incomplete = 1;
  576. if (walk == last)
  577. break;
  578. }
  579. if (incomplete)
  580. break;
  581. }
  582. gp->tx_skbs[entry] = NULL;
  583. dev->stats.tx_bytes += skb->len;
  584. for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
  585. txd = &gp->init_block->txd[entry];
  586. dma_addr = le64_to_cpu(txd->buffer);
  587. dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
  588. pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
  589. entry = NEXT_TX(entry);
  590. }
  591. dev->stats.tx_packets++;
  592. dev_kfree_skb_irq(skb);
  593. }
  594. gp->tx_old = entry;
  595. if (netif_queue_stopped(dev) &&
  596. TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
  597. netif_wake_queue(dev);
  598. }
  599. static __inline__ void gem_post_rxds(struct gem *gp, int limit)
  600. {
  601. int cluster_start, curr, count, kick;
  602. cluster_start = curr = (gp->rx_new & ~(4 - 1));
  603. count = 0;
  604. kick = -1;
  605. wmb();
  606. while (curr != limit) {
  607. curr = NEXT_RX(curr);
  608. if (++count == 4) {
  609. struct gem_rxd *rxd =
  610. &gp->init_block->rxd[cluster_start];
  611. for (;;) {
  612. rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
  613. rxd++;
  614. cluster_start = NEXT_RX(cluster_start);
  615. if (cluster_start == curr)
  616. break;
  617. }
  618. kick = curr;
  619. count = 0;
  620. }
  621. }
  622. if (kick >= 0) {
  623. mb();
  624. writel(kick, gp->regs + RXDMA_KICK);
  625. }
  626. }
  627. static int gem_rx(struct gem *gp, int work_to_do)
  628. {
  629. struct net_device *dev = gp->dev;
  630. int entry, drops, work_done = 0;
  631. u32 done;
  632. __sum16 csum;
  633. if (netif_msg_rx_status(gp))
  634. printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
  635. gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
  636. entry = gp->rx_new;
  637. drops = 0;
  638. done = readl(gp->regs + RXDMA_DONE);
  639. for (;;) {
  640. struct gem_rxd *rxd = &gp->init_block->rxd[entry];
  641. struct sk_buff *skb;
  642. u64 status = le64_to_cpu(rxd->status_word);
  643. dma_addr_t dma_addr;
  644. int len;
  645. if ((status & RXDCTRL_OWN) != 0)
  646. break;
  647. if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
  648. break;
  649. /* When writing back RX descriptor, GEM writes status
  650. * then buffer address, possibly in separate transactions.
  651. * If we don't wait for the chip to write both, we could
  652. * post a new buffer to this descriptor then have GEM spam
  653. * on the buffer address. We sync on the RX completion
  654. * register to prevent this from happening.
  655. */
  656. if (entry == done) {
  657. done = readl(gp->regs + RXDMA_DONE);
  658. if (entry == done)
  659. break;
  660. }
  661. /* We can now account for the work we're about to do */
  662. work_done++;
  663. skb = gp->rx_skbs[entry];
  664. len = (status & RXDCTRL_BUFSZ) >> 16;
  665. if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
  666. dev->stats.rx_errors++;
  667. if (len < ETH_ZLEN)
  668. dev->stats.rx_length_errors++;
  669. if (len & RXDCTRL_BAD)
  670. dev->stats.rx_crc_errors++;
  671. /* We'll just return it to GEM. */
  672. drop_it:
  673. dev->stats.rx_dropped++;
  674. goto next;
  675. }
  676. dma_addr = le64_to_cpu(rxd->buffer);
  677. if (len > RX_COPY_THRESHOLD) {
  678. struct sk_buff *new_skb;
  679. new_skb = gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
  680. if (new_skb == NULL) {
  681. drops++;
  682. goto drop_it;
  683. }
  684. pci_unmap_page(gp->pdev, dma_addr,
  685. RX_BUF_ALLOC_SIZE(gp),
  686. PCI_DMA_FROMDEVICE);
  687. gp->rx_skbs[entry] = new_skb;
  688. new_skb->dev = gp->dev;
  689. skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
  690. rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
  691. virt_to_page(new_skb->data),
  692. offset_in_page(new_skb->data),
  693. RX_BUF_ALLOC_SIZE(gp),
  694. PCI_DMA_FROMDEVICE));
  695. skb_reserve(new_skb, RX_OFFSET);
  696. /* Trim the original skb for the netif. */
  697. skb_trim(skb, len);
  698. } else {
  699. struct sk_buff *copy_skb = dev_alloc_skb(len + 2);
  700. if (copy_skb == NULL) {
  701. drops++;
  702. goto drop_it;
  703. }
  704. skb_reserve(copy_skb, 2);
  705. skb_put(copy_skb, len);
  706. pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
  707. skb_copy_from_linear_data(skb, copy_skb->data, len);
  708. pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
  709. /* We'll reuse the original ring buffer. */
  710. skb = copy_skb;
  711. }
  712. csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
  713. skb->csum = csum_unfold(csum);
  714. skb->ip_summed = CHECKSUM_COMPLETE;
  715. skb->protocol = eth_type_trans(skb, gp->dev);
  716. netif_receive_skb(skb);
  717. dev->stats.rx_packets++;
  718. dev->stats.rx_bytes += len;
  719. next:
  720. entry = NEXT_RX(entry);
  721. }
  722. gem_post_rxds(gp, entry);
  723. gp->rx_new = entry;
  724. if (drops)
  725. netdev_info(gp->dev, "Memory squeeze, deferring packet\n");
  726. return work_done;
  727. }
  728. static int gem_poll(struct napi_struct *napi, int budget)
  729. {
  730. struct gem *gp = container_of(napi, struct gem, napi);
  731. struct net_device *dev = gp->dev;
  732. unsigned long flags;
  733. int work_done;
  734. /*
  735. * NAPI locking nightmare: See comment at head of driver
  736. */
  737. spin_lock_irqsave(&gp->lock, flags);
  738. work_done = 0;
  739. do {
  740. /* Handle anomalies */
  741. if (gp->status & GREG_STAT_ABNORMAL) {
  742. if (gem_abnormal_irq(dev, gp, gp->status))
  743. break;
  744. }
  745. /* Run TX completion thread */
  746. spin_lock(&gp->tx_lock);
  747. gem_tx(dev, gp, gp->status);
  748. spin_unlock(&gp->tx_lock);
  749. spin_unlock_irqrestore(&gp->lock, flags);
  750. /* Run RX thread. We don't use any locking here,
  751. * code willing to do bad things - like cleaning the
  752. * rx ring - must call napi_disable(), which
  753. * schedule_timeout()'s if polling is already disabled.
  754. */
  755. work_done += gem_rx(gp, budget - work_done);
  756. if (work_done >= budget)
  757. return work_done;
  758. spin_lock_irqsave(&gp->lock, flags);
  759. gp->status = readl(gp->regs + GREG_STAT);
  760. } while (gp->status & GREG_STAT_NAPI);
  761. __napi_complete(napi);
  762. gem_enable_ints(gp);
  763. spin_unlock_irqrestore(&gp->lock, flags);
  764. return work_done;
  765. }
  766. static irqreturn_t gem_interrupt(int irq, void *dev_id)
  767. {
  768. struct net_device *dev = dev_id;
  769. struct gem *gp = netdev_priv(dev);
  770. unsigned long flags;
  771. /* Swallow interrupts when shutting the chip down, though
  772. * that shouldn't happen, we should have done free_irq() at
  773. * this point...
  774. */
  775. if (!gp->running)
  776. return IRQ_HANDLED;
  777. spin_lock_irqsave(&gp->lock, flags);
  778. if (napi_schedule_prep(&gp->napi)) {
  779. u32 gem_status = readl(gp->regs + GREG_STAT);
  780. if (gem_status == 0) {
  781. napi_enable(&gp->napi);
  782. spin_unlock_irqrestore(&gp->lock, flags);
  783. return IRQ_NONE;
  784. }
  785. gp->status = gem_status;
  786. gem_disable_ints(gp);
  787. __napi_schedule(&gp->napi);
  788. }
  789. spin_unlock_irqrestore(&gp->lock, flags);
  790. /* If polling was disabled at the time we received that
  791. * interrupt, we may return IRQ_HANDLED here while we
  792. * should return IRQ_NONE. No big deal...
  793. */
  794. return IRQ_HANDLED;
  795. }
  796. #ifdef CONFIG_NET_POLL_CONTROLLER
  797. static void gem_poll_controller(struct net_device *dev)
  798. {
  799. /* gem_interrupt is safe to reentrance so no need
  800. * to disable_irq here.
  801. */
  802. gem_interrupt(dev->irq, dev);
  803. }
  804. #endif
  805. static void gem_tx_timeout(struct net_device *dev)
  806. {
  807. struct gem *gp = netdev_priv(dev);
  808. netdev_err(dev, "transmit timed out, resetting\n");
  809. if (!gp->running) {
  810. netdev_err(dev, "hrm.. hw not running !\n");
  811. return;
  812. }
  813. netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n",
  814. readl(gp->regs + TXDMA_CFG),
  815. readl(gp->regs + MAC_TXSTAT),
  816. readl(gp->regs + MAC_TXCFG));
  817. netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
  818. readl(gp->regs + RXDMA_CFG),
  819. readl(gp->regs + MAC_RXSTAT),
  820. readl(gp->regs + MAC_RXCFG));
  821. spin_lock_irq(&gp->lock);
  822. spin_lock(&gp->tx_lock);
  823. gp->reset_task_pending = 1;
  824. schedule_work(&gp->reset_task);
  825. spin_unlock(&gp->tx_lock);
  826. spin_unlock_irq(&gp->lock);
  827. }
  828. static __inline__ int gem_intme(int entry)
  829. {
  830. /* Algorithm: IRQ every 1/2 of descriptors. */
  831. if (!(entry & ((TX_RING_SIZE>>1)-1)))
  832. return 1;
  833. return 0;
  834. }
  835. static netdev_tx_t gem_start_xmit(struct sk_buff *skb,
  836. struct net_device *dev)
  837. {
  838. struct gem *gp = netdev_priv(dev);
  839. int entry;
  840. u64 ctrl;
  841. unsigned long flags;
  842. ctrl = 0;
  843. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  844. const u64 csum_start_off = skb_checksum_start_offset(skb);
  845. const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
  846. ctrl = (TXDCTRL_CENAB |
  847. (csum_start_off << 15) |
  848. (csum_stuff_off << 21));
  849. }
  850. if (!spin_trylock_irqsave(&gp->tx_lock, flags)) {
  851. /* Tell upper layer to requeue */
  852. return NETDEV_TX_LOCKED;
  853. }
  854. /* We raced with gem_do_stop() */
  855. if (!gp->running) {
  856. spin_unlock_irqrestore(&gp->tx_lock, flags);
  857. return NETDEV_TX_BUSY;
  858. }
  859. /* This is a hard error, log it. */
  860. if (TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1)) {
  861. netif_stop_queue(dev);
  862. spin_unlock_irqrestore(&gp->tx_lock, flags);
  863. netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
  864. return NETDEV_TX_BUSY;
  865. }
  866. entry = gp->tx_new;
  867. gp->tx_skbs[entry] = skb;
  868. if (skb_shinfo(skb)->nr_frags == 0) {
  869. struct gem_txd *txd = &gp->init_block->txd[entry];
  870. dma_addr_t mapping;
  871. u32 len;
  872. len = skb->len;
  873. mapping = pci_map_page(gp->pdev,
  874. virt_to_page(skb->data),
  875. offset_in_page(skb->data),
  876. len, PCI_DMA_TODEVICE);
  877. ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
  878. if (gem_intme(entry))
  879. ctrl |= TXDCTRL_INTME;
  880. txd->buffer = cpu_to_le64(mapping);
  881. wmb();
  882. txd->control_word = cpu_to_le64(ctrl);
  883. entry = NEXT_TX(entry);
  884. } else {
  885. struct gem_txd *txd;
  886. u32 first_len;
  887. u64 intme;
  888. dma_addr_t first_mapping;
  889. int frag, first_entry = entry;
  890. intme = 0;
  891. if (gem_intme(entry))
  892. intme |= TXDCTRL_INTME;
  893. /* We must give this initial chunk to the device last.
  894. * Otherwise we could race with the device.
  895. */
  896. first_len = skb_headlen(skb);
  897. first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
  898. offset_in_page(skb->data),
  899. first_len, PCI_DMA_TODEVICE);
  900. entry = NEXT_TX(entry);
  901. for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
  902. skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
  903. u32 len;
  904. dma_addr_t mapping;
  905. u64 this_ctrl;
  906. len = this_frag->size;
  907. mapping = pci_map_page(gp->pdev,
  908. this_frag->page,
  909. this_frag->page_offset,
  910. len, PCI_DMA_TODEVICE);
  911. this_ctrl = ctrl;
  912. if (frag == skb_shinfo(skb)->nr_frags - 1)
  913. this_ctrl |= TXDCTRL_EOF;
  914. txd = &gp->init_block->txd[entry];
  915. txd->buffer = cpu_to_le64(mapping);
  916. wmb();
  917. txd->control_word = cpu_to_le64(this_ctrl | len);
  918. if (gem_intme(entry))
  919. intme |= TXDCTRL_INTME;
  920. entry = NEXT_TX(entry);
  921. }
  922. txd = &gp->init_block->txd[first_entry];
  923. txd->buffer = cpu_to_le64(first_mapping);
  924. wmb();
  925. txd->control_word =
  926. cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
  927. }
  928. gp->tx_new = entry;
  929. if (TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))
  930. netif_stop_queue(dev);
  931. if (netif_msg_tx_queued(gp))
  932. printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
  933. dev->name, entry, skb->len);
  934. mb();
  935. writel(gp->tx_new, gp->regs + TXDMA_KICK);
  936. spin_unlock_irqrestore(&gp->tx_lock, flags);
  937. dev->trans_start = jiffies; /* NETIF_F_LLTX driver :( */
  938. return NETDEV_TX_OK;
  939. }
  940. static void gem_pcs_reset(struct gem *gp)
  941. {
  942. int limit;
  943. u32 val;
  944. /* Reset PCS unit. */
  945. val = readl(gp->regs + PCS_MIICTRL);
  946. val |= PCS_MIICTRL_RST;
  947. writel(val, gp->regs + PCS_MIICTRL);
  948. limit = 32;
  949. while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
  950. udelay(100);
  951. if (limit-- <= 0)
  952. break;
  953. }
  954. if (limit < 0)
  955. netdev_warn(gp->dev, "PCS reset bit would not clear\n");
  956. }
  957. static void gem_pcs_reinit_adv(struct gem *gp)
  958. {
  959. u32 val;
  960. /* Make sure PCS is disabled while changing advertisement
  961. * configuration.
  962. */
  963. val = readl(gp->regs + PCS_CFG);
  964. val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
  965. writel(val, gp->regs + PCS_CFG);
  966. /* Advertise all capabilities except asymmetric
  967. * pause.
  968. */
  969. val = readl(gp->regs + PCS_MIIADV);
  970. val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
  971. PCS_MIIADV_SP | PCS_MIIADV_AP);
  972. writel(val, gp->regs + PCS_MIIADV);
  973. /* Enable and restart auto-negotiation, disable wrapback/loopback,
  974. * and re-enable PCS.
  975. */
  976. val = readl(gp->regs + PCS_MIICTRL);
  977. val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
  978. val &= ~PCS_MIICTRL_WB;
  979. writel(val, gp->regs + PCS_MIICTRL);
  980. val = readl(gp->regs + PCS_CFG);
  981. val |= PCS_CFG_ENABLE;
  982. writel(val, gp->regs + PCS_CFG);
  983. /* Make sure serialink loopback is off. The meaning
  984. * of this bit is logically inverted based upon whether
  985. * you are in Serialink or SERDES mode.
  986. */
  987. val = readl(gp->regs + PCS_SCTRL);
  988. if (gp->phy_type == phy_serialink)
  989. val &= ~PCS_SCTRL_LOOP;
  990. else
  991. val |= PCS_SCTRL_LOOP;
  992. writel(val, gp->regs + PCS_SCTRL);
  993. }
  994. #define STOP_TRIES 32
  995. /* Must be invoked under gp->lock and gp->tx_lock. */
  996. static void gem_reset(struct gem *gp)
  997. {
  998. int limit;
  999. u32 val;
  1000. /* Make sure we won't get any more interrupts */
  1001. writel(0xffffffff, gp->regs + GREG_IMASK);
  1002. /* Reset the chip */
  1003. writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
  1004. gp->regs + GREG_SWRST);
  1005. limit = STOP_TRIES;
  1006. do {
  1007. udelay(20);
  1008. val = readl(gp->regs + GREG_SWRST);
  1009. if (limit-- <= 0)
  1010. break;
  1011. } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
  1012. if (limit < 0)
  1013. netdev_err(gp->dev, "SW reset is ghetto\n");
  1014. if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
  1015. gem_pcs_reinit_adv(gp);
  1016. }
  1017. /* Must be invoked under gp->lock and gp->tx_lock. */
  1018. static void gem_start_dma(struct gem *gp)
  1019. {
  1020. u32 val;
  1021. /* We are ready to rock, turn everything on. */
  1022. val = readl(gp->regs + TXDMA_CFG);
  1023. writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
  1024. val = readl(gp->regs + RXDMA_CFG);
  1025. writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
  1026. val = readl(gp->regs + MAC_TXCFG);
  1027. writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
  1028. val = readl(gp->regs + MAC_RXCFG);
  1029. writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  1030. (void) readl(gp->regs + MAC_RXCFG);
  1031. udelay(100);
  1032. gem_enable_ints(gp);
  1033. writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
  1034. }
  1035. /* Must be invoked under gp->lock and gp->tx_lock. DMA won't be
  1036. * actually stopped before about 4ms tho ...
  1037. */
  1038. static void gem_stop_dma(struct gem *gp)
  1039. {
  1040. u32 val;
  1041. /* We are done rocking, turn everything off. */
  1042. val = readl(gp->regs + TXDMA_CFG);
  1043. writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
  1044. val = readl(gp->regs + RXDMA_CFG);
  1045. writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
  1046. val = readl(gp->regs + MAC_TXCFG);
  1047. writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
  1048. val = readl(gp->regs + MAC_RXCFG);
  1049. writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  1050. (void) readl(gp->regs + MAC_RXCFG);
  1051. /* Need to wait a bit ... done by the caller */
  1052. }
  1053. /* Must be invoked under gp->lock and gp->tx_lock. */
  1054. // XXX dbl check what that function should do when called on PCS PHY
  1055. static void gem_begin_auto_negotiation(struct gem *gp, struct ethtool_cmd *ep)
  1056. {
  1057. u32 advertise, features;
  1058. int autoneg;
  1059. int speed;
  1060. int duplex;
  1061. if (gp->phy_type != phy_mii_mdio0 &&
  1062. gp->phy_type != phy_mii_mdio1)
  1063. goto non_mii;
  1064. /* Setup advertise */
  1065. if (found_mii_phy(gp))
  1066. features = gp->phy_mii.def->features;
  1067. else
  1068. features = 0;
  1069. advertise = features & ADVERTISE_MASK;
  1070. if (gp->phy_mii.advertising != 0)
  1071. advertise &= gp->phy_mii.advertising;
  1072. autoneg = gp->want_autoneg;
  1073. speed = gp->phy_mii.speed;
  1074. duplex = gp->phy_mii.duplex;
  1075. /* Setup link parameters */
  1076. if (!ep)
  1077. goto start_aneg;
  1078. if (ep->autoneg == AUTONEG_ENABLE) {
  1079. advertise = ep->advertising;
  1080. autoneg = 1;
  1081. } else {
  1082. autoneg = 0;
  1083. speed = ethtool_cmd_speed(ep);
  1084. duplex = ep->duplex;
  1085. }
  1086. start_aneg:
  1087. /* Sanitize settings based on PHY capabilities */
  1088. if ((features & SUPPORTED_Autoneg) == 0)
  1089. autoneg = 0;
  1090. if (speed == SPEED_1000 &&
  1091. !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
  1092. speed = SPEED_100;
  1093. if (speed == SPEED_100 &&
  1094. !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
  1095. speed = SPEED_10;
  1096. if (duplex == DUPLEX_FULL &&
  1097. !(features & (SUPPORTED_1000baseT_Full |
  1098. SUPPORTED_100baseT_Full |
  1099. SUPPORTED_10baseT_Full)))
  1100. duplex = DUPLEX_HALF;
  1101. if (speed == 0)
  1102. speed = SPEED_10;
  1103. /* If we are asleep, we don't try to actually setup the PHY, we
  1104. * just store the settings
  1105. */
  1106. if (gp->asleep) {
  1107. gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
  1108. gp->phy_mii.speed = speed;
  1109. gp->phy_mii.duplex = duplex;
  1110. return;
  1111. }
  1112. /* Configure PHY & start aneg */
  1113. gp->want_autoneg = autoneg;
  1114. if (autoneg) {
  1115. if (found_mii_phy(gp))
  1116. gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
  1117. gp->lstate = link_aneg;
  1118. } else {
  1119. if (found_mii_phy(gp))
  1120. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
  1121. gp->lstate = link_force_ok;
  1122. }
  1123. non_mii:
  1124. gp->timer_ticks = 0;
  1125. mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
  1126. }
  1127. /* A link-up condition has occurred, initialize and enable the
  1128. * rest of the chip.
  1129. *
  1130. * Must be invoked under gp->lock and gp->tx_lock.
  1131. */
  1132. static int gem_set_link_modes(struct gem *gp)
  1133. {
  1134. u32 val;
  1135. int full_duplex, speed, pause;
  1136. full_duplex = 0;
  1137. speed = SPEED_10;
  1138. pause = 0;
  1139. if (found_mii_phy(gp)) {
  1140. if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
  1141. return 1;
  1142. full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
  1143. speed = gp->phy_mii.speed;
  1144. pause = gp->phy_mii.pause;
  1145. } else if (gp->phy_type == phy_serialink ||
  1146. gp->phy_type == phy_serdes) {
  1147. u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
  1148. if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
  1149. full_duplex = 1;
  1150. speed = SPEED_1000;
  1151. }
  1152. netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n",
  1153. speed, (full_duplex ? "full" : "half"));
  1154. if (!gp->running)
  1155. return 0;
  1156. val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
  1157. if (full_duplex) {
  1158. val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
  1159. } else {
  1160. /* MAC_TXCFG_NBO must be zero. */
  1161. }
  1162. writel(val, gp->regs + MAC_TXCFG);
  1163. val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
  1164. if (!full_duplex &&
  1165. (gp->phy_type == phy_mii_mdio0 ||
  1166. gp->phy_type == phy_mii_mdio1)) {
  1167. val |= MAC_XIFCFG_DISE;
  1168. } else if (full_duplex) {
  1169. val |= MAC_XIFCFG_FLED;
  1170. }
  1171. if (speed == SPEED_1000)
  1172. val |= (MAC_XIFCFG_GMII);
  1173. writel(val, gp->regs + MAC_XIFCFG);
  1174. /* If gigabit and half-duplex, enable carrier extension
  1175. * mode. Else, disable it.
  1176. */
  1177. if (speed == SPEED_1000 && !full_duplex) {
  1178. val = readl(gp->regs + MAC_TXCFG);
  1179. writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
  1180. val = readl(gp->regs + MAC_RXCFG);
  1181. writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
  1182. } else {
  1183. val = readl(gp->regs + MAC_TXCFG);
  1184. writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
  1185. val = readl(gp->regs + MAC_RXCFG);
  1186. writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
  1187. }
  1188. if (gp->phy_type == phy_serialink ||
  1189. gp->phy_type == phy_serdes) {
  1190. u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
  1191. if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
  1192. pause = 1;
  1193. }
  1194. if (netif_msg_link(gp)) {
  1195. if (pause) {
  1196. netdev_info(gp->dev,
  1197. "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
  1198. gp->rx_fifo_sz,
  1199. gp->rx_pause_off,
  1200. gp->rx_pause_on);
  1201. } else {
  1202. netdev_info(gp->dev, "Pause is disabled\n");
  1203. }
  1204. }
  1205. if (!full_duplex)
  1206. writel(512, gp->regs + MAC_STIME);
  1207. else
  1208. writel(64, gp->regs + MAC_STIME);
  1209. val = readl(gp->regs + MAC_MCCFG);
  1210. if (pause)
  1211. val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
  1212. else
  1213. val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
  1214. writel(val, gp->regs + MAC_MCCFG);
  1215. gem_start_dma(gp);
  1216. return 0;
  1217. }
  1218. /* Must be invoked under gp->lock and gp->tx_lock. */
  1219. static int gem_mdio_link_not_up(struct gem *gp)
  1220. {
  1221. switch (gp->lstate) {
  1222. case link_force_ret:
  1223. netif_info(gp, link, gp->dev,
  1224. "Autoneg failed again, keeping forced mode\n");
  1225. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
  1226. gp->last_forced_speed, DUPLEX_HALF);
  1227. gp->timer_ticks = 5;
  1228. gp->lstate = link_force_ok;
  1229. return 0;
  1230. case link_aneg:
  1231. /* We try forced modes after a failed aneg only on PHYs that don't
  1232. * have "magic_aneg" bit set, which means they internally do the
  1233. * while forced-mode thingy. On these, we just restart aneg
  1234. */
  1235. if (gp->phy_mii.def->magic_aneg)
  1236. return 1;
  1237. netif_info(gp, link, gp->dev, "switching to forced 100bt\n");
  1238. /* Try forced modes. */
  1239. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
  1240. DUPLEX_HALF);
  1241. gp->timer_ticks = 5;
  1242. gp->lstate = link_force_try;
  1243. return 0;
  1244. case link_force_try:
  1245. /* Downgrade from 100 to 10 Mbps if necessary.
  1246. * If already at 10Mbps, warn user about the
  1247. * situation every 10 ticks.
  1248. */
  1249. if (gp->phy_mii.speed == SPEED_100) {
  1250. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
  1251. DUPLEX_HALF);
  1252. gp->timer_ticks = 5;
  1253. netif_info(gp, link, gp->dev,
  1254. "switching to forced 10bt\n");
  1255. return 0;
  1256. } else
  1257. return 1;
  1258. default:
  1259. return 0;
  1260. }
  1261. }
  1262. static void gem_link_timer(unsigned long data)
  1263. {
  1264. struct gem *gp = (struct gem *) data;
  1265. int restart_aneg = 0;
  1266. if (gp->asleep)
  1267. return;
  1268. spin_lock_irq(&gp->lock);
  1269. spin_lock(&gp->tx_lock);
  1270. gem_get_cell(gp);
  1271. /* If the reset task is still pending, we just
  1272. * reschedule the link timer
  1273. */
  1274. if (gp->reset_task_pending)
  1275. goto restart;
  1276. if (gp->phy_type == phy_serialink ||
  1277. gp->phy_type == phy_serdes) {
  1278. u32 val = readl(gp->regs + PCS_MIISTAT);
  1279. if (!(val & PCS_MIISTAT_LS))
  1280. val = readl(gp->regs + PCS_MIISTAT);
  1281. if ((val & PCS_MIISTAT_LS) != 0) {
  1282. if (gp->lstate == link_up)
  1283. goto restart;
  1284. gp->lstate = link_up;
  1285. netif_carrier_on(gp->dev);
  1286. (void)gem_set_link_modes(gp);
  1287. }
  1288. goto restart;
  1289. }
  1290. if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
  1291. /* Ok, here we got a link. If we had it due to a forced
  1292. * fallback, and we were configured for autoneg, we do
  1293. * retry a short autoneg pass. If you know your hub is
  1294. * broken, use ethtool ;)
  1295. */
  1296. if (gp->lstate == link_force_try && gp->want_autoneg) {
  1297. gp->lstate = link_force_ret;
  1298. gp->last_forced_speed = gp->phy_mii.speed;
  1299. gp->timer_ticks = 5;
  1300. if (netif_msg_link(gp))
  1301. netdev_info(gp->dev,
  1302. "Got link after fallback, retrying autoneg once...\n");
  1303. gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
  1304. } else if (gp->lstate != link_up) {
  1305. gp->lstate = link_up;
  1306. netif_carrier_on(gp->dev);
  1307. if (gem_set_link_modes(gp))
  1308. restart_aneg = 1;
  1309. }
  1310. } else {
  1311. /* If the link was previously up, we restart the
  1312. * whole process
  1313. */
  1314. if (gp->lstate == link_up) {
  1315. gp->lstate = link_down;
  1316. netif_info(gp, link, gp->dev, "Link down\n");
  1317. netif_carrier_off(gp->dev);
  1318. gp->reset_task_pending = 1;
  1319. schedule_work(&gp->reset_task);
  1320. restart_aneg = 1;
  1321. } else if (++gp->timer_ticks > 10) {
  1322. if (found_mii_phy(gp))
  1323. restart_aneg = gem_mdio_link_not_up(gp);
  1324. else
  1325. restart_aneg = 1;
  1326. }
  1327. }
  1328. if (restart_aneg) {
  1329. gem_begin_auto_negotiation(gp, NULL);
  1330. goto out_unlock;
  1331. }
  1332. restart:
  1333. mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
  1334. out_unlock:
  1335. gem_put_cell(gp);
  1336. spin_unlock(&gp->tx_lock);
  1337. spin_unlock_irq(&gp->lock);
  1338. }
  1339. /* Must be invoked under gp->lock and gp->tx_lock. */
  1340. static void gem_clean_rings(struct gem *gp)
  1341. {
  1342. struct gem_init_block *gb = gp->init_block;
  1343. struct sk_buff *skb;
  1344. int i;
  1345. dma_addr_t dma_addr;
  1346. for (i = 0; i < RX_RING_SIZE; i++) {
  1347. struct gem_rxd *rxd;
  1348. rxd = &gb->rxd[i];
  1349. if (gp->rx_skbs[i] != NULL) {
  1350. skb = gp->rx_skbs[i];
  1351. dma_addr = le64_to_cpu(rxd->buffer);
  1352. pci_unmap_page(gp->pdev, dma_addr,
  1353. RX_BUF_ALLOC_SIZE(gp),
  1354. PCI_DMA_FROMDEVICE);
  1355. dev_kfree_skb_any(skb);
  1356. gp->rx_skbs[i] = NULL;
  1357. }
  1358. rxd->status_word = 0;
  1359. wmb();
  1360. rxd->buffer = 0;
  1361. }
  1362. for (i = 0; i < TX_RING_SIZE; i++) {
  1363. if (gp->tx_skbs[i] != NULL) {
  1364. struct gem_txd *txd;
  1365. int frag;
  1366. skb = gp->tx_skbs[i];
  1367. gp->tx_skbs[i] = NULL;
  1368. for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
  1369. int ent = i & (TX_RING_SIZE - 1);
  1370. txd = &gb->txd[ent];
  1371. dma_addr = le64_to_cpu(txd->buffer);
  1372. pci_unmap_page(gp->pdev, dma_addr,
  1373. le64_to_cpu(txd->control_word) &
  1374. TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
  1375. if (frag != skb_shinfo(skb)->nr_frags)
  1376. i++;
  1377. }
  1378. dev_kfree_skb_any(skb);
  1379. }
  1380. }
  1381. }
  1382. /* Must be invoked under gp->lock and gp->tx_lock. */
  1383. static void gem_init_rings(struct gem *gp)
  1384. {
  1385. struct gem_init_block *gb = gp->init_block;
  1386. struct net_device *dev = gp->dev;
  1387. int i;
  1388. dma_addr_t dma_addr;
  1389. gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
  1390. gem_clean_rings(gp);
  1391. gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
  1392. (unsigned)VLAN_ETH_FRAME_LEN);
  1393. for (i = 0; i < RX_RING_SIZE; i++) {
  1394. struct sk_buff *skb;
  1395. struct gem_rxd *rxd = &gb->rxd[i];
  1396. skb = gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
  1397. if (!skb) {
  1398. rxd->buffer = 0;
  1399. rxd->status_word = 0;
  1400. continue;
  1401. }
  1402. gp->rx_skbs[i] = skb;
  1403. skb->dev = dev;
  1404. skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
  1405. dma_addr = pci_map_page(gp->pdev,
  1406. virt_to_page(skb->data),
  1407. offset_in_page(skb->data),
  1408. RX_BUF_ALLOC_SIZE(gp),
  1409. PCI_DMA_FROMDEVICE);
  1410. rxd->buffer = cpu_to_le64(dma_addr);
  1411. wmb();
  1412. rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
  1413. skb_reserve(skb, RX_OFFSET);
  1414. }
  1415. for (i = 0; i < TX_RING_SIZE; i++) {
  1416. struct gem_txd *txd = &gb->txd[i];
  1417. txd->control_word = 0;
  1418. wmb();
  1419. txd->buffer = 0;
  1420. }
  1421. wmb();
  1422. }
  1423. /* Init PHY interface and start link poll state machine */
  1424. static void gem_init_phy(struct gem *gp)
  1425. {
  1426. u32 mifcfg;
  1427. /* Revert MIF CFG setting done on stop_phy */
  1428. mifcfg = readl(gp->regs + MIF_CFG);
  1429. mifcfg &= ~MIF_CFG_BBMODE;
  1430. writel(mifcfg, gp->regs + MIF_CFG);
  1431. if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
  1432. int i;
  1433. /* Those delay sucks, the HW seem to love them though, I'll
  1434. * serisouly consider breaking some locks here to be able
  1435. * to schedule instead
  1436. */
  1437. for (i = 0; i < 3; i++) {
  1438. #ifdef CONFIG_PPC_PMAC
  1439. pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
  1440. msleep(20);
  1441. #endif
  1442. /* Some PHYs used by apple have problem getting back to us,
  1443. * we do an additional reset here
  1444. */
  1445. phy_write(gp, MII_BMCR, BMCR_RESET);
  1446. msleep(20);
  1447. if (phy_read(gp, MII_BMCR) != 0xffff)
  1448. break;
  1449. if (i == 2)
  1450. netdev_warn(gp->dev, "GMAC PHY not responding !\n");
  1451. }
  1452. }
  1453. if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
  1454. gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
  1455. u32 val;
  1456. /* Init datapath mode register. */
  1457. if (gp->phy_type == phy_mii_mdio0 ||
  1458. gp->phy_type == phy_mii_mdio1) {
  1459. val = PCS_DMODE_MGM;
  1460. } else if (gp->phy_type == phy_serialink) {
  1461. val = PCS_DMODE_SM | PCS_DMODE_GMOE;
  1462. } else {
  1463. val = PCS_DMODE_ESM;
  1464. }
  1465. writel(val, gp->regs + PCS_DMODE);
  1466. }
  1467. if (gp->phy_type == phy_mii_mdio0 ||
  1468. gp->phy_type == phy_mii_mdio1) {
  1469. // XXX check for errors
  1470. mii_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
  1471. /* Init PHY */
  1472. if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
  1473. gp->phy_mii.def->ops->init(&gp->phy_mii);
  1474. } else {
  1475. gem_pcs_reset(gp);
  1476. gem_pcs_reinit_adv(gp);
  1477. }
  1478. /* Default aneg parameters */
  1479. gp->timer_ticks = 0;
  1480. gp->lstate = link_down;
  1481. netif_carrier_off(gp->dev);
  1482. /* Can I advertise gigabit here ? I'd need BCM PHY docs... */
  1483. spin_lock_irq(&gp->lock);
  1484. gem_begin_auto_negotiation(gp, NULL);
  1485. spin_unlock_irq(&gp->lock);
  1486. }
  1487. /* Must be invoked under gp->lock and gp->tx_lock. */
  1488. static void gem_init_dma(struct gem *gp)
  1489. {
  1490. u64 desc_dma = (u64) gp->gblock_dvma;
  1491. u32 val;
  1492. val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
  1493. writel(val, gp->regs + TXDMA_CFG);
  1494. writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
  1495. writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
  1496. desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
  1497. writel(0, gp->regs + TXDMA_KICK);
  1498. val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
  1499. ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
  1500. writel(val, gp->regs + RXDMA_CFG);
  1501. writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
  1502. writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
  1503. writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
  1504. val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
  1505. val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
  1506. writel(val, gp->regs + RXDMA_PTHRESH);
  1507. if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
  1508. writel(((5 & RXDMA_BLANK_IPKTS) |
  1509. ((8 << 12) & RXDMA_BLANK_ITIME)),
  1510. gp->regs + RXDMA_BLANK);
  1511. else
  1512. writel(((5 & RXDMA_BLANK_IPKTS) |
  1513. ((4 << 12) & RXDMA_BLANK_ITIME)),
  1514. gp->regs + RXDMA_BLANK);
  1515. }
  1516. /* Must be invoked under gp->lock and gp->tx_lock. */
  1517. static u32 gem_setup_multicast(struct gem *gp)
  1518. {
  1519. u32 rxcfg = 0;
  1520. int i;
  1521. if ((gp->dev->flags & IFF_ALLMULTI) ||
  1522. (netdev_mc_count(gp->dev) > 256)) {
  1523. for (i=0; i<16; i++)
  1524. writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
  1525. rxcfg |= MAC_RXCFG_HFE;
  1526. } else if (gp->dev->flags & IFF_PROMISC) {
  1527. rxcfg |= MAC_RXCFG_PROM;
  1528. } else {
  1529. u16 hash_table[16];
  1530. u32 crc;
  1531. struct netdev_hw_addr *ha;
  1532. int i;
  1533. memset(hash_table, 0, sizeof(hash_table));
  1534. netdev_for_each_mc_addr(ha, gp->dev) {
  1535. char *addrs = ha->addr;
  1536. if (!(*addrs & 1))
  1537. continue;
  1538. crc = ether_crc_le(6, addrs);
  1539. crc >>= 24;
  1540. hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
  1541. }
  1542. for (i=0; i<16; i++)
  1543. writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
  1544. rxcfg |= MAC_RXCFG_HFE;
  1545. }
  1546. return rxcfg;
  1547. }
  1548. /* Must be invoked under gp->lock and gp->tx_lock. */
  1549. static void gem_init_mac(struct gem *gp)
  1550. {
  1551. unsigned char *e = &gp->dev->dev_addr[0];
  1552. writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
  1553. writel(0x00, gp->regs + MAC_IPG0);
  1554. writel(0x08, gp->regs + MAC_IPG1);
  1555. writel(0x04, gp->regs + MAC_IPG2);
  1556. writel(0x40, gp->regs + MAC_STIME);
  1557. writel(0x40, gp->regs + MAC_MINFSZ);
  1558. /* Ethernet payload + header + FCS + optional VLAN tag. */
  1559. writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
  1560. writel(0x07, gp->regs + MAC_PASIZE);
  1561. writel(0x04, gp->regs + MAC_JAMSIZE);
  1562. writel(0x10, gp->regs + MAC_ATTLIM);
  1563. writel(0x8808, gp->regs + MAC_MCTYPE);
  1564. writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
  1565. writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
  1566. writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
  1567. writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
  1568. writel(0, gp->regs + MAC_ADDR3);
  1569. writel(0, gp->regs + MAC_ADDR4);
  1570. writel(0, gp->regs + MAC_ADDR5);
  1571. writel(0x0001, gp->regs + MAC_ADDR6);
  1572. writel(0xc200, gp->regs + MAC_ADDR7);
  1573. writel(0x0180, gp->regs + MAC_ADDR8);
  1574. writel(0, gp->regs + MAC_AFILT0);
  1575. writel(0, gp->regs + MAC_AFILT1);
  1576. writel(0, gp->regs + MAC_AFILT2);
  1577. writel(0, gp->regs + MAC_AF21MSK);
  1578. writel(0, gp->regs + MAC_AF0MSK);
  1579. gp->mac_rx_cfg = gem_setup_multicast(gp);
  1580. #ifdef STRIP_FCS
  1581. gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
  1582. #endif
  1583. writel(0, gp->regs + MAC_NCOLL);
  1584. writel(0, gp->regs + MAC_FASUCC);
  1585. writel(0, gp->regs + MAC_ECOLL);
  1586. writel(0, gp->regs + MAC_LCOLL);
  1587. writel(0, gp->regs + MAC_DTIMER);
  1588. writel(0, gp->regs + MAC_PATMPS);
  1589. writel(0, gp->regs + MAC_RFCTR);
  1590. writel(0, gp->regs + MAC_LERR);
  1591. writel(0, gp->regs + MAC_AERR);
  1592. writel(0, gp->regs + MAC_FCSERR);
  1593. writel(0, gp->regs + MAC_RXCVERR);
  1594. /* Clear RX/TX/MAC/XIF config, we will set these up and enable
  1595. * them once a link is established.
  1596. */
  1597. writel(0, gp->regs + MAC_TXCFG);
  1598. writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
  1599. writel(0, gp->regs + MAC_MCCFG);
  1600. writel(0, gp->regs + MAC_XIFCFG);
  1601. /* Setup MAC interrupts. We want to get all of the interesting
  1602. * counter expiration events, but we do not want to hear about
  1603. * normal rx/tx as the DMA engine tells us that.
  1604. */
  1605. writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
  1606. writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
  1607. /* Don't enable even the PAUSE interrupts for now, we
  1608. * make no use of those events other than to record them.
  1609. */
  1610. writel(0xffffffff, gp->regs + MAC_MCMASK);
  1611. /* Don't enable GEM's WOL in normal operations
  1612. */
  1613. if (gp->has_wol)
  1614. writel(0, gp->regs + WOL_WAKECSR);
  1615. }
  1616. /* Must be invoked under gp->lock and gp->tx_lock. */
  1617. static void gem_init_pause_thresholds(struct gem *gp)
  1618. {
  1619. u32 cfg;
  1620. /* Calculate pause thresholds. Setting the OFF threshold to the
  1621. * full RX fifo size effectively disables PAUSE generation which
  1622. * is what we do for 10/100 only GEMs which have FIFOs too small
  1623. * to make real gains from PAUSE.
  1624. */
  1625. if (gp->rx_fifo_sz <= (2 * 1024)) {
  1626. gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
  1627. } else {
  1628. int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
  1629. int off = (gp->rx_fifo_sz - (max_frame * 2));
  1630. int on = off - max_frame;
  1631. gp->rx_pause_off = off;
  1632. gp->rx_pause_on = on;
  1633. }
  1634. /* Configure the chip "burst" DMA mode & enable some
  1635. * HW bug fixes on Apple version
  1636. */
  1637. cfg = 0;
  1638. if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
  1639. cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
  1640. #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
  1641. cfg |= GREG_CFG_IBURST;
  1642. #endif
  1643. cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
  1644. cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
  1645. writel(cfg, gp->regs + GREG_CFG);
  1646. /* If Infinite Burst didn't stick, then use different
  1647. * thresholds (and Apple bug fixes don't exist)
  1648. */
  1649. if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
  1650. cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
  1651. cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
  1652. writel(cfg, gp->regs + GREG_CFG);
  1653. }
  1654. }
  1655. static int gem_check_invariants(struct gem *gp)
  1656. {
  1657. struct pci_dev *pdev = gp->pdev;
  1658. u32 mif_cfg;
  1659. /* On Apple's sungem, we can't rely on registers as the chip
  1660. * was been powered down by the firmware. The PHY is looked
  1661. * up later on.
  1662. */
  1663. if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
  1664. gp->phy_type = phy_mii_mdio0;
  1665. gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
  1666. gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
  1667. gp->swrst_base = 0;
  1668. mif_cfg = readl(gp->regs + MIF_CFG);
  1669. mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
  1670. mif_cfg |= MIF_CFG_MDI0;
  1671. writel(mif_cfg, gp->regs + MIF_CFG);
  1672. writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
  1673. writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
  1674. /* We hard-code the PHY address so we can properly bring it out of
  1675. * reset later on, we can't really probe it at this point, though
  1676. * that isn't an issue.
  1677. */
  1678. if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
  1679. gp->mii_phy_addr = 1;
  1680. else
  1681. gp->mii_phy_addr = 0;
  1682. return 0;
  1683. }
  1684. mif_cfg = readl(gp->regs + MIF_CFG);
  1685. if (pdev->vendor == PCI_VENDOR_ID_SUN &&
  1686. pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
  1687. /* One of the MII PHYs _must_ be present
  1688. * as this chip has no gigabit PHY.
  1689. */
  1690. if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
  1691. pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
  1692. mif_cfg);
  1693. return -1;
  1694. }
  1695. }
  1696. /* Determine initial PHY interface type guess. MDIO1 is the
  1697. * external PHY and thus takes precedence over MDIO0.
  1698. */
  1699. if (mif_cfg & MIF_CFG_MDI1) {
  1700. gp->phy_type = phy_mii_mdio1;
  1701. mif_cfg |= MIF_CFG_PSELECT;
  1702. writel(mif_cfg, gp->regs + MIF_CFG);
  1703. } else if (mif_cfg & MIF_CFG_MDI0) {
  1704. gp->phy_type = phy_mii_mdio0;
  1705. mif_cfg &= ~MIF_CFG_PSELECT;
  1706. writel(mif_cfg, gp->regs + MIF_CFG);
  1707. } else {
  1708. #ifdef CONFIG_SPARC
  1709. const char *p;
  1710. p = of_get_property(gp->of_node, "shared-pins", NULL);
  1711. if (p && !strcmp(p, "serdes"))
  1712. gp->phy_type = phy_serdes;
  1713. else
  1714. #endif
  1715. gp->phy_type = phy_serialink;
  1716. }
  1717. if (gp->phy_type == phy_mii_mdio1 ||
  1718. gp->phy_type == phy_mii_mdio0) {
  1719. int i;
  1720. for (i = 0; i < 32; i++) {
  1721. gp->mii_phy_addr = i;
  1722. if (phy_read(gp, MII_BMCR) != 0xffff)
  1723. break;
  1724. }
  1725. if (i == 32) {
  1726. if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
  1727. pr_err("RIO MII phy will not respond\n");
  1728. return -1;
  1729. }
  1730. gp->phy_type = phy_serdes;
  1731. }
  1732. }
  1733. /* Fetch the FIFO configurations now too. */
  1734. gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
  1735. gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
  1736. if (pdev->vendor == PCI_VENDOR_ID_SUN) {
  1737. if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
  1738. if (gp->tx_fifo_sz != (9 * 1024) ||
  1739. gp->rx_fifo_sz != (20 * 1024)) {
  1740. pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
  1741. gp->tx_fifo_sz, gp->rx_fifo_sz);
  1742. return -1;
  1743. }
  1744. gp->swrst_base = 0;
  1745. } else {
  1746. if (gp->tx_fifo_sz != (2 * 1024) ||
  1747. gp->rx_fifo_sz != (2 * 1024)) {
  1748. pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
  1749. gp->tx_fifo_sz, gp->rx_fifo_sz);
  1750. return -1;
  1751. }
  1752. gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
  1753. }
  1754. }
  1755. return 0;
  1756. }
  1757. /* Must be invoked under gp->lock and gp->tx_lock. */
  1758. static void gem_reinit_chip(struct gem *gp)
  1759. {
  1760. /* Reset the chip */
  1761. gem_reset(gp);
  1762. /* Make sure ints are disabled */
  1763. gem_disable_ints(gp);
  1764. /* Allocate & setup ring buffers */
  1765. gem_init_rings(gp);
  1766. /* Configure pause thresholds */
  1767. gem_init_pause_thresholds(gp);
  1768. /* Init DMA & MAC engines */
  1769. gem_init_dma(gp);
  1770. gem_init_mac(gp);
  1771. }
  1772. /* Must be invoked with no lock held. */
  1773. static void gem_stop_phy(struct gem *gp, int wol)
  1774. {
  1775. u32 mifcfg;
  1776. unsigned long flags;
  1777. /* Let the chip settle down a bit, it seems that helps
  1778. * for sleep mode on some models
  1779. */
  1780. msleep(10);
  1781. /* Make sure we aren't polling PHY status change. We
  1782. * don't currently use that feature though
  1783. */
  1784. mifcfg = readl(gp->regs + MIF_CFG);
  1785. mifcfg &= ~MIF_CFG_POLL;
  1786. writel(mifcfg, gp->regs + MIF_CFG);
  1787. if (wol && gp->has_wol) {
  1788. unsigned char *e = &gp->dev->dev_addr[0];
  1789. u32 csr;
  1790. /* Setup wake-on-lan for MAGIC packet */
  1791. writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
  1792. gp->regs + MAC_RXCFG);
  1793. writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
  1794. writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
  1795. writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
  1796. writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
  1797. csr = WOL_WAKECSR_ENABLE;
  1798. if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
  1799. csr |= WOL_WAKECSR_MII;
  1800. writel(csr, gp->regs + WOL_WAKECSR);
  1801. } else {
  1802. writel(0, gp->regs + MAC_RXCFG);
  1803. (void)readl(gp->regs + MAC_RXCFG);
  1804. /* Machine sleep will die in strange ways if we
  1805. * dont wait a bit here, looks like the chip takes
  1806. * some time to really shut down
  1807. */
  1808. msleep(10);
  1809. }
  1810. writel(0, gp->regs + MAC_TXCFG);
  1811. writel(0, gp->regs + MAC_XIFCFG);
  1812. writel(0, gp->regs + TXDMA_CFG);
  1813. writel(0, gp->regs + RXDMA_CFG);
  1814. if (!wol) {
  1815. spin_lock_irqsave(&gp->lock, flags);
  1816. spin_lock(&gp->tx_lock);
  1817. gem_reset(gp);
  1818. writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
  1819. writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
  1820. spin_unlock(&gp->tx_lock);
  1821. spin_unlock_irqrestore(&gp->lock, flags);
  1822. /* No need to take the lock here */
  1823. if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
  1824. gp->phy_mii.def->ops->suspend(&gp->phy_mii);
  1825. /* According to Apple, we must set the MDIO pins to this begnign
  1826. * state or we may 1) eat more current, 2) damage some PHYs
  1827. */
  1828. writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
  1829. writel(0, gp->regs + MIF_BBCLK);
  1830. writel(0, gp->regs + MIF_BBDATA);
  1831. writel(0, gp->regs + MIF_BBOENAB);
  1832. writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
  1833. (void) readl(gp->regs + MAC_XIFCFG);
  1834. }
  1835. }
  1836. static int gem_do_start(struct net_device *dev)
  1837. {
  1838. struct gem *gp = netdev_priv(dev);
  1839. unsigned long flags;
  1840. spin_lock_irqsave(&gp->lock, flags);
  1841. spin_lock(&gp->tx_lock);
  1842. /* Enable the cell */
  1843. gem_get_cell(gp);
  1844. /* Init & setup chip hardware */
  1845. gem_reinit_chip(gp);
  1846. gp->running = 1;
  1847. napi_enable(&gp->napi);
  1848. if (gp->lstate == link_up) {
  1849. netif_carrier_on(gp->dev);
  1850. gem_set_link_modes(gp);
  1851. }
  1852. netif_wake_queue(gp->dev);
  1853. spin_unlock(&gp->tx_lock);
  1854. spin_unlock_irqrestore(&gp->lock, flags);
  1855. if (request_irq(gp->pdev->irq, gem_interrupt,
  1856. IRQF_SHARED, dev->name, (void *)dev)) {
  1857. netdev_err(dev, "failed to request irq !\n");
  1858. spin_lock_irqsave(&gp->lock, flags);
  1859. spin_lock(&gp->tx_lock);
  1860. napi_disable(&gp->napi);
  1861. gp->running = 0;
  1862. gem_reset(gp);
  1863. gem_clean_rings(gp);
  1864. gem_put_cell(gp);
  1865. spin_unlock(&gp->tx_lock);
  1866. spin_unlock_irqrestore(&gp->lock, flags);
  1867. return -EAGAIN;
  1868. }
  1869. return 0;
  1870. }
  1871. static void gem_do_stop(struct net_device *dev, int wol)
  1872. {
  1873. struct gem *gp = netdev_priv(dev);
  1874. unsigned long flags;
  1875. spin_lock_irqsave(&gp->lock, flags);
  1876. spin_lock(&gp->tx_lock);
  1877. gp->running = 0;
  1878. /* Stop netif queue */
  1879. netif_stop_queue(dev);
  1880. /* Make sure ints are disabled */
  1881. gem_disable_ints(gp);
  1882. /* We can drop the lock now */
  1883. spin_unlock(&gp->tx_lock);
  1884. spin_unlock_irqrestore(&gp->lock, flags);
  1885. /* If we are going to sleep with WOL */
  1886. gem_stop_dma(gp);
  1887. msleep(10);
  1888. if (!wol)
  1889. gem_reset(gp);
  1890. msleep(10);
  1891. /* Get rid of rings */
  1892. gem_clean_rings(gp);
  1893. /* No irq needed anymore */
  1894. free_irq(gp->pdev->irq, (void *) dev);
  1895. /* Cell not needed neither if no WOL */
  1896. if (!wol) {
  1897. spin_lock_irqsave(&gp->lock, flags);
  1898. gem_put_cell(gp);
  1899. spin_unlock_irqrestore(&gp->lock, flags);
  1900. }
  1901. }
  1902. static void gem_reset_task(struct work_struct *work)
  1903. {
  1904. struct gem *gp = container_of(work, struct gem, reset_task);
  1905. mutex_lock(&gp->pm_mutex);
  1906. if (gp->opened)
  1907. napi_disable(&gp->napi);
  1908. spin_lock_irq(&gp->lock);
  1909. spin_lock(&gp->tx_lock);
  1910. if (gp->running) {
  1911. netif_stop_queue(gp->dev);
  1912. /* Reset the chip & rings */
  1913. gem_reinit_chip(gp);
  1914. if (gp->lstate == link_up)
  1915. gem_set_link_modes(gp);
  1916. netif_wake_queue(gp->dev);
  1917. }
  1918. gp->reset_task_pending = 0;
  1919. spin_unlock(&gp->tx_lock);
  1920. spin_unlock_irq(&gp->lock);
  1921. if (gp->opened)
  1922. napi_enable(&gp->napi);
  1923. mutex_unlock(&gp->pm_mutex);
  1924. }
  1925. static int gem_open(struct net_device *dev)
  1926. {
  1927. struct gem *gp = netdev_priv(dev);
  1928. int rc = 0;
  1929. mutex_lock(&gp->pm_mutex);
  1930. /* We need the cell enabled */
  1931. if (!gp->asleep)
  1932. rc = gem_do_start(dev);
  1933. gp->opened = (rc == 0);
  1934. mutex_unlock(&gp->pm_mutex);
  1935. return rc;
  1936. }
  1937. static int gem_close(struct net_device *dev)
  1938. {
  1939. struct gem *gp = netdev_priv(dev);
  1940. mutex_lock(&gp->pm_mutex);
  1941. napi_disable(&gp->napi);
  1942. gp->opened = 0;
  1943. if (!gp->asleep)
  1944. gem_do_stop(dev, 0);
  1945. mutex_unlock(&gp->pm_mutex);
  1946. return 0;
  1947. }
  1948. #ifdef CONFIG_PM
  1949. static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
  1950. {
  1951. struct net_device *dev = pci_get_drvdata(pdev);
  1952. struct gem *gp = netdev_priv(dev);
  1953. unsigned long flags;
  1954. mutex_lock(&gp->pm_mutex);
  1955. netdev_info(dev, "suspending, WakeOnLan %s\n",
  1956. (gp->wake_on_lan && gp->opened) ? "enabled" : "disabled");
  1957. /* Keep the cell enabled during the entire operation */
  1958. spin_lock_irqsave(&gp->lock, flags);
  1959. spin_lock(&gp->tx_lock);
  1960. gem_get_cell(gp);
  1961. spin_unlock(&gp->tx_lock);
  1962. spin_unlock_irqrestore(&gp->lock, flags);
  1963. /* If the driver is opened, we stop the MAC */
  1964. if (gp->opened) {
  1965. napi_disable(&gp->napi);
  1966. /* Stop traffic, mark us closed */
  1967. netif_device_detach(dev);
  1968. /* Switch off MAC, remember WOL setting */
  1969. gp->asleep_wol = gp->wake_on_lan;
  1970. gem_do_stop(dev, gp->asleep_wol);
  1971. } else
  1972. gp->asleep_wol = 0;
  1973. /* Mark us asleep */
  1974. gp->asleep = 1;
  1975. wmb();
  1976. /* Stop the link timer */
  1977. del_timer_sync(&gp->link_timer);
  1978. /* Now we release the mutex to not block the reset task who
  1979. * can take it too. We are marked asleep, so there will be no
  1980. * conflict here
  1981. */
  1982. mutex_unlock(&gp->pm_mutex);
  1983. /* Wait for the pending reset task to complete */
  1984. flush_work_sync(&gp->reset_task);
  1985. /* Shut the PHY down eventually and setup WOL */
  1986. gem_stop_phy(gp, gp->asleep_wol);
  1987. /* Make sure bus master is disabled */
  1988. pci_disable_device(gp->pdev);
  1989. /* Release the cell, no need to take a lock at this point since
  1990. * nothing else can happen now
  1991. */
  1992. gem_put_cell(gp);
  1993. return 0;
  1994. }
  1995. static int gem_resume(struct pci_dev *pdev)
  1996. {
  1997. struct net_device *dev = pci_get_drvdata(pdev);
  1998. struct gem *gp = netdev_priv(dev);
  1999. unsigned long flags;
  2000. netdev_info(dev, "resuming\n");
  2001. mutex_lock(&gp->pm_mutex);
  2002. /* Keep the cell enabled during the entire operation, no need to
  2003. * take a lock here tho since nothing else can happen while we are
  2004. * marked asleep
  2005. */
  2006. gem_get_cell(gp);
  2007. /* Make sure PCI access and bus master are enabled */
  2008. if (pci_enable_device(gp->pdev)) {
  2009. netdev_err(dev, "Can't re-enable chip !\n");
  2010. /* Put cell and forget it for now, it will be considered as
  2011. * still asleep, a new sleep cycle may bring it back
  2012. */
  2013. gem_put_cell(gp);
  2014. mutex_unlock(&gp->pm_mutex);
  2015. return 0;
  2016. }
  2017. pci_set_master(gp->pdev);
  2018. /* Reset everything */
  2019. gem_reset(gp);
  2020. /* Mark us woken up */
  2021. gp->asleep = 0;
  2022. wmb();
  2023. /* Bring the PHY back. Again, lock is useless at this point as
  2024. * nothing can be happening until we restart the whole thing
  2025. */
  2026. gem_init_phy(gp);
  2027. /* If we were opened, bring everything back */
  2028. if (gp->opened) {
  2029. /* Restart MAC */
  2030. gem_do_start(dev);
  2031. /* Re-attach net device */
  2032. netif_device_attach(dev);
  2033. }
  2034. spin_lock_irqsave(&gp->lock, flags);
  2035. spin_lock(&gp->tx_lock);
  2036. /* If we had WOL enabled, the cell clock was never turned off during
  2037. * sleep, so we end up beeing unbalanced. Fix that here
  2038. */
  2039. if (gp->asleep_wol)
  2040. gem_put_cell(gp);
  2041. /* This function doesn't need to hold the cell, it will be held if the
  2042. * driver is open by gem_do_start().
  2043. */
  2044. gem_put_cell(gp);
  2045. spin_unlock(&gp->tx_lock);
  2046. spin_unlock_irqrestore(&gp->lock, flags);
  2047. mutex_unlock(&gp->pm_mutex);
  2048. return 0;
  2049. }
  2050. #endif /* CONFIG_PM */
  2051. static struct net_device_stats *gem_get_stats(struct net_device *dev)
  2052. {
  2053. struct gem *gp = netdev_priv(dev);
  2054. spin_lock_irq(&gp->lock);
  2055. spin_lock(&gp->tx_lock);
  2056. /* I have seen this being called while the PM was in progress,
  2057. * so we shield against this
  2058. */
  2059. if (gp->running) {
  2060. dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR);
  2061. writel(0, gp->regs + MAC_FCSERR);
  2062. dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR);
  2063. writel(0, gp->regs + MAC_AERR);
  2064. dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR);
  2065. writel(0, gp->regs + MAC_LERR);
  2066. dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
  2067. dev->stats.collisions +=
  2068. (readl(gp->regs + MAC_ECOLL) +
  2069. readl(gp->regs + MAC_LCOLL));
  2070. writel(0, gp->regs + MAC_ECOLL);
  2071. writel(0, gp->regs + MAC_LCOLL);
  2072. }
  2073. spin_unlock(&gp->tx_lock);
  2074. spin_unlock_irq(&gp->lock);
  2075. return &dev->stats;
  2076. }
  2077. static int gem_set_mac_address(struct net_device *dev, void *addr)
  2078. {
  2079. struct sockaddr *macaddr = (struct sockaddr *) addr;
  2080. struct gem *gp = netdev_priv(dev);
  2081. unsigned char *e = &dev->dev_addr[0];
  2082. if (!is_valid_ether_addr(macaddr->sa_data))
  2083. return -EADDRNOTAVAIL;
  2084. if (!netif_running(dev) || !netif_device_present(dev)) {
  2085. /* We'll just catch it later when the
  2086. * device is up'd or resumed.
  2087. */
  2088. memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
  2089. return 0;
  2090. }
  2091. mutex_lock(&gp->pm_mutex);
  2092. memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
  2093. if (gp->running) {
  2094. writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
  2095. writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
  2096. writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
  2097. }
  2098. mutex_unlock(&gp->pm_mutex);
  2099. return 0;
  2100. }
  2101. static void gem_set_multicast(struct net_device *dev)
  2102. {
  2103. struct gem *gp = netdev_priv(dev);
  2104. u32 rxcfg, rxcfg_new;
  2105. int limit = 10000;
  2106. spin_lock_irq(&gp->lock);
  2107. spin_lock(&gp->tx_lock);
  2108. if (!gp->running)
  2109. goto bail;
  2110. netif_stop_queue(dev);
  2111. rxcfg = readl(gp->regs + MAC_RXCFG);
  2112. rxcfg_new = gem_setup_multicast(gp);
  2113. #ifdef STRIP_FCS
  2114. rxcfg_new |= MAC_RXCFG_SFCS;
  2115. #endif
  2116. gp->mac_rx_cfg = rxcfg_new;
  2117. writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  2118. while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
  2119. if (!limit--)
  2120. break;
  2121. udelay(10);
  2122. }
  2123. rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
  2124. rxcfg |= rxcfg_new;
  2125. writel(rxcfg, gp->regs + MAC_RXCFG);
  2126. netif_wake_queue(dev);
  2127. bail:
  2128. spin_unlock(&gp->tx_lock);
  2129. spin_unlock_irq(&gp->lock);
  2130. }
  2131. /* Jumbo-grams don't seem to work :-( */
  2132. #define GEM_MIN_MTU 68
  2133. #if 1
  2134. #define GEM_MAX_MTU 1500
  2135. #else
  2136. #define GEM_MAX_MTU 9000
  2137. #endif
  2138. static int gem_change_mtu(struct net_device *dev, int new_mtu)
  2139. {
  2140. struct gem *gp = netdev_priv(dev);
  2141. if (new_mtu < GEM_MIN_MTU || new_mtu > GEM_MAX_MTU)
  2142. return -EINVAL;
  2143. if (!netif_running(dev) || !netif_device_present(dev)) {
  2144. /* We'll just catch it later when the
  2145. * device is up'd or resumed.
  2146. */
  2147. dev->mtu = new_mtu;
  2148. return 0;
  2149. }
  2150. mutex_lock(&gp->pm_mutex);
  2151. spin_lock_irq(&gp->lock);
  2152. spin_lock(&gp->tx_lock);
  2153. dev->mtu = new_mtu;
  2154. if (gp->running) {
  2155. gem_reinit_chip(gp);
  2156. if (gp->lstate == link_up)
  2157. gem_set_link_modes(gp);
  2158. }
  2159. spin_unlock(&gp->tx_lock);
  2160. spin_unlock_irq(&gp->lock);
  2161. mutex_unlock(&gp->pm_mutex);
  2162. return 0;
  2163. }
  2164. static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  2165. {
  2166. struct gem *gp = netdev_priv(dev);
  2167. strcpy(info->driver, DRV_NAME);
  2168. strcpy(info->version, DRV_VERSION);
  2169. strcpy(info->bus_info, pci_name(gp->pdev));
  2170. }
  2171. static int gem_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  2172. {
  2173. struct gem *gp = netdev_priv(dev);
  2174. if (gp->phy_type == phy_mii_mdio0 ||
  2175. gp->phy_type == phy_mii_mdio1) {
  2176. if (gp->phy_mii.def)
  2177. cmd->supported = gp->phy_mii.def->features;
  2178. else
  2179. cmd->supported = (SUPPORTED_10baseT_Half |
  2180. SUPPORTED_10baseT_Full);
  2181. /* XXX hardcoded stuff for now */
  2182. cmd->port = PORT_MII;
  2183. cmd->transceiver = XCVR_EXTERNAL;
  2184. cmd->phy_address = 0; /* XXX fixed PHYAD */
  2185. /* Return current PHY settings */
  2186. spin_lock_irq(&gp->lock);
  2187. cmd->autoneg = gp->want_autoneg;
  2188. ethtool_cmd_speed_set(cmd, gp->phy_mii.speed);
  2189. cmd->duplex = gp->phy_mii.duplex;
  2190. cmd->advertising = gp->phy_mii.advertising;
  2191. /* If we started with a forced mode, we don't have a default
  2192. * advertise set, we need to return something sensible so
  2193. * userland can re-enable autoneg properly.
  2194. */
  2195. if (cmd->advertising == 0)
  2196. cmd->advertising = cmd->supported;
  2197. spin_unlock_irq(&gp->lock);
  2198. } else { // XXX PCS ?
  2199. cmd->supported =
  2200. (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  2201. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  2202. SUPPORTED_Autoneg);
  2203. cmd->advertising = cmd->supported;
  2204. ethtool_cmd_speed_set(cmd, 0);
  2205. cmd->duplex = cmd->port = cmd->phy_address =
  2206. cmd->transceiver = cmd->autoneg = 0;
  2207. /* serdes means usually a Fibre connector, with most fixed */
  2208. if (gp->phy_type == phy_serdes) {
  2209. cmd->port = PORT_FIBRE;
  2210. cmd->supported = (SUPPORTED_1000baseT_Half |
  2211. SUPPORTED_1000baseT_Full |
  2212. SUPPORTED_FIBRE | SUPPORTED_Autoneg |
  2213. SUPPORTED_Pause | SUPPORTED_Asym_Pause);
  2214. cmd->advertising = cmd->supported;
  2215. cmd->transceiver = XCVR_INTERNAL;
  2216. if (gp->lstate == link_up)
  2217. ethtool_cmd_speed_set(cmd, SPEED_1000);
  2218. cmd->duplex = DUPLEX_FULL;
  2219. cmd->autoneg = 1;
  2220. }
  2221. }
  2222. cmd->maxtxpkt = cmd->maxrxpkt = 0;
  2223. return 0;
  2224. }
  2225. static int gem_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  2226. {
  2227. struct gem *gp = netdev_priv(dev);
  2228. u32 speed = ethtool_cmd_speed(cmd);
  2229. /* Verify the settings we care about. */
  2230. if (cmd->autoneg != AUTONEG_ENABLE &&
  2231. cmd->autoneg != AUTONEG_DISABLE)
  2232. return -EINVAL;
  2233. if (cmd->autoneg == AUTONEG_ENABLE &&
  2234. cmd->advertising == 0)
  2235. return -EINVAL;
  2236. if (cmd->autoneg == AUTONEG_DISABLE &&
  2237. ((speed != SPEED_1000 &&
  2238. speed != SPEED_100 &&
  2239. speed != SPEED_10) ||
  2240. (cmd->duplex != DUPLEX_HALF &&
  2241. cmd->duplex != DUPLEX_FULL)))
  2242. return -EINVAL;
  2243. /* Apply settings and restart link process. */
  2244. spin_lock_irq(&gp->lock);
  2245. gem_get_cell(gp);
  2246. gem_begin_auto_negotiation(gp, cmd);
  2247. gem_put_cell(gp);
  2248. spin_unlock_irq(&gp->lock);
  2249. return 0;
  2250. }
  2251. static int gem_nway_reset(struct net_device *dev)
  2252. {
  2253. struct gem *gp = netdev_priv(dev);
  2254. if (!gp->want_autoneg)
  2255. return -EINVAL;
  2256. /* Restart link process. */
  2257. spin_lock_irq(&gp->lock);
  2258. gem_get_cell(gp);
  2259. gem_begin_auto_negotiation(gp, NULL);
  2260. gem_put_cell(gp);
  2261. spin_unlock_irq(&gp->lock);
  2262. return 0;
  2263. }
  2264. static u32 gem_get_msglevel(struct net_device *dev)
  2265. {
  2266. struct gem *gp = netdev_priv(dev);
  2267. return gp->msg_enable;
  2268. }
  2269. static void gem_set_msglevel(struct net_device *dev, u32 value)
  2270. {
  2271. struct gem *gp = netdev_priv(dev);
  2272. gp->msg_enable = value;
  2273. }
  2274. /* Add more when I understand how to program the chip */
  2275. /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
  2276. #define WOL_SUPPORTED_MASK (WAKE_MAGIC)
  2277. static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  2278. {
  2279. struct gem *gp = netdev_priv(dev);
  2280. /* Add more when I understand how to program the chip */
  2281. if (gp->has_wol) {
  2282. wol->supported = WOL_SUPPORTED_MASK;
  2283. wol->wolopts = gp->wake_on_lan;
  2284. } else {
  2285. wol->supported = 0;
  2286. wol->wolopts = 0;
  2287. }
  2288. }
  2289. static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  2290. {
  2291. struct gem *gp = netdev_priv(dev);
  2292. if (!gp->has_wol)
  2293. return -EOPNOTSUPP;
  2294. gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
  2295. return 0;
  2296. }
  2297. static const struct ethtool_ops gem_ethtool_ops = {
  2298. .get_drvinfo = gem_get_drvinfo,
  2299. .get_link = ethtool_op_get_link,
  2300. .get_settings = gem_get_settings,
  2301. .set_settings = gem_set_settings,
  2302. .nway_reset = gem_nway_reset,
  2303. .get_msglevel = gem_get_msglevel,
  2304. .set_msglevel = gem_set_msglevel,
  2305. .get_wol = gem_get_wol,
  2306. .set_wol = gem_set_wol,
  2307. };
  2308. static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  2309. {
  2310. struct gem *gp = netdev_priv(dev);
  2311. struct mii_ioctl_data *data = if_mii(ifr);
  2312. int rc = -EOPNOTSUPP;
  2313. unsigned long flags;
  2314. /* Hold the PM mutex while doing ioctl's or we may collide
  2315. * with power management.
  2316. */
  2317. mutex_lock(&gp->pm_mutex);
  2318. spin_lock_irqsave(&gp->lock, flags);
  2319. gem_get_cell(gp);
  2320. spin_unlock_irqrestore(&gp->lock, flags);
  2321. switch (cmd) {
  2322. case SIOCGMIIPHY: /* Get address of MII PHY in use. */
  2323. data->phy_id = gp->mii_phy_addr;
  2324. /* Fallthrough... */
  2325. case SIOCGMIIREG: /* Read MII PHY register. */
  2326. if (!gp->running)
  2327. rc = -EAGAIN;
  2328. else {
  2329. data->val_out = __phy_read(gp, data->phy_id & 0x1f,
  2330. data->reg_num & 0x1f);
  2331. rc = 0;
  2332. }
  2333. break;
  2334. case SIOCSMIIREG: /* Write MII PHY register. */
  2335. if (!gp->running)
  2336. rc = -EAGAIN;
  2337. else {
  2338. __phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
  2339. data->val_in);
  2340. rc = 0;
  2341. }
  2342. break;
  2343. };
  2344. spin_lock_irqsave(&gp->lock, flags);
  2345. gem_put_cell(gp);
  2346. spin_unlock_irqrestore(&gp->lock, flags);
  2347. mutex_unlock(&gp->pm_mutex);
  2348. return rc;
  2349. }
  2350. #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
  2351. /* Fetch MAC address from vital product data of PCI ROM. */
  2352. static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
  2353. {
  2354. int this_offset;
  2355. for (this_offset = 0x20; this_offset < len; this_offset++) {
  2356. void __iomem *p = rom_base + this_offset;
  2357. int i;
  2358. if (readb(p + 0) != 0x90 ||
  2359. readb(p + 1) != 0x00 ||
  2360. readb(p + 2) != 0x09 ||
  2361. readb(p + 3) != 0x4e ||
  2362. readb(p + 4) != 0x41 ||
  2363. readb(p + 5) != 0x06)
  2364. continue;
  2365. this_offset += 6;
  2366. p += 6;
  2367. for (i = 0; i < 6; i++)
  2368. dev_addr[i] = readb(p + i);
  2369. return 1;
  2370. }
  2371. return 0;
  2372. }
  2373. static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
  2374. {
  2375. size_t size;
  2376. void __iomem *p = pci_map_rom(pdev, &size);
  2377. if (p) {
  2378. int found;
  2379. found = readb(p) == 0x55 &&
  2380. readb(p + 1) == 0xaa &&
  2381. find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
  2382. pci_unmap_rom(pdev, p);
  2383. if (found)
  2384. return;
  2385. }
  2386. /* Sun MAC prefix then 3 random bytes. */
  2387. dev_addr[0] = 0x08;
  2388. dev_addr[1] = 0x00;
  2389. dev_addr[2] = 0x20;
  2390. get_random_bytes(dev_addr + 3, 3);
  2391. }
  2392. #endif /* not Sparc and not PPC */
  2393. static int __devinit gem_get_device_address(struct gem *gp)
  2394. {
  2395. #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
  2396. struct net_device *dev = gp->dev;
  2397. const unsigned char *addr;
  2398. addr = of_get_property(gp->of_node, "local-mac-address", NULL);
  2399. if (addr == NULL) {
  2400. #ifdef CONFIG_SPARC
  2401. addr = idprom->id_ethaddr;
  2402. #else
  2403. printk("\n");
  2404. pr_err("%s: can't get mac-address\n", dev->name);
  2405. return -1;
  2406. #endif
  2407. }
  2408. memcpy(dev->dev_addr, addr, 6);
  2409. #else
  2410. get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
  2411. #endif
  2412. return 0;
  2413. }
  2414. static void gem_remove_one(struct pci_dev *pdev)
  2415. {
  2416. struct net_device *dev = pci_get_drvdata(pdev);
  2417. if (dev) {
  2418. struct gem *gp = netdev_priv(dev);
  2419. unregister_netdev(dev);
  2420. /* Stop the link timer */
  2421. del_timer_sync(&gp->link_timer);
  2422. /* We shouldn't need any locking here */
  2423. gem_get_cell(gp);
  2424. /* Cancel reset task */
  2425. cancel_work_sync(&gp->reset_task);
  2426. /* Shut the PHY down */
  2427. gem_stop_phy(gp, 0);
  2428. gem_put_cell(gp);
  2429. /* Make sure bus master is disabled */
  2430. pci_disable_device(gp->pdev);
  2431. /* Free resources */
  2432. pci_free_consistent(pdev,
  2433. sizeof(struct gem_init_block),
  2434. gp->init_block,
  2435. gp->gblock_dvma);
  2436. iounmap(gp->regs);
  2437. pci_release_regions(pdev);
  2438. free_netdev(dev);
  2439. pci_set_drvdata(pdev, NULL);
  2440. }
  2441. }
  2442. static const struct net_device_ops gem_netdev_ops = {
  2443. .ndo_open = gem_open,
  2444. .ndo_stop = gem_close,
  2445. .ndo_start_xmit = gem_start_xmit,
  2446. .ndo_get_stats = gem_get_stats,
  2447. .ndo_set_multicast_list = gem_set_multicast,
  2448. .ndo_do_ioctl = gem_ioctl,
  2449. .ndo_tx_timeout = gem_tx_timeout,
  2450. .ndo_change_mtu = gem_change_mtu,
  2451. .ndo_validate_addr = eth_validate_addr,
  2452. .ndo_set_mac_address = gem_set_mac_address,
  2453. #ifdef CONFIG_NET_POLL_CONTROLLER
  2454. .ndo_poll_controller = gem_poll_controller,
  2455. #endif
  2456. };
  2457. static int __devinit gem_init_one(struct pci_dev *pdev,
  2458. const struct pci_device_id *ent)
  2459. {
  2460. unsigned long gemreg_base, gemreg_len;
  2461. struct net_device *dev;
  2462. struct gem *gp;
  2463. int err, pci_using_dac;
  2464. printk_once(KERN_INFO "%s", version);
  2465. /* Apple gmac note: during probe, the chip is powered up by
  2466. * the arch code to allow the code below to work (and to let
  2467. * the chip be probed on the config space. It won't stay powered
  2468. * up until the interface is brought up however, so we can't rely
  2469. * on register configuration done at this point.
  2470. */
  2471. err = pci_enable_device(pdev);
  2472. if (err) {
  2473. pr_err("Cannot enable MMIO operation, aborting\n");
  2474. return err;
  2475. }
  2476. pci_set_master(pdev);
  2477. /* Configure DMA attributes. */
  2478. /* All of the GEM documentation states that 64-bit DMA addressing
  2479. * is fully supported and should work just fine. However the
  2480. * front end for RIO based GEMs is different and only supports
  2481. * 32-bit addressing.
  2482. *
  2483. * For now we assume the various PPC GEMs are 32-bit only as well.
  2484. */
  2485. if (pdev->vendor == PCI_VENDOR_ID_SUN &&
  2486. pdev->device == PCI_DEVICE_ID_SUN_GEM &&
  2487. !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  2488. pci_using_dac = 1;
  2489. } else {
  2490. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  2491. if (err) {
  2492. pr_err("No usable DMA configuration, aborting\n");
  2493. goto err_disable_device;
  2494. }
  2495. pci_using_dac = 0;
  2496. }
  2497. gemreg_base = pci_resource_start(pdev, 0);
  2498. gemreg_len = pci_resource_len(pdev, 0);
  2499. if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
  2500. pr_err("Cannot find proper PCI device base address, aborting\n");
  2501. err = -ENODEV;
  2502. goto err_disable_device;
  2503. }
  2504. dev = alloc_etherdev(sizeof(*gp));
  2505. if (!dev) {
  2506. pr_err("Etherdev alloc failed, aborting\n");
  2507. err = -ENOMEM;
  2508. goto err_disable_device;
  2509. }
  2510. SET_NETDEV_DEV(dev, &pdev->dev);
  2511. gp = netdev_priv(dev);
  2512. err = pci_request_regions(pdev, DRV_NAME);
  2513. if (err) {
  2514. pr_err("Cannot obtain PCI resources, aborting\n");
  2515. goto err_out_free_netdev;
  2516. }
  2517. gp->pdev = pdev;
  2518. dev->base_addr = (long) pdev;
  2519. gp->dev = dev;
  2520. gp->msg_enable = DEFAULT_MSG;
  2521. spin_lock_init(&gp->lock);
  2522. spin_lock_init(&gp->tx_lock);
  2523. mutex_init(&gp->pm_mutex);
  2524. init_timer(&gp->link_timer);
  2525. gp->link_timer.function = gem_link_timer;
  2526. gp->link_timer.data = (unsigned long) gp;
  2527. INIT_WORK(&gp->reset_task, gem_reset_task);
  2528. gp->lstate = link_down;
  2529. gp->timer_ticks = 0;
  2530. netif_carrier_off(dev);
  2531. gp->regs = ioremap(gemreg_base, gemreg_len);
  2532. if (!gp->regs) {
  2533. pr_err("Cannot map device registers, aborting\n");
  2534. err = -EIO;
  2535. goto err_out_free_res;
  2536. }
  2537. /* On Apple, we want a reference to the Open Firmware device-tree
  2538. * node. We use it for clock control.
  2539. */
  2540. #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
  2541. gp->of_node = pci_device_to_OF_node(pdev);
  2542. #endif
  2543. /* Only Apple version supports WOL afaik */
  2544. if (pdev->vendor == PCI_VENDOR_ID_APPLE)
  2545. gp->has_wol = 1;
  2546. /* Make sure cell is enabled */
  2547. gem_get_cell(gp);
  2548. /* Make sure everything is stopped and in init state */
  2549. gem_reset(gp);
  2550. /* Fill up the mii_phy structure (even if we won't use it) */
  2551. gp->phy_mii.dev = dev;
  2552. gp->phy_mii.mdio_read = _phy_read;
  2553. gp->phy_mii.mdio_write = _phy_write;
  2554. #ifdef CONFIG_PPC_PMAC
  2555. gp->phy_mii.platform_data = gp->of_node;
  2556. #endif
  2557. /* By default, we start with autoneg */
  2558. gp->want_autoneg = 1;
  2559. /* Check fifo sizes, PHY type, etc... */
  2560. if (gem_check_invariants(gp)) {
  2561. err = -ENODEV;
  2562. goto err_out_iounmap;
  2563. }
  2564. /* It is guaranteed that the returned buffer will be at least
  2565. * PAGE_SIZE aligned.
  2566. */
  2567. gp->init_block = (struct gem_init_block *)
  2568. pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
  2569. &gp->gblock_dvma);
  2570. if (!gp->init_block) {
  2571. pr_err("Cannot allocate init block, aborting\n");
  2572. err = -ENOMEM;
  2573. goto err_out_iounmap;
  2574. }
  2575. if (gem_get_device_address(gp))
  2576. goto err_out_free_consistent;
  2577. dev->netdev_ops = &gem_netdev_ops;
  2578. netif_napi_add(dev, &gp->napi, gem_poll, 64);
  2579. dev->ethtool_ops = &gem_ethtool_ops;
  2580. dev->watchdog_timeo = 5 * HZ;
  2581. dev->irq = pdev->irq;
  2582. dev->dma = 0;
  2583. /* Set that now, in case PM kicks in now */
  2584. pci_set_drvdata(pdev, dev);
  2585. /* Detect & init PHY, start autoneg, we release the cell now
  2586. * too, it will be managed by whoever needs it
  2587. */
  2588. gem_init_phy(gp);
  2589. spin_lock_irq(&gp->lock);
  2590. gem_put_cell(gp);
  2591. spin_unlock_irq(&gp->lock);
  2592. /* Register with kernel */
  2593. if (register_netdev(dev)) {
  2594. pr_err("Cannot register net device, aborting\n");
  2595. err = -ENOMEM;
  2596. goto err_out_free_consistent;
  2597. }
  2598. netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
  2599. dev->dev_addr);
  2600. if (gp->phy_type == phy_mii_mdio0 ||
  2601. gp->phy_type == phy_mii_mdio1)
  2602. netdev_info(dev, "Found %s PHY\n",
  2603. gp->phy_mii.def ? gp->phy_mii.def->name : "no");
  2604. /* GEM can do it all... */
  2605. dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
  2606. dev->features |= dev->hw_features | NETIF_F_RXCSUM | NETIF_F_LLTX;
  2607. if (pci_using_dac)
  2608. dev->features |= NETIF_F_HIGHDMA;
  2609. return 0;
  2610. err_out_free_consistent:
  2611. gem_remove_one(pdev);
  2612. err_out_iounmap:
  2613. gem_put_cell(gp);
  2614. iounmap(gp->regs);
  2615. err_out_free_res:
  2616. pci_release_regions(pdev);
  2617. err_out_free_netdev:
  2618. free_netdev(dev);
  2619. err_disable_device:
  2620. pci_disable_device(pdev);
  2621. return err;
  2622. }
  2623. static struct pci_driver gem_driver = {
  2624. .name = GEM_MODULE_NAME,
  2625. .id_table = gem_pci_tbl,
  2626. .probe = gem_init_one,
  2627. .remove = gem_remove_one,
  2628. #ifdef CONFIG_PM
  2629. .suspend = gem_suspend,
  2630. .resume = gem_resume,
  2631. #endif /* CONFIG_PM */
  2632. };
  2633. static int __init gem_init(void)
  2634. {
  2635. return pci_register_driver(&gem_driver);
  2636. }
  2637. static void __exit gem_cleanup(void)
  2638. {
  2639. pci_unregister_driver(&gem_driver);
  2640. }
  2641. module_init(gem_init);
  2642. module_exit(gem_cleanup);