PageRenderTime 66ms CodeModel.GetById 17ms RepoModel.GetById 1ms app.codeStats 0ms

/net/ipv4/tcp.c

https://bitbucket.org/zarboz/droid-dna-beastmode
C | 3486 lines | 2312 code | 488 blank | 686 comment | 565 complexity | c90c77d1117252394ffc778ebb8c229c MD5 | raw file
Possible License(s): GPL-2.0, LGPL-2.0, AGPL-1.0
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. *
  20. * Fixes:
  21. * Alan Cox : Numerous verify_area() calls
  22. * Alan Cox : Set the ACK bit on a reset
  23. * Alan Cox : Stopped it crashing if it closed while
  24. * sk->inuse=1 and was trying to connect
  25. * (tcp_err()).
  26. * Alan Cox : All icmp error handling was broken
  27. * pointers passed where wrong and the
  28. * socket was looked up backwards. Nobody
  29. * tested any icmp error code obviously.
  30. * Alan Cox : tcp_err() now handled properly. It
  31. * wakes people on errors. poll
  32. * behaves and the icmp error race
  33. * has gone by moving it into sock.c
  34. * Alan Cox : tcp_send_reset() fixed to work for
  35. * everything not just packets for
  36. * unknown sockets.
  37. * Alan Cox : tcp option processing.
  38. * Alan Cox : Reset tweaked (still not 100%) [Had
  39. * syn rule wrong]
  40. * Herp Rosmanith : More reset fixes
  41. * Alan Cox : No longer acks invalid rst frames.
  42. * Acking any kind of RST is right out.
  43. * Alan Cox : Sets an ignore me flag on an rst
  44. * receive otherwise odd bits of prattle
  45. * escape still
  46. * Alan Cox : Fixed another acking RST frame bug.
  47. * Should stop LAN workplace lockups.
  48. * Alan Cox : Some tidyups using the new skb list
  49. * facilities
  50. * Alan Cox : sk->keepopen now seems to work
  51. * Alan Cox : Pulls options out correctly on accepts
  52. * Alan Cox : Fixed assorted sk->rqueue->next errors
  53. * Alan Cox : PSH doesn't end a TCP read. Switched a
  54. * bit to skb ops.
  55. * Alan Cox : Tidied tcp_data to avoid a potential
  56. * nasty.
  57. * Alan Cox : Added some better commenting, as the
  58. * tcp is hard to follow
  59. * Alan Cox : Removed incorrect check for 20 * psh
  60. * Michael O'Reilly : ack < copied bug fix.
  61. * Johannes Stille : Misc tcp fixes (not all in yet).
  62. * Alan Cox : FIN with no memory -> CRASH
  63. * Alan Cox : Added socket option proto entries.
  64. * Also added awareness of them to accept.
  65. * Alan Cox : Added TCP options (SOL_TCP)
  66. * Alan Cox : Switched wakeup calls to callbacks,
  67. * so the kernel can layer network
  68. * sockets.
  69. * Alan Cox : Use ip_tos/ip_ttl settings.
  70. * Alan Cox : Handle FIN (more) properly (we hope).
  71. * Alan Cox : RST frames sent on unsynchronised
  72. * state ack error.
  73. * Alan Cox : Put in missing check for SYN bit.
  74. * Alan Cox : Added tcp_select_window() aka NET2E
  75. * window non shrink trick.
  76. * Alan Cox : Added a couple of small NET2E timer
  77. * fixes
  78. * Charles Hedrick : TCP fixes
  79. * Toomas Tamm : TCP window fixes
  80. * Alan Cox : Small URG fix to rlogin ^C ack fight
  81. * Charles Hedrick : Rewrote most of it to actually work
  82. * Linus : Rewrote tcp_read() and URG handling
  83. * completely
  84. * Gerhard Koerting: Fixed some missing timer handling
  85. * Matthew Dillon : Reworked TCP machine states as per RFC
  86. * Gerhard Koerting: PC/TCP workarounds
  87. * Adam Caldwell : Assorted timer/timing errors
  88. * Matthew Dillon : Fixed another RST bug
  89. * Alan Cox : Move to kernel side addressing changes.
  90. * Alan Cox : Beginning work on TCP fastpathing
  91. * (not yet usable)
  92. * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
  93. * Alan Cox : TCP fast path debugging
  94. * Alan Cox : Window clamping
  95. * Michael Riepe : Bug in tcp_check()
  96. * Matt Dillon : More TCP improvements and RST bug fixes
  97. * Matt Dillon : Yet more small nasties remove from the
  98. * TCP code (Be very nice to this man if
  99. * tcp finally works 100%) 8)
  100. * Alan Cox : BSD accept semantics.
  101. * Alan Cox : Reset on closedown bug.
  102. * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
  103. * Michael Pall : Handle poll() after URG properly in
  104. * all cases.
  105. * Michael Pall : Undo the last fix in tcp_read_urg()
  106. * (multi URG PUSH broke rlogin).
  107. * Michael Pall : Fix the multi URG PUSH problem in
  108. * tcp_readable(), poll() after URG
  109. * works now.
  110. * Michael Pall : recv(...,MSG_OOB) never blocks in the
  111. * BSD api.
  112. * Alan Cox : Changed the semantics of sk->socket to
  113. * fix a race and a signal problem with
  114. * accept() and async I/O.
  115. * Alan Cox : Relaxed the rules on tcp_sendto().
  116. * Yury Shevchuk : Really fixed accept() blocking problem.
  117. * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
  118. * clients/servers which listen in on
  119. * fixed ports.
  120. * Alan Cox : Cleaned the above up and shrank it to
  121. * a sensible code size.
  122. * Alan Cox : Self connect lockup fix.
  123. * Alan Cox : No connect to multicast.
  124. * Ross Biro : Close unaccepted children on master
  125. * socket close.
  126. * Alan Cox : Reset tracing code.
  127. * Alan Cox : Spurious resets on shutdown.
  128. * Alan Cox : Giant 15 minute/60 second timer error
  129. * Alan Cox : Small whoops in polling before an
  130. * accept.
  131. * Alan Cox : Kept the state trace facility since
  132. * it's handy for debugging.
  133. * Alan Cox : More reset handler fixes.
  134. * Alan Cox : Started rewriting the code based on
  135. * the RFC's for other useful protocol
  136. * references see: Comer, KA9Q NOS, and
  137. * for a reference on the difference
  138. * between specifications and how BSD
  139. * works see the 4.4lite source.
  140. * A.N.Kuznetsov : Don't time wait on completion of tidy
  141. * close.
  142. * Linus Torvalds : Fin/Shutdown & copied_seq changes.
  143. * Linus Torvalds : Fixed BSD port reuse to work first syn
  144. * Alan Cox : Reimplemented timers as per the RFC
  145. * and using multiple timers for sanity.
  146. * Alan Cox : Small bug fixes, and a lot of new
  147. * comments.
  148. * Alan Cox : Fixed dual reader crash by locking
  149. * the buffers (much like datagram.c)
  150. * Alan Cox : Fixed stuck sockets in probe. A probe
  151. * now gets fed up of retrying without
  152. * (even a no space) answer.
  153. * Alan Cox : Extracted closing code better
  154. * Alan Cox : Fixed the closing state machine to
  155. * resemble the RFC.
  156. * Alan Cox : More 'per spec' fixes.
  157. * Jorge Cwik : Even faster checksumming.
  158. * Alan Cox : tcp_data() doesn't ack illegal PSH
  159. * only frames. At least one pc tcp stack
  160. * generates them.
  161. * Alan Cox : Cache last socket.
  162. * Alan Cox : Per route irtt.
  163. * Matt Day : poll()->select() match BSD precisely on error
  164. * Alan Cox : New buffers
  165. * Marc Tamsky : Various sk->prot->retransmits and
  166. * sk->retransmits misupdating fixed.
  167. * Fixed tcp_write_timeout: stuck close,
  168. * and TCP syn retries gets used now.
  169. * Mark Yarvis : In tcp_read_wakeup(), don't send an
  170. * ack if state is TCP_CLOSED.
  171. * Alan Cox : Look up device on a retransmit - routes may
  172. * change. Doesn't yet cope with MSS shrink right
  173. * but it's a start!
  174. * Marc Tamsky : Closing in closing fixes.
  175. * Mike Shaver : RFC1122 verifications.
  176. * Alan Cox : rcv_saddr errors.
  177. * Alan Cox : Block double connect().
  178. * Alan Cox : Small hooks for enSKIP.
  179. * Alexey Kuznetsov: Path MTU discovery.
  180. * Alan Cox : Support soft errors.
  181. * Alan Cox : Fix MTU discovery pathological case
  182. * when the remote claims no mtu!
  183. * Marc Tamsky : TCP_CLOSE fix.
  184. * Colin (G3TNE) : Send a reset on syn ack replies in
  185. * window but wrong (fixes NT lpd problems)
  186. * Pedro Roque : Better TCP window handling, delayed ack.
  187. * Joerg Reuter : No modification of locked buffers in
  188. * tcp_do_retransmit()
  189. * Eric Schenk : Changed receiver side silly window
  190. * avoidance algorithm to BSD style
  191. * algorithm. This doubles throughput
  192. * against machines running Solaris,
  193. * and seems to result in general
  194. * improvement.
  195. * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
  196. * Willy Konynenberg : Transparent proxying support.
  197. * Mike McLagan : Routing by source
  198. * Keith Owens : Do proper merging with partial SKB's in
  199. * tcp_do_sendmsg to avoid burstiness.
  200. * Eric Schenk : Fix fast close down bug with
  201. * shutdown() followed by close().
  202. * Andi Kleen : Make poll agree with SIGIO
  203. * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
  204. * lingertime == 0 (RFC 793 ABORT Call)
  205. * Hirokazu Takahashi : Use copy_from_user() instead of
  206. * csum_and_copy_from_user() if possible.
  207. *
  208. * This program is free software; you can redistribute it and/or
  209. * modify it under the terms of the GNU General Public License
  210. * as published by the Free Software Foundation; either version
  211. * 2 of the License, or(at your option) any later version.
  212. *
  213. * Description of States:
  214. *
  215. * TCP_SYN_SENT sent a connection request, waiting for ack
  216. *
  217. * TCP_SYN_RECV received a connection request, sent ack,
  218. * waiting for final ack in three-way handshake.
  219. *
  220. * TCP_ESTABLISHED connection established
  221. *
  222. * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
  223. * transmission of remaining buffered data
  224. *
  225. * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
  226. * to shutdown
  227. *
  228. * TCP_CLOSING both sides have shutdown but we still have
  229. * data we have to finish sending
  230. *
  231. * TCP_TIME_WAIT timeout to catch resent junk before entering
  232. * closed, can only be entered from FIN_WAIT2
  233. * or CLOSING. Required because the other end
  234. * may not have gotten our last ACK causing it
  235. * to retransmit the data packet (which we ignore)
  236. *
  237. * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
  238. * us to finish writing our data and to shutdown
  239. * (we have to close() to move on to LAST_ACK)
  240. *
  241. * TCP_LAST_ACK out side has shutdown after remote has
  242. * shutdown. There may still be data in our
  243. * buffer that we have to finish sending
  244. *
  245. * TCP_CLOSE socket is finished
  246. */
  247. #define pr_fmt(fmt) "TCP: " fmt
  248. #include <linux/kernel.h>
  249. #include <linux/module.h>
  250. #include <linux/types.h>
  251. #include <linux/fcntl.h>
  252. #include <linux/poll.h>
  253. #include <linux/init.h>
  254. #include <linux/fs.h>
  255. #include <linux/skbuff.h>
  256. #include <linux/scatterlist.h>
  257. #include <linux/splice.h>
  258. #include <linux/net.h>
  259. #include <linux/socket.h>
  260. #include <linux/random.h>
  261. #include <linux/bootmem.h>
  262. #include <linux/highmem.h>
  263. #include <linux/swap.h>
  264. #include <linux/cache.h>
  265. #include <linux/err.h>
  266. #include <linux/crypto.h>
  267. #include <linux/time.h>
  268. #include <linux/slab.h>
  269. #include <linux/uid_stat.h>
  270. #include <net/icmp.h>
  271. #include <net/tcp.h>
  272. #include <net/xfrm.h>
  273. #include <net/ip.h>
  274. #include <net/ip6_route.h>
  275. #include <net/ipv6.h>
  276. #include <net/transp_v6.h>
  277. #include <net/netdma.h>
  278. #include <net/sock.h>
  279. #include <asm/uaccess.h>
  280. #include <asm/ioctls.h>
  281. int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
  282. struct percpu_counter tcp_orphan_count;
  283. EXPORT_SYMBOL_GPL(tcp_orphan_count);
  284. int sysctl_tcp_wmem[3] __read_mostly;
  285. int sysctl_tcp_rmem[3] __read_mostly;
  286. EXPORT_SYMBOL(sysctl_tcp_rmem);
  287. EXPORT_SYMBOL(sysctl_tcp_wmem);
  288. atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
  289. EXPORT_SYMBOL(tcp_memory_allocated);
  290. /*
  291. * Current number of TCP sockets.
  292. */
  293. struct percpu_counter tcp_sockets_allocated;
  294. EXPORT_SYMBOL(tcp_sockets_allocated);
  295. /*
  296. * TCP splice context
  297. */
  298. struct tcp_splice_state {
  299. struct pipe_inode_info *pipe;
  300. size_t len;
  301. unsigned int flags;
  302. };
  303. /*
  304. * Pressure flag: try to collapse.
  305. * Technical note: it is used by multiple contexts non atomically.
  306. * All the __sk_mem_schedule() is of this nature: accounting
  307. * is strict, actions are advisory and have some latency.
  308. */
  309. int tcp_memory_pressure __read_mostly;
  310. EXPORT_SYMBOL(tcp_memory_pressure);
  311. void tcp_enter_memory_pressure(struct sock *sk)
  312. {
  313. if (!tcp_memory_pressure) {
  314. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
  315. tcp_memory_pressure = 1;
  316. }
  317. }
  318. EXPORT_SYMBOL(tcp_enter_memory_pressure);
  319. /* Convert seconds to retransmits based on initial and max timeout */
  320. static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
  321. {
  322. u8 res = 0;
  323. if (seconds > 0) {
  324. int period = timeout;
  325. res = 1;
  326. while (seconds > period && res < 255) {
  327. res++;
  328. timeout <<= 1;
  329. if (timeout > rto_max)
  330. timeout = rto_max;
  331. period += timeout;
  332. }
  333. }
  334. return res;
  335. }
  336. /* Convert retransmits to seconds based on initial and max timeout */
  337. static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
  338. {
  339. int period = 0;
  340. if (retrans > 0) {
  341. period = timeout;
  342. while (--retrans) {
  343. timeout <<= 1;
  344. if (timeout > rto_max)
  345. timeout = rto_max;
  346. period += timeout;
  347. }
  348. }
  349. return period;
  350. }
  351. /*
  352. * Wait for a TCP event.
  353. *
  354. * Note that we don't need to lock the socket, as the upper poll layers
  355. * take care of normal races (between the test and the event) and we don't
  356. * go look at any of the socket buffers directly.
  357. */
  358. unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
  359. {
  360. unsigned int mask;
  361. struct sock *sk = sock->sk;
  362. const struct tcp_sock *tp = tcp_sk(sk);
  363. sock_poll_wait(file, sk_sleep(sk), wait);
  364. if (sk->sk_state == TCP_LISTEN)
  365. return inet_csk_listen_poll(sk);
  366. /* Socket is not locked. We are protected from async events
  367. * by poll logic and correct handling of state changes
  368. * made by other threads is impossible in any case.
  369. */
  370. mask = 0;
  371. /*
  372. * POLLHUP is certainly not done right. But poll() doesn't
  373. * have a notion of HUP in just one direction, and for a
  374. * socket the read side is more interesting.
  375. *
  376. * Some poll() documentation says that POLLHUP is incompatible
  377. * with the POLLOUT/POLLWR flags, so somebody should check this
  378. * all. But careful, it tends to be safer to return too many
  379. * bits than too few, and you can easily break real applications
  380. * if you don't tell them that something has hung up!
  381. *
  382. * Check-me.
  383. *
  384. * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
  385. * our fs/select.c). It means that after we received EOF,
  386. * poll always returns immediately, making impossible poll() on write()
  387. * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
  388. * if and only if shutdown has been made in both directions.
  389. * Actually, it is interesting to look how Solaris and DUX
  390. * solve this dilemma. I would prefer, if POLLHUP were maskable,
  391. * then we could set it on SND_SHUTDOWN. BTW examples given
  392. * in Stevens' books assume exactly this behaviour, it explains
  393. * why POLLHUP is incompatible with POLLOUT. --ANK
  394. *
  395. * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
  396. * blocking on fresh not-connected or disconnected socket. --ANK
  397. */
  398. if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
  399. mask |= POLLHUP;
  400. if (sk->sk_shutdown & RCV_SHUTDOWN)
  401. mask |= POLLIN | POLLRDNORM | POLLRDHUP;
  402. /* Connected? */
  403. if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
  404. int target = sock_rcvlowat(sk, 0, INT_MAX);
  405. if (tp->urg_seq == tp->copied_seq &&
  406. !sock_flag(sk, SOCK_URGINLINE) &&
  407. tp->urg_data)
  408. target++;
  409. /* Potential race condition. If read of tp below will
  410. * escape above sk->sk_state, we can be illegally awaken
  411. * in SYN_* states. */
  412. if (tp->rcv_nxt - tp->copied_seq >= target)
  413. mask |= POLLIN | POLLRDNORM;
  414. if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
  415. if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
  416. mask |= POLLOUT | POLLWRNORM;
  417. } else { /* send SIGIO later */
  418. set_bit(SOCK_ASYNC_NOSPACE,
  419. &sk->sk_socket->flags);
  420. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  421. /* Race breaker. If space is freed after
  422. * wspace test but before the flags are set,
  423. * IO signal will be lost.
  424. */
  425. if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
  426. mask |= POLLOUT | POLLWRNORM;
  427. }
  428. } else
  429. mask |= POLLOUT | POLLWRNORM;
  430. if (tp->urg_data & TCP_URG_VALID)
  431. mask |= POLLPRI;
  432. }
  433. /* This barrier is coupled with smp_wmb() in tcp_reset() */
  434. smp_rmb();
  435. if (sk->sk_err)
  436. mask |= POLLERR;
  437. return mask;
  438. }
  439. EXPORT_SYMBOL(tcp_poll);
  440. int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
  441. {
  442. struct tcp_sock *tp = tcp_sk(sk);
  443. int answ;
  444. switch (cmd) {
  445. case SIOCINQ:
  446. if (sk->sk_state == TCP_LISTEN)
  447. return -EINVAL;
  448. lock_sock(sk);
  449. if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
  450. answ = 0;
  451. else if (sock_flag(sk, SOCK_URGINLINE) ||
  452. !tp->urg_data ||
  453. before(tp->urg_seq, tp->copied_seq) ||
  454. !before(tp->urg_seq, tp->rcv_nxt)) {
  455. struct sk_buff *skb;
  456. answ = tp->rcv_nxt - tp->copied_seq;
  457. /* Subtract 1, if FIN is in queue. */
  458. skb = skb_peek_tail(&sk->sk_receive_queue);
  459. if (answ && skb)
  460. answ -= tcp_hdr(skb)->fin;
  461. } else
  462. answ = tp->urg_seq - tp->copied_seq;
  463. release_sock(sk);
  464. break;
  465. case SIOCATMARK:
  466. answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
  467. break;
  468. case SIOCOUTQ:
  469. if (sk->sk_state == TCP_LISTEN)
  470. return -EINVAL;
  471. if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
  472. answ = 0;
  473. else
  474. answ = tp->write_seq - tp->snd_una;
  475. break;
  476. case SIOCOUTQNSD:
  477. if (sk->sk_state == TCP_LISTEN)
  478. return -EINVAL;
  479. if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
  480. answ = 0;
  481. else
  482. answ = tp->write_seq - tp->snd_nxt;
  483. break;
  484. default:
  485. return -ENOIOCTLCMD;
  486. }
  487. return put_user(answ, (int __user *)arg);
  488. }
  489. EXPORT_SYMBOL(tcp_ioctl);
  490. static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
  491. {
  492. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
  493. tp->pushed_seq = tp->write_seq;
  494. }
  495. static inline int forced_push(const struct tcp_sock *tp)
  496. {
  497. return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
  498. }
  499. static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
  500. {
  501. struct tcp_sock *tp = tcp_sk(sk);
  502. struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
  503. skb->csum = 0;
  504. tcb->seq = tcb->end_seq = tp->write_seq;
  505. tcb->tcp_flags = TCPHDR_ACK;
  506. tcb->sacked = 0;
  507. skb_header_release(skb);
  508. tcp_add_write_queue_tail(sk, skb);
  509. sk->sk_wmem_queued += skb->truesize;
  510. sk_mem_charge(sk, skb->truesize);
  511. if (tp->nonagle & TCP_NAGLE_PUSH)
  512. tp->nonagle &= ~TCP_NAGLE_PUSH;
  513. }
  514. static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
  515. {
  516. if (flags & MSG_OOB)
  517. tp->snd_up = tp->write_seq;
  518. }
  519. static inline void tcp_push(struct sock *sk, int flags, int mss_now,
  520. int nonagle)
  521. {
  522. if (tcp_send_head(sk)) {
  523. struct tcp_sock *tp = tcp_sk(sk);
  524. if (!(flags & MSG_MORE) || forced_push(tp))
  525. tcp_mark_push(tp, tcp_write_queue_tail(sk));
  526. tcp_mark_urg(tp, flags);
  527. __tcp_push_pending_frames(sk, mss_now,
  528. (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
  529. }
  530. }
  531. static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
  532. unsigned int offset, size_t len)
  533. {
  534. struct tcp_splice_state *tss = rd_desc->arg.data;
  535. int ret;
  536. ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
  537. tss->flags);
  538. if (ret > 0)
  539. rd_desc->count -= ret;
  540. return ret;
  541. }
  542. static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
  543. {
  544. /* Store TCP splice context information in read_descriptor_t. */
  545. read_descriptor_t rd_desc = {
  546. .arg.data = tss,
  547. .count = tss->len,
  548. };
  549. return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
  550. }
  551. /**
  552. * tcp_splice_read - splice data from TCP socket to a pipe
  553. * @sock: socket to splice from
  554. * @ppos: position (not valid)
  555. * @pipe: pipe to splice to
  556. * @len: number of bytes to splice
  557. * @flags: splice modifier flags
  558. *
  559. * Description:
  560. * Will read pages from given socket and fill them into a pipe.
  561. *
  562. **/
  563. ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
  564. struct pipe_inode_info *pipe, size_t len,
  565. unsigned int flags)
  566. {
  567. struct sock *sk = sock->sk;
  568. struct tcp_splice_state tss = {
  569. .pipe = pipe,
  570. .len = len,
  571. .flags = flags,
  572. };
  573. long timeo;
  574. ssize_t spliced;
  575. int ret;
  576. sock_rps_record_flow(sk);
  577. /*
  578. * We can't seek on a socket input
  579. */
  580. if (unlikely(*ppos))
  581. return -ESPIPE;
  582. ret = spliced = 0;
  583. lock_sock(sk);
  584. timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
  585. while (tss.len) {
  586. ret = __tcp_splice_read(sk, &tss);
  587. if (ret < 0)
  588. break;
  589. else if (!ret) {
  590. if (spliced)
  591. break;
  592. if (sock_flag(sk, SOCK_DONE))
  593. break;
  594. if (sk->sk_err) {
  595. ret = sock_error(sk);
  596. break;
  597. }
  598. if (sk->sk_shutdown & RCV_SHUTDOWN)
  599. break;
  600. if (sk->sk_state == TCP_CLOSE) {
  601. /*
  602. * This occurs when user tries to read
  603. * from never connected socket.
  604. */
  605. if (!sock_flag(sk, SOCK_DONE))
  606. ret = -ENOTCONN;
  607. break;
  608. }
  609. if (!timeo) {
  610. ret = -EAGAIN;
  611. break;
  612. }
  613. sk_wait_data(sk, &timeo);
  614. if (signal_pending(current)) {
  615. ret = sock_intr_errno(timeo);
  616. break;
  617. }
  618. continue;
  619. }
  620. tss.len -= ret;
  621. spliced += ret;
  622. if (!timeo)
  623. break;
  624. release_sock(sk);
  625. lock_sock(sk);
  626. if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
  627. (sk->sk_shutdown & RCV_SHUTDOWN) ||
  628. signal_pending(current))
  629. break;
  630. }
  631. release_sock(sk);
  632. if (spliced)
  633. return spliced;
  634. return ret;
  635. }
  636. EXPORT_SYMBOL(tcp_splice_read);
  637. struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
  638. {
  639. struct sk_buff *skb;
  640. /* The TCP header must be at least 32-bit aligned. */
  641. size = ALIGN(size, 4);
  642. skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
  643. if (skb) {
  644. if (sk_wmem_schedule(sk, skb->truesize)) {
  645. skb_reserve(skb, sk->sk_prot->max_header);
  646. /*
  647. * Make sure that we have exactly size bytes
  648. * available to the caller, no more, no less.
  649. */
  650. skb->avail_size = size;
  651. return skb;
  652. }
  653. __kfree_skb(skb);
  654. } else {
  655. sk->sk_prot->enter_memory_pressure(sk);
  656. sk_stream_moderate_sndbuf(sk);
  657. }
  658. return NULL;
  659. }
  660. static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
  661. int large_allowed)
  662. {
  663. struct tcp_sock *tp = tcp_sk(sk);
  664. u32 xmit_size_goal, old_size_goal;
  665. xmit_size_goal = mss_now;
  666. if (large_allowed && sk_can_gso(sk)) {
  667. xmit_size_goal = ((sk->sk_gso_max_size - 1) -
  668. inet_csk(sk)->icsk_af_ops->net_header_len -
  669. inet_csk(sk)->icsk_ext_hdr_len -
  670. tp->tcp_header_len);
  671. xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
  672. /* We try hard to avoid divides here */
  673. old_size_goal = tp->xmit_size_goal_segs * mss_now;
  674. if (likely(old_size_goal <= xmit_size_goal &&
  675. old_size_goal + mss_now > xmit_size_goal)) {
  676. xmit_size_goal = old_size_goal;
  677. } else {
  678. tp->xmit_size_goal_segs = xmit_size_goal / mss_now;
  679. xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
  680. }
  681. }
  682. return max(xmit_size_goal, mss_now);
  683. }
  684. static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
  685. {
  686. int mss_now;
  687. mss_now = tcp_current_mss(sk);
  688. *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
  689. return mss_now;
  690. }
  691. static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
  692. size_t psize, int flags)
  693. {
  694. struct tcp_sock *tp = tcp_sk(sk);
  695. int mss_now, size_goal;
  696. int err;
  697. ssize_t copied;
  698. long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
  699. /* Wait for a connection to finish. */
  700. if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
  701. if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
  702. goto out_err;
  703. clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  704. mss_now = tcp_send_mss(sk, &size_goal, flags);
  705. copied = 0;
  706. err = -EPIPE;
  707. if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
  708. goto out_err;
  709. while (psize > 0) {
  710. struct sk_buff *skb = tcp_write_queue_tail(sk);
  711. struct page *page = pages[poffset / PAGE_SIZE];
  712. int copy, i, can_coalesce;
  713. int offset = poffset % PAGE_SIZE;
  714. int size = min_t(size_t, psize, PAGE_SIZE - offset);
  715. #ifdef CONFIG_HTC_NETWORK_MODIFY
  716. if (IS_ERR(skb) || (!skb))
  717. printk(KERN_ERR "[NET] skb is NULL in %s!\n", __func__);
  718. #endif
  719. if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
  720. new_segment:
  721. if (!sk_stream_memory_free(sk))
  722. goto wait_for_sndbuf;
  723. skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
  724. if (!skb)
  725. goto wait_for_memory;
  726. skb_entail(sk, skb);
  727. copy = size_goal;
  728. }
  729. if (copy > size)
  730. copy = size;
  731. i = skb_shinfo(skb)->nr_frags;
  732. can_coalesce = skb_can_coalesce(skb, i, page, offset);
  733. if (!can_coalesce && i >= MAX_SKB_FRAGS) {
  734. tcp_mark_push(tp, skb);
  735. goto new_segment;
  736. }
  737. if (!sk_wmem_schedule(sk, copy))
  738. goto wait_for_memory;
  739. if (can_coalesce) {
  740. skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
  741. } else {
  742. get_page(page);
  743. skb_fill_page_desc(skb, i, page, offset, copy);
  744. }
  745. skb->len += copy;
  746. skb->data_len += copy;
  747. skb->truesize += copy;
  748. sk->sk_wmem_queued += copy;
  749. sk_mem_charge(sk, copy);
  750. skb->ip_summed = CHECKSUM_PARTIAL;
  751. tp->write_seq += copy;
  752. TCP_SKB_CB(skb)->end_seq += copy;
  753. skb_shinfo(skb)->gso_segs = 0;
  754. if (!copied)
  755. TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
  756. copied += copy;
  757. poffset += copy;
  758. if (!(psize -= copy))
  759. goto out;
  760. if (skb->len < size_goal || (flags & MSG_OOB))
  761. continue;
  762. if (forced_push(tp)) {
  763. tcp_mark_push(tp, skb);
  764. __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
  765. } else if (skb == tcp_send_head(sk))
  766. tcp_push_one(sk, mss_now);
  767. continue;
  768. wait_for_sndbuf:
  769. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  770. wait_for_memory:
  771. tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
  772. if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
  773. goto do_error;
  774. mss_now = tcp_send_mss(sk, &size_goal, flags);
  775. }
  776. out:
  777. if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
  778. tcp_push(sk, flags, mss_now, tp->nonagle);
  779. return copied;
  780. do_error:
  781. if (copied)
  782. goto out;
  783. out_err:
  784. return sk_stream_error(sk, flags, err);
  785. }
  786. int tcp_sendpage(struct sock *sk, struct page *page, int offset,
  787. size_t size, int flags)
  788. {
  789. ssize_t res;
  790. if (!(sk->sk_route_caps & NETIF_F_SG) ||
  791. !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
  792. return sock_no_sendpage(sk->sk_socket, page, offset, size,
  793. flags);
  794. lock_sock(sk);
  795. res = do_tcp_sendpages(sk, &page, offset, size, flags);
  796. release_sock(sk);
  797. return res;
  798. }
  799. EXPORT_SYMBOL(tcp_sendpage);
  800. static inline int select_size(const struct sock *sk, bool sg)
  801. {
  802. const struct tcp_sock *tp = tcp_sk(sk);
  803. int tmp = tp->mss_cache;
  804. if (sg) {
  805. if (sk_can_gso(sk)) {
  806. /* Small frames wont use a full page:
  807. * Payload will immediately follow tcp header.
  808. */
  809. tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
  810. } else {
  811. int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
  812. if (tmp >= pgbreak &&
  813. tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
  814. tmp = pgbreak;
  815. }
  816. }
  817. return tmp;
  818. }
  819. int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
  820. size_t size)
  821. {
  822. struct iovec *iov;
  823. struct tcp_sock *tp = tcp_sk(sk);
  824. struct sk_buff *skb;
  825. int iovlen, flags, err, copied;
  826. int mss_now, size_goal;
  827. bool sg;
  828. long timeo;
  829. lock_sock(sk);
  830. flags = msg->msg_flags;
  831. timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
  832. /* Wait for a connection to finish. */
  833. if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
  834. if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
  835. goto out_err;
  836. /* This should be in poll */
  837. clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  838. mss_now = tcp_send_mss(sk, &size_goal, flags);
  839. /* Ok commence sending. */
  840. iovlen = msg->msg_iovlen;
  841. iov = msg->msg_iov;
  842. copied = 0;
  843. err = -EPIPE;
  844. if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
  845. goto out_err;
  846. sg = !!(sk->sk_route_caps & NETIF_F_SG);
  847. while (--iovlen >= 0) {
  848. size_t seglen = iov->iov_len;
  849. unsigned char __user *from = iov->iov_base;
  850. iov++;
  851. while (seglen > 0) {
  852. int copy = 0;
  853. int max = size_goal;
  854. skb = tcp_write_queue_tail(sk);
  855. if (tcp_send_head(sk)) {
  856. if (skb->ip_summed == CHECKSUM_NONE)
  857. max = mss_now;
  858. copy = max - skb->len;
  859. }
  860. if (copy <= 0) {
  861. new_segment:
  862. /* Allocate new segment. If the interface is SG,
  863. * allocate skb fitting to single page.
  864. */
  865. if (!sk_stream_memory_free(sk))
  866. goto wait_for_sndbuf;
  867. skb = sk_stream_alloc_skb(sk,
  868. select_size(sk, sg),
  869. sk->sk_allocation);
  870. if (!skb)
  871. goto wait_for_memory;
  872. /*
  873. * Check whether we can use HW checksum.
  874. */
  875. if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
  876. skb->ip_summed = CHECKSUM_PARTIAL;
  877. skb_entail(sk, skb);
  878. copy = size_goal;
  879. max = size_goal;
  880. }
  881. /* Try to append data to the end of skb. */
  882. if (copy > seglen)
  883. copy = seglen;
  884. /* Where to copy to? */
  885. if (skb_availroom(skb) > 0) {
  886. /* We have some space in skb head. Superb! */
  887. copy = min_t(int, copy, skb_availroom(skb));
  888. err = skb_add_data_nocache(sk, skb, from, copy);
  889. if (err)
  890. goto do_fault;
  891. } else {
  892. int merge = 0;
  893. int i = skb_shinfo(skb)->nr_frags;
  894. struct page *page = sk->sk_sndmsg_page;
  895. int off;
  896. if (page && page_count(page) == 1)
  897. sk->sk_sndmsg_off = 0;
  898. off = sk->sk_sndmsg_off;
  899. if (skb_can_coalesce(skb, i, page, off) &&
  900. off != PAGE_SIZE) {
  901. /* We can extend the last page
  902. * fragment. */
  903. merge = 1;
  904. } else if (i == MAX_SKB_FRAGS || !sg) {
  905. /* Need to add new fragment and cannot
  906. * do this because interface is non-SG,
  907. * or because all the page slots are
  908. * busy. */
  909. tcp_mark_push(tp, skb);
  910. goto new_segment;
  911. } else if (page) {
  912. if (off == PAGE_SIZE) {
  913. put_page(page);
  914. sk->sk_sndmsg_page = page = NULL;
  915. off = 0;
  916. }
  917. } else
  918. off = 0;
  919. if (copy > PAGE_SIZE - off)
  920. copy = PAGE_SIZE - off;
  921. if (!sk_wmem_schedule(sk, copy))
  922. goto wait_for_memory;
  923. if (!page) {
  924. /* Allocate new cache page. */
  925. if (!(page = sk_stream_alloc_page(sk)))
  926. goto wait_for_memory;
  927. }
  928. /* Time to copy data. We are close to
  929. * the end! */
  930. err = skb_copy_to_page_nocache(sk, from, skb,
  931. page, off, copy);
  932. if (err) {
  933. /* If this page was new, give it to the
  934. * socket so it does not get leaked.
  935. */
  936. if (!sk->sk_sndmsg_page) {
  937. sk->sk_sndmsg_page = page;
  938. sk->sk_sndmsg_off = 0;
  939. }
  940. goto do_error;
  941. }
  942. /* Update the skb. */
  943. if (merge) {
  944. skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
  945. } else {
  946. skb_fill_page_desc(skb, i, page, off, copy);
  947. if (sk->sk_sndmsg_page) {
  948. get_page(page);
  949. } else if (off + copy < PAGE_SIZE) {
  950. get_page(page);
  951. sk->sk_sndmsg_page = page;
  952. }
  953. }
  954. sk->sk_sndmsg_off = off + copy;
  955. }
  956. if (!copied)
  957. TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
  958. tp->write_seq += copy;
  959. TCP_SKB_CB(skb)->end_seq += copy;
  960. skb_shinfo(skb)->gso_segs = 0;
  961. from += copy;
  962. copied += copy;
  963. if ((seglen -= copy) == 0 && iovlen == 0)
  964. goto out;
  965. if (skb->len < max || (flags & MSG_OOB))
  966. continue;
  967. if (forced_push(tp)) {
  968. tcp_mark_push(tp, skb);
  969. __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
  970. } else if (skb == tcp_send_head(sk))
  971. tcp_push_one(sk, mss_now);
  972. continue;
  973. wait_for_sndbuf:
  974. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  975. wait_for_memory:
  976. if (copied)
  977. tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
  978. if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
  979. goto do_error;
  980. mss_now = tcp_send_mss(sk, &size_goal, flags);
  981. }
  982. }
  983. out:
  984. if (copied)
  985. tcp_push(sk, flags, mss_now, tp->nonagle);
  986. release_sock(sk);
  987. if (copied > 0)
  988. uid_stat_tcp_snd(current_uid(), copied);
  989. return copied;
  990. do_fault:
  991. if (!skb->len) {
  992. tcp_unlink_write_queue(skb, sk);
  993. /* It is the one place in all of TCP, except connection
  994. * reset, where we can be unlinking the send_head.
  995. */
  996. tcp_check_send_head(sk, skb);
  997. sk_wmem_free_skb(sk, skb);
  998. }
  999. do_error:
  1000. if (copied)
  1001. goto out;
  1002. out_err:
  1003. err = sk_stream_error(sk, flags, err);
  1004. release_sock(sk);
  1005. return err;
  1006. }
  1007. EXPORT_SYMBOL(tcp_sendmsg);
  1008. /*
  1009. * Handle reading urgent data. BSD has very simple semantics for
  1010. * this, no blocking and very strange errors 8)
  1011. */
  1012. static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
  1013. {
  1014. struct tcp_sock *tp = tcp_sk(sk);
  1015. /* No URG data to read. */
  1016. if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
  1017. tp->urg_data == TCP_URG_READ)
  1018. return -EINVAL; /* Yes this is right ! */
  1019. if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
  1020. return -ENOTCONN;
  1021. if (tp->urg_data & TCP_URG_VALID) {
  1022. int err = 0;
  1023. char c = tp->urg_data;
  1024. if (!(flags & MSG_PEEK))
  1025. tp->urg_data = TCP_URG_READ;
  1026. /* Read urgent data. */
  1027. msg->msg_flags |= MSG_OOB;
  1028. if (len > 0) {
  1029. if (!(flags & MSG_TRUNC))
  1030. err = memcpy_toiovec(msg->msg_iov, &c, 1);
  1031. len = 1;
  1032. } else
  1033. msg->msg_flags |= MSG_TRUNC;
  1034. return err ? -EFAULT : len;
  1035. }
  1036. if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
  1037. return 0;
  1038. /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
  1039. * the available implementations agree in this case:
  1040. * this call should never block, independent of the
  1041. * blocking state of the socket.
  1042. * Mike <pall@rz.uni-karlsruhe.de>
  1043. */
  1044. return -EAGAIN;
  1045. }
  1046. /* Clean up the receive buffer for full frames taken by the user,
  1047. * then send an ACK if necessary. COPIED is the number of bytes
  1048. * tcp_recvmsg has given to the user so far, it speeds up the
  1049. * calculation of whether or not we must ACK for the sake of
  1050. * a window update.
  1051. */
  1052. void tcp_cleanup_rbuf(struct sock *sk, int copied)
  1053. {
  1054. struct tcp_sock *tp = tcp_sk(sk);
  1055. int time_to_ack = 0;
  1056. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  1057. WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
  1058. "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
  1059. tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
  1060. if (inet_csk_ack_scheduled(sk)) {
  1061. const struct inet_connection_sock *icsk = inet_csk(sk);
  1062. /* Delayed ACKs frequently hit locked sockets during bulk
  1063. * receive. */
  1064. if (icsk->icsk_ack.blocked ||
  1065. /* Once-per-two-segments ACK was not sent by tcp_input.c */
  1066. tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
  1067. /*
  1068. * If this read emptied read buffer, we send ACK, if
  1069. * connection is not bidirectional, user drained
  1070. * receive buffer and there was a small segment
  1071. * in queue.
  1072. */
  1073. (copied > 0 &&
  1074. ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
  1075. ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
  1076. !icsk->icsk_ack.pingpong)) &&
  1077. !atomic_read(&sk->sk_rmem_alloc)))
  1078. time_to_ack = 1;
  1079. }
  1080. /* We send an ACK if we can now advertise a non-zero window
  1081. * which has been raised "significantly".
  1082. *
  1083. * Even if window raised up to infinity, do not send window open ACK
  1084. * in states, where we will not receive more. It is useless.
  1085. */
  1086. if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
  1087. __u32 rcv_window_now = tcp_receive_window(tp);
  1088. /* Optimize, __tcp_select_window() is not cheap. */
  1089. if (2*rcv_window_now <= tp->window_clamp) {
  1090. __u32 new_window = __tcp_select_window(sk);
  1091. /* Send ACK now, if this read freed lots of space
  1092. * in our buffer. Certainly, new_window is new window.
  1093. * We can advertise it now, if it is not less than current one.
  1094. * "Lots" means "at least twice" here.
  1095. */
  1096. if (new_window && new_window >= 2 * rcv_window_now)
  1097. time_to_ack = 1;
  1098. }
  1099. }
  1100. if (time_to_ack)
  1101. tcp_send_ack(sk);
  1102. }
  1103. static void tcp_prequeue_process(struct sock *sk)
  1104. {
  1105. struct sk_buff *skb;
  1106. struct tcp_sock *tp = tcp_sk(sk);
  1107. NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
  1108. /* RX process wants to run with disabled BHs, though it is not
  1109. * necessary */
  1110. local_bh_disable();
  1111. while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
  1112. sk_backlog_rcv(sk, skb);
  1113. local_bh_enable();
  1114. /* Clear memory counter. */
  1115. tp->ucopy.memory = 0;
  1116. }
  1117. #ifdef CONFIG_NET_DMA
  1118. static void tcp_service_net_dma(struct sock *sk, bool wait)
  1119. {
  1120. dma_cookie_t done, used;
  1121. dma_cookie_t last_issued;
  1122. struct tcp_sock *tp = tcp_sk(sk);
  1123. if (!tp->ucopy.dma_chan)
  1124. return;
  1125. last_issued = tp->ucopy.dma_cookie;
  1126. dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
  1127. do {
  1128. if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
  1129. last_issued, &done,
  1130. &used) == DMA_SUCCESS) {
  1131. /* Safe to free early-copied skbs now */
  1132. __skb_queue_purge(&sk->sk_async_wait_queue);
  1133. break;
  1134. } else {
  1135. struct sk_buff *skb;
  1136. while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
  1137. (dma_async_is_complete(skb->dma_cookie, done,
  1138. used) == DMA_SUCCESS)) {
  1139. __skb_dequeue(&sk->sk_async_wait_queue);
  1140. kfree_skb(skb);
  1141. }
  1142. }
  1143. } while (wait);
  1144. }
  1145. #endif
  1146. static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
  1147. {
  1148. struct sk_buff *skb;
  1149. u32 offset;
  1150. skb_queue_walk(&sk->sk_receive_queue, skb) {
  1151. offset = seq - TCP_SKB_CB(skb)->seq;
  1152. if (tcp_hdr(skb)->syn)
  1153. offset--;
  1154. if (offset < skb->len || tcp_hdr(skb)->fin) {
  1155. *off = offset;
  1156. return skb;
  1157. }
  1158. }
  1159. return NULL;
  1160. }
  1161. /*
  1162. * This routine provides an alternative to tcp_recvmsg() for routines
  1163. * that would like to handle copying from skbuffs directly in 'sendfile'
  1164. * fashion.
  1165. * Note:
  1166. * - It is assumed that the socket was locked by the caller.
  1167. * - The routine does not block.
  1168. * - At present, there is no support for reading OOB data
  1169. * or for 'peeking' the socket using this routine
  1170. * (although both would be easy to implement).
  1171. */
  1172. int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
  1173. sk_read_actor_t recv_actor)
  1174. {
  1175. struct sk_buff *skb;
  1176. struct tcp_sock *tp = tcp_sk(sk);
  1177. u32 seq = tp->copied_seq;
  1178. u32 offset;
  1179. int copied = 0;
  1180. if (sk->sk_state == TCP_LISTEN)
  1181. return -ENOTCONN;
  1182. while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
  1183. if (offset < skb->len) {
  1184. int used;
  1185. size_t len;
  1186. len = skb->len - offset;
  1187. /* Stop reading if we hit a patch of urgent data */
  1188. if (tp->urg_data) {
  1189. u32 urg_offset = tp->urg_seq - seq;
  1190. if (urg_offset < len)
  1191. len = urg_offset;
  1192. if (!len)
  1193. break;
  1194. }
  1195. used = recv_actor(desc, skb, offset, len);
  1196. if (used < 0) {
  1197. if (!copied)
  1198. copied = used;
  1199. break;
  1200. } else if (used <= len) {
  1201. seq += used;
  1202. copied += used;
  1203. offset += used;
  1204. }
  1205. /*
  1206. * If recv_actor drops the lock (e.g. TCP splice
  1207. * receive) the skb pointer might be invalid when
  1208. * getting here: tcp_collapse might have deleted it
  1209. * while aggregating skbs from the socket queue.
  1210. */
  1211. skb = tcp_recv_skb(sk, seq-1, &offset);
  1212. if (!skb || (offset+1 != skb->len))
  1213. break;
  1214. }
  1215. if (tcp_hdr(skb)->fin) {
  1216. sk_eat_skb(sk, skb, 0);
  1217. ++seq;
  1218. break;
  1219. }
  1220. sk_eat_skb(sk, skb, 0);
  1221. if (!desc->count)
  1222. break;
  1223. tp->copied_seq = seq;
  1224. }
  1225. tp->copied_seq = seq;
  1226. tcp_rcv_space_adjust(sk);
  1227. /* Clean up data we have read: This will do ACK frames. */
  1228. if (copied > 0) {
  1229. tcp_cleanup_rbuf(sk, copied);
  1230. uid_stat_tcp_rcv(current_uid(), copied);
  1231. }
  1232. return copied;
  1233. }
  1234. EXPORT_SYMBOL(tcp_read_sock);
  1235. /*
  1236. * This routine copies from a sock struct into the user buffer.
  1237. *
  1238. * Technical note: in 2.3 we work on _locked_ socket, so that
  1239. * tricks with *seq access order and skb->users are not required.
  1240. * Probably, code can be easily improved even more.
  1241. */
  1242. int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
  1243. size_t len, int nonblock, int flags, int *addr_len)
  1244. {
  1245. struct tcp_sock *tp = tcp_sk(sk);
  1246. int copied = 0;
  1247. u32 peek_seq;
  1248. u32 *seq;
  1249. unsigned long used;
  1250. int err;
  1251. int target; /* Read at least this many bytes */
  1252. long timeo;
  1253. struct task_struct *user_recv = NULL;
  1254. int copied_early = 0;
  1255. struct sk_buff *skb;
  1256. u32 urg_hole = 0;
  1257. lock_sock(sk);
  1258. err = -ENOTCONN;
  1259. if (sk->sk_state == TCP_LISTEN)
  1260. goto out;
  1261. timeo = sock_rcvtimeo(sk, nonblock);
  1262. /* Urgent data needs to be handled specially. */
  1263. if (flags & MSG_OOB)
  1264. goto recv_urg;
  1265. seq = &tp->copied_seq;
  1266. if (flags & MSG_PEEK) {
  1267. peek_seq = tp->copied_seq;
  1268. seq = &peek_seq;
  1269. }
  1270. target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
  1271. #ifdef CONFIG_NET_DMA
  1272. tp->ucopy.dma_chan = NULL;
  1273. preempt_disable();
  1274. skb = skb_peek_tail(&sk->sk_receive_queue);
  1275. {
  1276. int available = 0;
  1277. if (skb)
  1278. available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
  1279. if ((available < target) &&
  1280. (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
  1281. !sysctl_tcp_low_latency &&
  1282. net_dma_find_channel()) {
  1283. preempt_enable_no_resched();
  1284. tp->ucopy.pinned_list =
  1285. dma_pin_iovec_pages(msg->msg_iov, len);
  1286. } else {
  1287. preempt_enable_no_resched();
  1288. }
  1289. }
  1290. #endif
  1291. do {
  1292. u32 offset;
  1293. /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
  1294. if (tp->urg_data && tp->urg_seq == *seq) {
  1295. if (copied)
  1296. break;
  1297. if (signal_pending(current)) {
  1298. copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
  1299. break;
  1300. }
  1301. }
  1302. /* Next get a buffer. */
  1303. skb_queue_walk(&sk->sk_receive_queue, skb) {
  1304. /* Now that we have two receive queues this
  1305. * shouldn't happen.
  1306. */
  1307. if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
  1308. "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
  1309. *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
  1310. flags))
  1311. break;
  1312. offset = *seq - TCP_SKB_CB(skb)->seq;
  1313. if (tcp_hdr(skb)->syn)
  1314. offset--;
  1315. if (offset < skb->len)
  1316. goto found_ok_skb;
  1317. if (tcp_hdr(skb)->fin)
  1318. goto found_fin_ok;
  1319. WARN(!(flags & MSG_PEEK),
  1320. "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
  1321. *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
  1322. }
  1323. /* Well, if we have backlog, try to process it now yet. */
  1324. if (copied >= target && !sk->sk_backlog.tail)
  1325. break;
  1326. if (copied) {
  1327. if (sk->sk_err ||
  1328. sk->sk_state == TCP_CLOSE ||
  1329. (sk->sk_shutdown & RCV_SHUTDOWN) ||
  1330. !timeo ||
  1331. signal_pending(current))
  1332. break;
  1333. } else {
  1334. if (sock_flag(sk, SOCK_DONE))
  1335. break;
  1336. if (sk->sk_err) {
  1337. copied = sock_error(sk);
  1338. break;
  1339. }
  1340. if (sk->sk_shutdown & RCV_SHUTDOWN)
  1341. break;
  1342. if (sk->sk_state == TCP_CLOSE) {
  1343. if (!sock_flag(sk, SOCK_DONE)) {
  1344. /* This occurs when user tries to read
  1345. * from never connected socket.
  1346. */
  1347. copied = -ENOTCONN;
  1348. break;
  1349. }
  1350. break;
  1351. }
  1352. if (!timeo) {
  1353. copied = -EAGAIN;
  1354. break;
  1355. }
  1356. if (signal_pending(current)) {
  1357. copied = sock_intr_errno(timeo);
  1358. break;
  1359. }
  1360. }
  1361. tcp_cleanup_rbuf(sk, copied);
  1362. if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
  1363. /* Install new reader */
  1364. if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
  1365. user_recv = current;
  1366. tp->ucopy.task = user_recv;
  1367. tp->ucopy.iov = msg->msg_iov;
  1368. }
  1369. tp->ucopy.len = len;
  1370. WARN_ON(tp->copied_seq != tp->rcv_nxt &&
  1371. !(flags & (MSG_PEEK | MSG_TRUNC)));
  1372. /* Ugly... If prequeue is not empty, we have to
  1373. * process it before releasing socket, otherwise
  1374. * order will be broken at second iteration.
  1375. * More elegant solution is required!!!
  1376. *
  1377. * Look: we have the following (pseudo)queues:
  1378. *
  1379. * 1. packets in flight
  1380. * 2. backlog
  1381. * 3. prequeue
  1382. * 4. receive_queue
  1383. *
  1384. * Each queue can be processed only if the next ones
  1385. * are empty. At this point we have empty receive_queue.
  1386. * But prequeue _can_ be not empty after 2nd iteration,
  1387. * when we jumped to start of loop because backlog
  1388. * processing added something to receive_queue.
  1389. * We cannot release_sock(), because backlog contains
  1390. * packets arrived _after_ prequeued ones.
  1391. *
  1392. * Shortly, algorithm is clear --- to process all
  1393. * the queues in order. We could make it more directly,
  1394. * requeueing packets from backlog to prequeue, if
  1395. * is not empty. It is more elegant, but eats cycles,
  1396. * unfortunately.
  1397. */
  1398. if (!skb_queue_empty(&tp->ucopy.prequeue))
  1399. goto do_prequeue;
  1400. /* __ Set realtime policy in scheduler __ */
  1401. }
  1402. #ifdef CONFIG_NET_DMA
  1403. if (tp->ucopy.dma_chan)
  1404. dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
  1405. #endif
  1406. if (copied >= target) {
  1407. /* Do not sleep, just process backlog. */
  1408. release_sock(sk);
  1409. lock_sock(sk);
  1410. } else
  1411. sk_wait_data(sk, &timeo);
  1412. #ifdef CONFIG_NET_DMA
  1413. tcp_service_net_dma(sk, false); /* Don't block */
  1414. tp->ucopy.wakeup = 0;
  1415. #endif
  1416. if (user_recv) {
  1417. int chunk;
  1418. /* __ Restore normal policy in scheduler __ */
  1419. if ((chunk = len - tp->ucopy.len) != 0) {
  1420. NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
  1421. len -= chunk;
  1422. copied += chunk;
  1423. }
  1424. if (tp->rcv_nxt == tp->copied_seq &&
  1425. !skb_queue_empty(&tp->ucopy.prequeue)) {
  1426. do_prequeue:
  1427. tcp_prequeue_process(sk);
  1428. if ((chunk = len - tp->ucopy.len) != 0) {
  1429. NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
  1430. len -= chunk;
  1431. copied += chunk;
  1432. }
  1433. }
  1434. }
  1435. if ((flags & MSG_PEEK) &&
  1436. (peek_seq - copied - urg_hole != tp->copied_seq)) {
  1437. if (net_ratelimit())
  1438. printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
  1439. current->comm, task_pid_nr(current));
  1440. peek_seq = tp->copied_seq;
  1441. }
  1442. continue;
  1443. found_ok_skb:
  1444. /* Ok so how much can we use? */
  1445. used = skb->len - offset;
  1446. if (len < used)
  1447. used = len;
  1448. /* Do we have urgent data here? */
  1449. if (tp->urg_data) {
  1450. u32 urg_offset = tp->urg_seq - *seq;
  1451. if (urg_offset < used) {
  1452. if (!urg_offset) {
  1453. if (!sock_flag(sk, SOCK_URGINLINE)) {
  1454. ++*seq;
  1455. urg_hole++;
  1456. offset++;
  1457. used--;
  1458. if (!used)
  1459. goto skip_copy;
  1460. }
  1461. } else
  1462. used = urg_offset;
  1463. }
  1464. }
  1465. if (!(flags & MSG_TRUNC)) {
  1466. #ifdef CONFIG_NET_DMA
  1467. if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
  1468. tp->ucopy.dma_chan = net_dma_find_channel();
  1469. if (tp->ucopy.dma_chan) {
  1470. tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
  1471. tp->ucopy.dma_chan, skb, offset,
  1472. msg->msg_iov, used,
  1473. tp->ucopy.pinned_list);
  1474. if (tp->ucopy.dma_cookie < 0) {
  1475. pr_alert("%s: dma_cookie < 0\n",
  1476. __func__);
  1477. /* Exception. Bailout! */
  1478. if (!copied)
  1479. copied = -EFAULT;
  1480. break;
  1481. }
  1482. dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
  1483. if ((offset + used) == skb->len)
  1484. copied_early = 1;
  1485. } else
  1486. #endif
  1487. {
  1488. err = skb_copy_datagram_iovec(skb, offset,
  1489. msg->msg_iov, used);
  1490. if (err) {
  1491. /* Exception. Bailout! */
  1492. if (!copied)
  1493. copied = -EFAULT;
  1494. break;
  1495. }
  1496. }
  1497. }
  1498. *seq += used;
  1499. copied += used;
  1500. len -= used;
  1501. tcp_rcv_space_adjust(sk);
  1502. skip_copy:
  1503. if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
  1504. tp->urg_data = 0;
  1505. tcp_fast_path_check(sk);
  1506. }
  1507. if (used + offset < skb->len)
  1508. continue;
  1509. if (tcp_hdr(skb)->fin)
  1510. goto found_fin_ok;
  1511. if (!(flags & MSG_PEEK)) {
  1512. sk_eat_skb(sk, skb, copied_early);
  1513. copied_early = 0;
  1514. }
  1515. continue;
  1516. found_fin_ok:
  1517. /* Process the FIN. */
  1518. ++*seq;
  1519. if (!(flags & MSG_PEEK)) {
  1520. sk_eat_skb(sk, skb, copied_early);
  1521. copied_early = 0;
  1522. }
  1523. break;
  1524. } while (len > 0);
  1525. if (user_recv) {
  1526. if (!skb_queue_empty(&tp->ucopy.prequeue)) {
  1527. int chunk;
  1528. tp->ucopy.len = copied > 0 ? len : 0;
  1529. tcp_prequeue_process(sk);
  1530. if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
  1531. NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
  1532. len -= chunk;
  1533. copied += chunk;
  1534. }
  1535. }
  1536. tp->ucopy.task = NULL;
  1537. tp->ucopy.len = 0;
  1538. }
  1539. #ifdef CONFIG_NET_DMA
  1540. tcp_service_net_dma(sk, true); /* Wait for queue to drain */
  1541. tp->ucopy.dma_chan = NULL;
  1542. if (tp->ucopy.pinned_list) {
  1543. dma_unpin_iovec_pages(tp->ucopy.pinned_list);
  1544. tp->ucopy.pinned_list = NULL;
  1545. }
  1546. #endif
  1547. /* According to UNIX98, msg_name/msg_namelen are ignored
  1548. * on connected socket. I was just happy when found this 8) --ANK
  1549. */
  1550. /* Clean up data we have read: This will do ACK frames. */
  1551. tcp_cleanup_rbuf(sk, copied);
  1552. release_sock(sk);
  1553. if (copied > 0)
  1554. uid_stat_tcp_rcv(current_uid(), copied);
  1555. return copied;
  1556. out:
  1557. release_sock(sk);
  1558. return err;
  1559. recv_urg:
  1560. err = tcp_recv_urg(sk, msg, len, flags);
  1561. if (err > 0)
  1562. uid_stat_tcp_rcv(current_uid(), err);
  1563. goto out;
  1564. }
  1565. EXPORT_SYMBOL(tcp_recvmsg);
  1566. #ifdef CONFIG_HTC_TCP_SYN_FAIL
  1567. EXPORT_SYMBOL(sysctl_tcp_syn_fail);
  1568. __be32 sysctl_tcp_syn_fail=0;
  1569. #endif /* CONFIG_HTC_TCP_SYN_FAIL */
  1570. void tcp_set_state(struct sock *sk, int state)
  1571. {
  1572. int oldstate = sk->sk_state;
  1573. #ifdef CONFIG_HTC_TCP_SYN_FAIL
  1574. struct inet_sock *inet;
  1575. struct inet_connection_sock *icsk = inet_csk(sk);
  1576. __be32 dst = icsk->icsk_inet.inet_daddr;
  1577. #endif /* CONFIG_HTC_TCP_SYN_FAIL */
  1578. switch (state) {
  1579. case TCP_ESTABLISHED:
  1580. if (oldstate != TCP_ESTABLISHED)
  1581. TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
  1582. break;
  1583. case TCP_CLOSE:
  1584. if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
  1585. TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
  1586. sk->sk_prot->unhash(sk);
  1587. if (inet_csk(sk)->icsk_bind_hash &&
  1588. !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
  1589. inet_put_port(sk);
  1590. #ifdef CONFIG_HTC_TCP_SYN_FAIL
  1591. if (sk!=NULL) {
  1592. inet = inet_sk(sk);
  1593. if (inet !=NULL && ntohs(inet->inet_sport) != 0 ) {
  1594. if ( dst != 0x0100007F && sk->sk_state== TCP_SYN_SENT && icsk->icsk_retransmits >= 2 ) {
  1595. printk(KERN_INFO "[NET][SMD] TCP SYN SENT fail, dst=%x, retransmit=%d \n",dst,icsk->icsk_retransmits);
  1596. sysctl_tcp_syn_fail = dst;
  1597. }
  1598. }
  1599. }
  1600. #endif /* CONFIG_HTC_TCP_SYN_FAIL */
  1601. /* fall through */
  1602. default:
  1603. if (oldstate == TCP_ESTABLISHED)
  1604. TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
  1605. }
  1606. /* Change state AFTER socket is unhashed to avoid closed
  1607. * socket sitting in hash tables.
  1608. */
  1609. sk->sk_state = state;
  1610. #ifdef STATE_TRACE
  1611. SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
  1612. #endif
  1613. }
  1614. EXPORT_SYMBOL_GPL(tcp_set_state);
  1615. /*
  1616. * State processing on a close. This implements the state shift for
  1617. * sending our FIN frame. Note that we only send a FIN for some
  1618. * states. A shutdown() may have already sent the FIN, or we may be
  1619. * closed.
  1620. */
  1621. static const unsigned char new_state[16] = {
  1622. /* current state: new state: action: */
  1623. /* (Invalid) */ TCP_CLOSE,
  1624. /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
  1625. /* TCP_SYN_SENT */ TCP_CLOSE,
  1626. /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
  1627. /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1,
  1628. /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2,
  1629. /* TCP_TIME_WAIT */ TCP_CLOSE,
  1630. /* TCP_CLOSE */ TCP_CLOSE,
  1631. /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN,
  1632. /* TCP_LAST_ACK */ TCP_LAST_ACK,
  1633. /* TCP_LISTEN */ TCP_CLOSE,
  1634. /* TCP_CLOSING */ TCP_CLOSING,
  1635. };
  1636. static int tcp_close_state(struct sock *sk)
  1637. {
  1638. int next = (int)new_state[sk->sk_state];
  1639. int ns = next & TCP_STATE_MASK;
  1640. tcp_set_state(sk, ns);
  1641. return next & TCP_ACTION_FIN;
  1642. }
  1643. /*
  1644. * Shutdown the sending side of a connection. Much like close except
  1645. * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
  1646. */
  1647. void tcp_shutdown(struct sock *sk, int how)
  1648. {
  1649. /* We need to grab some memory, and put together a FIN,
  1650. * and then put it into the queue to be sent.
  1651. * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
  1652. */
  1653. if (!(how & SEND_SHUTDOWN))
  1654. return;
  1655. /* If we've already sent a FIN, or it's a closed state, skip this. */
  1656. if ((1 << sk->sk_state) &
  1657. (TCPF_ESTABLISHED | TCPF_SYN_SENT |
  1658. TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
  1659. /* Clear out any half completed packets. FIN if needed. */
  1660. if (tcp_close_state(sk))
  1661. tcp_send_fin(sk);
  1662. }
  1663. }
  1664. EXPORT_SYMBOL(tcp_shutdown);
  1665. bool tcp_check_oom(struct sock *sk, int shift)
  1666. {
  1667. bool too_many_orphans, out_of_socket_memory;
  1668. too_many_orphans = tcp_too_many_orphans(sk, shift);
  1669. out_of_socket_memory = tcp_out_of_memory(sk);
  1670. if (too_many_orphans && net_ratelimit())
  1671. pr_info("too many orphaned sockets\n");
  1672. if (out_of_socket_memory && net_ratelimit())
  1673. pr_info("out of memory -- consider tuning tcp_mem\n");
  1674. return too_many_orphans || out_of_socket_memory;
  1675. }
  1676. void tcp_close(struct sock *sk, long timeout)
  1677. {
  1678. struct sk_buff *skb;
  1679. int data_was_unread = 0;
  1680. int state;
  1681. lock_sock(sk);
  1682. sk->sk_shutdown = SHUTDOWN_MASK;
  1683. if (sk->sk_state == TCP_LISTEN) {
  1684. tcp_set_state(sk, TCP_CLOSE);
  1685. /* Special case. */
  1686. inet_csk_listen_stop(sk);
  1687. goto adjudge_to_death;
  1688. }
  1689. /* We need to flush the recv. buffs. We do this only on the
  1690. * descriptor close, not protocol-sourced closes, because the
  1691. * reader process may not have drained the data yet!
  1692. */
  1693. while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
  1694. u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
  1695. tcp_hdr(skb)->fin;
  1696. data_was_unread += len;
  1697. __kfree_skb(skb);
  1698. }
  1699. sk_mem_reclaim(sk);
  1700. /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
  1701. if (sk->sk_state == TCP_CLOSE)
  1702. goto adjudge_to_death;
  1703. /* As outlined in RFC 2525, section 2.17, we send a RST here because
  1704. * data was lost. To witness the awful effects of the old behavior of
  1705. * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
  1706. * GET in an FTP client, suspend the process, wait for the client to
  1707. * advertise a zero window, then kill -9 the FTP client, wheee...
  1708. * Note: timeout is always zero in such a case.
  1709. */
  1710. if (data_was_unread) {
  1711. /* Unread data was tossed, zap the connection. */
  1712. NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
  1713. tcp_set_state(sk, TCP_CLOSE);
  1714. tcp_send_active_reset(sk, sk->sk_allocation);
  1715. } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
  1716. /* Check zero linger _after_ checking for unread data. */
  1717. sk->sk_prot->disconnect(sk, 0);
  1718. NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  1719. } else if (tcp_close_state(sk)) {
  1720. /* We FIN if the application ate all the data before
  1721. * zapping the connection.
  1722. */
  1723. /* RED-PEN. Formally speaking, we have broken TCP state
  1724. * machine. State transitions:
  1725. *
  1726. * TCP_ESTABLISHED -> TCP_FIN_WAIT1
  1727. * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
  1728. * TCP_CLOSE_WAIT -> TCP_LAST_ACK
  1729. *
  1730. * are legal only when FIN has been sent (i.e. in window),
  1731. * rather than queued out of window. Purists blame.
  1732. *
  1733. * F.e. "RFC state" is ESTABLISHED,
  1734. * if Linux state is FIN-WAIT-1, but FIN is still not sent.
  1735. *
  1736. * The visible declinations are that sometimes
  1737. * we enter time-wait state, when it is not required really
  1738. * (harmless), do not send active resets, when they are
  1739. * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
  1740. * they look as CLOSING or LAST_ACK for Linux)
  1741. * Probably, I missed some more holelets.
  1742. * --ANK
  1743. */
  1744. tcp_send_fin(sk);
  1745. }
  1746. sk_stream_wait_close(sk, timeout);
  1747. adjudge_to_death:
  1748. state = sk->sk_state;
  1749. sock_hold(sk);
  1750. sock_orphan(sk);
  1751. /* It is the last release_sock in its life. It will remove backlog. */
  1752. release_sock(sk);
  1753. /* Now socket is owned by kernel and we acquire BH lock
  1754. to finish close. No need to check for user refs.
  1755. */
  1756. local_bh_disable();
  1757. bh_lock_sock(sk);
  1758. WARN_ON(sock_owned_by_user(sk));
  1759. percpu_counter_inc(sk->sk_prot->orphan_count);
  1760. /* Have we already been destroyed by a softirq or backlog? */
  1761. if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
  1762. goto out;
  1763. /* This is a (useful) BSD violating of the RFC. There is a
  1764. * problem with TCP as specified in that the other end could
  1765. * keep a socket open forever with no application left this end.
  1766. * We use a 3 minute timeout (about the same as BSD) then kill
  1767. * our end. If they send after that then tough - BUT: long enough
  1768. * that we won't make the old 4*rto = almost no time - whoops
  1769. * reset mistake.
  1770. *
  1771. * Nope, it was not mistake. It is really desired behaviour
  1772. * f.e. on http servers, when such sockets are useless, but
  1773. * consume significant resources. Let's do it with special
  1774. * linger2 option. --ANK
  1775. */
  1776. if (sk->sk_state == TCP_FIN_WAIT2) {
  1777. struct tcp_sock *tp = tcp_sk(sk);
  1778. if (tp->linger2 < 0) {
  1779. tcp_set_state(sk, TCP_CLOSE);
  1780. tcp_send_active_reset(sk, GFP_ATOMIC);
  1781. NET_INC_STATS_BH(sock_net(sk),
  1782. LINUX_MIB_TCPABORTONLINGER);
  1783. } else {
  1784. const int tmo = tcp_fin_time(sk);
  1785. if (tmo > TCP_TIMEWAIT_LEN) {
  1786. inet_csk_reset_keepalive_timer(sk,
  1787. tmo - TCP_TIMEWAIT_LEN);
  1788. } else {
  1789. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  1790. goto out;
  1791. }
  1792. }
  1793. }
  1794. if (sk->sk_state != TCP_CLOSE) {
  1795. sk_mem_reclaim(sk);
  1796. if (tcp_check_oom(sk, 0)) {
  1797. tcp_set_state(sk, TCP_CLOSE);
  1798. tcp_send_active_reset(sk, GFP_ATOMIC);
  1799. NET_INC_STATS_BH(sock_net(sk),
  1800. LINUX_MIB_TCPABORTONMEMORY);
  1801. }
  1802. }
  1803. if (sk->sk_state == TCP_CLOSE)
  1804. inet_csk_destroy_sock(sk);
  1805. /* Otherwise, socket is reprieved until protocol close. */
  1806. out:
  1807. bh_unlock_sock(sk);
  1808. local_bh_enable();
  1809. sock_put(sk);
  1810. }
  1811. EXPORT_SYMBOL(tcp_close);
  1812. /* These states need RST on ABORT according to RFC793 */
  1813. static inline int tcp_need_reset(int state)
  1814. {
  1815. return (1 << state) &
  1816. (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
  1817. TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
  1818. }
  1819. int tcp_disconnect(struct sock *sk, int flags)
  1820. {
  1821. struct inet_sock *inet = inet_sk(sk);
  1822. struct inet_connection_sock *icsk = inet_csk(sk);
  1823. struct tcp_sock *tp = tcp_sk(sk);
  1824. int err = 0;
  1825. int old_state = sk->sk_state;
  1826. if (old_state != TCP_CLOSE)
  1827. tcp_set_state(sk, TCP_CLOSE);
  1828. /* ABORT function of RFC793 */
  1829. if (old_state == TCP_LISTEN) {
  1830. inet_csk_listen_stop(sk);
  1831. } else if (tcp_need_reset(old_state) ||
  1832. (tp->snd_nxt != tp->write_seq &&
  1833. (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
  1834. /* The last check adjusts for discrepancy of Linux wrt. RFC
  1835. * states
  1836. */
  1837. tcp_send_active_reset(sk, gfp_any());
  1838. sk->sk_err = ECONNRESET;
  1839. } else if (old_state == TCP_SYN_SENT)
  1840. sk->sk_err = ECONNRESET;
  1841. tcp_clear_xmit_timers(sk);
  1842. __skb_queue_purge(&sk->sk_receive_queue);
  1843. tcp_write_queue_purge(sk);
  1844. __skb_queue_purge(&tp->out_of_order_queue);
  1845. #ifdef CONFIG_NET_DMA
  1846. __skb_queue_purge(&sk->sk_async_wait_queue);
  1847. #endif
  1848. inet->inet_dport = 0;
  1849. if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
  1850. inet_reset_saddr(sk);
  1851. sk->sk_shutdown = 0;
  1852. sock_reset_flag(sk, SOCK_DONE);
  1853. tp->srtt = 0;
  1854. if ((tp->write_seq += tp->max_window + 2) == 0)
  1855. tp->write_seq = 1;
  1856. icsk->icsk_backoff = 0;
  1857. tp->snd_cwnd = 2;
  1858. icsk->icsk_probes_out = 0;
  1859. tp->packets_out = 0;
  1860. tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
  1861. tp->snd_cwnd_cnt = 0;
  1862. tp->bytes_acked = 0;
  1863. tp->window_clamp = 0;
  1864. tcp_set_ca_state(sk, TCP_CA_Open);
  1865. tcp_clear_retrans(tp);
  1866. inet_csk_delack_init(sk);
  1867. tcp_init_send_head(sk);
  1868. memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
  1869. __sk_dst_reset(sk);
  1870. WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
  1871. sk->sk_error_report(sk);
  1872. return err;
  1873. }
  1874. EXPORT_SYMBOL(tcp_disconnect);
  1875. /*
  1876. * Socket option code for TCP.
  1877. */
  1878. static int do_tcp_setsockopt(struct sock *sk, int level,
  1879. int optname, char __user *optval, unsigned int optlen)
  1880. {
  1881. struct tcp_sock *tp = tcp_sk(sk);
  1882. struct inet_connection_sock *icsk = inet_csk(sk);
  1883. int val;
  1884. int err = 0;
  1885. /* These are data/string values, all the others are ints */
  1886. switch (optname) {
  1887. case TCP_CONGESTION: {
  1888. char name[TCP_CA_NAME_MAX];
  1889. if (optlen < 1)
  1890. return -EINVAL;
  1891. val = strncpy_from_user(name, optval,
  1892. min_t(long, TCP_CA_NAME_MAX-1, optlen));
  1893. if (val < 0)
  1894. return -EFAULT;
  1895. name[val] = 0;
  1896. lock_sock(sk);
  1897. err = tcp_set_congestion_control(sk, name);
  1898. release_sock(sk);
  1899. return err;
  1900. }
  1901. case TCP_COOKIE_TRANSACTIONS: {
  1902. struct tcp_cookie_transactions ctd;
  1903. struct tcp_cookie_values *cvp = NULL;
  1904. if (sizeof(ctd) > optlen)
  1905. return -EINVAL;
  1906. if (copy_from_user(&ctd, optval, sizeof(ctd)))
  1907. return -EFAULT;
  1908. if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
  1909. ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
  1910. return -EINVAL;
  1911. if (ctd.tcpct_cookie_desired == 0) {
  1912. /* default to global value */
  1913. } else if ((0x1 & ctd.tcpct_cookie_desired) ||
  1914. ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
  1915. ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
  1916. return -EINVAL;
  1917. }
  1918. if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
  1919. /* Supercedes all other values */
  1920. lock_sock(sk);
  1921. if (tp->cookie_values != NULL) {
  1922. kref_put(&tp->cookie_values->kref,
  1923. tcp_cookie_values_release);
  1924. tp->cookie_values = NULL;
  1925. }
  1926. tp->rx_opt.cookie_in_always = 0; /* false */
  1927. tp->rx_opt.cookie_out_never = 1; /* true */
  1928. release_sock(sk);
  1929. return err;
  1930. }
  1931. /* Allocate ancillary memory before locking.
  1932. */
  1933. if (ctd.tcpct_used > 0 ||
  1934. (tp->cookie_values == NULL &&
  1935. (sysctl_tcp_cookie_size > 0 ||
  1936. ctd.tcpct_cookie_desired > 0 ||
  1937. ctd.tcpct_s_data_desired > 0))) {
  1938. cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
  1939. GFP_KERNEL);
  1940. if (cvp == NULL)
  1941. return -ENOMEM;
  1942. kref_init(&cvp->kref);
  1943. }
  1944. lock_sock(sk);
  1945. tp->rx_opt.cookie_in_always =
  1946. (TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
  1947. tp->rx_opt.cookie_out_never = 0; /* false */
  1948. if (tp->cookie_values != NULL) {
  1949. if (cvp != NULL) {
  1950. /* Changed values are recorded by a changed
  1951. * pointer, ensuring the cookie will differ,
  1952. * without separately hashing each value later.
  1953. */
  1954. kref_put(&tp->cookie_values->kref,
  1955. tcp_cookie_values_release);
  1956. } else {
  1957. cvp = tp->cookie_values;
  1958. }
  1959. }
  1960. if (cvp != NULL) {
  1961. cvp->cookie_desired = ctd.tcpct_cookie_desired;
  1962. if (ctd.tcpct_used > 0) {
  1963. memcpy(cvp->s_data_payload, ctd.tcpct_value,
  1964. ctd.tcpct_used);
  1965. cvp->s_data_desired = ctd.tcpct_used;
  1966. cvp->s_data_constant = 1; /* true */
  1967. } else {
  1968. /* No constant payload data. */
  1969. cvp->s_data_desired = ctd.tcpct_s_data_desired;
  1970. cvp->s_data_constant = 0; /* false */
  1971. }
  1972. tp->cookie_values = cvp;
  1973. }
  1974. release_sock(sk);
  1975. return err;
  1976. }
  1977. default:
  1978. /* fallthru */
  1979. break;
  1980. }
  1981. if (optlen < sizeof(int))
  1982. return -EINVAL;
  1983. if (get_user(val, (int __user *)optval))
  1984. return -EFAULT;
  1985. lock_sock(sk);
  1986. switch (optname) {
  1987. case TCP_MAXSEG:
  1988. /* Values greater than interface MTU won't take effect. However
  1989. * at the point when this call is done we typically don't yet
  1990. * know which interface is going to be used */
  1991. if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
  1992. err = -EINVAL;
  1993. break;
  1994. }
  1995. tp->rx_opt.user_mss = val;
  1996. break;
  1997. case TCP_NODELAY:
  1998. if (val) {
  1999. /* TCP_NODELAY is weaker than TCP_CORK, so that
  2000. * this option on corked socket is remembered, but
  2001. * it is not activated until cork is cleared.
  2002. *
  2003. * However, when TCP_NODELAY is set we make
  2004. * an explicit push, which overrides even TCP_CORK
  2005. * for currently queued segments.
  2006. */
  2007. tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
  2008. tcp_push_pending_frames(sk);
  2009. } else {
  2010. tp->nonagle &= ~TCP_NAGLE_OFF;
  2011. }
  2012. break;
  2013. case TCP_THIN_LINEAR_TIMEOUTS:
  2014. if (val < 0 || val > 1)
  2015. err = -EINVAL;
  2016. else
  2017. tp->thin_lto = val;
  2018. break;
  2019. case TCP_THIN_DUPACK:
  2020. if (val < 0 || val > 1)
  2021. err = -EINVAL;
  2022. else
  2023. tp->thin_dupack = val;
  2024. break;
  2025. case TCP_CORK:
  2026. /* When set indicates to always queue non-full frames.
  2027. * Later the user clears this option and we transmit
  2028. * any pending partial frames in the queue. This is
  2029. * meant to be used alongside sendfile() to get properly
  2030. * filled frames when the user (for example) must write
  2031. * out headers with a write() call first and then use
  2032. * sendfile to send out the data parts.
  2033. *
  2034. * TCP_CORK can be set together with TCP_NODELAY and it is
  2035. * stronger than TCP_NODELAY.
  2036. */
  2037. if (val) {
  2038. tp->nonagle |= TCP_NAGLE_CORK;
  2039. } else {
  2040. tp->nonagle &= ~TCP_NAGLE_CORK;
  2041. if (tp->nonagle&TCP_NAGLE_OFF)
  2042. tp->nonagle |= TCP_NAGLE_PUSH;
  2043. tcp_push_pending_frames(sk);
  2044. }
  2045. break;
  2046. case TCP_KEEPIDLE:
  2047. if (val < 1 || val > MAX_TCP_KEEPIDLE)
  2048. err = -EINVAL;
  2049. else {
  2050. tp->keepalive_time = val * HZ;
  2051. if (sock_flag(sk, SOCK_KEEPOPEN) &&
  2052. !((1 << sk->sk_state) &
  2053. (TCPF_CLOSE | TCPF_LISTEN))) {
  2054. u32 elapsed = keepalive_time_elapsed(tp);
  2055. if (tp->keepalive_time > elapsed)
  2056. elapsed = tp->keepalive_time - elapsed;
  2057. else
  2058. elapsed = 0;
  2059. inet_csk_reset_keepalive_timer(sk, elapsed);
  2060. }
  2061. }
  2062. break;
  2063. case TCP_KEEPINTVL:
  2064. if (val < 1 || val > MAX_TCP_KEEPINTVL)
  2065. err = -EINVAL;
  2066. else
  2067. tp->keepalive_intvl = val * HZ;
  2068. break;
  2069. case TCP_KEEPCNT:
  2070. if (val < 1 || val > MAX_TCP_KEEPCNT)
  2071. err = -EINVAL;
  2072. else
  2073. tp->keepalive_probes = val;
  2074. break;
  2075. case TCP_SYNCNT:
  2076. if (val < 1 || val > MAX_TCP_SYNCNT)
  2077. err = -EINVAL;
  2078. else
  2079. icsk->icsk_syn_retries = val;
  2080. break;
  2081. case TCP_LINGER2:
  2082. if (val < 0)
  2083. tp->linger2 = -1;
  2084. else if (val > sysctl_tcp_fin_timeout / HZ)
  2085. tp->linger2 = 0;
  2086. else
  2087. tp->linger2 = val * HZ;
  2088. break;
  2089. case TCP_DEFER_ACCEPT:
  2090. /* Translate value in seconds to number of retransmits */
  2091. icsk->icsk_accept_queue.rskq_defer_accept =
  2092. secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
  2093. TCP_RTO_MAX / HZ);
  2094. break;
  2095. case TCP_WINDOW_CLAMP:
  2096. if (!val) {
  2097. if (sk->sk_state != TCP_CLOSE) {
  2098. err = -EINVAL;
  2099. break;
  2100. }
  2101. tp->window_clamp = 0;
  2102. } else
  2103. tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
  2104. SOCK_MIN_RCVBUF / 2 : val;
  2105. break;
  2106. case TCP_QUICKACK:
  2107. if (!val) {
  2108. icsk->icsk_ack.pingpong = 1;
  2109. } else {
  2110. icsk->icsk_ack.pingpong = 0;
  2111. if ((1 << sk->sk_state) &
  2112. (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
  2113. inet_csk_ack_scheduled(sk)) {
  2114. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  2115. tcp_cleanup_rbuf(sk, 1);
  2116. if (!(val & 1))
  2117. icsk->icsk_ack.pingpong = 1;
  2118. }
  2119. }
  2120. break;
  2121. #ifdef CONFIG_TCP_MD5SIG
  2122. case TCP_MD5SIG:
  2123. /* Read the IP->Key mappings from userspace */
  2124. err = tp->af_specific->md5_parse(sk, optval, optlen);
  2125. break;
  2126. #endif
  2127. case TCP_USER_TIMEOUT:
  2128. /* Cap the max timeout in ms TCP will retry/retrans
  2129. * before giving up and aborting (ETIMEDOUT) a connection.
  2130. */
  2131. if (val < 0)
  2132. err = -EINVAL;
  2133. else
  2134. icsk->icsk_user_timeout = msecs_to_jiffies(val);
  2135. break;
  2136. default:
  2137. err = -ENOPROTOOPT;
  2138. break;
  2139. }
  2140. release_sock(sk);
  2141. return err;
  2142. }
  2143. int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
  2144. unsigned int optlen)
  2145. {
  2146. const struct inet_connection_sock *icsk = inet_csk(sk);
  2147. if (level != SOL_TCP)
  2148. return icsk->icsk_af_ops->setsockopt(sk, level, optname,
  2149. optval, optlen);
  2150. return do_tcp_setsockopt(sk, level, optname, optval, optlen);
  2151. }
  2152. EXPORT_SYMBOL(tcp_setsockopt);
  2153. #ifdef CONFIG_COMPAT
  2154. int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
  2155. char __user *optval, unsigned int optlen)
  2156. {
  2157. if (level != SOL_TCP)
  2158. return inet_csk_compat_setsockopt(sk, level, optname,
  2159. optval, optlen);
  2160. return do_tcp_setsockopt(sk, level, optname, optval, optlen);
  2161. }
  2162. EXPORT_SYMBOL(compat_tcp_setsockopt);
  2163. #endif
  2164. /* Return information about state of tcp endpoint in API format. */
  2165. void tcp_get_info(const struct sock *sk, struct tcp_info *info)
  2166. {
  2167. const struct tcp_sock *tp = tcp_sk(sk);
  2168. const struct inet_connection_sock *icsk = inet_csk(sk);
  2169. u32 now = tcp_time_stamp;
  2170. memset(info, 0, sizeof(*info));
  2171. info->tcpi_state = sk->sk_state;
  2172. info->tcpi_ca_state = icsk->icsk_ca_state;
  2173. info->tcpi_retransmits = icsk->icsk_retransmits;
  2174. info->tcpi_probes = icsk->icsk_probes_out;
  2175. info->tcpi_backoff = icsk->icsk_backoff;
  2176. if (tp->rx_opt.tstamp_ok)
  2177. info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
  2178. if (tcp_is_sack(tp))
  2179. info->tcpi_options |= TCPI_OPT_SACK;
  2180. if (tp->rx_opt.wscale_ok) {
  2181. info->tcpi_options |= TCPI_OPT_WSCALE;
  2182. info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
  2183. info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
  2184. }
  2185. if (tp->ecn_flags & TCP_ECN_OK)
  2186. info->tcpi_options |= TCPI_OPT_ECN;
  2187. if (tp->ecn_flags & TCP_ECN_SEEN)
  2188. info->tcpi_options |= TCPI_OPT_ECN_SEEN;
  2189. info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
  2190. info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
  2191. info->tcpi_snd_mss = tp->mss_cache;
  2192. info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
  2193. if (sk->sk_state == TCP_LISTEN) {
  2194. info->tcpi_unacked = sk->sk_ack_backlog;
  2195. info->tcpi_sacked = sk->sk_max_ack_backlog;
  2196. } else {
  2197. info->tcpi_unacked = tp->packets_out;
  2198. info->tcpi_sacked = tp->sacked_out;
  2199. }
  2200. info->tcpi_lost = tp->lost_out;
  2201. info->tcpi_retrans = tp->retrans_out;
  2202. info->tcpi_fackets = tp->fackets_out;
  2203. info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
  2204. info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
  2205. info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
  2206. info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
  2207. info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
  2208. info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
  2209. info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
  2210. info->tcpi_snd_ssthresh = tp->snd_ssthresh;
  2211. info->tcpi_snd_cwnd = tp->snd_cwnd;
  2212. info->tcpi_advmss = tp->advmss;
  2213. info->tcpi_reordering = tp->reordering;
  2214. info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
  2215. info->tcpi_rcv_space = tp->rcvq_space.space;
  2216. info->tcpi_total_retrans = tp->total_retrans;
  2217. if (sk->sk_socket) {
  2218. struct file *filep = sk->sk_socket->file;
  2219. if (filep)
  2220. info->tcpi_count = atomic_read(&filep->f_count);
  2221. }
  2222. }
  2223. EXPORT_SYMBOL_GPL(tcp_get_info);
  2224. static int do_tcp_getsockopt(struct sock *sk, int level,
  2225. int optname, char __user *optval, int __user *optlen)
  2226. {
  2227. struct inet_connection_sock *icsk = inet_csk(sk);
  2228. struct tcp_sock *tp = tcp_sk(sk);
  2229. int val, len;
  2230. if (get_user(len, optlen))
  2231. return -EFAULT;
  2232. len = min_t(unsigned int, len, sizeof(int));
  2233. if (len < 0)
  2234. return -EINVAL;
  2235. switch (optname) {
  2236. case TCP_MAXSEG:
  2237. val = tp->mss_cache;
  2238. if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
  2239. val = tp->rx_opt.user_mss;
  2240. break;
  2241. case TCP_NODELAY:
  2242. val = !!(tp->nonagle&TCP_NAGLE_OFF);
  2243. break;
  2244. case TCP_CORK:
  2245. val = !!(tp->nonagle&TCP_NAGLE_CORK);
  2246. break;
  2247. case TCP_KEEPIDLE:
  2248. val = keepalive_time_when(tp) / HZ;
  2249. break;
  2250. case TCP_KEEPINTVL:
  2251. val = keepalive_intvl_when(tp) / HZ;
  2252. break;
  2253. case TCP_KEEPCNT:
  2254. val = keepalive_probes(tp);
  2255. break;
  2256. case TCP_SYNCNT:
  2257. val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
  2258. break;
  2259. case TCP_LINGER2:
  2260. val = tp->linger2;
  2261. if (val >= 0)
  2262. val = (val ? : sysctl_tcp_fin_timeout) / HZ;
  2263. break;
  2264. case TCP_DEFER_ACCEPT:
  2265. val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
  2266. TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
  2267. break;
  2268. case TCP_WINDOW_CLAMP:
  2269. val = tp->window_clamp;
  2270. break;
  2271. case TCP_INFO: {
  2272. struct tcp_info info;
  2273. if (get_user(len, optlen))
  2274. return -EFAULT;
  2275. tcp_get_info(sk, &info);
  2276. len = min_t(unsigned int, len, sizeof(info));
  2277. if (put_user(len, optlen))
  2278. return -EFAULT;
  2279. if (copy_to_user(optval, &info, len))
  2280. return -EFAULT;
  2281. return 0;
  2282. }
  2283. case TCP_QUICKACK:
  2284. val = !icsk->icsk_ack.pingpong;
  2285. break;
  2286. case TCP_CONGESTION:
  2287. if (get_user(len, optlen))
  2288. return -EFAULT;
  2289. len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
  2290. if (put_user(len, optlen))
  2291. return -EFAULT;
  2292. if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
  2293. return -EFAULT;
  2294. return 0;
  2295. case TCP_COOKIE_TRANSACTIONS: {
  2296. struct tcp_cookie_transactions ctd;
  2297. struct tcp_cookie_values *cvp = tp->cookie_values;
  2298. if (get_user(len, optlen))
  2299. return -EFAULT;
  2300. if (len < sizeof(ctd))
  2301. return -EINVAL;
  2302. memset(&ctd, 0, sizeof(ctd));
  2303. ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
  2304. TCP_COOKIE_IN_ALWAYS : 0)
  2305. | (tp->rx_opt.cookie_out_never ?
  2306. TCP_COOKIE_OUT_NEVER : 0);
  2307. if (cvp != NULL) {
  2308. ctd.tcpct_flags |= (cvp->s_data_in ?
  2309. TCP_S_DATA_IN : 0)
  2310. | (cvp->s_data_out ?
  2311. TCP_S_DATA_OUT : 0);
  2312. ctd.tcpct_cookie_desired = cvp->cookie_desired;
  2313. ctd.tcpct_s_data_desired = cvp->s_data_desired;
  2314. memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
  2315. cvp->cookie_pair_size);
  2316. ctd.tcpct_used = cvp->cookie_pair_size;
  2317. }
  2318. if (put_user(sizeof(ctd), optlen))
  2319. return -EFAULT;
  2320. if (copy_to_user(optval, &ctd, sizeof(ctd)))
  2321. return -EFAULT;
  2322. return 0;
  2323. }
  2324. case TCP_THIN_LINEAR_TIMEOUTS:
  2325. val = tp->thin_lto;
  2326. break;
  2327. case TCP_THIN_DUPACK:
  2328. val = tp->thin_dupack;
  2329. break;
  2330. case TCP_USER_TIMEOUT:
  2331. val = jiffies_to_msecs(icsk->icsk_user_timeout);
  2332. break;
  2333. default:
  2334. return -ENOPROTOOPT;
  2335. }
  2336. if (put_user(len, optlen))
  2337. return -EFAULT;
  2338. if (copy_to_user(optval, &val, len))
  2339. return -EFAULT;
  2340. return 0;
  2341. }
  2342. int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
  2343. int __user *optlen)
  2344. {
  2345. struct inet_connection_sock *icsk = inet_csk(sk);
  2346. if (level != SOL_TCP)
  2347. return icsk->icsk_af_ops->getsockopt(sk, level, optname,
  2348. optval, optlen);
  2349. return do_tcp_getsockopt(sk, level, optname, optval, optlen);
  2350. }
  2351. EXPORT_SYMBOL(tcp_getsockopt);
  2352. #ifdef CONFIG_COMPAT
  2353. int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
  2354. char __user *optval, int __user *optlen)
  2355. {
  2356. if (level != SOL_TCP)
  2357. return inet_csk_compat_getsockopt(sk, level, optname,
  2358. optval, optlen);
  2359. return do_tcp_getsockopt(sk, level, optname, optval, optlen);
  2360. }
  2361. EXPORT_SYMBOL(compat_tcp_getsockopt);
  2362. #endif
  2363. struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
  2364. netdev_features_t features)
  2365. {
  2366. struct sk_buff *segs = ERR_PTR(-EINVAL);
  2367. struct tcphdr *th;
  2368. unsigned thlen;
  2369. unsigned int seq;
  2370. __be32 delta;
  2371. unsigned int oldlen;
  2372. unsigned int mss;
  2373. if (!pskb_may_pull(skb, sizeof(*th)))
  2374. goto out;
  2375. th = tcp_hdr(skb);
  2376. thlen = th->doff * 4;
  2377. if (thlen < sizeof(*th))
  2378. goto out;
  2379. if (!pskb_may_pull(skb, thlen))
  2380. goto out;
  2381. oldlen = (u16)~skb->len;
  2382. __skb_pull(skb, thlen);
  2383. mss = skb_shinfo(skb)->gso_size;
  2384. if (unlikely(skb->len <= mss))
  2385. goto out;
  2386. if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
  2387. /* Packet is from an untrusted source, reset gso_segs. */
  2388. int type = skb_shinfo(skb)->gso_type;
  2389. if (unlikely(type &
  2390. ~(SKB_GSO_TCPV4 |
  2391. SKB_GSO_DODGY |
  2392. SKB_GSO_TCP_ECN |
  2393. SKB_GSO_TCPV6 |
  2394. 0) ||
  2395. !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
  2396. goto out;
  2397. skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
  2398. segs = NULL;
  2399. goto out;
  2400. }
  2401. segs = skb_segment(skb, features);
  2402. if (IS_ERR(segs))
  2403. goto out;
  2404. delta = htonl(oldlen + (thlen + mss));
  2405. skb = segs;
  2406. th = tcp_hdr(skb);
  2407. seq = ntohl(th->seq);
  2408. do {
  2409. th->fin = th->psh = 0;
  2410. th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
  2411. (__force u32)delta));
  2412. if (skb->ip_summed != CHECKSUM_PARTIAL)
  2413. th->check =
  2414. csum_fold(csum_partial(skb_transport_header(skb),
  2415. thlen, skb->csum));
  2416. seq += mss;
  2417. skb = skb->next;
  2418. th = tcp_hdr(skb);
  2419. th->seq = htonl(seq);
  2420. th->cwr = 0;
  2421. } while (skb->next);
  2422. delta = htonl(oldlen + (skb->tail - skb->transport_header) +
  2423. skb->data_len);
  2424. th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
  2425. (__force u32)delta));
  2426. if (skb->ip_summed != CHECKSUM_PARTIAL)
  2427. th->check = csum_fold(csum_partial(skb_transport_header(skb),
  2428. thlen, skb->csum));
  2429. out:
  2430. return segs;
  2431. }
  2432. EXPORT_SYMBOL(tcp_tso_segment);
  2433. struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
  2434. {
  2435. struct sk_buff **pp = NULL;
  2436. struct sk_buff *p;
  2437. struct tcphdr *th;
  2438. struct tcphdr *th2;
  2439. unsigned int len;
  2440. unsigned int thlen;
  2441. __be32 flags;
  2442. unsigned int mss = 1;
  2443. unsigned int hlen;
  2444. unsigned int off;
  2445. int flush = 1;
  2446. int i;
  2447. off = skb_gro_offset(skb);
  2448. hlen = off + sizeof(*th);
  2449. th = skb_gro_header_fast(skb, off);
  2450. if (skb_gro_header_hard(skb, hlen)) {
  2451. th = skb_gro_header_slow(skb, hlen, off);
  2452. if (unlikely(!th))
  2453. goto out;
  2454. }
  2455. thlen = th->doff * 4;
  2456. if (thlen < sizeof(*th))
  2457. goto out;
  2458. hlen = off + thlen;
  2459. if (skb_gro_header_hard(skb, hlen)) {
  2460. th = skb_gro_header_slow(skb, hlen, off);
  2461. if (unlikely(!th))
  2462. goto out;
  2463. }
  2464. skb_gro_pull(skb, thlen);
  2465. len = skb_gro_len(skb);
  2466. flags = tcp_flag_word(th);
  2467. for (; (p = *head); head = &p->next) {
  2468. if (!NAPI_GRO_CB(p)->same_flow)
  2469. continue;
  2470. th2 = tcp_hdr(p);
  2471. if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
  2472. NAPI_GRO_CB(p)->same_flow = 0;
  2473. continue;
  2474. }
  2475. goto found;
  2476. }
  2477. goto out_check_final;
  2478. found:
  2479. flush = NAPI_GRO_CB(p)->flush;
  2480. flush |= (__force int)(flags & TCP_FLAG_CWR);
  2481. flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
  2482. ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
  2483. flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
  2484. for (i = sizeof(*th); i < thlen; i += 4)
  2485. flush |= *(u32 *)((u8 *)th + i) ^
  2486. *(u32 *)((u8 *)th2 + i);
  2487. mss = skb_shinfo(p)->gso_size;
  2488. flush |= (len - 1) >= mss;
  2489. flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
  2490. if (flush || skb_gro_receive(head, skb)) {
  2491. mss = 1;
  2492. goto out_check_final;
  2493. }
  2494. p = *head;
  2495. th2 = tcp_hdr(p);
  2496. tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
  2497. out_check_final:
  2498. flush = len < mss;
  2499. flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
  2500. TCP_FLAG_RST | TCP_FLAG_SYN |
  2501. TCP_FLAG_FIN));
  2502. if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
  2503. pp = head;
  2504. out:
  2505. NAPI_GRO_CB(skb)->flush |= flush;
  2506. return pp;
  2507. }
  2508. EXPORT_SYMBOL(tcp_gro_receive);
  2509. int tcp_gro_complete(struct sk_buff *skb)
  2510. {
  2511. struct tcphdr *th = tcp_hdr(skb);
  2512. skb->csum_start = skb_transport_header(skb) - skb->head;
  2513. skb->csum_offset = offsetof(struct tcphdr, check);
  2514. skb->ip_summed = CHECKSUM_PARTIAL;
  2515. skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
  2516. if (th->cwr)
  2517. skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
  2518. return 0;
  2519. }
  2520. EXPORT_SYMBOL(tcp_gro_complete);
  2521. #ifdef CONFIG_TCP_MD5SIG
  2522. static unsigned long tcp_md5sig_users;
  2523. static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool;
  2524. static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
  2525. static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
  2526. {
  2527. int cpu;
  2528. for_each_possible_cpu(cpu) {
  2529. struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
  2530. if (p->md5_desc.tfm)
  2531. crypto_free_hash(p->md5_desc.tfm);
  2532. }
  2533. free_percpu(pool);
  2534. }
  2535. void tcp_free_md5sig_pool(void)
  2536. {
  2537. struct tcp_md5sig_pool __percpu *pool = NULL;
  2538. spin_lock_bh(&tcp_md5sig_pool_lock);
  2539. if (--tcp_md5sig_users == 0) {
  2540. pool = tcp_md5sig_pool;
  2541. tcp_md5sig_pool = NULL;
  2542. }
  2543. spin_unlock_bh(&tcp_md5sig_pool_lock);
  2544. if (pool)
  2545. __tcp_free_md5sig_pool(pool);
  2546. }
  2547. EXPORT_SYMBOL(tcp_free_md5sig_pool);
  2548. static struct tcp_md5sig_pool __percpu *
  2549. __tcp_alloc_md5sig_pool(struct sock *sk)
  2550. {
  2551. int cpu;
  2552. struct tcp_md5sig_pool __percpu *pool;
  2553. pool = alloc_percpu(struct tcp_md5sig_pool);
  2554. if (!pool)
  2555. return NULL;
  2556. for_each_possible_cpu(cpu) {
  2557. struct crypto_hash *hash;
  2558. hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
  2559. if (!hash || IS_ERR(hash))
  2560. goto out_free;
  2561. per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
  2562. }
  2563. return pool;
  2564. out_free:
  2565. __tcp_free_md5sig_pool(pool);
  2566. return NULL;
  2567. }
  2568. struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
  2569. {
  2570. struct tcp_md5sig_pool __percpu *pool;
  2571. int alloc = 0;
  2572. retry:
  2573. spin_lock_bh(&tcp_md5sig_pool_lock);
  2574. pool = tcp_md5sig_pool;
  2575. if (tcp_md5sig_users++ == 0) {
  2576. alloc = 1;
  2577. spin_unlock_bh(&tcp_md5sig_pool_lock);
  2578. } else if (!pool) {
  2579. tcp_md5sig_users--;
  2580. spin_unlock_bh(&tcp_md5sig_pool_lock);
  2581. cpu_relax();
  2582. goto retry;
  2583. } else
  2584. spin_unlock_bh(&tcp_md5sig_pool_lock);
  2585. if (alloc) {
  2586. /* we cannot hold spinlock here because this may sleep. */
  2587. struct tcp_md5sig_pool __percpu *p;
  2588. p = __tcp_alloc_md5sig_pool(sk);
  2589. spin_lock_bh(&tcp_md5sig_pool_lock);
  2590. if (!p) {
  2591. tcp_md5sig_users--;
  2592. spin_unlock_bh(&tcp_md5sig_pool_lock);
  2593. return NULL;
  2594. }
  2595. pool = tcp_md5sig_pool;
  2596. if (pool) {
  2597. /* oops, it has already been assigned. */
  2598. spin_unlock_bh(&tcp_md5sig_pool_lock);
  2599. __tcp_free_md5sig_pool(p);
  2600. } else {
  2601. tcp_md5sig_pool = pool = p;
  2602. spin_unlock_bh(&tcp_md5sig_pool_lock);
  2603. }
  2604. }
  2605. return pool;
  2606. }
  2607. EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
  2608. /**
  2609. * tcp_get_md5sig_pool - get md5sig_pool for this user
  2610. *
  2611. * We use percpu structure, so if we succeed, we exit with preemption
  2612. * and BH disabled, to make sure another thread or softirq handling
  2613. * wont try to get same context.
  2614. */
  2615. struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
  2616. {
  2617. struct tcp_md5sig_pool __percpu *p;
  2618. local_bh_disable();
  2619. spin_lock(&tcp_md5sig_pool_lock);
  2620. p = tcp_md5sig_pool;
  2621. if (p)
  2622. tcp_md5sig_users++;
  2623. spin_unlock(&tcp_md5sig_pool_lock);
  2624. if (p)
  2625. return this_cpu_ptr(p);
  2626. local_bh_enable();
  2627. return NULL;
  2628. }
  2629. EXPORT_SYMBOL(tcp_get_md5sig_pool);
  2630. void tcp_put_md5sig_pool(void)
  2631. {
  2632. local_bh_enable();
  2633. tcp_free_md5sig_pool();
  2634. }
  2635. EXPORT_SYMBOL(tcp_put_md5sig_pool);
  2636. int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
  2637. const struct tcphdr *th)
  2638. {
  2639. struct scatterlist sg;
  2640. struct tcphdr hdr;
  2641. int err;
  2642. /* We are not allowed to change tcphdr, make a local copy */
  2643. memcpy(&hdr, th, sizeof(hdr));
  2644. hdr.check = 0;
  2645. /* options aren't included in the hash */
  2646. sg_init_one(&sg, &hdr, sizeof(hdr));
  2647. err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
  2648. return err;
  2649. }
  2650. EXPORT_SYMBOL(tcp_md5_hash_header);
  2651. int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
  2652. const struct sk_buff *skb, unsigned int header_len)
  2653. {
  2654. struct scatterlist sg;
  2655. const struct tcphdr *tp = tcp_hdr(skb);
  2656. struct hash_desc *desc = &hp->md5_desc;
  2657. unsigned i;
  2658. const unsigned head_data_len = skb_headlen(skb) > header_len ?
  2659. skb_headlen(skb) - header_len : 0;
  2660. const struct skb_shared_info *shi = skb_shinfo(skb);
  2661. struct sk_buff *frag_iter;
  2662. sg_init_table(&sg, 1);
  2663. sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
  2664. if (crypto_hash_update(desc, &sg, head_data_len))
  2665. return 1;
  2666. for (i = 0; i < shi->nr_frags; ++i) {
  2667. const struct skb_frag_struct *f = &shi->frags[i];
  2668. struct page *page = skb_frag_page(f);
  2669. sg_set_page(&sg, page, skb_frag_size(f), f->page_offset);
  2670. if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
  2671. return 1;
  2672. }
  2673. skb_walk_frags(skb, frag_iter)
  2674. if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
  2675. return 1;
  2676. return 0;
  2677. }
  2678. EXPORT_SYMBOL(tcp_md5_hash_skb_data);
  2679. int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
  2680. {
  2681. struct scatterlist sg;
  2682. sg_init_one(&sg, key->key, key->keylen);
  2683. return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
  2684. }
  2685. EXPORT_SYMBOL(tcp_md5_hash_key);
  2686. #endif
  2687. /**
  2688. * Each Responder maintains up to two secret values concurrently for
  2689. * efficient secret rollover. Each secret value has 4 states:
  2690. *
  2691. * Generating. (tcp_secret_generating != tcp_secret_primary)
  2692. * Generates new Responder-Cookies, but not yet used for primary
  2693. * verification. This is a short-term state, typically lasting only
  2694. * one round trip time (RTT).
  2695. *
  2696. * Primary. (tcp_secret_generating == tcp_secret_primary)
  2697. * Used both for generation and primary verification.
  2698. *
  2699. * Retiring. (tcp_secret_retiring != tcp_secret_secondary)
  2700. * Used for verification, until the first failure that can be
  2701. * verified by the newer Generating secret. At that time, this
  2702. * cookie's state is changed to Secondary, and the Generating
  2703. * cookie's state is changed to Primary. This is a short-term state,
  2704. * typically lasting only one round trip time (RTT).
  2705. *
  2706. * Secondary. (tcp_secret_retiring == tcp_secret_secondary)
  2707. * Used for secondary verification, after primary verification
  2708. * failures. This state lasts no more than twice the Maximum Segment
  2709. * Lifetime (2MSL). Then, the secret is discarded.
  2710. */
  2711. struct tcp_cookie_secret {
  2712. /* The secret is divided into two parts. The digest part is the
  2713. * equivalent of previously hashing a secret and saving the state,
  2714. * and serves as an initialization vector (IV). The message part
  2715. * serves as the trailing secret.
  2716. */
  2717. u32 secrets[COOKIE_WORKSPACE_WORDS];
  2718. unsigned long expires;
  2719. };
  2720. #define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
  2721. #define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
  2722. #define TCP_SECRET_LIFE (HZ * 600)
  2723. static struct tcp_cookie_secret tcp_secret_one;
  2724. static struct tcp_cookie_secret tcp_secret_two;
  2725. /* Essentially a circular list, without dynamic allocation. */
  2726. static struct tcp_cookie_secret *tcp_secret_generating;
  2727. static struct tcp_cookie_secret *tcp_secret_primary;
  2728. static struct tcp_cookie_secret *tcp_secret_retiring;
  2729. static struct tcp_cookie_secret *tcp_secret_secondary;
  2730. static DEFINE_SPINLOCK(tcp_secret_locker);
  2731. /* Select a pseudo-random word in the cookie workspace.
  2732. */
  2733. static inline u32 tcp_cookie_work(const u32 *ws, const int n)
  2734. {
  2735. return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
  2736. }
  2737. /* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
  2738. * Called in softirq context.
  2739. * Returns: 0 for success.
  2740. */
  2741. int tcp_cookie_generator(u32 *bakery)
  2742. {
  2743. unsigned long jiffy = jiffies;
  2744. if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
  2745. spin_lock_bh(&tcp_secret_locker);
  2746. if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
  2747. /* refreshed by another */
  2748. memcpy(bakery,
  2749. &tcp_secret_generating->secrets[0],
  2750. COOKIE_WORKSPACE_WORDS);
  2751. } else {
  2752. /* still needs refreshing */
  2753. get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
  2754. /* The first time, paranoia assumes that the
  2755. * randomization function isn't as strong. But,
  2756. * this secret initialization is delayed until
  2757. * the last possible moment (packet arrival).
  2758. * Although that time is observable, it is
  2759. * unpredictably variable. Mash in the most
  2760. * volatile clock bits available, and expire the
  2761. * secret extra quickly.
  2762. */
  2763. if (unlikely(tcp_secret_primary->expires ==
  2764. tcp_secret_secondary->expires)) {
  2765. struct timespec tv;
  2766. getnstimeofday(&tv);
  2767. bakery[COOKIE_DIGEST_WORDS+0] ^=
  2768. (u32)tv.tv_nsec;
  2769. tcp_secret_secondary->expires = jiffy
  2770. + TCP_SECRET_1MSL
  2771. + (0x0f & tcp_cookie_work(bakery, 0));
  2772. } else {
  2773. tcp_secret_secondary->expires = jiffy
  2774. + TCP_SECRET_LIFE
  2775. + (0xff & tcp_cookie_work(bakery, 1));
  2776. tcp_secret_primary->expires = jiffy
  2777. + TCP_SECRET_2MSL
  2778. + (0x1f & tcp_cookie_work(bakery, 2));
  2779. }
  2780. memcpy(&tcp_secret_secondary->secrets[0],
  2781. bakery, COOKIE_WORKSPACE_WORDS);
  2782. rcu_assign_pointer(tcp_secret_generating,
  2783. tcp_secret_secondary);
  2784. rcu_assign_pointer(tcp_secret_retiring,
  2785. tcp_secret_primary);
  2786. /*
  2787. * Neither call_rcu() nor synchronize_rcu() needed.
  2788. * Retiring data is not freed. It is replaced after
  2789. * further (locked) pointer updates, and a quiet time
  2790. * (minimum 1MSL, maximum LIFE - 2MSL).
  2791. */
  2792. }
  2793. spin_unlock_bh(&tcp_secret_locker);
  2794. } else {
  2795. rcu_read_lock_bh();
  2796. memcpy(bakery,
  2797. &rcu_dereference(tcp_secret_generating)->secrets[0],
  2798. COOKIE_WORKSPACE_WORDS);
  2799. rcu_read_unlock_bh();
  2800. }
  2801. return 0;
  2802. }
  2803. EXPORT_SYMBOL(tcp_cookie_generator);
  2804. void tcp_done(struct sock *sk)
  2805. {
  2806. if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
  2807. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
  2808. tcp_set_state(sk, TCP_CLOSE);
  2809. tcp_clear_xmit_timers(sk);
  2810. sk->sk_shutdown = SHUTDOWN_MASK;
  2811. if (!sock_flag(sk, SOCK_DEAD))
  2812. sk->sk_state_change(sk);
  2813. else
  2814. inet_csk_destroy_sock(sk);
  2815. }
  2816. EXPORT_SYMBOL_GPL(tcp_done);
  2817. extern struct tcp_congestion_ops tcp_reno;
  2818. static __initdata unsigned long thash_entries;
  2819. static int __init set_thash_entries(char *str)
  2820. {
  2821. if (!str)
  2822. return 0;
  2823. thash_entries = simple_strtoul(str, &str, 0);
  2824. return 1;
  2825. }
  2826. __setup("thash_entries=", set_thash_entries);
  2827. void tcp_init_mem(struct net *net)
  2828. {
  2829. unsigned long limit = nr_free_buffer_pages() / 8;
  2830. limit = max(limit, 128UL);
  2831. net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3;
  2832. net->ipv4.sysctl_tcp_mem[1] = limit;
  2833. net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2;
  2834. }
  2835. void __init tcp_init(void)
  2836. {
  2837. struct sk_buff *skb = NULL;
  2838. unsigned long limit;
  2839. int max_rshare, max_wshare, cnt;
  2840. unsigned int i;
  2841. unsigned long jiffy = jiffies;
  2842. BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
  2843. percpu_counter_init(&tcp_sockets_allocated, 0);
  2844. percpu_counter_init(&tcp_orphan_count, 0);
  2845. tcp_hashinfo.bind_bucket_cachep =
  2846. kmem_cache_create("tcp_bind_bucket",
  2847. sizeof(struct inet_bind_bucket), 0,
  2848. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  2849. /* Size and allocate the main established and bind bucket
  2850. * hash tables.
  2851. *
  2852. * The methodology is similar to that of the buffer cache.
  2853. */
  2854. tcp_hashinfo.ehash =
  2855. alloc_large_system_hash("TCP established",
  2856. sizeof(struct inet_ehash_bucket),
  2857. thash_entries,
  2858. (totalram_pages >= 128 * 1024) ?
  2859. 13 : 15,
  2860. 0,
  2861. NULL,
  2862. &tcp_hashinfo.ehash_mask,
  2863. thash_entries ? 0 : 512 * 1024);
  2864. for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
  2865. INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
  2866. INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
  2867. }
  2868. if (inet_ehash_locks_alloc(&tcp_hashinfo))
  2869. panic("TCP: failed to alloc ehash_locks");
  2870. tcp_hashinfo.bhash =
  2871. alloc_large_system_hash("TCP bind",
  2872. sizeof(struct inet_bind_hashbucket),
  2873. tcp_hashinfo.ehash_mask + 1,
  2874. (totalram_pages >= 128 * 1024) ?
  2875. 13 : 15,
  2876. 0,
  2877. &tcp_hashinfo.bhash_size,
  2878. NULL,
  2879. 64 * 1024);
  2880. tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
  2881. for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
  2882. spin_lock_init(&tcp_hashinfo.bhash[i].lock);
  2883. INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
  2884. }
  2885. cnt = tcp_hashinfo.ehash_mask + 1;
  2886. tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
  2887. sysctl_tcp_max_orphans = cnt / 2;
  2888. sysctl_max_syn_backlog = max(128, cnt / 256);
  2889. tcp_init_mem(&init_net);
  2890. /* Set per-socket limits to no more than 1/128 the pressure threshold */
  2891. limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
  2892. max_wshare = min(4UL*1024*1024, limit);
  2893. max_rshare = min(6UL*1024*1024, limit);
  2894. sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
  2895. sysctl_tcp_wmem[1] = 16*1024;
  2896. sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
  2897. sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
  2898. sysctl_tcp_rmem[1] = 87380;
  2899. sysctl_tcp_rmem[2] = max(87380, max_rshare);
  2900. pr_info("Hash tables configured (established %u bind %u)\n",
  2901. tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
  2902. tcp_register_congestion_control(&tcp_reno);
  2903. memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
  2904. memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
  2905. tcp_secret_one.expires = jiffy; /* past due */
  2906. tcp_secret_two.expires = jiffy; /* past due */
  2907. tcp_secret_generating = &tcp_secret_one;
  2908. tcp_secret_primary = &tcp_secret_one;
  2909. tcp_secret_retiring = &tcp_secret_two;
  2910. tcp_secret_secondary = &tcp_secret_two;
  2911. }
  2912. static int tcp_is_local(struct net *net, __be32 addr) {
  2913. struct rtable *rt;
  2914. struct flowi4 fl4 = { .daddr = addr };
  2915. rt = ip_route_output_key(net, &fl4);
  2916. if (IS_ERR_OR_NULL(rt))
  2917. return 0;
  2918. return rt->dst.dev && (rt->dst.dev->flags & IFF_LOOPBACK);
  2919. }
  2920. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2921. static int tcp_is_local6(struct net *net, struct in6_addr *addr) {
  2922. struct rt6_info *rt6 = rt6_lookup(net, addr, addr, 0, 0);
  2923. return rt6 && rt6->dst.dev && (rt6->dst.dev->flags & IFF_LOOPBACK);
  2924. }
  2925. #endif
  2926. /*
  2927. * tcp_nuke_addr - destroy all sockets on the given local address
  2928. * if local address is the unspecified address (0.0.0.0 or ::), destroy all
  2929. * sockets with local addresses that are not configured.
  2930. */
  2931. int tcp_nuke_addr(struct net *net, struct sockaddr *addr)
  2932. {
  2933. int family = addr->sa_family;
  2934. unsigned int bucket;
  2935. struct in_addr *in = NULL;
  2936. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2937. struct in6_addr *in6 = NULL;
  2938. #endif
  2939. if (family == AF_INET) {
  2940. in = &((struct sockaddr_in *)addr)->sin_addr;
  2941. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2942. } else if (family == AF_INET6) {
  2943. in6 = &((struct sockaddr_in6 *)addr)->sin6_addr;
  2944. #endif
  2945. } else {
  2946. return -EAFNOSUPPORT;
  2947. }
  2948. for (bucket = 0; bucket < tcp_hashinfo.ehash_mask; bucket++) {
  2949. struct hlist_nulls_node *node;
  2950. struct sock *sk;
  2951. spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, bucket);
  2952. restart:
  2953. spin_lock_bh(lock);
  2954. sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[bucket].chain) {
  2955. struct inet_sock *inet = inet_sk(sk);
  2956. if (sysctl_ip_dynaddr && sk->sk_state == TCP_SYN_SENT)
  2957. continue;
  2958. if (sock_flag(sk, SOCK_DEAD))
  2959. continue;
  2960. if (family == AF_INET) {
  2961. __be32 s4 = inet->inet_rcv_saddr;
  2962. if (s4 == LOOPBACK4_IPV6)
  2963. continue;
  2964. if (in->s_addr != s4 &&
  2965. !(in->s_addr == INADDR_ANY &&
  2966. !tcp_is_local(net, s4)))
  2967. continue;
  2968. }
  2969. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2970. if (family == AF_INET6) {
  2971. struct in6_addr *s6;
  2972. if (!inet->pinet6)
  2973. continue;
  2974. s6 = &inet->pinet6->rcv_saddr;
  2975. if (ipv6_addr_type(s6) == IPV6_ADDR_MAPPED)
  2976. continue;
  2977. if (!ipv6_addr_equal(in6, s6) &&
  2978. !(ipv6_addr_equal(in6, &in6addr_any) &&
  2979. !tcp_is_local6(net, s6)))
  2980. continue;
  2981. }
  2982. #endif
  2983. sock_hold(sk);
  2984. spin_unlock_bh(lock);
  2985. local_bh_disable();
  2986. bh_lock_sock(sk);
  2987. sk->sk_err = ETIMEDOUT;
  2988. sk->sk_error_report(sk);
  2989. tcp_done(sk);
  2990. bh_unlock_sock(sk);
  2991. local_bh_enable();
  2992. sock_put(sk);
  2993. goto restart;
  2994. }
  2995. spin_unlock_bh(lock);
  2996. }
  2997. return 0;
  2998. }